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Introduction
• Stages in solving a discrete mathematics 

problem:

1. Building an appropriate mathematical model: 

to translate the problem into mathematical 

language

2. Finding an appropriate solution method

3. Ideally in the form of a series of steps that 

lead to solving the problem

• – This is called an ALGORITHM
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Origin of the word algorithm
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Algorithm

What is an algorithm?

Definition. An algorithm is a finite set of 

precise instructions for performing 

calculations/computations or solving a 

problem.
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Algorithm

Properties/attributes of the algorithm:

s

Input: the algorithm has input from a certain set,

Output: the algorithm produces output in the form of a certain 

set (solution),

Definiteness: each calculation step must be precise.

Correctness: produces the correct output for every possible 

input,

Finiteness: the algorithm must produce output in a finite 

number of steps, even though there are many calculations,

Effectiveness: each calculation step must be precise and 

executed in a finite time

Generality: is general for a group of problems.
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Contoh algoritma

We will use pseudocode to write the algorithm, 

which is similar to Pascal language.

Example: algorithm to find the maximum value of 

a finite series

procedure max(a1, a2, …, an: integers) 

max := a1

for i := 2 to n

if max < ai then max := ai

{max is the biggest element}
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Algorithm example

Another example: a linear search algorithm, which is an 
algorithm that searches for a particular element of a finite 
sequence linearly.

procedure linear_search(x: integer; a1, a2, …, an:integers)
i := 1
while (i  n and x  ai) 

i := i + 1

if i  n then location := i
else location := 0

{the position of the element being searched for is the 
subscript of the same term as x, or zero if not found.}
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Algorithm Example

If the elements of the sequence are sorted in a 

specific order (ascending or descending), a binary 

search algorithm is more efficient than a linear one.

In binary search, the algorithm iteratively limits the 

relevant search interval to the position of the element 

being searched.
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Algorithm Example

binary search of the letter ‘j’

search interval

a c d f g h j l m o p r s u v x z 

center element
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center element

Algorithm Example
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center element

Algorithm Example

binary search of the letter ‘j’

search interval

a c d f g h j l m o p r s u v x z

EL2009 Kuliah-5 12



center element

Found it !

Algorithm Example

binary search for the letter ‘j’

search interval

a c d f g h j l m o p r s u v x z
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Algorithm Example

procedure binary_search(x: integer;

a1, a2, …, an: integers)
i := 1 {i is left endpoint of search interval}
j := n {j is right endpoint of search interval}
while (i < j)

begin
m := (i + j)/2
if x > am then i := m + 1

else j := m
end
if x = ai then location := I

else location := 0
{the location of the searched element is the subscript of 
the same term as x, or zero if not found.}
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Growth functions and

measures of complexity
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It is clear that, in sorted sequences, binary search 
is more efficient than linear search.

How to analyze the efficiency of an algorithm?

We can measure the 

• time (number of elementary computations) 

• space (number of memory cells) required by an 
algorithm.

These measures are called computational 
complexity and space complexity, respectively.

Complexity
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Complexity

What is the time complexity of the linear 

search algorithm?

We will define the number of worst-case 

comparisons as a function of the length of the 

sequence n.

The worst case of the linear algorithm 

occurs when the searched element is not in 

the sequence.

In that case, each item in the sequence is 

compared with the searched element.
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Complexity

For n elements, the loop

while (i  n and x  ai) 

i=i + 1

is executed n times, thus requiring 2n comparison 
processes.

When entering the (n+1)th time, only the comparison 
i≤ n is executed and the loop is terminated.

Finally, the comparison

if i ≤ n then location := i

is executed, thus in the worst case, the time 
complexity is of 2n + 2. 18



What is the time complexity of the binary search 

algorithm?

Again we will define the number of comparisons in 

the worst case as a function of the number of terms 

in the sequence n.

We assume that there are n = 2k elements in the 

sequence, which means k = log n.

If n is not a power of 2, the series can be considered as a 
sub-series (part series) of a larger series, where 2k < n <
2k+1.

Complexity
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First cycle of the loop

while (i < j)

begin

m := (i + j)/2

if x > am then i := m + 1

else j := m

end

The search interval is limited to 2k-1 elements, 

using two comparison processes.

Complexity
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In the second cycle, the search interval is limited to 

a number of 2k-2 elements, once again with two 

comparisons.

This process is repeated until there is only one 

element remaining (20) in the search interval.

In this condition, a total of 2k comparisons are 

performed.

Complexity
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And then

while (i < j)

we exit the loop, and the final comparison

if x = ai then location := i

determines whether the searched element has 
been found. 

Thus, the total time complexity for the binary 
search algorithm is

2k + 2 = 2 log n + 2.

Complexity
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In general, for small inputs, we are not interested 

in either space or time complexity.

The difference in time complexity for linear 

search versus binary search is not significant for 

n = 10, but very significant for n = 230.

Complexity
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Suppose, there are two algorithms A and B that 

can solve a class of problems.

The time complexity of A is 5,000n, while for B it 

is 1.1n for input with n elements.

Complexity
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Comparison: Time complexity of algorithms A and B

Numb. of variables

0

10

100

1,000

1,000,000

Algorithm A 

5,000n

50,000

500,000

5,000,000

5109

Algorithm B

1.1n

3

13,781

2.51041

4.81041392

Complexity
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Elective course:

ET4244 : Optimization for Telecommunications

only 2 unknown variables

Gradient descent 

very common in 

deep learning 

applications



This means that algorithm B cannot be used for 

input with large elements, while algorithm A still 

can.

So what is important is the growth of the 

complexity function.

The growth of complexity with increasing input 

size, n, is a suitable measure for comparing 

algorithms.

Complexity
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Growth of a function

The growth of a function is denoted by the notation O 

(big-O).

Definition. Let f and g be two functions from integers 

to real numbers. We say that f(x) is O(g(x)) if there 

are constants C and k such that 

|f(x)|  C|g(x)|

for some x > k. [read as: “f(x) is the big-O of g(x)”]
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When analyzing the complexity of functions, 

f(x) and g(x) are always positive.

Therefore, we can simplify the big-O 

requirements to

f(x)  Cg(x) for some x > k.

If we want to show that  f(x) is O(g(x)), we only 

need to determine one pair (C, k) (which is never 

unique).

Growth of a function
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The idea behind big-O notation is to find an upper bound on
the growth of a function f(x) for large x.

This bound is given by a function g(x), which is usually much
simpler than f(x).

We accept the constant C in the condition that f(x) ≤ C.g(x)
when x > k, since C never grows with x.

We are only interested in large x, so it does not matter if f(x) >
C.g(x) for x  k.

Growth of a function
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Example:

Show that f(x) = x2 + 2x + 1 is O(x2).

For x > 1:

x2 + 2x + 1  x2 + 2x2 + x2

 x2 + 2x + 1  4x2

Hence, for C = 4 and k = 1: 

f(x)  Cx2 when x > k.

 f(x) is O(x2).

Growth of a function
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Question: If f(x) is O(x2), is f(x) also O(x3)?

Yes. x3 growth faster than x2, hence x3 also 

grows faster than f(x).

Therefore, we always have to find the smallest 

simple function g(x) for which f(x) is O(g(x)).

Growth of a function
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Popular functions for g(n) are: n log n, 1, 2n, n2, n!,
n, n3, log n

Ordered from the slowest to fastest growth:

 1
 log n
 n
 n log n




n2 

n3

 2n

 n!

Growth of a function
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Growth of a function

Problems that can be solved with polynomial worst-

case complexity are called tractable.

Problems with higher complexity are called 

intractable.

Problems that cannot be solved by any algorithm are 

called unsolvable.
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Exponential complexity 

O(2𝑛)   intractable

Polynomial time complexity, 

e.g.  O(𝑛3)   tractable

Turing halt  machine  

unsolvable



Some useful rules for Big-O

Theorem 1. For any polynomial f(x) = anxn + an-1xn-1 +
… + a0, where a0, a1, …, an real numbers, f(x) is O(xn).

Theorem 2. If f1(x) is O(g1(x)) and f2(x) is O(g2(x)),

then (f1 + f2)(x) is O(max(g1(x), g2(x)))

Theorem 3. If f1(x) is O(g(x)) and f2(x) is O(g(x)), then

(f1 + f2)(x) is O(g(x)).

Theorem 4. If f1(x) is O(g1(x)) and f2(x) is O(g2(x)),

then (f1f2)(x) is O(g1(x) g2(x)).
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Example of complexity problems

Analyze the following algorithm and determine its 

complexity?
procedure who_knows(a1, a2, …, an: integers) 
m := 0
for i := 1 to n-1

for j := i + 1 to n
if |a i – a j| > m then m := |a i  – a j|

{m is the maximum difference between two numbers from input 
sequence}

Amount of comparisons: n-1 + n-2 + n-3 + … + 1

= (n – 1)n/2 = 0.5n2 – 0.5n

Complexity is O(n2).
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Example of complexity problems

This algorithm also solves the same problem:

procedure max_diff(a1, a2, …, an: integers) 
min := a1

max := a1

for i := 2 to n
if ai < min then min := ai

else if ai > max then max := ai 

m := max - min

Number of comparisons: 2(n – 1)=2(n - 2)

Time complexity O(n).
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Epilog
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Mathematician of the day

EL2009 Kuliah-5 40


