Algorithm

000000

Introduction

« Stages in solving a discrete mathematics
problem:

1. Building an appropriate mathematical model:

to translate the problem into mathematical

anguage

2. Finding an appropriate solution method

3. ldeally in the form of a series of steps that

ead to solving the problem

« —This is called an ALGORITHM

EL2009 Kuliah-5

Origin of the word algorithm

ABU JA'FAR MOHAMMED IBN MUSA AL-KHOWARIZMI (C. 780—-C. 850) al-Khowarizmi, an as-
tronomer and mathematician, was a member of the House of Wisdom, an academy of scientists in Baghdad.
The name al-Khowarizmi means “from the town of Kowarzizm.” which was then part of Persia, but 1s now
called Khiva and 1s part of Uzbekistan. al-Khowarizmi wrote books on mathematics, astronomy. and geography.
Western Europeans first learned about algebra from his works. The word algebra comes from al-jabr, part of
the title of his book Kitab al-jabr w'al muquabala. This book was translated mnto Latin and was a widely used
textbook. His book on the use of Hindu numerals describes procedures for arithmetic operations using these
numerals. European authors used a Latin corruption of his name, which later evolved to the word algorithm, to
describe the subject of arithmetic with Hindu numerals.

EL2009 Kuliah-5 3

Algorithm

What Is an algorithm?

Definition. An algorithm is a finite set of
precise instructions for performing
calculations/computations or solving a
problem.

EL2009 Kuliah-5

Algorithm

Properties/attributes of the algorithm:

S

Input: the algorithm has input from a certain set,

Output: the algorithm produces output in the form of a certain
set (solution),

Definiteness: each calculation step must be precise.
Correctness: produces the correct output for every possible
Input,

Finiteness: the algorithm must produce output in a finite
number of steps, even though there are many calculations,
Effectiveness: each calculation step must be precise and
executed in a finite time

Generality: 1s general for a group of problems.

EL2009 Kuliah-5 S)

Contoh algoritma

We will use pseudocode to write the algorithm,
which is similar to Pascal language.

Example: algorithm to find the maximum value of
a finite series

procedure max(a,, a,, ..., a,. integers)
max .= a,
for1:=2ton
If max < a then max := a
{max Is the biggest element}

EL2009 Kuliah-5 6

Algorithm example

Another example: a linear search algorithm, which is an

algorithm that searches for a particular element of a finite
sequence linearly.

procedure linear_search(x: integer; a4, a,, ..., a,.integers)
=1
while (I<nand x # a)

1=1+1

If 1 <nthen location ;=1
else location ;=0

{the position of the element being searched for is the

subscript of the same term as x, or zero if not found.}

EL2009 Kuliah-5 7

Algorithm Example

If the elements of the sequence are sorted in a
specific order (ascending or descending), a binary
search algorithm is more efficient than a linear one.

In binary search, the algorithm iteratively limits the

relevant search interval to the position of the element
being searched.

EL2009 Kuliah-5 8

Algorithm Example

binary search of the letter j

search interval

A
| \

acdfghjlmoprsuvxz

center element

EL2009 Kuliah-5

Algorithm Example

binary search of the letter

search interval

|
[|

acdfghjlmeprsuvx=z

|

center element

EL2009 Kuliah-5

10

Algorithm Example

binary search of the letter j

search interval

|
[|

acdFfgh jl meprsuvixz

center element

EL2009 Kuliah-5 11

Algorithm Example

binary search of the letter j

search interval

{_L\
a€dFfg h j -m eprsuvx=

center element

EL2009 Kuliah-5

12

Algorithm Example

binary search for the letter 'j

search interval

aecdFfgh j m eprsuvx—=z

center element

Found it !

EL2009 Kuliah-5

13

Algorithm Example

procedure binary search(x: integer;

a,, a,, ..., a,. integers)
1:=1 {iisleft endpoint of search interval}
] :=n {jIs right endpoint of search interval}
while (I <)

begin
m =L@ +j)/2.
fx>a,theni:=m+1
elsej:=m
end

If X =a, then location := |
else location :=0
{the location of the searched element is the subscript of

the same term as x, or zero If not found.}
EL2009 Kuliah-5 14

EL2009

Growth functions and
measures of complexity

Kuliah-5

15

Complexity

It Is clear that, In sorted sequences, binary search
IS more efficient than linear search.

How to analyze the efficiency of an algorithm?

We can measure the
« time (number of elementary computations)

« space (number of memory cells) required by an
algorithm.

These measures are called computational
complexity and space complexity, respectively.

EL2009 Kuliah-5 16

Complexity

What is the time complexity of the linear
search algorithm?

We will define the number of worst-case
comparisons as a function of the length of the
sequence n.

The worst case of the linear algorithm
occurs when the searched element is not in
the sequence.

In that case, each item in the sequence Is
compared with the searched element.

EL2009 Kuliah-5 17

Complexity
For n elements, the loop
while (I<nand x # a)
1=+ 1
IS executed n times, thus requiring 2n comparison

processes.

When entering the (n+1)th time, only the comparison
I< n Is executed and the loop Is terminated.

Finally, the comparison
If | < n then location = |

IS executed, thus in the worst case, the time
complexity Is of 2n + 2. 8

Complexity

What is the time complexity of the binary search
algorithm?
Again we will define the number of comparisons in

the worst case as a function of the number of terms
In the sequence n.

We assume that there are n = 2k elements in the
sequence, which means k = log n.

If n Is not a power of 2, the series can be considered as a

sub-series (part series) of a larger series, where 2k <n <
2K+,

EL2009 Kuliah-5 19

Complexity

First cycle of the loop
while (I <)
begin
m:=L(i +j)/2.
fx>a,theni:=m+1
elsej:=m
end

The search interval is limited to 2k1 elements,
using two comparison processes.

EL2009 Kuliah-5

20

Complexity

In the second cycle, the search interval is limited to
a number of 2k2 elements, once again with two
comparisons.

This process is repeated until there is only one
element remaining (2°) in the search interval.

In this condition, a total of 2k comparisons are
performed.

EL2009 Kuliah-5 21

Complexity

And then
while (i <))

we exit the loop, and the final comparison
If X =a, then location := |

determines whether the searched element has
been found.

Thus, the total time complexity for the binary
search algorithm is
2k +2=2logn|+2.

EL2009 Kuliah-5

22

Complexity
In general, for small inputs, we are not interested
In either space or time complexity.
The difference in time complexity for linear

search versus binary search is not significant for
n = 10, but very significant for n = 230,

EL2009 Kuliah-5

23

Complexity

Suppose, there are two algorithms A and B that
can solve a class of problems.

The time complexity of A is 5,000n, while for B it
is [1.1] for input with n elements.

EL2009 Kuliah-5

24

Complexity

Comparison: Time complexity of algorithms A and B

Numb. of variables Algorithm A Algorithm B

0 5,000 [1.10]
10 50,000 3
100 500,000 13,781
1,000 5,000,000 2.5.1041

1,000,000 5.109 4.8-1041392

EL2009 Kuliah-5 25

Elective course:
ET4244 : Optimization for Telecommunications

f(x,y) = (2x* — y?)sin(0.09x)

f(x)

L L
\ ToX
N\ M

global minimum weak local minimum

only 2 unknown variables

Algorithm Gradient-descent Branch and bound Gradient descent
Initial point (-10, 10) = very common in
Optimal point (—26.3,5.4 x 107°) (50,0) deep learning
Function value —967.56 —4887.65 applications
Time complexity 0.0010 sec almost 2.5 hours

Complexity

This means that algorithm B cannot be used for
input with large elements, while algorithm A still
can.

So what is important is the growth of the
complexity function.

The growth of complexity with increasing input
size, n, Is a suitable measure for comparing
algorithms.

EL2009 Kuliah-5

27

Growth of a function

The growth of a function is denoted by the notation O
(big-0O).

Definition. Let f and g be two functions from integers
to real numbers. We say that f(x) is O(g(x)) If there
are constants C and k such that

1) < Clg(x)

for some x > k. [read as: “f(x) is the big-O of g(x)]

EL2009 Kuliah-5 28

Growth of a function

When analyzing the complexity of functions,
f(x) and g(x) are always positive.

Therefore, we can simplify the big-O
requirements to

f(x) < C-g(x) for some x > k.

If we want to show that f(x) is O(g(x)), we only
need to determine one pair (C, k) (which is never
unique).

EL2009 Kuliah-5 29

Growth of a function

The idea behind big-O notation is to find an upper bound on
the growth of a function f(x) for large x.

This bound is given by a function g(x), which is usually much
simpler than f(x).

We accept the constant C in the condition that f(x) < C.g(x)
when x > k, since C never grows with X.

We are only interested Iin large X, so it does not matter if f(x) >
C.g(x) for x < k.

EL2009 Kuliah-5 30

Growth of a function
Example:

Show that f(x) = x2 + 2x + 1 Is O(x2).

For x > 1:

X2+ 2X+ 1 < X2+ 2X2 + X2
= X2+ 2X + 1 <4x?

Hence, forC =4 and k = 1:

f(x) < Cx2 when x > k.

= (x) is O(x?).

EL2009 Kuliah-5

31

Growth of a function

Question: If f(x) i1s O(x?), Is f(x) also O(x3)?

Yes. x3 growth faster than x2, hence x3also
grows faster than f(x).

Therefore, we always have to find the smallest
simple function g(x) for which f(x) is O(g(x)).

EL2009 Kuliah-5

32

Growth of a function

Popular functions for g(n) are: nlog n, 1, 2", n2, n!,
n, n3, log n

Ordered from the slowest to fastest growth:

> 1
log n

VVVVVYVYVY
=)
N

EL2009 Kuliah-5 33

Growth of a function

Problems that can be solved with polynomial worst-
case complexity are called tractable.

Problems with higher complexity are called
intractable.

Problems that cannot be solved by any algorithm are
called unsolvable.

EL2009 Kuliah-6 34

Polynomial time complexity, Exponential complexity

e.g. O(n3) - tractable O(2") > intractable

30 fix,y)=4x2 + y?

=100

-100—75 -50 -150

230 25 50 75 300
x

Infinite loop
/\A
Yes
Turing halt machine - Halting —’

Input ———» i
unsolvable Machine: | e T

Some useful rules for Big-O

Theorem 1. For any polynomial f(x) = a,x"+ a,_x"1 +
... + a5, where a,, a4, ..., a, real numbers, f(x) is O(xn).

Theorem 2. If f;(X) is O(g4(x)) and f,(X) is O(g,(X)),
then (fy + 1,)(X) Is O(max(g:(x), 92(x)))

Theorem 3. If f;(X) Is O(g(x)) and f,(x) is O(g(x)), then
(fy + 12)(X) I1s O(9(X)).

Theorem 4. If f,(x) is O(g,(x)) and f,(x) is O(g,(X)),
then (f;15)(x) Is O(g1(X) g2(x))-

EL2009 Kuliah-6 36

Example of complexity problems

Analyze the following algorithm and determine its
complexity?
procedure who_knows(a;, a,, ..., a,: integers)
m:=0
fori:=1ton-1

forj:=i+ 1ton

if |a; - a;| > m thenm := |a; - a;|

{m is the maximum difference between two numbers from input
sequence}

Amount of comparisons: n-1+n-2+n-3+ ... +1
=(n—1)n/2=0.5n2—-0.5n
Complexity is O(n2).

EL2009 Kuliah-6 37

Example of complexity problems

This algorithm also solves the same problem:

procedure max_diff(a,, a,, ..., a,: integers)
min := a,
max := a,

fori:=2ton
if a, < min then min := a;
else if a;, > max then max := a;
m := max - min

Number of comparisons: 2(n — 1)=2(n - 2)

Time complexity O(n).

EL2009 Kuliah-6

38

EL2009

Epilog

Kuliah-5

39

Mathematician of the day

DONALD E ENUTH (BOEN 1938) Knuth grew up 1n Milwaukee. where his father taught bookkeeping at
a Lutheran high school and owned a small printing business. He was an excellent student. earming academic
achievement awards. He applied his intelligence in unconventional ways. winning a contest when he was 1n the
eighth grade by finding over 4500 words that could be formed from the letters mn “Ziegler's Giant Bar” This
won a television set for his school and a candy bar for everyone 1n his class.

Knuth had a difficult time choosing physics over music as his major at the Case Institute of Technology. He
then switched from physics to mathematics. and 1n 1960 he recerved his bachelor of science degree. simultane-
i, b ously recerving a master of science degree by a special award of the faculty who considered his work outstanding.
= At Case. he managed the basketball team and applied his talents by constructing a formula for the value of each
player. This novel approach was covered by Newsweek and by Walter Cronkite on the CBS television network. Knuth began graduate
work at the California Institute of Technology 1n 1960 and received his Ph.D. there in 1963. During this time he worked as a consultant.
writing compilers for different computers.

Knuth joined the staff of the Califormia Institute of Technology 1n 1963. where he remained until 1968. when he took a job as a
full professor at Stanford University. He retired as Professor Emernitus in 1992 to concentrate on writing. He 1s especially interested
in updating and completing new volumes of his series The Art of Computer Programming, a work that has had a profound influence
on the development of computer science. which he began writing as a graduate student in 1962 focusing on compilers. In common
jargon. “Knuth.” referring to The Art of Computer Programming, has come to mean the reference that answers all questions about
such topics as data structures and algorithms.

Knuth 1s the founder of the modem study of computational complexity. He has made fundamental contributions to the subject of
compilers. His dissatisfaction with mathematics typography sparked him to invent the now widely used TeX and Metafont systems.
TeX has become a standard language for computer typography. Two of the many awards Knuth has recerved are the 1974 Tunng
Award and the 1979 National Medal of Technology. awarded to him by President Carter.

Knuth has written for a wide range of professional joumnals 1n computer science and in mathematics. However, his first
publication, 1n 1957, when he was a college freshman. was a parody of the metric system called “The Potrzebie Systems of Weights
and Measures.” which appeared mn MALD Magazine and has been in reprint several times. He 1is a church organist. as his father was.
He 1s also a composer of music for the organ. Knuth believes that writing computer programs can be an aesthetic expenience. much
like writing poetry or composing music.

Knuth pays $2.56 for the first person to find each error 1 his books and $0.32 for significant suggestions. If you send him
a letter with an error (you will need to use regular mail. because he has given up reading e-mail). he will eventually inform you
whether you were the first person to tell him about this error. Be prepared for a long wait. because he recerves an overwhelming
amount of mail. (The author recerved a letter years after sending an error report to Knuth. noting that this report armved several
months after the first report of this error.)

EL2009 Kuliah-5 40

