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Abstract 
 

This paper provides precise methods to measure the clock cycles spent 

when executing a certain C code on a Linux* environment with a generic 

Intel architecture processor (either 32 bits or 64 bits). 
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1 0BIntroduction 

1.1 Purpose/Scope 
The purpose of this document is to provide software developers with precise 
methods to measure the clock cycles required to execute specific C code in a Linux 
environment running on a generic Intel architecture processor. These methods can 
be very useful in a CPU-benchmarking context, in a code-optimization context, and 
also in an OS-tuning context. In all these cases, the developer is interested in 
knowing exactly how many clock cycles are elapsed while executing code. 

At the time of this writing, the best description of how to benchmark code 
execution can be found in [1]. Unfortunately, many problems were encountered 
while using this method. This paper describes the problems and proposes two 
separate solutions. 

1.2 Assumptions 
In this paper, all the results shown were obtained by running tests on a platform 
whose BIOS was optimized by removing every factor that could cause 
indeterminism. All power optimization, Intel Hyper-Threading technology, 
frequency scaling and turbo mode functionalities were turned off. 

The OS used was openSUSE* 11.2 (linux-2.6.31.5-0.1). 

1.3 Terminology 
Table 1 lists the terms used in this document. 

Table 1. List of Terms 

Term Description 

CPU Central Processing Unit 

IA32 Intel 32-bit Architecture 

IA64 Intel 64-bit Architecture 

GCC GNU* Compiler Collection 

ICC Intel C/C++ Compiler 
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Term Description 

RDTSCP Read Time-Stamp Counter and Processor ID IA assembly instruction 

RTDSC Read Time-Stamp Counter and Processor ID IA assembly instruction 
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2 Problem Description 
This section explains the issues involved in reading the timestamp register and 
discusses the correct methodology to return precise and reliable clock cycles 
measurements. It is expected that readers have knowledge of basic GCC and ICC 
compiling techniques, basic Intel assembly syntax, and AT&T* assembly syntax. 
Those not interested in the problem description and method justification can skip 
this section and go to Section 3.2.1 (if their platform supports the RDTSCP 
instruction) or Section 3.2.3 (if not) to acquire the code. 

2.1 Introduction 
Intel CPUs have a timestamp counter to keep track of every cycle that occurs on 
the CPU. Starting with the Intel Pentium® processor, the devices have included a 
per-core timestamp register that stores the value of the timestamp counter and 
that can be accessed by the RDTSC and RDTSCP assembly instructions. 

When running a Linux OS, the developer can check if his CPU supports the RDTSCP 
instruction by looking at the flags field of “/proc/cpuinfo”; if rdtscp is one of the 
flags, then it is supported. 

2.2 Problems with RDTSC Instruction in C Inline 
Assembly 
Assume that you are working in a Linux environment, and are compiling by using 
GCC. You have C code and want to know how many clock cycles are spent to 
execute the code itself or just a part of it. To make sure that our measurements 
are not tainted by any kind of interrupt (including scheduling preemption), we are 
going to write a kernel module where we guarantee the exclusive ownership of the 
CPU when executing the code that we want to benchmark.  

To understand the practical implementation, let’s consider the following dummy 
kernel module; it simply calls a function that is taking a pointer as input and is 
setting the pointed value to “1”. We want to measure how many clock cycles it 
takes to call such a function: 
#include <linux/module.h>       
#include <linux/kernel.h>       
#include <linux/init.h>          
#include <linux/hardirq.h> 
#include <linux/preempt.h> 
#include <linux/sched.h> 
 
void inline measured_function(volatile int *var) 
{ 
 (*var) = 1; 
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} 
 
static int __init hello_start(void) 
{ 
 unsigned long flags; 
uint64_t start, end; 
 int variable = 0; 

unsigned cycles_low, cycles_high, cycles_low1, cycles_high1; 
 printk(KERN_INFO "Loading test module...\n"); 
 
 preempt_disable(); /*we disable preemption on our CPU*/ 
 raw_local_irq_save(flags); /*we disable hard interrupts on our CPU*/ 
 /*at this stage we exclusively own the CPU*/ 
 asm volatile ( 
   "RDTSC\n\t" 
   "mov %%edx, %0\n\t" 
   "mov %%eax, %1\n\t": "=r" (cycles_high), "=r" (cycles_low)); 
 
 measured_function(&variable); 
 
 asm volatile ( 
   "RDTSC\n\t" 
   "mov %%edx, %0\n\t" 
   "mov %%eax, %1\n\t": "=r" (cycles_high1), "=r" (cycles_low1)); 
 
 raw_local_irq_restore(flags); 

/*we enable hard interrupts on our CPU*/ 
 preempt_enable();/*we enable preemption*/ 
 
 start = ( ((uint64_t)cycles_high << 32) | cycles_low );   
 end = ( ((uint64_t)cycles_high1 << 32) | cycles_low1 ); 
 
 printk(KERN_INFO "\n function execution time is %llu clock cycles", (end-
start)); 
 
 return 0; 
} 
 
static void __exit hello_end(void) 
{ 
 printk(KERN_INFO "Goodbye Mr.\n"); 
} 
 
module_init(hello_start); 

module_exit(hello_end); 

The RDTSC instruction loads the high-order 32 bits of the timestamp register into 
EDX, and the low-order 32 bits into EAX. A bitwise OR is performed to reconstruct 
and store the register value into a local variable. 

In the code above, to guarantee the exclusive ownership of the CPU before 
performing the measure, we disable the preemption (preempt_disable()) and we 
disable the hard interrupts (raw_local_irq_save()). Then we call the “RDTSC” 
assembly instruction to read the timestamp register. We call our function 
(measured_function()), and we read the timestamp register again (RDTSC) to see 
how many clock cycles have been elapsed since the first read. The two variables 
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start and end store the timestamp register values at the respective times of the 
RDTSC calls. Finally, we print the measurement on the screen. 

Logically the code above makes sense, but if we try to compile it, we could get 
segmentation faults or some weird results. This is because we didn’t consider a few 
issues that are related to the “RDTSC” instruction itself and to the Intel 
Architecture: 

Register Overwriting 

RDTSC instruction, once called, overwrites the EAX and EDX registers. In the inline 
assembly that we presented above, we didn’t declare any clobbered register. 
Basically we have to push those register statuses onto the stack before calling 
RDTSC and popping them afterwards. The practical solution for that is to write the 
inline assembly as follows (note bold items): 
asm volatile ("RDTSC\n\t" 
     "mov %%edx, %0\n\t" 
              "mov %%eax, %1\n\t": "=r" (cycles_high), "=r" (cycles_low):: 
“%eax”, “%edx”); 

In case we are using an IA64 platform rather than an IA32, in the list of clobbered 
registers we have to replace “%eax”, “%edx” with “%rax”, “%rdx”. In fact, in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 2B ([3]), it 
states that “On processors that support the Intel 64 architecture, the high-order 
32 bits of each of RAX and RDX are cleared”. 

Out of Order Execution 

Starting with the Intel Pentium processor, most Intel CPUs support out-of-order 
execution of the code. The purpose is to optimize the penalties due to the different 
instruction latencies. Unfortunately this feature does not guarantee that the 
temporal sequence of the single compiled C instructions will respect the sequence 
of the instruction themselves as written in the source C file. When we call the 
RDTSC instruction, we pretend that that instruction will be executed exactly at the 
beginning and at the end of code being measured (i.e., we don’t want to measure 
compiled code executed outside of the RDTSC calls or executed in between the 
calls themselves). 

The solution is to call a serializing instruction before calling the RDTSC one. A 
serializing instruction is an instruction that forces the CPU to complete every 
preceding instruction of the C code before continuing the program execution. By 
doing so we guarantee that only the code that is under measurement will be 
executed in between the RDTSC calls and that no part of that code will be 
executed outside the calls. 

The complete list of available serializing instructions on IA64 and IA32 can be 
found in the Intel® 64 and IA-32 Architectures Software Developer’s Manual 
Volume 3A [4]. Reading this manual, we find that “CPUID can be executed at any 
privilege level to serialize instruction execution with no effect on program flow, 
except that the EAX, EBX, ECX and EDX registers are modified”. Accordingly, the 
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natural choice to avoid out of order execution would be to call CPUID just before 
both RTDSC calls; this method works but there is a lot of variance (in terms of 
clock cycles) that is intrinsically associated with the CPUID instruction execution 
itself. This means that to guarantee serialization of instructions, we lose in terms 
of measurement resolution when using CPUID. A quantitative analysis about this is 
presented in Section 3.1.2. 

An important consideration that we have to make is that the CPUID instruction 
overwrites EAX, EBX, ECX, and EDX registers. So we have to add EBX and ECX to 
the list of clobbered registers mentioned in Register Overwriting above. 

If we are using an IA64 rather than an IA32 platform, in the list of clobbered 
registers we have to replace "%eax", "%ebx", "%ecx", "%edx" with "%rax", 
"%rbx", "%rcx", "%rdx". In fact, in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual Volume 2A ([3]), it states that “On Intel 64 
processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all 
modes”. 

Overhead in Calling CPUID and RDTSC 

When we call the instructions to capture the clock (the serializing one plus RDTSC) 
an overhead (in terms of clock cycles) is associated with the calls themselves; 
such overhead has to be measured and subtracted from the measurement of the 
code we are interested in. Later in this paper, we show how to properly measure 
the overhead involved in taking the measurement itself. 
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3 Variance Introduced by CPUID 
and Improvements with RTDSCP 
Instruction 
This section shows that if, from one side, the CPUID instruction guarantees no 
code cross-contamination, then, from a measurement perspective, the other can 
introduce a variance in terms of clock cycles that is too high to guarantee an 
acceptable measurement resolution. To solve this issue, we use an alternative 
implementation using the RTDSCP instruction. 

3.1 Problems with the CPUID Instruction 
Let’s consider the code shown in the Appendix. Later in this paper we reference 
numbered code lines in the appendix to help avoid duplication of code. 

Also, in this case, the code has been written in kernel space to guarantee the 
exclusive ownership of the CPU. 

3.1.1 Code Analysis 

Ln98: Init function of the kernel module. 

Ln101: Here we declare **times double pointer. This pointer is allocated with a 
double array of memory (ln108 to ln122) of size BOUND_OF_LOOP*SIZE_OF_STAT: 
the meaning of these two values is explained later in this paper. The purpose of 
**times is to store all the time measurements (clock cycles). 

Ln102/ln103: The pointers *variances and *min_values are declared. Those 
pointers are used to respectively store the array of the variances and the array of 
minimum values of different ensembles of measures. The memory for both arrays 
is allocated at lines 124 to 134.  

Ln137: Filltimes function is called. Such function is defined at ln12; it is the core 
function of our code. Its purpose is to calculate the execution times of the code 
under measurement and to fill accordingly the **times double array. 

Ln19 to Ln30: In these lines we are consecutively calling the inline assembly 
instructions used just afterwards in the code to calculate the times. The purpose of 
this is to ‘warm up’ the instruction cache to avoid spurious measurements due to 
cache effects in the first iterations of the following loop. 
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Ln33/34: Here we have two nested loops inside which the measurements take 
place. There are two reasons for having two loops for the following scenarios: 

· When there is no function to be measured - in this case we are evaluating 
the statistical nature of the offset associated with the process of taking the 
measure itself. The inner loop is used to calculate statistic values such as 
minimum, maximum deviation from the minimum, variance; the outer loop is 
used to evaluate the ergodicity of the method taking the measures. 

· When evaluating a function duration - the outer loop is used to increase 
step by step the complexity of the function itself in such a way to evaluate the 
goodness of the measuring method itself (in terms of clock cycles resolution). 

Ln38/39: Here we get the exclusive ownership of the CPU (see Section 2.2). 

Ln41 to Ln51: Here we implement the inline assembly code used to take the 
measurement. This is the part that ¾ along with this paper ¾ can change 
evaluation techniques and introduce improvements in the method. 

Ln53/54: We release the ownership of the CPU (see Section 2.2). 

Ln68: We fill the times array with the measured time. 

Ln139: At this stage the **times array is entirely filled with the calculated values. 
Following the array there are two nested loops: the inner one (ln145 to ln150) 
goes from zero to (SIZE_OF_STAT-1) and is used to calculate the minimum value 
and the maximum deviation from the minimum (max - min) for a certain ensemble 
of measures; the external one (ln139) is used to go across different ensembles. On 
the same ensemble the variance is calculated (ln160) and is stored in the array of 
variances. An accumulator (tot_var) is used to calculate the total variance 
(calculated also on the outer loop) of all the measurements. spurious (ln156) is a 
counter that is increased whenever between contiguous ensembles the minimum 
value of the previous is bigger than the one that follows. It is a useful index in case 
we are evaluating a function whose complexity is increasing along the external 
loop: a more complex function has to take more cycles to be executed; if the 
minimum measured value is smaller than the one measured on the ensemble for 
the less complex function, there is something wrong (we will see later how this 
index is useful). Finally, at ln168/169, the variance of the variances is calculated, 
and the variance of the minimum values. Both are needed to evaluate the 
ergodicity of the measurement process (if the process is ergodic the variance of 
variances tends to zero and, in this specific case, also the variance of the minimum 
value). 

3.1.2 Evaluation of the First Benchmarking Method 

Having built the kernel module using the code in the Appendix, we load this 
module and look at the kernel log (“dmesg”). The output is as follows: 

Loading hello   module... 

loop_size:0 >>>> variance(cycles): 85; max_deviation: 80 ;min time: 452 
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loop_size:1 >>>> variance(cycles): 85; max_deviation: 56 ;min time: 456 

loop_size:2 >>>> variance(cycles): 85; max_deviation: 96 ;min time: 456 

………………………………… 

………………………………… 

loop_size:997 >>>> variance(cycles): 85; max_deviation: 92 ;min  time: 456 

loop_size:998 >>>> variance(cycles): 85; max_deviation: 100 ;min time: 452 

loop_size:999 >>>> variance(cycles): 85; max_deviation: 60 ;min  time: 452 

  

total number of spurious min values     = 262  

total variance = 48  

absolute max deviation = 636  

variance of variances = 2306  

variance of minimum values = 118 

 

The “loop_size” index refers to the external loop (ln33); accordingly each row of the log 
shows, for a certain ensemble of measures, the variance, the maximum deviation and the 
minimum measured time (all of them in clock cycles). 

At the end of the log there are: the number of “spurious” minimum values (that in 
this case is meaningless and can be neglected): the total variance (the average of 
the variances in each row); the absolute maximum deviation (the maximum value 
amongst the max deviations of all the rows); the variance of variances and the 
variance of the minimum values. 

Looking at the results, it is clear that this method is not reliable for benchmarking. 
There are different reasons for this: 

· The minimum value is not constant between different ensembles (the variance 
of the minimum values is 118 cycles). This means that we cannot evaluate the 
cost of calling the benchmarking function itself. When we are benchmarking a 
function we want to be able to subtract the cost of calling the benchmarking 
function itself from the measurement of the function to be benchmarked. This 
cost is the minimum possible number of cycles that it takes to call the 
benchmarking function (i.e., the min times in the rows of the kernel log 
above). Basically, in this case, each statistic is performed over 100,000 
samples. The fact that over 100,000 samples an absolute minimum cannot be 
determined means that we cannot calculate the cost to be subtracted when 
benchmarking any function. A solution could be to increase the number of 
samples till we always get the same minimum value, but this is practically too 
costly since the developer would have to wait quite a lot for orders of 
magnitude greater than 10^5 samples. 



How to Benchmark Code Execution Times on Intel® IA-32  
and IA-64 Instruction Set Architectures 

14    

· The total variance is 48 cycles. This means that this method would introduce an 
uncertainty on the measure (standard deviation) of 6.9 cycles. If the developer 
wanted to have an average error on the measure less than 5%, it would mean 
that he cannot benchmark functions whose execution is shorter than 139 clock 
cycles. If the average desired error was less than 1%, he couldn’t benchmark 
functions that take less than 690 cycles! 

· The variance itself is not constant between different ensembles: the variance of 
the variances is 2306 cycles (i.e., a standard error on the variance of 48 cycles 
that is as big as the total variance itself!). This means that the standard 
deviation varies between measurements (i.e., the measuring process itself is 
not ergodic) and the error on the measure cannot be identified. 

A graphic view of both variances and minimum values behavior between different 
ensembles is shown in Figure 1 and Figure 2: 

Figure 1. Minimum Value Behavior Graph 1 
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Figure 2. Variance Behavior Graph 2 

 

3.2 Improvements Using RDTSCP Instruction 
The RDTSCP instruction is described in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual Volume 2B ([3]) as an assembly instruction that, at 
the same time, reads the timestamp register and the CPU identifier. The value of 
the timestamp register is stored into the EDX and EAX registers; the value of the 
CPU id is stored into the ECX register (“On processors that support the Intel 64 
architecture, the high order 32 bits of each of RAX, RDX, and RCX are cleared”). 
What is interesting in this case is the “pseudo” serializing property of RDTSCP. The 
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“The RDTSCP instruction waits until all previous instructions have been executed 
before reading the counter. However, subsequent instructions may begin execution 
before the read operation is performed.” 

This means that this instruction guarantees that everything that is above its call in 
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in the source code that come after the RDTSCP will occur in the code under 
measurement. . 
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The problem is graphically described as follows: 

 
   asm volatile ( 
      "CPUID\n\t"/*serialize*/ 
      "RDTSC\n\t"/*read the clock*/ 
      "mov %%edx, %0\n\t" 
      "mov %%eax, %1\n\t": "=r" (cycles_high), "=r" 
(cycles_low):: "%rax", "%rbx", "%rcx", "%rdx"); 
 /* 
Call the function to benchmark 
  */ 
   asm volatile( 
      "RDTSCP\n\t"/*read the clock*/ 
      "mov %%edx, %0\n\t" 
      "mov %%eax, %1\n\t": "=r" (cycles_high1), "=r" 
(cycles_low1):: "%rax", "%rcx", "%rdx"); 
                                          /*do other things*/ 

If we find a way to avoid the undesired behavior described above we can avoid 
calling the serializing CPUID instruction between the two timestamp register reads.   

3.2.1 The Improved Benchmarking Method 

The solution to the problem presented in Section 0 is to add a CPUID instruction 
just after the RDTPSCP and the two mov instructions (to store in memory the 
value of edx and eax). The implementation is as follows: 
asm volatile ("CPUID\n\t" 
      "RDTSC\n\t" 
      "mov %%edx, %0\n\t" 
      "mov %%eax, %1\n\t": "=r" (cycles_high), "=r" (cycles_low):: 
"%rax", "%rbx", "%rcx", "%rdx"); 
/***********************************/ 
/*call the function to measure here*/ 
/***********************************/ 
asm volatile("RDTSCP\n\t" 
     "mov %%edx, %0\n\t" 
     "mov %%eax, %1\n\t" 

   "CPUID\n\t": "=r" (cycles_high1), "=r" (cycles_low1):: 
"%rax", "%rbx", "%rcx", "%rdx"); 

In the code above, the first CPUID call implements a barrier to avoid out-of-order 
execution of the instructions above and below the RDTSC instruction. 
Nevertheless, this call does not affect the measurement since it comes before the 
RDTSC (i.e., before the timestamp register is read). 

The first RDTSC then reads the timestamp register and the value is stored in 
memory. 

Then the code that we want to measure is executed. If the code is a call to a 
function, it is recommended to declare such function as “inline” so that from an 
assembly perspective there is no overhead in calling the function itself. 

This out of order execution corrupts the*** 
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The RDTSCP instruction reads the timestamp register for the second time and 
guarantees that the execution of all the code we wanted to measure is completed. 

The two “mov” instructions coming afterwards store the edx and eax registers 
values into memory. Both instructions are guaranteed to be executed after RDTSC 
(i.e., they don’t corrupt the measure) since there is a logical dependency between 
RDTSCP and the register edx and eax (RDTSCP is writing those registers and the 
CPU is obliged to wait for RDTSCP to be finished before executing the two “mov”). 

Finally a CPUID call guarantees that a barrier is implemented again so that it is 
impossible that any instruction coming afterwards is executed before CPUID itself 
(and logically also before RDTSCP). 

With this method we avoid to call a CPUID instruction in between the reads of the 
real-time registers (avoiding all the problems described in Section 3.1). 

3.2.2 Evaluation of the Improved Benchmarking Method 

In reference to the code presented in Section 3.1, we replace the previous 
benchmarking method with the new one, i.e., we replace ln19 to ln54 in the 
Appendix with the following code: 
asm volatile ("CPUID\n\t" 
      "RDTSC\n\t" 
      "mov %%edx, %0\n\t" 
      "mov %%eax, %1\n\t": "=r" (cycles_high), "=r" (cycles_low):: 
"%rax", "%rbx", "%rcx", "%rdx"); 
asm volatile("RDTSCP\n\t" 
     "mov %%edx, %0\n\t" 
     "mov %%eax, %1\n\t" 
   "CPUID\n\t": "=r" (cycles_high1), "=r" (cycles_low1):: "%rax", 
"%rbx", "%rcx", "%rdx"); 
asm volatile ("CPUID\n\t" 
      "RDTSC\n\t" 
      "mov %%edx, %0\n\t" 
      "mov %%eax, %1\n\t": "=r" (cycles_high), "=r" (cycles_low):: 
"%rax", "%rbx", "%rcx", "%rdx"); 
asm volatile("RDTSCP\n\t" 
     "mov %%edx, %0\n\t" 
     "mov %%eax, %1\n\t" 
   "CPUID\n\t": "=r" (cycles_high1), "=r" (cycles_low1):: "%rax", 
"%rbx", "%rcx", "%rdx"); 
 
 
for (j=0; j<BOUND_OF_LOOP; j++) {   
 for (i =0; i<SIZE_OF_STAT; i++) {  
     
  variable = 0; 
   
  preempt_disable(); 
  raw_local_irq_save(flags); 
 

asm volatile ("CPUID\n\t" 
         "RDTSC\n\t" 
         "mov %%edx, %0\n\t" 
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         "mov %%eax, %1\n\t": "=r" (cycles_high), "=r" 
(cycles_low):: "%rax", "%rbx", "%rcx", "%rdx"); 
/***********************************/ 
/*call the function to measure here*/ 
/***********************************/ 

asm volatile("RDTSCP\n\t" 
          "mov %%edx, %0\n\t" 
          "mov %%eax, %1\n\t" 
       "CPUID\n\t": "=r" (cycles_high1), "=r" 
(cycles_low1):: "%rax", "%rbx", "%rcx", "%rdx"); 
 
  raw_local_irq_restore(flags);  
  preempt_enable(); 
 

 

If we perform the same analysis as in Section 3.2.1, we obtain a kernel log as 
follows: 

Loading hello   module... 

loop_size:0 >>>> variance(cycles): 2; max_deviation: 4 ;min time: 44 

loop_size:1 >>>> variance(cycles): 3; max_deviation: 4 ;min time: 44 

loop_size:2 >>>> variance(cycles): 3; max_deviation: 4 ;min time: 44 

…………………………… 

…………………………… 

loop_size:997 >>>> variance(cycles): 2; max_deviation: 4 ;min time: 44 

loop_size:998 >>>> variance(cycles): 3; max_deviation: 4 ;min time: 44 

loop_size:999 >>>> variance(cycles): 3; max_deviation: 4 ;min time: 44  

         total number of spurious min values     = 0  

         total variance = 2 

         absolute max deviation = 104  

         variance of variances = 0  

         variance of minimum values = 0 

In this case, the minimum time does not change between different ensembles (it is 
always the same along all the 1000 repetitions of each ensemble); this means that 
the overhead of calling the benchmarking function itself can be exactly 
determined. 

The total variance is 2 cycles, i.e., the standard error on the measure is 1,414 
cycles (before it was 6,9 cycles). 
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Both the variance of variances and the variance of the minimum values are zero. 
This means that this improved benchmarking method is completely ergodic 
(between different ensembles the maximum fluctuation of the variance is 1 clock 
cycle and the minimum value is perfectly constant). This is the most important 
characteristic that we need for a method to be suitable for benchmarking 
purposes. 

For completeness, Figure 3 and Figure 4 show the same graphic analysis as done 
above in Section 3.2.1. 

Figure 3. Minimum Value Behavior Graph 3 
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Figure 4. Variance Behavior Graph 4 

 

In Figure 3 we can see that the minimum value is perfectly constant between 
ensembles; in Figure 4 the variance is either equal to 2 or 3 clock cycles.  

3.2.3 An Alternative Method for Architecture Not Supporting 
RDTSCP 

This section presents an alternative method to benchmark code execution cycles 
for architectures that do not support the RDTSCP instruction. Such a method is not 
as good as the one presented in Section 3.2.1, but it is still much better than the 
one using CPUID to serialize code execution. In this method between the two 
timestamp register reads we serialize the code execution by writing the control 
register CR0. 

Regarding the code in the Appendix, the developer should replace ln19 to ln54 with 
the following: 
 
asm volatile( "CPUID\n\t" 
        "RDTSC\n\t" 
         "mov %%edx, %0\n\t" 

       "mov %%eax, %1\n\t": "=r" (cycles_high), "=r" (cycles_low):: 
"%rax", "%rbx", "%rcx", "%rdx"); 

asm volatile( "mov %%cr0, %%rax\n\t" 
     "mov %%rax, %%cr0\n\t" 
     "RDTSC\n\t" 
     "mov %%edx, %0\n\t" 
     "mov %%eax, %1\n\t": "=r" (cycles_high1), "=r" (cycles_low1):: 
"%rax", "%rdx"); 
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asm volatile( "CPUID\n\t" 
     "RDTSC\n\t" 
     "mov %%edx, %0\n\t" 
     "mov %%eax, %1\n\t": "=r" (cycles_high), "=r" (cycles_low):: 
"%rax", "%rbx", "%rcx", "%rdx"); 
asm volatile( "mov %%cr0, %%rax\n\t" 
         "mov %%rax, %%cr0\n\t" 
         "RDTSC\n\t" 
         "mov %%edx, %0\n\t" 
         "mov %%eax, %1\n\t": "=r" (cycles_high1), "=r" (cycles_low1):: 
"%rax", "%rdx"); 
 
asm volatile( "CPUID\n\t" 
     "RDTSC\n\t" 
         "mov %%edx, %0\n\t" 
     "mov %%eax, %1\n\t": "=r" (cycles_high), "=r" (cycles_low):: 
"%rax", "%rbx", "%rcx", "%rdx"); 
asm volatile( "mov %%cr0, %%rax\n\t" 
     "mov %%rax, %%cr0\n\t" 
     "RDTSC\n\t" 
     "mov %%edx, %0\n\t" 
     "mov %%eax, %1\n\t": "=r" (cycles_high1), "=r" (cycles_low1):: 
"%rax", "%rdx"); 
 
for (j=0; j<BOUND_OF_LOOP; j++) {   
 for (i =0; i<SIZE_OF_STAT; i++) {  
     
  variable = 0; 
   
  preempt_disable(); 
  raw_local_irq_save(flags); 
 
  asm volatile ("CPUID\n\t"::: "%rax", "%rbx", "%rcx", "%rdx"); 
  asm volatile ("RDTSC\n\t" 
        "mov %%edx, %0\n\t" 
        "mov %%eax, %1\n\t": "=r" (cycles_high), "=r" 
(cycles_low):: "%rax", "%rdx"); 
 /*call the function to measure here*/ 
  asm volatile("mov %%cr0, %%rax\n\t" 
         "mov %%rax, %%cr0\n\t" 
         "RDTSC\n\t" 
         "mov %%edx, %0\n\t" 
         "mov %%eax, %1\n\t": "=r" (cycles_high1), "=r" 
(cycles_low1):: "%rax", "%rdx"); 
    
  raw_local_irq_restore(flags); 
  preempt_enable(); 

In the code above, first we have the repetition (three times) of the instructions 
called in the body of the following nested loops; this is just to warm up the 
instructions cache. Then the body of the loop is executed. We: 

· First take the exclusive ownership of the CPU (preempt_disable(), 
raw_local_irq_save()) 

· Call CPUID to serialize 
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· Read the timestamp register the first time by RDTSC and store the value in 
memory 

· Read the value of the control register CR0 into RAX register 

· Write the value of RAX back to CR0 (this instruction serializes) 

· Read the timestamp register the second time by RDTSC and store the value in 
memory 

· Release the CPU ownership (raw_local_irq_restore, preempt_enable) 

3.2.4 Evaluation of the Alternative Method 

As done in Section 3.1.2 and Section 3.2.2, hereafter we present the statistical 
analysis of the method. The resulting kernel log is as follows: 

loop_size:2 >>>> variance(cycles): 3; max_deviation: 4 ;min     time: 208 

loop_size:3 >>>> variance(cycles): 3; max_deviation: 4 ;min     time: 208 

loop_size:4 >>>> variance(cycles): 3; max_deviation: 4 ;min     time: 208 

………………… 

………………… 

loop_size:998 >>>> variance(cycles): 4; max_deviation: 4 ;min   time: 208 

loop_size:999 >>>> variance(cycles): 3; max_deviation: 4 ;min   time: 208  

total number of spurious min values = 0  

total variance = 3  

absolute max deviation = 176  

variance of variances = 0  

variance of minimum values = 0  

In the log we see that the total variance of this method is 3 cycles rather than 2 
and the absolute max deviation is 176 cycles rather than 104 cycles. This means 
that the standard error on the measure is 1,73 rather than 1,414 and the 
maximum error is increased as well. Nevertheless, we still have met the ergodicity 
requirements since the variance does not change between different ensembles (the 
maximum fluctuation is 1 clock cycle) as well as the minimum value; both the 
variance of the variances and the variance of the minimum values are zero. Such a 
method may be suitable for benchmarking whenever the RDTSCP instruction is not 
available on the CPU. 

As done previously, the following graphs show the behavior of the minimum values 
and of the variances between different ensembles. 
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Figure 5. Minimum Value Behavior Graph 5 

 

Figure 6. Variance Behavior Graph 6 

 

In Figure 5, we can see how the minimum value is perfectly constant between 
ensembles. In Figure 6, we have the variance being either equal to 3 or 4 clock 
cycles. 
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3.3 Resolution of the Benchmarking Methodologies 
In this section we analyze the resolution of our benchmarking methods, focusing 
on an Intel Core™ i7 processor-based platform, which is representative of a high-
end server solution and supports the RDTSCP instruction and out of order 
execution. 

For resolution, we mean the minimum number of sequential assembly instructions 
that a method is able to benchmark (appreciate). The purpose of this evaluation is 
mostly intended to define the methodology to calculate the resolution rather than 
to analyze the resolutions themselves. The resolution itself is, in fact, strictly 
dependant on the target machine and the developer is advised to run the following 
test before starting to benchmark to evaluate the benchmarking limits of the 
platform. 

With reference to the code presented in the Appendix, the developer should make 
the proper replacements according to the benchmarking method he intends to use 
(Section 3.1.2 if RDTSCP is supported, Section 3.2.2 otherwise). Also, the following 
code should be added at ln11: 
void inline measured_loop(unsigned int n, volatile int *var) 
{ 
 int k; 
 for (k=0; k<n; k++) 
  (*var)= 1; 

} 

and the following in place of “/*call the function to measure here*/”: 

measured_loop(j, &variable); 

By doing so, the external loop of the two nested ones (j index) is intended to 
increase step by step the complexity of the function to benchmark; more in details 
between two consecutive ensembles it increases the parameter that determines 
the size of the measured loop, thus adding exactly one assembly instruction to the 
code under benchmark. 

3.3.1 Resolution with RDTSCP 

According to the guidelines in Section 3.3, we effect the recommended 
replacements in the code for the method using RDTSCP instruction, we build the 
kernel module, and we call insmod from the shell. The resulting kernel log is as 
follows: 

loop_size:0 >>>> variance(cycles): 3; max_deviation: 16 ;min    time: 44 

loop_size:1 >>>> variance(cycles): 3; max_deviation: 16 ;min    time: 44 

loop_size:2 >>>> variance(cycles): 3; max_deviation: 48 ;min    time: 44 

loop_size:3 >>>> variance(cycles): 4; max_deviation: 16 ;min    time: 44 



How to Benchmark Code Execution Times on Intel® IA-32  
and IA-64 Instruction Set Architectures 

  25 

loop_size:4 >>>> variance(cycles): 3; max_deviation: 32 ;min    time: 44 

loop_size:5 >>>> variance(cycles): 0; max_deviation: 36 ;min    time: 44 

loop_size:6 >>>> variance(cycles): 3; max_deviation: 28 ;min     time: 48 

loop_size:7 >>>> variance(cycles): 4; max_deviation: 32 ;min    time: 48 

loop_size:8 >>>> variance(cycles): 3; max_deviation: 16 ;min     time: 48 

loop_size:9 >>>> variance(cycles): 2; max_deviation: 48 ;min    time: 48 

loop_size:10 >>>> variance(cycles): 0; max_deviation: 28 ;min    time: 48 

loop_size:11 >>>> variance(cycles): 3; max_deviation: 64 ;min   time: 52 

…………… 

…………… 

loop_size:994 >>>> variance(cycles): 3; max_deviation: 4 ;min   time: 2036 

loop_size:995 >>>> variance(cycles): 0; max_deviation: 4 ;min   time: 2036 

loop_size:996 >>>> variance(cycles): 3; max_deviation: 4 ;min   time: 2040 

loop_size:997 >>>> variance(cycles): 21; max_deviation: 4 ;min   time: 2044 

loop_size:998 >>>> variance(cycles): 22; max_deviation: 112 ;min time: 2048 

loop_size:999 >>>> variance(cycles): 23; max_deviation: 160 ;min time: 2048 

total number of spurious min values = 0 

total variance = 1 

absolute max deviation = 176 

variance of variances = 2 

variance of minimum values = 335926 

As seen, each row is an ensemble of measures for a specific size of 
“measured_loop”; going down row by row, the complexity of the “measured_loop” 
function is increased exactly by one assembly instruction. Accordingly we see that 
“min time” increases as we scroll down the rows. Now let’s look at the final part of 
the log: 

· the total number of spurious min values is zero: this means that as we increase 
the complexity of the measured loop, the minimum measured time 
monotonically increases (if we perform enough measures we can exactly 
determine the minimum number of clock cycles that it takes to run a certain 
function) 

· the total variance is 1 cycle: that means that the overall standard error is 1 
cycle (that is very good) 
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· the absolute max deviation is 176 cycles: from a benchmarking perspective it 
is not very important; instead this parameter is fundamental to evaluate the 
capabilities of the system to meet real-time constraints (we will not pursue this 
further since it is out of the scope of this paper). 

· The variance of the variances is 2 cycles: this index is very representative of 
how reliable our benchmarking method is (i.e., the variance of the measures 
does not vary according to the complexity of the function under benchmark). 

· Finally the variance of the minimum values is completely meaningless and 
useless in this context and can be neglected (this index was crucial for Section 
0) 

From a resolution perspective we can see that we have the min value that is 
constant (44 cycles) between 0 and 5 measured assembly instructions and 
between 6 and 10 assembly instructions (48 clock cycles). Then it increases very 
regularly by four cycles every two assembly instructions. So unless the function 
under benchmark is very small, in this case the resolution of this benchmarking 
method is two assembly instructions (that is the minimum variation in the code 
complexity that can be revealed). 

For completeness, the following graph (Graph 7) shows the minimum values, and 
the next graph (Graph 8) shows the variances. 

Figure 7. Minimum Value Behavior Graph 7 
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Figure 8. Variance Behavior Graph 8 

 

3.3.2 Resolution with the Alternative Method 

According to what we did in Section 3.3.1, we run the same test using the 
alternative benchmarking method presented in Section 3.2.3. The resulting kernel 
log is as follows: 

loop_size:0 >>>> variance(cycles): 3; max_deviation: 88 ;min    time: 208 

loop_size:1 >>>> variance(cycles): 0; max_deviation: 16 ;min    time: 208 

loop_size:2 >>>> variance(cycles): 4; max_deviation: 56 ;min    time: 208 

loop_size:3 >>>> variance(cycles): 0; max_deviation: 20 ;min     time: 212 

loop_size:4 >>>> variance(cycles): 3; max_deviation: 36 ;min    time: 212 

loop_size:5 >>>> variance(cycles): 3; max_deviation: 36 ;min   time: 216 

loop_size:6 >>>> variance(cycles): 4; max_deviation: 36 ;min    time: 216 

loop_size:7 >>>> variance(cycles): 0; max_deviation: 68 ;min      time: 220 

………………… 

………………… 

loop_size:994 >>>> variance(cycles): 28; max_deviation: 112 ;min   time: 2212 
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loop_size:995 >>>> variance(cycles): 0; max_deviation: 0 ;min    time: 2216 

loop_size:996 >>>> variance(cycles): 28; max_deviation: 4 ;min   time: 2216 

loop_size:997 >>>> variance(cycles): 0; max_deviation: 112 ;min    time: 2216 

loop_size:998 >>>> variance(cycles): 28; max_deviation: 116 ;min   time: 2220 

loop_size:999 >>>> variance(cycles): 0; max_deviation: 0 ;min    time: 2224 

total number of spurious min values     = 0 

total variance = 1 

absolute max deviation = 220 

variance of variances = 2 

variance of minimum values = 335757 

With this method we achieved results as good as the previous ones. The only 
difference is the absolute maximum deviation that here is slightly higher; this does 
not affect the quality of the method from a benchmarking perspective.  

For completeness, the following graphs present behaviors of the variance and the 
minimum value. 

Figure 9. Variance Behavior Graph 9 
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Figure 10. Variance Behavior Graph 10 
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4 5BSummary 
In Section 3.2.1 and Section 3.2.3 we showed two suitable methods for 
benchmarking the execution time of a generic C/C++ function running on an 
IA32/IA64 platform. The former should be chosen if the RDTSCP instruction is 
available; if not, the other one can be used. 

Whenever taking a measurement, the developer should perform the following 
steps: 

1. Run the tests in Section 3.2.2 or Section 3.2.4 (according to the platform). 

2. Analyze the variance of the variances and the variance of the minimum values 
to validate the method on his platform. If the values that the user obtains are 
not satisfactory, he may have to change the BIOS settings or the BIOS itself. 

3. Calculate the resolution that the method is able to guarantee. 

4. Make the measurement and subtract the offset (additional cost of calling the 
measuring function itself) that the user will have calculated before (minimum 
value from Section 3.2.2 or Section 3.2.4). 

A couple final considerations should be made: 

Counter Overflow: The timestamp register is 64 bit. On a single overflow, we 
encounter no problems since we are making a difference between unsigned int and 
the results would be still correct. The problem arises if the duration of the code 
under measurement takes longer than 2^64 cycles. For a 1-GHz CPU, that would 
mean that your code should take longer than 

(2^64)/(10^9) = 18446744073 seconds ~ 585 years 

So it shouldn’t be a problem or, if it is, the developer won’t still be alive to see it! 

32- vs. 64-Bit Architectures: Particular attention must be paid to the 64-bit 
registers used in the code presented in this paper. Whenever working with a 32b 
platform, the code presented is still valid, but whatever occurrence of rax, rbx, 
rcx, rdx has to be replaced respectively with eax, ebx, ecx, edx. 

 

The Intel® Embedded Design Center provides qualified 
developers with web-based access to technical resources. 
Access Intel Confidential design materials, step-by-step 
guidance, application reference solutions, training, Intel’s 
tool loaner program, and connect with an e-help desk and 
the embedded community. Design Fast. Design Smart. Get 
started today. 43Hhttp://intel.com/embedded/edc. 

http://intel.com/embedded/edc�
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5 Appendix 
1  #include <linux/module.h>   
2  #include <linux/kernel.h>   
3  #include <linux/init.h> 
4  #include <linux/hardirq.h> 
5  #include <linux/preempt.h> 
6  #include <linux/sched.h> 
7   
8  #define SIZE_OF_STAT 100000 
9  #define BOUND_OF_LOOP 1000 
10 #define UINT64_MAX (18446744073709551615ULL) 
11 
12 void inline Filltimes(uint64_t **times) { 
13  unsigned long flags; 
14  int i, j; 
15  uint64_t start, end; 
16  unsigned cycles_low, cycles_high, cycles_low1, cycles_high1; 
17  volatile int variable = 0; 
18   
19  asm volatile ("CPUID\n\t" 
20       "RDTSC\n\t" 
21       "mov %%edx, %0\n\t" 
22       "mov %%eax, %1\n\t": "=r" (cycles_high), "=r" (cycles_low)::
 "%rax", "%rbx", "%rcx", "%rdx"); 
23 asm volatile ("CPUID\n\t" 
24       "RDTSC\n\t" 
25       "CPUID\n\t" 
26            "RDTSC\n\t" 
27       "mov %%edx, %0\n\t" 
28       "mov %%eax, %1\n\t": "=r" (cycles_high), "=r" (cycles_low):: 
"%rax", "%rbx", "%rcx", "%rdx"); 
29 asm volatile ("CPUID\n\t" 
30       "RDTSC\n\t"::: "%rax", "%rbx", "%rcx", "%rdx"); 
31 
32 
33 for (j=0; j<BOUND_OF_LOOP; j++) {   
34  for (i =0; i<SIZE_OF_STAT; i++) {  
35     
36   variable = 0; 
37   
38   preempt_disable(); 
39   raw_local_irq_save(flags); 
40 
41   asm volatile ( 
42      "CPUID\n\t" 
43      "RDTSC\n\t" 
44      "mov %%edx, %0\n\t" 
45      "mov %%eax, %1\n\t": "=r" (cycles_high), "=r" 
(cycles_low):: "%rax", "%rbx", "%rcx", "%rdx"); 
46 /*call the function to measure here*/ 
47   asm volatile( 
48      "CPUID\n\t" 
49      "RDTSC\n\t" 
50      "mov %%edx, %0\n\t" 
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51      "mov %%eax, %1\n\t": "=r" (cycles_high1), "=r" 
(cycles_low1):: "%rax", "%rbx", "%rcx", "%rdx"); 
52    
53   raw_local_irq_restore(flags);  
54   preempt_enable(); 
55 
56      
57   start = ( ((uint64_t)cycles_high << 32) | cycles_low ); 
58 
59   end = ( ((uint64_t)cycles_high1 << 32) | cycles_low1 ); 
60 
61   if ( (end - start) < 0) { 
62    printk(KERN_ERR "\n\n>>>>>>>>>>>>>>   CRITICAL ERROR IN TAKING 
THE TIME!!!!!!\n loop(%d) stat(%d) start = %llu, end = %llu, variable = 
%u\n", j, i, start, end, variable); 
63    times[j][i] = 0; 
64   } 
65   else 
66   { 
67    times[j][i] = end - start; 
68   } 
69  } 
70 }     
71 return; 
72} 
73uint64_t var_calc(uint64_t *inputs, int size) 
74{ 
75 int i; 
76 uint64_t acc = 0, previous = 0, temp_var = 0; 
77 for (i=0; i< size; i++) { 
78  if (acc < previous) goto overflow; 
79  previous = acc; 
80  acc += inputs[i]; 
81 } 
82 acc = acc * acc; 
83 if (acc < previous) goto overflow; 
84 previous = 0; 
85 for (i=0; i< size; i++){ 
86  if (temp_var < previous) goto overflow; 
87  previous = temp_var; 
88  temp_var+= (inputs[i]*inputs[i]); 
89 } 
90 temp_var = temp_var * size; 
91 if (temp_var < previous) goto overflow; 
92 temp_var =(temp_var - acc)/(((uint64_t)(size))*((uint64_t)(size))); 
93 return (temp_var); 
94overflow: 
95 printk(KERN_ERR "\n\n>>>>>>>>>>>>>>  CRITICAL OVERFLOW ERROR 
IN var_calc!!!!!!\n\n"); 
96 return -EINVAL; 
97} 
98static int __init hello_start(void) 
99{ 
100 int i = 0, j = 0, spurious = 0, k =0; 
101 uint64_t **times; 
102 uint64_t *variances; 
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103 uint64_t *min_values; 
104 uint64_t max_dev = 0, min_time = 0, max_time = 0, prev_min =0, tot_var=0, 
max_dev_all=0, var_of_vars=0, var_of_mins=0; 
105 
106 printk(KERN_INFO "Loading hello module...\n"); 
107 
108 times = kmalloc(BOUND_OF_LOOP*sizeof(uint64_t*), GFP_KERNEL); 
109 if (!times) { 
110  printk(KERN_ERR "unable to allocate memory for times\n"); 
111  return 0; 
112 } 
113 
114 for (j=0; j<BOUND_OF_LOOP; j++) { 
115  times[j] = kmalloc(SIZE_OF_STAT*sizeof(uint64_t), GFP_KERNEL); 
116  if (!times[j]) { 
117   printk(KERN_ERR "unable to allocate memory for times[%d]\n", j); 
118   for (k=0; k<j; k++) 
119    kfree(times[k]); 
120   return 0; 
121  } 
122 } 
123 
124 variances = kmalloc(BOUND_OF_LOOP*sizeof(uint64_t), GFP_KERNEL); 
125 if (!variances) { 
126  printk(KERN_ERR "unable to allocate memory for variances\n"); 
127  return 0; 
128 } 
129 
130 min_values = kmalloc(BOUND_OF_LOOP*sizeof(uint64_t), GFP_KERNEL); 
131 if (!min_values) { 
132  printk(KERN_ERR "unable to allocate memory for min_values\n"); 
133  return 0; 
134 } 
135 
136  
137 Filltimes(times); 
138 
139 for (j=0; j<BOUND_OF_LOOP; j++) { 
140 
141  max_dev = 0; 
142  min_time = 0; 
143  max_time = 0; 
144 
145  for (i =0; i<SIZE_OF_STAT; i++) { 
146   if ((min_time == 0)||(min_time > times[j][i])) 
147    min_time = times[j][i]; 
148   if (max_time < times[j][i]) 
149    max_time = times[j][i]; 
150  } 
151 
152  max_dev = max_time - min_time; 
153  min_values[j] = min_time; 
154 
155  if ((prev_min != 0) && (prev_min > min_time)) 
156   spurious++;   
157  if (max_dev > max_dev_all) 
158   max_dev_all = max_dev; 
159 
160  variances[j] = var_calc(times[j], SIZE_OF_STAT); 
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161  tot_var += variances[j]; 
162 
163  printk(KERN_ERR "loop_size:%d >>>> variance(cycles): %llu; 
max_deviation: %llu ;min time: %llu", j, variances[j], max_dev, min_time); 
164 
165  prev_min = min_time; 
166 } 
167 
168 var_of_vars = var_calc(variances, BOUND_OF_LOOP); 
169 var_of_mins = var_calc(min_values, BOUND_OF_LOOP); 
170 
171 printk(KERN_ERR "\n total number of spurious min values = %d", spurious); 
172 printk(KERN_ERR "\n total variance = %llu", (tot_var/BOUND_OF_LOOP)); 
173 printk(KERN_ERR "\n absolute max deviation = %llu", max_dev_all); 
174 printk(KERN_ERR "\n variance of variances = %llu", var_of_vars); 
175 printk(KERN_ERR "\n variance of minimum values = %llu", var_of_mins); 
176 
177 for (j=0; j<BOUND_OF_LOOP; j++) { 
178  kfree(times[j]); 
179 } 
180 kfree(times); 
181 kfree(variances); 
182 kfree(min_values); 
183 return 0; 
184} 
185 
186static void __exit hello_end(void) 
187{ 
188 printk(KERN_INFO "Goodbye Mr.\n"); 
189} 
190 
191module_init(hello_start); 
192module_exit(hello_end); 
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