
OpenVZ User’s Guide
December 20, 2016

Parallels IP Holdings GmbH
Vordergasse 59
8200 Schaffhausen
Switzerland
Tel: + 41 52 632 0411
Fax: + 41 52 672 2010
http://www.virtuozzo.com
Copyright © 1999-2016 Parallels IP Holdings GmbH and its affiliates. All rights reserved.
This product is protected by United States and international copyright laws. The product’s underlying technology,
patents, and trademarks are listed at http://www.virtuozzo.com/legal/.
Microsoft, Windows, Windows Server, Windows NT, Windows Vista, and MS-DOS are registered trademarks of
Microsoft Corporation.
Apple, Mac, the Mac logo, Mac OS, iPad, iPhone, iPod touch, FaceTime HD camera and iSight are trademarks of
Apple Inc., registered in the US and other countries.
Linux is a registered trademark of Linus Torvalds.
All other marks and names mentioned herein may be trademarks of their respective owners.

Table of Contents
1. Learning OpenVZ Basics ... 8

1.1. OpenVZ Overview ... 8
1.2. OS Virtualization Layer .. 8

1.2.1. Basics of OS Virtualization ... 8
1.2.2. OpenVZ Containers .. 9

1.2.2.1. OpenVZ Container Hardware .. 10
1.2.3. Templates ... 10

1.3. Hardware Virtualization Layer ... 10
1.3.1. Hardware Virtualization Basics ... 11
1.3.2. OpenVZ Virtual Machines ... 11

1.3.2.1. Intel and AMD Virtualization Technology Support ... 12
1.3.3. Virtual Machine Hardware .. 12
1.3.4. Virtual Machine Files .. 13
1.3.5. Support of Virtual and Real Media ... 13

1.3.5.1. Supported Types of Hard Disks .. 13
1.3.5.2. Virtual Hard Disks .. 13
1.3.5.3. Split disks ... 13
1.3.5.4. CD/DVD Discs and Images ... 14

1.4. OpenVZ Configuration ... 14
1.5. Resource Management ... 14
1.6. Physical Server Availability Considerations .. 14

2. Managing Virtual Machines and Containers .. 16
2.1. Creating Virtual Machines and Containers .. 16

2.1.1. Choosing OS EZ Templates for Containers ... 16
2.1.2. Creating Containers .. 16
2.1.3. Creating Virtual Machines .. 17
2.1.4. Supported Guest Operating Systems ... 17

2.1.4.1. Virtual Machines .. 17
2.1.4.2. Containers .. 18

2.2. Performing Initial Configuration of Virtual Machines and Containers 18
2.2.1. Using cloud-init for Virtual Machine Guest Initialization .. 18
2.2.2. Installing OpenVZ Guest Tools .. 19
2.2.3. Configuring Network Settings ... 19
2.2.4. Setting Passwords for Virtual Machines and Containers .. 20
2.2.5. Setting Startup Parameters .. 20

2.3. Starting, Stopping, Restarting, and Querying Status of Virtual Machines and Containers 21
2.3.1. Starting Virtual Machines and Containers .. 21
2.3.2. Stopping Virtual Machines and Containers .. 21
2.3.3. Restarting Virtual Machines and Containers .. 21
2.3.4. Checking Status of Virtual Machines and Containers .. 22

2.4. Listing Virtual Machines and Containers ... 22
2.5. Cloning Virtual Machines and Containers ... 22

2.5.1. Configuring Default Directories ... 23
2.6. Suspending Virtual Machines and Containers .. 23
2.7. Running Commands in Virtual Machines and Containers ... 24
2.8. Deleting Virtual Machines and Containers .. 25
2.9. Viewing Detailed Information About Virtual Machines and Containers 25

2.10. Managing Templates ... 26
2.10.1. Creating Templates .. 26
2.10.2. Listing Templates .. 27
2.10.3. Deploying Templates .. 27

2.11. Managing Snapshots ... 27
2.11.1. Creating Snapshots .. 28

2.11.1.1. Creating Virtual Machine Snapshots ... 28
2.11.1.2. Creating Container Snapshots ... 28
2.11.1.3. Snapshot Branching ... 29
2.11.1.4. Restrictions and Recommendations .. 29

2.11.2. Listing Snapshots ... 29
2.11.3. Reverting to Snapshots .. 30
2.11.4. Deleting Snapshots ... 31

2.12. Migrating Virtual Machines and Containers .. 31
2.12.1. Migrating Virtual Machines and Containers Between OpenVZ Servers 31

2.12.1.1. Offline Migration of Virtual Machines and Containers 32
2.12.1.2. Live Migration of Virtual Machines and Containers ... 32

2.13. Performing Container-specific Operations ... 33
2.13.1. Reinstalling Containers ... 33

2.13.1.1. Customizing Container Reinstallation .. 33
2.13.2. Enabling VPN for Containers ... 34
2.13.3. Setting Up NFS Server in Containers .. 35
2.13.4. Mounting NFS Shares on Container Start .. 35
2.13.5. Adding Multiple Virtual Disks to Containers ... 36
2.13.6. Restarting Containers ... 36
2.13.7. Creating SimFS-based Containers ... 36

2.14. Performing Virtual Machine-specific Operations ... 37
2.14.1. Pausing Virtual Machines ... 37
2.14.2. Managing Virtual Machine Devices .. 37

2.14.2.1. Adding New Devices .. 38
2.14.2.2. Initialize a Newly Added Disk .. 39
2.14.2.3. Configuring Virtual Devices .. 41
2.14.2.4. Deleting Devices .. 42

2.14.3. Assigning USB Devices to Virtual Machines .. 44
2.14.4. Configuring IP Address Ranges for Host-Only Networks ... 45

2.15. Managing Virtual Machines and Containers with virt-manager ... 46
3. Managing Resources .. 47

3.1. Managing CPU Resources .. 47
3.1.1. Configuring CPU Units ... 47
3.1.2. Configuring CPU Affinity for Virtual Machines and Containers 47
3.1.3. Configuring CPU Limits for Virtual Machines and Containers 48

3.1.3.1. Using --cpulimit to Set CPU Limits .. 48
3.1.3.2. Using --cpus to Set CPU Limits ... 49
3.1.3.3. Using --cpulimit and --cpus Simultaneously ... 49
3.1.3.4. CPU Limit Specifics ... 49

3.1.4. Binding CPUs to NUMA Nodes .. 50
3.1.5. Enabling CPU Hotplug for Virtual Machines .. 50

3.2. Managing Disk Quotas .. 51
3.3. Managing Virtual Disks .. 51

3.3.1. Increasing Disk Capacity .. 52

3.3.2. Reducing Disk Capacity ... 52
3.3.2.1. Checking the Minimum Disk Capacity ... 52

3.3.3. Compacting Disks ... 53
3.3.4. Managing Virtual Machine Disk Interfaces ... 53

3.4. Managing Network Accounting and Bandwidth ... 54
3.4.1. Network Traffic Parameters .. 54
3.4.2. Configuring Network Classes ... 55
3.4.3. Viewing Network Traffic Statistics .. 56
3.4.4. Configuring Traffic Shaping .. 57

3.4.4.1. Setting BANDWIDTH Parameter ... 58
3.4.4.2. Setting TOTALRATE Parameter .. 58
3.4.4.3. Setting RATEMPU Parameter ... 58
3.4.4.4. Setting RATE and RATEBOUND Parameters ... 59
3.4.4.5. Traffic Shaping Example .. 60

3.5. Managing Disk I/O Parameters ... 60
3.5.1. Configuring Priority Levels for Virtual Machines and Containers 60
3.5.2. Configuring Disk I/O Bandwidth ... 61
3.5.3. Configuring the Number of I/O Operations Per Second ... 61

3.5.3.1. Setting the Direct Access Flag Inside Containers ... 62
3.5.4. Viewing Disk I/O Statistics .. 62

3.6. Managing Containers Memory Parameters ... 63
3.6.1. Configuring Main VSwap Parameters .. 63
3.6.2. Configuring Container Memory Guarantees ... 64
3.6.3. Configuring Container Memory Allocation Limit ... 64
3.6.4. Configuring Container OOM Killer Behavior ... 65
3.6.5. Tuning VSwap .. 66

3.7. Managing Virtual Machines Memory Parameters ... 66
3.7.1. Configuring Virtual Machine Memory Size ... 66
3.7.2. Configuring Virtual Machine Video Memory Size ... 67
3.7.3. Enabling Virtual Machine Memory Hotplugging .. 67
3.7.4. Configuring Virtual Machine Memory Guarantees .. 68
3.7.5. Optimizing Virtual Machine Memory with Kernel Same-Page Merging 68

3.8. Managing Container Resource Configuration ... 69
3.8.1. Splitting Server Into Equal Pieces .. 70
3.8.2. Applying New Configuration Samples to Containers .. 70

3.9. Managing Virtual Machine Configuration Samples ... 71
3.9.1. Creating a Configuration Sample ... 71
3.9.2. Applying Configuration Samples to Virtual Machines ... 71
3.9.3. Parameters Applied from Configuration Samples .. 72

3.10. Monitoring Resources .. 72
4. Managing Services and Processes .. 74

4.1. What Are Services and Processes ... 74
4.2. Main Operations on Services and Processes ... 75
4.3. Managing Processes and Services ... 75

4.3.1. Viewing Active Processes and Services .. 75
4.3.2. Monitoring Processes in Real Time ... 77
4.3.3. Determining Container UUIDs by Process IDs ... 78

5. Managing Network .. 79
5.1. Managing Network Adapters on the Hardware Node ... 79
5.2. Networking Modes in OpenVZ .. 79

5.2.1. Container Network Modes .. 79
5.2.1.1. Host-Routed Mode for Containers ... 79
5.2.1.2. Bridged Mode for Containers ... 81

5.2.2. Virtual Machine Network Modes ... 83
5.2.2.1. Bridged Mode for Virtual Machines ... 83
5.2.2.2. Host-Routed Mode for Virtual Machines .. 84

5.2.3. Differences Between Host-Routed and Bridged Network Modes 86
5.3. Configuring Virtual Machines and Containers in Host-Routed Mode 86

5.3.1. Setting IP Addresses .. 86
5.3.2. Setting DNS Server Addresses .. 87
5.3.3. Setting DNS Search Domains .. 87

5.3.3.1. Switching Virtual Machine Adapters to Host-Routed Mode 87
5.4. Configuring Virtual Machines and Containers in Bridged Mode .. 88

5.4.1. Managing Virtual Networks ... 88
5.4.1.1. Creating Virtual Networks .. 88
5.4.1.2. Creating Network Bridges for Physical Network Adapters 88
5.4.1.3. Configuring Virtual Network Parameters .. 89
5.4.1.4. Listing Virtual Networks ... 89
5.4.1.5. Connecting Virtual Networks to Adapters .. 90
5.4.1.6. Deleting Virtual Networks .. 91

5.4.2. Managing Virtual Network Adapters in Containers ... 91
5.4.2.1. Creating and Deleting veth Network Adapters .. 91
5.4.2.2. Configuring veth Adapter Parameters ... 92
5.4.2.3. Connecting Containers to Virtual Networks ... 93

5.4.3. Managing Adapters in Virtual Machines ... 94
5.4.3.1. Creating and Deleting Virtual Adapters ... 94
5.4.3.2. Configuring Virtual Adapter Parameters .. 94
5.4.3.3. Connecting Virtual Machines to Virtual Networks .. 95

6. Keeping Your System Up To Date .. 97
6.1. Updating OpenVZ .. 97

6.1.1. Updating All Components ... 97
6.1.2. Updating Kernel .. 97
6.1.3. Updating EZ Templates .. 97
6.1.4. Checking for Updates ... 98
6.1.5. Performing More Actions with yum .. 98

6.2. Updating Software in Virtual Machines ... 98
6.3. Updating Containers .. 98

6.3.1. Updating EZ Template Packages in Containers .. 98
6.3.2. Updating OS EZ Template Caches .. 99

7. Advanced Tasks ... 101
7.1. Upgrading from OpenVZ to Virtuozzo 7 .. 101

7.1.1. Migrating Containers from OpenVZ Based on Kernels 2.6.18 and 2.6.32 to
Virtuozzo 7 .. 101
7.1.2. Upgrading from OpenVZ Based on Kernel 3.10 to Virtuozzo 7 101

7.2. Creating Customized Containers ... 102
7.2.1. Using Golden Image Functionality .. 102

7.2.1.1. Disabling Golden Image Functionality ... 103
7.2.2. Using Customized EZ Templates ... 103

7.2.2.1. EZ Template Configuration Files ... 104
7.2.3. Creating Customized EZ Template RPMs .. 105

7.3. Enabling VNC Access to Virtual Machines and Containers .. 105
7.3.1. Enabling VNC Access to Virtual Machines .. 105
7.3.2. Enabling VNC Access to Containers .. 106
7.3.3. Connecting with a VNC Client .. 106

7.4. Managing iptables Modules ... 106
7.4.1. Using iptables Modules in OpenVZ .. 106
7.4.2. Using iptables Modules in Containers .. 107

7.4.2.1. Configuring iptables Modules ... 107
7.4.2.2. Using conntrack Rules and NAT Tables .. 107

7.5. Creating Configuration Files for New Linux Distributions .. 108
7.6. Aligning Disks and Partitions in Virtual Machines ... 108

7.6.1. Aligning Partitions ... 109
7.6.2. Checking Partition Alignment in Existing Virtual Machines .. 110

7.6.2.1. Linux Virtual Machines ... 110
7.6.2.2. Windows Virtual Machines ... 110

7.6.3. Aligning Disks for Linux Virtual Machines .. 111
7.6.4. Aligning Partitions for Windows Virtual Machines .. 112
7.6.5. Creating a Template of a Virtual Machine with Aligned Partitions 113

7.7. Installing Optional OpenVZ Packages ... 113
7.8. Integrating OpenVZ with OpenStack ... 113

8. Troubleshooting .. 114
8.1. General Considerations ... 114
8.2. Kernel Troubleshooting .. 115

8.2.1. Using ALT+SYSRQ Keyboard Sequences ... 115
8.2.2. Saving Kernel Faults (OOPS) .. 116
8.2.3. Finding a Kernel Function That Caused the D Process State 117

8.3. Container Management Issues .. 118
8.3.1. Failure to Start a Container .. 118
8.3.2. Failure to Access a Container from Network .. 118
8.3.3. Failure to Log In to a Container ... 119

Chapter 1. Learning OpenVZ Basics
This chapter provides a brief description of OpenVZ, virtual machines and containers, their specifications
and underlying technologies.

1.1. OpenVZ Overview

OpenVZ is a bare-metal virtualization solution that includes container virtualization, KVM-based virtual
machines, software-defined storage along with enterprise features and production support. It runs on top
of Virtuozzo Linux, a RHEL-based Linux distribution.

OpenVZ provides the best value for cost-conscious organizations enabling them to:

• standardize server hardware platforms,
• effectively consolidate server resources,
• consolidate and support legacy OSs and applications,
• streamline server and application deployment, maintenance, and management,
• simplify software testing and development,
• optimize server and application availability.

1.2. OS Virtualization Layer

This section provides detailed information on the OS virtualization layer responsible for providing support
for OpenVZ containers.

1.2.1. Basics of OS Virtualization

The OS virtualization allows you to virtualize physical servers on the operating system (kernel) layer. The
diagram below shows the basic architecture of OS virtualization.

The OS virtualization layer ensures isolation and security of resources between different containers.
The virtualization layer makes each container appear as a standalone server. Finally, the container itself

Chapter 1. Learning OpenVZ Basics

9

houses its own applications and workload. OS virtualization is streamlined for the best performance,
management, and efficiency. Its main advantages are the following:

• Containers perform at levels consistent with native servers. Containers have no virtualized hardware
and use native hardware and software drivers.

• Each container can seamlessly scale up to the resources of an entire physical server.
• OS virtualization technology provides the highest density available from a virtualization solution. You

can create and run hundreds of containers on a standard production physical server.
• Containers use a single OS, making it extremely simple to maintain and update across containers.

Applications may also be deployed as a single instance.

1.2.2. OpenVZ Containers

From the point of view of applications and container users, each container is an independent system.
This independence is provided by the OpenVZ OS virtualization layer. Note that only a negligible part of
the CPU resources is spent on virtualization. The main features of the virtualization layer implemented in
OpenVZ are the following:

• A container looks like a normal Linux system. It has standard startup scripts; software from vendors
can run inside containers without any modifications or adjustment.

• A user can change any configuration file and install additional software inside containers.
• Containers are fully isolated from each other (file system, processes, sysctl variables).
• Containers share dynamic libraries, which greatly saves memory.
• Processes belonging to a container are scheduled for execution on all available CPUs. Consequently,

containers are not bound to only one CPU and can use all available CPU power.

The two key parts of any container are the contents and configuration. By default, all container files are
stored in the /vz/private/<UUID> directory on the hardware node, also called private area.

Table 1.1. Key Container directories and files

File Name Description

/vz/private/<UUID> Container private area.

/vz/private/<UUID>/

root.hdd/root.hdd

Virtual hard disk with container contents. The maximum size of the virtual
hard disk is 16 TB.

/vz/root/<UUID> Container mount point.

ve.conf Container configuration file:

• Is symlinked to /etc/vz/conf/<UUID>.conf
• Defines container parameters, such as allocated resource limits, IP

address and hostname, and so on.
• Overrides matching parameters in the global configuration file.

All container files are stored in a single image (/vz/private/<UUID>/root.hdd/root.hdd), similar to a
virtual machine’s hard disk. Such standalone nature:

• Enables easier migrations and backups due to a faster sequential I/O access to container images than
to separate container files.

• Removes the need for OS and application templates once a container is created.

Chapter 1. Learning OpenVZ Basics

10

• Allows the use of native Linux disk quotas that are journaled and does not require quota recalculation
after disasters like server crashes.

Note: Using containers that store all files in an image file (also known as containers with the container-
in-an-image-file layout) is supported only for /vz partitions formatted as ext4.

1.2.2.1. OpenVZ Container Hardware

A container may have the following virtual hardware:

Hardware Theoretical Certified

CPU Up to the total number of threads on the
host

Up to 32

RAM Up to total amount of physical RAM on
the host

Up to 256 GB

Disk drives Up to 15: hard disk drives mapped to QCOW2 image files and DVD drives mapped
to ISO image files, up to 16 TB each

Network Interfaces Up to 15

1.2.3. Templates

A template (or a package set) in OpenVZ is a set of original application files repackaged for use by
OpenVZ. Usually, it is just a set of RPM packages for Red Hat like systems. OpenVZ provides tools for
creating templates, installing, upgrading, adding them to and removing them from a container.

Using templates lets you:

• Share RAM among similar applications running in different containers to save hundreds of megabytes
of memory.

• Deploy applications simultaneously in many containers.
• Use different versions of an application in different containers (for example, perform upgrades only in

certain containers).

There are two types of templates: OS and application.

• An OS template is an operating system and the standard set of applications to be found right after the
installation. OpenVZ uses OS templates to create new containers with a preinstalled operating system.

• An application template is a set of repackaged software packages optionally accompanied with
configuration scripts. Application templates are used to add extra software to existing containers.

For example, you can create a container on the basis of the redhat OS template and add the MySQL
application to it with the help of the mysql template.

1.3. Hardware Virtualization Layer
This section familiarizes you with the second component of OpenVZ—the hardware virtualization layer.
This layer provides the necessary environment for creating and managing virtual machines.

Chapter 1. Learning OpenVZ Basics

11

1.3.1. Hardware Virtualization Basics

OpenVZ is based on the concept of hardware virtualization. Hardware virtualization has a base layer
—a hypervisor. This layer is loaded directly on the bare server and acts as an intermediary between
the server hardware and virtual machines. To allocate hardware and resources to virtual machines,
OpenVZ virtualizes all hardware on the server. Once virtualized, hardware and resources can be easily
assigned to virtual machines. With its virtual hardware, a virtual machine runs its own complete copies of
an operating system and applications.

The following diagram shows the basic architecture of hardware virtualization.

Specifically, OpenVZ uses the KVM/QEMU hypervisor and manages virtual machines via the libvirt API.

Hardware virtualization enables you to:

• Create multiple virtual machines with different operating systems on a single physical host.
• Run multiple guest operating systems and their applications simultaneously on a single physical host

without rebooting.
• Consolidate and virtualize the computing environment, reduce hardware costs, lower operating

expenses, and increase productivity.
• Use open APIs and SDK for integration with in-house and third-party applications.

1.3.2. OpenVZ Virtual Machines

From the standpoint of applications and virtual machine users, each virtual machine (VM) is an
independent system with an independent set of virtual hardware. This independence is provided by the
OpenVZ hardware virtualization layer. The main features of the virtualization layer are the following:

• A virtual machine resembles and works like a regular computer. It has its own virtual hardware.
Software applications can run in virtual machines without any modifications or adjustment.

• Virtual machine configuration can be changed easily (e.g., adding new virtual disks or increasing
RAM).

• Virtual machines are fully isolated from each other (file system, processes, sysctl variables) and the
OpenVZ host.

Chapter 1. Learning OpenVZ Basics

12

• A virtual machine can run any supported guest operating system. The guest OS and its applications
are isolated inside a virtual machine and share physical hardware resources with other virtual
machines.

1.3.2.1. Intel and AMD Virtualization Technology Support

OpenVZ provides support for Intel and AMD virtualization technologies comprising a set of processor
enhancements and improving the work of virtualization solutions. Utilizing these technologies, OpenVZ
can offload some workload to the system hardware, which results in the "near native" performance of
guest operating systems.

1.3.3. Virtual Machine Hardware

A OpenVZ virtual machine works like a usual standalone computer.

By default, virtual machines are created with the following virtual hardware:

• 1 VirtIO SCSI HDD, expanding,
• 1 CD-ROM (IDE for Windows and Debian guests, VirtIO SCSI for Linux guests except Debian),
• 1 VirtIO network adapter, bridged,
• 32MB video card.

Other hardware added to a default VM may depend on the chosen distribution (see Section 2.1.3,
“Creating Virtual Machines” on page 17).

The complete range of virtual hardware a virtual machine can have is provided in the table below.

CPU Up to 32

RAM Up to 256 GB

Video Adapter VGA/SVGA video adapter with VBE 3.0

Video RAM Up to 256 MB of video memory

Floppy Disk Drive 1.44 MB floppy disk drive mapped to an image file or a physical
floppy drive

IDE Devices Up to 4 IDE devices:

• hard disk drives mapped to QCOW2 image files (up to 16 TB
each)

• DVD drives mapped to ISO image files

SCSI Devices Up to 15 SCSI devices:

• hard disk drives mapped to QCOW2 image files (up to 16 TB
each)

• DVD drives mapped to ISO image files

Network Interfaces Up to 15 VirtIO (default), Intel 82545EM, or Realtek RTL8029 virtual
network adapters.

Serial (COM) Ports Up to 4 serial (COM) ports mapped to a socket, a real port, or an
output file

Keyboard Generic USB or PS/2 keyboard

Chapter 1. Learning OpenVZ Basics

13

Mouse Generic USB or PS/2 wheel mouse

1.3.4. Virtual Machine Files

A virtual machine has at least two files: a configuration file (PVS file) and a hard disk image file (HDD
file). It can also have additional files: a file for each additional virtual hard disk and output files for virtual
ports. By default, the virtual machines files are stored in the /vz/vmprivate/<UUID> directory on the
OpenVZ server.

The list of files related to a virtual machine is given in the table below:

File Name Description

.pvs Virtual machine configuration file. It defines the hardware and resources configuration
of the virtual machine. The configuration file is automatically generated during the
virtual machine creation.

.sav Dump file created when you suspend the virtual machine. This file contains the state of
the virtual machine and its applications at the moment the suspend was invoked.

.mem Memory dump file for the suspended virtual machine. For a running virtual machine, it
is a temporary virtual memory file.

.hdd Hard disk image in QCOW2 format. When you create a virtual machine, you can
create it with a new virtual hard disk or use an existing one. A virtual machine can
have multiple hard disks.

.iso CD/DVD disc image. Virtual machines treat ISO images as real CD/DVD discs.

.txt Output files for serial ports. The output .txt files are generated when a serial port
connected to an output file is added to the virtual machine configuration.

1.3.5. Support of Virtual and Real Media

This section lists the types of disks that can be used by OpenVZ virtual machines and provides the
information about basic operations you can perform on these disks.

1.3.5.1. Supported Types of Hard Disks

OpenVZ virtual machines can use only virtual hard disks image files as their hard disks.

1.3.5.2. Virtual Hard Disks

The capacity of a virtual hard disk can be set from 100 MB to 16 TB.

OpenVZ uses expanding virtual hard disks. The image file of such a disk is initially small in size (smaller
than the set virtual disk size) and grows as data is added to the disk in the guest OS.

1.3.5.3. Split disks

A virtual disk of either format can be a single-piece disk or a split disk. A split disk is cut into 2 GB pieces
and is stored as a single .hdd file.

Chapter 1. Learning OpenVZ Basics

14

1.3.5.4. CD/DVD Discs and Images

OpenVZ can access real CD/DVD discs and images of CD/DVD discs.

OpenVZ has no limitations on using multi-session CD/DVD discs. A virtual machine can play back audio
CDs without any limitations on copy-protected discs.

If your server has a recordable optical drive, you can use it to burn CD or DVD discs in a virtual machine.

OpenVZ supports whatever CD/DVD disc images are supported by the guest OS.

1.4. OpenVZ Configuration

OpenVZ allows you to configure settings for the physical server in general and for each container in
particular. Among these settings are disk and user quotas, network parameters, default file locations,
sample configuration files, and other.

OpenVZ stores all OS virtualization-related configuration information in the global configuration file /
etc/vz/vz.conf. It defines container parameters like the default OS templates, disk quotas, logging,
and so on.

The configuration file is read when the OpenVZ software and/or containers are started. However, many
settings can also be changed on the fly by means of OpenVZ standard utilities like prlctl, with or
without modifying the corresponding configuration file to keep the changes for the future.

1.5. Resource Management

OpenVZ resource management controls the amount of resources available to virtual machines and
containers. The controlled resources include such parameters as CPU power, disk space, a set of
memory-related parameters. Resource management allows you to:

• effectively share available physical server resources among virtual machines and containers
• guarantee Quality-of-Service in accordance with a service level agreement (SLA)
• provide performance and resource isolation and protect from denial-of-service attacks
• simultaneously assign and control resources for a number of virtual machines and containers
• collect usage information for system health monitoring

Resource management is much more important for OpenVZ than for a standalone server since server
resource utilization in such a system is considerably higher than that in a typical system.

1.6. Physical Server Availability Considerations

The availability of a physical server running OpenVZ is more critical than the availability of a typical PC
server. Since it runs multiple virtual machines and containers providing a number of critical services,
physical server outage might be very costly. It can be as disastrous as the simultaneous outage of a
number of servers running critical services.

Chapter 1. Learning OpenVZ Basics

15

To increase physical server availability, we suggest that you follow the recommendations below:

• Use a RAID storage for critical virtual machines and containers. Do prefer hardware RAIDs, but
software mirroring RAIDs might suit too as a last resort.

• Do not run any software on the server itself. Create special virtual machines and containers where
you can host necessary services such as BIND, FTPD, HTTPD, and so on. On the server, you need
only the SSH daemon. Preferably, it should accept connections from a pre-defined set of IP addresses
only.

• Do not create users on the server itself. You can create as many users as you need in any virtual
machine and container. Remember: compromising the server means compromising all virtual
machines and containers as well.

Chapter 2. Managing Virtual Machines and
Containers

This chapter describes how to perform day-to-day operations on virtual machines and containers.

2.1. Creating Virtual Machines and Containers

This section explains how to create new OpenVZ virtual machines and containers using the prlctl
create command. The options you should pass to this command differ depending on whether you want
to create a virtual machine or container.

2.1.1. Choosing OS EZ Templates for Containers

Before creating a container, you need to choose an OS EZ template it will be based on. To find out
which OS EZ templates are already installed on the hardware node and cached (i.e. ready to be used),
you can use the vzpkg list command. For example:

vzpkg list -O
centos-6-x86_64 2012-05-10 13:16:43

The timestamp next to an OS EZ template indicates when the template was cached.

Adding the -O option to the vzpkg list command, you can list only those OS EZ templates which
are installed but not cached. You can also add the --with-summary option to display brief template
descriptions:

vzpkg list -O --with-summary
centos-6-x86_64 :CentOS 6 (for AMD64/Intel EM64T) EZ OS Template

2.1.2. Creating Containers

To create a container, use the prlctl create command as follows:

prlctl create MyCT --vmtype ct

OpenVZ will create a new container with the name MyCT using the default parameters from the global
configuration file /etc/vz/vz.conf.

If you want to create a container with a guest OS different from the default specified in the global
configuration file, add the --ostemplate option after the prlctl create command. For example:

prlctl create MyCT --vmtype ct --ostemplate centos-6-x86_64

All container contents will be stored in this container’s private area. To find out where the private area is
located, use the prlctl list command as follows:

Chapter 2. Managing Virtual Machines and Containers

17

prlctl list MyCT -i | grep "Home"
Home: /vz/private/26bc47f6-353f-444b-bc35-b634a88dbbcc

Notes:

1. The first time you install an operating system in a container, its cache is created. To create a cache,
you need to have an active Internet connection to access repositories that contain packages for the
respective operating system. You can also set up a local package repository and use this repository
to provide packages for your operating system. A local package repository is also required for some
commercial distributions (e.g., for Red Hat Enterprise Linux).

2. For information on creating containers with preinstalled applications, see Section 7.2.1, “Using
Golden Image Functionality” on page 102.

2.1.3. Creating Virtual Machines

Creating a new virtual machine means creating a VM configuration based on a distribution you specified.
To create VMs, use the prlctl create command. For example:

prlctl create MyVM --distribution centos7 --vmtype vm

This command creates a configuration for a virtual machine MyVM, adjusts it for running the CentOS 7
guest OS, and places all the required files in the /vz/vmprivate/<UUID> directory.

Once the virtual machine configuration is ready, you will need to install a supported guest OS in it (e.g.,
via VNC as described in Section 7.3.1, “Enabling VNC Access to Virtual Machines” on page 105).

When choosing a distribution to install, have in mind that OpenVZ supports VM guest initialization via
cloud-init, so you can perform some of the initial configuration tasks on stopped virtual machines. To be
able to use this feature, you can install a "cloud-enabled" distribution instead of a regular one. For more
information, see Section 2.2.1, “Using cloud-init for Virtual Machine Guest Initialization” on page 18.

2.1.4. Supported Guest Operating Systems

The following guest operating systems have been tested and are supported in virtual machines and
containers.

2.1.4.1. Virtual Machines

• Windows Server 2012 R2
• Windows Server 2012
• Windows Server 2008 R2 with Service Pack 1
• CentOS 7.x (x64)
• CentOS 6.x (x64)
• Debian 8.x (x64)
• Debian 7.x (x64)
• Ubuntu 16.04 LTS (x64)

Chapter 2. Managing Virtual Machines and Containers

18

• Ubuntu 15.10 (x64)
• Ubuntu 14.04 LTS (x64)
• Virtuozzo Linux 7.x (x64)
• Virtuozzo Linux 6.x (x64)
• openSUSE 42.x (x64)
• Fedora 23 (x64)

2.1.4.2. Containers

• CentOS 7.x (x64)
• CentOS 6.x (x64)
• Debian 8.x (x64)
• Debian 7.x (x64)
• Ubuntu 16.04 LTS (x64)
• Ubuntu 15.10 (x64)
• Ubuntu 14.04 LTS (x64)
• Virtuozzo Linux 7.x (x64)
• Virtuozzo Linux 6.x (x64)
• openSUSE 42.x (x64)
• Fedora 23 (x64)

2.2. Performing Initial Configuration of Virtual Machines and
Containers

Before you start using a newly created virtual machine or container, you will need to configure it. This
section describes the main configuration steps.

2.2.1. Using cloud-init for Virtual Machine Guest Initialization

OpenVZ supports VM guest initialization via cloud-init, so you can perform some of the initial
configuration tasks described further in this section on stopped virtual machines. The supported tasks
are: mounting the guest tools image, setting user names and passwords, and configuring network
settings.

The changes resulting from performing the above tasks are not applied to the VM immediately but rather
saved as instructions to be carried out when the guest OS with cloud-init is loading. So when you run a
corresponding command (e.g., prlctl set --userpasswd), the following happens: the bundled image
with cloud-init instructions is copied to the VM home path, a CD-ROM device is added to the VM, and the
image is mounted to said CD-ROM. However, the changes (e.g., to the user name and password) will
only be applied after you install and start loading the guest OS.

As mentioned above, you will need cloud-init installed in a guest OS for the feature to work. For Linux
guests, the easiest way to get cloud-init is to install a "cloud-enabled" distribution that already comes
with it. You can also install cloud-init manually (e.g., by running yum install cloud-init on CentOS
7). For Windows guests, you can create your own distributions with cloud-init or install it manually. The
Windows version is available at https://cloudbase.it/cloudbase-init/.

https://cloudbase.it/cloudbase-init/

Chapter 2. Managing Virtual Machines and Containers

19

2.2.2. Installing OpenVZ Guest Tools

OpenVZ guest tools enable you to configure running virtual machines from the physical host. These
operations include:

• Running commands in VMs with the prlctl exec command.
• Setting passwords for users in VMs with the prlctl set --userpasswd command. If the user does

not exist, it will be created.
• Obtaining and changing VM network settings.

To install OpenVZ guest tools in a Linux or Windows virtual machine MyVM, do the following:

1. Run the prlctl installtools command on the host. For example:

prlctl installtools MyVM

The guest tools image shipped with OpenVZ will be mounted to the virtual machine’s optical drive.

2. Log in to the virtual machine and do the following:

• Inside a Linux VM, create a mount point for the optical drive with the guest tools image and run the
installer:

mount /dev/cdrom /mnt/cdrom
bash /mnt/cdrom/install

• Inside a Windows VM, if autorun is enabled, the installer will run automatically. Otherwise, navigate
to the optical drive and launch the installer manually.

Note: OpenVZ guest tools rely on QEMU guest agent which is installed alongside the tools. The agent
daemon/service (qemu-ga) must be running for the tools to work.

2.2.3. Configuring Network Settings

To make virtual machines and containers accessible from the network, you need to assign valid IP
addresses to them and configure DNS servers. The session below illustrates setting these parameters
for the virtual machine MyVM and the container MyCT:

• Assigning IPv4 and IPv6 addresses:

prlctl set MyVM --device-set net0 --ipadd 10.0.186.100/24
prlctl set MyVM --device-set net0 --ipadd 1fe80::20c:29ff:fe01:fb07
prlctl set MyCT --ipadd 10.0.186.101/24
prlctl set MyCT --ipadd fe80::20c:29ff:fe01:fb08

net0 in the commands above denotes the network card in the virtual machine to assign the IP address
to. You can view all network cards of a virtual machine using the prlctl list <VM_name> -i
command.

Chapter 2. Managing Virtual Machines and Containers

20

• Setting DNS server addresses:

prlctl set MyVM --nameserver 192.168.1.165
prlctl set MyCT --nameserver 192.168.1.165

Notes:
1. You can configure the network settings only for virtual machines that have OpenVZ guest tools

installed.
2. To assign network masks to containers operating in the venet0 network mode, you must set the

USE_VENET_MASK parameter in the /etc/vz/vz.conf configuration file to yes.

2.2.4. Setting Passwords for Virtual Machines and Containers

In OpenVZ, you can use the --userpasswd option of the prlctl set command to create new accounts
in your virtual machines and containers directly from the hardware node. The created account can then
be used to log in to the virtual machine or container. The easiest way of doing it is to run this command:

prlctl set MyCT --userpasswd user1:2wsx123qwe

This command creates the user1 account in the container MyCT and sets the 2wsx123qwe password for
it. Now you can log in to the container as user1 and administer it in the same way you would administer
a standalone server: install additional software, add users, set up services, and so on.

The prlctl set command can also be used to change passwords for existing accounts in your virtual
machines and containers. For example, to change the password for user1 in the container MyCT to
0pi65jh9, run this command:

prlctl set MyCT --userpasswd user1:0pi65jh9

When setting passwords for virtual machines and containers, keep in mind the following:

• You can manage user accounts only inside virtual machines that have OpenVZ guest tools installed.
• You should use passwords that meet the minimum length and complexity requirements of the

respective operating system. For example, for Windows Server 2008, a password must be more than
six characters in length and contain characters from three of the following categories: uppercase
characters, lowercase characters, digits, and non-alphabetic characters.

• You should not create accounts with empty passwords for virtual machines and containers running
Linux operating systems.

2.2.5. Setting Startup Parameters

The prlctl set command allows you to define the onboot startup parameter for virtual machines and
containers. Setting this parameter to yes makes your virtual machine or container automatically boot at
the physical server startup. For example, to enable the container MyCT and the virtual machine MyVM to
automatically start on your server boot, you can execute the following commands:

• For the container MyCT:

prlctl set MyCT --onboot yes

Chapter 2. Managing Virtual Machines and Containers

21

• For the virtual machine MyVM:

prlctl set MyVM --onboot yes

Notice that the onboot parameter will have effect only on the next server startup.

2.3. Starting, Stopping, Restarting, and Querying Status of
Virtual Machines and Containers

After a virtual machine or container has been created, it can be managed like a usual computer.

2.3.1. Starting Virtual Machines and Containers

You can start virtual machines and containers with the prlctl start command. For example:

• To start the container MyCT:

prlctl start MyCT

• To start the virtual machine MyVM:

prlctl start MyVM

2.3.2. Stopping Virtual Machines and Containers

You can stop virtual machines and containers with the prlctl stop command. For example:

• To stop the container MyCT:

prlctl stop MyCT

• To stop the virtual machine MyVM:

prlctl stop MyVM

2.3.3. Restarting Virtual Machines and Containers

You can restart virtual machines and containers with the prlctl restart command. For example:

• To restart the container MyCT:

prlctl restart MyCT

• To restart the virtual machine MyVM:

prlctl restart MyVM

Chapter 2. Managing Virtual Machines and Containers

22

Note: Restarting virtual machines requires a guest OS and OpenVZ guest tools to be installed.

2.3.4. Checking Status of Virtual Machines and Containers

You can check the status of a virtual machine or container with the prlctl status command. For
example:

• To check the status of the container MyCT:

prlctl status MyCT
CT MyCT exists running

• To check the status of the virtual machine MyVM:

prlctl status MyVM
Vm MyVM exists stopped

2.4. Listing Virtual Machines and Containers

To get an overview of the virtual machines and containers existing on the physical server and to get
additional information about them—their IP addresses, hostnames, current resource consumption,
and so on—use the prlctl list command. In the most general case, you can get a list of all virtual
machines and containers by issuing the following command:

prlctl list -a
UUID STATUS IP_ADDR T NAME
{600adc12-0e39-41b3-bf05-c59b7d26dd73} running 10.10.1.101 CT MyCT
{b2de86d9-6539-4ccc-9120-928b33ed31b9} stopped 10.10.100.1 VM MyVM

The -a option shows all—both running and stopped—VMs and containers (only running VMs and
containers are shown by default). The default columns include VM and container UUIDs, status, type, IP
addresses, and names. The list of columns can be customized with the -o option. For example:

prlctl list -a -o name,ctid
NAME UUID
MyCT {26bc47f6-353f-444b-bc35-b634a88dbbcc}
MyVM {b8cb6d99-1af1-453d-a302-2fddd8f86769}

Note: To see a list of all columns, run prlctl list -L.

2.5. Cloning Virtual Machines and Containers

You can create a copy (clone) of a particular virtual machine or container that will have identical data and
resource parameters. Cloning may save time as clones require little reconfiguration compared to setting
up new virtual machines or containers.

Chapter 2. Managing Virtual Machines and Containers

23

You can clone both stopped and running virtual machines and containers. For example:

prlctl clone MyCT --name MyCT_clone
prlctl clone MyVM --name MyVM_clone

The --name option specifies a name for the clone.

When cloning Windows virtual machines, consider changing their security identifiers (SIDs) with the --
changesid option.

Successfully cloned virtual machines and containers will be shown in the list of virtual environments on
the host. For example:

prlctl list -a
UUID STATUS IP_ADDR T NAME
{62951c2a-...} stopped 10.30.10.101 CT MyCT
{49b66605-...} stopped 10.30.10.101 CT MyCT_clone
{7f4904ad-...} stopped 10.30.128.115 VM MyVM
{2afb2aa2-...} stopped 10.30.128.134 VM MyVM_clone

The example above shows that the cloned container has the same IP address as the original
container. Before starting to use the clones, make sure their IP addresses are unique (for instructions
on how to assign IP addresses to VMs and containers, see Section 2.2.3, “Configuring Network
Settings” on page 19).

2.5.1. Configuring Default Directories

When cloning a virtual machine or container, you can also override the following default directories:

• default directory /vz/vmprivate/<dest_UUID> storing the files of a cloned virtual machine (where
<dest_UUID> denotes the name of the resulting virtual machine). To store the files of the ClonedVM
virtual machine in a custom directory, you can run the following command:

prlctl clone MyVM --name ClonedVM --dst /customVMs

In this case all virtual machine files will be placed to the /customVMs directory. Note that the specified
directory must exist on the server; otherwise, the command will fail.

• default directory /vz/private/<dest_UUID> defining the container private area (where <dest_UUID>
denotes the UUID of the resulting container). To define a custom private area path for the container
MyCT2, you can execute the following command:

prlctl clone MyCT1 --name MyCT2 --dst /vz/private/customCTs

2.6. Suspending Virtual Machines and Containers

OpenVZ allows you to suspend a running virtual machine or container on the physical server by saving
its current state to a special file. Later on, you can resume the virtual machine or container and get it
in the same state the virtual machine or container was at the time of its suspending. Suspending your

Chapter 2. Managing Virtual Machines and Containers

24

virtual machines and containers may prove useful, for example, if you need to restart the physical server,
but do not want to:

• quit the applications currently running in the virtual machine or container
• spend much time on shutting down the guest operating system and then starting it again

You can use the prlctl suspend command to save the current state of a virtual machine or container .
For example, you can issue the following command to suspend the container MyCT:

prlctl suspend MyCT

At any time, you can resume the container MyCT by executing the following command:

prlctl resume MyCT

Once the restoration process is complete, any applications that were running in the container MyCT at the
time of its suspending will be running again and the information content will be the same as it was when
the container was suspended.

2.7. Running Commands in Virtual Machines and Containers
OpenVZ allows you to execute arbitrary commands inside virtual machines and containers by running
them on the physical server, i.e. without the need to log in to the respective virtual machine or container.
For example, this can be useful in these cases:

• If you do not know the virtual machine or container login information, but need to run some diagnosis
commands to verify that it is operational.

• If the virtual machine or container has no network access.

In both cases, you can use the prlctl exec command to run a command inside the respective virtual
machine or container. By default, running prlctl exec <command> is equivalent to executing bash -c
<command> in a Linux VM or container or cmd /c <command> in a Windows VM. Adding the --without-
shell option allows running commands directly without the shell.

The session below illustrates the situation when you run the stopped SSH daemon inside a Linux virtual
machine with the name of My_Linux:

prlctl exec My_Linux /etc/init.d/sshd status
openssh-daemon is stopped
prlctl exec My_Linux /etc/init.d/sshd start
Starting sshd: [OK]
prlctl exec My_Linux /etc/init.d/sshd status
openssh-daemon (pid 26187) is running...

Notes:

1. You can use the prlctl exec command only inside virtual machines that have OpenVZ guest tools
installed.

2. The prlctl exec command is executed inside a virtual machine or container from the / directory
rather than from /root.

Chapter 2. Managing Virtual Machines and Containers

25

2.8. Deleting Virtual Machines and Containers

You can delete a virtual machine or container that is not needed anymore using the prlctl delete
command. Note that you cannot delete a running or mounted virtual machine or container. The example
below illustrates deleting the running container MyCT:

prlctl delete MyCT
Removing the CT...
Failed to remove the CT: Unable to complete the operation. This operation cannot \
be completed because the virtual machine "{4f27f27f-c056-4a65-abf6-27642b6edd21}"\
is in the "running" state.
prlctl stop MyCT
Stopping the CT...
The CT has been successfully stopped.
prlctl delete MyCT
Removing the CT...
The CT has been successfully removed.

2.9. Viewing Detailed Information About Virtual Machines and
Containers

To view detailed information about a virtual machine or container, you can use the prlctl list -i
command. For example, the following command lists all information about the virtual machine MyVM:

prlctl list -i MyVM

The following table describes the main options displayed by prlctl list -i.

Option Description

ID Virtual machine identifier. Usually, you use this ID, along with the virtual
machine name, when performing an operation on the virtual machine.

EnvID Kernel virtual machine identifier. This is the ID the kernel on the physical
server uses to refer to a virtual machine when displaying some information on
this virtual machine.

Name Virtual machine name.

Description Virtual machine description.

State Virtual machine state.

OS Guest operating system installed in a virtual machine.

Uptime Time that shows for how long a virtual machine has been running since
counter reset.

Note: The uptime counter as well as count start date and time can be reset
with the prlctl reset-uptime command.

Chapter 2. Managing Virtual Machines and Containers

26

Option Description

Home Directory storing virtual machine files.

Guest tools Shows whether OpenVZ guest tools are installed in a virtual machine.

Autostart Shows whether a virtual machine is automatically started when you turn on
the physical server.

Boot order Order in which the virtual machine devices are checked for an operating
system.

Hardware Devices available in a virtual machine.

Offline management Denotes whether the offline management feature is enabled for the virtual
machine, and if yes, lists the available offline services.

Note: The options prlctl list displays for containers are similar to those for virtual machines.

2.10. Managing Templates
A template in OpenVZ is a pre-configured virtual machine or container that can be easily and quickly
deployed into a fully functional virtual machine or container. Like any normal virtual machine or
container, a template contains hardware (virtual disks, peripheral devices) and the operating system. It
can also have additional software installed. In fact, the only main difference between a virtual machine or
container and a template is that the latter cannot be started.

You can perform the following operations on templates:

• create a new template
• list existing templates
• create a virtual machine or container from a template

These operations are described in the following subsections in detail.

2.10.1. Creating Templates

In OpenVZ, you can create a template using the prlctl clone utility. Making a template may prove
useful if you need to create several virtual machines or containers with the same configuration. In this
case, your steps can be as follows:

1. You create a virtual machine or container with the required configuration.
2. You make a template on the basis of the created virtual machine or container.
3. You use the template to create as many virtual machines or containers as necessary.

Let us assume that you want to create a template of the virtual machine MyVM. To do this, you can run
the following command:

prlctl clone MyVM --name template1 --template

This command clones the virtual machine and saves it as the template1 template. After the template
has been successfully created, you can use it for creating new virtual machines.

Chapter 2. Managing Virtual Machines and Containers

27

2.10.2. Listing Templates

Sometimes, you may need to get an overview of the templates available on your hardware node. For
example, this may be necessary if you plan to create a virtual machine or container from a specific
template, but do not remember its exact name. In this case, you can use the prlctl list command to
list all templates on the hardware node and find the one you need:

prlctl list -t
UUID DIST T NAME
{017bfdf0-b546-4309-90d0-147ce55773f2} centos VM centos1_tmpl
{92cd331e-0572-46ac-8586-f19b8d029c4d} centos CT ct201_tmp1
{fc40e38e-8da4-4b26-bb18-6098ec85f7b4} debian VM deb7_tmpl
{0dea5912-b114-45a9-bd1a-dc065c1b8e9f} ubuntu VM ubuntu1_tmp1
{479e66aa-332c-4e3e-975e-b8b6bfc9d2e0} win-2012 VM w12en_tmpl

In this example, 5 templates exist on the server. The information on these templates is presented in
the form of a table with the following columns (from left to right): the template ID, the operating system
contained in the template, the template type (for a container or virtual machine) and the template name.

2.10.3. Deploying Templates

To convert a template into a virtual machine or container, use the --ostemplate option of the prlctl
create command. For example, to convert the template1 template to the ConvertedVM virtual machine,
you can run this command:

prlctl create ConvertedVM --ostemplate template1

To check that the virtual machine has been successfully created, use the prlctl list -a command:

prlctl list -a
STATUS IP_ADDR NAME
running 10.12.12.101 MyVM
stopped 10.12.12.34 ConvertedVM

The template itself is left intact and can be used for creating other containers:

prlctl list -t
{4ad11c28-9f0e-4086-84ea-9c0487644026} win-2008 template1
{64bd8fea-6047-45bb-a144-7d4bba49c849} rhel template2

2.11. Managing Snapshots
In OpenVZ, you can save the current state of a virtual machine or container by creating a snapshot. You
can then continue working in your virtual machine or container and return to the saved state any time
you wish. Snapshots may be useful in the following cases:

• Configuring applications with a lot of settings. You may wish to check how settings work before
applying them to the application. So, before you start experimenting, you create a snapshot.

Chapter 2. Managing Virtual Machines and Containers

28

• Participating in large-scale development projects. You may wish to mark development milestones by
creating a snapshot for each. If anything goes wrong, you can easily revert to the previous milestone
and resume the development.

In OpenVZ, you can create, list, revert to, and delete snapshots. These operations are described in the
following subsections.

2.11.1. Creating Snapshots

To create a snapshot of a virtual machine or container, use the prlctl snapshot command.

2.11.1.1. Creating Virtual Machine Snapshots

To create a snapshot of the virtual machine MyVM, do the following:

prlctl snapshot MyVM
...
The snapshot with ID {12w32198-3e30-936e-a0bbc104bd20} has been successfully created.

A newly created snapshot is saved to the /vz/vmprivate/<UUID>/Snapshots/<snapshot_ID>.pvs
file, where <UUID> is the corresponding virtual machine ID and <snapshot_ID> is a unique snapshot
ID. In the above example, the snapshot with ID {12w32198-3e30-936e-a0bbc104bd20} is saved to the
file /vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/Snapshots/{12w32198-3e30-936e-
a0bbc104bd20}.pvs.

ls /vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/Snapshots/
{063615fa-f2a0-4c14-92d4-4c935df15840}.pvc

Snapshot IDs are needed to switch to and delete snapshots.

When creating a snapshot, you can also set its name and description:

prlctl snapshot MyVM -n Clean_System -d "This snapshot was created right after \
 installing Windows XP."
...
The snapshot with ID {0i8798uy-1eo0-786d-nn9ic106b9ik} has been successfully created.

You can then view the set name and description in the /vz/vmprivate/
d35d28e5-11f7-4b3f-9065-8fef6178bc5b/Snapshots.xml file.

2.11.1.2. Creating Container Snapshots

To create a snapshot of the container MyCT, do the following:

prlctl snapshot MyCT
...
The snapshot with ID {08ddd014-7d57-4b19-9a82-15940f38e7f0} has been successfully \
created.

A newly created snapshot is saved to the /vz/private/<UUID>/dump/<snapshot_ID>
file, where <UUID> is the container UUID and <snapshot_ID> is a snapshot ID. In the

Chapter 2. Managing Virtual Machines and Containers

29

example above, the snapshot with ID {08ddd014-7d57-4b19-9a82-15940f38e7f0}
is saved to the file /vz/private/26bc47f6-353f-444b-bc35-b634a88dbbcc/dump/
{08ddd014-7d57-4b19-9a82-15940f38e7f0}.

ls /vz/private/26bc47f6-353f-444b-bc35-b634a88dbbcc/dump
{08ddd014-7d57-4b19-9a82-15940f38e7f0}

Snapshot IDs are needed to switch to and delete snapshots.

When creating a snapshot, you can also set its name and description:

prlctl snapshot MyCT --n Clean_System --d "This snapshot was created right after \
installing Windows XP."
...
The snapshot with ID {e78bb2b8-7a99-4c8b-ab9a-491a47648c44} has been successfully \
created.

The set name and description are stored in the /vz/private/<UUID>/Snapshots.xml file.

2.11.1.3. Snapshot Branching

Snapshot branches can be useful for working with, testing or comparing similar configurations. A
snapshot branch is created when you do the following:

1. Create several snapshots.
2. Revert to one of the snapshots.
3. Make changes to the virtual machine or container.
4. Create a snapshot.

In this case, the newly created snapshot will start a new branch based on the snapshot from Step 2.

2.11.1.4. Restrictions and Recommendations

• Virtual machine and snapshot names and snapshot descriptions containing spaces must be enclosed
in quotation marks (e.g., "Windows XP") when supplying them to the prlctl command.

• Before creating a snapshot, it is recommended that you finish any installations, downloads, and stop
writing to external devices. You should also complete or cancel any transactions performed via the
virtual machine in external databases.

2.11.2. Listing Snapshots

To list all snapshots of a particular virtual machine or container, use the prlctl snapshot-list
command. For example, to check all current snapshots of the virtual machine MyVM, run this command:

prlctl snapshot-list MyVM
PARENT_SNAPSHOT_ID SNAPSHOT_ID
 {989f3415-3e30-4494-936e-a0bbc104bd20}
{989f3415-3e30-4494-936e-a0bbc104bd20} *{063615fa-f2a0-4c14-92d4-4c935df15840}

This command shows that the virtual machine MyVM has two snapshots. The snapshot
with ID {063615fa-f2a0-4c14-92d4-4c935df15840} is based on the snapshot with ID

Chapter 2. Managing Virtual Machines and Containers

30

{989f3415-3e30-4494-936e-a0bbc104bd20}, i.e. the former is a child of the latter. The asterisk marks
the current snapshot.

To view the relationships between snapshots, use the -t option:

prlctl snapshot-list MyVM -t
{989f3415-3e30-4494-936e-a0bbc104bd20}{063615fa-f2a0-4c14-92d4-4c935df15840}\
*{712305b0-3742-4ecc-9ef1-9f1e345d0ab8}

The command output shows you that currently two branches exist for the virtual machine MyVM. The
snapshot with ID {989f3415-3e30-4494-936e-a0bbc104bd20} is the base for these branches.

To get detailed information on a particular snapshot, use the -i option with the snapshot ID:

prlctl snapshot-list MyVM -i {063615fa-f2a0-4c14-92d4-4c935df15840}
ID: {063615fa-f2a0-4c14-92d4-4c935df15840}
Name: Clean_System
Date: 2012-07-22 22:39:06
Current: yes
State: poweroff
Description: <![CDATA[This snapshot was created right after installing Windows 7]]>

The prlctl snapshot-list command with the -i option displays the following information about
snapshots:

Field Description

ID ID assigned to the snapshot.

Name Name assigned to the snapshot.

Date Date and time when the snapshot was created.

Current Denotes that this is the current snapshot of the virtual machine.

State State the virtual machine was in at the time you took the snapshot.

Description The description set for the snapshot.

2.11.3. Reverting to Snapshots

To revert to a snapshot, use the prlctl snapshot-switch command. When you revert to a snapshot,
the current state of the virtual machine or container is discarded, and all changes made to the system
since the previous snapshot are lost. So, before reverting, you may want to save the current state by
creating a new snapshot (see Section 2.11.1, “Creating Snapshots” on page 28).

The prlctl snapshot-switch command requires the virtual machine or container name and the
snapshot ID as arguments, for example:

prlctl snapshot-switch MyVM --id {cedbc4eb-dee7-42e2-9674-89d1d7331a2d}

In this example, you revert to the snapshot {cedbc4eb-dee7-42e2-9674-89d1d7331a2d} for the virtual
machine MyVM.

Chapter 2. Managing Virtual Machines and Containers

31

2.11.4. Deleting Snapshots

To delete unneeded snapshots of virtual machines or containers, use the prlctl snapshot-delete
command. For example:

prlctl snapshot-delete MyVM --id {903c12ea-f6e6-437a-a2f0-a1d02eed4f7e}

When you delete a parent snapshot, child snapshots are not deleted, and the information from the
former is merged into the latter.

2.12. Migrating Virtual Machines and Containers

To facilitate hardware upgrades and load balancing between multiple hosts, OpenVZ enables you to
migrate virtual machines and containers between physical servers with the prlctl migrate command.

Before migration, make sure that the destination server:

• has enough hard disk space to store the resulting virtual machine or container,

• has enough memory and CPU power to run the resulting virtual machine or container,

• has a stable network connection with the source server.

You can migrate VMs and containers both to and from a remote server. For example, to move a VM to a
remote server, run this command on the local server:

prlctl migrate MyVM root:passwd@remoteserver.com

To move a VM from a remote server, run this command the local server:

prlctl migrate destserver.com/MyVM localhost

If you do not provide the destination server credentials in the command, you will be asked to do so
during migration.

Once migration is complete, the original virtual machine is removed from the source server. However,
you can keep the original VM with the --keep-src option.

Migration implies transferring large amounts of data between servers which can take considerable
time. To reduce the amount of data to be transferred, OpenVZ has compression enabled by default.
Compression consumes additional server resources and can be disabled if necessary with the --no-
compression option.

2.12.1. Migrating Virtual Machines and Containers Between OpenVZ
Servers

OpenVZ allows you to perform two types of migration between OpenVZ servers:

Chapter 2. Managing Virtual Machines and Containers

32

• Offline migration for stopped and suspended containers and virtual machines.
• Online (live) migration for running containers and running and paused virtual machines.

Important! For migration to work, a direct SSH connection on port 22 must be allowed between the
source and destination servers.

2.12.1.1. Offline Migration of Virtual Machines and Containers

Offline migration implies copying all files of a virtual machine or container from one server to another
over the network.

2.12.1.2. Live Migration of Virtual Machines and Containers

The process of migrating virtual machines and containers live is as follows:

1. Once you start the migration, OpenVZ checks whether the destination server meets all the migration
requirements and the virtual machine or container can be migrated to it.

2. All virtual memory and disks of the virtual machine or container are migrated to the destination server.

3. The virtual machine or container on the source server is suspended.

4. The changed memory pages and virtual disk blocks, if any, are migrated to the destination server.

5. The virtual machine or container is resumed on the destination server.

The virtual machine or container continues running during steps 1 and 2 and is not available to the user
during steps 3-5. But since the amount of memory pages and virtual disk blocks changed during step 2 is
small, the downtime is almost imperceptible.

After migration, the relocated virtual machine or container may not be accessible over the network for
several minutes due to network equipment reconfiguration (for example, as switches are updating their
dynamic VLAN membership tables).

Note: For increased security during live migration, OpenVZ provides connection tunneling between the
source and destination servers. Tunnelling increases migration time, so if you want to speed up the
process and do not need a secure tunnel between servers, you can disable connection tunneling with
the --no-tunnel.

When performing live migration, take into account the following requirements and restrictions:

• Before starting live migration, it is recommended to synchronize the system time on the source and
destination servers, for example, by means of NTP (http://www.ntp.org). The reason is that certain
processes running in virtual machines and containers may rely on system time being steady and might
behave unpredictably when resumed on a destination server where time is different.

• The network must support data transfer rates of at least 1 Gbps.

http://www.ntp.org

Chapter 2. Managing Virtual Machines and Containers

33

• The source and destination servers must belong to the same subnetwork.

• The CPUs on the source and destination servers must be manufactured by the same vendor, and the
CPU capabilities of the destination server must be the same or exceed those on the source server.

• Virtual machine and container disks can be located on local disks, shared NFS and GFS2 storages,
and ISCSI raw devices.

• Live migration is not supported for virtual machines and containers with open prlctl enter sessions
and containers with IPSec connections.

2.13. Performing Container-specific Operations
This section provides the description of operations specific to containers.

2.13.1. Reinstalling Containers

Reinstalling a container may help if any required container files have been inadvertently modified,
replaced, or deleted, resulting in container malfunction. You can reinstall a container by using the
prlctl reinstall command that creates a new container private area from scratch according to its
configuration file and relevant OS and application templates. For example:

vzctl reinstall MyCT

Note: If any of the container application templates cannot be added to the container in a normal way,
reinstallation will fail. This may happen, for example, if an application template was added to the
container using the --force option of the vzpkgadd or vzpkg install command.

To keep the personal data from the old container, the utility also copies the old private area contents to
the /vz/root/<UUID>/old directory of the new private area (unless the --skipbackup option is given).
This directory may be deleted after you copy the personal data where you need.

The vzctl reinstall command retains user credentials base, unless the --resetpwdb option is
specified.

2.13.1.1. Customizing Container Reinstallation

The default reinstallation, as performed by the prlctl reinstall command, creates a new private area
for the broken container as if it were created by the prlctl create command and copies the private
area of the broken container to the /old directory in the new private area so that no file is lost. There is
also a possibility of deleting the old private area altogether without copying or mounting it inside the new
private area, which is done by means of the --skipbackup option. This way of reinstalling corrupted
containers might in certain cases not correspond exactly to your particular needs. It happens when
you are accustomed to creating new containers in some other way than just using the prlctl create
command. For example, you may install additional software licenses into new containers, or anything
else. In this case you would naturally like to perform reinstallation in such a way so that the broken
container is reverted to its original state as determined by you, and not by the default behavior of the
prlctl create command.

Chapter 2. Managing Virtual Machines and Containers

34

To customize reinstallation, you should write your own scripts determining what should be done with the
container when it is being reinstalled, and what should be configured inside the container after it has
been reinstalled. These scripts should be named vps.reinstall and vps.configure, respectively,
and should be located in the /etc/vz/conf directory on the hardware node. To facilitate your task of
creating customized scripts, the containers software is shipped with sample scripts that you may use as
the basis of your own scripts.

When the prlctl reinstall <UUID> command is called, it searches for the vps.reinstall and
vps.configure scripts and launches them consecutively. When the vps.reinstall script is launched,
the following parameters are passed to it:

Option Description

--veid Container UUID.

--ve_private_tmp The path to the container temporary private area. This path designates where
a new private area is temporarily created for the container. If the script runs
successfully, this private area is mounted to the path of the original private
area after the script has finished.

--ve_private The path to the container original private area.

You may use these parameters within your vps.reinstall script.

If the vps.reinstall script finishes successfully, the container is started, and the vps.configure
script is called. At this moment the old private area is mounted to the /old directory inside the new one
irrespective of the --skipbackup option. This is done in order to let you use the necessary files from the
old private area in your script, which is to be run inside the running container. For example, you might
want to copy some files from there to regular container directories.

After the vps.configure script finishes, the old private area is either dismounted and deleted or remains
mounted depending on whether the --skipbackup option was provided.

If you do not want to run these reinstallation scripts and want to stick to the default prlctl reinstall
behavior, you may do either of the following:

• Remove the vps.reinstall and vps.configure scripts from the /etc/vz/conf directory, or at least
rename them;

• Modify the last line of the vps.reinstall script so that it would read exit 128 instead of exit 0.

The exit code 128 tells the utility not to run the scripts and to reinstall the container with the default
behavior.

2.13.2. Enabling VPN for Containers

Virtual Private Network (VPN) is a technology which allows you to establish a secure network connection
even over an insecure public network. Setting up a VPN for a separate container is possible via the TUN/
TAP device. To allow a particular container to use this device, do the following:

1. Make sure the tun.o module is already loaded before OpenVZ is started:

lsmod

Chapter 2. Managing Virtual Machines and Containers

35

2. Allow the container to use the TUN/TAP device:

vzctl set MyCT --devices c:10:200:rw --save

3. Create the corresponding device inside the container and set the proper permissions:

prlctl exec MyCT mkdir -p /dev/net
prlctl exec MyCT mknod /dev/net/tun c 10 200
prlctl exec MyCT chmod 600 /dev/net/tun

Configuring the VPN properly is a common Linux administration task, which is out of the scope of this
guide. Some popular Linux software for setting up a VPN over the TUN/TAP driver includes Virtual
TUNnel and OpenVPN.

2.13.3. Setting Up NFS Server in Containers

To set up an NFS server in a container, do the following:

1. Make sure the rpcbind, nfsd, and nfslock services are installed in the container.

2. Enable the NFS server feature for the container by running the prlctl set --features nfsd:on
command on the hardware node. For example:

prlctl set MyCT --features nfsd:on

Note: If the container is running, restart it for the changes to take effect.

3. Start the rpcbind service in the container.

service rpcbind start
Starting rpcbind: [OK]

4. Start the nfs and nfslock services in the container.

service nfs start
Starting NFS services: [OK]
Starting NFS quotas: [OK]
Starting NFS mountd: [OK]
Starting NFS daemon: [OK]
service nfslock start
Starting NFS statd: [OK]

You can now set up NFS shares in the configured container.

2.13.4. Mounting NFS Shares on Container Start

If you configured an NFS share in the /etc/fstab file of a CentOS or RHEL-based container, and you
need this NFS share to be mounted on container start, enable autostart for the netfs service with the
chkconfig netfs on command.

http://vtun.sourceforge.net
http://vtun.sourceforge.net
http://openvpn.sourceforge.net

Chapter 2. Managing Virtual Machines and Containers

36

2.13.5. Adding Multiple Virtual Disks to Containers

Even though new containers are created with just one virtual hard disk, you can add more disks to a
container and keep the corresponding ploop images at locations of your choice, be it directly attached
HDDs or SSDs. Such functionality allows creating more flexible containers, in which, for example, the
operating system is kept on a fast SSD and user content is stored on a capacious HDD.

To add a virtual hard disk to a container, whether stopped or running, use the prlctl set --device-
add hdd command. For example:

prlctl set MyCT --device-add hdd --image /hdd/MyCT --size 100G --mnt /userdisk

This command adds to the configuration of the container MyCT a virtual hard disk with the following
parameters:

• name: hdd<N> where <N> is the next available disk index,
• image location: /hdd/MyCT,
• size: 102400 MB,
• mount point inside the container MyCT: /userdisk. A corresponding entry is also added to container’s
/etc/fstab file.

2.13.6. Restarting Containers

You can restart containers from the inside using typical Linux commands, e.g., reboot or shutdown -r.
Restarting is handled by the vzeventd daemon.

If necessary, you can forbid restarting containers from the inside as follows:

• To disable restarting for a specific container, add the ALLOWREBOOT="no" line to the container
configuration file (/etc/vz/conf/<UUID>.conf).

• To disable restarting globally for all containers on the server, add the ALLOWREBOOT="no" line to the
global configuration file (/etc/vz/vz.conf).

• To disable restarting globally except for specific containers, add the ALLOWREBOOT="no" line to
the global configuration file (/etc/vz/vz.conf) and explicitly specify ALLOWREBOOT="yes" in the
configuration files of the respective containers.

2.13.7. Creating SimFS-based Containers

In OpenVZ, the simfs layout is based on bindmounts. When a simfs-based container is started, its
private area is bindmounted to the root container area.

To create a simfs container:

1. Set VEFSTYPE=simfs in /etc/vz/vz.conf.

2. Run vzctl create <CT_name>.

The limitations of simfs in OpenVZ are:

Chapter 2. Managing Virtual Machines and Containers

37

1. No support for first- or second-level quotas.

2. No support for live migration of simfs-based containers.

2.14. Performing Virtual Machine-specific Operations

This section focuses on operations specific to virtual machines.

2.14.1. Pausing Virtual Machines

Pausing a running virtual machine releases the resources, such as RAM and CPU, currently used by this
virtual machine. The released resources can then be used by the hardware node or other running virtual
machines and containers.

To pause a virtual machine, you can use the prlctl pause command. For example, the following
command pauses the virtual machine MyVM:

prlctl pause MyVM
Pause the VM...
The VM has been successfully paused.

You can check that the virtual machine has been successfully paused by using the prlctl list -a
command:

prlctl list -a
STATUS IP_ADDR NAME
running 10.10.10.101 MyCT
paused 10.10.10.201 MyVM

The command output shows that the virtual machine MyVM is paused at the moment. To continue running
this virtual machine, execute this command:

prlctl start MyVM
Starting the VM...
The VM has been successfully started.

2.14.2. Managing Virtual Machine Devices

OpenVZ allows you to manage the following virtual machine devices:

• hard disk drives
• CD/DVD-ROM drives
• floppy disk drives
• network adapters
• serial ports
• USB controllers

The main operations you can perform on these devices are:

Chapter 2. Managing Virtual Machines and Containers

38

• adding a new device to the virtual machine
• configuring the device properties
• removing a device from the virtual machine

2.14.2.1. Adding New Devices

This section provides information on adding new devices to your virtual machines. You can add new
virtual devices to your virtual machine using the prlctl set command. The options responsible for
adding particular devices are listed in the following table:

Option Description

hdd Adds a new hard disk drive to the virtual machine. You can either connect an
existing image to the virtual machine or create a new one.

Note: SCSI and VirtIO hard disks can be added to both running and
stopped VMs, IDE disks can only be added to stopped VMs.

cdrom Adds a new CD/DVD-ROM drive to the virtual machine.

net Adds a new network adapter to the virtual machine.

fdd Adds a new floppy disk drive to the virtual machine.

serial Adds a new serial port to the virtual machine.

usb Adds a new USB controller to the virtual machine.

For example, you can execute the following command to add a new virtual disk to the virtual machine
MyVM:

prlctl set MyVM --device-add hdd
Creating hdd1 () scsi:1 image='/vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/ \
harddisk1.hdd' type='expanded' 65536Mb subtype=virtio-scsi
Created hdd1 () scsi:1 image='/vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/ \
harddisk1.hdd' type='expanded' subtype=virtio-scsi
The VM has been successfully configured.

This command creates a new virtual disk with the following default parameters:

• name: hdd1
• disk type: SCSI
• disk subtype: VirtIO SCSI
• image file name and location: /vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/
harddisk1.hdd

• disk format: expanded
• disk capacity: 65536 MB

You can redefine some of these parameters by specifying specific options during the command
execution. For example, to create an IDE virtual disk that will have the capacity of 84 GB, you can run
this command:

prlctl set MyVM --device-add hdd --size 84000 --iface ide

Chapter 2. Managing Virtual Machines and Containers

39

Creating hdd2 () ide:0 image='/vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/ \
harddisk2.hdd' type='expanded' 84000Mb
Created hdd2 () ide:0 image='/vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/ \
harddisk2.hdd' type='expanded'
The VM has been successfully configured.

The virtual disk has been added to your virtual machine. However, before starting to use it, you must
initialize the disk. Refer to the next subsection for information on how you can do it.

When managing devices, keep in mind the following:

• You can connect up to 4 IDE devices, and 8 SCSI devices (virtual disks or CD/DVD-ROM drives) to a
virtual machine.

• A virtual machine can have up to 16 virtual network adapters.
• A virtual machine can have up to 4 serial ports.
• A virtual machine can have only 1 USB controller.
• A virtual machine can have only 1 floppy disk drive.

2.14.2.2. Initialize a Newly Added Disk

After you added a new blank virtual hard disk to the virtual machine configuration, it will be invisible to
the operating system installed inside the virtual machine until the moment you initialize it.

Initializing the New Virtual Hard Disk in Windows

To initialize a new virtual hard disk in a Windows guest OS, you will need the Disk Management utility
available. For example, in Windows Server 2012 you can access this utility by clicking Start > Control
Panel > System and Security > Administrative Tools > Computer Management > Storage > Disk
Management.

When you open the Disk Management utility, it automatically detects that a new hard disk was added to
the configuration and launches the Initialize Disk wizard:

1. In the Select disks section, select the newly added disk.
2. Choose the partition style for the selected disk: MBR (Master Boot Record) or GPD (GUID Partition

Table).
3. Click OK.

The added disk will appear as a new disk in the Disk Management utility window, but its memory space
will be unallocated. To allocate the disk memory, right-click this disk name in the Disk Management utility
window and select New Volume. The New Volume Wizard window will appear. Follow the steps of the
wizard and create a new volume in the newly added disk.

After that your disk will become visible in My Computer and you will be able to use it as a data disk
inside your virtual machine.

Initializing the New Virtual Hard Disk in Linux

Initializing a new virtual hard disk in a Linux guest OS comprises two steps: (1) allocating the virtual hard
disk space and (2) mounting this disk in the guest OS.

Chapter 2. Managing Virtual Machines and Containers

40

To allocate the space, you need to create a new partition on this virtual hard disk using the fdisk utility:

Note: To use the fdisk utility, you need the root privileges.

1. Launch a terminal window.

2. To list the IDE disk devices present in your virtual machine configuration, enter:

fdisk /dev/hd*

Note: If you added a SCSI disk to the virtual machine configuration, use the fdisk /dev/sd*
command instead.

3. By default, the second virtual hard disk appears as /dev/hdc in your Linux virtual machine. To work
with this device, enter:

fdisk /dev/hdc

Note: If this is a SCSI disk, use the fdisk /dev/sdc command instead.

4. To get detailed information about the disk, enter:

p

5. To create a new partition, enter:

n

6. To create the primary partition, enter:

p

7. Specify the partition number. By default, it is 1.

8. Specify the first cylinder. If you want to create a single partition on this hard disk, use the default
value.

9. Specify the last cylinder. If you want to create a single partition on this hard disk, use the default
value.

10.To create a partition with the specified settings, enter:

w

When you allocated the space on the newly added virtual hard disk, you should format it by entering the
following command in the terminal:

mkfs -t <FileSystem> /dev/hdc1

Chapter 2. Managing Virtual Machines and Containers

41

Note: <FileSystem> stands for the file system you want to use on this disk. It is recommended to use
ext3 or ext2.

When the added virtual hard disk is formatted, you can mount it in the guest OS.

1. To create a mount point for the new virtual hard disk, enter:

mkdir /mnt/hdc1

Note: You can specify a different mount point.

2. To mount the new virtual hard disk to the specified mount point, enter:

mount /dev/hdc1 /mnt/hdc1

When you mounted the virtual hard disk, you can use its space in your virtual machine.

2.14.2.3. Configuring Virtual Devices

In OpenVZ, you can use the --device-set option of the prlctl set command to configure the
parameters of an existing virtual device. As a rule, the process of configuring the device properties
includes two steps:

1. Finding out the name of the device you want to configure.
2. Running the prlctl set command to configure the necessary device properties.

Finding Out Device Names

To configure a virtual device, you need to specify its name when running the prlctl set command. If
you do not know the device name, you can use the prlctl list command to learn it. For example, to
obtain the list of virtual devices in the virtual machine MyVM, run this command:

prlctl list --info MyVM
...
Hardware:
 cpu cpus=2 VT-x accl=high mode=32 ioprio=4 iolimit='0'
 memory 1024Mb
 video 32Mb 3d acceleration=off vertical sync=yes
 fdd0 () real='/dev/fd0' state=disconnected
 hdd0 () scsi:0 image='/vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/ \
harddisk.hdd' type='expanded' subtype=virtio-scsi
 hdd1 () scsi:1 image='/vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/ \
harddisk1.hdd' type='expanded' subtype=virtio-scsi
 cdrom0 () ide:1 real='Default CD/DVD-ROM'
 usb ()
 net0 () dev='vme426f6594' network='Bridged' mac=001C426F6594 card=virtio
...

All virtual devices currently available to the virtual machine are listed under Hardware. In our case the
virtual machine MyVM has the following devices: 2 CPUs, main memory, video memory, a floppy disk
drive, 2 hard disk drives, a CD/DVD-ROM drive, a USB controller, and a network card.

Chapter 2. Managing Virtual Machines and Containers

42

Configuring Virtual Devices

Once you know the virtual device name, you can configure its properties. For example, you can execute
the following command to configure the current type of the virtual disk hdd1 in the virtual machine MyVM
from SCSI to IDE:

prlctl set MyVM --device-set hdd1 --iface ide
Configured hdd1 (+) ide:0 image='/vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/ \
harddisk1.hdd' type='expanded'
The VM has been successfully configured.

To check that the virtual disk type has been successfully changed, use the prlctl list --info
command:

prlctl list --info MyVM
...
hdd1 (+) ide:0 image='/vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/ \
harddisk1.hdd' type='expanded'
...

Connecting and Disconnecting Virtual Devices

In OpenVZ, you can connect or disconnect certain devices when a virtual machine is running. These
devices include:

• CD/DVD-ROM drives
• floppy disk drives
• network adapters
• printer ports
• serial ports

Usually, all virtual devices are automatically connected to a virtual machine when you create them. To
disconnect a device from the virtual machine, you can use the prlctl set command. For example, the
following command disconnects the CD/DVD-ROM drive cdrom0 from the virtual machine MyVM:

prlctl set MyVM --device-disconnect cdrom0
Disconnect device: cdrom0
The VM has been successfully configured.

To connect the CD/DVD-ROM drive back, you can run the following command:

prlctl set MyVM --device-connect cdrom0
Connect device: cdrom0
The VM has been successfully configured.

2.14.2.4. Deleting Devices

You can delete a virtual device that you do not need any more in your virtual machine using the --
device-del option of the prlctl set command. The options responsible for removing particular
devices are listed in the following table:

Chapter 2. Managing Virtual Machines and Containers

43

Option Description

hdd Deletes the specified hard disk drive from the virtual machine.

Note: IDE and SCSI disks can be removed from stopped virtual machines
only.

cdrom Deletes the specified CD/DVD-ROM drive from the virtual machine.

net Deletes the specified network adapter from the virtual machine.

fdd Deletes the floppy disk drive from the virtual machine.

serial Deletes the specified serial port from the virtual machine.

usb Deletes the USB controller from the virtual machine.

As a rule deleting a virtual device involves performing two operations:

1. Finding out the name of the device to be deleted.
2. Deleting the device from the virtual machine.

Finding Out the Device Name

To remove a virtual device, you need to specify its name when running the prlctl set command. If
you do not know the device name, you can use the prlctl list command to learn it. For example, to
obtain the list of virtual devices in the MyVM virtual machine, run this command:

prlctl list --info MyVM
...
Hardware:
 cpu cpus=2 VT-x accl=high mode=32 ioprio=4 iolimit='0'
 memory 1024Mb
 video 32Mb 3d acceleration=off vertical sync=yes
 fdd0 () real='/dev/fd0' state=disconnected
 hdd0 () scsi:0 image='/vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/ \
harddisk.hdd' type='expanded' subtype=virtio-scsi
 hdd1 () ide:0 image='/vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/ \
harddisk1.hdd' type='expanded'
 cdrom0 () ide:1 real='Default CD/DVD-ROM'
 usb ()
 net0 () dev='vme426f6594' network='Bridged' mac=001C426F6594 card=virtio
...

All virtual devices currently available to the virtual machine are listed under Hardware. In our case the
virtual machine MyVM has the following devices: 2 CPUs, main memory, video memory, a floppy disk
drive, 2 hard disk drives, a CD/DVD-ROM drive, a USB controller, and a network card.

Deleting a Virtual Device

Once you know the virtual device name, you can remove it from your virtual machine. For example, you
can execute the following command to remove the virtual disk hdd1 from the virtual machine MyVM:

prlctl set MyVM --device-del hdd1
Remove the hdd1 device.

Chapter 2. Managing Virtual Machines and Containers

44

The VM has been successfully configured.

If you do not want to permanently delete a virtual device, you can temporarily disconnect if from the
virtual machine using the --disable option.

2.14.3. Assigning USB Devices to Virtual Machines

In OpenVZ, you can assign a USB device to a virtual machine so that the device is automatically
connected to the virtual machine when you connect the USB device to the hardware node or start the
virtual machine. To assign a USB device to a virtual machine, you need to specify two parameters:

• ID of the USB device. To get this information, use the prlsrvctl info command, for example:

prlsrvctl info
...
Hardware info:
 hdd '/dev/sda'
hdd-part NTFS '/dev/sda2'
hdd-part Linux '/dev/sda3'
hdd-part Linux '/dev/sda5'
hdd-part Linux swap '/dev/sda6'
 cdrom Optiarc DVD RW AD-7260S '/dev/scd0'
 net enp0s5 'enp0s5'
 usb Broadcom - USB Device 3503 '2-1.4.3|0a5c|3503|full|KM|Empty'
 sb Broadcom - USB Device 3502 '2-1.4.2|0a5c|3502|full|KM|Empty'
 usb LITEON Technology - USB Multimedia Keyboard '1-1.6|046d|c312|low|KM|Empty'
 serial /dev/ttyS0 '/dev/ttyS0'
 serial /dev/ttyS1 '/dev/ttyS1'

All USB devices available on the hardware node are listed in the Hardware info section and start with
usb.

• ID of the virtual machine. To get this information, use the prlctl list --info command, for
example:

prlctl list --info
ID: {d8d516c9-dba3-dc4b-9941-d6fad3767035}
Name: Windows 7
...

The first line in the command output indicates the virtual machine ID; in our case, it is {d8d516c9-
dba3-dc4b-9941-d6fad3767035}.

Once you know the USB device and virtual machine IDs, you can use the prlsrvctl usb set
command to assign the USB device to the virtual machine. For example:

prlsrvctl usb set '1-1.6|046d|c312|low|KM|Empty' {d8d516c9-dba3-dc4b-9941-\
d6fad3767035}
The server has been successfully configured.

This command assigns the USB device LITEON Technology - USB Multimedia Keyboard with
ID '1-1.6|046d|c312|low|KM|Empty' to the virtual machine with ID {d8d516c9-dba3-dc4b-9941-

Chapter 2. Managing Virtual Machines and Containers

45

d6fad3767035}. When running the command, remember to specify the single quotes and curly brackets
with the USB device and virtual machine IDs, respectively.

To check that the USB device has been successfully assigned to the virtual machine, use the prlsrvctl
usb list command:

prlsrvctl usb list
Broadcom - USB Device 3503 '2-1.4.3|0a5c|3503|full|KM|Empty'
Broadcom - USB Device 3502 '2-1.4.2|0a5c|3502|full|KM|Empty'
LITEON Technology - USB Multimedia Keyboard '1-1.6|046d|c312|low|KM|Empty' \
 {d8d516c9-dba3-dc4b-9941-d6fad3767035}

The command output shows that the USB device with ID '1-1.6|046d|c312|low|KM|Empty' is now
associated with the virtual machine with ID {d8d516c9-dba3-dc4b-9941-d6fad3767035}. This means
that the device is automatically connected to the virtual machine every time you start this virtual machine
and connect the device to the hardware node.

To remove the assignment of the USB device with ID '1-1.6|046d|c312|low|KM|Empty', use the
prlsrvctl usb del command:

prlsrvctl usb del '1-1.6|046d|c312|low|KM|Empty'
The server has been successfully configured.

When assigning USB devices to virtual machines, keep in mind the following:

• You cannot migrate a running virtual machine having one or more USB devices assigned.
• After migrating a stopped virtual machine, all its assignments are lost.
• All USB assignments are preserved if you restoring a virtual machine to its original location and are

lost otherwise.
• The USB device assignment and a virtual machine is created for the user currently logged in to the

system.

2.14.4. Configuring IP Address Ranges for Host-Only Networks

All virtual machines connected to networks of the host-only type receive their IP addresses from the
DHCP server. This DHCP server is set up during the OpenVZ installation and includes by default IP
addresses from 10.37.130.1 to 10.37.130.254. You can redefine the default IP address range for host-
only networks and make virtual machines get their IP addresses from different IP address ranges.
For example, you can run the following command to set the start and end IP addresses for the Host-
Only network (this network is automatically created during the OpenVZ installation) to 10.10.11.1 and
10.10.11.254, respectively:

prlsrvctl net set Host-Only --ip-scope-start 10.10.11.1 --ip-scope-end 10.10.11.254

You can also specify a custom IP address range directly when creating a new network of the host-only
type. Assuming that you want to create a network with the Host-Only2 name and define for this network
the IP addresses range from 10.10.10.1 to 10.10.10.254, you can execute the following command:

prlsrvctl net add Host-Only2 -t host-only --ip-scope-start 10.10.10.1 --ip-scope-\
end 10.10.10.254

Chapter 2. Managing Virtual Machines and Containers

46

When working with IP address ranges, pay attention to the following:

• The start and end IP addresses of an IP address range must belong to the same subnetwork.
• IP address ranges can be defined for each network of the host-only type separately. For example, you

can set the IP address range from 10.10.11.1 to 10.10.11.254 for the Host-Only network and from
10.10.10.1 to 10.10.10.254 for the Host-Only2 network.

2.15. Managing Virtual Machines and Containers with virt-
manager

Note: This feature is experimental.

As OpenVZ VMs and containers are managed via the libvirt API, you can manage them not only with
OpenVZ CLI tools but also with Virtual Machine Manager (virt-manager, see https://virt-manager.org/).
The detailed instructions are provided at https://kb.virtuozzo.com/en/129047.

https://virt-manager.org/
https://kb.virtuozzo.com/en/129047

Chapter 3. Managing Resources
The main goal of resource control in OpenVZ is to provide Service Level Management or Quality of
Service for virtual machines and containers. Correctly configured resource control settings prevent
serious impacts resulting from the resource over-usage (accidental or malicious) of any virtual machine
or container on the other virtual machines and containers. Using resource control parameters for
resource management also allows you to enforce fairness of resource usage among virtual machines
and containers and better service quality for preferred virtual machines and containers, if necessary. All
these parameters can be set using command-line utilities.

3.1. Managing CPU Resources
You can manage the following CPU resource parameters for virtual machines and containers:

• CPU units for virtual machines and containers
• CPU affinity for virtual machines and containers
• CPU limits for virtual machines and containers
• NUMA nodes for containers
• CPU hotplug for virtual machines

Detailed information on these parameters is given in the following sections.

3.1.1. Configuring CPU Units

CPU units define how much CPU time one virtual machine or container can receive in comparison with
the other virtual machines and containers on the hardware node if all the CPUs of the hardware node are
fully used. For example, if the container MyCT and the virtual machine MyVM are set to receive 1000 CPU
units each and the container MyCT2 is configured to get 2000 CPU units, the container MyCT2 will get
twice as much CPU time as the container MyCT or the virtual machine MyVM if all the CPUs of the Node
are completely loaded.

By default, each virtual machine and container on the Node gets 1000 CPU units. You can configure the
default setting using the prlctl set command. For example, you can run the following commands to
allocate 2000 CPU units to the container MyCT and the virtual machine MyVM:

prlctl set MyCT --cpuunits 2000
prlctl set MyVM --cpuunits 2000

3.1.2. Configuring CPU Affinity for Virtual Machines and Containers

If your physical server has several CPUs installed, you can bind a virtual machine or container to specific
CPUs so that only these CPUs are used to handle the processes running in the virtual machine or
container. The feature of binding certain processes to certain CPUs is known as CPU affinity.

By default, any newly created virtual machine or container can consume the CPU time of all processors
installed on the physical server. To bind a virtual machine or container to specific CPUs, you can use the
--cpumask option of the prlctl set command. Assuming that your physical server has 8 CPUs, you

Chapter 3. Managing Resources

48

can make the processes in the virtual machine MyVM and the container MyCT run on CPUs 0, 1, 3, 4, 5,
and 6 by running the following commands:

prlctl set MyVM --cpumask 0,1,3,4-6
prlctl set MyCT --cpumask 0,1,3,4-6

You can specify the CPU affinity mask—that is, the processors to bind to virtual machines and
containers—as separate CPU index numbers (0,1,3) or as CPU ranges (4-6). If you are setting the CPU
affinity mask for a running virtual machine or container, the changes are applied on the fly.

To undo the changes made to the virtual machine MyVM and the container MyCT and set their processes
to run on all available CPUs on the server, run these commands:

prlctl set MyVM --cpumask all
prlctl set MyCT --cpumask all

3.1.3. Configuring CPU Limits for Virtual Machines and Containers

A CPU limit indicates the maximum CPU power a virtual machine or container may get for its running
processes. The container is not allowed to exceed the specified limit even if the server has enough free
CPU power. By default, the CPU limit parameter is disabled for all newly created virtual machines and
containers. This means that any application in any virtual machine or container can use all the free CPU
power of the server.

Note: You can change which virtual machine threads—both service and activity or only activity—are
limited by the parameters described below. To do this, enter the prlsrvctl set --vm-cpulimit-
type <full|guest> command and restart running virtual machines for the changes to take effect.

To set a CPU limit for a virtual machine or container, you can use one of these options: --cpulimit, --
cpus. Both options are described below in detail.

3.1.3.1. Using --cpulimit to Set CPU Limits

As a rule, you set a CPU limit for a virtual machine or container by using the prlctl set --cpulimit
command. In the following example, the container MyCT is set to receive no more than 25% of the server
CPU time even if the CPUs on the server are not fully loaded:

prlctl set MyCT --cpulimit 25

This command sets the CPU limit for the container MyCT to 25% of the total CPU power of the server.
The total CPU power of a server in per cent is calculated by multiplying the number of logical CPU cores
installed on the server by 100%. So if a server has 2 logical CPU cores, 2 GHz each, the total CPU
power will equal 200% and the limit for the container MyCT will be set to 500 MHz.

For example, on a hardware node with 2 logical CPU cores, 3 GHz each, the container MyCT will be able
to get 25% of 6 GHz, that is, 750 MHz. To ensure that the container MyCT always has the same CPU
limit on all servers, irrespective of their total CPU power, you can set the CPU limits in megahertz (MHz).
For example, to make the container MyCT consume no more than 500 MHz on any hardware node, run
the following command:

Chapter 3. Managing Resources

49

prlctl set MyCT --cpulimit 500m

Note: For more information on setting CPU limits for containers, see also Section 3.1.3.4, “CPU Limit
Specifics” on page 49.

3.1.3.2. Using --cpus to Set CPU Limits

Another way of setting a CPU limit for a virtual machine or container is to use the prlctl set --cpus
command. In this case, you can specify how many logical CPU cores the virtual machine or container
may use. For example, to allow the container MyCT to use only 2 cores, run this command:

prlctl set MyCT --cpus 2

To make sure that the CPU limit has been successfully set, you check /proc/cpuinfo in the container.
For example:

prlctl exec MyCT cat /proc/cpuinfo | grep "cpu cores"
cpu cores : 2

3.1.3.3. Using --cpulimit and --cpus Simultaneously

If you use both --cpulimit and --cpus to set the CPU limit for a virtual machine or container, the
smallest limit applies. For example, running the following commands on a server with 4 CPUs, 2 GHz
each, will set the limit for the container MyCT to 2 GHz:

prlctl set MyCT --cpus 2
prlctl set MyCT --cpulimit 2000m

3.1.3.4. CPU Limit Specifics

Internally, OpenVZ sets the CPU limit for virtual machines and containers in percent. On multi-core
systems, each logical CPU core is considered to have the CPU power of 100%. So if a server has 4
CPU cores, the total CPU power of the server equals 400%.

You can also set a CPU limit in megahertz (MHz). If you specify the limit in MHz, OpenVZ uses the
following formula to convert the CPU power of the server from MHz into percent: CPULIMIT_% = 100% *
CPULIMIT_MHz / CPUFREQ, where

• CPULIMIT_% is the total CPU power of the server in percent.
• CPULIMIT_MHz is the total CPU power of the server in megahertz.
• CPUFREQ is the CPU frequency of one core on the server.

When setting CPU limits, note the following:

• Make sure that the CPU limit you plan to set for a virtual machine or container does not exceed the
total CPU power of the server. So if a server has 4 CPUs, 1000 MHz each, do not set the CPU limit to
more than 4000 MHz.

• The processes running in a virtual machine or container are scheduled for execution on all server
CPUs in equal shares. For example, if a server has 4 CPUs, 1000 MHz each, and you set the CPU

Chapter 3. Managing Resources

50

limit for a virtual machine or container to 2000 MHz, the virtual machine or container will consume 500
MHz from each CPU.

• All running virtual machines and containers on a server cannot simultaneously consume more CPU
power than is physically available on the node. In other words, if the total CPU power of the server
is 4000 MHz, the running virtual machines and containers on this server will not be able to consume
more than 4000 MHz, irrespective of their CPU limits. It is, however, perfectly normal that the overall
CPU limit of all virtual machines and containers exceeds the Node total CPU power because most of
the time virtual machines and containers consume only part of the CPU power assigned to them.

3.1.4. Binding CPUs to NUMA Nodes

On systems with a NUMA (Non-Uniform Memory Access) architecture, you can configure containers to
use CPUs from specific NUMA nodes only. Let us assume the following:

• Your physical server has 8 CPUs installed.
• The CPUs are divided into 2 NUMA nodes: NUMA node 0 and NUMA node 1. Each NUMA node has 4

CPUs.
• You want the processes in the container MyCT to be executed on the processors from NUMA node 1.

To set the container MyCT to use the processors from NUMA node 1, run the following command:

prlctl set MyCT --nodemask 1

To check that the container MyCT is now bound to NUMA node 1, use this command:

prlctl list -i MyCT | grep nodemask
 cpu cpus=unlimited VT-x hotplug accl=high mode=32 cpuunits=1000 ioprio=4 nodemask=1

To unbind the container MyCT from NUMA node 1, execute this command:

prlctl set MyCT --nodemask all

Now the container MyCT should be able to use all CPUs on the server again.

Note: For more information on NUMA, visit http://lse.sourceforge.net/numa.

3.1.5. Enabling CPU Hotplug for Virtual Machines

If a guest operating system supports the CPU hotplug functionality, you can enable this functionality for
the virtual machine. Once the CPU hotplug functionality is turned on, you can increase the number of
CPUs available to your virtual machines even if they are running.

Currently, the following systems come with the CPU hotplug support:

Linux (both x86 and x64 versions)

• Linux operating systems based on the RHEL 5 kernel and higher (Red Hat Linux Enterprise 5, CentOS
5, and so on)

http://lse.sourceforge.net/numa

Chapter 3. Managing Resources

51

Windows

• x64 version of Windows Server 2008 R2 (Datacenter Edition)
• x64 version of Windows Server 2012 (Standard and Datacenter Edition)
• x64 version of Windows Server 2008 (Standard Edition)
• x64 version of Windows Server 2008 (Enterprise Edition)
• x64 version of Windows Server 2008 (Datacenter Edition)

By default, the CPU hotplug support is disabled for all newly created virtual machines. To enable this
functionality, you can use the --cpu-hotplug option of the prlctl set command. For example, to
enable the CPU hotplug support in the virtual machine MyVM that runs one of the supported operating
systems, stop the virtual machine MyVM and run this command:

prlctl set MyVM --cpu-hotplug on
set cpu hotplug: 1
The VM has been successfully configured.

Once the functionality is enabled, you can increase the number of CPUs in the virtual machine MyVM
even it is running. Assuming that your physical server has 4 CPUs installed and the processes in the
virtual machine MyVM are set to be executed on two CPUs, you can run the following command to assign
3 CPUs to the virtual machine:

prlctl set MyVM --cpus 3
set cpus(4): 3
The VM has been successfully configured.

To disable the CPU hotplug support in the virtual machine MyVM, use this command:

prlctl set MyVM --cpu-hotplug off
set cpu hotplug: 0
The VM has been successfully configured.

The changes will come into effect on the next virtual machine start.

3.2. Managing Disk Quotas
You can limit disk space that individual users and groups in a container can use with standard Linux
tools from the quota package.

Before you can set disk quotas in a container, you will need to enable them for this container as follows:

1. Set QUOTAUGIDLIMIT to 1 in container configuration file (/etc/vz/conf/<UUID>.conf) or run the
command prlctl set <UUID> --quotaugidlimit 1.

2. Restart the container.

3.3. Managing Virtual Disks
In OpenVZ, you can manage virtual disks as follows:

• increase the capacity of your virtual disks,

Chapter 3. Managing Resources

52

• reduce the capacity of your virtual disks,
• compact virtual disks (reduce the size they occupy on the physical hard drive),
• change the interface of your virtual disks.

All these operations are described in the following subsections in detail.

3.3.1. Increasing Disk Capacity

If you find that the capacity of the virtual hard disk of your virtual machine or container does not fit your
needs anymore, you can increase it using the prl_disk_tool resize --size command. For example:

prl_disk_tool resize --hdd /vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/ \
harddisk.hdd --size 80G

Note: To virtual machines, additional disk space is added as unallocated. You can use standard
means (e.g., the Disk Management tool in Windows-based virtual machines) to allocate added space
by creating a new or expanding the existing partition.

When increasing the disk capacity, keep in mind the following:

• You can increase the capacity of virtual disks of both stopped and running virtual machines.
• The virtual machine using the virtual disk you want to configure must not have any snapshots. In this

case, you should delete all existing snapshots and run the command again. To learn how to delete
snapshots of a virtual machine, refer to Section 2.11.4, “Deleting Snapshots” on page 31.

• The capacity of an expanding virtual disk shown from inside the virtual machine or container and the
size the virtual disk occupies on the server’s physical disk may differ.

3.3.2. Reducing Disk Capacity

OpenVZ provides a possibility to reduce the size of an expanding virtual disk by setting the limit the disk
cannot exceed. To do this, use the prl_disk_tool resize --size command. For example:

prl_disk_tool resize --hdd /vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/ \
harddisk.hdd --size 30G

When reducing the disk capacity, keep in mind the following:

• You can only reduce the capacity of virtual disks of stopped virtual machines.
• The virtual machine using the virtual disk you want to configure must not have any snapshots. In this

case, you should delete all existing snapshots and run the command again. To learn how to delete
snapshots of a virtual machine, refer to Section 2.11.4, “Deleting Snapshots” on page 31.

• The capacity of an expanding virtual disk shown from inside the virtual machine or container and the
size the virtual disk occupies on the server’s physical disk may differ.

• You cannot reduce XFS filesystems (the default choice for CentOS 7 and Red Hat Enterprise Linux 7).

3.3.2.1. Checking the Minimum Disk Capacity

If, before reducing disk capacity, you want to know the minimum to which it can be reduced, use the
prl_disk_tool resize --info command. For example, if the disk hdd0 of the virtual machine MyVM is

Chapter 3. Managing Resources

53

emulated by the image /vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/harddisk.hdd,
run the following command:

prl_disk_tool resize --info --hdd /vz/vmprivate/d35d28e5-11f7-4b3f-9065- \
8fef6178bc5b/harddisk.hdd
Disk information:
...
Minimum: 2338M
...

3.3.3. Compacting Disks

In OpenVZ, you can decrease the space your virtual machines and containers occupy on the physical
server’s disk drive by compacting their virtual disks. Compacting virtual disks allows you to save your
server’s disk space and host more virtual machines and containers on the server.

To compact a virtual disk, you can use the prl_disk_tool compact command. For example, to
compact the disk /vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/harddisk.hdd, run this
command:

prl_disk_tool compact --hdd /vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/ \
harddisk.hdd/

To check the space that was freed by compacting the virtual disk, you can use standard Linux utilities
(for example, df).

3.3.4. Managing Virtual Machine Disk Interfaces

By default, any virtual machine is created with a SCSI (Small Computer System Interface) virtual hard
disk. If necessary, you can change the interface type of a disk from SCSI to IDE (Integrated Drive
Electronics) or VirtIO. For example, to change the interface type of the default disk (hdd0) in the virtual
machine MyVM from SCSI to IDE, you can run the following command:

prlctl set MyVM --device-set hdd0 --iface ide
The VM has been successfully configured

To check that the interface type has been successfully changed, use this command:

prlctl list -i MyVM | grep hdd0
Boot order: hdd0 cdrom0 fdd0 net0
hdd0 (+) ide:0 image='/vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/ \
harddisk.hdd'

The command output shows that now the interface type of the hdd0 disk is IDE.

You can create additional disks for the virtual machine MyVM. For example, to add a new disk of the IDE
type to the virtual machine, execute the following command:

prlctl set MyVM --device-add hdd --iface ide
Creating hdd1 (+) ide:1 image='/vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/ \

Chapter 3. Managing Resources

54

harddisk1.hdd' 65536Mb
Create the expanding image file, 65536Mb...
The VM has been successfully configured.

You can also create a VirtIO disk. To do this, specify --iface virtio instead of --iface ide in the
command above. If you omit the --iface option, a SCSI disk is created by default.

The maximum number of devices (both virtual hard disks and CD/DVD-ROM drives) you can add to a
virtual machine is given below:

• 4 IDE devices
• 8 SCSI devices

At any time, you can remove the hdd1 disk from the virtual machine MyVM:

prlctl set MyVM --device-del hdd1
Remove the hdd1 device.
The VM has been successfully configured.

Notes:

1. Virtual IDE and SCSI disks can be added to or removed from stopped virtual machines only.
2. You need to initialize a newly added disk before you can start using it. To initialize the disk, use

standard means provided by your guest operating system.

3.4. Managing Network Accounting and Bandwidth

This section explains how to perform the following tasks in OpenVZ:

• configuring network classes
• viewing network traffic statistics
• turning on and off network bandwidth management
• configuring bandwidth limits

3.4.1. Network Traffic Parameters

The table below summarizes the network traffic parameters that you can control in OpenVZ.

Parameter Description

traffic_shaping If set to yes, traffic limitations for outgoing traffic are set for virtual machines
and containers. The default is no.

bandwidth This parameter lists all network adapters installed on the hardware node and
their bandwidth.

totalrate This parameter defines the bandwidth to allocate for each network class. It is
active if traffic shaping is turned on.

Chapter 3. Managing Resources

55

Parameter Description

rate If traffic shaping is turned on, this parameter specifies the bandwidth
guarantee for virtual machines and containers.

ratebound If this parameter is set to yes, the bandwidth guarantee (the global rate
parameter) is also the limit for the virtual machine or container, and the virtual
machine or container cannot borrow the bandwidth from the totalrate
bandwidth pool.

3.4.2. Configuring Network Classes

OpenVZ allows you to track the inbound and outbound network traffic as well as to shape the outgoing
traffic for virtual machines and containers. To provide the ability to distinguish between types of traffic,
e.g., domestic and international, a concept of network classes is introduced. A network class is a range
of IP addresses for which OpenVZ accounts and shapes the traffic.

Classes are specified in the /etc/vz/conf/networks_classes file. The file is in the ASCII format, and
all empty lines and lines starting with the # sign are ignored. Other lines have the following format:

<class_id> <IP_address>/<prefix_length>

where <class_id> defines the network class ID, and the <IP_address>/<prefix_length> pair defines
the range of IP addresses for this class. There may be several lines for each class.

Classes 0 and 1 have special meanings:

• Class 0 defines the IP address range for which no accounting is performed. Usually, it corresponds to
the hardware node subnet (the node itself and its virtual machines and containers). Setting up class 0
is not required; however, its correct setup improves performance.

• Class 1 is defined by OpenVZ to match any IP address. It must be always present in the
network classes definition file. Therefore, it is suggested not to change the default line in the
networks_classes file.

1 0.0.0.0/0

If your virtual machines and containers are using IPv6 addresses, you can also add the following line
to this file:

1 ::/0

Other classes should be defined after class 1. They represent exceptions from the "matching-everything"
rule of class 1. The example below illustrates a possible configuration of the network classes definition
file containing rules for both IPv4 and IPv6 addresses:

Hardware node networks
0 192.168.0.0/16
0 fe80::/64
any IP address (all traffic)
1 0.0.0.0/0
1 ::/0
class 2 - addresses for the "foreign" traffic

Chapter 3. Managing Resources

56

2 10.0.0.0/8
2 2001:db88::/64
inside "foreign" network there
is a hole belonging to "local" traffic
1 10.10.16.0/24
1 2001:db88:3333::/64

In this example, IPv4 addresses in the range of 192.168.0.0 to 192.168.255.255 and IPv6 addresses
in the range of fe80:: to fe80::ffff:ffff:ffff:ffff are treated as class 0 addresses and no
accounting is done for the traffic from virtual machines and containers destined to these addresses.

Class 2 matches the following IP addresses:

• IPv4 addresses from 10.0.0.0 to 10.255.255.255 with the exception of addresses in the sub-range
of 10.10.16.0 to 10.10.16.255, which are treated as class 1.

• IPv6 addresses from 2001:db88:: to 2001:db88::ffff:ffff:ffff:ffff with the exception of
addresses in the sub-range of 2001:db88:3333:: to 2001:db88:3333::ffff:ffff:ffff:ffff,
which are also treated as class 1.

All other IP addresses (both IPv4 and IPv6) belong to class 1.

To apply changes after editing the /etc/vz/conf/networks_classes file, restart either the virtual
machine(s) or/and container(s) for which changes have been made or the hardware node itself if the
changes are global.

3.4.3. Viewing Network Traffic Statistics

In OpenVZ, you can view the current network traffic statistics for virtual machines and containers using
the vznetstat utility. For example:

vznetstat
UUID Net.Class Input(bytes) Input(pkts) Output(bytes) Output(pkts)
0 0 566093064 2800575 3120481 41736
47406484... 0 67489 155 8033 110
fbb30afa-... 0 9369 78 12692 71

By default, vznetstat shows network statistics for both virtual machines and containers. Keep in mind
that the vznetstat utility displays statistics only about virtual machines and containers that were started
at least once.

The vznetstat utility displays the following information:

Column Description

UUID UUID assigned to virtual machine or container.

Net.Class ID of the network class for which network statistics is calculated.

Input(bytes) Amount of incoming traffic, in bytes.

Input(pkts) Amount of incoming traffic, in packets.

Output(bytes) Amount of outgoing traffic, in bytes.

Output(pkts) Amount of outgoing traffic, in packets.

Chapter 3. Managing Resources

57

For example, from the command output above, you can see that around 9 MB of data were uploaded
to the container MyCT, (2) about 12 MB were downloaded from it, and all the traffic was exchanged with
servers from class 0 networks.

If necessary, you can view network traffic statistics separately for virtual machine or container by passing
the -t option to vznetstat:

• For containers only:

vznetstat -t ct
CTID Net.Class Input(bytes) Input(pkts) Output(bytes) Output(pkts)
0 0 566093064 2800575 3120481 41736
fbb30afa-... 0 9369 78 12692 71

• For virtual machines only:

vznetstat -t vm
UUID Net.Class Input(bytes) Input(pkts) Output(bytes) Output(pkts)
0 0 566093064 2800575 3120481 41736
47406484... 0 67489 155 8033 110

You can also view network statistics for a particular virtual machine or container by specifying its ID after
the -v option, for example:

vznetstat -v fbb30afa-e770-4081-9d9e-6b9c262eb091
UUID Net.Class Input(bytes) Input(pkts) Output(bytes) Output(pkts)
fbb30afa-... 0 9369 78 12692 71

This command displays statistics only for the container MyCT.

3.4.4. Configuring Traffic Shaping

Traffic shaping (also known as network bandwidth management) allows you to control what network
bandwidth a virtual machine or container may use for outgoing traffic. This feature is disabled by default.

Notes:

1. Traffic within a host cannot be shaped in the current version of OpenVZ. This includes traffic
between virtual machines and containers on the same host and between those and the host itself.

2. Incoming traffic cannot be shaped for virtual machines and containers in the current version of
OpenVZ.

The following parameters control traffic shaping in OpenVZ:

• TRAFFIC_SHAPING, enables and disables traffic shaping.
• BANDWIDTH, sets bandwidth for specific network adapters.
• TOTALRATE, sets the size of a bandwidth pool divided between virtual machines and containers on the

host.
• RATEMPU, limits packet rate in addition to byte rate.

Chapter 3. Managing Resources

58

• RATE, sets a bandwidth guarantee for virtual machines and containers.
• RATEBOUND, forces RATE as a limit.

Traffic shaping in OpenVZ works as follows. The bandwidth pool for a given network class (set by
TOTALRATE) is divided among the virtual machines and containers transmitting data proportionally to
their RATE settings. If the sum of RATE values of all virtual machines and containers transmitting data
does not exceed TOTALRATE, each virtual machine or container gets the bandwidth equal to or greater
than its RATE value (unless RATEBOUND is enabled for said virtual machine or container). If the sum of
RATE values of all virtual machines and containers transmitting data exceeds the TOTALRATE value, each
virtual machine or container may get less than its RATE value.

To enable and configure traffic shaping, do the following:

1. Set the value of TRAFFIC_SHAPING to yes in the global configuration file /etc/vz/vz.conf.

2. Set the parameters BANDWIDTH, TOTALRATE in /etc/vz/vz.conf.

3. If required, set the optional parameters RATEMPU, RATE, RATEBOUND in /etc/vz/vz.conf.

4. If required, set RATE and RATEBOUND for specific virtual machines and containers with prlctl set --
rate and prlctl set --ratebound commands.

5. To apply changes, restart either the virtual machines and containers for which changes have been
made or the hardware node itself if the changes are global.

The following sections provide more details on and explain how to set traffic shaping parameters listed
above.

3.4.4.1. Setting BANDWIDTH Parameter

The BANDWIDTH parameter is used for shaping traffic of specific network adapters. For example, for two
Fast Ethernet cards, a typical setting may look like enp0s5 enp0s6:100000 where enp0s5 and enp0s6
are network adapter names. By default, the parameter is set to 100000 which corresponds to a 100
Mbps Fast Ethernet card.

3.4.4.2. Setting TOTALRATE Parameter

The TOTALRATE parameter specifies the size of a bandwidth pool for specific network classes on the
host. Virtual machines and containers can borrow bandwidth from the pool for communicating with hosts
from the corresponding network class. The parameter thus limits the total available outgoing traffic for a
network class that virtual machines and containers can consume.

The parameter is set as <NIC>:<network_class>:<bandwidth_in_Kbps>. For example, to set the pool
size to 4 Mbps for network class 1 on the Ethernet adapter enp0s5, set TOTALRATE to enp0s5:1:4000.
Multiple entries can be separated by spaces, e.g., enp0s5:1:4000 enp0s6:2:8000.

3.4.4.3. Setting RATEMPU Parameter

The optional RATEMPU parameter (where "MPU" stands for "minimum packet unit") limits the packet
rate by making packets smaller than MPU in size consume HTB tokens. With it, small packets can be

Chapter 3. Managing Resources

59

accounted as larger ones and limited by TOTALRATE and RATE parameters. Approximately, the maximum
packets per second rate can be calculated as TOTALRATE / RATEMPU.

This parameter has the following syntax: <NIC>:<network_class>[:<MPU_in_bytes_per_packet>].
If the part <MPU_in_bytes_per_packet> is omitted, the default value of 1000 bytes is used. Multiple
entries can be separated by spaces, e.g., enp0s5:1:2000 enp0s6:2:4000. To set the RATEMPU
parameter for all known Ethernet devices set <NIC> to an asterisk (*). For example, to set the minimal
packet size to 2 Kb for network class 1 on all the Ethernet adapters on the node, change the value to
*:1:2000.

3.4.4.4. Setting RATE and RATEBOUND Parameters

The optional RATE parameter allows you to guarantee virtual machines and containers outgoing
bandwidth to destinations in a specific network class on a specific Ethernet device. The guaranteed
bandwidth is not a limit (unless the RATEBOUND parameter is also set to on, see below). A virtual machine
or container can additionally obtain unused bandwidth from the bandwidth pool defined by TOTALRATE.

You can set the guaranteed bandwidth in two ways:

1. For all virtual machines and containers on the host by setting RATE in the global configuration file /
etc/vz/vz.conf.

The parameter is set as <NIC>:<network_class>:<bandwidth_in_Kbps>. For example, to
guarantee all virtual machines and containers on the host the bandwidth of at least 8 Kbps for
outgoing traffic in network class 1 on the Ethernet device enp0s5, set the RATE parameter to
enp0s5:1:8.

2. For specific virtual machines or containers by means of the prlctl set --rate command.

For example, to guarantee the container MyCT the bandwidth of at least 16 Kbps for outgoing traffic in
network class 1, run

prlctl set MyCT --rate 1:16

This command sets the bandwidth for the default network adapter only. If you need to set bandwidth
for other network adapters, set RATE in /etc/vz/vz.conf.

Note: It is recommended to increase RATE value in 8 Kbps increments and set it to at least 8 Kbps.

The optional RATEBOUND parameter specifies whether the network bandwidth guaranteed by RATE is also
a limit. By default, this feature is disabled for all newly created virtual machines and containers so they
may additionally obtain unused bandwidth from the pool set by TOTALRATE.

You can limit bandwidth of virtual machines and containers to the guaranteed value as follows:

1. For all virtual machines and containers on the host by setting RATEBOUND in the global configuration
file /etc/vz/vz.conf (omitted by default).

2. For specific virtual machines or containers by means of the prlctl set --ratebound command. For
example:

Chapter 3. Managing Resources

60

prlctl set MyCT --ratebound yes

If set, values of RATE and RATEBOUND provided for specific virtual machines and containers are chosen
over global values in /etc/vz/vz.conf.

3.4.4.5. Traffic Shaping Example

The example below illustrates a scenario when the containers MyCT1 and MyCT2 have RATEBOUND set to
no, and the virtual machine MyVM has RATEBOUND set to yes. With the default TOTALRATE of 4096 Kbps
and RATE of 8 Kbps, the bandwidth pool will be distributed as follows:

MyCT1 MyCT2 MyVM Consumed Bandwidth

transmits idle idle MyCT1: 4096 Kbps

idle idle transmits MyVM: 8 Kbps

transmits transmits idle MyCT1: 2048 Kbps
MyCT2: 2048 Kbps

transmits idle transmits MyCT1: 4032 Kbps
MyVM: 8 Kbps

transmits transmits transmits MyCT1: 2016 Kbps
MyCT2: 2016 Kbps
MyVM: 8 Kbps

3.5. Managing Disk I/O Parameters

This section explains how to manage disk input and output (I/O) parameters in OpenVZ systems.

3.5.1. Configuring Priority Levels for Virtual Machines and Containers

In OpenVZ, you can configure the disk I/O (input/output) priority level of virtual machines and containers.
The higher the I/O priority level, the more time the virtual machine or container will get for its disk I/O
activities as compared to the other virtual machines and containers on the hardware node. By default,
any virtual machine or container on the hardware node has the I/O priority level set to 4. However,
you can change the current I/O priority level in the range from 0 to 7 using the --ioprio option of the
prlctl set command. For example, you can issue the following command to set the I/O priority of the
container MyCT and the virtual machine MyVM to 6:

prlctl set MyCT --ioprio 6
prlctl set MyVM --ioprio 6

To check the I/O priority level currently applied to the container MyCT and the virtual machine MyVM, you
can execute the following commands:

• For container MyCT:

grep IOPRIO /etc/vz/conf/fbb30afa-e770-4081-9d9e-6b9c262eb091.conf

Chapter 3. Managing Resources

61

IOPRIO="6"

• For the virtual machine MyVM:

prlctl list MyVM --info | grep ioprio
 cpu cpus=2 VT-x accl=high mode=32 ioprio=6 iolimit='0'

3.5.2. Configuring Disk I/O Bandwidth

In OpenVZ, you can configure the bandwidth virtual machines and containers are allowed to use for their
disk input and output (I/O) operations. Limiting the disk I/O bandwidth can help you prevent the situations
when high disk activities in one virtual machine or container (generated, for example, by transferring
huge amounts of data to/from the virtual machine or container) can slow down the performance of other
virtual machines and containers on the hardware node.

By default, the I/O bandwidth limit for all newly created virtual machines and containers is set to 0, which
means that no limits are applied to any virtual machines and containers. To limit the disk I/O bandwidth
for a virtual machine or container, you can use the --iolimit option of the prlctl set command. For
example, the following command sets the I/O bandwidth limit for the container MyCT to 10 megabytes per
second (MB/s):

prlctl set MyCT --iolimit 10

By default, the limit is set in megabytes per second. However, you can use the following suffixes to use
other measurement units:

• G sets the limit in gigabytes per second (1G).
• K sets the limit in kilobytes per second (10K).
• B sets the limit in bytes per second (10B).

Note: In the current version of OpenVZ, the maximum I/O bandwidth limit you can set for a virtual
machine or container is 2 GB per second.

To check that the I/O speed limit has been successfully applied to the container MyCT, use the prlctl
list command:

prlctl list MyCT -o iolimit
IOLIMIT
10485760

At any time, you can remove the I/O bandwidth limit set for container MyCT by running this command:

prlctl set MyCT --iolimit 0

3.5.3. Configuring the Number of I/O Operations Per Second

In OpenVZ, you can limit the maximum number of disk input and output operations per second virtual
machines and containers are allowed to perform (known as the IOPS limit). You may consider setting the

Chapter 3. Managing Resources

62

IOPS limit for virtual machines and containers with high disk activities to ensure that they do not affect
the performance of other virtual machines and containers on the Node.

Note: By default all I/O inside containers is cached and the direct access flag (O_DIRECT) is ignored
when opening files. This significantly reduces the number of IOPS required for container workload
and helps avoid I/O bottlenecks on the Node. For instructions on how to configure honoring of
the O_DIRECT flag inside containers, see Section 3.5.3.1, “Setting the Direct Access Flag Inside
Containers” on page 62 below.

By default, IOPS is not limited for newly created virtual machines and containers. To set the IOPS limit,
you can use the --iopslimit option of the prlctl set command. For example, to allow the container
MyCT and the virtual machine MyVM to perform no more than 100 disk I/O operations per second, you can
run the following commands:

prlctl set MyCT --iopslimit 100
prlctl set MyVM --iopslimit 100

To ensure that the IOPS limit has been successfully applied to the container MyCT and
the virtual machine MyVM, check the cgroup /sys/fs/cgroup/beancounter/<UUID>/
beancounter.iopslimit.speed. For example:

cat /sys/fs/cgroup/beancounter/`vzlist MyCT -Ho uuid`/beancounter.iopslimit.speed
100

At any time, you can remove the set IOPS limits by running this command:

prlctl set MyCT --iopslimit 0
prlctl set MyVM --iopslimit 0

3.5.3.1. Setting the Direct Access Flag Inside Containers

You can configure honoring of the O_DIRECT flag inside containers with the sysctl parameter
fs.odirect_enable:

• To ignore the O_DIRECT flag inside a container, set fs.odirect_enable to 0 in that container.
• To honor the O_DIRECT flag inside the container, set fs.odirect_enable to 1 in that container.
• To have a container inherit the setting from the hardware node, set fs.odirect_enable to 2 in that

container (default value). On the hardware node, fs.odirect_enable is 0 by default.

Note: The fs.odirect_enable parameter on the Node only affects honoring of the O_DIRECT flag in
containers and not on the Node itself where the O_DIRECT flag is always honored.

3.5.4. Viewing Disk I/O Statistics

In OpenVZ, you can view disk input and output (I/O) statistics for all processes on the host. To do this:

1. Run the vztop utility.

Chapter 3. Managing Resources

63

2. Press F2 or S to switch to the Setup menu.

3. In the Setup column, choose Columns.

4. In Available Columns, choose from the following parameters to add to the output (Active Columns):

Parameter Description Column

RBYTES Number of bytes read for the process. IO_RBYTES

WBYTES Number of bytes written for the process. IO_WBYTES

IO_READ_RATE Process read rate, in bytes per second. DISK READ

IO_WRITE_RATE Process write rate, in bytes per second. DISK WRITE

IO_RATE Process total I/O rate, in bytes per second. DISK R/W

IO_PRIORITY Process I/O priority. IO

To add a parameter, select it and press F5 or Enter. To remove a parameter from Active Columns,
select it and press F9.

5. When you finish managing columns, press F10 to save the changes and view the output.

3.6. Managing Containers Memory Parameters

This section describes the VSwap memory management system. You will learn to do the following:

• Configure the main VSwap parameters for containers.
• Set the memory allocation limit in containers.
• Configure OOM killer behavior.
• Enhance the VSwap functionality.

3.6.1. Configuring Main VSwap Parameters

OpenVZ utilizes the VSwap scheme for managing memory-related parameters in containers. Like many
other memory management schemes used on standalone Linux computers, this scheme is based on two
main parameters:

• RAM determines the total size of RAM that can be used by the processes of a container.
• swap determines the total size of swap that can be used by a container for swapping out memory once

the RAM is exceeded.

The memory management scheme works as follows:

1. You set for a container a certain amount of RAM and swap space that can be used by the processes
running in the container.

2. When the container exceeds the RAM limit set for it, the swapping process starts. The swapping
process for containers slightly differs from that on a standalone computer. The container swap file is
virtual and, if possible, resides in the Node RAM. In other words, when the swap-out for a container
starts and the Node has enough RAM to keep the swap file, the swap file is stored in the Node RAM
rather than on the hard drive.

Chapter 3. Managing Resources

64

3. Once the container exceeds its swap limit, the system invokes the OOM Killer for this container.
4. The OOM Killer chooses one or more processes running in the affected container and forcibly kills

them.

By default, any newly created container starts using the new memory management scheme. To find out
the amount of RAM and swap space set for a container, you can check the values of the PHYSPAGES and
SWAPPAGES parameters in the container configuration file, for example:

grep PHYSPAGES /etc/vz/conf/26bc47f6-353f-444b-bc35-b634a88dbbcc.conf
PHYSPAGES="65536:65536"
grep SWAPPAGES /etc/vz/conf/26bc47f6-353f-444b-bc35-b634a88dbbcc.conf
SWAPPAGES="65536"

In this example, the value of the PHYSPAGES parameter for the container MyCT is set to 65536. The
PHYSPAGES parameter displays the amount of RAM in 4-KB pages, so the total amount of RAM set for
the container MyCT equals to 256 MB. The value of the SWAPPAGES parameter is also set to 256 MB.

To configure the amounts of RAM and swap space for the container MyCT, use the --memsize and --
swappages options of the prlctl set command. For example, you can execute the following command
to set the amount of RAM and SWAP in the container MyCT to 1 GB and 512 MB, respectively:

prlctl set MyCT --memsize 1G --swappages 512M

3.6.2. Configuring Container Memory Guarantees

A memory guarantee is a percentage of container’s RAM that said container is guaranteed to have.

Important: The total memory guaranteed to all running virtual environments on the host must not
exceed host’s physical RAM size. If starting a virtual environment with a memory guarantee would
increase the total memory guarantee on the host beyond host’s physical RAM size, said virtual
environment will not start. If setting a memory guarantee for a running virtual environment would
increase the total memory guarantee on the host beyond host’s physical RAM size, said memory
guarantee will not be set.

For containers, the memory guarantee value is set to 0% by default. To change the default value, use
the prlctl set --memguarantee command. For example:

prlctl set MyCT --memguarantee 80

To revert to the default setting, run

prlctl set MyCT --memguarantee auto

3.6.3. Configuring Container Memory Allocation Limit

When an application starts in a container, it allocates a certain amount of memory for its needs. Usually,
the allocated memory is much more than the application actually requires for its execution. This may
lead to a situation when you cannot run an application in the container even if it has enough free
memory. To deal with such situations, the VSwap memory management scheme introduces the new

Chapter 3. Managing Resources

65

vm_overcommit option. Using it, you can configure the amount of memory applications in a container
may allocate, irrespective of the amount of RAM and swap space assigned to the container.

The amount of memory that can be allocated by applications of a container is the sum of RAM and swap
space set for this container multiplied by a memory overcommit factor. In the default (basic) container
configuration file, this factor is set to 1.5. For example, if a container is based on the default configuration
file and assigned 1 GB of RAM and 512 MB of swap, the memory allocation limit for the container will be
2304 MB. You can configure this limit and set it, for example, to 3 GB by running this command:

vzctl set MyCT --vm_overcommit 2 --save

This command uses the factor of 2 to increase the memory allocation limit to 3 GB:
(1 GB of RAM + 512 MB of swap) * 2 = 3 GB

Now applications in the container MyCT can allocate up to 3 GB of memory, if necessary.

3.6.4. Configuring Container OOM Killer Behavior

The OOM killer selects a container process (or processes) to end based on the badness reflected in /
proc/<pid>/oom_score. The badness is calculated using process memory, total memory, and badness
adjustment, and then clipped to the range from 0 to 1000. Each badness point stands for one thousandth
of container memory. The process to be killed is the one with the highest resulting badness.

The OOM killer for container processes can be configured using the /etc/vz/oom-groups.conf file that
lists patterns based on which badness adjustment is selected for each running process. Each pattern
takes a single line and includes the following columns:

• <command>, mask for the task command name;
• <parent>, mask for the parent task name;
• <oom_uid>, task user identifier (UID) filter:

• If <oom_uid> is -1, the pattern will be applicable to tasks with any UIDs,
• If <oom_uid> is 0 or higher, the pattern will be applicable to tasks with UIDs equal to the <oom_uid>

value,
• If <oom_uid> is smaller than -1, the pattern will be applicable to tasks with UIDs smaller than the

negative <oom_uid> value);
• <oom_score_adj> badness adjustment. As with badness itself, each adjustment point stands for one

thousandth of total container memory. Negative adjustment values reduce process badness. In an
out-of-memory situation, an adjustment will guarantee that the process will be allowed to occupy at
least <oom_score_adj> thousandths of container memory while there are other processes with higher
badness running in the container.

Note: The <command> and <parent> masks support wildcard suffixes: asterisk matches any suffix.
E.g., "foo" matches only "foo", "foo*" matches "foo" and "foobar".

For example, the pattern

sshd init -500 -100

means that in an out-of-memory situation, sshd, a child of init, will be guaranteed at least 100
thousandths (i.e., 10%) of container memory, if its UID is smaller than -(-500) or just 500, e.g., 499.

Chapter 3. Managing Resources

66

According to RHEL conventions, UIDs from 1 to 499 are usually reserved for system use, so such
delimitation may be useful to prioritize and save system processes.

While calculating the badness of a process, the OOM killer searches /proc/vz/oom_score_adj for
a suitable pattern based on masks and task UID filter. The search starts from the first line and ends
when the first suitable pattern is found. The corresponding adjustment value is then used to obtain the
resulting process badness.

The data from /etc/vz/oom-groups.conf is reset and committed to the kernel on boot. To reset and
commit the config file manually, you can use the following command:

cat /etc/vz/oom-groups.conf > /proc/vz/oom_score_adj

3.6.5. Tuning VSwap

The VSwap management scheme can be extended by using UBC parameters. For example, you can
set the numproc parameter to configure the maximal number of processes and threads a container may
create or the numfile parameter to specify the number of files that may be opened by all processes in
the container.

3.7. Managing Virtual Machines Memory Parameters

This section describes how to configure memory parameters available for virtual machines:

• memory size,
• video memory size,
• memory hotplugging,
• memory guarantees,
• kernel same-page merging.

3.7.1. Configuring Virtual Machine Memory Size

To increase or reduce the amount of memory that will be available to the virtual machine, use the --
memsize option of the prlctl set command. The following example shows how to increase the RAM of
the virtual machine MyVM from 1GB to 2GB and check that the new value has been successfully set:

prlctl list -i MyVM | grep memory
memory 1024Mb
prlctl set MyVM --memsize 2048
Set the memsize parameter to 2048Mb
The VM has been successfully configured.
prlctl list -i MyVM | grep memory
memory 2048Mb

The changes are saved in the VM configuration file and applied to the VM on start. If the VM is
running, it will need to be rebooted. To be able to increase or reduce virtual machine RAM size without
reboot, enable memory hotplugging as described in Section 3.7.3, “Enabling Virtual Machine Memory
Hotplugging” on page 67.

Chapter 3. Managing Resources

67

Note: The value set with prlctl --memsize is not reported inside the VM as physical or other
RAM size. A user logged in to the guest OS will see as much physical RAM as can be obtained by
fully deflating the balloon (see MaxNumaSize in Section 3.7.3, “Enabling Virtual Machine Memory
Hotplugging” on page 67). The balloon size is not reported inside the VM as well. However, if the
balloon is not fully deflated, a part of the reported physical RAM will appear to be occupied at all times
(by what is in fact the balloon).

3.7.2. Configuring Virtual Machine Video Memory Size

To set the amount of video memory to be available to the virtual machine’s video card, use the --
videosize option of the prlctl set command. Assuming that the current video memory size of the
virtual machine MyVM is set to 32 MB, you can increase it to 64 MB by running the following command:

prlctl set MyVM --videosize 64

To check that the new value has been successfully set, use this command:

prlctl list -i MyVM | grep video
video 64Mb

3.7.3. Enabling Virtual Machine Memory Hotplugging

Memory hotplugging allows increasing or reducing virtual machine RAM size on the fly, without the need
to reboot the VM. Memory hotplugging is implemented as a combination of ballooning and addition/
removal of virtual DIMM slots.

The algorithm is as follows. When a command to increase VM memory size to RAM_size is run (as
described in Section 3.7.1, “Configuring Virtual Machine Memory Size” on page 66), the memory is
first expanded by deflating the VM’s balloon. The balloon deflation limit, MaxNumaSize, is calculated
automatically according to the formula

MaxNumaSize = (RAM_size + 4GB) rounded up to a multiple of 4GB

If fully deflating the balloon is not enough to obtain RAM_size (that is, RAM_size exceeds
MaxNumaSize), then memory is further expanded by adding virtual DIMM slots (up to twice the
MaxNumaSize) and MaxNumaSize is set equal to RAM_size (that is, the maximum balloon size grows
as well). When a command to decrease VM memory size is run, the memory is shrunk by inflating the
VM’s balloon. The added virtual DIMM slots remain until VM restart. After restart, the VM has memory
equal to RAM_size.

This feature is only supported for virtual machines with at least 1GB of RAM and is disabled by default.
To enable it for a virtual machine (e.g., MyVM):

1. Make sure the VM is stopped.

2. Run

prlctl set MyVM --mem-hotplug on

Chapter 3. Managing Resources

68

3. Start the VM.

Now virtual machine RAM size can be increased and decreased with the prlctl set --memsize
command without rebooting the VM.

3.7.4. Configuring Virtual Machine Memory Guarantees

A memory guarantee is a percentage of virtual machine’s RAM that said VM is guaranteed to have.

Important: The total memory guaranteed to all running virtual environments on the host must not
exceed host’s physical RAM size. If starting a virtual environment with a memory guarantee would
increase the total memory guarantee on the host beyond host’s physical RAM size, said virtual
environment will not start. If setting a memory guarantee for a running virtual environment would
increase the total memory guarantee on the host beyond host’s physical RAM size, said memory
guarantee will not be set.

For virtual machines, the memory guarantee value is set to 40% by default. To change the default value,
use the prlctl set --memguarantee command. For example:

prlctl set MyVM --memguarantee 80

To revert to the default setting, run

prlctl set MyVM --memguarantee auto

Note: Virtual machines with memory guarantees can only be started with prlctl start. Starting such
VMs differently (e.g., using virsh) will result in memory guarantees not being applied.

3.7.5. Optimizing Virtual Machine Memory with Kernel Same-Page
Merging

To optimize memory usage by virtual machines, OpenVZ uses a feature of Linux called Kernel Same-
Page Merging (KSM). The KSM daemon ksmd periodically scans memory for pages with identical
content and merges those into a single page. Said page is marked as copy-on-write (COW), so when its
contents are changed by a virtual machine, the kernel creates a new copy for that virtual machine.

KSM enables the host to:

• avoid swapping due to merging of identical pages;
• run more virtual machines;
• overcommit virtual machine memory;
• speed up RAM and hence certain applications and guest operating systems.

KSM can be managed by means of two services:

• The ksm service that starts and stops the KSM kernel thread.
• The ksmtuned service that controls and tunes the ksm using the parameters set in the /etc/
ksmtuned.conf file.

Chapter 3. Managing Resources

69

You can start the ksm and ksmtuned services by executing the following commands:

service ksm start
service ksmtuned start

To check that the feature works, you can check the number of currently shared memory pages in /sys/
kernel/mm/ksm/pages_sharing with virtual machines running. For example:

cat /sys/kernel/mm/ksm/pages_sharing
3159

To stop the services, run:

service ksm stop
service ksmtuned stop

Notes:

1. It is not advisable to use the KSM daemon if CPU resources may become a bottleneck.
2. It is recommended to avoid cross-node memory merging when KSM is in use as this may result in

a significant performance drop after a lot of pages are shared. To disable merging pages across
NUMA nodes, replace the contents of /sys/kernel/mm/ksm/merge_across_nodes with 0.

3. Using KSM may affect virtual machine security. For more details, see http://kb.virtuozzo.com/
en/126594.

3.8. Managing Container Resource Configuration
Any container is configured by means of its own configuration file. You can manage container
configurations in a number of ways:

1. Using configuration sample files shipped with OpenVZ. These files are used when a new container is
being created (for details, see Section 1.2.2, “OpenVZ Containers” on page 9). Currently, the following
configuration sample files are provided:
• basic for creating standard containers.
• confixx for creating containers that are to run the Confixx control panel.
• vswap.plesk for creating containers with the Plesk control panel.
• vswap.256MB for creating containers with 256 MB of main memory.
• vswap.512Mb for creating containers with 512 MB of main memory.
• vswap.1024Mb for creating containers with 1024 MB of main memory.
• vswap.2048Mb for creating containers with 2048 MB of main memory.

Note: Configuration sample files cannot contain spaces in their names.

Any sample configuration file can also be applied to an existing container. You would do this if,
for example, you want to upgrade or downgrade the overall resources configuration of a particular
container:

prlctl set MyCT --applyconfig basic

http://kb.virtuozzo.com/en/126594
http://kb.virtuozzo.com/en/126594

Chapter 3. Managing Resources

70

This command applies all the parameters from the ve-basic.conf-sample file to the container MyCT.
When you install OpenVZ on your hardware node, the default container samples are put to the /
etc/vz/conf directory. They have the following format: ve-<name>.conf-sample (for example, ve-
basic.conf-sample).

2. Using specific utilities for preparing configuration files in their entirety. The tasks these utilities perform
are described in the following subsections of this section.

3. The direct creating and editing of the corresponding container configuration file (/etc/vz/
conf/<UUID>.conf). This can be performed with the help of any text editor. The instructions on how
to edit container configuration files directly are provided in the four preceding sections. In this case
you have to edit all the configuration parameters separately, one by one.

3.8.1. Splitting Server Into Equal Pieces

Using the vzsplit command, you can create configurations for containers that would take a specific
fraction of the hardware node resources. For example, to create a configuration myconf for up to 20
containers:

vzsplit -n 20 -f myconf
Config /etc/vz/conf/ve-myconf.conf-sample was created

The configuration is calculated based on the hardware node resources. You can now use the --config
myconf option of the prlctl create command to create containers based on this configuration.

3.8.2. Applying New Configuration Samples to Containers

OpenVZ allows you to change the configuration sample file a container is based on and, thus, to modify
all the resources the container may consume and/or allocate at once. For example, if the container MyCT
is currently based on the basic configuration sample and you are planning to run the Plesk application
inside the container, you may wish to apply the vswap.plesk sample to it instead of basic, which will
automatically adjust the necessary container resource parameters for running the Plesk application
inside the container MyCT. To do this, you can execute the following command on the hardware node:

prlctl set MyCT --applyconfig vswap.plesk

This command reads the resource parameters from the ve-vswap.plesk.conf-sample file located in
the /etc/vz/conf directory and applies them one by one to the container MyCT.

When applying new configuration samples to containers, keep in mind the following:

• All container sample files are located in the /etc/vz/conf directory on the hardware node and are
named according to the following pattern: ve-<name>.conf-sample. You should specify only the
<name> part of the corresponding sample name after the --applyconfig option (vswap.plesk in the
example above).

• The --applyconfig option applies all the parameters from the specified sample file to the given
container, except for the OSTEMPLATE, TEMPLATES, VE_ROOT, VE_PRIVATE, HOSTNAME, IP_ADDRESS,
TEMPLATE, NETIF parameters (if they exist in the sample file).

Chapter 3. Managing Resources

71

You may need to restart your container depending on the fact whether the changes for the selected
parameters can be set on the fly or not. If some parameters could not be configured on the fly, you will
be presented with the corresponding message informing you of this fact.

3.9. Managing Virtual Machine Configuration Samples

The configuration of a virtual machine is defined by its config.pvs configuration file. This file in XML
format is automatically created when you make a new virtual machine and contains all parameters of the
virtual machine: memory, CPU, disk space, and so on.

Once a virtual machine is created, you can manually configure its parameters using the prlctl utility.
However, if you need to configure multiple parameters for several virtual machines, this may become a
tedious task. To facilitate your work, you can create virtual machine samples and use them to quickly
and easily change the configuration of virtual machines. You can even further simplify the configuration
process by creating a virtual machine template and several sample files. In this case, you can quickly
make a new virtual machine on the basis of your template and apply the desired configuration file to it.

3.9.1. Creating a Configuration Sample

Before you can start using virtual machine configuration samples, you need to create at least one
configuration sample. The easiest way of doing this is to follow the steps below:

1. Create a virtual machine configuration, for example:

prlctl create VmConfiguration

2. Set the parameters for the virtual machine configuration as you want them to be. For example, you
can use the prlctl set command to set the required amount of memory and disk space. All your
parameters are saved to the config.pvs file of the VmConfiguration virtual machine. (For the list of
parameters that can be applied from a configuration sample, see Section 3.9.3, “Parameters Applied
from Configuration Samples” on page 72 below.)

3. Copy the config.pvs file to the /etc/parallels/samples directory. If this directory does not exist,
create it:

mkdir /etc/parallels/samples
cp /vz/vmprivate/VmConfiguration/config.pvs /etc/parallels/samples/configMySQL.pvs

The latter command copies the config.pvs file to the configMyDB.pvs file.

3.9.2. Applying Configuration Samples to Virtual Machines

Now that you have created the configuration sample, you can apply it to any of your virtual machines.
You can do this using the --applyconfig option with the prlctl set command and specifying the
sample name without the .pvs extension. For example, to apply the configMySQL sample to the VM1
virtual machine, you can run this command:

prlctl set VM1 --applyconfig configMySQL

Chapter 3. Managing Resources

72

You can apply configuration samples to stopped virtual machines only.

3.9.3. Parameters Applied from Configuration Samples

The following parameters are applied to a virtual machine from a new configuration sample:

• All memory-related parameters (both RAM and video). To view these parameters in a sample file,
locate the <Memory> and <Video> elements.

• All CPU-related parameters. To view these parameters in a sample file, locate the <Cpu> element.
• IO and IOPS parameters. To view these parameters in a sample file, locate the <IoLimit> and
<IopsLimit> elements, respectively.

• Disk space parameter. To view this parameter in a sample file, locate the <Size> element enclosed in
the <Hdd> element:

<Hdd id=0" dyn_lists="Partition 0">
<Index>0</Index>
<Size>65536</Size>
</Hdd>

The virtual disk to which the value of the <Size> element is applied is defined by the index number in
the <Index> element. For example, in the example above, the disk space parameter (65536 MB) is
applied to the virtual disk with index number 0. If the virtual machine does not have a virtual disk with the
specified index, the parameter is ignored.

3.10. Monitoring Resources

In OpenVZ, you can use the vztop utility to monitor system resources in real time. When executed, the
utility displays information about processor, swap and memory usage, number of tasks, load average,
and uptime at the top of the screen. You can change the default meters by pressing F2 or S. For
example, you can run the following command on the server to view your current system resources:

vztop
1 [0.0%] Tasks: 77, 65 thr; 1 running
2 [||| 2.6%] Load average: 0.02 0.03 0.05
3 [|||| 4.6%] Uptime: 06:46:48
4 [| 0.7%]
Mem[||||||||||||||||||||| 344M/3.68G]
Swp[0K/3.87G]

The numbers on the left represent the number of CPUs/cores in the system. The progress bar shows
their load and can be comprised of different colors. By default, the CPU progress bar is displayed in four
colors:

• blue - low priority processes,
• green - normal priority (user) processes,
• red - kernel processes,
• cyan - virtualization time.

The memory progress bar is comprised of three colors:

Chapter 3. Managing Resources

73

• green - used memory pages,
• blue - buffer pages,
• yellow/orange - cache pages.

The swap progress bar include only one color—red—which denotes used swap space.

The command output is updated in intervals set with the -d option in tenths of a second. If the -d option
is omitted, the default interval is 1 second (i.e. -d 10).

Chapter 4. Managing Services and Processes
This chapter provides information on what services and processes are, how they influence the operation
and performance of your system, and what tasks they perform in the system.

You will learn how to use the command line utilities in order to manage services and processes in
OpenVZ. In particular, you will learn how to monitor active processes in your system, change the mode
of the xinetd-dependent services, identify the container UUID where a process is running by the
process ID, start, stop, or restart services and processes, and edit the service run levels.

4.1. What Are Services and Processes

Instances of any programs currently running in the system are referred to as processes. A process can
be regarded as the virtual address space and the control information necessary for the execution of a
program. A typical example of a process is the vi application running on your server or inside your Linux-
based containers. Along with common processes, there are a great number of processes that provide
an interface for other processes to call. They are called services. In many cases, services act as the
brains behind many crucial system processes. They typically spend most of their time waiting for an
event to occur or for a period when they are scheduled to perform some task. Many services provide the
possibility for other servers on the network to connect to the given one via various network protocols. For
example, the nfs service provides the NFS server functionality allowing file sharing in TCP/IP networks.

You may also come across the term "daemon" that is widely used in connection with processes and
services. This term refers to a software program used for performing a specific function on the server
system and is usually used as a synonym for "service". It can be easily identified by d at the end of
its name. For example, httpd (HTTP daemon) represents a program that runs in the background
of your system and waits for incoming requests to a web server. The daemon answers the requests
automatically and serves the hypertext and multimedia documents over the Internet using HTTP.

When working with services, you should keep in mind the following. During the lifetime of a service, it
uses many system resources. It uses the CPUs in the system to run its instructions and the system’s
physical memory to hold itself and its data. It opens and uses files within the file systems and may
directly or indirectly use certain physical devices in the system. Therefore, in order not to decrease your
system performance, you should run only those services on the hardware node that are really needed at
the moment.

Besides, you should always remember that running services in the Host OS is much more dangerous
than running them in virtual machines and containers. In case violators get access to one of the virtual
machines and containers through any running service, they will be able to damage only the virtual
machine or container where this service is running, but not the other virtual machines and containers
on your server. The hardware node itself will also remain unhurt. And if the service were running on the
hardware node, it would damage both the server and all virtual machines and containers residing on
it. Thus, you should make sure that you run only those services on the server that are really necessary
for its proper functioning. Launch all additional services you need at the moment inside separate virtual
machines and containers. It can significantly improve your system safety.

Chapter 4. Managing Services and Processes

75

4.2. Main Operations on Services and Processes

The ability to monitor and control processes and services in your system is essential because of the
profound influence they have on the operation and performance of your whole system. The more you
know about what each process or service is up to, the easier it will be to pinpoint and solve problems
when they creep in.

The most common tasks associated with managing services running on the hardware node or inside a
virtual machine or container are starting, stopping, enabling, and disabling a service. For example, you
might need to start a service in order to use certain server-based applications, or you might need to stop
or pause a service in order to perform testing or to troubleshoot a problem.

For xinetd-dependent services, you do not start and stop but enable and disable services. The services
enabled in this way are started and stopped on the basis of the corresponding state of the xinetd
daemon. Disabled services are not started whatever the xinetd state.

In OpenVZ, you can manage services on the hardware node and inside containers by means of special
Linux command-line utilities. You can do it either locally or from any server connected on the network.

As for processes, such OpenVZ utilities as vzps, vztop, vzpid enable you to see what a process
is doing and to control it. Sometimes, your system may experience problems such as slowness or
instability, and using these utilities can help you improve your ability to track down the causes. It goes
without saying that in OpenVZ you can perform all those operations on processes you can do in a
normal system, for example, kill a process by sending a terminate signal to it.

4.3. Managing Processes and Services

In OpenVZ, services and processes can be managed using the following command-line utilities:

• vzps

• vzpid

• vztop

With their help, you can perform the following tasks:

• print the information about active processes on your hardware node
• view the processes activity in real time
• change the mode of the services that can be either xinetd-dependent or standalone
• identify the container UUID where a process is running by the process ID

4.3.1. Viewing Active Processes and Services

The vzps utility provides certain additional functionality related to monitoring separate containers running
on the hardware node. For example, you can use the -E switch with the vzps utility to:

• display the container UUIDs where the processes are running
• view the processes running inside a particular container

Chapter 4. Managing Services and Processes

76

vzps prints the information about active processes on your hardware node. When run without any
options, vzps lists only those processes that are running on the current terminal. Below is an example
output of vzps:

vzps
 PID TTY TIME CMD
 4684 pts/1 00:00:00 bash
27107 pts/1 00:00:00 vzps

Currently, the only processes assigned to the user/terminal are the bash shell and the vzps command
itself. In the output, the PID (Process ID), TTY, TIME, and CMD fields are contained. TTY denotes which
terminal the process is running on, TIME shows how much CPU time the process has used, and CMD is
the name of the command that started the process.

Note: The IDs of the processes running inside containers and displayed by running the vzps command
on the hardware node does not coincide with the IDs of the same processes shown by running the ps
command inside these containers.

As you can see, the standard vzps command just lists the basics. To get more details about the
processes running on your server, you will need to pass some command line arguments to vzps. For
example, using the aux arguments with this command displays processes started by other users (a),
processes with no terminal or one different from yours (x), the user who started the process and when it
began (u).

vzps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 1516 128 ? S Jul14 0:37 init
root 5 0.0 0.0 0 0 ? S Jul14 0:03 [ubstatd]
root 6 0.0 0.0 0 0 ? S Jul14 3:20 [kswapd]
#27 7 0.0 0.0 0 0 ? S Jul14 0:00 [bdflush]
root 9 0.0 0.0 0 0 ? S Jul14 0:00 [kinoded]
root 1574 0.0 0.1 218 140 pts/4 S 09:30 0:00 -bash

There is a lot more information now. The fields USER, %CPU, %MEM, VSZ, RSS, STAT, and START
have been added. Let us take a quick look at what they tell us.

The USER field shows you which user initiated the command. Many processes begin at system start
time and often list root or some system account as the user. Other processes are, of course, run by
actual users.

The %CPU, %MEM, VSZ, and RSS fields all deal with system resources. First, you can see what
percentage of the CPU the process is currently utilizing. Along with CPU utilization, you can see the
current memory utilization and its VSZ (virtual memory size) and RSS (resident set size). VSZ is the
amount of memory the program would take up if it were all in memory. RSS is the actual amount
currently in memory. Knowing how much a process is currently eating will help determine if it is acting
normally or has spun out of control.

You will notice a question mark in most of the TTY fields in the vzps aux output. This is because most
of these programs were started at boot time and/or by initialization scripts. The controlling terminal does
not exist for these processes; thus, the question mark. On the other hand, the bash command has a TTY
value of pts/4. This is a command being run from a remote connection and has a terminal associated

Chapter 4. Managing Services and Processes

77

with it. This information is helpful for you when you have more than one connection open to the machine
and want to determine which window a command is running in.

STAT shows the current status of a process. In our example, many are sleeping, indicated by an S
in the STAT field. This simply means that they are waiting for something. It could be user input or the
availability of system resources. The other most common status is R, meaning that it is currently running.

You can also use the vzps command to view the processes inside any running container. The
example below shows you how to display all active processes inside the container MyCT with UUID
26bc47f6-353f-444b-bc35-b634a88dbbcc:

vzps -E 26bc47f6-353f-444b-bc35-b634a88dbbcc
 CTID PID TTY TIME CMD
26bc47f6-353f-444b-bc35-b634a88dbbcc 14663 ? 00:00:00 init
26bc47f6-353f-444b-bc35-b634a88dbbcc 14675 ? 00:00:00 kthreadd/26bc47
26bc47f6-353f-444b-bc35-b634a88dbbcc 14676 ? 00:00:00 khelper
26bc47f6-353f-444b-bc35-b634a88dbbcc 14797 ? 00:00:00 udevd
26bc47f6-353f-444b-bc35-b634a88dbbcc 15048 ? 00:00:00 rsyslogd
26bc47f6-353f-444b-bc35-b634a88dbbcc 15080 ? 00:00:00 sshd
26bc47f6-353f-444b-bc35-b634a88dbbcc 15088 ? 00:00:00 xinetd
26bc47f6-353f-444b-bc35-b634a88dbbcc 15097 ? 00:00:00 saslauthd
26bc47f6-353f-444b-bc35-b634a88dbbcc 15098 ? 00:00:00 saslauthd
26bc47f6-353f-444b-bc35-b634a88dbbcc 15116 ? 00:00:00 sendmail
26bc47f6-353f-444b-bc35-b634a88dbbcc 15125 ? 00:00:00 sendmail
26bc47f6-353f-444b-bc35-b634a88dbbcc 15134 ? 00:00:00 httpd
26bc47f6-353f-444b-bc35-b634a88dbbcc 15139 ? 00:00:00 httpd
26bc47f6-353f-444b-bc35-b634a88dbbcc 15144 ? 00:00:00 crond
26bc47f6-353f-444b-bc35-b634a88dbbcc 15151 ? 00:00:00 mingetty
26bc47f6-353f-444b-bc35-b634a88dbbcc 15152 ? 00:00:00 mingetty

4.3.2. Monitoring Processes in Real Time

The vztop utility is rather similar to vzps but is usually started full-screen and updates continuously with
process information. This can help with programs that may infrequently cause problems and can be hard
to see with vzps. Overall system information is also presented, which makes a nice place to start looking
for problems.

The vztop utility can be used just as the standard Linux htop utility. It shows a dynamic list of all
processes running on the system with their full command lines.

By default, it shows information about processor, swap and memory usage, number of tasks, load
average, and uptime at the top of the screen. You can change the default meters, along with display
options, color schemes, and columns at the setup screen (S or F2).

vztop can be used interactively for sending signals to processes. For example, you can kill processes—
without knowing their PIDs—by selecting them and pressing F9. You can also change process priority by
pressing F7 (increase; can only be done by the root user) and F8 (decrease).

The vztop utility usually has an output like the following:

vztop
1 [0.0%] Tasks: 77, 65 thr; 1 running

Chapter 4. Managing Services and Processes

78

2 [||| 2.6%] Load average: 0.02 0.03 0.05
3 [|||| 4.6%] Uptime: 06:46:48
4 [| 0.7%]
Mem[||||||||||||||||||||| 344M/3.68G]
Swp[0K/3.87G]

PID CTID USER PRI NI VIRT RES SHR S CPU% MEM% TIME+ Command
1 0 root 20 0 41620 4132 2368 S 0.0 0.1 0:05.91 /usr/lib/systemd/systemd
3164 0 root 20 0 19980 1380 1160 S 0.0 0.0 0:00.32 /usr/1ib/systemd/systemd-
3163 0 root 21 1 1402M 56992 10204 S 0.0 1.5 4:12.41 /usr/libexec/qemu-kvm -na
3186 0 root 20 0 1402M 56992 10204 S 0.0 1.5 0:00.09 /usr/libexec/qemu-kvm -na
3185 0 root 20 0 1402M 56992 10204 S 0.7 1.5 2:16.83 /usr/libexec/qemu-kvm -na
3180 0 root 20 0 1402M 56992 10204 S 0.0 1.5 0:00.00 /usr/libexec/qemu-kvm -na
3084 0 smmsp 20 0 85712 2036 516 S 0.0 0.1 0:00.19 sendmail: Queue runner@01
3064 0 root 20 0 98M 2380 572 S 0.0 0.1 0:01.43 sendmail: accepting conne
3036 0 root 20 0 291M 4788 3580 S 0.0 0.1 0:00.00 /usr/sbin/virt1ogd
3037 0 root 20 0 291M 4788 3580 S 0.0 0.1 0:00.00 /usr/sbin/virt1ogd
2787 0 nobody20 0 15548 896 704 S 0.0 0.0 0:00.14 /sbin/dnsmasq --conf-file
2788 0 root 20 0 15520 184 0 S 0.0 0.0 0:00.00 /sbin/dnsmasq --conf-file
2479 0 root 20 0 1962M 33344 24160 S 0.7 0.9 3:13.12 /usr/sbin/pr1_disp_servic
9022 0 root 20 0 1962M 33344 24160 S 0.0 0.9 0:10.74 /usr/sbin/pr1_disp_servic

The column CTID shows the container UUID inside which the process is running (the value 0 means
that the process is running on the server), PRI (PRIORITY) displays the kernel’s internal priority for the
process, and NI (NICE) shows the nice value (the nicer the process, the more it lets other processes
take priority).

To organize processes by parenthood, you can switch to the tree view by pressing F5.

4.3.3. Determining Container UUIDs by Process IDs

Each process is identified by a unique PID (process identifier), which is the entry of that process in the
kernel’s process table. For example, when you start Apache, it is assigned a process ID. This PID is then
used to monitor and control this program. The PID is always a positive integer. In OpenVZ, you can use
the vzpid (retrieve process ID) utility to print the container UUID the process with the given id belongs
to. Multiple process IDs can be specified as arguments. In this case the utility will print the container
number for each of the processes.

The typical output of the vzpid utility is shown below:

vzpid 12
Pid VEID Name
14663 26bc47f6-... init

Note: You can also display the container UUID where the corresponding process is running by using
the vzps utility.

Chapter 5. Managing Network
This chapter familiarizes you with the OpenVZ network structure, lists networking components, and
explains how to manage these components in your working environments. In particular, it provides the
following information:

• How you can manage network adapters on the hardware node.
• What virtual networks are and how you can manage them on the hardware node.
• How to create virtual network adapters inside your virtual machines and containers and configure their

parameters.
• How to connect virtual machines and containers to different networks.

5.1. Managing Network Adapters on the Hardware Node

Network adapters installed on the hardware node are used to provide virtual machines and containers
with access to each other and to external networks. During the installation, OpenVZ registers all physical
network adapters available on the server. Once OpenVZ has been successfully installed, you can
manage network adapters on the hardware node using native RHEL7 utilities.

Note: You can also use VLAN interfaces instead of physical.

5.2. Networking Modes in OpenVZ

This section describes networking modes available in OpenVZ.

In OpenVZ, any virtual machine or container can operate in one of the two networking modes: host-
routed or bridged.

5.2.1. Container Network Modes

This section describes bridged and host-routed network modes for containers.

Note: IPSec connections inside containers are supported.

5.2.1.1. Host-Routed Mode for Containers

By default, a new container starts operating in the host-routed mode. In this mode, the container uses
a special network adapter, venet0, to communicate with the server where it resides, with the other
containers on the server, and with computers on external networks. The figure below demonstrates an
example network configuration where all containers are set to work in the host-routed mode.

Chapter 5. Managing Network

80

In this configuration:

• Containers #1, #2, and #3 use the venet0 adapter as the default gateway to send and receive data to/
from other networks. They also use this adapter to exchange the traffic between themselves.

• When containers #1, #2, and #3 start, the server creates ARP and routing entries for them in its ARP
and routing tables. You can view the current ARP and routing entries on a server using the arp -n
and route -n commands. For example:

arp -n
Address HWtype HWaddress Flags Mask Iface
10.30.0.4 ether 00:1a:e2:c7:17:c1 C enp0s5
10.30.23.162 ether 70:71:bc:42:f6:a0 C enp0s5
192.168.200.101 * * MP enp0s5
192.168.200.102 * * MP enp0s5
192.168.200.103 * * MP enp0s5
route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
192.168.200.101 * 255.255.255.255 UH 1000 0 0 venet0
192.168.200.102 * 255.255.255.255 UH 1000 0 0 venet0

Chapter 5. Managing Network

81

192.168.200.103 * 255.255.255.255 UH 1000 0 0 venet0
10.30.0.0 * 255.255.0.0 U 0 0 0 enp0s5
default virtuozzo.com 0.0.0.0 UG 0 0 0 enp0s5

As you can see, the ARP and routing tables contain entries about IP addresses 192.168.200.101,
192.168.200.102, and 192.168.200.103 that belong to containers 1, #2, and 3.

• All container outgoing network traffic goes to the venet0 adapter and is forwarded via the enp0s5
physical adapter to the destination, according to the routing table of the server.

• All container incoming network traffic is also processed by the venet0 adapter. Consider the following
situation:
1. Computer X on the local network wants to send a data packet to container #1 with IP address

192.168.200.101, so it issues an ARP request which computer has this IP address.
2. The server hosting container #1 replies with its MAC address.
3. Computer X sends the data packet to the indicated MAC address.
4. The server receives the packet and transmits it to venet0 that forwards the packet to container #1.

5.2.1.2. Bridged Mode for Containers

The default network adapter of a container can operate in the host-routed mode only. You can, however,
create additional virtual adapters in containers and make them operate in the bridged network mode.
The following figure shows an example network configuration where containers #1 and #2 are set to
work in the bridged mode.

Chapter 5. Managing Network

82

In this configuration:

• Container #1 and container #2 have separate virtual adapters consisting of two network interfaces:
• An enp<X>s<Y> interface in the container (enp0s5 in the figure). This interface represents a

counterpart of a physical network adapter installed on a standalone server. Like any other physical
adapter, it has a MAC address, can be assigned one or more IP addresses, included in different
networks, and so on.

• A veth interface on the hardware node (veth26bc47f6.1 and vethcdb87d9e.1 in the figure). This
interface is mostly used to maintain the communication between the hardware node and Ethernet
interfaces in containers.

Note: To simplify things, virtual adapters operating in the bridged mode are called veth adapters,
though it is not quite correct from the technical point of view.

Both interfaces are closely linked to each other, so a data packet entering one interface always comes
out from the other one.

• Containers #1 and #2 keep their own ARP and routing tables that they consult when sending or
receiving data.

Chapter 5. Managing Network

83

• The veth adapters of both containers are bridged through the bridge br0 to the physical network
adapter enp0s5.

• All container outgoing traffic comes via the veth adapters to the bridge and are then transmitted
through the enp0s5 physical adapter to the destination, according to the routing tables stored in the
containers.

• All incoming data packets for container #1 and #2 reach the enp0s5 physical adapter first and are then
sent through the bridge to the veth adapter of the destination container.

5.2.2. Virtual Machine Network Modes

This section describes bridged and host-routed network modes for virtual machines.

5.2.2.1. Bridged Mode for Virtual Machines

By default, a new virtual machine is created with a network adapter that operates in the bridged mode.
The figure below demonstrates an example network configuration where two virtual machines, VM #1
and VM #2, are configured to work in the bridged mode.

Chapter 5. Managing Network

84

In this configuration:

• Each virtual machine has a separate virtual adapter that exposes two interfaces: (1) an ethX interface
in the virtual machine (eth0 in the figure) and a vme interface on the server (vme7b9a73a1 and
vme4980d06a in the figure). Both interfaces are closely linked to each other, which means that an IP
packet entering one interface always comes out of the other one. An eth adapter has a MAC address,
can be assigned one or more IP addresses, belong to different network environments, and so on.

Note: To simplify things, virtual adapters operating in the bridged mode are called vme adapters,
though it is not quite correct from the technical point of view.

• VM #1 and VM #2 keep their own ARP and routing tables that they consult when sending or receiving
data.

• The virtual adapters of both virtual machines are bridged through the bridge br0 to the physical
network adapter eth0.

• All outgoing data packets are sent from the virtual machines through the bridge and eth0 physical
adapter to the destination, according to their routing tables.

• All incoming data packets for VM #1 and VM #2 reach the eth0 physical adapter first and are then
transmitted through the bridge to the vme interface of the destination virtual machine.

5.2.2.2. Host-Routed Mode for Virtual Machines

The other network mode a virtual machine can work in is the host-routed mode. The figure below
demonstrates an example network configuration where two virtual machines, VM #1 and VM #2, are set
to operate in the host-routed mode.

Chapter 5. Managing Network

85

In this configuration:

• Each virtual machine also has a virtual adapter exposing two interfaces: an eth interface in the virtual
machine and a vme interface on the server.

• Unlike the bridged mode, the ARP entries for VM #1 and VM #2 are stored on the server rather than
in the virtual machines themselves. The server creates these ARP entries and saves them to its
ARP table when VM #1 and VM #2 start. You can use the arp -n command to view the current ARP
entries on a server, for example:

arp -n
Address HWtype HWaddress Flags Mask Iface
10.30.0.4 ether 00:1a:e2:c7:17:c1 C eth0
10.30.23.162 ether 70:71:bc:42:f6:a0 C eth0
192.168.200.201 * * MP eth0
192.168.200.202 * * MP eth0

• Along with ARP entries, the server also creates routing entries for both virtual machines. So when the
server receives a data packet destined for IP address 192.168.200.201, it knows that the packet must
be forwarded to the vme7b9a73a1 interface of VM #1.

• The server handles all incoming traffic for both virtual machines. Consider the following situation:

Chapter 5. Managing Network

86

1. Computer X on the network wants to send a data packet to VM #1 with IP address
192.168.200.201, so it issues an ARP request which computer has this IP address.

2. The server replies with its own MAC address.
3. Computer X sends the data packet to the indicated MAC address.
4. The eth0 physical adapter receives the packet and routes it to the vme7b9a73a1 interface of VM #1.

• All outgoing network traffic sent from VM #1 and VM #2 are routed through the default gateway to the
enp0s5 adapter on the server. The default gateway for host-routed virtual machines is automatically
assigned the IP address of 169.255.30.1. This special IP address is taken from the Automatic Private
IP Addressing (APIPA) range and used exclusively to deliver data packets from virtual machines to the
server.

5.2.3. Differences Between Host-Routed and Bridged Network Modes

The bridged network mode demonstrates a number of differences as compared to the host-routed one:

• Each veth virtual adapter has a MAC address assigned to it while a host-routed adapter does not
have any. Thanks to this fact:
• Any virtual machine or container can see all broadcast and multicast packets received from or sent

to the selected network adapter on the hardware node.
• Using bridged virtual adapters, you can host DHCP or Samba servers in virtual machines and

containers.
• There is no more need to assign all network settings (IP addresses, subnet mask, gateway, and so

on) to virtual machines and containers from the server. All network parameters can be set from inside
virtual machines and containers.

• veth adapters can be bridged among themselves and with other devices. If several veth adapters
are united into a bridge, this bridge can be used to handle network traffic for the virtual machines and
containers whose veth adapters are included in the bridge.

• Due to the fact that veth adapters act as full members on the network (rather than "hidden" beyond
virtual networks adapters on the server), they are more prone to security vulnerabilities: traffic sniffing,
IP address collisions, and so on. Therefore, veth adapters are recommended for use in trusted
network environments only.

5.3. Configuring Virtual Machines and Containers in Host-
Routed Mode

You can configure the following parameters of network adapters that operate in the host-routed mode:

• IP addresses and network masks
• DNS servers
• DNS search domains

5.3.1. Setting IP Addresses

The session below shows how to set IP addresses for the virtual machine MyVM and the container MyCT

prlctl set MyVM --device-set net0 --ipadd 10.0.186.100/24
prlctl set MyVM --device-set net0 --ipadd 1fe80::20c:29ff:fe01:fb07

Chapter 5. Managing Network

87

prlctl set MyCT --ipadd 10.0.186.101/24
prlctl set MyCT --ipadd fe80::20c:29ff:fe01:fb08

net0 in the commands above denotes the network card in the virtual machine MyVM to assign the IP
address to. You can view all network cards of a virtual machine using the prlctl list VM_name -
i command. For the container MyCT, you do not need to specify the network card name; prlctl set
automatically performs the operation on the default adapter that always operates in the host-routed
mode.

5.3.2. Setting DNS Server Addresses

To set a DNS server for the virtual machine MyVM and the container MyCT, you can use the following
commands:

prlctl set MyVM --device-set net0 --nameserver 192.168.1.165
prlctl set MyCT --nameserver 192.168.1.165

5.3.3. Setting DNS Search Domains

To set a DNS search domain for the virtual machine MyVM and the container MyCT, run these commands:

prlctl set MyVM --device-set net0 --searchdomain 192.168.10.10
prlctl set MyCT --searchdomain 192.168.10.10

Notes:

1. You can configure the network settings only of virtual machines that have OpenVZ guest tools
installed.

2. Network adapters operating in the routed mode must have at least one static IP address assigned.
3. To assign network masks to containers operating in the venet0 networking mode, you must set the

USE_VENET_MASK parameter in the /etc/vz/vz.conf configuration file to yes.
4. Containers can have only one network adapter operating in the host-routed mode. This adapter is

automatically created when you create a virtual machine.

5.3.3.1. Switching Virtual Machine Adapters to Host-Routed Mode

By default, a virtual adapter in any newly created virtual machine starts operating in connected to the
bridged mode (see Section 5.4.3.3, “Connecting Virtual Machines to Virtual Networks” on page 95 for
details). To change the current network mode to host-routed, you can run the following command:

prlctl set <VM_name> --device-set Net_ID --type routed

For example, to set the net0 adapter in the virtual machine MyVM to operate in the host-routed mode, use
this command:

prlctl set MyVM --device-set net0 --type routed

Chapter 5. Managing Network

88

5.4. Configuring Virtual Machines and Containers in Bridged
Mode

This section describes all operations related to configuring virtual machines and containers that operate
in bridged mode.

5.4.1. Managing Virtual Networks

A virtual network acts as a binding interface between a virtual network adapter in a virtual machine or
container and the corresponding network adapter on the hardware node. Using virtual networks, you can
include virtual machines and containers in different networks. OpenVZ enables you to manage virtual
networks as follows:

• Create virtual networks.
• Configure virtual network parameters.
• List existing virtual networks.
• Delete virtual networks.

These operations are described in the following subsections in detail.

5.4.1.1. Creating Virtual Networks

By default, OpenVZ creates the following virtual networks on the server:

• Bridged virtual network that is connected to one of the physical adapters on the hardware node (as a
rule, enp0s5) and provides virtual machines and containers included in this virtual network with access
to the network behind this physical adapter.

• Host-only virtual network that is connected to a special virtual adapter on the server and allows the
virtual machines and containers joined to this virtual network to access only the server and the other
virtual machines and containers on this network.

You can create your own virtual networks using the prlsrvctl command. For example, to create a new
virtual network network1, you can run:

prlsrvctl net add network1

By default, the command creates a host-only virtual network, but you can change its type if needed (see
Section 5.4.1.3, “Configuring Virtual Network Parameters” on page 89).

5.4.1.2. Creating Network Bridges for Physical Network Adapters

By default, each OpenVZ server has one network bridge br0 set up for a single physical network
adapter. If your server has more than one physical network adapter, you need to create a network bridge
for each of those that you need to connect to a bridged virtual network.

Assuming that two physical network adapters enp0s5 and enp0s6 and a bridge br0 exist on the server,
you can create a bridge br1 for enp0s6 as follows:

Chapter 5. Managing Network

89

1. In the /etc/sysconfig/network-scripts/ directory, create two configuration files: one for the
physical adapter enp0s6 and one for the bridge br1. You can use the configuration files for enp0s5
and br0, respectively, as a basis:

cat /etc/sysconfig/network-scripts/ifcfg-enp0s5 > /etc/sysconfig/network-scripts/ \
ifcfg-enp0s6
cat /etc/sysconfig/network-scripts/ifcfg-br0 > /etc/sysconfig/network-scripts/ \
ifcfg-br1

2. In ifcfg-enp0s6, set DEVICE to enp0s6, BRIDGE to br1, and UUID to empty.

3. In ifcfg-br1 set DEVICE to br1, NAME to enp0s6, and UUID to empty.

4. Restart network to apply changes:

/etc/init.d/network restart

After the network bridge is set up, you can bind a virtual network to it.

5.4.1.3. Configuring Virtual Network Parameters

OpenVZ allows you to configure the following parameters for a virtual network:

• The networking mode in which the virtual network is operating.

Note: Before changing the virtual network type to bridged, a network bridge must be created
for the virtual network. See Section 5.4.1.2, “Creating Network Bridges for Physical Network
Adapters” on page 88.

• The description of the virtual network.

All these operations can be performed using the prlsrvctl utility. Let us assume that you want to
configure the network1 virtual network. This virtual network is currently configured as a host-only
network and has the following description: This is a host-only virtual network. To change these
parameters, you can execute the following command:

prlsrvctl net set network1 -t bridged --ifname enp0s6 -d "This is now a bridged \
virtual network"

This command configured the network1 virtual network as follows:

1. Changes the virtual network type to bridged.
2. Changes the virtual network description to the following: "This is now a bridged virtual network".

5.4.1.4. Listing Virtual Networks

To list the virtual networks existing on the hardware node, you can use the prlsrvctl utility as shown
below.

prlsrvctl net list

Chapter 5. Managing Network

90

Network ID Type Bound To Bridge
Host-Only host-only virbr1
Bridged bridged enp0s5 br0

This utility displays the following information on virtual networks:

Column Description

Network ID The name assigned to the virtual network.

Type The networking mode set for the virtual network.

Bound To The adapter on the hardware node connected to the virtual networks, if any.

5.4.1.5. Connecting Virtual Networks to Adapters

By connecting an adapter on the physical server to a virtual network, you can join all virtual machines
and containers included in the virtual network to the network to which the corresponding adapter is
connected.

Let us assume the following:

• The enp0s6 physical adapter and the network1 virtual network exist on the hardware
node. For information on creating virtual networks, see Section 5.4.1.1, “Creating Virtual
Networks” on page 88.

• The enp0s6 physical adapter is connected to the local network.
• The br1 network bridge for the enp0s6 physical adapter is created. For information on

creating network bridges, see Section 5.4.1.2, “Creating Network Bridges for Physical Network
Adapters” on page 88.

• The container MyCT is connected to the network1 virtual network. Detailed information on joining
virtual machines and containers to virtual networks is given in Section 5.4.2.3, “Connecting Containers
to Virtual Networks” on page 93 and Section 5.4.3.3, “Connecting Virtual Machines to Virtual
Networks” on page 95.

To connect the enp0s6 adapter to the network1 virtual network and thus to join the container MyCT to the
network behind enp0s6, run this command on the server:

prlsrvctl net set network1 -i enp0s6

To check that the enp0s6 physical adapter has been successfully added to the network1 virtual network,
you can execute the following command:

prlsrvctl net list
Network ID Type Bound To Bridge
Host-Only host-only virbr1
Bridged bridged enp0s5 br0
network1 bridged enp0s6 br1

As you can see, the enp0s6 adapter is now joined to the network1 virtual network. That means that the
container MyCT whose virtual network adapter is connected to network1 can access the local network
behind enp0s6.

Chapter 5. Managing Network

91

5.4.1.6. Deleting Virtual Networks

At any time, you can remove a virtual network that you do not need any more from the physical server.
To do this, you can use the prlsrvctl utility. For example, you can delete the network1 virtual network
by running the following command:

prlsrvctl net del network1

To check that network1 has been successfully removed, execute this command:

prlsrvctl net list
Network ID Type Bound To
Host-Only host-only
Bridged bridged enp0s5

5.4.2. Managing Virtual Network Adapters in Containers

OpenVZ provides you with ample opportunities of configuring veth virtual network adapters in containers
and including them in different network environments. This section shows you the way to perform the
following operations:

• Create new virtual network adapters in containers and delete existing ones.
• Configure the parameters of an existing virtual network adapter.
• Join container virtual network adapters to virtual networks.

All these operations are described in the following subsections in detail.

5.4.2.1. Creating and Deleting veth Network Adapters

By default, any container on the hardware node starts functioning in the venet0 mode right after its
creation. However, at any time you can create additional virtual adapters for containers and set them to
work in the bridged mode. You can do this using the --netif_add option of the prlctl set command.

Let us assume that you wish to create a new virtual adapter with the name of netif1 in the container
MyCT and make it function in the bridged mode. To do this, run the following command:

prlctl set MyCT --netif_add netif1

The settings of the newly created virtual adapter are saved as the value of the NETIF parameter
in the configuration file of the container MyCT (/etc/vz/conf/26bc47f6-353f-444b-bc35-
b634a88dbbcc.conf). So, you can use the following command to display the parameters assigned to
the veth network adapter in the container MyCT:

grep NETIF /etc/vz/conf/26bc47f6-353f-444b-bc35-b634a88dbbcc.conf
NETIF="ifname=netif1,mac=00:1C:42:63:B3:12,host_mac=FE:18:51:6C:0B:A8, \
network=Bridged,configure=none"

As you can see, the parameters set for the veth virtual network adapter during its creation are the
following:

Chapter 5. Managing Network

92

• ifname, name set for the veth Ethernet interface in the container MyCT. You specified this name when
creating the container virtual network adapter.

• mac, MAC address assigned to the veth Ethernet interface in the container MyCT.
• host_mac, MAC address assigned to the veth Ethernet interface on the hardware node.

ifname is the only mandatory parameter that you need to specify when creating a container virtual
network adapter. All the other parameters are optional and generated by OpenVZ automatically, if not
indicated.

At any time, you can remove the veth virtual network adapter from the container MyCT by executing the
following command:

prlctl set MyCT --netif_del netif1

5.4.2.2. Configuring veth Adapter Parameters

While functioning in the bridged mode, each container virtual network adapter appears as a full
participant on the network to which it is connected and needs to have its own identity on this network.

Fist of all, to start functioning on a TCP/IP network, a veth virtual adapter should be assigned an IP
address. This can be done as follows:

prlctl set MyCT --ifname netif1 --ipadd 192.168.144.123

This command sets an IP address 192.168.144.123 for the netif1 adapter in the container MyCT.
If you want to use the Dynamic Host Configuration Protocol (DHCP) to make the netif1 adapter of
the container MyCT automatically receive TCP/IP configuration settings, you can issue the following
command instead:

prlctl set MyCT --ifname netif1 --dhcp yes

Any static IP address assigned to the container virtual network adapter can be removed by executing the
following command:

prlctl set MyCT --ifname netif1 --ipdel 192.168.144.123

You can also delete all IP addresses set for the container MyCT at once:

prlctl set MyCT --ifname netif1 --ipdel all

You may also wish to set the following parameters for a container network adapter:

• A DNS server that the container virtual adapter is supposed to use:

prlctl set MyCT --ifname netif1 --nameserver 192.168.100.111

• A gateway to be used for routing the traffic of the container virtual adapter:

prlctl set MyCT --ifname netif1 --gw 192.168.111.1

Chapter 5. Managing Network

93

5.4.2.3. Connecting Containers to Virtual Networks

With the implementation of veth virtual adapters allowing containers to function as full participants on
the network, it has become possible to include containers in a wide range of network configurations the
most common of which are Ethernet networks. The process of connecting veth virtual network adapters
to an Ethernet network is carried out using certain physical, respectively, available on the server and
involves completing the following tasks:

1. Creating a virtual network that will act as an intermediary between the veth adapters and the physical
adapter.

2. Connecting the veth virtual adapter you want to include in an Ethernet network to the virtual network.
3. Joining the virtual network where the veth virtual adapters are included to the corresponding physical

adapter.

After completing these tasks, the container virtual network adapters will be able to communicate with any
computer on the network where they are included and have no direct access to the computers joined to
other networks.

For details on creating new virtual networks and joining physical adapters to them, see Section 5.4.1.1,
“Creating Virtual Networks” on page 88 and Section 5.4.1.5, “Connecting Virtual Networks to
Adapters” on page 90, respectively. In the example below we assume the following:

• The enp0s5 physical adapter and the network1 virtual network exist on the server.
• The enp0s5 physical adapter is connected to the local Ethernet network and to the network1 virtual

network.
• You want to connect the container MyCT1 and the container MyCT2 to the local Ethernet network.

To join the containers MyCT1 and MyCT2 to the local Ethernet network behind the enp0s5 adapter, you
need connect these containers to the network1 virtual network. To do this:

1. Find out the name of the veth Ethernet interfaces in the containers MyCT1 and MyCT2:

prlctl list -a -o ctid,netif,netdev
UUID NETIF NETDEV
{4e10b61a-c775-4611-a9b0-d4b946e820f2} netif1 veth42ffa4e6
{eb0d3253-7e7a-486a-897f-02bfbd0e4c5b} netif2 veth42a5246f

The command output shows that the veth Ethernet interfaces in the containers MyCT1 and MyCT2
have the names of netif1 and netif2, respectively.

Note: To add a veth adapter to a virtual network, you must use the name of its Ethernet interface in
the container.

2. Join the veth adapters to the network1 virtual network:

prlctl set MyCT1 --ifname netif1 --network network1
prlctl set MyCT2 --ifname netif2 --network network1

After completing these tasks, the containers MyCT1 and MyCT2 will be able to access any of the servers in
the network where the enp0s5 physical adapter is connected.

Chapter 5. Managing Network

94

At any time, you can disconnect the veth virtual network adapters of the containers MyCT1 and MyCT2
from the network1 virtual network by executing the following commands:

prlctl set MyCT1 --ifname netif1 --network ""
prlctl set MyCT2 --ifname netif2 --network ""

5.4.3. Managing Adapters in Virtual Machines

This section provides information on how you can manage virtual network adapters in virtual machines.
You will learn to do the following:

• Create new virtual network adapters and delete existing ones.
• Configure the parameters of an existing virtual network adapter.
• Join virtual network adapters to virtual networks.

All these operations are described in the following subsections in detail.

5.4.3.1. Creating and Deleting Virtual Adapters

A virtual machine can have up to 16 virtual network adapters. Each adapter can be connected to a
different network. Let us assume that you want to create a new virtual adapter for the virtual machine
MyVM. To do this, you can execute the following command:

prlctl set MyVM --device-add net
Creating net1 (+) type=host-only iface='default' mac=001C42AF3D69
The VM has been successfully configured.

To check that the network adapter (net1) has been successfully added to the virtual machine, run this
command:

prlctl list --info MyVM
ID: {f3b3d134-f512-324b-b0b1-dbd642f5220b}
Name: Windows XP
...
net0 () type=host-only iface='default' mac=001C42566BCF
net1 () type=host-only iface='default' mac=001C42AF3D69

At any time, you can remove the newly created network adapter (net1) by executing the following
command:

prlctl set MyVM --device-del net1
Remove the net1 device.
The VM has been successfully configured.

5.4.3.2. Configuring Virtual Adapter Parameters

OpenVZ allows you to configure the following parameters of virtual machine adapters:

Configuring MAC Addresses

Chapter 5. Managing Network

95

If you need for some reason to regenerate the current MAC address of a network adapter, you can use
the following command:

prlctl set MyVM --device-set net1 --mac 00:1C:42:2D:74:00
Creating net1 (+) network=Bridged mac=001C422D7400
The VM has been successfully configured.

This command sets the MAC address of 00:1C:42:2D:74:00 for the net1 adapter in the virtual machine
MyVM. If do not know what MAC address to assign to your virtual adapter, you can make prlctl set
automatically generate a new MAC address. To do this, run the following command:

prlctl set MyVM --device-set net1 --mac auto
Creating net1 (+) network=Bridged mac=001C42C84F3E
The VM has been successfully configured.

Configuring IP Parameters

As any other standalone server, each virtual machine must have a number of TCP/IP settings configured
in the proper way to successfully operate on the network. These settings include:

• IP address
• default gateway
• DNS server

Usually, you define all these settings when you create the virtual machine. However, if you have not
yet set any of the settings or want to modify any of them, you can use the prlctl set command. For
example, you can execute the following command to assign the IP address of 192.129.129.20 to the
net1 adapter in the virtual machine MyVM, set the default gateway to 192.129.129.1 and the DNS
server to 192.192.192.10:

prlctl set MyVM --device-set net1 --ipadd 192.129.129.20 --gw 192.129.129.1 \
--nameserver 192.192.192.10

Along with a static assignment of network parameters to a virtual adapter, you can make the adapter
receive its TCP/IP settings automatically using the Dynamic Host Configuration Protocol (DHCP). For
example, you can run this command to make the net1 adapter in the virtual machine MyVM get its IP
settings through DHCP:

prlctl set MyVM --device-set net1 --dhcp yes
Creating net1 (+) network=Bridged mac=001C42C84F3E
Enable automatic reconfiguration for this network adapter.
The VM has been successfully configured.

Note: You can configure the network parameters only of those virtual machines that have OpenVZ
guest tools installed.

5.4.3.3. Connecting Virtual Machines to Virtual Networks

In OpenVZ, you can connect virtual machines to virtual networks of the following types:

Chapter 5. Managing Network

96

• Bridged virtual network allows the virtual machine to use one of the physical server’s network
adapters, which makes it appear as a separate computer on the network the corresponding adapter
belongs to.

• Host-only virtual network allows the virtual machine to access only the hardware node and the virtual
machines joined to this network.

By default, any newly created adapter is connected to the Bridged network. To join a virtual machine to
another network, use the prlctl set command. For example, the following session demonstrates how
you can connect the net0 adapter of the virtual machine MyVM to the network1 virtual network.

Before connecting the virtual machine MyVM to the network1 virtual network, you may wish to check
the network adapter associated with this virtual network. You can do it, for example, using the following
command:

prlsrvctl net list
Network ID Type Bound To
Host-Only host-only
Bridged bridged enp0s5
network1 bridged enp0s6

From the command output, you can see that the network1 virtual network is attached to the enp0s6
physical adapter on the hardware node. That means that, after connecting the virtual machine MyVM to
the network1 virtual network, the virtual machine will be able to access all computers on the network
where the enp0s6 adapter is connected.

Now you can run the following command to join the net1 adapter of the virtual machine MyVM to the
network1 virtual network:

prlctl set MyVM --device-set net0 --network network1
Creating net0 (+) network=network1 mac=001C422D7493
The VM has been successfully configured.

Chapter 6. Keeping Your System Up To Date
This chapter explains the ways to keep your hardware node up to date. The components you need to
take care of are the following:

• OpenVZ software
• virtual machines and containers hosted on the server

6.1. Updating OpenVZ

OpenVZ allows quick and easy updates with the yum utility standard for RPM-compatible Linux operating
systems. The main components you may need to update are the following:

• utilities and libraries,
• kernel,
• EZ templates.

6.1.1. Updating All Components

The easiest way to update all components of the OpenVZ software is to simply run the yum update
command. When executed, this command tells the yum utility to do the following:

1. Access remote OpenVZ repositories.
2. Check for available updates for the OpenVZ kernel, utilities, libraries, and EZ templates.
3. Install the found updates on your system.

Note that the yum utility can only update the packages that are already installed on the server. So if a
package is not available on your system, you first need to install the package using the yum install
command.

6.1.2. Updating Kernel

Updating the OpenVZ kernel requires updating the vzkernel and vzkernel-devel packages:

yum update vzkernel vzkernel-devel

6.1.3. Updating EZ Templates

You can update an EZ template like any other RPM package using the yum update command. For
example:

yum update centos-6-x86_64-ez
...
Updated:
 centos-6-x86_64-ez.noarch 0:4.7.0-1
Complete!

Chapter 6. Keeping Your System Up To Date

98

Notes:

1. Updating an OS EZ template requires that you append ez to template name.
2. You can also use the vzpkg update template command to update EZ templates.

6.1.4. Checking for Updates

Before updating any packages, you may want to see which can be updated and to what version. You
can do that with the yum check-update command. For example:

yum check-update

6.1.5. Performing More Actions with yum

The yum command allows you to do more than just check for and install updates. Some of the other
useful options that may help you in updating OpenVZ are search, list, info, deplist, provide. For
more information on these and other options, see the yum manual page.

6.2. Updating Software in Virtual Machines
To keep software in your virtual machines up to date, you can use the same means you would use on
standalone computers running the corresponding operating systems:

• In Linux-based virtual machines, you can use the native Linux updaters (up2date, yum, or yast).
• In Windows-based virtual machines, you can use the native Windows updaters (e.g., the Windows

Update tool).

6.3. Updating Containers
OpenVZ provides two means of keeping your containers up to date:

• Updating EZ templates software packages inside a particular container by means of the vzpkg utility.
Using this facility, you can keep any of the containers existing on your hardware node up to date.

• Updating caches of the OS EZ templates installed on the hardware node. This facility allows you to
create new containers already having the latest software packages installed.

6.3.1. Updating EZ Template Packages in Containers

OpenVZ allows you to update packages of the OS EZ template a container is based on and of any
application EZ templates applied to the container. You can do it by using the vzpkg update utility.
Assuming that the container MyCT is based on the centos-6-x86_64 OS EZ template, you can issue the
following command to update all packages included in this template:

vzpkg update 26bc47f6-353f-444b-bc35-b634a88dbbcc centos-6-x86_64
...

Chapter 6. Keeping Your System Up To Date

99

 Updating: httpd ### [1/4]
 Updating: vzdev ### [2/4]
 Cleanup : vzdev ### [3/4]
 Cleanup : httpd ### [4/4]
Updated: httpd.i386 0:2.0.54-10.2 vzdev.noarch 0:1.0-4.swsoft
Complete!
Updated:
 httpd i386 0:2.0.54-10.2
 vzdev noarch 0:1.0-4.swsoft

Notes:

1. Updating EZ templates is supported for running containers only.
2. If you are going to update the cache of a commercial OS EZ template (e.g., Red Hat Enterprise

Server 5 or SLES 10), you should first update software packages in the remote repository used to
handle this OS EZ template and then proceed with updating the EZ template cache.

As you can see from the example above, the httpd and vzdev applications have been updated for
the centos-6-x86_64 OS EZ template. If you wish to update all EZ templates (including the OS EZ
template) inside the container MyCT at once, execute this command:

vzpkg update 26bc47f6-353f-444b-bc35-b634a88dbbcc
...
Running Transaction
 Updating : hwdata #### [1/2]
 Cleanup : hwdata #### [2/2]
Updated: hwdata.noarch 0:1.0-3.swsoft
Complete!
Updated:
 hwdata noarch 0:0.158.1-1

In the example above, only the hwdata package inside the container MyCT was out of date and updated
to the latest version.

6.3.2. Updating OS EZ Template Caches

With the release of new updates for the corresponding Linux distribution, the created OS EZ template
cache can become obsolete. OpenVZ allows you to quickly update your OS EZ template caches using
the vzpkg update cache command.

Note: If you are going to update the cache of a commercial OS EZ template (e.g., Red Hat Enterprise
Server 6 or SLES 11), you should first update software packages in the remote repository used to
handle this OS EZ template and then proceed with updating the EZ template cache.

When executed, vzpkg update cache checks the cache directory in the template area (/vz/template/
cache by default) on the hardware node and updates all existing tarballs in this directory. However, you
can explicitly indicate the tarball for what OS EZ template should be updated by specifying the OS EZ
template name. For example, to update the tarball for the centos-6-x86_64 OS EZ template, run this
command:

Chapter 6. Keeping Your System Up To Date

100

vzpkg update cache centos-6-x86_64
Loading "rpm2vzrpm" plugin
Setting up Update Process
Setting up repositories
base0 100% |=========================| 951 B 00:00
base1 100% |=========================| 951 B 00:00
base2 100% |=========================| 951 B 00:00
base3 100% |=========================| 951 B 00:00
...

Upon the vzpkg update cache execution, the old tarball name gets the -old suffix (e.g., centos-
x86.tar.gz-old):

You can also pass the -f option to vzpkg update cache to remove an existing tar archive and create a
new one instead of it.

If the vzpkg update cache command does not find a tarball for one or several OS EZ templates
installed on the server, it creates tar archives of the corresponding OS EZ templates and puts them to
the /vz/template/cache directory.

Chapter 7. Advanced Tasks
This chapter collects miscellaneous configuration and management tasks, some of which require a
deeper knowledge of Linux and OpenVZ and should be performed with caution.

7.1. Upgrading from OpenVZ to Virtuozzo 7
Currently two methods of upgrading from OpenVZ to Virtuozzo 7 are available:

• Containers created with OpenVZ based on kernels 2.6.18 and 2.6.32 can be migrated to Virtuozzo 7.

• OpenVZ based on kernel 3.10 can be upgraded to Virtuozzo 7.

7.1.1. Migrating Containers from OpenVZ Based on Kernels 2.6.18 and
2.6.32 to Virtuozzo 7

You can migrate containers from a server running OpenVZ based on kernels 2.6.18 and 2.6.32 to a
Virtuozzo 7 server by means of the ovztransfer.sh script freely available at https://src.openvz.org/scm/
ovzl/ovztransfer.git. Do the following:

1. Install the SSH key on the destination server for the root user. To do this, on the source server
generate a key with ssh-keygen -t rsa, then transfer the key to the destination server with ssh-
copy-id root@<dest_server>.

2. Clone the repository with the script to the source OpenVZ server with git clone https://
src.openvz.org/scm/ovzl/ovztransfer.git.

3. Change to the /ovztransfer directory and make the script executable with chmod 755
ovztransfer.sh.

4. Run the script on the source OpenVZ server as follows:

./ovztransfer.sh <dest_server> <source_CT1_ID>[:<new_CT1_name>]\
[... <source_CTn_ID>[:<new_CTn_name>]]

where <source_CT_ID> (the source container ID) and <new_CT_name> (the new container name)
must both be specified in the old numerical ID format. For example:

./ovztransfer.sh 192.168.0.10 100:200

So, in the example above, 200 will be the name of the resulting ploop-based container on the
Virtuozzo 7 server, even though said name looks like an old numerical ID.

7.1.2. Upgrading from OpenVZ Based on Kernel 3.10 to Virtuozzo 7

To upgrdade from OpenVZ based on kernel 3.10 to Virtuozzo 7, run

do-upgrade-vz7

https://src.openvz.org/scm/ovzl/ovztransfer.git
https://src.openvz.org/scm/ovzl/ovztransfer.git

Chapter 7. Advanced Tasks

102

In the process, the commercial Virtuozzo 7 packages will be downloaded and installed on your server
and a Virtuozzo 7 trial license will be activated.

Warning: This procedure cannot be reverted.

7.2. Creating Customized Containers

If you wish to use custom applications in multiple identical containers, you can create containers with
necessary applications already preinstalled and tuned to meet your demands.

OpenVZ offers several ways to create customized containers with preinstalled applications:

• From a golden image (an OS EZ template cache with preinstalled application templates).
• From a custom OS EZ template that specifies a custom application package list.
• From a custom configuration sample file that specifies custom application EZ templates.

7.2.1. Using Golden Image Functionality

The golden image functionality allows you to preinstall application templates to OS EZ template caches
to speed up creating multiple containers based on the same set of OS and application templates.
Previously, you could either install application templates to each container after creating it or embed
them directly into a custom OS template. Golden image is currently the easiest and fastest way to create
containers with preinstalled applications.

The best way to create such a cache is:

1. Make a custom sample configuration file with information on the OS EZ template to cache and
application EZ templates to preinstall. For example:

cp /etc/vz/conf/ve-basic.conf-sample \
/etc/vz/conf/ve-centos-6-x86_64-mysql-devel.conf-sample

Note: If you already have a custom sample configuration file with application EZ templates specified
in it, you can reuse it instead of creating a new one.

2. Add the OS EZ template and application EZ template information to the new configuration file. Each
OS and application template name must be preceded by a dot. Multiple consecutive application EZ
template names must be separated by white spaces. For example:

cd /etc/vz/conf
echo OSTEMPLATE=".centos-6-x86_64" >> ve-centos-6-x86_64-mysql-devel.conf-sample
echo TEMPLATES=".mysql .devel" >> ve-centos-6-x86_64-mysql-devel.conf-sample

3. Run the vzpkg create appcache command with your configuration file as an option. For example:

vzpkg create appcache --config centos-6-x86_64-mysql-devel

Chapter 7. Advanced Tasks

103

Note: If the resulting application cache already exists, it will not be recreated and you will see a
corresponding message. To recreate an application cache, use the vzpkg update appcache
command.

The resulting archive can be found in the /vz/template/cache directory on the hardware node. You
can check that it exists and includes necessary application templates with the following command:

vzpkg list appcache
centos-6-x86_64 2012-07-20 16:51:36
 mysql
 devel

7.2.1.1. Disabling Golden Image Functionality

The Golden Image functionality allows you to preinstall application templates to OS EZ template caches
to speed up creating multiple containers based on the same set of OS and application templates.
Previously, you could either install application templates to each container after creating it or embed
them directly into a custom OS template. Golden Image is currently the easiest and fastest way to create
containers with preinstalled applications.

The Golden Image functionality is enabled by default in the /etc/sysconfig/vz/vz.conf global
configuration file. Should you wish to disable it, do one of the following:

• Set the GOLDEN_IMAGE option to no in the OpenVZ global configuration file. The Golden Image
functionality will be disabled globally.

• Set the GOLDEN_IMAGE option to no in the container sample configuration file. The Golden Image
functionality will be disabled for commands that use this specific sample configuration file.

• Create a file named golden_image containing no in the OS EZ template’s configuration directory. The
Golden Image functionality will be disabled for this specific OS EZ template.

• Create a file named golden_image containing no in the application template’s configuration directory.
The Golden Image functionality will be disabled for this specific application template, so it will not be
preinstalled into any OS EZ template caches.

7.2.2. Using Customized EZ Templates

You can create custom OS and application templates tailored to your needs. In such a template, you
only need to specify parameters that differ from those in the default template. All other parameters—that
are not explicitly set in the custom template—are inherited from the corresponding default template.

To create a custom template, do the following:

1. If required, install the default OS template on the hardware node. For example:

yum install centos-7-x86_64-ez

2. Create a directory for your template at the location where the default template directory is. For
example, for a custom CentOS 7 64-bit template mytmpl, create the directory /vz/template/
centos/7/x86_64/config/os/mytmpl.

Chapter 7. Advanced Tasks

104

3. If you are creating a custom OS template, specify repositories. For example, copy the file mirrorlist
from the default template directory to your template directory:

cp /vz/template/centos/7/x86_64/config/os/default/mirrorlist \
/vz/template/centos/7/x86_64/config/os/mytmpl

4. In your template directory, create the file packages listing the RPMs you need, one per line. For
example,

systemd
yum

Note: The minimal list of packages to include in a custom template may vary depending on guest
OS. For example, CentOS 7 templates require that systemd be specified in the packages file for the
prlctl enter command to work on resulting containers.

5. Optionally, change more template parameters according to your needs (for a description of
parameters, see the next section).

Your custom template is ready. In this example, it is an OS template that contains systemd, yum, and all
their prerequisites. You now can create containers based on it. For example:

prlctl create MyCT --vmtype ct --ostemplate centos-7-x86_64-mytmpl

If you created an application template, you now can add it to the container configuration file as described
in Section 7.2.1, “Using Golden Image Functionality” on page 102.

7.2.2.1. EZ Template Configuration Files

All EZ templates are stored in /vz/template, in subdirectories named according to OS name, version,
and architecture. For example, /vz/template/centos/7/x86_64. Each template includes a set of
configuration files stored in the /config/os/<template_name> subdirectory (OS templates) or the /
config/app/<template_name> subdirectory (application templates).

The following files can be in the template configuration subdirectory:

• ct2vm— Container to virtual machine migration script.
• description— Detailed information on the EZ template.
• distribution— OS templates only. The name of the Linux distribution for which the EZ template is

created.
• environment— OS templates only. A list of environment variables set in the form of <key>=<value>.
• mirrorlist— Links to files with lists of repositories from which the packages in the EZ template are

to be downloaded.
• osrelease— OS templates only. Contains native CentOS 7 distribution kernel version.
• package_manager— OS templates only. Specifies the packaging system used to handle the EZ

template.
• packages— Contains a list of package names included in the corresponding EZ template.
• pre-cache, post-cache— OS templates only. Scripts that are executed before and after the

packages in the EZ template are installed on the hardware node.

Chapter 7. Advanced Tasks

105

• pre-install, post-install— Scripts that are executed inside the container before and after the
package management transaction.

• pre-install-hn, post-install-hn— Scripts that are executed on the hardware node before and
after the package management transaction.

• pre-upgrade, post-upgrade— OS templates only. Scripts that are executed before and after
updating packages inside the container.

• pre-remove, post-remove— Scripts that are executed before and after removing the application EZ
template or package from the container.

• release— Contains template release number.
• repositories— Contains a list of repositories where the packages in the EZ template are stored.
• summary— A brief summary of the EZ template.
• upgradable_versions— OS templates only.
• version— Contains template version number.

7.2.3. Creating Customized EZ Template RPMs

To share a custom EZ template between hardware nodes, you can create an RPM package with it as
follows:

1. Download the default OS template source from http://download.openvz.org/virtuozzo/releases/7.0/
source/SRPMS.

2. Edit the template according to your needs, e.g., change OS template parameters, add, change or
remove application templates, and such.

3. Build the RPM from the .spec file in a clean environment using standard tools. Do not build more than
one template at once.

7.3. Enabling VNC Access to Virtual Machines and
Containers

You can use your favorite VNC clients to connect to and manage containers and virtual machines. To do
this, you need to complete these steps:

1. Enable VNC access in the desired virtual machine or container.
2. Connect to the virtual machine or container with a VNC client.

The sections below describe both steps in details.

7.3.1. Enabling VNC Access to Virtual Machines

To enable VNC access to a virtual machine, you need to do the following:

1. Enable VNC support in the virtual machine.

2. Specify the TCP port number on the physical server that will be used to listen to VNC connections for
the virtual machine.

http://download.openvz.org/virtuozzo/releases/7.0/source/SRPMS
http://download.openvz.org/virtuozzo/releases/7.0/source/SRPMS

Chapter 7. Advanced Tasks

106

Note: A unique port number must be specified for each virtual machine where you plan to connect
via VNC.

3. Set a password to secure your VNC connection.

You can perform all these operations with a single command. For example:

prlctl set MyVM --vnc-mode manual --vnc-port 5901 --vnc-passwd XXXXXXXX

The changes will come into effect on the next virtual machine start.

7.3.2. Enabling VNC Access to Containers

To enable VNC access to a container, you need to do the following:

1. Make sure you have a valid user account in the container to be able to log into it.
2. Make sure the container is running.
3. Set the VNC mode and password for the container. For example:

prlctl set MyCT --vnc-mode manual --vnc-port 6501 --vnc-passwd XXXXXXXX

Note: Port number must be unique for each container you open VNC access to. In the auto mode,
correct port numbers are assigned automatically. In the manual mode, you need to make sure port
numbers are unique yourself.

7.3.3. Connecting with a VNC Client

After you have enabled VNC access to the virtual machine or container, you can connect to it with your
favorite VNC client. To do this, you need to pass the following parameters to the VNC client:

• IP address of the server where the virtual machine or container is hosted.
• Port number and password you specified when enabling VNC access.
• Valid user account in the virtual machine or container.

7.4. Managing iptables Modules

This section describes how to manage iptables modules for both physical servers and containers.

7.4.1. Using iptables Modules in OpenVZ

Filtering network packets on hardware nodes running OpenVZ does not differ from doing so on a typical
Linux server. You can use the standard iptables tool to control how network packets enter, move
through, and exit the network stack within the OpenVZ kernel.

Chapter 7. Advanced Tasks

107

When you enable connection tracking for virtual machines and containers (e.g., for NAT), consider
disabling it for the hardware node itself. This way the node will still be reachable in case of a DoS attack.
To disable connection tracking for the hardware node itself:

1. specify options nf_conntrack ip_conntrack_disable_ve0=1 in the file /etc/modprobe.d/
vz.conf or /etc/modprobe.d/openvz.conf,

2. reload the nf_conntrack module or restart the hardware node.

For your reference, below are several resources you can consult to get detailed information on using
iptables on Linux servers:

• Red Hat Enterprise Linux 7 Security Guide contains a section focusing on packet filtering basics and
explaining various options available for iptables.

• iptables Tutorial 1.2.2 explains in great detail how iptables is structured and works.

7.4.2. Using iptables Modules in Containers

Using iptables modules in containers requires additional configuration on your part.

7.4.2.1. Configuring iptables Modules

To set the state of iptables modules for backup/restore or live migration, use the prlctl set --
netfilter command. If some of the iptables modules allowed for a container are not loaded on the
hardware node where that container has been restored or migrated, they will be automatically loaded
when that container starts. For example, the command

prlctl set MyCT --netfilter stateful

will make sure that all modules except NAT-related will be allowed and loaded for the container MyCT (if
required) on a hardware node where it has been restored or migrated.

Note: The default setting is stateless, which allows all modules except conntrack and NAT-related.

7.4.2.2. Using conntrack Rules and NAT Tables

By default, the NAT table and conntrack rules are disabled and not allowed for use in containers even if
they are loaded on the server. To allow their use in containers, run the prlctl set --netfilter full
command. For example, for the container MyCT:

prlctl set MyCT --netfilter full

To limit the maximum number of conntrack slots available for each container on the hardware node, set
the net.netfilter.nf_conntrack_max variable. For example:

sysctl -w net.netfilter.nf_conntrack_max=50000

The value of net.netfilter.nf_conntrack_max cannot exceed the value of net.nf_conntrack_max.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/index.html
http://www.frozentux.net/iptables-tutorial/iptables-tutorial.html

Chapter 7. Advanced Tasks

108

Note: Even if a container is under a DoS attack and all its conntrack slots are in use, other
containers will not be affected, still being able to create as many connections as set in
net.netfilter.nf_conntrack_max.

7.5. Creating Configuration Files for New Linux Distributions
Distribution configuration files are used to distinguish among containers running different Linux versions
and to determine what scripts should be executed when performing the relevant container-related
operations (e.g., assigning a new IP address to the container).

All Linux distributions shipped with OpenVZ have their own configuration files located in the /usr/
libexec/libvzctl/dists/ directory on the hardware node. However, you may wish to create your
own distribution configuration files to support new Linux versions released. Let us assume that you wish
your containers to run the CentOS 7 Linux distribution and, therefore, have to make the centos-7.conf
distribution configuration file to define what scripts are to be executed while performing major tasks with
containers running this Linux version. To do this:

1. In the container configuration file (with the name of /etc/vz/conf/<UUID>.conf), specify centos-7
as the value of the DISTRIBUTION variable (for example, DISTRIBUTION="centos-7").

2. Create the centos-7.conf configuration file in the /usr/libexec/libvzctl/dists/ directory. The
easiest way to do it is copy one of the existing configuration files by executing the following command
in the /usr/libexec/libvzctl/dists/ directory:

cp fedora.conf centos-7.config

In the example above, we assume that the fedora.conf file is present in the /usr/libexec/
libvzctl/dists/ directory on the hardware node. In case it is not, you may use any other
distribution configuration file available on your server.

3. Open the centos.conf file for editing, go to the first entry and, in the right part of the entry, specify
the name of the script you wish to be run on issuing the prlctl command with the parameter
specified in the left part of the entry. For example, if you wish the script to be executed while assigning
a new IP address to your container and the script has the my_centos_script name, your entry
should look as follows:

ADD_IP=my_centos_script-add_ip.sh

4. Repeat Step 3 for all entries in the file.

5. Place the scripts for the new Linux distribution to the /usr/libexec/libvzctl/dists/scripts
directory on the Node. Make sure the names of these scripts coincide with those specified in the
centos-7.conf file.

7.6. Aligning Disks and Partitions in Virtual Machines
Most of the modern operating systems automatically align partitions when they are installed in virtual
machines. For example, Windows Server 2008 creates a default partition offset of 1024 KB to satisfy the
partition alignment requirements. The following figure shows an example of correct partition alignment:

Chapter 7. Advanced Tasks

109

In this example, any cluster (the smallest unit of data) in the guest OS file system is aligned with the
boundaries of an NFS block, and reading from or writing to a cluster requires only access to one NFS
block. For example, reading from Cluster 1 causes only a read from Block 1.

At the same time, virtual machines running non-modern systems (for example, Windows Server 2008 or
Red Hat Enterprise Linux 5) do usually have misaligned partitions, which is shown in the figure below:

In this example, clusters of the guest OS file system do not match the boundaries of NFS blocks,
and reading from or writing to a cluster requires access to several NFS blocks. For example, reading
from Cluster 1 causes two reads: from Block 1 and from Block 2. This results in a slower read time as
compared to properly aligned partitions and leads to performance degradation.

7.6.1. Aligning Partitions

Basically, to align disks and partitions in virtual machines, you need to set an offset so that clusters in the
guest OS file system match the volume block size on your NFS storage. Usually, the block size of most
network storages is 512 bytes or a multiple of 512 bytes. As an example, the following sections describe
the procedure of aligning disks and partitions for Linux and Windows virtual machines assuming that the
size of your NFS blocks is 512 bytes.

Chapter 7. Advanced Tasks

110

When deciding on aligning disks and partitions, take into account that this process destroys all data on
these disks and partitions. So if you want to have a correctly aligned system partition, you need to align
your disks and partitions before creating a virtual machine and installing a guest operating system in it. If
you do not want an aligned system partition, you can first create a virtual machine and install a guest OS
in it, and then align your data disks from inside the virtual machine.

The sections below demonstrate how to align disks and partitions before you start installing a guest OS.
You can, however, use a similar procedure to align data disks and partitions from inside your virtual
machines.

7.6.2. Checking Partition Alignment in Existing Virtual Machines

First of all, you may wish to know how you can check that the partitions of a virtual machine are not
aligned. Depending on the operating system installed in the virtual machine, you can do the following.

7.6.2.1. Linux Virtual Machines

To check the partition alignment in a Linux virtual machine, log in to this virtual machine and run the
following command:

fdisk -l -u /dev/device_name

For example, to check the partition alignment on the sdc device, you can run this command:

fdisk -l -u /dev/sdc
Disk /dev/sdc: 73.0 GB, 73014444032 bytes
255 heads, 63 sectors/track, 8876 cylinders, total 142606336 sectors
Units = sectors of 1 * 512 = 512 bytes
 Device Boot Start End Blocks Id System
/dev/sdc1 * 63 208844 104391 83 Linux
/dev/sdc2 208845 142592939 71192047+ 8e Linux LVM

Pay attention to the number of sectors in the Start column. Usually, a sector contains 512 bytes, which
makes up 32256 bytes for 63 sectors for the /dev/sdc1 partition and 26105625 bytes for 208845 for
the /dev/sdc2 partition. For a partition to be properly aligned, it must align with 4096 byte boundaries
(assuming that the block size of your storage is 4 KB). As 32256 and 106928640 is not a multiple of
4096, the partitions /dev/sdc1 and /dev/sdc2 are not aligned properly. To align them, you should offset

• the /dev/sdc1 partition by 1 sector so that it starts at 64. In this case, 64 sectors each containing 512
bytes make up 32768 that is a multiple of 4096.

• the /dev/sdc2 partition by 3 sectors so that it starts at 208848. In this case, 208848 sectors each
containing 512 bytes make up 106930176 that is a multiple of 4096.

7.6.2.2. Windows Virtual Machines

To check the partition alignment in a Windows virtual machine, do the following:

1. Click Start > Run, type msinfo32.exe, and press Enter to open System Information.

Chapter 7. Advanced Tasks

111

2. Navigate to Components > Storage > Disks, and look for the Partition Starting Offset field in the
right part of the window.

To find out if the partition is aligned properly, use the method described above for Linux virtual machines.

7.6.3. Aligning Disks for Linux Virtual Machines

To align partitions for use in a Linux virtual machine, you need a working Linux virtual machine. Once
you have it at hand, follow the steps below:

1. Create a new disk for the virtual machine. On this disk, you will create aligned partitions. Then you will
connect the disk to a new virtual machine and install your Linux guest OS on this disk.

2. Start the virtual machine and log in to it using SSH.

3. Run the fdisk utility for the disk you want to align.

4. Create a primary partition, and set the starting block number for the created partition.

5. Repeat steps 3-4 to create and align all partitions you plan to have in your new virtual machine.

The following example creates partition #1 with the size of 1 GB on the /dev/sda device and uses the
offset of 64 KB.

fdisk /dev/sda
Device contains neither a valid DOS partition table, nor Sun, SGI or OSF disklabel
Building a new DOS disklabel. Changes will remain in memory only,
until you decide to write them. After that, of course, the previous
content won't be recoverable.
The number of cylinders for this disk is set to 1044.

Chapter 7. Advanced Tasks

112

There is nothing wrong with that, but this is larger than 1024,
and could in certain setups cause problems with:
1) software that runs at boot time (e.g., old versions of LILO)
2) booting and partitioning software from other OSs
 (e.g., DOS FDISK, OS/2 FDISK)
Warning: invalid flag 0x0000 of partition table 4 will be corrected by w(rite)
Command (m for help): n
Command action
 e extended
 p primary partition (1-4)
p
Partition number (1-4): 1
First sector (63-16777215, default 63): 64
Last sector or +size or +sizeM or +sizeK (64-16777215, default 16777215): 208848
Command (m for help): w
The partition table has been altered!
Calling ioctl() to re-read partition table.
Syncing disks.

Once you align all the necessary partitions, disconnect the disk from the virtual machine. When creating
a new virtual machine, choose this disk for use with this virtual machine.

7.6.4. Aligning Partitions for Windows Virtual Machines

To align a disk for a Windows virtual machine, you need a working Windows virtual machine. Once you
have it at hand, you can use the diskpart or diskpar utility (depending on your operating system) to
align the disk:

1. Create a new disk for the virtual machine. On this disk, you will create aligned partitions. Then you will
connect the disk to a new virtual machine and install your Windows guest OS on this disk.

2. Open the command-line prompt, and run the diskpart or diskpar utility.

3. Select the disk you want to align.

4. Create the primary partition on the disk, and align it.

5. Exit the diskpart or diskpar utility, and close the command-line prompt.

The following example demonstrates how to use the diskpart utility to align disk 1 by setting the offset
of 64 for it:

Chapter 7. Advanced Tasks

113

Once you align the virtual disk, disconnect it from the virtual machine. When creating a new virtual
machine, choose this disk for use with this virtual machine.

7.6.5. Creating a Template of a Virtual Machine with Aligned Partitions

To facilitate the procedure of creating virtual machines that have aligned system partitions, you can
create a template of the aligned virtual machine and deploy new virtual machines from this template.

For example, if you align a disk by following the steps in Section 7.6.4, “Aligning Partitions for Windows
Virtual Machines” on page 112, then create a new virtual machine that uses this disk, and then install
Windows Server 2008 operating system in the virtual machine, you will have a clean Windows Server
2008 installation on the correctly aligned disk. Now you can create a template of this virtual machine and
use this template each time you need to deploy a new virtual machine with Windows Server 2008.

7.7. Installing Optional OpenVZ Packages
OpenVZ comes with everything you may need already installed. However, you can also install optional
OpenVZ packages from remote repositories by means of the yum command.

Note: For more information on using yum in OpenVZ, see Section 6.1, “Updating OpenVZ” on page 97
and the yum manual page.

7.8. Integrating OpenVZ with OpenStack
OpenVZ supports OpenStack as a cloud management solution. You can install OpenStack with OpenVZ
nodes with the help of Devstack tools. For instructions on how to integrate OpenVZ with OpenStack, see
https://openvz.org/Setup_OpenStack_with_OpenVZ_7.

https://openvz.org/Setup_OpenStack_with_OpenVZ_7

Chapter 8. Troubleshooting
This chapter provides the information about those problems that may occur during your work with
OpenVZ and suggests the ways to solve them.

8.1. General Considerations
The general issues to take into consideration when troubleshooting your system are listed below. You
should read them carefully before trying to solve more specific problems.

• You should always remember where you are currently located in your terminal. Check it periodically
using the pwd, hostname, ifconfig, cat /proc/vz/veinfo commands. One and the same command
executed inside a virtual machine or container and on the hardware node can lead to very different
results. You can also set up the PS1 environment variable to show the full path in the bash prompt. To
do this, add these lines to /root/.bash_profile:

PS1="[\u@\h \w]$ "
export PS1

• If the hardware node slows down, use vmstat, ps (ps axfw), dmesg, htop (vztop) to find out what
is happening, never reboot the machine without investigation. If no thinking helps restore the normal
operation, use the Alt+SysRq sequences to dump the memory (showMem) and processes (showPc).

• Do not run any binary or script that belongs to a container directly from the hardware node, for
example, do not ever do this:

cd /vz/root/99/etc/init.d
./httpd status

Any script inside a container could have been changed to whatever the container owner chooses: it
could have been trojaned, replaced to something like rm -rf, etc. You can use only prlctl exec/
prlctl enter to execute programs inside a container.

• Do not use init scripts on the hardware node. An init script may use killall to stop a service,
which means that all similar processes will be killed in all containers. You can check /var/run/
Service.pid and kill the correspondent process explicitly.

• You must be able to detect any rootkit inside a container. It is recommended to use the chkrootkit
package for detection (you can download the latest version from http://www.chkrootkit.org), or at least
run

rpm -Va|grep "S.5"

to check up if the MD5 sum has changed for any RPM file.

You can also run nmap, for example:

nmap -p 1-65535 192.168.0.1
Starting nmap V. 2.54BETA22 (www.insecure.org/nmap/)
Interesting ports on (192.168.0.1):

http://www.chkrootkit.org

Chapter 8. Troubleshooting

115

(The 65531 ports scanned but not shown below are in
 state: closed)
Port State Service
21/tcp open ftp
22/tcp open ssh
80/tcp open http
111/tcp open sunrpc
Nmap run completed -- 1 IP address (1 host up) scanned
 in 169 seconds

to check if any ports are open that should normally be closed.

That could however be a problem to remove a rootkit from a container and make sure it is 100%
removed. If you’re not sure, create a new container for that customer and migrate his/her sites and
mail there.

• Check the /var/log/ directory on the hardware node to find out what is happening on the system.
There are a number of log files that are maintained by the system and OpenVZ (the boot.log,
messages, etc.), but other services and programs may also put their own log files here depending
on your distribution of Linux and the services and applications that you are running. For example,
there may be logs associated with running a mail server (the maillog file), automatic tasks (the
cron file), and others. However, the first place to look into when you are troubleshooting is the /var/
log/messages log file. It contains the boot messages when the system came up as well as other
status messages as the system runs. Errors with I/O, networking, and other general system errors are
reported in this file. So, we recommend that you read to the messages log file first and then proceed
with the other files from the /var/log/ directory.

• Subscribe to bug tracking lists. You should keep track of new public DoS tools or remote exploits for
the software and install them into containers or at hardware nodes.

• When using iptables, there is a simple rule for Chains usage to help protect both the hardware node
and its containers:
• use INPUT, OUTPUT to filter packets that come in/out the hardware node
• use FORWARD to filter packets that are designated for containers

8.2. Kernel Troubleshooting

8.2.1. Using ALT+SYSRQ Keyboard Sequences

Press ALT+SYSRQ+H and check what is printed at the hardware node console, for example:

SysRq: unRaw Boot Sync Unmount showPc showTasks showMem loglevel0-8 tErm kIll \
 killalL Calls Oops

This output shows you what ALT+SYSRQ sequences you may use for performing this or that command.
The capital letters in the command names identify the sequence. Thus, if there are any troubles with
the machine and you’re about to reboot it, please use the following key sequences before pressing the
Power button:

• ALT+SYSRQ+M to dump memory info

Chapter 8. Troubleshooting

116

• ALT+SYSRQ+P to dump processes states
• ALT+SYSRQ+S to sync disks
• ALT+SYSRQ+U to unmount filesystems
• ALT+SYSRQ+L to kill all processes
• ALT+SYSRQ+U try to unmount once again
• ALT+SYSRQ+B to reboot

If the server is not rebooted after that, you can press the Power button.

8.2.2. Saving Kernel Faults (OOPS)

You can use the following command to check for the kernel messages that should be reported to
OpenVZ developers:

grep -E "Call Trace|Code" /var/log/messages*

Then, you should find kernel-related lines in the corresponding log file and figure out what kernel was
booted when the oops occurred. Search backward for the Linux string, look for strings like:

Sep 26 11:41:12 kernel: Linux version 2.6.18-8.1.1.el5.028stab043.1 \
(root@rhel5-32-build) (gcc version 4.1.1 20061011 (Red Hat 4.1.1-30)) \
#1 SMP Wed Aug 29 11:51:58 MSK 2007

An oops usually starts with some description of what happened and ends with the Code string. Here is
an example:

Aug 25 08:27:46 boar BUG: unable to handle kernel NULL pointer dereference at \
virtual address 00000038
Aug 25 08:27:46 boar printing eip:
Aug 25 08:27:46 boar f0ce6507
Aug 25 08:27:46 boar *pde = 00003001
Aug 25 08:27:46 boar Oops: 0000 [#1]
Aug 25 08:27:46 boar SMP
Aug 25 08:27:46 boar last sysfs file:
Aug 25 08:27:46 boar Modules linked in: snapapi26(U) bridge(U) ip_vzredir(U) \
vzredir(U) vzcompat(U) vzrst(U) i
p_nat(U) vzcpt(U) ip_conntrack(U) nfnetlink(U) vzlinkdev(U) vzethdev(U) vzevent(U) \
vzlist(U) vznet(U) vzmo
n(U) xt_tcpudp(U) ip_vznetstat(U) vznetstat(U) iptable_mangle(U) iptable_filter(U) \
ip_tables(U) vztable(U) vzdquota(U) vzdev(U) autofs4(U) hidp(U) rfcomm(U) l2cap(U) \
bluetooth(U) sunrpc(U) ipv6(U) xt_length(U) ipt_ttl(U) xt_tcpmss(U) ipt_TCPMSS(U) \
xt_multiport(U) xt_limit(U) ipt_tos(U) ipt_REJECT(U) x_tables(U) video(U) sbs(U) \
i2c_ec(U) button(U) battery(U) asus_acpi(U) ac(U) lp(U) floppy(U) sg(U) pcspkr(U) \
i2c_piix4(U) e100(U) parport_pc(U) i2c_core(U) parport(U) cpqphp(U) eepro100(U) \
mii(U) serio_raw(U) ide_cd(U) cdrom(U) ahci(U) libata(U) dm_snapshot
(U) dm_zero(U) dm_mirror(U) dm_mod(U) megaraid(U) sym53c8xx(U) \
scsi_transport_spi(U) sd_mod(U) scsi_mod(U) ext3(U) jbd(U) ehci_hcd(U) ohci_hcd(U) \
uhci_hcd(U)
Aug 25 08:27:46 boar CPU: 1, VCPU: -1.1
Aug 25 08:27:46 boar EIP: 0060:[<f0ce6507>] Tainted: P VLI
Aug 25 08:27:46 boar EFLAGS: 00010246 (2.6.18-028stab043.1-ent #1)
Aug 25 08:27:46 boar EIP is at clone_endio+0x29/0xc6 [dm_mod]

Chapter 8. Troubleshooting

117

Aug 25 08:27:46 boar eax: 00000010 ebx: 00000001 ecx: 00000000 edx: 00000000
Aug 25 08:27:46 boar esi: 00000000 edi: b6f52920 ebp: c1a8dbc0 esp: 0b483e38
Aug 25 08:27:46 boar ds: 007b es: 007b ss: 0068
Aug 25 08:27:46 boar Process swapper (pid: 0, veid: 0, ti=0b482000 task=05e3f2b0 \
task.ti=0b482000)
Aug 25 08:27:46 boar Stack: 0b52caa0 00000001 00000000 b6f52920 00000000f0ce64de \
00000000 02478825
Aug 25 08:27:46 boar 00000000 c18a8620 b6f52920 271e1a8c 024ca03800000000 00000000 \
00000000
Aug 25 08:27:46 boar 00000000 00000000 c18a3c00 00000202 c189e89400000006 00000000 \
05cb7200
Aug 25 08:27:46 boar Call Trace:
Aug 25 08:27:46 boar [<f0ce64de>] clone_endio+0x0/0xc6 [dm_mod]
Aug 25 08:27:46 boar [1] bio_endio+0x50/0x55
Aug 25 08:27:46 boar [<024ca038>] __end_that_request_first+0x185/0x47c
Aug 25 08:27:46 boar [<f0c711eb>] scsi_end_request+0x1a/0xa9 [scsi_mod]
Aug 25 08:27:46 boar [<02458f04>] mempool_free+0x5f/0x63
Aug 25 08:27:46 boar
Aug 25 08:27:46 boar [<f0c713c3>] scsi_io_completion+0x149/0x2f3 [scsi_mod]
Aug 25 08:27:46 boar [<f0c333b9>] sd_rw_intr+0x1f1/0x21b [sd_mod]
Aug 25 08:27:46 boar [<f0c6d3b9>] scsi_finish_command+0x73/0x77 [scsi_mod]
Aug 25 08:27:46 boar [<024cbfa2>] blk_done_softirq+0x4d/0x58
Aug 25 08:27:46 boar [2] __do_softirq+0x84/0x109
Aug 25 08:27:46 boar [<0242650d>] do_softirq+0x36/0x3a
Aug 25 08:27:46 boar [<024050b7>] do_IRQ+0xad/0xb6
Aug 25 08:27:46 boar [<024023fa>] default_idle+0x0/0x59
Aug 25 08:27:46 boar [<0240242b>] default_idle+0x31/0x59
Aug 25 08:27:46 boar [<024024b1>] cpu_idle+0x5e/0x74
Aug 25 08:27:46 boar =======================
Aug 25 08:27:46 boar Code: 5d c3 55 57 89 c7 56 89 ce 53 bb 01 00 00 00 83 ec 0c \
8b 68 3c 83 7f 20 00 8b 45 00 8b 00 89 44 24 04 8b 45 04 89 04 24 8b 40 04 <8b> \
40 28 89 44 24 08 0f 85 86 00 00 00 f6 47 10 01 75 0a 85 c9
Aug 25 08:27:46 boar EIP: [<f0ce6507>] clone_endio+0x29/0xc6 [dm_mod] \
SS:ESP0068:0b483e38
Aug 25 08:27:46 boar Kernel panic - not syncing: Fatal exception in interrupt

You can save the oops in a file to be able to provide it when asking for technical support.

8.2.3. Finding a Kernel Function That Caused the D Process State

If there are too many processes in the D state and you can’t find out what is happening, issue the
following command:

objdump -Dr /boot/vmlinux-\`uname -r\` >/tmp/kernel.dump

and then get the process list:

ps axfwln
 F UID PID PPID PRI NI VSZ RSS WCHAN STAT TTY TIME COMMAND
100 0 20418 20417 17 0 2588 684 - R ? 0:00 ps axfwln
100 0 1 0 8 0 1388 524 145186 S ? 0:00 init
040 0 8670 1 9 0 1448 960 145186 S ? 0:00 syslogd -m 0
040 0 8713 1 10 0 1616 1140 11ea02 S ? 0:00 crond

Chapter 8. Troubleshooting

118

Look for a number under the WCHAN column for the process in question. Then, open /tmp/
kernel.dump in an editor, find that number in the first column and then scroll backward to the first
function name, which can look like this:

"c011e910 <sys_nanosleep>:"

Then you can tell if the process "lives" or is blocked into the found function.

8.3. Container Management Issues
This section includes recommendations on how to solve certain container issues.

8.3.1. Failure to Start a Container

An attempt to start a container fails.

Solution 1

If there is a message on the system console: IP address is already used, issue the cat /proc/
vz/veinfo command. The information about the container numeric identifier, container class, number of
container’s processes and container IP address shall be displayed for each running container. This shall
also demonstrate that your container is up, i.e. it must be running without any IP address assigned. Set
its IP address using the command:

prlctl set <CT_name> --ipadd <IP_address>

where <CT_name> is the container name and <IP_address> is the desired IP address.

Solution 2

The container might be configured incorrectly. Try to validate the container configuration and find out
what parameters have caused the error. Set appropriate values using the prlctl set command.

Solution 3

The container might have used all its disk quota (disk space). Check the quota (see Section 3.2,
“Managing Disk Quotas” on page 51) and adjust its parameters if needed.

Solution 4

Run the prlctl console utility to log in and get access to the container console. The utility will provide
container startup/shutdown output that may be used to pinpoint the problem. For example:

prlctl console MyCT

where MyCT is the container name.

8.3.2. Failure to Access a Container from Network

Solution 1

Chapter 8. Troubleshooting

119

The IP address assigned to the container might be already in use in your network. Make sure it is not.
The problem container address can be checked by issuing the following command:

grep IP_ADDRESS /etc/vz/conf/<UUID>.conf
IP_ADDRESS="10.0.186.101"

The IP addresses of other containers, which are running, can be checked by running

cat /proc/vz/veinfo

Solution 2

Make sure the routing to the container is properly configured. Containers can use the default router for
your network, or you may configure the hardware node as router for its containers.

8.3.3. Failure to Log In to a Container

The container starts successfully, but you cannot log in.

Solution 1

You are trying to connect via SSH, but access is denied. Probably you have not set the password of the
root user yet or there is no such user. In this case, use the prlctl set --userpasswd command. For
example, for the container MyCT you might issue the following command:

prlctl set MyCT --userpasswd root:secret

Solution 2

Check forwarding settings by issuing the following command:

cat /proc/sys/net/ipv4/conf/venet0/forwarding

If it is 0 then change it to 1 by issuing the following command:

echo 1 > /proc/sys/net/ipv4/conf/venet0/forwarding

	OpenVZ User’s Guide
	Table of Contents
	Chapter 1. Learning OpenVZ Basics
	1.1. OpenVZ Overview
	1.2. OS Virtualization Layer
	1.2.1. Basics of OS Virtualization
	1.2.2. OpenVZ Containers
	1.2.2.1. OpenVZ Container Hardware

	1.2.3. Templates

	1.3. Hardware Virtualization Layer
	1.3.1. Hardware Virtualization Basics
	1.3.2. OpenVZ Virtual Machines
	1.3.2.1. Intel and AMD Virtualization Technology Support

	1.3.3. Virtual Machine Hardware
	1.3.4. Virtual Machine Files
	1.3.5. Support of Virtual and Real Media
	1.3.5.1. Supported Types of Hard Disks
	1.3.5.2. Virtual Hard Disks
	1.3.5.3. Split disks
	1.3.5.4. CD/DVD Discs and Images

	1.4. OpenVZ Configuration
	1.5. Resource Management
	1.6. Physical Server Availability Considerations

	Chapter 2. Managing Virtual Machines and Containers
	2.1. Creating Virtual Machines and Containers
	2.1.1. Choosing OS EZ Templates for Containers
	2.1.2. Creating Containers
	2.1.3. Creating Virtual Machines
	2.1.4. Supported Guest Operating Systems
	2.1.4.1. Virtual Machines
	2.1.4.2. Containers

	2.2. Performing Initial Configuration of Virtual Machines and Containers
	2.2.1. Using cloud-init for Virtual Machine Guest Initialization
	2.2.2. Installing OpenVZ Guest Tools
	2.2.3. Configuring Network Settings
	2.2.4. Setting Passwords for Virtual Machines and Containers
	2.2.5. Setting Startup Parameters

	2.3. Starting, Stopping, Restarting, and Querying Status of Virtual Machines and Containers
	2.3.1. Starting Virtual Machines and Containers
	2.3.2. Stopping Virtual Machines and Containers
	2.3.3. Restarting Virtual Machines and Containers
	2.3.4. Checking Status of Virtual Machines and Containers

	2.4. Listing Virtual Machines and Containers
	2.5. Cloning Virtual Machines and Containers
	2.5.1. Configuring Default Directories

	2.6. Suspending Virtual Machines and Containers
	2.7. Running Commands in Virtual Machines and Containers
	2.8. Deleting Virtual Machines and Containers
	2.9. Viewing Detailed Information About Virtual Machines and Containers
	2.10. Managing Templates
	2.10.1. Creating Templates
	2.10.2. Listing Templates
	2.10.3. Deploying Templates

	2.11. Managing Snapshots
	2.11.1. Creating Snapshots
	2.11.1.1. Creating Virtual Machine Snapshots
	2.11.1.2. Creating Container Snapshots
	2.11.1.3. Snapshot Branching
	2.11.1.4. Restrictions and Recommendations

	2.11.2. Listing Snapshots
	2.11.3. Reverting to Snapshots
	2.11.4. Deleting Snapshots

	2.12. Migrating Virtual Machines and Containers
	2.12.1. Migrating Virtual Machines and Containers Between OpenVZ Servers
	2.12.1.1. Offline Migration of Virtual Machines and Containers
	2.12.1.2. Live Migration of Virtual Machines and Containers

	2.13. Performing Container-specific Operations
	2.13.1. Reinstalling Containers
	2.13.1.1. Customizing Container Reinstallation

	2.13.2. Enabling VPN for Containers
	2.13.3. Setting Up NFS Server in Containers
	2.13.4. Mounting NFS Shares on Container Start
	2.13.5. Adding Multiple Virtual Disks to Containers
	2.13.6. Restarting Containers
	2.13.7. Creating SimFS-based Containers

	2.14. Performing Virtual Machine-specific Operations
	2.14.1. Pausing Virtual Machines
	2.14.2. Managing Virtual Machine Devices
	2.14.2.1. Adding New Devices
	2.14.2.2. Initialize a Newly Added Disk
	2.14.2.3. Configuring Virtual Devices
	2.14.2.4. Deleting Devices

	2.14.3. Assigning USB Devices to Virtual Machines
	2.14.4. Configuring IP Address Ranges for Host-Only Networks

	2.15. Managing Virtual Machines and Containers with virt-manager

	Chapter 3. Managing Resources
	3.1. Managing CPU Resources
	3.1.1. Configuring CPU Units
	3.1.2. Configuring CPU Affinity for Virtual Machines and Containers
	3.1.3. Configuring CPU Limits for Virtual Machines and Containers
	3.1.3.1. Using --cpulimit to Set CPU Limits
	3.1.3.2. Using --cpus to Set CPU Limits
	3.1.3.3. Using --cpulimit and --cpus Simultaneously
	3.1.3.4. CPU Limit Specifics

	3.1.4. Binding CPUs to NUMA Nodes
	3.1.5. Enabling CPU Hotplug for Virtual Machines

	3.2. Managing Disk Quotas
	3.3. Managing Virtual Disks
	3.3.1. Increasing Disk Capacity
	3.3.2. Reducing Disk Capacity
	3.3.2.1. Checking the Minimum Disk Capacity

	3.3.3. Compacting Disks
	3.3.4. Managing Virtual Machine Disk Interfaces

	3.4. Managing Network Accounting and Bandwidth
	3.4.1. Network Traffic Parameters
	3.4.2. Configuring Network Classes
	3.4.3. Viewing Network Traffic Statistics
	3.4.4. Configuring Traffic Shaping
	3.4.4.1. Setting BANDWIDTH Parameter
	3.4.4.2. Setting TOTALRATE Parameter
	3.4.4.3. Setting RATEMPU Parameter
	3.4.4.4. Setting RATE and RATEBOUND Parameters
	3.4.4.5. Traffic Shaping Example

	3.5. Managing Disk I/O Parameters
	3.5.1. Configuring Priority Levels for Virtual Machines and Containers
	3.5.2. Configuring Disk I/O Bandwidth
	3.5.3. Configuring the Number of I/O Operations Per Second
	3.5.3.1. Setting the Direct Access Flag Inside Containers

	3.5.4. Viewing Disk I/O Statistics

	3.6. Managing Containers Memory Parameters
	3.6.1. Configuring Main VSwap Parameters
	3.6.2. Configuring Container Memory Guarantees
	3.6.3. Configuring Container Memory Allocation Limit
	3.6.4. Configuring Container OOM Killer Behavior
	3.6.5. Tuning VSwap

	3.7. Managing Virtual Machines Memory Parameters
	3.7.1. Configuring Virtual Machine Memory Size
	3.7.2. Configuring Virtual Machine Video Memory Size
	3.7.3. Enabling Virtual Machine Memory Hotplugging
	3.7.4. Configuring Virtual Machine Memory Guarantees
	3.7.5. Optimizing Virtual Machine Memory with Kernel Same-Page Merging

	3.8. Managing Container Resource Configuration
	3.8.1. Splitting Server Into Equal Pieces
	3.8.2. Applying New Configuration Samples to Containers

	3.9. Managing Virtual Machine Configuration Samples
	3.9.1. Creating a Configuration Sample
	3.9.2. Applying Configuration Samples to Virtual Machines
	3.9.3. Parameters Applied from Configuration Samples

	3.10. Monitoring Resources

	Chapter 4. Managing Services and Processes
	4.1. What Are Services and Processes
	4.2. Main Operations on Services and Processes
	4.3. Managing Processes and Services
	4.3.1. Viewing Active Processes and Services
	4.3.2. Monitoring Processes in Real Time
	4.3.3. Determining Container UUIDs by Process IDs

	Chapter 5. Managing Network
	5.1. Managing Network Adapters on the Hardware Node
	5.2. Networking Modes in OpenVZ
	5.2.1. Container Network Modes
	5.2.1.1. Host-Routed Mode for Containers
	5.2.1.2. Bridged Mode for Containers

	5.2.2. Virtual Machine Network Modes
	5.2.2.1. Bridged Mode for Virtual Machines
	5.2.2.2. Host-Routed Mode for Virtual Machines

	5.2.3. Differences Between Host-Routed and Bridged Network Modes

	5.3. Configuring Virtual Machines and Containers in Host-Routed Mode
	5.3.1. Setting IP Addresses
	5.3.2. Setting DNS Server Addresses
	5.3.3. Setting DNS Search Domains
	5.3.3.1. Switching Virtual Machine Adapters to Host-Routed Mode

	5.4. Configuring Virtual Machines and Containers in Bridged Mode
	5.4.1. Managing Virtual Networks
	5.4.1.1. Creating Virtual Networks
	5.4.1.2. Creating Network Bridges for Physical Network Adapters
	5.4.1.3. Configuring Virtual Network Parameters
	5.4.1.4. Listing Virtual Networks
	5.4.1.5. Connecting Virtual Networks to Adapters
	5.4.1.6. Deleting Virtual Networks

	5.4.2. Managing Virtual Network Adapters in Containers
	5.4.2.1. Creating and Deleting veth Network Adapters
	5.4.2.2. Configuring veth Adapter Parameters
	5.4.2.3. Connecting Containers to Virtual Networks

	5.4.3. Managing Adapters in Virtual Machines
	5.4.3.1. Creating and Deleting Virtual Adapters
	5.4.3.2. Configuring Virtual Adapter Parameters
	5.4.3.3. Connecting Virtual Machines to Virtual Networks

	Chapter 6. Keeping Your System Up To Date
	6.1. Updating OpenVZ
	6.1.1. Updating All Components
	6.1.2. Updating Kernel
	6.1.3. Updating EZ Templates
	6.1.4. Checking for Updates
	6.1.5. Performing More Actions with yum

	6.2. Updating Software in Virtual Machines
	6.3. Updating Containers
	6.3.1. Updating EZ Template Packages in Containers
	6.3.2. Updating OS EZ Template Caches

	Chapter 7. Advanced Tasks
	7.1. Upgrading from OpenVZ to Virtuozzo 7
	7.1.1. Migrating Containers from OpenVZ Based on Kernels 2.6.18 and 2.6.32 to Virtuozzo 7
	7.1.2. Upgrading from OpenVZ Based on Kernel 3.10 to Virtuozzo 7

	7.2. Creating Customized Containers
	7.2.1. Using Golden Image Functionality
	7.2.1.1. Disabling Golden Image Functionality

	7.2.2. Using Customized EZ Templates
	7.2.2.1. EZ Template Configuration Files

	7.2.3. Creating Customized EZ Template RPMs

	7.3. Enabling VNC Access to Virtual Machines and Containers
	7.3.1. Enabling VNC Access to Virtual Machines
	7.3.2. Enabling VNC Access to Containers
	7.3.3. Connecting with a VNC Client

	7.4. Managing iptables Modules
	7.4.1. Using iptables Modules in OpenVZ
	7.4.2. Using iptables Modules in Containers
	7.4.2.1. Configuring iptables Modules
	7.4.2.2. Using conntrack Rules and NAT Tables

	7.5. Creating Configuration Files for New Linux Distributions
	7.6. Aligning Disks and Partitions in Virtual Machines
	7.6.1. Aligning Partitions
	7.6.2. Checking Partition Alignment in Existing Virtual Machines
	7.6.2.1. Linux Virtual Machines
	7.6.2.2. Windows Virtual Machines

	7.6.3. Aligning Disks for Linux Virtual Machines
	7.6.4. Aligning Partitions for Windows Virtual Machines
	7.6.5. Creating a Template of a Virtual Machine with Aligned Partitions

	7.7. Installing Optional OpenVZ Packages
	7.8. Integrating OpenVZ with OpenStack

	Chapter 8. Troubleshooting
	8.1. General Considerations
	8.2. Kernel Troubleshooting
	8.2.1. Using ALT+SYSRQ Keyboard Sequences
	8.2.2. Saving Kernel Faults (OOPS)
	8.2.3. Finding a Kernel Function That Caused the D Process State

	8.3. Container Management Issues
	8.3.1. Failure to Start a Container
	8.3.2. Failure to Access a Container from Network
	8.3.3. Failure to Log In to a Container

