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[1] Eigenvectors and Eigenvalues

Example from Differential Equations

Consider the system of first order, linear ODEs.

dy1
dt

= 5y1 + 2y2

dy2
dt

= 2y1 + 5y2

We can write this using the companion matrix form:[
y′1
y′2

]
=

[
5 2
2 5

] [
y1
y2

]
.

Note that this matrix is symmetric. Using notation from linear algebra,
we can write this even more succinctly as

y′ = Ay.

This is a coupled equation, and we want to uncouple it.

Method of Optimism

We’ve seen that solutions to linear ODEs have the form ert. So we will look
for solutions
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y1 = eλta

y2 = eλtb

Writing in vector notation:

y = eλt
[
a
b

]
= eλtx

Here λ is the eigenvalue and x is the eigenvector.

To find a solution of this form, we simply plug in this solution into the
equation y′ = Ay:

d

dt
eλtx = λeλtx

Aeλtx = eλtAx

If there is a solution of this form, it satisfies this equation

λeλtx = eλtAx.

Note that because eλt is never zero, we can cancel it from both sides of
this equation, and we end up with the central equation for eigenvalues and
eigenvectors:

λx = Ax

Definitions

• A nonzero vector x is an eigenvector if there is a number λ such that
Ax = λx.

• The scalar value λ is called the eigenvalue.

Note that it is always true that A0 = λ · 0 for any λ. This is why we
make the distinction than an eigenvector must be a nonzero vector, and an
eigenvalue must correspond to a nonzero vector. However, the scalar value
λ can be any real or complex number, including 0.
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This is a subtle equation. Both λ and x are unknown. This isn’t exactly
a linear problem. There are more unknowns.

What is this equation saying? It says that we are looking for a vector x
such that x and Ax point in the same direction. But the length can change,
the length is scaled by λ.

Note that this isn’t true for most vectors. Typically Ax does not point
in the same direction as x.

Example

If λ = 0, our central equation becomes Ax = 0x = 0. The eigenvector x
corresponding to the eigenvalue 0 is a vector in the nullspace!

Example

Let’s find the eigenvalues and eigenvectors of our matrix from our system of
ODEs. That is, we want to find x and λ such that[

5 2
2 5

] [
?
?

]
= λ

[
?
?

]
By inspection, we can see that[

5 2
2 5

] [
1
1

]
= 7

[
1
1

]
.

We have found the eigenvector x1 =

[
1
1

]
corresponding to the eigenvalue

λ1 = 7.

So a solution to a differential equation looks like

y = e7t
[
1
1

]
Check that this is a solution by pluging

y1 = e7t and

y2 = e7t
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into the system of differential equations.

We can find another eigenvalue and eigenvector by noticing that[
5 2
2 5

] [
1
−1

]
= 3

[
1
−1

]
.

We’ve found the nonzero eigenvector x2 =

[
1
−1

]
with corresponding

eigenvalue λ2 = 3.

Check that this also gives a solution by plugging

y1 = e3t and

y2 = −e3t

back into the differential equations.

Notice that we’ve found two independent solutions x1 and x2. More is
true, you can see that x1 is actually perpendicular to x2. This is because
the matrix was symmetric. Symmetric matrices always have perpendicular
eigenvectors.

[2] Observations about Eigenvalues

We can’t expect to be able to eyeball eigenvalues and eigenvectors everytime.
Let’s make some useful observations.

We have

A =

[
5 2
2 5

]
and eigenvalues

λ1 = 7

λ2 = 3

• The sum of the eigenvalues λ1 + λ2 = 7 + 3 = 10 is equal to the sum of
the diagonal entries of the matrix A is 5 + 5 = 10.
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The sum of the diagonal entries of a matrix A is called the trace and is
denoted tr (A).

It is always true that
λ1 + λ2 = tr (A).

If A is an n by n matrix with n eigenvalues λ1, . . . , λn, then

λ1 + λ2 + · · ·+ λn = tr (A)

• The product of the eigenvalues λ1λ2 = 7 · 3 = 21 is equal to detA =
25− 4 = 21.

In fact, it is always true that

λ1 · λ2 · · ·λn = detA .

For a 2 by 2 matrix, these two pieces of information are enough to compute
the eigenvalues. For a 3 by 3 matrix, we need a 3rd fact which is a bit more
complicated, and we won’t be using it.

[3] Complete Solution to system of ODEs

Returning to our system of ODEs:[
y′1
y′2

]
=

[
5 2
2 5

] [
y1
y2

]
.

We see that we’ve found 2 solutions to this homogeneous system.[
y1
y2

]
= e7t

[
1
1

]
and e3t

[
1
−1

]
The general solution is obtained by taking linear combinations of these

two solutions, and we obtain the general solution of the form:[
y1
y2

]
= c1e

7t

[
1
1

]
+ c2e

3t

[
1
−1

]
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The complete solution for any system of two first order ODEs has the form:

y = c1e
λ1tx1 + c2e

λ2tx2,

where c1 and c2 are constant parameters that can be determined from the
initial conditions y1(0) and y2(0). It makes sense to multiply by this param-
eter because when we have an eigenvector, we actually have an entire line of
eigenvectors. And this line of eigenvectors gives us a line of solutions. This
is what we’re looking for.

Note that this is the general solution to the homogeneous equation y′ =
Ay. We will also be interested in finding particular solutions y′ = Ay + q.
But this isn’t where we start. We’ll get there eventually.

Keep in mind that we know that all linear ODEs have solutions of the
form ert where r can be complex, so this method has actually allowed us to
find all solutions. There can be no more and no less than 2 independent
solutions of this form to this system of ODEs.

In this example, our matrix was symmetric.

• Symmetric matrices have real eigenvalues.

• Symmetric matrices have perpendicular eigenvectors.

[4] Computing Eigenvectors

Let’s return to the equation Ax = λx.

Let’s look at another example.

Example

A =

[
2 4
0 3

]
This is a 2 by 2 matrix, so we know that

λ1 + λ2 = tr (A) = 5

λ1 · λ2 = det(A) = 6
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The eigenvalues are λ1 = 2 and λ2 = 3. In fact, because this matrix was
upper triangular, the eigenvalues are on the diagonal!

But we need a method to compute eigenvectors. So lets’ solve

Ax = 2x.

This is back to last week, solving a system of linear equations. The key idea
here is to rewrite this equation in the following way:

(A− 2I)x = 0

How do I find x? I am looking for x in the nullspace of A− 2I! And we
already know how to do this.

We’ve reduced the problem of finding eigenvectors to a problem that we
already know how to solve. Assuming that we can find the eigenvalues λi,
finding xi has been reduced to finding the nullspace N(A− λiI).

And we know that A − λI is singular. So let’s compute the eigenvector
x1 corresponding to eigenvalue 2.

A− 2I =

[
0 4
0 1

]
x1 =

[
0
0

]
By looking at the first row, we see that

x1 =

[
1
0

]
is a solution. We check that this works by looking at the second row.

Thus we’ve found the eigenvector x1 =

[
1
0

]
corresponding to eigenvalue

λ1 = 2.

Let’s find the eigenvector x2 corresponding to eigenvalue λ2 = 3. We do
this by finding the nullspace N(A− 3I), we wee see is

A− 3I =

[
−1 4
0 0

] [
4
1

]
=

[
0
0

]

The second eigenvector is x2 =

[
4
1

]
corresponding to eigenvalue λ2 = 3.
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Important observation: this matrix is NOT symmetric, and the eigenvec-
tors are NOT perpendicular!

[5] Method for finding Eigenvalues

Now we need a general method to find eigenvalues. The problem is to find λ
in the equation Ax = λx.

The approach is the same:

(A− λI)x = 0.

Now I know that (A−λI) is singular, and singular matrices have determi-
nant 0! This is a key point in LA.4. To find λ, I want to solve det(A−λI) = 0.
The beauty of this equation is that x is completely out of the picture!

Consider a general 2 by 2 matrix A:

A =

[
a b
c d

]
A− λI =

[
a− λ b
c d− λ

]
.

The determinant is a polynomial in λ:

det(A− λI) = λ2 − (a+ d)λ + (ad− bc) = 0
↑ ↑

tr (A) det(A)

This polynomial is called the characteristic polynomial. This polynomial
is important because it encodes a lot of important information.

The determinant is a polynomial in λ of degree 2. If A was a 3 by 3
matrix, we would see a polynomial of degree 3 in λ. In general, an n by n
matrix would have a corresponding nth degree polynomial.

Definition

The characteristic polynomial of an n by n matrix A is the nth degree poly-
nomial det(A− λI).
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• The roots of this polynomial are the eigenvalues of A.

• The constant term (the coefficient of λ0) is the determinant of A.

• The coefficient of λn−1 term is the trace of A.

• The other coefficients of this polynomial are more complicated invari-
ants of the matrix A.

Note that it is not fun to try to solve polynomial equations by hand if
the degree is larger than 2! I suggest enlisting some computer help.

But the fundamental theorem of arithmetic tells us that this polynomial
always has n roots. These roots can be real or complex.

Example of imaginary eigenvalues and eigenvectors[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
Take θ = π/2 and we get the matrix

A =

[
0 −1
1 0

]
.

What does this matrix do to vectors?

To get a sense for how this matrix acts on vectors, check out the Matrix
Vector Mathlet http://mathlets.org/daimp/MatrixVector.html

Set a = d = 0, b = −1 and c = 1. You see the input vector v in yellow,
and the output vector Av in blue.

What happens when you change the radius? How is the magnitude of the
output vector related to the magnitude of the input vector?

Leave the radius fixed, and look at what happens when you vary the angle
of the input vector. What is the relationship between the direction of the
input vector and the direction of the output vector?

This matrix rotates vectors by 90 degrees! For this reason, there can be
no real nonzero vector that points in the same direction after being multiplied
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by the matrix A. Let’s look at the characteristic polynomial and find the
eigenvalues.

det(A− λI) = det

[
−λ −1
1 −λ

]
= λ2 + 1 = 0

The eigenvalues are λ1 = i and λ2 = −i.
Let’s do a quick check:

• λ1 + λ2 = i− i = tr (A)

• λ1 · λ2 = (i)(−i) = −1 = det(A)

Let’s find the eigenvector corresponding to eigenvalue i:

A− iI =

[
−i −1
1 i

]
Solving for the nullspace we must find the solution to the equation:[

−i −1
1 i

] [
?
?

]
=

[
0
0

]
To solve this equation, I look at the first row, and checking against the

second row we find that the solution is[
−i −1
1 i

] [
1
−i

]
=

[
0
0

]
.

What ODE does this correspond to?[
y′1
y′2

]
=

[
−i −1
1 i

] [
y1
y2

]
This is the system

y′1 = y2

y′2 = y1
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Using the method of elimination we get that:

y′′1 = −y′2 = −y1

We are very familiar with this differential equation, it is the harmonic
oscillator y′′ + y = 0. This linear, 2nd order equation parameterized motion
around a circle! It is a big example and physics, and we know that the
solution space has a basis spanned by eit and e−it. Notice that the i and −i
are the eigenvalues!

Properties of Eigenvalues

Suppose A has eigenvalue λ and nonzero eigenvector x.

• The the eigenvalues of A2 are λ2.

Why?
A2x = λAx = λ2x

We see that the vector x will also be an eigenvector corresponding to λ.
However, be careful!!! In the example above, λ1 = i and λ2 = −1, we get
repeated eigenvalues λ1 = λ2 = −1. And in fact

[
0 −1
1 0

]2
=

[
−1 0
0 −1

]
= −I

Since −Ix = −x for all nonzero vectors x, in fact every vector in the
plane is an eigenvector with eigenvalue -1!

We know that the exponential function is important.

• The eigenvalues of eA are eλ, with eigenvector x.

If eAx had meaning,
eAx = eλx

where x is an eigenvector of A, and λ is the corresponding eigenvalue.

• The eigenvalues of e−1 are λ−1, with eigenvector x.
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Let’s look at the example A =

[
5 2
2 5

]
, which had eigenvalues 7 and 3. Check

that A−1 has eigenvalues 1/7 and 1/3. We know that det(A) ∗ det(A−1) = 1,
and det(A) = 21 and det(A−1) = 1/21, which is good.

• The eigenvalues of A+ 12I are λ+ 12, with eigenvector x.

Check this with our favorite symmetric matrix A above.

Nonexamples

Let A and B be n by n matrices.

• The eigenvalues of A+B are generally NOT the eigenvalues of A plus
eigenvalues of B.

• The eigenvalues of AB are generally NOT the eigenvalues of A times
the eigenvalues of B.

Question: What would be necessary for the eigenvalues of A+B to be the
sum of the eigenvalues of A and B? Similarly for AB.

Keep in mind that Ax = λx is NOT an easy equation.

In matlab, the command is

eig(A)
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