
Chapter 4

Matrices

Matlab began as a matrix calculator.

The Cartesian coordinate system was developed in the 17th century by the
French mathematician and philosopher René Descartes. A pair of numbers corre-
sponds to a point in the plane. We will display the coordinates in a vector of length
two. In order to work properly with matrix multiplication, we want to think of the
vector as a column vector, So

x =

(
x1

x2

)
denotes the point x whose first coordinate is x1 and second coordinate is x2. When
it is inconvenient to write a vector in this vertical form, we can anticipate Matlab
notation and use a semicolon to separate the two components,

x = (x1; x2)

For example, the point labeled x in figure 4.1 has Cartesian coordinates

x = (2; 4)

Arithmetic operations on the vectors are defined in natural ways. Addition is
defined by

x+ y =

(
x1

x2

)
+

(
y1
y2

)
=

(
x1 + y1
x2 + y2

)
Multiplication by a single number, or scalar, is defined by

sx =

(
sx1

sx2

)

Copyright c⃝ 2011 Cleve Moler
MatlabR⃝ is a registered trademark of MathWorks, Inc.TM

October 2, 2011

1

2 Chapter 4. Matrices

A 2-by-2 matrix is an array of four numbers arranged in two rows and two
columns.

A =

(
a1,1 a1,2
a2,1 a2,2

)
or

A = (a1,1 a1,2; a2,1 a2,2)

For example

A =

(
4 −3

−2 1

)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

x

Ax

Figure 4.1. Matrix multiplication transforms lines through x to lines through Ax.

Matrix-vector multiplication by a 2-by-2 matrix A transforms a vector x to a
vector Ax, according to the definition

Ax =

(
a1,1x1 + a1,2x2

a2,1x1 + a2,2x2

)
For example(

4 −3
−2 1

)(
2
4

)
=

(
4 · 2− 3 · 4

−2 · 2 + 1 · 4

)
=

(
−4
0

)
The point labeled x in figure 4.1 is transformed to the point labeled Ax. Matrix-
vector multiplications produce linear transformations. This means that for scalars
s and t and vectors x and y,

A(sx+ ty) = sAx+ tAy

3

This implies that points near x are transformed to points near Ax and that straight
lines in the plane through x are transformed to straight lines through Ax.

Our definition of matrix-vector multiplication is the usual one involving the
dot product of the rows of A, denoted ai,:, with the vector x.

Ax =

(
a1,: · x
a2,: · x

)
An alternate, and sometimes more revealing, definition uses linear combinations of
the columns of A, denoted by a:,j .

Ax = x1a:,1 + x2a:,2

For example(
4 −3

−2 1

)(
2
4

)
= 2

(
4

−2

)
+ 4

(
−3
1

)
=

(
−4
0

)
The transpose of a column vector is a row vector, denoted by xT . The trans-

pose of a matrix interchanges its rows and columns. For example,

xT = (2 4)

AT =

(
4 −2

−3 1

)
Vector-matrix multiplication can be defined by

xTA = ATx

That is pretty cryptic, so if you have never seen it before, you might have to ponder
it a bit.

Matrix-matrix multiplication, AB, can be thought of as matrix-vector multi-
plication involving the matrixA and the columns vectors from B, or as vector-matrix
multiplication involving the row vectors from A and the matrix B. It is important
to realize that AB is not the same matrix as BA.

Matlab started its life as “Matrix Laboratory”, so its very first capabilities
involved matrices and matrix multiplication. The syntax follows the mathematical
notation closely. We use square brackets instead of round parentheses, an asterisk
to denote multiplication, and x’ for the transpose of x. The foregoing example
becomes

x = [2; 4]

A = [4 -3; -2 1]

A*x

This produces

x =

2

4

4 Chapter 4. Matrices

A =

4 -3

-2 1

ans =

-4

0

The matrices A’*A and A*A’ are not the same.

A’*A =

20 -14

-14 10

while

A*A’ =

25 -11

-11 5

The matrix

I =

(
1 0
0 1

)
is the 2-by-2 identity matrix. It has the important property that for any 2-by-2
matrix A,

IA = AI = A

Originally, Matlab variable names were not case sensitive, so i and I were
the same variable. Since i is frequently used as a subscript, an iteration index,
and sqrt(-1), we could not use I for the identity matrix. Instead, we chose to use
the sound-alike word eye. Today, Matlab is case sensitive and has many users
whose native language is not English, but we continue to use eye(n,n) to denote
the n-by-n identity. (The Metro in Washington, DC, uses the same pun – “I street”
is “eye street” on their maps.)

2-by-2 Matrix Transformations
The exm toolbox includes a function house. The statement

X = house

produces a 2-by-11 matrix,

X =

-6 -6 -7 0 7 6 6 -3 -3 0 0

-7 2 1 8 1 2 -7 -7 -2 -2 -7

The columns of X are the Cartesian coordinates of the 11 points shown in figure 4.2.
Do you remember the “dot to dot” game? Try it with these points. Finish off by
connecting the last point back to the first. The house in figure 4.2 is constructed
from X by

5

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

1

2
3

4

5
6

78

9 10

11

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 4.2. Connect the dots.

dot2dot(X)

We want to investigate how matrix multiplication transforms this house. In
fact, if you have your computer handy, try this now.

wiggle(X)

Our goal is to see how wiggle works.
Here are four matrices.

A1 =

1/2 0

0 1

A2 =

1 0

0 1/2

A3 =

0 1

1/2 0

A4 =

1/2 0

0 -1

Figure 4.3 uses matrix multiplication A*X and dot2dot(A*X) to show the effect of
the resulting linear transformations on the house. All four matrices are diagonal
or antidiagonal, so they just scale and possibly interchange the coordinates. The
coordinates are not combined in any way. The floor and sides of the house remain at

6 Chapter 4. Matrices

−10 0 10
−10

−5

0

5

10

A1
−10 0 10

−10

−5

0

5

10

A2

−10 0 10
−10

−5

0

5

10

A3
−10 0 10

−10

−5

0

5

10

A4

Figure 4.3. The effect of multiplication by scaling matrices.

right angles to each other and parallel to the axes. The matrix A1 shrinks the first
coordinate to reduce the width of the house while the height remains unchanged.
The matrix A2 shrinks the second coordinate to reduce the height, but not the width.
The matrix A3 interchanges the two coordinates while shrinking one of them. The
matrix A4 shrinks the first coordinate and changes the sign of the second.

The determinant of a 2-by-2 matrix

A =

(
a1,1 a1,2
a2,1 a2,2

)
is the quantity

a1,1a2,2 − a1,2a2,1

In general, determinants are not very useful in practical computation because they
have atrocious scaling properties. But 2-by-2 determinants can be useful in under-
standing simple matrix properties. If the determinant of a matrix is positive, then
multiplication by that matrix preserves left- or right-handedness. The first two of
our four matrices have positive determinants, so the door remains on the left side
of the house. The other two matrices have negative determinants, so the door is
transformed to the other side of the house.

The Matlab function rand(m,n) generates an m-by-n matrix with random
entries between 0 and 1. So the statement

7

R = 2*rand(2,2) - 1

generates a 2-by-2 matrix with random entries between -1 and 1. Here are four of
them.

R1 =

0.0323 -0.6327

-0.5495 -0.5674

R2 =

0.7277 -0.5997

0.8124 0.7188

R3 =

0.1021 0.1777

-0.3633 -0.5178

R4 =

-0.8682 0.9330

0.7992 -0.4821

−10 0 10
−10

−5

0

5

10

R1
−10 0 10

−10

−5

0

5

10

R2

−10 0 10
−10

−5

0

5

10

R3
−10 0 10

−10

−5

0

5

10

R4

Figure 4.4. The effect of multiplication by random matrices.

8 Chapter 4. Matrices

Figure 4.4 shows the effect of multiplication by these four matrices on the house.
Matrices R1 and R4 have large off-diagonal entries and negative determinants, so
they distort the house quite a bit and flip the door to the right side. The lines are still
straight, but the walls are not perpendicular to the floor. Linear transformations
preserve straight lines, but they do not necessarily preserve the angles between those
lines. Matrix R2 is close to a rotation, which we will discuss shortly. Matrix R3 is
nearly singular ; its determinant is equal to 0.0117. If the determinant were exactly
zero, the house would be flattened to a one-dimensional straight line.

The following matrix is a plane rotation.

G(θ) =

(
cos θ − sin θ
sin θ cos θ

)
We use the letter G because Wallace Givens pioneered the use of plane rotations
in matrix computation in the 1950s. Multiplication by G(θ) rotates points in the
plane through an angle θ. Figure 4.5 shows the effect of multiplication by the plane
rotations with θ = 15◦, 45◦, 90◦, and 215◦.

−10 0 10
−10

−5

0

5

10

G15
−10 0 10

−10

−5

0

5

10

G45

−10 0 10
−10

−5

0

5

10

G90
−10 0 10

−10

−5

0

5

10

G215

Figure 4.5. The affect of multiplication by plane rotations though 15◦,
45◦, 90◦, and 215◦.

G15 =

0.9659 -0.2588

9

0.2588 0.9659

G45 =

0.7071 -0.7071

0.7071 0.7071

G90 =

0 -1

1 0

G215 =

-0.8192 0.5736

-0.5736 -0.8192

You can see that G45 is fairly close to the random matrix R2 seen earlier and that
its effect on the house is similar.

Matlab generates a plane rotation for angles measured in radians with

G = [cos(theta) -sin(theta); sin(theta) cos(theta)]

and for angles measured in degrees with

G = [cosd(theta) -sind(theta); sind(theta) cosd(theta)]

Our exm toolbox function wiggle uses dot2dot and plane rotations to pro-
duce an animation of matrix multiplication. Here is wiggle.m, without the Handle
Graphics commands.

function wiggle(X)

thetamax = 0.1;

delta = .025;

t = 0;

while true

theta = (4*abs(t-round(t))-1) * thetamax;

G = [cos(theta) -sin(theta); sin(theta) cos(theta)]

Y = G*X;

dot2dot(Y);

t = t + delta;

end

Since this version does not have a stop button, it would run forever. The variable t
advances steadily by increment of delta. As t increases, the quantity t-round(t)

varies between −1/2 and 1/2, so the angle θ computed by

theta = (4*abs(t-round(t))-1) * thetamax;

varies in a sawtooth fashion between -thetamax and thetamax. The graph of θ as
a function of t is shown in figure 4.6. Each value of θ produces a corresponding
plane rotation G(θ). Then

10 Chapter 4. Matrices

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.1

0

0.1

Figure 4.6. Wiggle angle θ

Y = G*X;

dot2dot(Y)

applies the rotation to the input matrix X and plots the wiggling result.

Vectors and Matrices
Here is a quick look at a few of the many Matlab operations involving vectors
and matrices. Try to predict what output will be produced by each of the following
statements. You can see if you are right by using cut and paste to execute the
statement, or by running

matrices_recap

Vectors are created with square brackets.

v = [0 1/4 1/2 3/4 1]

Rows of a matrix are separated by semicolons or new lines.

A = [8 1 6; 3 5 7; 4 9 2]

There are several functions that create matrices.

Z = zeros(3,4)

E = ones(4,3)

I = eye(4,4)

M = magic(3)

R = rand(2,4)

[K,J] = ndgrid(1:4)

A colon creates uniformly spaced vectors.

v = 0:0.25:1

n = 10

y = 1:n

A semicolon at the end of a line suppresses output.

n = 1000;

y = 1:n;

11

Matrix arithmetic
Matrix addition and subtraction are denoted by + and - . The operations

A + B

and

A - B

require A and B to be the same size, or to be scalars, which are 1-by-1 matrices.
Matrix multiplication, denoted by *, follows the rules of linear algebra. The

operation

A * B

requires the number of columns of A to equal the number of row B, that is

size(A,2) == size(B,1)

Remember that A*B is usually not equal to B*A

If p is an integer scalar, the expression

A^p

denotes repeated multiplication of A by itself p times.
The use of the matrix division operations in Matlab,

A \ B

and

A / B

is discussed in our “Linear Equations” chapter

Array arithmetic
.

We usually try to distinguish between matrices, which behave according to
the rules of linear algebra, and arrays, which are just rectangular collections of
numbers.

Element-by-element operations array operations are denoted by + , - , .* , ./
, . and .^ . For array multiplication A.*B is equal to B.*A

K.*J

v.^2

An apostrophe denotes the transpose of a real array and the complex conjugate
transpose of a complex array.

v = v’

inner_prod = v’*v

outer_prod = v*v’

Z = [1 2; 3+4i 5]’

Z = [1 2; 3+4i 5].’

12 Chapter 4. Matrices

Figure 4.7. The cover of Gilbert Strang’s textbook shows a quilt by Chris Curtis.

Further Reading
Of the dozens of good books on matrices and linear algebra, we would like to
recommend one in particular.

Gilbert Strang, Introduction to Linear Algebra, Wellesley-Cambridge
Press, Wellesley, MA, 2003.
http://www.wellesleycambridge.com

Besides its excellent technical content and exposition, it has a terrific cover. The
house that we have used throughout this chapter made its debut in Strang’s book
in 1993. The cover of the first edition looked something like our figure 4.4. Chris
Curtis saw that cover and created a gorgeous quilt. A picture of the quilt has
appeared on the cover of all subsequent editions of the book.

Recap
%% Matrices Chapter Recap

13

% This is an executable program that illustrates the statements

% introduced in the Matrices Chapter of "Experiments in MATLAB".

% You can access it with

%

% matrices_recap

% edit matrices_recap

% publish matrices_recap

%

% Related EXM Programs

%

% wiggle

% dot2dot

% house

% hand

%% Vectors and matrices

x = [2; 4]

A = [4 -3; -2 1]

A*x

A’*A

A*A’

%% Random matrices

R = 2*rand(2,2)-1

%% Build a house

X = house

dot2dot(X)

%% Rotations

theta = pi/6 % radians

G = [cos(theta) -sin(theta); sin(theta) cos(theta)]

theta = 30 % degrees

G = [cosd(theta) -sind(theta); sind(theta) cosd(theta)]

subplot(1,2,1)

dot2dot(G*X)

subplot(1,2,2)

dot2dot(G’*X)

%% More on Vectors and Matrices

% Vectors are created with square brackets.

v = [0 1/4 1/2 3/4 1]

% Rows of a matrix are separated by semicolons or new lines.

14 Chapter 4. Matrices

A = [8 1 6; 3 5 7; 4 9 2]

A = [8 1 6

3 5 7

4 9 2]

%% Creating matrices

Z = zeros(3,4)

E = ones(4,3)

I = eye(4,4)

M = magic(3)

R = rand(2,4)

[K,J] = ndgrid(1:4)

%% Colons and semicolons

% A colon creates uniformally spaced vectors.

v = 0:0.25:1

n = 10

y = 1:n

% A semicolon at the end of a line suppresses output.

n = 1000;

y = 1:n;

%% Matrix arithmetic.

% Addition and subtraction, + and -, are element-by-element.

% Multiplication, *, follows the rules of linear algebra.

% Power, ^, is repeated matrix multiplication.

KJ = K*J

JK = J*K

%% Array arithmetic

% Element-by-element operations are denoted by

% + , - , .* , ./ , .\ and .^ .

K.*J

v.^2

%% Transpose

% An apostrophe denotes the transpose of a real array

15

% and the complex conjugate transpose of a complex array.

v = v’

inner_prod = v’*v

outer_prod = v*v’

Z = [1 2; 3+4i 5]’

Z = [1 2; 3+4i 5].’

Exercises

4.1 Multiplication.
(a) Which 2-by-2 matrices have A2 = I?
(b) Which 2-by-2 matrices have ATA = I?
(c) Which 2-by-2 matrices have ATA = AAT ?

4.2 Inverse. Let

A =

(
3 4
2 3

)
Find a matrix X so that AX = I.

4.3 Powers. Let

A =

(
0.99 0.01

−0.01 1.01

)
What is An?

4.4 Powers. Let

A =

(
1 1
1 0

)
What is An?

4.5 Parametrized product. Let

A =

(
1 2
x 3

)(
4 5
6 7

)
Which elements of A depend upon x? Is it possible to choose x so that A = AT ?

4.6 Product of two symmetric matrices. It turns out that any matrix is the product
of two symmetric matrices. Let

A =

(
3 4
8 10

)

16 Chapter 4. Matrices

Express A as the product of two symmetric matrices.

4.7 Givens rotations.
(a) What is the determinant of G(θ)?
(b) Explain why G(θ)2 = G(2θ).
(c) Explain why G(θ)n = G(nθ).

4.8 X8. Find a real 2-by-2 matrix X so that X8 = −I.

4.9 GT . What is the effect on points in the plane of multiplication by G(θ)T ?

4.10 Ĝ. (a) What is the effect on points in the plane of multiplication by

Ĝ(θ) =

(
cos θ sin θ
sin θ − cos θ

)
(b) What is the determinant of Ĝ(θ)?

(c) What happens if you modify wiggle.m to use Ĝ instead of G?

4.11 Goldie. What does the function goldie in the exm toolbox do?

4.12 Transform a hand. Repeat the experiments in this chapter with

X = hand

instead of

X = house

Figure 4.8 shows

dot2dot(hand)

4.13 Mirror image. Find a 2-by-2 matrix R so that

dot2dot(house)

and

dot2dot(R*house)

as well as

dot2dot(hand)

and

dot2dot(R*hand)

17

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 4.8. A hand.

are mirror images of each other.

4.14 Transform your own hand. Repeat the experiments in this chapter using a plot
of your own hand. Start with

figure(’position’,get(0,’screensize’))

axes(’position’,[0 0 1 1])

axis(10*[-1 1 -1 1])

[x,y] = ginput;

Place your hand on the computer screen. Use the mouse to select a few dozen points
outlining your hand. Terminate the ginput with a carriage return. You might find
it easier to trace your hand on a piece of paper and then put the paper on the
computer screen. You should be able to see the ginput cursor through the paper.

The data you have collected forms two column vectors with entries in the
range from -10 to 10. You can arrange the data as two rows in a single matrix with

H = [x y]’;

Then you can use

dot2dot(H)

dot2dot(A*H)

wiggle(H)

and so on.
You can save your data in the file myhand.mat with

save myhand H

and retrieve it in a later Matlab session with

load myhand

18 Chapter 4. Matrices

4.15 Wiggler. Make wiggler.m, your own version of wiggle.m, with two sliders
that control the speed and amplitude. In the initialization, replace the statements

thetamax = 0.1;

delta = .025;

with

thetamax = uicontrol(’style’,’slider’,’max’,1.0, ...

’units’,’normalized’,’position’,[.25 .01 .25 .04]);

delta = uicontrol(’style’,’slider’,’max’,.05, ...

’units’,’normalized’,’position’,[.60 .01 .25 .04]);

The quantities thetamax and delta are now the handles to the two sliders. In the
body of the loop, replace thetamax by

get(thetamax,’value’);

and replace delta by

get(delta,’value’);

Demonstrate your wiggler on the house and the hand.

