
Algorithm

EL2009 Kuliah-5 1

Introduction
• Stages in solving a discrete mathematics

problem:

1. Building an appropriate mathematical model:

to translate the problem into mathematical

language

2. Finding an appropriate solution method

3. Ideally in the form of a series of steps that

lead to solving the problem

• – This is called an ALGORITHM

EL2009 Kuliah-5 2

Origin of the word algorithm

EL2009 Kuliah-5 3

Algorithm

What is an algorithm?

Definition. An algorithm is a finite set of

precise instructions for performing

calculations/computations or solving a

problem.

EL2009 Kuliah-5 4

Algorithm

Properties/attributes of the algorithm:

s

Input: the algorithm has input from a certain set,

Output: the algorithm produces output in the form of a certain

set (solution),

Definiteness: each calculation step must be precise.

Correctness: produces the correct output for every possible

input,

Finiteness: the algorithm must produce output in a finite

number of steps, even though there are many calculations,

Effectiveness: each calculation step must be precise and

executed in a finite time

Generality: is general for a group of problems.

EL2009 Kuliah-5 5

Contoh algoritma

We will use pseudocode to write the algorithm,

which is similar to Pascal language.

Example: algorithm to find the maximum value of

a finite series

procedure max(a1, a2, …, an: integers)

max := a1

for i := 2 to n

if max < ai then max := ai

{max is the biggest element}

EL2009 Kuliah-5 6

Algorithm example

Another example: a linear search algorithm, which is an
algorithm that searches for a particular element of a finite
sequence linearly.

procedure linear_search(x: integer; a1, a2, …, an:integers)
i := 1
while (i  n and x  ai)

i := i + 1

if i  n then location := i
else location := 0

{the position of the element being searched for is the
subscript of the same term as x, or zero if not found.}

EL2009 Kuliah-5 7

Algorithm Example

If the elements of the sequence are sorted in a

specific order (ascending or descending), a binary

search algorithm is more efficient than a linear one.

In binary search, the algorithm iteratively limits the

relevant search interval to the position of the element

being searched.

EL2009 Kuliah-5 8

Algorithm Example

binary search of the letter ‘j’

search interval

a c d f g h j l m o p r s u v x z

center element

EL2009 Kuliah-5 9

Algorithm Example

binary search of the letter ‘j’

search interval

a c d f g h j l m o p r s u v x z

center element

EL2009 Kuliah-5 10

center element

Algorithm Example

binary search of the letter ‘j’

search interval

a c d f g h j l m o p r s u v x z

EL2009 Kuliah-5 11

center element

Algorithm Example

binary search of the letter ‘j’

search interval

a c d f g h j l m o p r s u v x z

EL2009 Kuliah-5 12

center element

Found it !

Algorithm Example

binary search for the letter ‘j’

search interval

a c d f g h j l m o p r s u v x z

EL2009 Kuliah-5 13

Algorithm Example

procedure binary_search(x: integer;

a1, a2, …, an: integers)
i := 1 {i is left endpoint of search interval}
j := n {j is right endpoint of search interval}
while (i < j)

begin
m := (i + j)/2
if x > am then i := m + 1

else j := m
end
if x = ai then location := I

else location := 0
{the location of the searched element is the subscript of
the same term as x, or zero if not found.}

EL2009 Kuliah-5 14

Growth functions and

measures of complexity

EL2009 Kuliah-5 15

It is clear that, in sorted sequences, binary search
is more efficient than linear search.

How to analyze the efficiency of an algorithm?

We can measure the

• time (number of elementary computations)

• space (number of memory cells) required by an
algorithm.

These measures are called computational
complexity and space complexity, respectively.

Complexity

EL2009 Kuliah-5 16

Complexity

What is the time complexity of the linear

search algorithm?

We will define the number of worst-case

comparisons as a function of the length of the

sequence n.

The worst case of the linear algorithm

occurs when the searched element is not in

the sequence.

In that case, each item in the sequence is

compared with the searched element.

EL2009 Kuliah-5 17

Complexity

For n elements, the loop

while (i  n and x  ai)

i=i + 1

is executed n times, thus requiring 2n comparison
processes.

When entering the (n+1)th time, only the comparison
i≤ n is executed and the loop is terminated.

Finally, the comparison

if i ≤ n then location := i

is executed, thus in the worst case, the time
complexity is of 2n + 2. 18

What is the time complexity of the binary search

algorithm?

Again we will define the number of comparisons in

the worst case as a function of the number of terms

in the sequence n.

We assume that there are n = 2k elements in the

sequence, which means k = log n.

If n is not a power of 2, the series can be considered as a
sub-series (part series) of a larger series, where 2k < n <
2k+1.

Complexity

EL2009 Kuliah-5 19

First cycle of the loop

while (i < j)

begin

m := (i + j)/2

if x > am then i := m + 1

else j := m

end

The search interval is limited to 2k-1 elements,

using two comparison processes.

Complexity

EL2009 Kuliah-5 20

In the second cycle, the search interval is limited to

a number of 2k-2 elements, once again with two

comparisons.

This process is repeated until there is only one

element remaining (20) in the search interval.

In this condition, a total of 2k comparisons are

performed.

Complexity

EL2009 Kuliah-5 21

And then

while (i < j)

we exit the loop, and the final comparison

if x = ai then location := i

determines whether the searched element has
been found.

Thus, the total time complexity for the binary
search algorithm is

2k + 2 = 2 log n + 2.

Complexity

EL2009 Kuliah-5 22

In general, for small inputs, we are not interested

in either space or time complexity.

The difference in time complexity for linear

search versus binary search is not significant for

n = 10, but very significant for n = 230.

Complexity

EL2009 Kuliah-5 23

Suppose, there are two algorithms A and B that

can solve a class of problems.

The time complexity of A is 5,000n, while for B it

is 1.1n for input with n elements.

Complexity

EL2009 Kuliah-5 24

Comparison: Time complexity of algorithms A and B

Numb. of variables

0

10

100

1,000

1,000,000

Algorithm A

5,000n

50,000

500,000

5,000,000

5109

Algorithm B

1.1n

3

13,781

2.51041

4.81041392

Complexity

EL2009 Kuliah-5 25

Elective course:

ET4244 : Optimization for Telecommunications

only 2 unknown variables

Gradient descent

very common in

deep learning

applications

This means that algorithm B cannot be used for

input with large elements, while algorithm A still

can.

So what is important is the growth of the

complexity function.

The growth of complexity with increasing input

size, n, is a suitable measure for comparing

algorithms.

Complexity

EL2009 Kuliah-5 27

Growth of a function

The growth of a function is denoted by the notation O

(big-O).

Definition. Let f and g be two functions from integers

to real numbers. We say that f(x) is O(g(x)) if there

are constants C and k such that

|f(x)|  C|g(x)|

for some x > k. [read as: “f(x) is the big-O of g(x)”]

EL2009 Kuliah-5 28

When analyzing the complexity of functions,

f(x) and g(x) are always positive.

Therefore, we can simplify the big-O

requirements to

f(x)  Cg(x) for some x > k.

If we want to show that f(x) is O(g(x)), we only

need to determine one pair (C, k) (which is never

unique).

Growth of a function

EL2009 Kuliah-5 29

The idea behind big-O notation is to find an upper bound on
the growth of a function f(x) for large x.

This bound is given by a function g(x), which is usually much
simpler than f(x).

We accept the constant C in the condition that f(x) ≤ C.g(x)
when x > k, since C never grows with x.

We are only interested in large x, so it does not matter if f(x) >
C.g(x) for x  k.

Growth of a function

EL2009 Kuliah-5 30

Example:

Show that f(x) = x2 + 2x + 1 is O(x2).

For x > 1:

x2 + 2x + 1  x2 + 2x2 + x2

 x2 + 2x + 1  4x2

Hence, for C = 4 and k = 1:

f(x)  Cx2 when x > k.

 f(x) is O(x2).

Growth of a function

EL2009 Kuliah-5 31

Question: If f(x) is O(x2), is f(x) also O(x3)?

Yes. x3 growth faster than x2, hence x3 also

grows faster than f(x).

Therefore, we always have to find the smallest

simple function g(x) for which f(x) is O(g(x)).

Growth of a function

EL2009 Kuliah-5 32

Popular functions for g(n) are: n log n, 1, 2n, n2, n!,
n, n3, log n

Ordered from the slowest to fastest growth:

 1
 log n
 n
 n log n




n2

n3

 2n

 n!

Growth of a function

EL2009 Kuliah-5 33

Growth of a function

Problems that can be solved with polynomial worst-

case complexity are called tractable.

Problems with higher complexity are called

intractable.

Problems that cannot be solved by any algorithm are

called unsolvable.

EL2009 Kuliah-6 34

Exponential complexity

O(2𝑛)  intractable

Polynomial time complexity,

e.g. O(𝑛3)  tractable

Turing halt machine 

unsolvable

Some useful rules for Big-O

Theorem 1. For any polynomial f(x) = anxn + an-1xn-1 +
… + a0, where a0, a1, …, an real numbers, f(x) is O(xn).

Theorem 2. If f1(x) is O(g1(x)) and f2(x) is O(g2(x)),

then (f1 + f2)(x) is O(max(g1(x), g2(x)))

Theorem 3. If f1(x) is O(g(x)) and f2(x) is O(g(x)), then

(f1 + f2)(x) is O(g(x)).

Theorem 4. If f1(x) is O(g1(x)) and f2(x) is O(g2(x)),

then (f1f2)(x) is O(g1(x) g2(x)).

EL2009 Kuliah-6 36

Example of complexity problems

Analyze the following algorithm and determine its

complexity?
procedure who_knows(a1, a2, …, an: integers)
m := 0
for i := 1 to n-1

for j := i + 1 to n
if |a i – a j| > m then m := |a i – a j|

{m is the maximum difference between two numbers from input
sequence}

Amount of comparisons: n-1 + n-2 + n-3 + … + 1

= (n – 1)n/2 = 0.5n2 – 0.5n

Complexity is O(n2).

EL2009 Kuliah-6 37

Example of complexity problems

This algorithm also solves the same problem:

procedure max_diff(a1, a2, …, an: integers)
min := a1

max := a1

for i := 2 to n
if ai < min then min := ai

else if ai > max then max := ai

m := max - min

Number of comparisons: 2(n – 1)=2(n - 2)

Time complexity O(n).

EL2009 Kuliah-6 38

Epilog

EL2009 Kuliah-5 39

Mathematician of the day

EL2009 Kuliah-5 40

