
Frequency Response

1. Introduction

We will examine the response of a second order linear constant coefficient system to
a sinusoidal input. We will pay special attention to the way the output changes as the
frequency of the input changes. This is what we mean by the frequency response of the
system. In particular, we will look at the amplitude response and the phase response; that is,
the amplitude and phase lag of the system’s output considered as functions of the input
frequency.

In O.4 the Exponential Input Theorem was used to find a particular solution in the
case of exponential or sinusoidal input. Here we will work out in detail the formulas for
a second order system. We will then interpret these formulas as the frequency response
of a mechanical system. In particular, we will look at damped-spring-mass systems. We
will study carefully two cases: first, when the mass is driven by pushing on the spring and
second, when the mass is driven by pushing on the dashpot.

Both these systems have the same form

p(D)x = q(t),

but their amplitude responses are very different. This is because, as we will see, it can
make physical sense to designate something other than q(t) as the input. For example, in
the system

mx′ + bx′ + kx = by′

we will consider y to be the input. (Of course, y is related to the expression on the right-
hand-side of the equation, but it is not exactly the same.)

2. Sinusoidally Driven Systems: Second Order Constant Coefficient DE’s

We start with the second order linear constant coefficient (CC) DE, which as we’ve
seen can be interpreted as modeling a damped forced harmonic oscillator. If we further
specify the oscillator to be a mechanical system with mass m, damping coefficient b, spring
constant k, and with a sinusoidal driving force B cos ωt (with B constant), then the DE is

mx′′ + bx′ + kx = B cos ωt. (1)

For many applications it is of interest to be able to predict the periodic response of the
system to various values of ω. From this point of view we can picture having a knob you
can turn to set the input frequency ω, and a screen where we can see how the shape of the
system response changes as we turn the ω-knob.

The Exponential Input Theorem (O.4 (4), and see O.4 example 2) tells us how to find a
particular solution to (1):

Characteristic polynomial: p(r) = mr2 + br + k.

Complex replacement: mx̃′′ + bx̃′ + kx̃ = Beiωt, x = Re(x̃).

Exponential Input Theorem: x̃p =
Beiωt

p(iω)
=

Beiωt

k−mω2 + ibω
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thus,

xp = Re(x̃p) =
B

|p(iω)| cos(ωt− φ) =
B√

(k−mω2)2 + b2ω2
cos(ωt− φ), (2)

where φ = Arg(p(iω)) = tan−1
(

bω

k−mω2

)
. (In this case φ must be between 0 and π. We

say φ is in the first or second quadrants.)

Letting A =
B√

(k−mω2)2 + b2ω2
, we can write the periodic response xp as

xp = A cos(ωt− φ).

The complex gain, which is defined as the ratio of the amplitude of the output to the
amplitude of the input in the complexified equation, is

g̃(ω) =
1

p(iω)
=

1
k−mω2 + ibω

.

The gain, which is defined as the ratio of the amplitude of the output to the amplitude of
the input in the real equation, is

g = g(ω) =
1

| p(iω) | =
1√

(k−mω2)2 + b2ω2
. (3)

The phase lag is

φ = φ(ω) = Arg(p(iω) = tan−1(
bω

k−mω2 ) (4)

and we also have the time lag = φ/ω.

Terminology of Frequency Response
We call the gain g(ω) the amplitude response of the system. The phase lag φ(ω) is called
the phase response of the system. We refer to them collectively as the frequency response
of the system.

Notes:
1. Observe that the whole DE scales by the input amplitude B.

2. All that is needed about the input for these formulas to be valid is that it is of the
form (constant) × (a sinusoidal function). Here we have used the notation B cos ωt but
the amplitude factor in front of the cosine function can take any form, including having
the constants depend on the system parameters and/or on ω. (And of course one could
equally-well use sin ωt, or any other shift of cosine, for the sinusoid.) This point is very
important in the physical applications of this DE and we will return to it again.

3. Along the same lines as the preceding: we always define the gain as the the amplitude of
the periodic output divided by the amplitude of the periodic input. Later we will see examples
where the gain is not just equal to 1

p(iω)
(for complex gain) or 1

|p(iω)| (for real gain) – stay
tuned!
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3. Frequency Response and Practical Resonance

The gain or amplitude response to the system (1) is a function of ω. It tells us the size
of the system’s response to the given input frequency. If the amplitude has a peak at ωr
we call this the practical resonance frequency. If the damping b gets too large then, for the
system in equation (1), there is no peak and, hence, no practical resonance. The following
figure shows two graphs of g(ω), one for small b and one for large b.

ω

g

ω0
ωr

Fig 1a. Small b (has resonance).

ω

g

ω0

Fig 1b. Large b (no resonance)

In figure (1a) the damping constant b is small and there is practical resonance at the fre-
quency ωr. In figure (1b) b is large and there is no practical resonant frequency.

Finding the Practical Resonant Frequency.
We now turn our attention to finding a formula for the practical resonant frequency -if it
exists- of the system in (1). Practical resonance occurs at the frequency ωr where g(w) has a
maximum. For the system (1) with gain (3) it is clear that the maximum gain occurs when
the expression under the radical has a minimum. Accordingly we look for the minimum
of

f (ω) = (k−mω2)2 + b2ω2.

Setting f ′(ω) = 0 and solving gives

f ′(ω) = −4mω(k−mω2) + 2b2ω = 0

⇒ω = 0 or m2ω2 = mk− b2/2.

We see that if mk− b2/2 > 0 then there is a practical resonant frequency

ωr =

√
k
m
− b2

2m2 . (5)

Phase Lag:
In the picture below the dotted line is the input and the solid line is the response.

The damping causes a lag between when the input reaches its maximum and when the
output does. In radians, the angle φ is called the phase lag and in units of time φ/ω is the
time lag. The lag is important, but in this class we will be more interested in the amplitude
response.
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4. Mechanical Vibration System: Driving Through the Spring

The figure below shows a spring-mass-dashpot system that is driven through the spring.

Dashpot

Mass

Spring

y

x

Figure 1. Spring-driven system

Suppose that y denotes the displacement of the plunger at the top of the spring and x(t)
denotes the position of the mass, arranged so that x = y when the spring is unstretched
and uncompressed. There are two forces acting on the mass: the spring exerts a force given
by k(y− x) (where k is the spring constant) and the dashpot exerts a force given by −bx′

(against the motion of the mass, with damping coefficient b). Newton’s law gives

mx′′ = k(y− x)− bx′

or, putting the system on the left and the driving term on the right,

mx′′ + bx′ + kx = ky . (6)

In this example it is natural to regard y, rather than the right-hand side q = ky, as the
input signal and the mass position x as the system response. Suppose that y is sinusoidal,
that is,

y = B1 cos(ωt).

Then we expect a sinusoidal solution of the form

xp = A cos(ωt− φ).

By definition the gain is the ratio of the amplitude of the system response to that of the
input signal. Since B1 is the amplitude of the input we have g = A/B1.

In equations (3) and (4) we gave the formulas for g and φ for the system (1). We can
now use them with the following small change. The k on the right-hand-side of equation
(6) needs to be included in the gain (since we don’t include it as part of the input). We get

g(ω) =
A
B1

=
k

|p(iω)| =
k√

(k−mω2)2 + b2ω2

φ(ω) = tan−1
(

bω

k−mω2

)
.
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Note that the gain is a function of ω, i.e. g = g(ω). Similarly, the phase lag φ = φ(ω) is
a function of ω. The entire story of the steady state system response xp = A cos(ωt− φ)
to sinusoidal input signals is encoded in these two functions of ω, the gain and the phase
lag.

We see that choosing the input to be y instead of ky scales the gain by k and does not
affect the phase lag.

The factor of k in the gain does not affect the frequency where the gain is greatest, i.e.
the practical resonant frequency. From (5) we know this is

ωr =

√
k
m
− b2

2m2 .

Note: Another system leading to the same equation is a series RLC circuit. We will favor
the mechanical system notation, but it is interesting to note the mathematics is exactly the
same for both systems.

5. Mechanical Vibration System: Driving Through the Dashpot

Now suppose instead that we fix the top of the spring and drive the system by moving
the bottom of the dashpot instead.

Suppose that the position of the bottom of the dashpot is given by y(t) and the position
of the mass is given by x(t), arranged so that x = 0 when the spring is relaxed. Then the
force on the mass is given by

mx′′ = −kx + b
d
dt
(y− x)

since the force exerted by a dashpot is supposed to be proportional to the speed of the
piston moving through it. This can be rewritten as

mx′′ + bx′ + kx = by′ . (7)

Dashpot

Mass

Spring

x

y

Figure 2. Dashpot-driven system

We will consider x as the system response, and again on physical grounds we specify
as the input signal the position y of the back end of the dashpot. Note that the derivative of
the input signal (multiplied by b) occurs on the right hand side of the equation.
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Again we suppose that the input signal is of sinusoidal form

y = B1 cos(ωt).

We will now work out the frequency response analysis of this problem.

First, y = B1 cos(ωt) ⇒ y′ = −ωB1 sin(ωt), so our equation is

mx′′ + bx′ + kx = −bωB1 sin(ωt) . (8)

We know that the periodic system response will be sinusoidal, and as usual we choose
the amplitude-phase form with the cosine function

xp = A cos(ωt− φ) .

Since y = B1 cos(ωt) was chosen as the input, the gain g is given by g = A
B1

.

As usual, we compute the gain and phase lag φ by making a complex replacement.

One natural choice would be to regard q(t) = −bωB1 sin(ωt) as the imaginary part of
a complex equation. This would work, but we must keep in mind that the input signal is
B1 cos(ωt) and also that we want to express the solution xp as xp = A cos(ωt− φ).

Instead we will go back to equation (7) and complexify before taking the derivative of
the right-hand-side. Our input y = B1 cos(ωt) becomes ỹ = B1eiωt and the DE becomes

mz′′ + bz′ + kz = bỹ′ = iωbB1eiωt. (9)

Since y = Re(ỹ) we have x = Re(z); that is, the sinusoidal system response xp of (8) is
the real part of the exponential system response zp of (9). The Exponential Input Theorem
gives

zp =
iωbB1

p(iω)
eiωt

where
p(s) = ms2 + bs + k

is the characteristic polynomial.

The complex gain (scale factor that multiplies the input signal to get the output signal)
is

g̃(ω) =
iωb

p(iω)
.

Thus, zp = B1 g̃(ω)eiωt.

We can write g̃ = |g̃|e−iφ, where φ = −Arg(g̃). (We use the minus sign so φ will come
out as the phase lag.) Substitute this expression into the formula for zp to get

zp = B1|g̃| ei(ωt−φ).

Taking the real part we have
xp = B1|g̃| cos(ωt− φ).
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All that’s left is to compute the gain g = |g̃| and the phase lag φ = −Arg(g̃). We have

p(iω) = m(iω)2 + biω + k = (k−mω2) + biω ,

so,

g̃ =
iωb

p(iω)
=

iωb
(k−mω2) + biω

. (10)

This gives

g(ω) = |g̃| = ωb
|p(iω)| =

ωb√
(k−mω2)2 + b2ω2

.

In computing the phase φ we have to be careful not to forget the factor of i in the numerator
of g̃. After a little algebra we get

φ(ω) = −Arg(g̃) = tan−1(−(k−mω2)/(bω)).

As with the system driven through the spring, we try to find the input frequency
ω = ωr which gives the largest system response. In this case we can find ωr without
any calculus by using the following shortcut: divide the numerator and denominator in
(10) by biω and rearrange to get

g̃ =
1

1 + (k−mω2)/(iωb)
=

1
1− i(k−mω2)/(ωb)

.

Now the gain g = |g̃| can be written as

g =
1√

1 + (k−mω2)2/(ωb)2
.

Because squares are always positive, this is clearly largest when the term k−mω2 = 0. At
this point g = 1 and ωr =

√
k/m = ω0, i.e. the resonant frequency is the natural frequency.

Since g̃(ω0) = 1, we also see that the phase lag φ = Arg(g̃) is 0 at ωr Thus the input
and output sinusoids are in phase at resonance.

We have found interesting and rather surprising results for this dashpot-driven me-
chanical system, namely, that the resonant frequency occurs at the system’s natural un-
damped frequency ω0; that this resonance is independent of the damping coefficient b;
and that the maximum gain which can be obtained is g = 1. We can contrast this with the
spring-side driven system worked out in the previous note, where the resonant frequency
certainly did depend on the damping coefficient. In fact, there was no resonance at all if
the system is too heavily damped. In addition, the gain could, in principle, be arbitarily
large.

Comparing these two mechanical systems side-by-side, we can see the importance of
the choice of the specification for the input in terms of understanding the resulting be-
havior of the physical system. In both cases the right-hand side of the DE is a sinusoidal
function of the form B cos ωt or B sin ωt, and the resulting mathematical formulas are es-
sentially the same. The key difference lies in the dependence of the constant B on either
the system parameters m, b, k and/or the input frequency ω. It is in fact the dependence
of B on ω and b in the dashpot-driven case that results in the radically different result for
the resonant input frequency ωr.
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