
18.03 LA.7: Two dimensional dynamics

[1] Rabbits
[2] Springs

[1] Rabbits

Farmer Jones and Farmer McGregor have adjacent farms, both afflicted
with rabbits. Let’s model this. Write x(t) for the number of rabbits in
Jones’s farm, and y(t) for the number in McGregor’s.

Rabbits breed fast: growth rate of 5 per year: ẋ = 5x, ẏ = 5y.

But wait, these two systems are coupled. The rabbits can jump over the
hedge between the farms. McGregor’s grass is greener, so it happens twice
as often into his than out if his, per unit population. So we have{

ẋ = 3x+ y
ẏ = 2x+ 4y

The equation is homogeneous, at least till McGregor gets his gun. In matrices,

with u =

[
x
y

]
,

u̇ = Au , A =

[
3 1
2 4

]
We could eliminate, but now we know better: we look for solutions of the

form
u(t) = eλtv , v 6= 0

That is, you separate the time dependence from the high dimensionality. You
look for ray solutions. He pointed out what happens when you substitute
this into the equation:

u̇ = λeλtv

while
Ax = Aeλtv = eλtAv

and the only way these can be equal is if

Av = λv
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That is, λ is an eigenvalue of A, and v is a nonzero eigenvector.

Let’s try it: The characteristic polynomial of A is

pA(λ) = λ2 − (trA)λ+ detA = λ2 − 7λ+ 10 = (λ− 2)(λ− 5)

and the roots of this polynomial are λ1 = 2, λ2 = 5.

So we have two “normal mode” solutions, one growing like e2t and the
other much faster, like e5t. (They both get large as t grows, but when e2t =
100, e5t = 100, 000.)

Then find nonzero eigenvectors by finding nonzero vectors killed byA−λI.
With λ = 2,

A− (2I) =

[
1 1
2 2

]
: v1 =

[
1
−1

]
or any nonzero multiple. In general one has the row reduction algorithm, but
for 2×2 cases you can just eyeball it. I like to look at one of the rows, reverse
the order and change one sign. Then check your work using the other row.
Remember, A−λI is supposed to be a singular matrix, zero determinant, so
the rows should say the same things.

The other eigenvalue gives

A− (5I) =

[
−2 1
2 −1

]
: v2 =

[
1
2

]
The two normal mode solutions are thus

e2t
[

1
−1

]
, e5t

[
1
2

]
and the general solution is a linear combination of these two.

This way of solving is much more perspicacious than the elimination we
did back in September: the variables are equally important and are put on
equal footing.

Remember the phase diagram: Plot the trajectory of x(t). There are two
sets of ray solutions, along the two eigenvectors. All solutions except the
constant one at 0 go off exponentially to infinity. Other solutions are linear
combinations of these two. As t → −∞, both exponentials get small, but
e5t gets smaller much faster, so the solutions become asymptotic to the other
eigenline.
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The picture is this shown well on the Mathlet “Linear Phase Portraits:
Matrix Entry.” This phase portrait is called a “Node.”

[2] Springs again. Another source of systems is the companion matrix:
The companion matrix of

d3x

dt3
+ a2

d2x

dt2
+ a1

dx

dt
+ a0x

for example is

A =

 0 1 0
0 0 1
−a0 −a1 −a2


In the harmonic oscillator ẍ+ ω2x = 0 for example the companion matrix is

A =

[
0 1
−ω2 0

]
We know the solutions of the harmonic oscillator, but let’s solve using eigen-
vectors.

The characteristic polynomial is pA(λ) = λ2 + ω2. This is a general fact,
true in any dimension:

The characteristic polynomial of an LTI operator is the same as that of
its companion matrix.

The eigenvalues here are ±ωi. Plunge on and find corresponding eigen-
vectors: For λ1 = iω,

A− λI =

[
−iω 1
−ω2 −iω

]
: v1 =

[
1
iω

]
(Check the second row!) Complex eigenvalues give rise to complex eigenvec-
tors. The other eigenvalue is −iω = iω, and the corresponding eigenvector
is the complex conjugate of v1.

These are the normal modes: e±iωt
[

1
±iω

]
. We can extract real solutions

in the usual way, by taking real and imaginary parts:

x1 =

[
cos(ωt)
−ω sin(ωt)

]
, x2 =

[
sin(ωt)
ω cos(ωt)

]
Now the trajectories are ellipses. This phase portrait is called a center.
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