1.2.2 Set Operations

The union of two sets is a set containing all elements that are in A or in B (possibly both). For example, $\{1,2\} \cup \{2,3\} = \{1,2,3\}$. Thus, we can write $x \in (A \cup B)$ if and only if $(x \in A)$ or $(x \in B)$. Note that $A \cup B = B \cup A$. In Figure 1.4, the union of sets A and B is shown by the shaded area in the Venn diagram.

Fig.1.4 - The shaded area shows the set $B \cup A$.

Similarly we can define the union of three or more sets. In particular, if $A_1, A_2, A_3, \cdots, A_n$ are n sets, their union

 $A_1 \cup A_2 \cup A_3 \cdots \cup A_n$ is a set containing all elements that are in at least one of the sets. We can write this union more compactly by

For example, if $A_1 = \{a, b, c\}$, $A_2 = \{c, h\}$, $A_3 = \{a, d\}$, then $\bigcup_i A_i = A_1 \cup A_2 \cup A_3 = \{a, b, c, h, d\}$. We can similarly define the union of infinitely many sets $A_1 \cup A_2 \cup A_3 \cup \cdots$.

The intersection of two sets A and B, denoted by $A \cap B$, consists of all elements that are both in A and B. For example, $\{1,2\} \cap \{2,3\} = \{2\}$. In Figure 1.5, the intersection of sets A and B is shown by the shaded area using a Venn diagram.

Fig.1.5 - The shaded area shows the set $B \cap A$.

More generally, for sets A_1, A_2, A_3, \cdots , their intersection $\bigcap_i A_i$ is defined as the set consisting of the elements that are in all A_i 's. Figure 1.6 shows the intersection of three sets.

Fig.1.6 - The shaded area shows the set $A \cap B \cap C$.

The complement of a set A, denoted by A^c or \overline{A} , is the set of all elements that are in the universal set S but are not in A. In Figure 1.7, \overline{A} is shown by the shaded area using a Venn diagram.

Fig.1.7 - The shaded area shows the set $ar{A}=A^c.$

The difference (subtraction) is defined as follows. The set A - B consists of elements that are in A but not in B. For example if $A = \{1, 2, 3\}$ and $B = \{3, 5\}$, then $A - B = \{1, 2\}$. In Figure 1.8, A - B is shown by the shaded area using a Venn diagram. Note that $A - B = A \cap B^c$.

Fig.1.8 - The shaded area shows the set A - B.

Two sets *A* and *B* are mutually exclusive or disjoint if they do not have any shared elements; i.e., their intersection is the empty set, $A \cap B = \emptyset$. More generally, several sets are called disjoint if they are pairwise disjoint, i.e., no two of them share a common element. Figure 1.9 shows three disjoint sets.

Fig.1.9 - Sets A, B, and C are disjoint.

If the earth's surface is our sample space, we might want to partition it to the different continents. Similarly, a country can be partitioned to different provinces. In general, a collection of nonempty sets A_1, A_2, \dots is a partition of a set A if they are disjoint and their union is A. In Figure 1.10, the sets A_1, A_2, A_3 and A_4 form a partition of the universal set S.

Fig.1.10 - The collection of sets A_1, A_2, A_3 and A_4 is a partition of S.

Here are some rules that are often useful when working with sets. We will see examples of their usage shortly.

Theorem 1.1: De Morgan's law

For any sets A_1, A_2, \dots, A_n , we have

- $ullet (A_1\cup A_2\cup A_3\cup\cdots A_n)^c=A_1^c\cap A_2^c\cap A_3^c\cdots\cap A_n^c;$
- $ullet (A_1\cap A_2\cap A_3\cap \cdots A_n)^c = A_1^c\cup A_2^c\cup A_3^c\cdots \cup A_n^c.$

Theorem 1.2: Distributive law

For any sets A, B, and C we have

- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C);$
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$

Example 1.4

If the universal set is given by $S = \{1, 2, 3, 4, 5, 6\}$, and $A = \{1, 2\}$, $B = \{2, 4, 5\}$, $C = \{1, 5, 6\}$ are three sets, find the following sets:

- a. $A \cup B$
- b. $A \cap B$
- c. \overline{A}
- d. \overline{B}
- e. Check De Morgan's law by finding $(A\cup B)^c$ and $A^c\cap B^c$.

f. Check the distributive law by finding $A \cap (B \cup C)$ and $(A \cap B) \cup (A \cap C)$.

• Solution

a.
$$A \cup B = \{1, 2, 4, 5\}$$
.
b. $A \cap B = \{2\}$.
c. $\overline{A} = \{3, 4, 5, 6\}$ (\overline{A} consists of elements that are in S but not in A).
d. $\overline{B} = \{1, 3, 6\}$.
e. We have

$$(A\cup B)^c=\{1,2,4,5\}^c=\{3,6\},$$

which is the same as

$$A^c \cap B^c = \{3,4,5,6\} \cap \{1,3,6\} = \{3,6\}.$$

f. We have

$$A\cap (B\cup C)=\{1,2\}\cap \{1,2,4,5,6\}=\{1,2\},$$

which is the same as

$$(A \cap B) \cup (A \cap C) = \{2\} \cup \{1\} = \{1, 2\}.$$

A Cartesian product of two sets A and B, written as $A \times B$, is the set containing ordered pairs from A and B. That is, if $C = A \times B$, then each element of C is of the form (x, y), where $x \in A$ and $y \in B$:

$$A imes B=\{(x,y)|x\in A ext{ and }y\in B\}.$$

For example, if $A = \{1, 2, 3\}$ and $B = \{H, T\}$, then

 $A imes B = \{(1,H),(1,T),(2,H),(2,T),(3,H),(3,T)\}.$

Note that here the pairs are ordered, so for example, $(1, H) \neq (H, 1)$. Thus $A \times B$ is not the same as $B \times A$.

If you have two finite sets A and B, where A has M elements and B has N elements, then $A \times B$ has $M \times N$ elements. This rule is called the multiplication principle and is very useful in counting the numbers of elements in sets. The number of elements in a set is denoted by |A|, so here we write |A| = M, |B| = N, and $|A \times B| = MN$. In the above example, |A| = 3, |B| = 2, thus $|A \times B| = 3 \times 2 = 6$. We can similarly define the Cartesian product of n sets A_1, A_2, \dots, A_n as

$$A_1 imes A_2 imes A_3 imes \cdots imes A_n = \{(x_1,x_2,\cdots,x_n)|x_1\in A_1 ext{ and } x_2\in A_2 ext{ and } \cdots x_n\in A_n\}.$$

The multiplication principle states that for finite sets A_1, A_2, \cdots, A_n , if

$$|A_1| = M_1, |A_2| = M_2, \cdots, |A_n| = M_n,$$

then

$$|A_1 imes A_2 imes A_3 imes \cdots imes A_n| = M_1 imes M_2 imes M_3 imes \cdots imes M_n.$$

An important example of sets obtained using a Cartesian product is \mathbb{R}^n , where n is a natural number. For n=2, we have

$$\mathbb{R}^2 = \mathbb{R} imes \mathbb{R} \ = \{(x,y) | x \in \mathbb{R}, y \in \mathbb{R} \}.$$

Thus, \mathbb{R}^2 is the set consisting of all points in the two-dimensional plane. Similarly, $\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ and so on.

 $\leftarrow \underline{\text{previous}}\\ \underline{\text{next}} \rightarrow$

The print version of the book is available on <u>Amazon</u>.

Practical uncertainty: Useful Ideas in Decision-Making, Risk, Randomness, & AI

