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[1] Exponentials
What is e*?

Very bad definition: e” is the xth power of the number e ~ 2.718281828459045 . ..

Two problems with this: (1) What is e? (2) What does it mean to raise
a number to the power of, say, v/2, or 7?7

Much better definition: y(z) = e” is the solution to the differential equa-
d
tion d—y = y with initial condition y(0) = 1.
T

Now there’s no need to know about e in advance; e is defined to be e'.
And €” is just a function, which can be evaluated at v/2 or at 7 just as easily
as at an integer.

Note the sublety: you can’t use this definition to describe e* for any single
x (except © = 0); you need to define the entire function at once, and then
evaluate that function at the value of x you may want.

As you know, this gives us solutions to other equations: I claim that

y = " satisfies Y ry. This comes from the chain rule, with z = rt:

dt

dy _drdy

at  dt do Y

A further advantage of this definition is that it can be extended to other
contexts in a “brain-free” way.

A first example is Euler’s definition

e = cosf +isind



We defined z(t) = e®! to be the solution to # = (a + bi)z, and then
calculated that ‘
ela bt — eat(cos(bt) + isin(bt))

In all these cases, you get the solution for any initial condition: e™z(0)
is the solution to & = rz with initial condition z(0).
[2] Matrix exponential

We're ready for the next step: We have been studying the equation

dx
2 _q
a

where A is a square (constant) matrix.
Definition. e?* is the matrix of functions such that the solution to X = Ax,
in terms of its initial condition, is e?*x(0).

How convenient is that!

If we take x(0) to be the vector with 1 at the top and 0 below, the product
e*x(0) is the first column of e4?. Similarly for the other columns. So:

Each column of et is a solution of x = Ax. We could write this:
d
% €At _ A eAt

et is a matrix-valued solution! It satisfies a simple initial condition:

e =1

Not everything about 1 x 1 matrices extends to the general n x n matrix.
But everything about 1 x1 matrices does generalize to diagonal nxn matrices.
A0
0 X
equation X = Ax is just 1 = A\jz; and 23 = Ayxs. Plug in initial condition

At
{ (1] ] . the first column of e is { 60 ] . Plug in initial condition [ (1) }: the

, the given coordinates are already decoupled: the

IfA:A:{

second column is { e’(\)?t } So



Same works for n x n, of course.

[3] Fundamental matrices

Here’s how to compute e?!. Suppose we've found the right number (n)
independent solutions of X = Ax: say uy(t),...,uy(t). Line them up in a
row: this is a “fundamental matrix” for A:

O(t) = [ u; Uz --- Uy }
The general solution is
C1
x(t) = (1) |
Cn,
C1
®(t) may not be quite e’, but it’s close. Note that x(0) = ®(0)| : |,
Cn,
1
or | | =®0) 'x(0). Thus
Cn

So

for any fundamental matrix ®(¢).

0 -1
1 0
eigenvalues are +i. The phase portrait is a “center.” HEigenvectors for A = ¢

are killed by A — il = { _12 _11 ]; for example [ 1 } So the exponential

Example: A = { } . Characteristic polynomial p4(\) = A>+1, so the

solutions are given by

eit[ 1 ] = (costﬂ'sint)[ 1 ]

and its complex conjugate. To find real solutions, take just the right linear
combinations of these to get the real and imaginary parts:

ul(t):|: cost ] | u2(t):[sint}

—sint cost

3



These both parametrize the unit circle, just starting at different places. The
corresponding fundamental matrix is

CI)(t):{ cost sint]

—sint cost

We luck out, here: ®(0) = I, so

At cost sint
e’ = .
—sint cost

[4] Diagonalization

Suppose that A is diagonalizable: A = SAS™!.
1 2
0 3

characteristic polynomial, but you might as well remember that the eigenval-
ues of an upper (or lower) triangular matrix are the diagonal entries: here 1

Example: A = [ . You can find the eigenvalues as roots of the

and 3. Also an eigenvalue for 1 is easy: v, = . For the other, subtract

1

0
: . -2 2 . 1

3 from the diagonal entries: [ 0 0 } kills vo = [ 1 }

11 1 0
s=[5 1] a-lo 5]
Suppose A = SAS~!. Then we have exponential solutions corresponding
to the eigenvalues:

So

u (H)eMvy, ...

These give a fine fundamental matrix:

O(t) =[ eMvy ... eMivy |

Then ®(0) = 5, so



In our example,

s [1 17[e 0 [1 -1
" Tlo1llo e|lo 1

You could multiply this out, but, actually, the exponential matrix is often a
pain in the neck to compute, and is often more useful as a symbolic device.
Just like e*, in fact!

[5] The exponential law

I claim that
pAlt+s) _ At As

This is a consequence of “time invariance.” We have to see that both sides
are equal after multiplying by an arbitrary vector v. Let x(¢) be the solution
of X = Ax with initial condtion x(0) = v: so x(t) = e*v. Now fix s and let

y(t) = x(t + 5) = Ay
Calculate using the chain rule:

%y(t) _ %X(t +8) = %(t+5) = Ax(t + 5) = Ay(t)

So y is the solution to y = Ay with y(0) = x(s) = e¢**v. That means that
y(t) = efletsv. QED

This is the proof of the exponential law even in the 1 x 1 case; and you
will recall that as such it contains the trigonometric addition laws. Powerful
stuff!
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