
18.03 LA.6: Diagonalization and Orthogonal Matrices

[1] Diagonal factorization
[2] Solving systems of first order differential equations
[3] Symmetric and Orthonormal Matrices

[1] Diagonal factorization

Recall: if Ax = λx, then the system ẏ = Ay has a general solution of the
form

y = c1e
λ1tx1 + c2e

λ2tx2,

where the λi are eigenvalues with corresponding eigenvectors xi.

I’m never going to see eigenvectors without putting them into a matrix.
And I’m never going to see eigenvalues without putting them into a matrix.
Let’s look at an example from last class.

A =

[
5 2
2 5

]
. We found that this had eigenvectors

[
1
1

]
and

[
1
−1

]
.

I’m going to form a matrix out of these eigenvectors called the eigenvector
matrix S:

S =

[
1 1
1 −1

]
Then lets look at what happens when we multiply AS, and see that we

can factor this into S and a diagonal matrix Λ:[
5 2
2 5

] [
1 1
1 −1

]
=

[
7 3
7 −3

]
=

[
1 1
1 −1

] [
7 0
0 3

]
A S S Λ

We call matrix Λ with eigenvalues λ on the diagonal the eigenvalue matrix.

So we see that AS = SΛ, but we can multiply both sides on the right by
S−1 and we get a factorization A = SΛS−1. We’ve factored A into 3 pieces.
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Properties of Diagonalization

• A2 = SΛS−1SΛS−1 = SΛ2S−1

• A−1 = (SΛS−1)−1 = (S−1)−1Λ−1S−1 = SΛ−1S−1

Diagonal matrices are easy to square and invert because you simply square
or invert the elements along the diagonal!

[2] Solving systems of first order differential

equations

The entire reason we are finding eigenvectors is to solve differential equations.
Let’s express our solution to the differential equation in terms of S and Λ:

y =
[
x1 x2

] [
eλ1t 0
0 eλ2t

] [
c1

c2

]
S eΛt c

What determines c? Suppose we have an initial condition y(0). Plugging
this into our vector equation above we can solve for c:

y(0) = SIc

S−1y(0) = c

The first line simply expresses our initial condition as a linear combination
of the eigenvectors, y(0) = c1x1 + c2x2. The second equation just multiplies
the first by S−1 on both sides to solve for c in terms of y(0) and S−1, which
we know, or can compute from what we know.

Steps for solving a differential equation

Step 0. Find λi and xi.
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Step 1. Use the initial condition to compute the parameters:

c = S−1y(0)

Step 2. Multiply c by eΛt and S:

y = SeΛtS−1y(0).

[3] Symmetric and Orthonormal Matrices

In our example, we saw that A was symmetric (A = AT ) implied that the
eigenvectors were perpendicular, or orthogonal. Perpendicular and orthogo-
nal are two words that mean the same thing.

Now, the eigenvectors we chose

[
1
1

]
and

[
1
−1

]
had length

√
2. If we make them unit length, we can choose eigenvectors

that are both orthogonal and unit length. This is called orthonormal.

Question: Are the unit length vectors also eigenvectors?[
1/
√

2

1/
√

2

]
and

[
1/
√

2

−1/
√

2

]
Yes! If Ax = λx, then

A
x

||x||
= λ

x

||x||
.

It turns out that finding the inverse of a matrix whose columns are or-
thonormal is extremely easy! All you have to do is take the transpose!

3



Claim

If S has orthonormal columns, then S−1 = ST .

Example [
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
=

[
1 0
0 1

]
S ST = I

If the inverse exists, it is unique, so ST must be the inverse!

If we set θ = π/4 we get

1√
2

[
1 −1
1 1

]
,

but what we found was
1√
2

[
1 1
1 −1

]
.

Fortunately we can multiply the second column by negative 1, and it is still
and eigenvector. So in the 2 by 2 case, we can always choose the eigenvectors
of a symmetric matrix so that the eigenvector matrix is not only orthonormal,
but also so that it is a rotation matrix!

In general, a set of vectors x1, . . . ,xn is said to be orthonormal if the dot
product of any vector with itself is 1:

xi · xi = xTi xi = 1,

and the dot product of any two vectors that are not equal is zero:

xi · xj = xTi xj = 0,

when i 6= j.

This tells us that the matrix product:
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− xT1 −
− xT2 −
− xT3 −

  | | |
x1 x2 x3

| | |

 =

xT1 x1 xT1 x2 xT1 x3

xT2 x1 xT2 x2 xT2 x3

xT3 x1 xT3 x1 xT3 x3

 =

1 0 0
0 1 0
0 0 1


ST S = I

Example

We’ve seen that 2 by 2 orthonormal eigenvector matrices can be chosen to
be rotation matrices.

Let’s look at a 3 by 3 rotation matrix:

S =
1

3

 2 2 −1
−1 2 2

2 −1 2


As an exercise, test that all vector dot products are zero if the vectors are

not equal, and are one if it is a dot product with itself. This is a particularly
nice matrix because there are no square roots! And this is also a rotation
matrix! But it is a rotation is 3 dimensions.

Find a symmetric matrix A whose eigenvector matrix is S.

All we have to do is choose any Λ with real entries along the diagonal,
and then A = SΛST is symmetric!

Recall that (AB)T = BTAT . We can use this to check that this A is in
fact symmetric:

AT = (SΛST )T

= STTΛTST

= SΛST

This works because transposing a matrix twice returns the original ma-
trix, and transposing a diagonal matrix does nothing!

In physics and engineering this is called the principal axis theorem. In
math, this is the spectral theorem.
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Why is it called the principal axis theorem?

An ellipsoid whose principal axis are along the standard x, y, and z axes
can be written as the equation ax2 + by2 + cz2 = 1, which in matrix form is

[
x y z

] a 0 0
0 b 0
0 0 c

xy
z

 = 1

However, what you consider a general ellipsoid, the 3 principal direction
can be pointing in any direction. They are orthogonal direction though! And
this means that we can get back to the standard basis elements by applying
a rotation matrix S whose columns are orthonormal. Thus our equation for
a general ellipsoid is:S

xy
z

T a 0 0
0 b 0
0 0 c

S
xy
z

 = 1

[
x y z

]ST
a 0 0

0 b 0
0 0 c

S
xy

z

 = 1
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