Latihan Soal Relasi Biner

1. List the ordered pairs in the relation R from $A = \{0, 1, 2, 3, 4\}$ to $B = \{0, 1, 2, 3\}$, where $(a, b) \in R$ if and only if

- **a**) a = b. **b**) a + b = 4.
- **c**) a > b. **d**) $a \mid b$.
- **e**) gcd(a, b) = 1. **f**) lcm(a, b) = 2.

3. For each of these relations on the set {1, 2, 3, 4}, decide whether it is reflexive, whether it is symmetric, whether it is antisymmetric, and whether it is transitive.

- **a)** {(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}
- **b**) {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)}
- **c)** {(2, 4), (4, 2)}
- **d**) {(1, 2), (2, 3), (3, 4)}
- **e**) {(1, 1), (2, 2), (3, 3), (4, 4)}
- **f**) {(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4)}

- **4.** Determine whether the relation R on the set of all people is reflexive, symmetric, antisymmetric, and/or transitive, where $(a, b) \in R$ if and only if
 - a) a is taller than b.
 - **b)** *a* and *b* were born on the same day.
 - **c)** *a* has the same first name as *b*.
 - **d**) *a* and *b* have a common grandparent.
- 7. Determine whether the relation R on the set of all integers is reflexive, symmetric, antisymmetric, and/or transitive, where $(x, y) \in R$ if and only if
 - a) $x \neq y$.

- **b**) $xy \ge 1$.
- c) x = y + 1 or x = y 1.
- **d**) $x \equiv y \pmod{7}$.
 - e) x is a multiple of y.
- \mathbf{f}) x and y are both negative or both nonnegative.
- **g**) $x = y^2$.

h) $x \ge y^2$.

32. Let *R* be the relation $\{(1, 2), (1, 3), (2, 3), (2, 4), (3, 1)\}$, and let *S* be the relation $\{(2, 1), (3, 1), (3, 2), (4, 2)\}$. Find $S \circ R$.

 $R_1 = \{(a, b) \in \mathbb{R}^2 \mid a > b\}$, the greater than relation,

 $R_2 = \{(a, b) \in \mathbb{R}^2 \mid a \ge b\}$, the greater than or equal to relation,

 $R_3 = \{(a, b) \in \mathbb{R}^2 \mid a < b\}$, the less than relation,

 $R_4 = \{(a, b) \in \mathbb{R}^2 \mid a \le b\}$, the less than or equal to relation,

 $R_5 = \{(a, b) \in \mathbb{R}^2 \mid a = b\}$, the equal to relation,

 $R_6 = \{(a, b) \in \mathbb{R}^2 \mid a \neq b\}$, the unequal to relation.

35. Find

a) $R_2 \cup R_4$.

b) $R_3 \cup R_6$.

c) $R_3 \cap R_6$.

d) $R_4 \cap R_6$.

e) $R_3 - R_6$.

f) $R_6 - R_3$.

g) $R_2 \oplus R_6$.

h) $R_3 \oplus R_5$.

37. Find

- **a**) $R_2 \circ R_1$.
- c) $R_3 \circ R_5$.
- **e**) $R_5 \circ R_3$.
- **g**) $R_4 \circ R_6$.

- **b**) $R_2 \circ R_2$.
- **d**) $R_4 \circ R_1$.
- **f**) $R_3 \circ R_6$.
- **h**) $R_6 \circ R_6$.

44. List the 16 different relations on the set $\{0, 1\}$.

46. Which of the 16 relations on {0, 1}, which you listed in Exercise 44, are

a) reflexive?

b) irreflexive?

c) symmetric?

d) antisymmetric?

e) asymmetric?

f) transitive?