
2: VECTORS, MATRICES,
AND LINEAR 
COMBINATIONS

David Austin
Grand Valley State University



1

CHAPTER OVERVIEW

2: Vectors, matrices, and linear combinations
We began our study of linear systems in Chapter 1 where we described linear systems in terms of augmented matrices, such as 

In this chapter, we will uncover geometric information in a matrix like this, which will lead to an intuitive understanding of the
insights we previously gained into the solutions of linear systems.

2.1: Vectors and Linear Combinations
2.2: Matrix multiplication and linear combinations
2.3: The span of a set of vectors
2.4: Linear independence
2.5: Matrix transformations
2.6: The geometry of matrix transformations

This page titled 2: Vectors, matrices, and linear combinations is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
David Austin via source content that was edited to the style and standards of the LibreTexts platform.
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2.1: Vectors and Linear Combinations
It is a remarkable fact that algebra, which is about equations and their solutions, and geometry are intimately connected. For
instance, the solution set of a linear equation in two unknowns, such as  can be represented graphically as a straight
line. The aim of this section is to further this connection by introducing vectors, which will help us to apply geometric intuition to
our thinking about linear systems.

Vectors
A vector is most simply thought of as a matrix with a single column. For instance,

are both vectors. Since the vector  has two entries, we say that it is a two-dimensional vector; in the same way, the vector  is a
four-dimensional vector. We denote the set of all -dimensional vectors by  Consequently, if  is a 3-dimensional vector, we
say that  is in 

While it can be difficult to visualize a four-dimensional vector, we can draw a simple picture describing the two-dimensional vector

Figure : A graphical representation of the vector  

In this chapter, we will uncover geometric information in a matrix like this, which will lead to an intuitive understanding of the
insights we previously gained into the solutions of linear systems.

We think of  as describing a walk we take in the plane where we move two units horizontally and one unit vertically. Though we
allow ourselves to begin walking from any point in the plane, we will most frequently begin at the origin, in which case we arrive
at the the point  as shown in the figure.

There are two simple algebraic operations we can perform on vectors.

Scalar Multiplication

We multiply a vector  by a real number  by multiplying each of the components of  by  For instance,

The real number  is called a scalar.

Vector Addition

We add two vectors of the same dimension by adding their components. For instance,

2x+y = 1,
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Preview Activity 2.1.1. Scalar Multiplication and Vector Addition.

Suppose that

1. Find expressions for the vectors

and sketch them below.

Figure : Sketch the vectors on this grid.

What geometric effect does scalar multiplication have on a vector? Also, describe the effect multiplying by a negative scalar
has.
Sketch the vectors  below.

Figure : Sketch the vectors on this grid.

Consider vectors that have the form  where  is any scalar. Sketch a few of these vectors when, say, 
and  Give a geometric description of this set of vectors.
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Figure : Sketch the vectors on this grid.

If  and  are two scalars, then the vector

is called a linear combination of the vectors  and  Find the vector that is the linear combination when  and 

Can the vector  be represented as a linear combination of  and 

The preview activity demonstrates how we may interpret scalar multiplication and vector addition geometrically.

First, we see that scalar multiplication has the effect of stretching or compressing a vector. Multiplying by a negative scalar changes
the direction of the vector. In either case, we see that scalar multiplying the vector  produces a new vector on the line defined by 

 as shown in Figure .

Figure : Scalar multiples of the vector 

To understand the sum  we imagine walking from the origin with the appropriate horizontal and vertical changes given by 
 From there, we continue our walk using the horizontal and vertical changes prescribed by  after which we arrive at the sum 

 This is illustrated on the left of Figure  where the tail of  is placed on the tip of 
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Figure : Vector addition as a simple walk in the plane is illustrated on the left. The vector sum represented as the diagonal of a
parallelogram is on the right

Alternatively, we may construct the parallelogram with  and  as two sides. The sum is then the diagonal of the parallelogram, as
illustrated on the right of Figure .

We have now seen that the set of vectors having the form  is a line. To form the set of vectors  we can begin with the
vector  and add multiples of  Geometrically, this means that we begin from the tip of  and move in a direction parallel to 
The effect is to translate the line  by the vector  as shown in Figure .

Figure : The set of vectors  form a line.

At times, it will be useful for us to think of vectors and points interchangeably. That is, we may wish to think of the vector  as

describing the point  and vice-versa. When we say that the vectors having the form  form a line, we really mean that
the tips of the vectors all lie on the line passing through  and parallel to 

Observation 2.1.4.

Even though these vector operations are new, it is straightforward to check that some familiar properties hold.

Commutativity

Distributivity

Sage can perform scalar multiplication and vector addition. We define a vector using the vector  command; then *  and +
denote scalar multiplication and vector addition.

v = vector([3,1]) 

w = vector([-1,2]) 
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print (2*v) 

print (v + w) 

2.1.2 Linear combinations
Linear combinations, which we encountered in the preview activity, provide the link between vectors and linear systems. In
particular, they will help us apply geometric intuition to problems involving linear systems.

The linear combination of the vectors  with scalars  is the vector

The scalars  are called the weights of the linear combination.

Activity 2.1.2.

In this activity, we will look at linear combinations of a pair of vectors,

with weights  and 

The diagram below can be used to construct linear combinations whose weights  and  may be varied using the sliders at the top.
The vectors  and  are drawn in gray while the linear combination

is in red.

Figure : Linear combinations of vectors 
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1. The weight  is initially set to 0. Explain what happens as you vary  with  How is this related to scalar multiplication?
2. What is the linear combination of  and  when  and  You may find this result using the diagram, but you

should also verify it by computing the linear combination.
3. Describe the vectors that arise when the weight  is set to 1 and  is varied. How is this related to our investigations in the

preview activity?

4. Can the vector  be expressed as a linear combination of  and  If so, what are weights  and 

5. Can the vector  be expressed as a linear combination of  and  If so, what are weights  and 

6. Verify the result from the previous part by algebraically finding the weights  and  that form the linear combination 

7. Can the vector  be expressed as a linear combination of  and  What about the vector 

8. Are there any two-dimensional vectors that cannot be expressed as linear combinations of  and 

This activity illustrates how linear combinations are constructed geometrically: the linear combination  is found by
walking along  a total of  times followed by walking along  a total of  times. When one of the weights is held constant while
the other varies, the vector moves along a line.

The previous activity also shows that questions about linear combinations lead naturally to linear systems. Let's ask how we

can describe the vector  as a linear combination of  and  We need to find weights  and  such that

Equating the components of the vectors on each side of the equation, we arrive at the linear system

This means that  is a linear combination of  and  if this linear system is consistent.

To solve this linear system, we construct its corresponding augmented matrix and find its reduced row echelon form.

which tells us the weights  and  that is,

In fact, we know even more because the reduced row echelon matrix tells us that these are the only possible weights.
Therefore,  may be expressed as a linear combination of  and  in exactly one way.

This example demonstrates the connection between linear combinations and linear systems. Asking if a vector  is a linear
combination of vectors  is the same as asking whether an associated linear system is consistent.
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In fact, we may easily describe the linear system we obtain in terms of the vectors   and  Notice that the augmented matrix

we found was  The first two columns of this matrix are  and  and the rightmost column is  As shorthand,

we will write this augmented matrix replacing the columns with their vector representation:

This fact is generally true so we record it in the following proposition.

The vector  is a linear combination of the vectors  if and only if the linear system corresponding to the
augmented matrix

is consistent. A solution to this linear system gives weights  such that

The next activity puts this proposition to use.

Activity 2.1.3. Linear combinations and linear systems.
1. Given the vectors

we ask if  can be expressed as a linear combination of   and  Rephrase this question by writing a linear system for
the weights   and  and use the Sage cell below to answer this question.

2. Consider the following linear system.

Identify vectors    and  and rephrase the question "Is this linear system consistent?" by asking "Can  be expressed
as a linear combination of   and "

3. Consider the vectors

Can  be expressed as a linear combination of   and  If so, can  be written as a linear combination of these vectors
in more than one way?

4. Considering the vectors   and  from the previous part, can we write every three-dimensional vector  as a linear
combination of these vectors? Explain how the pivot positions of the matrix  help answer this question.

5. Now consider the vectors
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Can  be expressed as a linear combination of   and  If so, can  be written as a linear combination of these vectors
in more than one way?

6. Considering the vectors   and  from the previous part, can we write every three-dimensional vector  as a linear
combination of these vectors? Explain how the pivot positions of the matrix  help answer this question.

Example 2.1.13.

Consider the vectors  and , as shown in Figure .

Figure : Vectors  and 

These vectors appear to lie on the same line, a fact that becomes apparent once we notice that . Intuitively, we think of
the linear combination

as the result of walking  times in the  direction and  times in the  direction. With these vectors, we are always walking along
the same line so it would seem that any linear combination of these vectors should lie on the same line. In addition, a vector that is

not on the line, say , should be not be expressible as a linear combination of  and .

We can verify this by checking

This shows that the associated linear system is inconsistent, which means that the vector  cannot be written as a linear

combination of  and .

Notice that the reduced row echelon form of the coefficient matrix

tells us to expect this. Since there is not a pivot position in the second row of the coefficient matrix , it is possible for a
pivot position to appear in the rightmost column of the augmented matrix

for some choice of .

Summary
This section has introduced vectors, linear combinations, and their connection to linear systems.

There are two operations we can perform with vectors: scalar multiplication and vector addition. Both of these operations have
geometric meaning.
Given a set of vectors and a set of scalars we call weights, we can create a linear combination using scalar multiplication and
vector addition.
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A solution to the linear system whose augmented matrix is

is a set of weights that expressex  as a linear combination of 

Exercises 2.1.4Exercises

Consider the vectors

1. Sketch these vectors below.

2. Compute the vectors    and  and add them into the sketch above.
3. Sketch below the set of vectors having the form  where  is any scalar.

4. Sketch below the line  Then identify two vectors  and  so that this line is described by  Are there
other choices for the vectors  and 
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Shown below are two vectors  and 

 

1. Express the labeled points as linear combinations of  and 
2. Sketch the line described parametrically as 

Consider the vectors

1. Find the linear combination with weights   and 

2. Can you write the vector  as a linear combination of   and  If so, describe all the ways in which you can

do so.

3. Can you write the vector  as a linear combination using just the first two vectors   If so, describe all the

ways in which you can do so.
4. Can you write  as a linear combination of  and  If so, in how many ways?

Nutritional information about a breakfast cereal is printed on the box. For instance, one serving of Frosted Flakes has 111
calories, 140 milligrams of sodium, and 1.2 grams of protein. We may represent this as a vector

One serving of Cocoa Puffs has 120 calories, 105 milligrams of sodium, and 1.0 grams of protein.

1. Write the vector describing the nutritional content of Cocoa Puffs.
2. Suppose you eat  servings of Frosted Flakes and  servings of Cocoa Puffs. Use the language of vectors and linear

combinations to express the total amount of calories, sodium, and protein you have consumed.
3. How many servings of each cereal have you eaten if you have consumed 342 calories, 385 milligrams of sodium, and 3.4

grams of protein.
4. Suppose your sister consumed 250 calories, 200 milligrams of sodium, and 4 grams of protein. What can you conclude

about her breakfast?
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Consider the vectors

1. Can you express the vector  as a linear combination of   and  If so, describe all the ways in which

you can do so.

2. Can you express the vector  as a linear combination of   and  If so, describe all the ways in which you

can do so.
3. Show that  can be written as a linear combination of  and 
4. Explain why any linear combination of   and 

can be rewritten as a linear combination of just  and 

Consider the vectors

For what value(s) of  if any, can the vector  be written as a linear combination of  and 

Provide a justification for your response to the following statements or questions.

1. True of false: Given two vectors  and  the vector  is a linear combination of  and 
2. True or false: Suppose  is a collection of -dimensional vectors and that the matrix 

has a pivot position in every row. If  is any -dimensional vector, then  can be written as a linear combination of 

3. True or false: Suppose  is a collection of -dimensional vectors and that the matrix 
has a pivot position in every row and every column. If  is any -dimensional vector, then  can be written as a linear
combination of  in exactly one way.

4. True or false: It is possible to find two 3-dimensional vectors  and  such that every 3-dimensional vector can be
written as a linear combination of  and 

A theme that will later unfold concerns the use of coordinate systems. We can identify the point  with the tip of the vector

 drawn emanating from the origin. We can then think of the usual Cartesian coordinate system in terms of linear

combinations of the vectors
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Figure : The usual Cartesian coordinate system, defined by the vectors  and  is shown on the left along with the
representation of the point  The right shows a nonstandard coordinate system defined by vectors  and 

The point  is identified with the vector

If we have vectors

we may define a new coordinate system, such that a point  will correspond to the vector

For instance, the point  is shown on the right side of Figure 2.1.8

1. Write the point  in standard coordinates; that is, find  and  such that

2. Write the point  in the new coordinate system; that is, find  and  such that

3. Convert a general point  expressed in the new coordinate system, into standard Cartesian coordinates 
4. What is the general strategy for converting a point from standard Cartesian coordinates  to the new coordinates 

 Actually implementing this strategy in general may take a bit of work so just describe the strategy. We will study
this in more detail later.

This page titled 2.1: Vectors and Linear Combinations is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by David
Austin via source content that was edited to the style and standards of the LibreTexts platform.
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2.2: Matrix multiplication and linear combinations
    The previous section introduced vectors and linear combinations and demonstrated how they provide a means of thinking about
linear systems geometrically. In particular, we saw that the vector  is a linear combination of the vectors  if the
linear system corresponding to the augmented matrix

is consistent.

Our goal in this section is to introduction matrix multiplication, another algebraic operation that connects linear systems and linear
combinations.

2.2.1 Matrices
We first thought of a matrix as a rectangular array of numbers. When the number of rows is  and columns is  we say that the
dimensions of the matrix are  For instance, the matrix below is a  matrix:

We may also think of the columns of a matrix as a collection of vectors. For instance, the matrix above may be represented as

where

In this way, we see that our  matrix is the same as a collection of 4 vectors in 

This means that we may define scalar multiplication and matrix addition operations using the corresponding vector operations.

Preview Activity 2.2.1. Matrix operations.
1. Compute the scalar multiple

2. Suppose that  and  are two matrices. What do we need to know about their dimensions before we can form the sum 
3. Find the sum

4. The matrix  which we call the identity matrix is the  matrix whose entries are zero except for the diagonal entries,
which are 1. For instance,

If we can form the sum  what must be true about the matrix 

b , ,… ,v1 v2 vn

[ ]v1 v2 … vn b

m n,
m×n. 3 ×4
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⎢
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⎦
⎥

3×4 .R
3

a [ ] =v1 v2 … vn

[ ] +v1 v2 … vn

=
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[ ] .+v1 w1 +v2 w2 … +vn wn

−3 [ ] .
3

−4
1
3

0
−1

A B A+B?

+ .
⎡

⎣
⎢

0
1
3

−3
−2
4

⎤

⎦
⎥

⎡

⎣
⎢

4
−2
1

−1
2
1

⎤

⎦
⎥

,In n×n

= .I3
⎡

⎣
⎢

1
0
0

0
1
0

0
0
1

⎤

⎦
⎥

A+ ,In A?

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/82481?pdf
https://math.libretexts.org/Bookshelves/Linear_Algebra/Understanding_Linear_Algebra_(Austin)/02%3A_Vectors_matrices_and_linear_combinations/2.02%3A_Matrix_multiplication_and_linear_combinations


2.2.2 https://math.libretexts.org/@go/page/82481

5. Find the matrix  where

As this preview activity shows, both of these operations are relatively straightforward. Some care, however, is required when
adding matrices. Since we need the same number of vectors to add and since the vectors must be of the same dimension, two
matrices must have the same dimensions as well if we wish to form their sum.

The identity matrix will play an important role at various points in our explorations. It is important to note that it is a square matrix,
meaning it has an equal number of rows and columns, so any matrix added to it must be square as well. Though we wrote it as 
in the activity, we will often just write  when the dimensions are clear.

2.2.2 Matrix-vector multiplication and linear combinations

A more important operation will be matrix multiplication as it allows us to compactly express linear systems. For now, we will
work with the product of a matrix and vector, which we illustrate with an example.

Suppose we have the matrix  and vector  as given below.

Their product will be defined to be the linear combination of the columns of  using the components of  as weights. This
means that

Let's take note of the dimensions of the matrix and vectors. The two components of the vector  are weights used to form a
linear combination of the columns of  Since  has two components,  must have two columns. In other words, the number
of columns of  must equal the dimension of the vector 

In the same way, the columns of  are 3-dimensional so any linear combination of them is 3-dimensional as well. Therefore, 
 will be 3-dimensional.

We then see that if  is a  matrix,  must be a 2-dimensional vector and  will be 3-dimensional.

More generally, we have the following definition.

The product of a matrix  by a vector  will be the linear combination of the columns of  using the components of  as
weights.

If  is an  matrix, then  must be an -dimensional vector, and the product  will be an -dimensional vector. If

A−2I3

A = .
⎡

⎣
⎢
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2
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⎤
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 Example 2.2.1
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then

The next activity introduces some properties of matrix multiplication.

Activity 2.2.2. Matrix-vector multiplication.
1. Find the matrix product

2. Suppose that  is the matrix

If  is defined, what is the dimension of the vector  and what is the dimension of 

3. A vector whose entries are all zero is denoted by  If  is a matrix, what is the product 

4. Suppose that  is the identity matrix and  Find the product  and explain why  is called the

identity matrix.
5. Suppose we write the matrix  in terms of its columns as

If the vector  what is the product 

6. Suppose that

Is there a vector  such that 

Multiplication of a matrix  and a vector is defined as a linear combination of the columns of  However, there is a shortcut for
computing such a product. Let's look at our previous example and focus on the first row of the product.

To find the first component of the product, we consider the first row of the matrix. We then multiply the first entry in that row by
the first component of the vector, the second entry by the second component of the vector, and so on, and add the results. In this

A = [ ] ,x = ,v1 v2 … vn
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way, we see that the third component of the product would be obtained from the third row of the matrix by computing 

You are encouraged to evaluate Item a using this shortcut and compare the result to what you found while completing the previous
activity.

Activity 2.2.3.

In addition, Sage can find the product of a matrix and vector using the *  operator. For example,

A = matrix(2,2,[1,2,2,1]) 

v = vector([3,-1]) 

A*v 

1. Use Sage to evaluate the product Item a yet again.
2. In Sage, define the matrix and vectors

3. What do you find when you evaluate 
4. What do you find when you evaluate  and  and compare your results?
5. What do you find when you evaluate  and  and compare your results?

6. If  is the  identity matrix, what is the product 

This activity demonstrates several general properties satisfied by matrix multiplication that we record here.

If  is a matrix,  and  vectors, and  a scalar, then

2.2.3 Matrix-vector multiplication and linear systems
So far, we have begun with a matrix  and a vector  and formed their product  We would now like to turn this around:
beginning with a matrix  and a vector  we will ask if we can find a vector  such that  This will naturally lead back to
linear systems.

To see the connection between the matrix equation  and linear systems, let's write the matrix  in terms of its columns 
and  in terms of its components.

We know that the matrix product  forms a linear combination of the columns of  Therefore, the equation  is merely a
compact way of writing the equation for the weights 

We have seen this equation before: Remember that Proposition 2.1.7 says that the solutions of this equation are the same as the
solutions to the linear system whose augmented matrix is

2(3)+3(1) = 9.

A = , 0 = [ ] ,v = [ ] ,w = [ ] .
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 Proposition 2.2.3. Linearity of matrix multiplication.

A v w c

A0 = 0.
A(cv) = cAv.
A(v+w) = Av+Aw.

A x Ax = b.
A b, x Ax = b.

Ax = b A vi

x

A = [ ] ,x = .v1 v2 …vn

⎡

⎣

⎢
⎢⎢⎢

c1

c2

⋮
cn

⎤

⎦

⎥
⎥⎥⎥

Ax A. Ax = b

:ci

+ +…+ = b.c1v1 c2v2 cnvn

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/82481?pdf


2.2.5 https://math.libretexts.org/@go/page/82481

This gives us three different ways of looking at the same solution space.

If  and  then the following are equivalent.

The vector  satisfies 
The vector  is a linear combination of the columns of  with weights 

The components of  form a solution to the linear system corresponding to the augmented matrix

When the matrix  we will frequently write

and say that we augment the matrix  by the vector 

We may think of  as merely giving a notationally compact way of writing a linear system. This form of the equation,
however, will allow us to focus on important features of the system that determine its solution space.

Describe the solution space of the equation

By Proposition 2.2.4, the solution space to this equation is the same as the equation

which is the same as the linear system corresponding to

We will study the solutions to this linear system by finding the reduced row echelon form of the augmented matrix:

This gives us the system of equations

[ ] .v1 v2 … vn b

 Proposition 2.2.4.
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The variable  is free so we may write the solution space parametrically as

Since we originally asked to describe the solutions to the equation  we will express the solution in terms of the vector 

This shows that the solutions  may be written in the form  for appropriate vectors  and  Geometrically, the
solution space is a line in  through  moving parallel to 

Activity 2.2.4. The equation .
1. Consider the linear system

Identify the matrix  and vector  to express this system in the form 

2. If  and  are as below, write the linear system corresponding to the equation 

and describe the solution space.

3. Describe the solution space of the equation

4. Suppose  is an  matrix. What can you guarantee about the solution space of the equation 

2.2.4 Matrix products

In this section, we have developed some algebraic operations on matrices with the aim of simplifying our description of linear
systems. We will now introduce a final operation, the product of two matrices, that will become important when we study linear
transformations in Section 2.5.

Given matrices  and  we will form their product  by first writing  in terms of its columns:

We then define

Given the matrices

we have
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It is important to note that we can only multiply matrices if the dimensions of the matrices are compatible. More specifically, when
constructing the product  the matrix  multiplies the columns of  Therefore, the number of columns of  must equal the
number of rows of  When this condition is met, the number of rows of  is the number of rows of  and the number of
columns of  is the number of columns of 

Activity 2.2.5.

Consider the matrices

1. Suppose we want to form the product  Before computing, first explain how you know this product exists and then explain
what the dimensions of the resulting matrix will be.

2. Compute the product 
3. Sage can multiply matrices using the *  operator. Define the matrices  and  in the Sage cell below and check your work by

computing 
4. Are you able to form the matrix product  If so, use the Sage cell above to find  Is it generally true that 
5. Suppose we form the three matrices.

Compare what happens when you compute  and  State your finding as a general principle.

6. Compare the results of evaluating  and  and state your finding as a general principle.
7. When we are dealing with real numbers, we know if  and  then  Define matrices

and compute  and 

If  is it necessarily true that 
8. Again, with real numbers, we know that if  then either  or  Define

and compute 

If  is it necessarily true that either  or 

This activity demonstrated some general properties about products of matrices, which mirror some properties about operations with
real numbers.

Properties of Matrix-matrix Multiplication.

If   and  are matrices such that the following operations are defined, it follows that

Associativity:

Distributivity:

AB = [ ]= .A( )
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A = [ ] ,B = [ ] ,C = [ ]
1
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0
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At the same time, there are a few properties that hold for real numbers that do not hold for matrices.

Things to be careful of.

The following properties hold for real numbers but not for matrices.

Commutativity:

It is not generally true that 

Cancellation:

It is not generally true that  implies that 

Zero divisors:

It is not generally true that  implies that either  or 

Summary

In this section, we have found an especially simple way to express linear systems using matrix multiplication.

If  is an  matrix and  an -dimensional vector, then  is the linear combination of the columns of  using the
components of  as weights. The vector  is -dimensional.
The solution space to the equation  is the same as the solution space to the linear system corresponding to the

augmented matrix 

If  is an  matrix and  is an  matrix, we can form the product  which is an  matrix whose columns are
the products of  and the columns of 

Exercises 2.2.6Exercises

Consider the system of linear equations

1. Find the matrix  and vector  that expresses this linear system in the form 
2. Give a description of the solution space to the equation 

Suppose that  is a  matrix. If  is defined, what is the dimension of  What is the dimension of 

Suppose that  is a  matrix whose columns are  and  that is,

1. What is the dimension of the vectors  and 

2. What is the product  in terms of  and  What is the product  What is the product 

3. Suppose that

(A+B)C = AC +BC.

AB = BA.

AB = AC B = C.

AB = 0 A = 0 B = 0.

A m×n x n Ax A

x Ax m

Ax = b

[ ] .A b

A m×n B n×p AB, m×p

A B.

 1

.
x

3x

−x

+
+
2y

2y

−
+
+

z

2z

4z

=
=
=

1
7

−3

A b Ax = b.
Ax = b.

 2

A 135×2201 Ax x? Ax?

 3

A 3×2 v1 ;v2

A = [ ] .v1 v2

v1 ?v2

A( )
1
0

v1 ?v2 A( ) ?
0
1

A( ) ?
2
3

A( ) = ,A( ) = .
1
0

⎛

⎝
⎜

3
−2
1

⎞

⎠
⎟

0
1

⎛

⎝
⎜

0
3
2

⎞

⎠
⎟
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What is the matrix 

Shown below are vectors  and  Suppose that the matrix  is

 

Figure : Two vectors  and  that form the columns of the matrix 

1. What are the dimensions of the matrix 
2. On the plot above, indicate the vectors

3. Find all vectors  such that 
4. Find all vectors  such that 

Suppose that

1. Describe the solution space to the equation 
2. Find a  matrix  with no zero entries such that 

Consider the matrix

1. Find the product  where

2. Give a description of the vectors  such that

A?

 4

v1 .v2 A

A = [ ] .v1 v2

2.2.1 v1 .v2 A

A?

A( ) ,A( ) ,A( ) .
1
0

2
3

0
−3

x Ax = b.
x Ax = 0.

 5

A = .
⎡

⎣
⎢

1
2

−1

0
2

−3

2
2
1

⎤

⎦
⎥

Ax = 0.
3 ×2 B AB = 0.

 6

A = .
⎡

⎣
⎢

1
2
1

2
3
0

−4
0
4

−4
1
6

⎤

⎦
⎥

Ax

x = .

⎛

⎝

⎜⎜⎜

1
−2
0
2

⎞

⎠

⎟⎟⎟

x
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3. Find the reduced row echelon form of  and identify the pivot positions.
4. Can you find a vector  such that  is inconsistent?
5. For a general 3-dimensional vector  what can you say about the solution space of the equation 

The operations that we perform in Gaussian elimination can be accomplished using matrix multiplication. This observation is
the basis of an important technique that we will investigate in a subsequent chapter.

Let's consider the matrix

1. Suppose that

Verify that  is the matrix that results when the second row of  is scaled by a factor of 7. What matrix  would scale
the third row by -3?

2. Suppose that

Verify that  is the matrix that results from interchanging the first and second rows. What matrix  would interchange
the first and third rows?

3. Suppose that

Verify that  is the matrix that results from multiplying the first row of  by  and adding it to the second row. What
matrix  would multiply the first row by 3 and add it to the third row?

4. When we performed Gaussian elimination, our first goal was to perform row operations that brought the matrix into a
triangular form. For our matrix  find the row operations needed to find a row equivalent matrix  in triangular form. By
expressing these row operations in terms of matrix multiplication, find a matrix  such that 

In this exercise, you will construct the inverse of a matrix, a subject that we will investigate more fully in the next chapter.
Suppose that  is the  matrix:

1. Find the vectors  and  such that the matrix  satisfies

Ax = .
⎛

⎝
⎜

−1
15
17

⎞

⎠
⎟

A

b Ax = b

b, Ax = b?

 7

A = .
⎡

⎣
⎢

1
2

−3

2
0
2

−1
2
3

⎤

⎦
⎥

S = .
⎡

⎣
⎢

1
0
0

0
7
0

0
0
1

⎤

⎦
⎥

SA A S

P = .
⎡

⎣
⎢

0
1
0

1
0
0

0
0
1

⎤

⎦
⎥

P A P

= .L1

⎡

⎣
⎢

1
−2
0

0
1
0

0
0
1

⎤

⎦
⎥

AL1 A −2
L2

A, U

L LA = U.

 8

A 2×2

A = [ ] .
3

−2
−2
1

b1 b2 B = [ ]b1 b2
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2. In general, it is not true that  Check that it is true, however, for the specific  and  that appear in this
problem.

3. Suppose that  What do you find when you evaluate 

4. Suppose that we want to solve the equation  We know how to do this using Gaussian elimination; let's use our
matrix  to find a different way:

In other words, the solution to the equation  is 

Consider the equation  Find the solution in two different ways, first using Gaussian elimination and then as 

 and verify that you have found the same result.

Determine whether the following statements are true or false and provide a justification for your response.

1. If  is defined, then the number of components of  equals the number of rows of 
2. The solution space to the equation  is equivalent to the solution space to the linear system whose augmented matrix

is 

3. If a linear system of equations has 8 equations and 5 unknowns, then the dimensions of the matrix  in the corresponding
equation  is 

4. If  has a pivot in every row, then every equation  is consistent.
5. If  is a  matrix, then  is inconsistent for some vector 

Suppose that  is an  matrix and that the equation  has a unique solution for some vector 

1. What does this say about the pivots of the matrix  Write the reduced row echelon form of 
2. Can you find another vector  such that  is inconsistent?
3. What can you say about the solution space to the equation 
4. Suppose  Explain why every four-dimensional vector can be written as a linear combination of

the vectors    and  in exactly one way.

Define the matrix

1. Describe the solution space to the homogeneous equation  What does this solution space represent geometrically?

AB = I = [ ] .
1
0

0
1

AB = BA. A B

x =( ) .
x1

x2
Ix?

Ax = b.
B

.

Ax

B(Ax)
(BA)x

Ix

x

= b

= Bb

= Bb

= Bb

= Bb

Ax = b x = Bb.

Ax =( ) .
5
−2

x = Bb,

 9

Ax x A.
Ax = b

[ ] .A b

A

Ax = b 5×8.
A Ax = b

A 9×5 Ax = b b.

 10

A 4×4 Ax = b b.

A? A.
c Ax = c

Ax = 0?
A = [ ] .v1 v2 v3 v4

,v1 ,v2 ,v3 v4

 11

A = .
⎡

⎣
⎢

1
−2
3

2
1
1

4
−3
7

⎤

⎦
⎥

Ax = 0.
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2. Describe the solution space to the equation  where  What does this solution space represent

geometrically and how does it compare to the previous solution space?
3. We will now explain the relationship between the previous two solution spaces. Suppose that  is a solution to the

homogeneous equation; that is  We will also suppose that  is a solution to the equation  that is, 

Use the Linearity Principle expressed in Proposition 2.2.3 to explain why  is a solution to the equation 
You may do this by evaluating 

That is, if we find one solution  to an equation  we may add any solution to the homogeneous equation to 
and still have a solution to the equation  In other words, the solution space to the equation  is given by
translating the solution space to the homogeneous equation by the vector 

Suppose that a city is starting a bicycle sharing program with bicycles at locations  and  Bicycles that are rented at one
location may be returned to either location at the end of the day. Over time, the city finds that 80% of bicycles rented at
location  are returned to  with the other 20% returned to  Similarly, 50% of bicycles rented at location  are returned to 

 and 50% to 

To keep track of the bicycles, we form a vector

where  is the number of bicycles at location  at the beginning of day  and  is the number of bicycles at  The
information above tells us

where

1. Let's check that this makes sense.

1. Suppose that there are 1000 bicycles at location  and none at  on day 1. This means we have  Find

the number of bicycles at both locations on day 2 by evaluating 
2. Suppose that there are 1000 bicycles at location  and none at  on day 1. Form the vector  and determine the

number of bicycles at the two locations the next day by finding 
2. Suppose that one day there are 1050 bicycles at location  and 450 at location  How many bicycles were there at each

location the previous day?
3. Suppose that there are 500 bicycles at location  and 500 at location  on Monday. How many bicycles are there at the

two locations on Tuesday? on Wednesday? on Thursday?

This problem is a continuation of the previous problem.

1. Let us define vectors

Show that

Ax = b b = .
⎛

⎝
⎜

−3
−4
1

⎞

⎠
⎟

xh

A = 0.xh xp Ax = b;
A = b.xp

+xh xp Ax = b.
A( + ).xh xp

xp Ax = b, xp

Ax = b. Ax = b

.xp

 12

B C.

B B C. C

B C.

=( )xk

Bk

Ck

Bk B k Ck C.

= Axk+1 xk

A = [ ] .
0.8
0.2

0.5
0.5

B C =( ) .x1
1000
0

= A .x2 x1

C B x1

= A .x2 x1

B C.

B C

 13

=( ) , =( ) .v1
5
2

v2
−1
1
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2. Suppose that  where  and  are scalars. Use the Linearity Principle expressed in Proposition 2.2.3 to
explain why

3. Continuing in this way, explain why

4. Suppose that there are initially 500 bicycles at location  and 500 at location  Write the vector  and find the scalars 
and  such that 

5. Use the previous part of this problem to determine   and 
6. After a very long time, how are all the bicycles distributed?

This page titled 2.2: Matrix multiplication and linear combinations is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by David Austin via source content that was edited to the style and standards of the LibreTexts platform.
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= +c1v1 0.32c2v2
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2.3: The span of a set of vectors
    Our work in this chapter enables us to rewrite a linear system in the form  Besides being a more compact way of
expressing a linear system, this form allows us to think about linear systems geometrically since matrix multiplication is defined in
terms of linear combinations of vectors.

We now return, in this and the next section, to the two fundamental questions asked in Question 1.4.2.

Existence: Is there a solution to the equation 
Uniqueness: If there is a solution to the equation  is it unique?

In this section, we focus on the existence question and introduce the concept of span to provide a framework for thinking about it
geometrically.

Preview Activity 2.3.1. The existence of solutions.

1. If the equation  is inconsistent, what can we say about the pivots of the augmented matrix 

2. Consider the matrix 

If  is the equation  consistent? If so, find a solution.

3. If  is the equation  consistent? If so, find a solution.

4. Identify the pivot positions of 
5. For our two choices of the vector  one equation  has a solution and the other does not. What feature of the pivot

positions of the matrix  tells us to expect this?

2.3.1 The span of a set of vectors
In the preview activity, we considered a  matrix  and found that the equation  has a solution for some vectors  in 

 and has no solution for others. We will introduce a concept called span that describes the vectors  for which there is a
solution.

Since we would like to think about this concept geometrically, we will consider an  matrix  as being composed of 
vectors in  that is,

Remember that Proposition 2.2.4 says that the equation  is consistent if and only if we can express  as a linear
combination of 

The span of a set of vectors  is the set of all linear combinations of the vectors.

In other words, the span of  consists of all the vectors  for which the equation

is consistent.

The span of a set of vectors has an appealing geometric interpretation. Remember that we may think of a linear combination as a
recipe for walking in  We first move a prescribed amount in the direction of  then a prescribed amount in the direction of 

 and so on. As the following activity will show, the span consists of all the places we can walk to.

Ax = b.

Ax = b?

Ax = b,

Ax = b [ ]?A b

A

A = .
⎡

⎣
⎢

1

−2

1

0

2

1

−2

2

−3

⎤

⎦
⎥

b = ,
⎛

⎝
⎜

2

2

5

⎞

⎠
⎟ Ax = b

b = ,
⎛

⎝
⎜

2

2

6

⎞

⎠
⎟ Ax = b

A.

b, Ax = b

A

3×3 A Ax = b b

R
3

b

m×n A n

;R
m

A = [ ] .v1 v2 … vn

Ax = b b

, ,… , .v1 v2 vn

 Definition 2.3.1

, ,… ,v1 v2 vn

, ,… ,v1 v2 vn b
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Activity 2.3.2.

Let's look at two examples to develop some intuition for the concept of span.

a. First, we will consider the set of vectors

 
The diagram below can be used to construct linear combinations whose weights  and  may be varied using the sliders at the top.
The vectors  and  are drawn in gray while the linear combination

is in red.

Figure :  An interactive diagram for constructing linear combinations of the vectors v and w.

1. What vector is the linear combination of  and  with weights:

 and 
 and 
 and 

2. Can the vector  be expressed as a linear combination of  and  Is the vector  in the span of  and 

3. Can the vector  be expressed as a linear combination of  and  Is the vector  in the span of  and 

4. Describe the set of vectors in the span of  and 

5. For what vectors  does the equation

have a solution? 
 

v =( ) ,w =( ) .
1

2

−2

−4

a b

v w

av+bw (2.3.1)

2.3.1

v w

a = 2 b = 0?

a = 1 b = 1?

a = 0 b =−1?

( )
2

4
v w? ( )

2

4
v w?

( )
3

0
v w? ( )

3

0
v w?

v w.

b

[ ]x = b
1

2

−2

−4
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b. We will now look at an example where

\begin{equation*} \mathbf v = \twovec{2}{1}, \mathbf w = \twovec{1}{2}\text{.} \end{equation* 
 

Figure : An interactive diagram for constructing linear combinations of the vectors  and .

 

In a similar way, the diagram below can be used to construct linear combinations 

1. What vector is the linear combination of \(\mathbf v\) and \(\mathbf w\) with weights:

 and 
 and \(b=1\text{?}\
 and 

2. Can the vector  be expressed as a linear combination of  and  Is the vector  in the span of  and 

3. Can the vector  be expressed as a linear combination of  and  Is the vector  in the span of  and 

4. Describe the set of vectors in the span of  and 

5. For what vectors  does the equation

have a solution?

Let's consider the first example in the previous activity. Here, the vectors  and  are scalar multiples of one another, which means
that they lie on the same line. When we form linear combinations, we are allowed to walk only in the direction of  and  which
means we are constrained to stay on this same line. Therefore, the span of  and  consists only of this line.

Figure 2.3.2.

With this choice of vectors  and  all linear combinations lie on the line shown. This line, therefore, is the span of the vectors 
and 

2.3.21 v w

av+bw.

a = 2 b = 0?

a = 1

a = 0 b =−1?

( )
−2

2
v w? ( )

−2

2
v w?

( )
3

0
v w? ( )

3

0
v w?

v w.

b

[ ]x = b
2

1

1

2

v w

v w,

v w

v w, v

w.
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We may see this algebraically since the vector  Consequently, when we form a linear combination of  and  we see
that

Therefore, any linear combination of  and  reduces to a scalar multiple of  and we have seen that the scalar multiples of a
nonzero vector form a line.

In the second example, however, the vectors are not scalar multiples of one another, and we see that we can construct any vector in 
 as a linear combination of  and 

Figure 2.3.3.

With this choice of vectors  and  we are able to form any vector in  as a linear combination. Therefore, the span of the
vectors  and  is the entire plane, 

Once again, we can see this algebraically. Asking if the vector  is in the span of  and  is the same as asking if the linear system

is consistent.

The augmented matrix for this system is

Since it is impossible to obtain a pivot in the rightmost column, we know that this system is consistent no matter what the vector 
is. Therefore, every vector  in  is in the span of  and 

In this case, notice that the reduced row echelon form of the matrix

has a pivot in every row. When this happens, it is not possible for any augmented matrix to have a pivot in the rightmost column.
Therefore, the linear system is consistent for every vector  which implies that the span of  and  is 

Notation 2.3.4.

We will denote the span of the set of vectors  by 

2.3.2 Pivot positions and span

In the previous activity, we saw two examples, both of which considered two vectors  and  in  In one example, the 
 consisted of a line; in the other, the  We would like to be able to distinguish these two situations

in a more algebraic fashion. After all, we will need to be able to deal with vectors in many more dimensions where we will not be
able to draw pictures.

The key is found by looking at the pivot positions of the matrix  In the first example, the matrix whose
columns are  and  is

which has exactly one pivot position. We found the  to be a line, in this case.

In the second example, this matrix is

w =−2v. v w,

.
av+bw = av+b(−2v)

= (a−2b)v

v w v,

R
2 v w.

v w, R2

v w .R2

b v w

[ ]xv w

[ ]x
2
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2

= b

= b

[ ] ∼ [ ] .
2
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2

∗

∗

1
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b R
2 v w.
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b, v w .R
2
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2
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v w
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1
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which has two pivot positions. Here, we found 

These examples point to the fact that the size of the span is related to the number of pivot positions. We will develop this idea more
fully in Section 2.4 and Section 3.5. For now, however, we will examine the possibilities in 

Activity 2.3.3.

In this activity, we will look at the span of sets of vectors in 

1. Suppose  Give a written description of  and a rough sketch of it below. 

Figure : Copy and Paste Caption here. (Copyright; author via source)

2. Consider now the two vectors

Sketch the vectors below. Then give a written description of  and a rough sketch of it below.

Let's now look at this algebraically by writing write  Determine the conditions on   and  so that  is in 

 by considering the linear system

or

Explain how this relates to your sketch of 

3. Consider the vectors

1. Is the vector  in 
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2. Is the vector  in 

3. Give a written description of 
4. Consider the vectors

Form the matrix  and find its reduced row echelon form.

What does this tell you about 
5. If a set of vectors  spans  what can you say about the pivots of the matrix 
6. What is the smallest number of vectors such that 

This activity shows us the types of sets that can appear as the span of a set of vectors in 

First, with a single vector, all linear combinations are simply scalar multiples of that vector, which creates a line.

Figure :The span of a single nonzero vector is a line.

 
 Notice that the matrix formed by this vector has one pivot, just as in our earlier example in  

 
 
When we consider linear combinations of the vectors

we must obtain vectors of the form

Since the third component is zero, these vectors form the plane 
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Figure :  The span of these two vectors in  is a plane. 

Notice here that the matrix composed of the vectors has two pivot positions.

 
 
Similarly, the span of the vectors

will form a plane.

We saw one vector  that was not in  and one that is.

Once again, the matrix

has two pivot positions.

Finally, we looked at a set of vectors whose matrix

has three pivot positions, one in every row. This is significant because it means that if we consider an augmented matrix

there cannot be a pivot position in the rightmost column. This linear system is consistent for every vector  which tells us that 

To summarize, we looked at the pivot positions in the matrix whose columns were the vectors  We found that with

one pivot position, the span was a line.
two pivot positions, the span was a plane.
three pivot positions, the span was 

Once again, we will develop these ideas more fully in the next and subsequent sections. However, we saw that, when considering
vectors in  a pivot position in every row implied that the span of the vectors is  The same reasoning applies more generally.
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Suppose we have vectors  in  Then  if and only if the matrix 
 has a pivot position in every row.

This tells us something important about the number of vectors needed to span  Suppose we have  vectors  that
span  The proposition tells us that the matrix  has a pivot position in every row, such as in this reduced
row echelon matrix.

Since a matrix can have at most one pivot position in a column, there must be at least as many columns as there are rows, which
implies that 

For instance, if we have a set of vectors that span  there must be at least 632 vectors in the set.

If a set of vectors span  there must be at least  vectors in the set.

This makes sense intuitively. We have thought about a linear combination of a set of vectors  as the result of walking
a certain distance in the direction of  followed by walking a certain distance in the direction of  and so on. If 

 this means that we can walk to any point in  using the directions  It makes sense
that we would need at least  directions to give us the flexibilty needed to reach any point in 

Because span is a concept that is connected to a set of vectors, we say, "The span of the set of vectors  is ...."
While it may be tempting to say, "The span of the matrix  is ...," we should instead say "The span of the columns of the
matrix  is ...."

Summary

We defined the span of a set of vectors and developed some intuition for this concept through a series of examples.

The span of a set of vectors  is the set of linear combinations of the vectors. We denote the span by 

A vector  is in  if an only if the linear system

is consistent.

If the  matrix

has a pivot in every row, then the span of these vectors is  that is, 

Any set of vectors that spans  must have at least  vectors.

Exercises 2.3.4Exercises

 Proposition 2.3.5.
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In this exercise, we will consider the span of some sets of two- and three-dimensional vectors.

1. Consider the vectors

1. Is  in 

2. Give a written description of 
2. Consider the vectors

1. Is the vector  in 

2. Is the vector  in 

3. Is the vector  in 

4. Give a written description of 

Provide a justification for your response to the following questions.

1. Suppose you have a set of vectors  Can you guarantee that  is in 
2. Suppose that  is an  matrix. Can you guarantee that the equation  is consistent?
3. What is 

For both parts of this exericse, give a written description of sets of the vectors  and include a sketch.

1. For which vectors  in  is the equation

consistent?

2. For which vectors  in  is the equation

consistent?

Consider the following matrices:
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=( ) , =( ) .v1
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Do the columns of  span  Do the columns of  span 

Determine whether the following statements are true or false and provide a justification for your response. Throughout, we will
assume that the matrix  has columns  that is,

1. If the equation  is consistent, then  is in 
2. The equation  is always consistent.
3. If    and  are vectors in  then their span is 
4. If  can be expressed as a linear combination of  then  is in 
5. If  is a  matrix, then the span of the columns of  is a set of vectors in 

This exercise asks you to construct some matrices whose columns span a given set.

1. Construct a  matrix whose columns span 
2. Construct a  matrix whose columns span a plane in 
3. Construct a  matrix whose columns span a line in 

Provide a justification for your response to the following questions.

1. Suppose that we have vectors in   whose span is  Can every vector  in  be written as a linear
combination of 

2. Suppose that we have vectors in   whose span is  Can every vector  in  be written uniquely as a
linear combination of 

3. Do the vectors

span 

4. Suppose that  span  What can you guarantee about the value of 
5. Can 17 vectors in  span 

The following observation will be helpful in this exericse. If we want to find a solution to the equation  we could
first find a solution to the equation  and then find a solution to the equation 

Suppose that  is a  matrix whose columns span  and  is a  matrix. In this case, we can form the product 

1. What are the dimensions of the product 
2. Can you guarantee that the columns of  span 
3. If you know additionally that the span of the columns of  is  can you guarantee that the columns of  span 
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Suppose that  is a  matrix and that, for some vector  the equation  has a unique solution.

1. What can you say about the pivot positions of 
2. What can you say about the span of the columns of 
3. If  is some other vector in  what can you conclude about the equation 
4. What can you about the solution space to the equation 

Suppose that

1. Is  a linear combination of  and  If so, find weights such that 
2. Show that a linear combination

can be rewritten as a linear combination of  and 

3. Explain why 

As defined in this section, the span of a set of vectors is generated by taking all possible linear combinations of those vectors.
This exericse will demonstrate the fact that the span can also be realized as the solution space to a linear system.

We will consider the vectors

1. Is every vector in  in  If not, describe the span.
2. To describe  as the solution space of a linear system, we will write

If  is in  then the linear system corresponding to the augmented matrix

must be consistent. This means that a pivot cannot occur in the rightmost column. Perform row operations to put this
augmented matrix into a triangular form. Now identify an equation in   and  that tells us when there is no pivot in the
rightmost column. The solution space to this equation describes 

3. In this example, the matrix formed by the vectors  has two pivot positions. Suppose we were to consider
another example in which this matrix had had only one pivot position. How would this have changed the linear system
describing 
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2.4: Linear independence
    In the previous section, we studied our question concerning the existence of solutions to a linear system by inquiring about the
span of a set of vectors. In particular, the span of a set of vectors  is the set of vectors  for which a solution to the
linear system  exists.

In this section, our focus turns to the uniqueness of solutions of a linear system, the second of our two fundamental questions asked
in Question 1.4.2. This will lead us to the concept of linear independence.

Linear dependence

In the previous section, we looked at some examples of the span of sets of vectors in  We saw one example in which the span of
three vectors formed a plane. In another, the span of three vectors formed  We would like to understand the difference in these
two examples.

Preview Activity 2.4.1.

Let's start this activity by studying the span of two different sets of vectors.

1. Consider the following vectors in 

Describe the span of these vectors, 

2. We will now consider a set of vectors that looks very much like the first set:

Describe the span of these vectors, 

3. Show that the vector  is a linear combination of  and  by finding weights such that

4. Explain why any linear combination of   and 

can be written as a linear combination of  and 

5. Explain why

The preview activity presents us with two similar examples that demonstrate quite different behaviors. In the first example, the
vectors   and  span  which we recognize because the matrix  has a pivot position in every row so that
Proposition 2.3.5 applies.

However, the second example is very different. In this case, the matrix  has only two pivot positions:

Let's look at this matrix and change our perspective slightly by considering it to be an augmented matrix.
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By doing so, we seek to express  as a linear combination of  and  In fact, the reduced row echelon form shows us that

Consequently, we can rewrite any linear cominbation of   and  so that

In other words, any linear combination of   and  may be written as a linear combination using only the vectors  and 
 Since the span of a set of vectors is simply the set of their linear combinations, this shows that

In other words, adding the vector  to the set of vectors  and  does not change the span.

Before exploring this type of behavior more generally, let's think about this from a geometric point of view. In the first example, we
begin with two vectors  and  and add a third vector 

Because the vector  is not a linear combination of  and  it provides a direction to move that, when creating linear
combinations, is independent of  and  The three vectors therefore span 

In the second example, however, the third vector  is a linear combination of  and  so it already lies in the plane formed by
these two vectors.

Since we can already move in this direction with just the first two vectors  and  adding  to the set does not enlarge the
span. It remains a plane.

With these examples in mind, we will make the following definition.

A set of vectors  is called linearly dependent if one of the vectors is a linear combination of the others.
Otherwise, the set of vectors is called linearly independent.

For the sake of completeness, we say that a set of vectors containing only one vector is linearly independent if that vector is not the
zero vector, 

How to recognize linear dependence

Activity 2.4.2.

We would like to develop a means of detecting when a set of vectors is linearly dependent. These questions will point the way.

1. Suppose we have five vectors in  that form the columns of a matrix having reduced row echelon form

Is it possible to write one of the vectors  as a linear combination of the others? If so, show explicitly how one
vector appears as a linear combination of some of the other vectors. Is this set of vectors linearly dependent or independent?

2. Suppose we have another set of three vectors in  that form the columns of a matrix having reduced row echelon form
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Is it possible to write one of these vectors    as a linear combination of the others? If so, show explicitly how one
vector appears as a linear combination of some of the other vectors. Is this set of vectors linearly dependent or independent?

3. By looking at the pivot positions, how can you determine whether the columns of a matrix are linearly dependent or
independent?

4. If one vector in a set is the zero vector  can the set of vectors be linearly independent?
5. Suppose a set of vectors in  has twelve vectors. Is it possible for this set to be linearly independent?

By now, it shouldn't be too surprising that the pivot positions play an important role in determining whether the columns of a
matrix are linearly dependent. Let's discuss the previous activity to make this clear.

Let's consider the first example from the activity in which we have vectors in  such that

Notice that the third column does not contain a pivot position. Let's focus on the first three columns and consider them as an
augmented matrix:

There is not a pivot in the rightmost column so we know that  can be written as a linear combination of  and  In fact,
we can read the weights from the augmented matrix:

This says that the set of vectors  is linearly dependent.

This points to the general observation that a set of vectors is linearly dependent if the matrix they form has a column without a
pivot.

In addition, the fifth column of this matrix does not contain a pivot meaning that  can be written as a linear combination:

This example shows that vectors in columns that do not contain a pivot may be expressed as a linear combination of the vectors
in columns that do contain pivots. In this case, we have

Conversely, the second set of vectors we studied produces a matrix with a pivot in every column.

If we interpret this as an augmented matrix again, we see that the linear system is inconsistent since there is a pivot in the
rightmost column. This means that  cannot be expressed as a linear combination of  and 
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Similarly,  cannot be expressed as a linear combination of  In addition, if  could be expressed as a linear combination
of  and  we could rearrange that expression to write  as a linear combination of  and  which we know is
impossible.

We can therefore conclude that   and  form a linearly indpendent set of vectors.

This leads to the following proposition.

The columns of a matrix are linearly independent if and only if every column contains a pivot position.

This condition imposes a constraint on how many vectors we can have in a linearly independent set. Here is an example of the
reduced row echelon form of a matrix having linearly independent columns. Notice that there are three vectors in  so there are at
least as many rows as columns.

More generally, suppose that  is a linearly independent set of vectors in  When these vectors form the columns
of a matrix, there must be a pivot position in every column of the matrix. Since every row contains at most one pivot position, the
number of columns can be no greater than the number of rows. This means that the number of vectors in a linearly independent set
can be no greater than the number of dimensions.

A linearly independent set of vectors in  can contain no more than  vectors.

This says, for instance, that any linearly independent set of vectors in  can contain no more three vectors. Once again, this makes
intuitive sense. We usually imagine three independent directions, such as up/down, front/back, left/right, in our three-dimensional
world. This proposition tells us that there can be no more independent directions.

The homogeneous equation
Given an  matrix  we call the equation  a homogenous equation. The solutions to this equation reflect whether the
columns of  are linearly independent or not.

Activity 2.4.3. Linear independence and homogeneous equations.
1. Explain why the homogenous equation  is consistent no matter the matrix 
2. Consider the matrix

whose columns we denote by   and  Are the vectors   and  linearly dependent or independent?

3. Give a description of the solution space of the homogeneous equation 
4. We know that  is a solution to the homogeneous equation. Find another solution that is different from  Use your solution to

find weights   and  such that

5. Use the expression you found in the previous part to write one of the vectors as a linear combination of the others.

w2 .w1 w2

w1 ,w3 w3 w1 ,w2

,w1 ,w2 w3

 Proposition 2.4.2.
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For any matrix  we know that the equation  has at least one solution, namely, the vector  We call this the trivial
solution to the homogeneous equation so that any other solution that exists is a  solution.

If there is no nontrivial solution, then  has exactly one solution. There can be no free variables in a description of the
solution space so  must have a pivot position in every column. In this case, the columns of  must be linearly independent.

If, however, there is a nontrivial solution, then there are infinitely many solutions so  must have a column without a pivot
position. Hence, the columns of  are linearly dependent.

We will make the connection between solutions to the homogeneous equation and the linear independence of the columns more
explict by looking at an example. In particular, we will demonstrate how a nontrivial solution to the homogeneous equation
shows that one column of  is a linear combination of the others. With the matrix  in the previous activity, the homogeneous
equation has the reduced row echelon form

which implies that

In terms of the free variable  we have

Any choice for a value of the free variable  produces a solution so let's choose, for convenience,  We then have 

Since  is a solution to the homogeneous equation  this solution gives weights for a linear combination of the
columns of  that create  That is,

which we rewrite as

As this example demonstrates, there are many ways we can view the question of linear independence. We will record some of these
ways in the following proposition.

For a matrix  the following statements are equivalent:

The columns of  are linearly dependent.
One of the vectors in the set  is a linear combination of the others.
The matrix  has a column without a pivot position.
The homogeneous equation  has a nontrivial solution.
There are weights  not all of which are zero, such that

Summary
In this section, we developed the concept of linear dependence of a set of vectors. At the beginning of the section, we said that this
concept addressed the second of our fundamental questions, expressed in Question 1.4.2, concerning the uniqueness of solutions to

A, Ax = 0 x = 0.
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a linear system. It is worth comparing the results of this section with those of the previous one so that the parallels between them
become clear.

As is usual, we will write a matrix as a collection of vectors,

Existence

In the previous section, we asked if we could write a vector  as a linear combination of the columns of  which happens
precisely when a solution to the equation  exists. We saw that every vector  could be expressed as a linear
combination of the columns of  when  has a pivot position in every row. In this case, we said that the span of the vectors 

 is  We saw that at least  vectors are needed to span 

Uniqueness

In this section, we studied the uniqueness of solutions to the equation  which is always consistent. When a nontrivial
solution exists, we saw that one vector of the set  is a linear combination of the others, in which case we said that
the set of vectors is linearly dependent. This happens when the matrix  has a column without a pivot position. We saw that
there can be no more than  vectors in a set of linearly independent vectors in 

To summarize the specific results of this section, we saw that:

A set of vectors is linearly dependent if one of the vectors is a linear combination of the others.
A set of vectors is linearly independent if and only if the vectors form a matrix that has a pivot position in every column.
A set of linearly independent vectors in  contains no more than  vectors.
The columns of the matrix  are linearly dependent if the homogeneous equation  has a nontrivial solution.
A set of vectors  is linearly dependent if there are weights  not all of which are zero, such that

Exercises 2.4.5Exercises

Consider the set of vectors

1. Explain why this set of vectors is linearly dependent.
2. Write one of the vectors as a linear combination of the others.
3. Find weights    and  not all of which are zero, such that

4. Find a nontrivial solution to the homogenous equation  where 

Consider the vectors

1. Are these vectors linearly independent or linearly dependent?
2. Describe the 
3. Suppose that  is a vector in  Explain why we can guarantee that  may be written as a linear combination of  

and 
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4. Suppose that  is a vector in  In how many ways can  be written as a linear combination of   and 

Answer the following questions and provide a justification for your responses.

1. If the vectors  and  form a linearly dependent set, must one vector be a scalar multiple of the other?
2. Suppose that  is a linearly independent set of vectors. What can you say about the linear independence or

dependence of a subset of these vectors?
3. Suppose  is a linearly independent set of vectors that form the columns of a matrix  If the equation 

 is inconsistent, what can you say about the linear independence or dependence of the set of vectors 

Determine if the following statements are true or false and provide a justification for your response.

1. If  are linearly dependent, then one vector is a scalar multiple of one of the others.
2. If  are vectors in  then the set of vectors is linearly dependent.
3. If  are vectors in  then the set of vectors is linearly independent.
4. Suppose we have a set of vectors  and that  is a scalar multiple of  Then the set is linearly dependent.
5. Suppose that  are linearly independent and form the columns of a matrix  If  is consistent, then

there is exactly one solution.

Suppose we have a set of vectors  in  that satisfy the relationship:

and suppose that  is the matrix 

1. Find a nontrivial solution to the equation 
2. Explain why the matrix  has a column without a pivot position.
3. Write one of the vectors as a linear combination of the others.
4. Explain why the set of vectors is linearly dependent.

Suppose that  is a set of vectors in  that form the columns of a matrix 

1. Suppose that the vectors span  What can you say about the number of vectors  in this set?
2. Suppose instead that the vectors are linearly independent. What can you say about the number of vectors  in this set?
3. Suppose that the vectors are both linearly independent and span  What can you say about the number of vectors in the

set?
4. Assume that the vectors are both linearly independent and span  Given a vector  in  what can you say about the

solution space to the equation 

Given below are some descriptions of sets of vectors that form the columns of a matrix  For each description, give a possible
reduced row echelon form for  or indicate why there is no set of vectors satisfying the description by stating why the required
reduced row echelon matrix cannot exist.

1. A set of 4 linearly independent vectors in 
2. A set of 4 linearly independent vectors in 
3. A set of 3 vectors that span 

b .R
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4. A set of 5 linearly independent vectors in 
5. A set of 5 vectors that span 

When we explored matrix multiplication in Section 2.2, we saw that some properties that are true for real numbers are not true
for matrices. This exercise will investigate that in some more depth.

1. Suppose that  and  are two matrices and that  If  what can you say about the linear independence of the
columns of 

2. Suppose that we have matrices   and  such that  We have seen that we cannot generally conclude that 
 If we assume additionally that  is a matrix whose columns are linearly independent, explain why  You

may wish to begin by rewriting the equation  as 

Suppose that  is an unknown parameter and consider the set of vectors

1. For what values of  is the set of vectors linearly dependent?
2. For what values of  does the set of vectors span 

Given a set of linearly dependent vectors, we can eliminate some of the vectors to create a smaller, linearly independent set of
vectors.

1. Suppose that  is a linear combination of the vectors  and  Explain why 
2. Consider the vectors

Write one of the vectors as a linear combination of the others. Find a set of three vectors whose span is the same as 

3. Are the three vectors you are left with linearly independent? If not, express one of the vectors as a linear combination of the
others and find a set of two vectors whose span is the same as 

4. Give a geometric description of  in  as we did in Section 2.3.

This page titled 2.4: Linear independence is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by David Austin via
source content that was edited to the style and standards of the LibreTexts platform.
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2.5: Matrix transformations
    The past few sections introduced us to vectors and linear combinations as a means of thinking geometrically about the solutions
to a linear system. Using matrix-vector multiplication, we rewrote a linear system as a matrix equation  and used the
concepts of span and linear independence to understand when solutions exist and when they are unique.

In this section, we will explore how matrix-vector multiplication defines certain types of functions, which we call matrix
transformations, similar to those encountered in previous algebra courses. In particular, we will develop some algebraic tools for
thinking about matrix transformations and look at some motivating examples. In the next section, we will see how matrix
transformations describe important geometric operations and how they are used in computer animation.

Preview Activity 2.5.1.

We will begin by considering a more familiar situation; namely, the function  which takes a real number  as an input
and produces its square  as its output.

1. What is the value of 
2. Can we solve the equation  If so, is the solution unique?
3. Can we solve the equation  If so, is the solution unique?
4. Sketch a graph of the function  in Figure 2.5.1

Figure 2.5.1. Graph the function  above.

Remember that the range of a function is the set of all possible outputs. What is the range of the function 
We will now consider functions having the form  Draw a graph of the function  on the left in Figure
2.5.2.

Figure 2.5.2. Graphs of the function  and 

Draw a graph of the funcion  on the right of Figure 2.5.2.
Remember that composing two functions means we use the output from one function as the input into the other. That is, 

 What function results from composing  How is the composite function related to the two
functions  and 

Matrix transformations
In the preview activity, we considered simple linear functions, such as  whose graph is the line shown in Figure 2.5.3.
We construct a function like this by choosing a number  when given an input  the output  is formed by multiplying

 by 

Figure 2.5.3. The graph of the function 

In this section, we will consider functions defined through matrix-vector multiplication. That is, we will choose a matrix  when
given an input  the function  forms the product  as its output. Such a function is called a matrix transformation.

Activity 2.5.2.

In this activity, we will look at some examples of matrix transformations.

1. To begin, suppose that  is the matrix

We define the matrix transformation  so that

Ax = b

f(x) = ,x2 x

x2

f(3)?
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3
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g h?

g(x) = x1
2

m; x, g(x) = mx

x m.
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The function  takes the vector  as an input and gives us  as the output.

1. What is 

2. What is 

3. What is 

4. Is there a vector  such that 

2. Suppose that  where

1. What is the dimension of the vectors  that are inputs for 
2. What is the dimension of the vectors  that are outputs?
3. Describe the vectors  for which 

3. If  is the matrix  what is  in terms of the vectors  and 

4. Suppose that  is a  matrix and that  If

what is the matrix 

Let's discuss a few of the issues that appear in this activity. First, if  is an  matrix, we can form the matrix product 
when  is an -dimensional vector in  The resulting product  is an -dimensional vector in  If  we
therefore write  meaning  takes vectors in  as inputs and produces vectors in  as outputs. For instance, if

then 

If we know the matrix  then we can form the matrix transformation  However, if we only know the values of the
matrix transformation  we can reconstruct the matrix  The key is to remember that matrix-vector multiplication constructs a
linear combination. For instance, if  is a  matrix  then

That is, we can find the first column of  by evaluating  Similarly, the second column of  is found by evaluating 

More generally, we will write

so that
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This means that the  column of  is found by evaluating  We record this fact in the following proposition.

If  is a matrix transformation given by  then the matrix  has columns  that is,

We will look at some examples of matrix transformations in the following activity.

Activity 2.5.3.

Suppose that we work for a company that produces baked goods, including cakes, donuts, and eclairs. Our company operates two
plants, Plant 1 and Plant 2. In one hour of operation,

Plant 1 produces 10 cakes, 50 donuts, and 30 eclairs.
Plant 2 produces 20 cakes, 30 donuts, and 30 eclairs.

1. If plant 1 operates for  hours and Plant 2 for  hours, how many cakes  does the company produce? How many donuts 
How many eclairs 

2. We define a matrix transformation  where  represents the number of baked goods produced when the

plants are operated for times  If  what are the dimensions of the matrix 

3. Find the vector  and the vector  and use your results to write the matrix 

4. If we operate Plant 1 for 40 hours and Plant 2 for 50 hours, how many baked goods have we produced?
5. Suppose the marketing department says we need to produce 1500 cakes, 4700 donuts, and 3300 eclairs. Is it possible to meet

this order? If so, how long should the two plants operate?
6. Let's now consider the needed ingredients:

Each cake requires 4 units of flour and and 2 units of sugar.
Each donut requires 1 unit of flour and 1 unit of sugar.
Each eclair requires 1 units of flour and 2 units of sugar.

Suppose we make  cakes,  donuts, and  eclairs. How many units of flour  are required? How many units of sugar 

7. Write a matrix  that defines the matrix transformation 

8. If Plant 1 operates for 30 hours and Plant 2 operates for 20 hours, how many units of flour and sugar are required?

9. We can consider the matrix transformation  that tells us how many units of flour and sugar are required when we

operate the plants for  and  hours. Find the matrix that defines the transformation 

In this activity, we considered two matrix transformations and constructed a third using composition. We began with the matrix
transformation  that tells us the number of baked goods produced when the plants are operated for a certain amount of time. If we

write the times as  then  represents the situation where Plant 1 operates for one hour and Plant 2 is not operated.

We are told that, in this one hour, Plant 1 produces 10 cakes, 50 donuts, and 30 eclairs. We therefore have

Similarly,

T ( ) = [ ] = .ej v1 v2 … vn ej vj

jth A T ( ).ej

 Proposition 2.5.4.
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m T (x) = Ax, A T ( );ej

A = [ ] .T ( )e1 T ( )e2 … T ( )en

x1 x2 C D?
E?

T (x) =
⎛

⎝
⎜

C

D

E

⎞

⎠
⎟

⎛

⎝
⎜

C

D

E

⎞

⎠
⎟

x =( ) .
x1

x2
T (x) = Ax, A?

T [( )]
1
0

T [( )]
0
1

A.

C D E F S?

B R =( ) .
⎡

⎣
⎢
⎛

⎝
⎜

C

D

E

⎞

⎠
⎟
⎤

⎦
⎥

F

S

P (x) =( )
F

S
x1 x2 P .

T

x =( ) ,
x1

x2
( )
1
0

T [( )]= .
1
0

⎛

⎝
⎜

10
50
30

⎞

⎠
⎟

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/82484?pdf


2.5.4 https://math.libretexts.org/@go/page/82484

which tells us that the matrix  that defines  is

In the same way, we use the matrix transformation  to describe the ingredients required to make a certain

number of cakes, donuts, and eclairs. We see that

which means that the matrix defining  is

Finally, we wish to compose these two matrix transformations. For instance, if we operate the plants for times given by the vector 
 we would like to know the required amounts of the ingredients. To determine this, notice that  tells us how many

cakes, donuts, and eclairs we produce. The ingredients required are then given by

Notice that the matrix that defines the composition is given by the product of the two matrices defining the matrix transformations.

In this case, we have

This means that the matrix transformation that tells us the required amount of ingredients given the amount of time that the plants
are operated is described by

For instance, if Plant 1 operates for 30 hours and Plant 2 for 20 hours, we have

In other words, we need 6400 units of flour and 6500 units of sugar.

This activity shows that the composition of matrix transformations corresponds to the product of matrices, an important observation
that we summarize in the following proposition.

If we have a matrix transformation  defined by the matrix  and a matrix transformation  defined by the matrix  then the
composition of the matrix transformations is a new matrix transformation  defined by the matrix 
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 Proposition 2.5.5.
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Discrete Dynamical Systems
In Section 4.4, we will give considerable attention to a specific type of matrix transformation, which is illustrated in the next
activity.

Activity 2.5.4.

Suppose we run a company that has two warehouses, which we will call  and  and a fleet of 1000 delivery trucks. Every day, a
delivery truck goes out from one of the warehouses and returns every evening to one of the warehouses. Every evening,

70% of the trucks that leave  return to  The other 30% return to 
50% of the trucks that leave  return to  and 50% return to 

We will use the vector  to represent the number of trucks at location  and  in the morning. We consider the matrix

transformation  that describes the number of trucks at location  and  in the evening.

1. Suppose that all 1000 trucks begin the day at location  and none at  How many trucks are at each location at the end of the

day? Therefore, what is the vector 

Using this result, what is 

2. In the same way, suppose that all 1000 trucks begin the day at location  and none at  How many trucks are at each location

at the end of the day? What is the result 

3. Find the matrix  such that 
4. Suppose that there are 100 trucks at  and 900 at  at the beginning of the day. How many are there at the two locations at the

end of the day?
5. Suppose that there are 550 trucks at  and 450 at  at the end of the day. How many trucks were there at the two locations at

the beginning of the day?
6. Suppose that all of the trucks are at location  on Monday morning?

1. How many trucks are at each location Monday evening?
2. How many trucks are at each location Tuesday evening?
3. How many trucks are at each location Wednesday evening?

7. Suppose that  is the matrix transformation that transforms the distribution of trucks  one morning into the distribution of
trucks two mornings later. What is the matrix that defines the transformation 

8. Suppose that  is the matrix transformation that transforms the distribution of trucks  one morning into the distribution of
trucks one week later. What is the matrix that defines the transformation 

9. What happens to the distribution of trucks after a very long time?

This is type of situation occurs frequently. We have a vector  that describes the state of some system; in this case,  describes the
distribution of trucks between the two locations at a particular time. Then we have a matrix  that defines a matrix transformation
with  describing the state at some later time. We call  the state vector and  the transition function, as it describes the
transition of the state vector from one time to the next.

We begin in an initial state  The state one day later will be the vector  In the example from

our activity, we have

Therefore,

P Q,

P P . Q.
Q Q P .
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Q
P Q
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P Q
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We can, of course, repeat this process. The vector  describes the state after one day. After a second day, we have the state vector

We can continue this process finding  the state after  days using  In this way, we see that the long-term
behavior of the state vector is determined by the powers of the matrix 

Using Sage, we can compute  for some very large powers of  For instance,

In fact, all large powers of  look very close to this matrix. Therefore, after a very long time, the state vector is very close to

This means that, eventually, 625 cars are at location  every day and 375 are at 

We call this sitution in which the state of a system evolves from one time to the next according to the rule  a discrete
dynamical system. In Chapter 4, we will develop a theory that enables us to easily make long-term predictions without needing to
compute large powers of the matrix.

Summary
This section introduced matrix transformations, functions that are defined by matrix-vector multiplication, such as  for
some matrix 

If  is an  matrix, then 
The columns of the matrix  are given by evaluating the transformation  on the vectors  that is,

The composition of matrix transformations corresponds to matrix multiplication.
A discrete dynamical system consists of a state vector  along with a transition function  that describes how the
state vector evolves from one time to the next. Powers of the matrix  determine the long-term behavior of the state vector.

Exercises 2.5.4

Suppose that  is the matrix transformation defined by the matrix  and  is the matrix transformation defined by  where

1. If  what are the values of  and  What values of  and  are appropriate for the transformation 

2. Evaluate the matrix transformation 

3. Evaluate the matrix transformation 

4. Evaluate the matrix transformation 

5. Find the matrix  that defines the matrix transformation 
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Determine whether the following statements are true or false and provide a justification for your response.

1. A matrix transformation  is defined by  where  is a  matrix.
2. If  is a matrix transformation, then there are infinitely many vectors  such that 
3. If  is a matrix transformation, then it is possible that every equation  has a solution for every vector 

4. If  is a matrix transformation, then the equation  always has a solution.
5. If  is a matrix transformation and  and  two vectors in  then the vectors  form a line in 

This problem concerns the identification of matrix transformations.

1. Check that the following function  is a matrix transformation by finding a matrix  such that 

2. Explain why

is not a matrix transformation.

Suppose that the matrix

defines the matrix transformation 

1. Describe the vectors  that satisfy 

2. Describe the vectors  that satisfy 

3. Describe the vectors  that satisfy 

Suppose  is a matrix transformation with  where   and  are as shown in Figure 2.5.6.

Figure 2.5.6. The vectors 

1. Sketch the vector 
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2. What is the vector 

3. Find all the vectors  such that 

Suppose that a company has three plants, called Plants 1, 2, and 3, that produce milk  and yogurt  For every hour of
operation,

Plant  produces 20 units of milk and 15 units of yogurt.
Plant  produces 30 units of milk and 5 units of yogurt.
Plant  produces 0 units of milk and 40 units of yogurt.

1. Suppose that   and  record the amounts of time that the three plants are operated. Find expressions for the number
of units of milk  and yogurt  produced.

2. If we write  and  find the matrix  that defines the matrix transformation 

3. Furthermore, suppose that producing each unit of
milk requires 5 units of electricity and 8 units of labor.
yogurt requires 6 units of electricity and 10 units of labor.

Write expressions for the required amounts of electricity  and labor  in terms of  and 

4. If we write the vector  to record the required amounts of electricity and labor, find the matrix  that defines the

matrix transformation 

5. If  describes the amounts of time that the three plants are operated, how much milk and yogurt is produced?

How much electricity and labor are required?
6. Find the matrix  that describes the matrix transformation  that gives the required amounts of electricity and

labor when the plants are operated times given by vector 

Suppose that  is a matrix transformation and that

1. Find the vector 

2. Find the matrix  that defines 

3. Find the vector 

Suppose that two species  and  interact with one another and that we measure their populations every month. We record

their populations in a state vector  where  and  are the populations of  and  respectively. We observe that

there is a matrix
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such that the matrix transformation  is the transition function describing how the state vector evolves from month

to month. We also observe that, at the beginning of July, the populations are described by the state vector 

1. What will the populations be at the beginning of August?
2. What were the populations at the beginning of June?
3. What will the populations be at the beginning of December?
4. What will the populations be at the beginning of July in the following year?

Students in a school are sometimes absent due to an illness. Suppose that

95% of the students who attend school will attend school the next day.
50% of the students are absent one day will be absent the next day.

We will record the number of present students  and the number of absent students  in a state vector  On Tuesday,

the state vector is  The state vector evolves from one day to the next according to the transition function 

1. Suppose we initially have 1000 students who are present and none absent. Find 
2. Suppose we initially have 1000 students who are absent and none present. Find 
3. Use the results of parts a and b to find the matrix  that defines the matrix transformation 

4. If  on Tuesday, how are the students distributed on Wednesday?

5. How many students were present on Monday?
6. How many students are present on the following Tuesday?
7. What happens to the number of students who are present after a very long time?

This page titled 2.5: Matrix transformations is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by David Austin via
source content that was edited to the style and standards of the LibreTexts platform.
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2.6: The geometry of matrix transformations
    Matrix transformations, which we explored in the last section, allow us to describe certain functions  In this
section, we will demonstrate how matrix transformations provide a convenient way to describe geometric operations, such as
rotations, reflections, and scalings. We will then explore how matrix transformations are used in computer animation.

Preview Activity 2.6.1. 

Suppose that we wish to describe the geometric operation that reflects 2-dimensional vectors in the horiztonal axis. For instance,
Figure 2.6.1 illustrates how a vector  is reflected into the vector 

Figure 2.6.1. A vector  and its reflection  in the horizontal axis.

1. If  what is the vector  Sketch the vectors  and 

2. More generally, if  what is 

3. Find the vectors  and 

4. Use your results to write the matrix  so that  Then verify that  agrees with what you found in part b.

5. Describe the transformation that results from composing  with itself; that is, what is the transformation  Explain how
matrix multiplication can be used to justify your response.

The geometry of  matrix transformations 

The preview activity demonstrates how the matrix  defines a matrix transformation that has the effect of reflecting 2-

dimensional vectors in the horizontal axis. The following activity shows, more generally, that matrix transformations can perform a
variety of important geometric operations.

Activity 2.6.2. 

The diagram below demonstrates the effect of a matrix transformation on the plane. You may modify the matrix  defining the
matrix transformation  through the sliders at the top. You may also move the red vector  on the left, by clicking in the head of
the vector, and observe  on the right.
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For the following matrices  given below, use the diagram to study the effect of the corresponding matrix transformation 
 For each transformation, describe the geometric effect of the transformation on the plane.

1. The matrix 

2. The matrix 

3. The matrix 

4. The matrix 

5. The matrix 

6. The matrix 

7. The matrix 

8. The matrix 

The previous activity presented some examples in which matrix transformations perform interesting geometric actions, such as
rotations, scalings, and reflections. Let's turn this question around: Suppose we have a specific geometric action that we would like
to perform. Can we find a matrix  that represents this action through the matrix transformation 

The linearity of matrix-vector multiplication Proposition 2.2.3 provides the key to answering this question. Remember that if  is a
matrix,  and  vectors, and  a scalar, then

This means that a matrix transformation  satisfies the corresponding linearity property:
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Linearity of Matrix Transformations. 

It turns out that, if  satisfies these two linearity properties, then we can find a matrix  such that  In
fact, Proposition 2.5.4 tells us how to form  we simply write

We will now check that  using the linearity of 

The result is the following proposition.

The function  is a matrix transformation where  for some  matrix  if and only if

In this case,  is the matrix whose columns are  that is,

We will put this proposition to use in the following example by finding the matrix whose matrix transformation performs a specific
geometric operation.

In this example, we will find the matrix defining a matrix transformation that performs a  counterclockwise rotation.

We first need to know that this geometric operation can be represented by a matrix transformation. To begin, we will define the
function  where  is obtained by rotating  counterclockwise by  as shown in Figure 2.6.4.

Figure 2.6.4. The function  rotates a vector counterclockwise by 

We need to check that  is a matrix transformation; by Proposition 2.6.2, this means that we should make sure that

T (cv)
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= cT (v)
= T (v)+T (w).
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 Proposition 2.6.2.
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The next two figures illustrate these properties. For instance, Figure 2.6.5 shows that relationship between  and  when 
is a scalar. We easily see that  is a scalar multiple of  and hence that 

Figure 2.6.5. We see that the vector  is a scalar multiple to  so that 

Similarly, Figure 2.6.6 shows the relationship between   and  In this way, we see that 

Figure 2.6.6. We see that the vector  is the sum of  and  so that 

This shows that the function  which rotates vectors by  is a matrix transformation. We may therefore write it as 
where  is the  matrix  The columns of this matrix,  and  are shown in Figure 2.6.7.

Figure 2.6.7. The effect of  on  and 

To find the components of these vectors, notice that they form an isosceles right triangle, as shown in Figure 2.6.8. Since the length
of  is 1, the length of  the hypotenuse of the triangle, is 1.

Figure 2.6.8. The vector  forms a right isosceles triangle whose hypotenuse has length 1.

This leads to

Hence, the matrix  is

You may wish to check this using the interactive diagram in the previous activity using the approximation 

In this example, we found that the desired geometric operation, a rotation in the plane, was in fact a matrix transformation  by
checking that

In general, the same kind of thinking applies to show that rotations, reflections, and scalings are matrix transformations so we will
not bother with that step in the future.

Activity 2.6.3. 

In this activity, we seek to describe various matrix transformations by finding the matrix that gives the desired transformation. All
of the transformations that we study here have the form 

1. Find the matrix of the transformation that has no effect on vectors; that is,  We call this matrix the identity and denote
it by 

2. Find the matrix of the transformation that reflects vectors in  over the line 
3. What is the result of composing the reflection you found in the previous part with itself; that is, what is the effect of reflecting

in the line  and then reflecting in this line again. Provide a geometric explanation for your result as well as an algebraic
one obtained by multiplying matrices.

4. Find the matrix that rotates vectors counterclockwise in the plane by 
5. Compare the result of rotating by  and then reflecting in the line  to the result of first reflecting in  and then

rotating 
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6. Find the matrix that results from composing a  rotation with itself. Explain the geometric meaning of this operation.
7. Find the matrix that results from composing a  rotation with itself four times; that is, if  is the matrix transformation that

rotates vectors by  find the matrix for  Explain why your result makes sense geometrically.
8. Explain why the matrix that rotates vectors counterclockwise by an angle  is

In the first part of this activity, we encountered the identity matrix, which, as an  matrix, has the form

The matrix transformation  leaves vectors unchanged; that is,  so that  Notice that the columns of 
are simply the vectors 

Matrix transformations and computer animation 

Linear algebra plays a significant role in computer animation. We will now illustrate how matrix transformations and some of the
ideas we have developed in this section are used by computer animators to create the illusion of motion in their characters.

Figure 2.6.9 shows a test character used by Pixar animators. On the left is the original definition of the character; on the right, we
see that the character has been moved into a different pose. To make it appear that the character is moving, animators create a
sequence of frames in which the character's pose is modified slightly from one frame to the next. Matrix transformations play an
important role in doing this.

Figure 2.6.9. Computer animators define a character and create motion by drawing it in a sequence of poses. © Disney/Pixar

For instance, Figure 2.6.10 shows the character Remy from Pixar's Ratatouille. Clearly, a lot goes into transforming the model on
the left into the engaging character on the right, such as the addition of fur and eyes. We will focus only on the motion of the
character.

Figure 2.6.10. Remy from the Pixar movie Ratatouille. © Disney/Pixar.

Of course, realistic characters will be drawn in three-
dimensions. To keep things a little more simple, however,
we will look at this two-dimensional character and devise
matrix transformations that move them into different
poses.

Of course, the first thing we may wish to do is simply move them to a different position in the plane, such as that shown in Figure
2.6.11. Motions like this are called translations.

Figure 2.6.11. Translating our character to a new position in the plane.

This presents a problem because a matrix transformation  has the property that  This means that a matrix
transformation cannot move the origin of the coordinate plane. To address this restriction, animators use homogeneous coordinates,
which are formed by placing the two-dimensional coordinate plane inside  as the plane  This is shown in Figure 2.6.12.

Figure 2.6.12. Include the plane in  as the plane  so that we can translate the character.
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Therefore, rather than describing points in the plane as vectors  we describe them as three-dimensional vectors  As

we see in the next activity, this allows us to translate our character in the plane.

Activity 2.6.4. 

In this activity, we will use homogeneous coordinates and matrix transformations to move our character into a variety of poses.

1. Since we regard our character as living in  we will consider matrix transformations defined by matrices

Verify that such a matrix transformation transforms points in the plane  into other points in this plane; that is, verify that

Express the coordinates of the resulting point  and  in terms of the coordinates of the original point  and 

The diagram below allows you to create matrix transformations of this form to move our character into different poses. You
may use it to help address the following questions.

Compose Reset

2. Find the matrix transformation that translates our character to a new position in the plane, as shown in Figure 2.6.13

Figure 2.6.13. Translating to a new position.
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3. As originally drawn, our character is waving with one of their hands. In one of the movie's scenes, we would like her to wave
with their other hand, as shown in Figure 2.6.14. Find the matrix transformation that moves them into this pose.

Figure 2.6.14. Waving with the other hand.

4. Later, our chracter performs a cartwheel by moving through the sequence of poses shown in Figure 2.6.15. Find the matrix
transformations that create these poses.

Figure 2.6.15. Performing a cartwheel.

5. Next, we would like to find the transformations that zoom in on our character's face, as shown in Figure 2.6.16. To do this, you
should think about composing matrix transformations. This can be accomplished in the diagram by using the Compose button,
which makes the current pose, displayed on the right, the new beginning pose, displayed on the left. What is the matrix
transformation that moves the character from the original pose, shown in the upper left, to the final pose, shown in the lower
right?

Figure 2.6.16. Zooming in on our characters' face.

6. We would also like to create our character's shadow, shown in the sequence of poses in Figure 2.6.17. Find the sequence of
matrix transformations that achieves this. In particular, find the matrix transformation that take our character from their original
pose to their shadow in the lower right.

Figure 2.6.17. Casting a shadow.

7. Write a final scene to the movie and describe how to construct a sequence of matrix transformations that create your scene.

Summary 

This section explored how geometric operations, such as rotations, reflections, and scalings, are performed by matrix
transformations.

A matrix of the form  represents a horizontal scaling by a factor  and a vertical scaling by 

A matrix of the form  defines a rotation by an angle 

Composing geometric operations corresponds to matrix multiplication.
Computer animators use matrix transformations to create the illusion of motion. Homogeneous coordinates are used so that
translations can be realized as matrix transformations.

Exercises 2.6.4Exercises 

For each of the following geometric operations in the plane, find a  matrix that defines the matrix transformation
performing the operation.

1. Rotates vectors by 
2. Reflects vectors in the vertical axis.

[ ]
a

0
0
b

a b.

[ ]
cosθ
sinθ

−sinθ
cosθ

θ.

 1

2×2

.180∘
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3. Reflects vectors in the line 
4. Rotates vectors counterclockwise by 
5. First rotates vectors counterclockwise by  and then reflects in the line 

This exercise investigates the composition of reflections in the plane.

1. Find the result of first reflecting in the line  and then  What familiar operation is the cumulative effect of this
composition?

2. What happens if you compose the operations in the opposite order; that is, what happens if you first reflect in  and
then  What familiar operation results?

3. What familiar geometric operation results if you first reflect in the line  and then 
4. What familiar geometric operation results if you first rotate by  and then reflect in the line 

It is a general fact that the composition of two reflections results in a rotation through twice the angle from the first line of
reflection to the second. We will investigate this more generally in Exercise 2.6.4.8

Shown below in Figure 2.6.18 are the vectors   and  in 

Figure 2.6.18. The vectors   and  in 

1. Imagine that the thumb of your right hand points in the direction of  A positive rotation about the  axis corresponds to a
rotation in the direction in which your fingers point. Find the matrix definining the matrix transformation  that rotates
vectors by  around the -axis.

2. In the same way, find the matrix that rotates vectors by  around the -axis.
3. Find the matrix that rotates vectors by  around the -axis.
4. What is the cumulative effect of rotating by  about the -axis, followed by a  rotation about the -axis, followed by

a  rotation about the -axis.

We have seen how a matrix transformation can perform a geometric operation; now we would like to find a matrix
transformation that undoes that operation.

1. Suppose that  is the matrix transformation that rotates vectors by  Find a matrix transformation 
 that undoes the rotation; that is,  takes  back into  so that  Think geometrically about

what the transformation  should be and then verify it algebraically.

We say that  is the inverse of  and we will write it as 

2. Verify algebraically that the reflection  across the line  is its own inverse; that is, 
3. The matrix transformation  defined by the matrix

is called a shear. Find the inverse of 

4. Describe the geometric effect of the matrix transformation defined by

and then find its inverse.

y =−x.
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We have seen that the matrix

performs a rotation through an angle  about the origin. Suppose instead that we would like to rotate by  about the point 
 Using homogeneous coordinates, we will develop a matrix that performs this operation.

Our strategy is to

begin with a vector whose tail is at the point 
translate the vector so that its tail is at the origin,
rotate by  and
translate the vector so that its tail is back at 

This is shown in Figure 2.6.19.

Figure 2.6.19. A sequence of matrix transformations that, when read right to left and top to bottom, rotate a vector about the
point 

Remember that, when working with homogeneous coordinates, we consider matrices of the form

1. The first operation is a translation by  Find the matrix that performs this translation.
2. The second operation is a  rotation about the origin. Find the matrix that performs this rotation.
3. The third operation is a translation by  Find the matrix that performs this translation.
4. Use these matrices to find the matrix that performs a  rotation about 
5. Use your matrix to determine where the point  ends up if rotated by  about the 

This exercise concerns matrix transformations called projections.

1. Consider the matrix transformation  that assigns to a vector  the closest vector on horizontal axis as
illustrated in Figure 2.6.20. This transformation is called the projection onto the horizontal axis. You may imagine  as
the shadow cast by  from a flashlight far up on the positive -axis.

Figure 2.6.20. Projection onto the -axis.

Find the matrix that defines this matrix transformation 

2. Find the matrix that defines projection on the vertical axis.
3. What is the result of composing the projection onto the horizontal axis with the projection onto the vertical axis?
4. Find the matrix that defines projection onto the line 

This exericse concerns the matrix transformations defined by matrices of the form

Let's begin by looking at two special types of these matrices.

1. First, consider the matrix where  and  so that

 5

[ ]
cosθ
sinθ

−sinθ
cosθ

θ 90∘

(1, 2).

(1, 2),

,90∘

(1, 2).

(1, 2).

.
⎡

⎣
⎢
a

d

0

b

e

0

c

f

1

⎤

⎦
⎥

(−1,−2).
90∘

(1, 2).
90∘ (1, 2).

(−10, 5) 90∘ (1, 2).

 6

T : →R
2

R
2

x

T (x)
x y

x

T .

y = x.

 7

A= [ ] .
a

b

−b
a

a= 2 b = 0

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/82485?pdf


2.6.10 https://math.libretexts.org/@go/page/82485

Describe the geometric effect of this matrix. More generally, suppose we have

where  is a positive number. What is the geometric effort of  on vectors in the plane?

2. Suppose now that  and  so that

What is the geometric effect of  on vectors in the plane? More generally, suppose we have

What is the geometric effect of  on vectors in the plane?

3. In general, the composition of matrix transformation depends on the order in which we compose them. For these
transformations, however, it is not the case. Check this by verifying that

4. Let's now look at the general case where

We will draw the vector  in the plane and express it using polar coordinates  and  as shown in Figure 2.6.21.

Figure 2.6.21. A vector may be expressed in polar coordinates.

We then have

Show that the matrix

5. Using this description, describe the geometric effect on vectors in the plane of the matrix transformation defined by

6. Suppose we have a matrix transformation  defined by a matrix  and another transformation  defined by  where

Describe the geometric effect of the composition  in terms of the    and 

The matrices of this form give a model for the complex numbers and will play an important role in Section 4.4.
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We saw earlier that the rotation in the plane through an angle  is given by the matrix:

We would like to find a similar expression for the matrix that represents the reflection in  the line passing through the origin
and making an angle of  with the positive -axis, as shown in Figure 2.6.22.

Figure 2.6.22. The reflection in the line 

1. To do this, notice that this reflection can be obtained by composing three separate transformations as shown in Figure
2.6.23. Beginning with the vector  we apply the transformation  to rotate by  and obtain  Next, we apply  a
reflection in the horizontal axis, followed by  a rotation by  We see that  is the same as the reflection of 
in the original line 

Figure 2.6.23. Reflection in the line  as a composition of three transformations.

Using this decomposition, show that the reflection in the line  is described by the matrix

You will need to remember the trigonometric identities:

2. Now that we have a matrix that describes the reflection in the line  show that the composition of the reflection in the
horizontal axis followed by the reflection in  is a counterclockwise rotation by an angle  We saw some examples of
this earlier in Exercise 2.6.4.2.

This page titled 2.6: The geometry of matrix transformations is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
David Austin via source content that was edited to the style and standards of the LibreTexts platform.
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