
Using the RDTSC Instruction for Performance Monitoring

Information in this document is provided in connection with Intel products. No
license, express or implied, by estoppel or otherwise, to any intellectual property
rights is granted by this document. Except as provided in Intel's Terms and
Conditions of Sale for such products, Intel assumes no liability whatsoever, and
Intel disclaims any express or implied warranty, relating to sale and/or use of Intel
products including liability or warranties relating to fitness for a particular purpose,
merchantability, or infringement of any patent, copyright or other intellectual
property right. Intel products are not intended for use in medical, life saving, or life
sustaining applications. Intel may make changes to specifications and product
descriptions at any time, without notice.

Copyright (c) Intel Corporation 1997.

Third-party brands and names are the property of their respective owners.

CONTENTS:

1.0. Introduction
2.0. The Time-Stamp Counter

2.1. How the Time-Stamp Counter Works
2.2. When to use the Time-Stamp Counter
2.3. Compiler Issues with RDTSC

3.0. Issues Affecting the Cycle Count
3.1. Out-of-Order Execution
3.2. Data Cache and Instruction Cache
3.3. Register Overwriting
3.4. Counter Overflow

4.0. Using RDTSC Properly
4.1. Pentium® Pro Processors and Pentium® II Processors
4.2. Pentium® Processors and Pentium® with MMXTM Technology Processors

5.0. Conclusion
A.0. Appendix: Code Samples

A.1. Using CPUID for Serialization
A.2. Taking a Time Average for a Repeated Code Section
A.3. Testing a Small Code Section for Repeatable Results

1 of 12 1/7/98 10:16 AM

Using the RDTSC Instruction for Performance Monitoring http://developer.intel.com/drg/pentiumII/appnotes/RDTSCPM1.HTM

1.0. Introduction
Programmers are often puzzled by the erratic performance numbers they see when using the RDTSC (read-time
stamp counter) instruction to monitor performance. This erratic behavior is not an instruction flaw; the RDTSC
instruction will always give back a proper cycle count. The variations appear because there are many things that
happen inside the system, invisible to the application programmer, that can affect the cycle count. This document
will go over all the system events that can affect the cycle count returned by the RDTSC instruction, and will show
how to minimize the effects of these events.

Those who want to quickly use the RDTSC instruction to test their code and are not concerned about learning the
underlying behavior need only read section 2.2 and all of section 4.

Although all of the concepts discussed in this paper are applicable to any compiler, the code sections were
designed specifically to work with the Microsoft® Visual C++® Compiler Version 5.0, and may require changes to
work with other compilers.

2.0. The Time-Stamp Counter

2.1. How the Time-Stamp Counter Works

Beginning with the Pentium® processor, Intel processors allow the programmer to access a time-stamp counter.
The time-stamp counter keeps an accurate count of every cycle that occurs on the processor. The Intel time-stamp
counter is a 64-bit MSR (model specific register) that is incremented every clock cycle. On reset, the time-stamp
counter is set to zero.

To access this counter, programmers can use the RDTSC (read time-stamp counter) instruction. This instruction
loads the high-order 32 bits of the register into EDX, and the low-order 32 bits into EAX.

Remember that the time-stamp counter measures "cycles" and not "time". For example, two hundred million cycles
on a 200 MHz processor is equivalent to one second of real time, while the same number of cycles on a 400 MHz
processor is only one-half second of real time. Thus, comparing cycle counts only makes sense on processors of
the same speed. To compare processors of different speeds, the cycle counts should be converted into time units,
where:

seconds = # cycles / frequency

Note: frequency is given in Hz, where: 1,000,000 Hz = 1 MHz

2.2. When to Use the Time-Stamp Counter

The time-stamp counter should not be used to perform general profiling of code. Many profiling tools exist that are
easy to use and provide much more information than the simple cycle counts that RDTSC provides. One example is
VTune, a profiling tool created by Intel Corporation. Some other performance monitoring tools are described in the
Survey of Pentium® Processor Performance Monitoring Capabilities & Tools, although at the time of writing this
document some links in the survey are out of date.

That being said, there are a few cases where the time-stamp counter can be useful. One such case occurs when a
very fine cycle measurement is needed for a section of code. For example, it can give a good idea of how many
cycles a few instructions might take versus another set of instructions. Another use is to get an average time

2 of 12 1/7/98 10:16 AM

Using the RDTSC Instruction for Performance Monitoring http://developer.intel.com/drg/pentiumII/appnotes/RDTSCPM1.HTM

estimate for a function or section of code. Both of these methods will be described in detail in section 4.

2.3. Compiler Issues with RDTSC

Some compilers, including the Microsoft® Visual C++® Compiler Version 5.0, do not recognize the RDTSC
instruction (or the CPUID instruction discussed in section 3.1) in inline assembly code. One work-around for this
problem is to use "emit" statements at the top of the file, as shown below:

#define rdtsc __asm __emit 0fh __asm __emit 031h
#define cpuid __asm __emit 0fh __asm __emit 0a2h

This will replace all occurrences of RDTSC and CPUID with their corresponding opcodes in the compiled ".obj" file.
This allows the processor to understand the instruction without the compiler actually knowing what the instruction is.
Using them as #define statements allows the programmer to use the instructions in inline assembly code.

3.0. Issues Affecting the Cycle Count

3.1. Out-of-Order-Execution

The Pentium® II Processor and Pentium® Pro Processor both support out-of-order execution, where instructions
are not necessarily performed in the order they appear in the source code. This can be a serious issue when using
the RDTSC instruction, because it could potentially be executed before or after its location in the source code, giving
a misleading cycle count.

For example, look at the following code section, written to measure the time it takes to perform a floating-point
division:

 rdtsc ; read time stamp
 mov time, eax ; move counter into variable
 fdiv ; floating-point divide
 rdtsc ; read time stamp
 sub eax, time ; find the difference

In the above example, the floating-point divide will take a long time to compute. Potentially, the RDTSC instruction
following the divide could actually execute before the divide. If this happened, the cycle count would not take the
divide into account.

In order to keep the RDTSC instruction from being performed out-of-order, a serializing instruction is required. A
serializing instruction will force every preceding instruction in the code to complete before allowing the program to
continue. One such instruction is the CPUID instruction, which is normally used to identify the processor on which
the program is being run. For the purposes of this paper, the CPUID instruction will only be used to force the
in-order execution of the RDTSC instruction.

For the example above, you could use the CPUID to insure proper time-stamp reading as follows:

 cpuid ; force all previous instructions to complete
 rdtsc ; read time stamp counter
 mov time, eax ; move counter into variable
 fdiv ; floating-point divide
 cpuid ; wait for FDIV to complete before RDTSC
 rdtsc ; read time stamp counter
 sub eax, time ; find the difference

3 of 12 1/7/98 10:16 AM

Using the RDTSC Instruction for Performance Monitoring http://developer.intel.com/drg/pentiumII/appnotes/RDTSCPM1.HTM

Now the RDTSC instructions will be guaranteed to complete at the desired time in the execution stream.

When using the CPUID instruction, however, the programmer must also take into account the cycles it takes for the
instruction to complete, and subtract this from the recorded number of cycles. A strange quirk of the CPUID
instruction is that it can take longer to complete the first couple of times it is called. Thus, the best policy is to call the
instruction three times, measure the elapsed time on the third call, then subtract this measurement from all future
measurements. A full example using these techniques is given in Appendix A.1.

Again, using a serializing instruction like CPUID is only necessary on an out-of-order execution processor, like the
Pentium® II Processor and Pentium® Pro Processor. It is not necessary to use CPUID when running on the
Pentium® Processor or Pentium® Processor with MMXTM Technology.

3.2. Data Cache and Instruction Cache

Using RDTSC on the same section of code can often produce very different results. This is often caused by cache
effects. The first time a line of data or code is brought into cache, it takes a large number of cycles to transfer it into
memory. Thus, to use RDTSC effectively these cache effects must be taken into account.

This section gives details on two different ways to handle cache effects. If a programmer is concerned with how
many cycles a certain set of instructions takes to execute, and desires a repeatable measurement, he or she may
wish to try to eliminate the cache effects. To find the average real-time execution time of a piece of code the cache
effects should be left in.

Cache effects can only be removed entirely for small sections of code. The technique basically requires removing
all effects of transactions between both memory to data cache and memory to instruction cache. To do this, both
the instructions and data must be contained in the L1 cache, which is the cache closest to the processor. The
technique of storing memory into a cache before it is actually used is known as "cache warming".

Warming the data cache is fairly straightforward. It simply requires "touching" the entire data set, so that it will be
moved into the cache. The data set must be small, preferably below 1KB (ex: 128 doubles, 256 ints, and 1024
chars are each 1KB of data). Warming the instruction cache requires making a first pass through all instructions
before the timing begins. This can only be accomplished by putting all instructions in a loop or a function call.

When leaving in cache effects, the misses to the data and instruction caches will occur differently in each loop
iteration, producing a different cycle count. Thus, the cycle counts should be averaged over many loop iterations, to
take into account these largely varying cycle counts.

The full implementation of both methods will be covered in section 4.

3.3. Register Overwriting

As discussed in section 2.3, some compilers do not implicitly recognize the RDTSC and CPUID function in inline
assembly code. Compilers like Microsoft® Visual C++® 5.0 normally "guarantee" that any register affected by an
inline assembly code section will not affect the C code around it. When overriding the compiler by using the emit
statements, however, the compiler does not know those instructions are overwriting registers (RDTSC overwrites
EAX and EDX, and CPUID overwrites EAX, EBX, ECX, and EDX). Thus, the compiler may not properly store away
the affected registers, so this must be done manually by the programmer by pushing them onto the stack.

There are a few cases where this will not matter. If the code being time measured is a stand-alone section of code,
completely surrounded by the calls to RDTSC, then the register overwriting cannot affect the code around it. If the
measured code section is written in assembly, and the variables are actually used inside of this section, the compiler
will handle the stack allocation itself. Finally, it will not matter if affecting the correctness of the code around the
measured section is not an issue while cycle testing.

4 of 12 1/7/98 10:16 AM

Using the RDTSC Instruction for Performance Monitoring http://developer.intel.com/drg/pentiumII/appnotes/RDTSCPM1.HTM

3.4. Counter Overflow

Especially on faster processors, the overflow of the time-stamp counter may come into play. As discussed above,
the time-stamp counter is divided into a lower and upper counter. Thus, the time-stamp can be used with both 32
and 64 bits of precision. When using only the lowest 32 bits of precision, the counter can go up to 232 cycles. On a
400 MHz processor, the total time between overflows is equal to:

232 cycles * (1 second/400,000,000 cycles) = 10.74 seconds

When using unsigned numbers, a single overflow will not be a problem because the cycle count is computed as an
absolute difference between two numbers, and even with the single overflow, the final result will still be correct.

If the test takes a time greater than the time between overflows, than the absolute difference will produce an
incorrect result, and it will be necessary to use the full 64 bits of precision. On a 400 MHz processor, this would give
a time between overflows of:

264 cycles * (1 second/400,000,000 cycles) = 1462.36 years

As an example, look at the code below, which returns the run time of the Sleep() function to the nearest second
(truncated) on a 150 MHz system:

 unsigned time;

 __asm rdtsc // Read time stamp to EAX
 __asm mov time, eax

 Sleep (35000); // Sleep for n/1000 seconds

 __asm rdtsc
 __asm sub eax, time // Find the difference
 __asm mov time, eax

 time = time/150000000; // divide by 150 MHz
 printf("Seconds: %u\n", time);

When run on a 150 MHz processor, the low 32 bit counter flips about every 28.6 seconds. Thus, when the sleep
time is 15000 (15 seconds), the correct result will be printed, but when 35000 (35 seconds) is input, the result
claims 6 seconds, since the counter flips between 28 and 29 seconds. The proper way to write this code is to use
the full 64 bits of the time-stamp counter as follows:

 unsigned time, time_low, time_high;
 unsigned mhz = 150000000; // 150 MHz processor

 __asm rdtsc // Read time stamp to EAX
 __asm mov time_low, eax
 __asm mov time_high, edx

 Sleep (35000); // Sleep for 2 seconds

 __asm rdtsc
 __asm sub eax, time_low // Find the difference
 __asm sub edx, time_high
 __asm div mhz // Unsigned divide EDX:EAX by mhz
 __asm mov time, eax

 printf("Seconds: %u\n", time);

This case would produce the correct result on a 150 MHz system for almost 3,900 years.

5 of 12 1/7/98 10:16 AM

Using the RDTSC Instruction for Performance Monitoring http://developer.intel.com/drg/pentiumII/appnotes/RDTSCPM1.HTM

4.0. Using RDTSC Properly

4.1 Pentium® Pro Processors and Pentium® II Processors

This section discusses code samples to quickly use RDTSC to test your own code for two different scenarios.

The first scenario is measuring the time taken in a recurring function or other piece of code. In this case, the cache
effects are left in, but the time is averaged, since each run through the code section will produce different results
due to memory access times. The code in Appendix A.2. contains six sections of code that may be cut out and
placed into an existing program, then used immediately without modification. All modified registers are saved so that
the program will not affect the surrounding code. The sample also uses the full 64-bit counter, so that code of any
length can be used.

The second scenario is for a small section of code, where repeatable results are desired. This scenario removes all
cache effects, from both the data and instruction caches. This case will measure the time it takes to execute the
instructions and all associated penalties, but does not take into account memory transfer time, which can radically
alter the cycle count between runs. The code for this scenario is included in Appendix A.3. To use this code, simply
replace the marked variables and code sections with your own program. This sample code should only be used for
small sections of code (about 100 total lines of C code with minimal branching and a data set smaller than 1KB),
since a larger code size could reintroduce cache effects and overrun the 32-bit counter used in the sample. It
should also be used as a stand-alone section of code, since no register saving is done around the user code.

4.2 Pentium® Processors and Pentium® with MMXTM Technology
Processors

All of the rules and code samples described in section 4.1 also apply to the Pentium® Processor and Pentium® with
MMXTM Technology Processor. The only difference is, the CPUID instruction is not necessary for serialization.
Thus, all calls to CPUID can be omitted from the code samples. Leaving the calls to CPUID in will not make the
code incorrect, only slower.

5.0 Conclusion
Although the use of the time-stamp counter can be complicated by the many issues discussed in this paper, it is
possible to isolate these issues on an independent basis and create a useful timing mechanism with the RDTSC
instruction. Even if the code sections contained in this paper are not directly useful for a particular application, the
concepts described are applicable whenever RDTSC is used.

A.0. Appendix: Code Samples

A.1. Using the CPUID Instruction for Serialization

6 of 12 1/7/98 10:16 AM

Using the RDTSC Instruction for Performance Monitoring http://developer.intel.com/drg/pentiumII/appnotes/RDTSCPM1.HTM

#define cpuid __asm __emit 0fh __asm __emit 0a2h
#define rdtsc __asm __emit 0fh __asm __emit 031h

#include <stdio.h>

void main () {
 int time, subtime;
 float x = 5.0f;

 __asm {

 // Make three warm-up passes through the timing routine to make
 // sure that the CPUID and RDTSC instruction are ready

 cpuid
 rdtsc
 mov subtime, eax
 cpuid
 rdtsc
 sub eax, subtime
 mov subtime, eax

 cpuid
 rdtsc
 mov subtime, eax
 cpuid
 rdtsc
 sub eax, subtime
 mov subtime, eax

 cpuid
 rdtsc
 mov subtime, eax
 cpuid
 rdtsc
 sub eax, subtime
 mov subtime, eax // Only the last value of subtime is kept
 // subtime should now represent the overhead cost of the
 // MOV and CPUID instructions

 fld x
 fld x
 cpuid // Serialize execution
 rdtsc // Read time stamp to EAX
 mov time, eax
 fdiv // Perform division
 cpuid // Serialize again for time-stamp read
 rdtsc
 sub eax, time // Find the difference
 mov time, eax
 }

 time = time - subtime; // Subtract the overhead

 printf ("%d\n", time); // Print total time of divide to screen
}

A.2. Taking a Time Average for a Repeated Code Section

// This code will find an average number of cycles taken to go
// through a loop. There is no cache warming, so all cache effects
// are included in the cycle count.

7 of 12 1/7/98 10:16 AM

Using the RDTSC Instruction for Performance Monitoring http://developer.intel.com/drg/pentiumII/appnotes/RDTSCPM1.HTM

// To use this in your own code, simply paste in the six marked
// sections into the designated locations in your code.

#include <stdio.h>
#include <windows.h>

// *** BEGIN OF INCLUDE SECTION 1
// *** INCLUDE THE FOLLOWING DEFINE STATEMENTS FOR MSVC++ 5.0
#define CPUID __asm __emit 0fh __asm __emit 0a2h
#define RDTSC __asm __emit 0fh __asm __emit 031h
// *** END OF INCLUDE SECTION 1

#define SIZE 5

// *** BEGIN OF INCLUDE SECTION 2
// *** INCLUDE THE FOLLOWING FUNCTION DECLARATION AND CORRESPONDING
// *** FUNCTION (GIVEN BELOW)
unsigned FindBase();
// *** END OF INCLUDE SECTION 2

void main () {

 int i;

 // *** BEGIN OF INCLUDE SECTION 3
 // *** INCLUDE THE FOLLOWING DECLARATIONS IN YOUR CODE
 // *** IMMEDIATELY AFTER YOUR DECLARATION SECTION.
 unsigned base=0, iterations=0, sum=0;
 unsigned cycles_high1=0, cycles_low1=0;
 unsigned cycles_high2=0, cycles_low2=0;
 unsigned __int64 temp_cycles1=0, temp_cycles2=0;
 __int64 total_cycles=0; // Stored signed so it can be converted
 // to a double for viewing
 double seconds=0.0L;
 unsigned mhz=150; // If you want a seconds count instead
 // of just cycles, enter the MHz of your
 // machine in this variable.
 base=FindBase();
 // *** END OF INCLUDE SECTION 3

 for (i=0; i<SIZE; i++) {

 // *** BEGIN OF INCLUDE SECTION 4
 // *** INCLUDE THE FOLLOWING CODE IMMEDIATELY BEFORE SECTION
 // *** TO BE MEASURED
 __asm {
 pushad
 CPUID
 RDTSC
 mov cycles_high1, edx
 mov cycles_low1, eax
 popad
 }
 // *** END OF INCLUDE SECTION 4

 // User code to be measured is in this section.
 Sleep(3000);

 // *** BEGIN OF INCLUDE SECTION 5
 // *** INCLUDE THE FOLLOWING CODE IMMEDIATELY AFTER SECTION
 // *** TO BE MEASURED
 __asm {
 pushad

8 of 12 1/7/98 10:16 AM

Using the RDTSC Instruction for Performance Monitoring http://developer.intel.com/drg/pentiumII/appnotes/RDTSCPM1.HTM

 CPUID
 RDTSC
 mov cycles_high2, edx
 mov cycles_low2, eax
 popad
 }
 // Move the cycle counts into 64-bit integers
 temp_cycles1 = ((unsigned __int64)cycles_high1 << 32) | cycles_low1;
 temp_cycles2 = ((unsigned __int64)cycles_high2 << 32) | cycles_low2;

 // Add to total cycle count
 total_cycles += temp_cycles2 - temp_cycles1 - base;
 iterations++;
 // *** END OF INCLUDE SECTION 5

 }

 // Now the total cycle count and iterations are available to
 // be used as desired.
 // Example:
 seconds = double(total_cycles)/double(mhz*1000000);

 printf("Average cycles per loop: %f\n",
 double(total_cycles/iterations));
 printf("Average seconds per loop: %f\n", seconds/iterations);
}

// *** BEGIN OF INCLUDE SECTION 6
// *** INCLUDE THE FOLLOWING FUNCTION WITH YOUR CODE TO MEASURE
// *** THE BASE TIME
unsigned FindBase() {
 unsigned base,base_extra=0;
 unsigned cycles_low, cycles_high;

 // The following tests run the basic cycle counter to find
 // the overhead associated with each cycle measurement.
 // It is run multiple times simply because the first call
 // to CPUID normally takes longer than subsequent calls.
 // Typically after the second run the results are
 // consistent. It is run three times just to make sure.

 __asm {
 pushad
 CPUID
 RDTSC
 mov cycles_high, edx
 mov cycles_low, eax
 popad
 pushad
 CPUID
 RDTSC
 popad

 pushad
 CPUID
 RDTSC
 mov cycles_high, edx
 mov cycles_low, eax
 popad
 pushad
 CPUID
 RDTSC
 popad

9 of 12 1/7/98 10:16 AM

Using the RDTSC Instruction for Performance Monitoring http://developer.intel.com/drg/pentiumII/appnotes/RDTSCPM1.HTM

 pushad
 CPUID
 RDTSC
 mov cycles_high, edx
 mov cycles_low, eax
 popad
 pushad
 CPUID
 RDTSC
 sub eax, cycles_low
 mov base_extra, eax
 popad

 pushad
 CPUID
 RDTSC
 mov cycles_high, edx
 mov cycles_low, eax
 popad
 pushad
 CPUID
 RDTSC
 sub eax, cycles_low
 mov base, eax
 popad

 } // End inline assembly

 // The following provides insurance for the above code,
 // in the instance the final test causes a miss to the
 // instruction cache.
 if (base_extra < base)
 base = base_extra;

 return base;
}
// *** END OF INCLUDE SECTION 6

A.3. Testing a Small Code Section for Repeatable Results

// Code for testing a small, stand-alone section of code
// for repeatable results.
// This code will work as is in Microsoft(R) Visual C++(R) 5.0 compiler.
// Simply add in your own code in the marked sections and compile
// it.

#include <stdio.h>

#define CPUID __asm __emit 0fh __asm __emit 0a2h
#define RDTSC __asm __emit 0fh __asm __emit 031h

unsigned TestFunc();

void main () {

 unsigned base=0;
 unsigned cyc, cycles1, cycles2, cycles3, cycles4, cycles5;

 // The following tests run the basic cycle counter to find
 // the overhead associated with each cycle measurement.
 // It is run multiple times simply because the first call
 // to CPUID normally takes longer than subsequent calls.
 // Typically after the second run the results are

10 of 12 1/7/98 10:16 AM

Using the RDTSC Instruction for Performance Monitoring http://developer.intel.com/drg/pentiumII/appnotes/RDTSCPM1.HTM

 // consistent. It is run three times just to make sure.

 __asm {
 CPUID
 RDTSC
 mov cyc, eax
 CPUID
 RDTSC
 sub eax, cyc
 mov base, eax

 CPUID
 RDTSC
 mov cyc, eax
 CPUID
 RDTSC
 sub eax, cyc
 mov base, eax

 CPUID
 RDTSC
 mov cyc, eax
 CPUID
 RDTSC
 sub eax, cyc
 mov base, eax

 } // End inline assembly

 // This section calls the function that contains the user's
 // code. It is called multiple times to eliminate instruction
 // cache effects and get repeatable results.

 cycles1 = TestFunc();
 cycles2 = TestFunc();
 cycles3 = TestFunc();
 cycles4 = TestFunc();
 cycles5 = TestFunc();

 // By the second or third run, both data and instruction
 // cache effects should have been eliminated, and results
 // will be consistent.
 printf("Base : %d\n", base);
 printf("Cycle counts:\n");
 printf("%d\n", cycles1-base);
 printf("%d\n", cycles2-base);
 printf("%d\n", cycles3-base);
 printf("%d\n", cycles4-base);
 printf("%d\n", cycles5-base);
}

unsigned TestFunc() {

// *** REPLACE THIS SECTION WITH YOUR OWN VARIABLES
 float z,q,x,y;
 float result;
 unsigned cycles;

 // Load the values here, not at creation, to make sure
 // the data is moved into the cache.
 cycles=0;
 result=0.0f;
 x=2.0f;

11 of 12 1/7/98 10:16 AM

Using the RDTSC Instruction for Performance Monitoring http://developer.intel.com/drg/pentiumII/appnotes/RDTSCPM1.HTM

 y=100.0f;
 z=12.0f;
 q=5.0f;
// *** END OF USER SECTION

 __asm {
 CPUID
 RDTSC
 mov cycles, eax
 }

// *** REPLACE THIS SECTION WITH THE CODE TO BE TESTED
 z += y;
 q *= x;
 result = z/q;
// *** END OF USER SECTION

 __asm {
 CPUID
 RDTSC
 sub eax, cycles
 mov cycles, eax
 }
 return cycles;
}

* Legal Information © 1998 Intel Corporation

12 of 12 1/7/98 10:16 AM

Using the RDTSC Instruction for Performance Monitoring http://developer.intel.com/drg/pentiumII/appnotes/RDTSCPM1.HTM

