
  

Graphs and Relations



  

Friday Four Square!
4:15PM, Outside Gates



  

Announcements

● Problem Set 1 due right now.
● Problem Set 2 out.

● Checkpoint due Monday, October 8.
● Assignment due Friday, October 12.
● Play around with induction and its 

applications!



  

Mathematical Structures

● Just as there are common data structures 
in programming, there are common 
mathematical structures in discrete math.

● So far, we've seen simple structures like 
sets and natural numbers, but there are 
many other important structures out 
there.

● For the next week, we'll explore several of 
them.



  

Some Formalisms



  

The Cartesian Product

● Recall: The power set (℘ S) of a set is the set of 
all its subsets.

● The Cartesian Product of A × B of two sets is 
defined as

A × B ≡ { (a, b) | a ∈ A and b ∈ B }

=0, 1, 2 a, b, c

A B

×
(0, a),(0, b),(0, c),

(1, a),(1, b),(1, c),

(2, a),(2, b),(2, c) 



  

The Cartesian Product

● Recall: The power set (℘ S) of a set is the set of 
all its subsets.

● The Cartesian Product of A × B of two sets is 
defined as

A × B ≡ { (a, b) | a ∈ A and b ∈ B }
● We denote Ak ≡ A × A × … × A

2

=
(0, 0),(0, 1),(0, 2),

(1, 0),(1, 1),(1, 2),

(2, 0),(2, 1),(2, 2) 

0, 1, 2
A

k times



  

Graphs



  

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes (or 
vertices) connected by edges (or arcs)



  

Some graphs are directed.



  

CAT SAT RAT

RANMAN

MAT

CAN

Some graphs are undirected.

You can think of them as directed
graphs with edges both ways.



  

Graphs are Everywhere!



  

http://www.princeton.edu/pr/pictures/l-r/packingproblem/pu-platonic-solids.jpg



  

http://www.prospectmagazine.co.uk/wp-
content/uploads/2009/09/163_taylor2.jpg



  

Me too!



  



  

Formalisms

● A graph is an ordered pair G = (V, E) where
● V is a set of the vertices (nodes) of the graph.
● E is a set of the edges (arcs) of the graph.

● E can be a set of ordered pairs or unordered pairs.
● If E consists of ordered pairs, G is a directed 

graph.
● If E consists of unordered pairs, G is an undirected 

graph.

● Each edge is an pair of the start and end (or 
source and sink) of the edge.



  

Navigating a Graph

PT

VC

PCIP CC

LT

CI

VEC

CDC SC

FC

From   

To   

PT → VC → PC → CC → SC → CDC
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A path from v1 to vn is a sequence of edges 
((v1, v2), (v2, v3), …, (vn-1, vn)).

The length of a path is the number 
of edges it contains.
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A node v is reachable from node u
iff there is a path from u to v.

We denote this as u → v.



  

Navigating a Graph
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Navigating a Graph

PT
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PCIP CC

LT

CI

VEC

CDC SC
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From   

To   

PT → VC → PC → CC → VEC → VC → IP



  

A cycle in a graph is a path

((v1, v2), …, (vn, v1))

that starts and ends at the same node.



  

A simple path is a path that 
does not repeat any nodes or edges.

A simple cycle is a cycle that 
does not repeat any nodes or edges

(except the first/last node).



  

Summary of Terminology

● A path is a series of edges connecting two 
nodes.
● The length of a path is the number of edges in 

the path.
● A node v is reachable from u if there is a path 

from u to v.

● A cycle is a path from a node to itself.
● A simple path is a path with no duplicate 

nodes or edges.
● A simple cycle is a cycle with no duplicate 

nodes or edges (except the start/end node).



  

Representing Prerequisites



  

Wake Up In
The Morning

Feel Like
P Diddy

Brush Teeth With
Bottle of Jack

Leave

ClothesPedicure Play Favorite
CDs

Pull up to Party

Fight Get Crunk,
Crunk

Police Shut
Down, Down

See the Sunlight

Blow
Speakers Up



  

A directed acyclic graph (DAG) is a 
directed graph with no cycles.



  

Examples of DAGs

Indian Mediterranean

Mexican

Chinese Italian

American

Tasty

Not 
Tasty

Dorm



  

Examples of DAGs
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Wake Up In
The Morning
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Topological Sort

● A topological ordering of the nodes of a DAG is one 
where no node is listed before its predecessors.

● Algorithm:

● Find a node with no incoming edges.

● Remove it from the graph.

● Add it to the resulting ordering.

● There may be many valid orderings:

1 2 3

231

1

2 3



  

Theorem: A graph has a topological 
ordering iff it is a DAG.



  

Relations



  

Relations

● A binary relation is a property that describes whether 
two objects are related in some way.

● Examples:
● Less-than: x < y
● Divisibility: x divides y evenly
● Friendship: x is a friend of y
● Tastiness: x is tastier than y

● Given binary relation R, we write aRb iff a is related to b.
● a = b
● a < b
● a “is tastier than” b

● a ≡k b



  

Relations as Sets

● Formally, a relation is a set of ordered pairs 
representing the pairs for which the relation is 
true.
● Equality: { (0, 0), (1, 1), (2, 2), … }
● Less-than: { (0, 1), (0, 2), …, (1, 2), (1, 3), … }

● Formally, we have that

aRb ≡ (a, b) ∈ R   
● The binary relations we'll discuss today will be 

binary relations over a set A.
● Each relation is a subset of A2.



  

Binary Relations and Graphs

● Each (directed) graph defines a binary 
relation:
● aRb iff (a, b) is an edge.

● Each binary relation defines a graph:
● (a, b) is an edge iff aRb.

● Example: Less-than

0 1

2

3



  

An Important Question

● Why study binary relations and graphs 
separately?

● Simplicity:
● Certain operations feel more “natural” on 

binary relations than on graphs and vice-versa.
● Converting a relation to a graph might result in 

an overly complex graph (or vice-versa).

● Terminology:
● Vocabulary for graphs often different from that 

for relations.



  

Equivalence Relations



  

“x and y have the 
same color”

“x and y have the 
same shape”

“x and y have the 
same area” “x and y are 

programs that 
produce the same 

output”

“x = y”



  

Informally

An equivalence relation is a relation that 
indicates when objects have some trait in 

common.

Do not use this definition in proofs!
It's just an intuition!



  

Symmetry

A binary relation R over a set A
is called symmetric iff 

For any x ∈ A and y ∈ A, if xRy, then yRx.

This definition (and others like it) can be used 
in formal proofs.



  

An Intuition for Symmetry

For any x ∈ A and y ∈ A,
if xRy, then yRx.



  

Reflexivity

A binary relation R over a set A
is called reflexive iff

For any x ∈ A, we have xRx.



  

Some Reflexive Relations

● Equality:
● For any x, we have x = x.

● Not greater than:
● For any integer x, we have x ≤ x.

● Subset:
● For any set S, we have S ⊆ S.



  

An Intuition for Reflexivity

For any x ∈ A,
xRx



  

Transitivity

A binary relation R over a set A
is called transitive iff

For any x, y, z ∈ A,
if xRy and yRz,

then xRz.



  

Some Transitive Relations

● Equality:
● x = y and y = z implies x = z.

● Less-than:
● x < y and y < z implies x < z.

● Subset:
● S ⊆ T and T ⊆ U implies S ⊆ U.



  

An Intuition for Transitivity

For any x, y, z ∈ A, 
if xRy and yRz,

then xRz.



  

Equivalence Relations

A binary relation R over a set A is called 
an equivalence relation if it is

● reflexive,
● symmetric, and
● transitive.



  

Sample Equivalence Relations

● Equality: x = y.
● For any graph G, the relation x ↔ y 

meaning “x and y are mutually 
reachable.”

● For any integer k, the relation x ≡k y of 
modular congruence.



  xRy ≡ x and y have the same shape.



  xRy ≡ x and y have the same shape.



  xRy ≡ x and y have the same color.



  

Equivalence Classes

● Given an equivalence relation R over a 
set A, for any a ∈ A, the equivalence 
class of a is the set

[a]R ≡ { x | x ∈ A and aRx }

● Informally, the set of all elements equal 
to a.

● R partitions the set A into a set of 
equivalence classes.



  

Theorem: Let R be an equivalence relation over a set A.  Then every
element of A belongs to exactly one equivalence class.

 

Proof: We will show that every a ∈ A belongs to at least one equivalence
class and to at most one equivalence class.

 

To see that every a ∈ A belongs to at least one equivalence class,
consider any a ∈ A and the equivalence class [a]R ={ x | x ∈ A and aRx}. 

Since R is an equivalence relation, R is reflexive, so aRa.  Thus a ∈ [a]R. 
Since our choice of a was arbitrary, this means every a ∈ A belongs to at
least one equivalence class – namely, [a]R.

 

To see that every a ∈ A belongs to at most one equivalence class, we
show that for any a ∈ A, if a ∈ [x]R and a ∈ [y]R, then [x]R = [y]R.  To do

this, we prove that if a ∈ [x]R and a ∈ [y]R, then [x]R ⊆ [y]R.  By swapping

[x]R and [y]R, we can conclude that [y]R ⊆ [x]R, meaning that [x]R = [y]R.
 

Assume that a ∈ [x]R and a ∈ [y]R. Consider any t ∈ [x]R.  We will show

that t ∈ [y]R.  Since t ∈ [x]R, we know xRt.  Since a ∈ [x]R, we have xRa. 
Since R is an equivalence relation, R is symmetric and transitive.  By
symmetry, from xRa we have aRx.  By transitivity, from aRx and xRt we
have aRt.  Since a ∈ [y]R, we have yRa.  By transitivity, from yRa and aRt

we have yRt.  Thus, t ∈ [y]R.  Since our choice of t was arbitrary, we

have [x]R ⊆ [y]R.  Therefore, by our earlier reasoning, [x]R = [y]R. ■
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prove this?
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prove this?



  

Existence and Uniqueness

● The proof we are attempting is a type of 
proof called an existence and 
uniqueness proof.

● We need to show that for any a ∈ A, there 
exists an equivalence class containing a 
and that this equivalence class is 
unique.

● These are two completely separate steps.



  

Proving Existence

● To prove existence, we need to show 
that for any a ∈ A, that a belongs to at 
least one equivalence class.

● This is just a proof of an existential 
statement.

● Can we find an equivalence class 
containing a?
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Proving Uniqueness

● To prove that there is a unique object 
with some property, we can do the 
following:
● Consider any two arbitrary objects x and y 

with that property.
● Show that x = y.
● Conclude, therefore, that there is only one 

object with that property, and we just gave it 
two different names.
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This proof helps to justify our definition of 
equivalence relations.  We need all three of the 
properties we've listed in order for this proof to 

work, and we don't need any others.
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