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CHAPTER 1

Introduction to Calculus

I 1.1 Velocity and Distance I

The right way to begin a calculus book is with calculus, This chapter will jump
directly into the two problems that the subject was invented to solve. You will see
what the questions are, and you will see an important part of the answer. There are
plenty of good things left for the other chapters, so why not get started?

The book begins with an example that is familiar to everybody who drives a car.
It is calculus in action—the driver sees it happening. The example is the relation
between the speedometer and the odometer. One measures the speed (or velocity);
the other measures the diszance traveled. We will write v for the velocity, and [ for
how far the car has gone. The two instruments sit together on the dashboard:

Fg. 1.1 Velocity v and total distance f (at one instant of time).

Notice that the units of measurement are different for v and . The distance [ is
measured in kilometers or miles (it is easier to say miles). The velocity v is measured
in km/hr or miles per hour. A unit of time enters the velocity but not the distance.
Every formula to compute » from f will have f divided by time.

The central question of calculus is the relation between v and f. 1
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Can you find v if you know f, and vice versa, and how? If we know the velocity over
the whole history of the car, we should be able to compute the total distance traveled.
In other words, if the speedometer record is complete but the odometer is missing,
its information could be recovered. One way to do it (without calculus) is to put in
a new odometer and drive the car all over again at the right speeds. That seems like
a hard way; calculus may be easier. But the point is that the information is there.
If we know everything about p, there must be a method to find f.

What happens in the opposite direction, when f is known? If you have a complete
record of distance, could you recover the complete velocity? In principle you could drive
the car, repeat the history, and read off the speed. Again there must be a better way.

The whole subject of calculus is built on the relation between v and f. The question
we are raising here is not some kind of joke, after which the book will get serious
and the mathematics will get started. On the contrary, | am serious now—and the
mathematics has already started. We need to know how to find the velocity from a
record of the distance. (That is called differentiation, and it is the central idea of
differential caleulus.) We also want to compute the distance from a history of the
velocity. {That is integration, and it is the goal of integral calculus.)

Diflerentiation goes from f to v; integration goes from » to f. We look first
at examples in which these pairs can be computed and understood.

CONSTANT VELOCITY

Suppose the velocity is fixed at v =60 (miles per hour). Then f increases at this
constant rate, After two hours the distance is f= 120 (miles). After four hours
f=1240 and after ¢t hours f=60t. We say that [ increases kinearly with time—its
graph is a straight line.

4 velocity v(r) distance fi)

60 Tt 1 = 6}

Area~:=240 :

> time /
2 4

Fig. 1.2 Constant velocity v = 60 and linearly increasing distance f= 60:.

Notice that this example starts the car at full velocity. No time is spent picking up
speed. (The velocity is a “step function.”) Notice also that the distance starts at zero;
the car is new, Those decisions make the graphs of v and [ as neat as possible. One
is the horizontal line v = 60. The other is the sloping line f= 60t. This v, f, t relation
needs algebra hut not calculus:

if v is constant and [ starts at zero then = bt

The opposite is also true. When S increases linearly, v is constant. The division by
time gives the slope. The distance is f; = 120 miles when the time is ¢; =2 hours.
Later f; = 240 at ¢, = 4. At both points, the ratio f/t is 60 miles/hour. Geometrically,
the velocity is the slope of the distance graph:

change in distance _ vt

slope = —— —=u
P change in time t
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60— v=60 7=20+ 601

Area 30

: - ,:—15
Area —15 1{2 —15 4 )
s (1R S - 5=-30 f=-30

Fig. 1.3 Straight lines f=20 4 60t (slope 60) and f= —30¢ (slope —30).

The slope of the [-graph gives the v-graph. Figure 1.3 shows two morce possibilitics:

1. The distance starts at 20 instead of 0. The distance formula changes from 60t
to 20+ 60t. The number 20 cancels when we compute change in distance—so
the slope is still 60.

2. When v is negative, the graph of f goes downward. The car goes backward and
the slope of f=—30tis v = — 30.

1 don't think speedometers go below zero. But driving backwards, it's not that safe
to watch. If you go fast enough, Toyota says they measure ‘““absolute values”—the
speedometer reads + 30 when the velocity is — 30. For the odometer, as far as [ know
it just stops. It should go backward.t

VELOCITY vs. DISTANCE: SLOPE vs. AREA

How do you compute f from ¢? The point of the question is to see f=ut on the
graphs. We want to start with the graph of v and discover the graph of /. Amazingly,
the opposite of slope is area.

The distance f is the area under the v-graph. When v is constant, the region under
the praph is a rectangle. Its height is », its width is ¢, and its area is ¢ times ¢. This is
integration, to go from v to f by computing the area. We are glimpsing two of the
central facts of calculus.

1A The slope of the f-graph gives the velocity v. The area under the v-graph
gives the distance f.

That is certainly not obvious, and I hesitated a long time before [ wrote it down in
this first section. The best way to understand it is to look first at more examples. The
whole point of calculus is to deal with velocities that are not constant, and from now
on v has several values.

EXAMPLE (Forward and back) There is a motion that you will understand right away,
The car goes forward with velocity ¥, and comes back at the same speed. To say it
more correctly. the celocity in the second part is — V. If the forward part lasts untii
t =3, and the backward part continues to t = 6, the car will come back where it started.
The total distance after both parts will be /=0,

+This actually happened in Ferris Buefier's Day Off, when the hero borrowed his father’s sports
car and ran up the mileage. At home he raised the car and drove in reverse. T forget if it
worked.
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} o(6) = slope of f(1) gy 1 FO
v locity V. locity -V
aron velocity YUYy
v 13 6
= f + y > f
area
arca 3 6
¥ i

Ag. 1.4  Velocities + ¥ and — V give motion forward and back, ending at f(6)=0.

The v-graph shows velocities + V and — V. The distance starts up with slope + V
and reaches f= 3V. Then the car starts backward. The distance goes down with slope
—V and returns to f=0at t=6.

Notice what that means. The total area “under™ the v-graph is zero! A negative
velocity makes the distance graph go downward (negative slope). The car is moving
backward. Area below the axis in the v-graph is counted as negative.

FUNCTIONS

This forward-back example gives practice with a crucially itnportant idea—the con-
cept of a *“function.” We seize this golden opportunity to explain functions:

The rumber v(t) is the value of the function v at the time ¢

The time ¢ is the inpuf to the function. The velocity v(z) at that time is the output.
Most people say ‘v of t”" when they read u(t). The number “v of 27 is the velocity
when t = 2. The forward-back example has v(2)= + V and v(4) = — V. The function
contains the whole history, like a memory bank that has a record of v at each .

It is simple to convert forward-back motion into a formula. Here is v(t):

+V if D<tr<3
v(t) = ? i =13

-V if 3<t<6

The right side contains the instructions for finding »(t). The input ¢ is converted into
the output + ¥V or — V. The velocity v(r} depends on t. In this case the function is
“discontinuous,” because the needle jumps at t = 3. The velocity is not defined at that
instant. There is no v(3). (You might argue that v is zero at the jump, but that leads
to trouble.) The graph of f has a corner, and we can’t give its slope.

The problem also involves a second function, namely the distance. The principie
behind f{r) is the same: f(1) is the distance at time t. 1t is the net distance forward,
and again the instructions change at t = 3. In the forward motion, f{f) equals Vit as
before. In the backward half, a calculation is built into the formula for f{t):

Pt if 0<r<g3
t=
/e Vi6—1) if 3<i<6

At the switching time the right side gives two instructions (one on each line). This
would be bad except that they agree: f(3)= 3V.t The distance function is “‘con-

+A function is only allowed one value f(t} or £{t) at each time 1.
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tinuous.” There is no jump in f, even when there is a jump in ». After t = 3 the distance
decreases because of — Vt. At ¢t = 6 the second instruction correctly gives f{6}=0.

Notice something more. The functions were given by graphs before they were given
by formulas. The graphs tell you f and v at every time t—sometimes more clearly
than the formulas. The values f{t) and v(z) can aiso be given by tables or equations
or a set of instructions. (In some way all functions are instructions—the function
tells how to find f at time t.) Part of knowing j is knowing all its inputs and
outputs—its domain and range:

The domain of a furction is the set of inputs. The range is the set of outputs.

The domain of f consists of all times 0=t < 6. The range consists of all distances
0<f(t)< 3V. (The range of » contains only the two velocities +V and — V)
We mention now, and repeat later, that every “linear” function has a formula
S(ty=vt + C. Its graph is a line and v is the slope. The constant C moves the line up
and down. It adjusts the line to go through any desired starting point.

SUMMARY: MORE ABOUT FUNCTIONS

May I collect together the ideas brought out by this example? We had two functions
v and f. One was velocity, the other was distance. Each function had a domain,
and a range, and most important a graph. For the f-graph we studied the slope
{which agreed with v). For the v-graph we studied the area (which agreed with f).
Calculus produces functions in pairs, and the best thing a book can do early is to
show you more of them.

in input t — functionf{ — output f(t) in
the { input 2 —  functionv — output v(2) } the
domain input 7 - f()=2t+6 — f(H=2 range

Note about the definition of a functipn, The idea behind the symbol f(t) is absolutely
crucial to mathematics. Words don’t do it justice! By definition, a function is a “rule”
that assigns one member of the range to each member of the domain. Or, a function
is a set of pairs {t, f{r)) with no ¢ appearing twice. (These are “ordered pairs” because
we write t before f(r).) Both of those definitions are correct—but somehow they are
too passive,

In practice what matters is the active part. The number f{¢} is produced from the
number f. We read a graph, plug into a formula, solve an equation, run a computer
program. The input ¢ is “mapped” to the output f(t), which changes as ¢ changes.
Calculus is about the rate of change. This rate is our other function v.

[ fe—2y=21-3
range fin=2r+1 27 2 }
fn=-2=2r-1
| I ¥ 1T
range .
_ = domain
() f—— ¢ 0 t 4] + 4 {
domain | 1 l 2 3
1

Ag. 1.5 Subtracting 2 from [ aflects the range. Subtracting 2 from t aflects the domain.
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It is quite hard at the beginning, and not automatic, to see the difference between
f{ey— 2 and f(t — 2). Thosc arc both new functions, created out of the original f(r).
In f(r) — 2, we subtract 2 from all the distances. That moves the whole graph down.
In f{t—2), we subtract 2 from the time. That moves the graph over to the right.
Figure 1.5 shows both movements, starting from f{t)= 2: + 1. The formula to find
St —2)is 2(t — 2)+ 1, which is 2¢ — 3.

A graphing calculator also moves the graph, when you change the viewing window.
You can pick any rectangle A <t < B, C<fif)< D. The screen shows that part of
the graph. But on the calculator. the function f(t) remains the same. It is the axes that
get renumbered. In our figures the axes stay the same and the function is changed.

There are two more basic ways to change a function. (We are always creating new
functions—that is what mathematics is all about.) Instead of subtracting or adding,
we can multiply the distance by 2. Figure 1.6 shows 2f(¢). And instead of shifting the
time, we can speed it up. The function becomes f{2t). Everything happens twice as
fast (and takes haif as long). On the calculator those changes correspond to a
“zoom™ —on the § axis or the t axis. We soon come back to zooms.

67
woge | f 2fy = 4042
slope 4
37 3
range flry=2r+ 1 2 2 =44+ 1

slope 2 slope 4

1 1
dennain
[ v ——— () ——f () ——+—
domain | | 142

Fig. 1.4 Doubling the distance or speeding up the time doubles the slope.

1.1 EXERCISES

Each section of the book contains read-through questions. They {not —357). The slopes are __ 1 and _m

allow you to outline the section yourself—more actively than
reading a summary. This is probably the best way to remember o . The domain of f is the time interval

the important ideas. range is the distance interval __a . The range of v{t} is only

Starting from f{0)=0 at constant velocity v, the distance
function is fit1)=_0 . When f{r}=55r the velocity is
. When f{r)= 53t + 1000 the velocity is still __¢

and the starting value is f{0)=_d  [n each case r is the
of the graph of f When __t  is negative, the graph
of _ g goes downward. In that case area in the ¢-graph

r

. The distance
fi3y=__n . The area under the p-graph up to time 1.5 is

Thevalueof fity=3r+latt =215 f(2)=

- 19 equals f(__t ). The difference f(4) —f{l) =

is the change in distance, when 4 -- 1 is the change in
The ratio of those changes equals _ w , which is the
of the graph. The formula for f{r)+2 is 3¢+ 3 whereas

St +2)equals _ ¥y . Those functions have the same
Forward motion from f{0)=010 f(2)=10hasv=_ i . as f° the graph of f{r)+ 2 is shifted __ &

and f{t+2) 15

Then backward motion to f(d)=0 has v=__j . The dis- shifted _ 8 . The formula for f(5r) is __€

tance function is fi(ry= 5 for 0 <1 < 2 and then f{r}— _ k

. The formula
for 5f(r)is _ D . The slope has jumped from 3 to
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The set of inputs to a function is its _ ¥, The set of
outputs is its _ & . The functions f{t)=7+ 3(t —2) and
J{@)=vt + Care _ H__. Their graphs are __| _ with slopes
equal to _ J  and _ K . They arc the same function, if

v=_1

and C=_M

Draw the velocity graph that poes with each distance graph.

1 E E
60 T 20 b
la 10 t f
+ } ¥ i !
2 4 6 1 2
2 301/ !
20+ ] 2b
101 2a /
+ + ¥ I3 + } »> }
10 20 30 T 2r ar

3 Write down three-part formulas for the velocities »{t) in
Problem 2, startmg from s{t) =2 for 0 <t < 10,

4 Thedistance in 1b starts with f{t)=10— 10t for0 e < 1.
Give a formula lor the second part.

S [n the middle of graph 2a find f(15) and f{12) and f{¢).
6 In graph 2b find f(14T). If T=13 what is f(4)?

7 Find the average speed between t =0 and t =3 in graph
la. What is the speed at ¢ = 5?

8 What is the average speed between t =0 and ¢ = 2 in graph
1b? The average speed is zero between t =1 and ¢ = .

9 (recommended) A car goes at speed v =20 into a brick
wall at distance f=4. Give two-part formulas for »{t) and
J(¢) {before and after), and draw the graphs.

10 Draw any reasonable graphs of v(t) and f(z) when
{a} the driver backs up, stops to shift gear, then goes fast;
{b) the driver slows to 55 for a police car;
(¢} in a rough gear change, the car accelerates in jumps;
(d) the driver waits for a light that turns green.

11 Your bank account eamns simple interest on the opening
balance f(0). What are the interest rates per year?

%
fn 80

y 2 : l 2

12 The earth’s population is growing at = 100 million a
year, starting from f= 5.2 billion in 1990. Graph f{t) and find
S(2000).

Draw the distance graph that goes with each velocity graph
Start from /=0 at ¢t = 0 and mark the distance.

13 [ 0
30J[ 30 1
—t—-
I R 2 4 6
13a -30 13b
14 v v
404 40
20 4 i
} > f 1
12 T 2T 3T
-4) 14a 14b

15 Write down lormulas for »(t) in Problem 14, starting with
p=—40 for 0 <t < 1. Find the average velocities to ¢t =2.5
and t=13T.

16 Give 3-part formulas for the areas f(t) under v(r} in 13.

17 The distance in 14a stars with f(f}=—40tfor 0 <L,
Find f(r)in the other part, which passes through f=0att =2,

18 Draw the velocity and distance graphs if o{t}=8 for
D<t<? f()=20+tfor2<5e<3,

19 Draw rough graphs of y= ﬁ and y=,/x—4 and
y= \/; —4. They are *‘half-parabglas™ with infinite slope at
the start.

20 What is the break-even point if x yearbooks cost
$1200 + 30x to produce and the income is 40x? The slope of
the cost line is (cost per additional book). If it goes
above you can't break even.

21 What are the domains and ranges of the distance functions
in 14a and 14b—all values of t and f(¢} if f{0)=(Q?

22 What is the range of v{t) in 14b? Why is t = [ not in the
domain of v(t) in 14a?

Problems 2328 involve linear functions f(t) = vt + C. Find the
constants v and C.

23 What linear function has f(0)=13 and f(2)=—11?

24 Find two linear functions whose domain is 0< ¢ <2 and
whose range is 1 £ f(1) <9

25 Find the linear function with f{1) =4 and slope 6.
26 What functions have f(t + 1) =f{t) + 27

27 Find the linear function with f{t+2)=f(t)+6 and
S =10.

28 Find the only f= ot that has f{2t) = 4f(1}. Show that every
J=1%at? has this propenty. To go times as far in
twice the time, you must accelerate.
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29 Sketch the graph of f(t) =|5—2¢| (absolute value) for
|t| < 2 and find iis slopes and range.

30 Sketch the graph of f(tf)=4 —~¢—{4—¢|for 2< 1< 5and
find its slope and range,

31 Suppose v =38 uptotime T, and after that v = —2. Starting
from zero, when docs f return to zero? Give formulas for u(z)
and f{z).

32 Suppose v=13 up to time T=4. What new velocity wiil
lead to f{7)=30if f{0} =07 Give formulas for o(t} and f{#).

33 What function F{C) converts Celsius temperature C to
Fahrenheit temperature F? The slope is which is
the number of Fahrenheit degrees equivalent to 1°C.

3 What function C(F) converts Fahrenheit to Celsius (or
Centigrade), and what is its slope?

35 What function converts the weight w in grams to the
weight f{w} in kilograms? Interpret the slope of f{w).

36 (Newspaper of March 1989) Ten hours after the accident
the alcohoi reading was .061. Blood alcohol is eliminated at
.D15 per hour. What was the reading at the time of the acci-
dent? How much later would it drop to .04 {the maximum set
by the Coast Guard)? The usual limit on drivers is .10 percent.

Which points hetween ¢ =0 and ¢ = 5 can be in the domain of
S{6)? With this domain find the range in 37-42.

T fit)=t—1 B r=1//t—1

39 f(r)=1t—4| (absolute value) 40 f(£)= 1/(t — 4)?

41 flin=2 42 f=2""

43 (a) Draw the graphof f(z) = 4t + 3 with domain 0 < 1 2.
Then give a formula and graph for
(b fin+1 © fit+ D)
(d) 4f(0) (e) san.

44 (a) Draw the graph of U{t) = step function = {0 for t < 0,
I for t =0}. Then draw
(b} U(t)+2
(d) 3U{)

(e} Ult+2)
{e) U

1.2 Calculus Without Limits

45 {a) Draw the graph of f(t)=t+1 for —1<t< 1. Find
the domain, range, slope, and formula for

(b) 2fey (@ Sfie—3) d) =S} (& f(=1)
46 X f(r)=1t—1 what are 2f(3t) and f{1 —¢) and f(t —1)}?
47 In the forward-back example find f(4T}and f(3 T). Venfy

that those agree with the areas “under” the p-graph in
Figure 1.4,

48 Find formulas for the outputs f;(¢) and f5(t) which come
from the input &:
(1) inside = input*3 {2) inside + input + 6
output = inside + 3 output « inside*3

Note BASIC and FORTRAN (and calculus itself) use =
instead of «. But the symbol « or = is in some ways better.
The instruction t « t + 6 produces a new ¢ equal to the old ¢
plus six. The equation ¢ =t + 6 is not intended.

49 Your computer can add and multiply. Starting with the
number ! and the input called ¢, give a list of instructions to
tead to these outputs:

L=+t LO=HULE) HO=AE+1)

50 1n fifty words or less explain what a function is.

The last questions are challenging but possible.
51 If f(r) =3t — 1 for 0 <t <2 give formulas (with domain)
and find the slopes of these six functions:

@ fit+2) (b} f{t)+2 © 2/()

(d) f(21) © fi=1) f} U@
52 For f{t)=vt + C find the formulas and slopes of

(@) 3/ +1 (b} f(3t+1) (¢) 27(4r)

d f(=0 €} S-S0 ) fUf()).
53 (hardest) The forward-back function is f(t)=2t for
0553, f()=12—2t for 3<t<6. Graph f{f{1)) and find
its four-part formula, First try t=1.5 and 3.
54 (a) Why is the letter X not the graph of a function?

(b} Which capital letters are the graphs of functions?

(c) Draw graphs of their slopes.

The next page is going to reveal one of the key ideas behind calculus. The discussion
is just about numbers—functions and slopes can wait. The nuombers are not even
special, they can be any numbers. The crucial point is to look at their differences:

Suppose the numbers are f= 0 2 6 T 4 9

Their diflerences are v =

2 4 1 -3 5

The differences are printed in between, toshow 2 —0=2and6—-2=4and7-6=1.
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Notice how 4 — 7 gives a negative answer — 3. The numbers in f can go up or down,
the differences in v can be positive or negative. The idea behind calculus comes when

you add up those differences:
24+4+1-3+4+5=9

The sum of differences is 9. This is the last number on the top line (in f). Is this an
accident, or is this always true? If we stop earlier, after 2+ 4 + 1, we get the 7 in f.
Test any prediction on a second example:

Suppose the numbers are f=1 3 7 8 5 10
Their differences are v = 2 4 1 =3 5

The f’s are increased by 1. The differences are exactly the same—no change. The
sum of differences is still 9. But the last f is now 10. That prediction is not right, we
don’t always get the last f.

The first f is now 1. The answer 9 (the sum of differences) is 10 — 1, the last f
minus the first f. What happens when we change the f’s in the middle?

Suppose the numbers are f= 1 5 12 7 10
Their differences are v = 4 7 =53

The differences add to 4 +7 — 5+ 3 =9. This is still 10— 1. No matter what f’s we
choose or how many, the sum of differences is controlled by the first f and last f.
If this is always true, there must be a clear reason why the middle f’s cancel out.

The sum of differences is (5— 1)+ (12—=5)+(7—12)+(10—-7)=10—1.

The 5’s cancel, the 12’s cancel, and the 7’s cancel. It is only 10 — 1 that doesn’t cancel.
This is the key to calculus!

1B The differences of the s add up to (fias — fiirst)-

EXAMPLE1 The numbers grow linearly: f= 2 3 4 5 6 7
Their differences are constant: v = 1 1 1 1 1

The sum of differences is certainly 5. This agrees with 7 — 2 =f,.,, — first. The numbers
in v remind us of constant velocity. The numbers in f remind us of a straight line
f=uvt+ C. This example has v=1 and the f’s start at 2. The straight line would
come from f=1t+ 2.

EXAMPLE 2 The numbers are squares: f= 0 1 4 9 16
Their differences grow linearly: v=1 3 5 7

1 +3+ 5+ 7 agrees with 4> =16. It is a beautiful fact that the first j odd numbers
always add up to j%. The v’s are the odd numbers, the f’s are perfect squares.

Note The letter j is sometimes useful to tell which number in f* we are looking at.
For this example the zeroth number is f, =0 and the jth number is f;=j*. This is a
part of algebra, to give a formula for the f’s instead of a list of numbers. We can also
use j to tell which difference we are looking at. The first v is the first odd number
v, = l. The jth difference is the jth odd number v;=2j—=1. (Thus v, is 8 — 1 =7.) It
is better to start the differences with j = 1, since there is no zeroth odd number v,.

With this notation the jth difference is v;=f;—f;_,. Sooner or later you will get
comfortable with subscripts like j and j — 1, but it can be later. The important point
is that the sum of the v’s equals fi, — frir.- We now connect the v’s to slopes and the
f’s to areas.
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/ f;=16
vy=71 —
UJ:Z;_] // f;=_.“'
;=5 - g
: )& -f,‘_g
v, =3 ‘
5 h=4
U]=I - i
+ : . t h=1 i + - > |
1 2 3 4 1 2 3 4

Fig. 1.7 Linear increase in v= 1,3, 5, 7. Squares in the distances f=0, 1,4, 9, 16.

Figure 1.7 shows a natural way to graph Example 2, with the odd numbers in v and

the squares in f. Notice an important difference between the v-graph and the f-graph.

The graph of [ is “piecewise linear.” We plotted the numbers in f and connected

them by straight lines. The graph of v is “piecewise constant.” We plotted the differ-

ences as constant over each piece. This reminds us of the distance-velocity graphs,

when the distance f(t) is a straight line and the velocity v(t) is a horizontal line.
Now make the connection to slopes:

distance up change in f
. = =
distance across  change in t

The slope of the f~graph is

Over each piece, the change in t (across) is 1. The change in f (upward) is the difference

that we are calling v. The ratio is the slope v/1 or just v. The slope makes a sudden

change at the breakpoints r=1,2,3,.... At those special points the slope of the

f-graph is not defined—we connected the v’s by vertical lines but this is very

debatable. The main idea is that between the breakpoints, the slope of f(t) is v(t).
Now make the connection to areas:

The total area under the v-graph is [, — frirst-

This area, underneath the staircase in Figure 1.7, is composed of rectangles. The base
of every rectangle is 1. The heights of the rectangles are the v’s. So the areas also
equal the v's, and the total area is the sum of the v's. This area is fi,q — frirec-

Even more is true. We could start at any time and end at any later time
—not necessarily at the special times r=0, 1,2, 3,4, Suppose we stop at t=3.5.
Only half of the last rectangular area (under v = 7) will be counted. The total area is
1 +3+ 5+ 3(7) = 12.5. This still agrees with fi,¢ — fiire = 12.5— 0. At this new ending
time ¢ = 3.5, we are only halfway up the last step in the f-graph. Halfway between
9 and 161s 12.5.

AC  The v’s are slopes of f(t). The area under the v-graph is f(t.nq) —f (tyart).

This is nothing less than the Fundamental Theorem of Calculus. But we have only
used algebra (no curved graphs and no calculations involving limits). For now the
Theorem is restricted to piecewise linear f(z) and piecewise constant v(t). In Chapter 5
that restriction will be overcome.

Notice that a proof of 1 +3 + 5+ 7 =47 is suggested by Figure 1.7a. The triangle
under the dotted line has the same area as the four rectangles under the staircase.
The area of the triangle is - base * height = %+4 -8, which is the perfect square 42
When there are j rectangles instead of 4, we get 4+ 2j=j? for the area.
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The next examples show other patterns, where f and v increase exponentially or
oscillate around zero. I hope you like them but I don’t think you have to learn them.
They are like the special functions 2* and sin t and cos t—except they go in steps.
You get a first look at the important functions of calculus, but you only need algebra.
Calculus is needed for a steadily ckanging velocity, when the graph of [ is carved,

The last example will be income tax—which really does go, in steps, Then Sec-
tion 1.3 will introduce the slope of a curve. The crucial step for curves is working
with fimits. That will take us from algebra to calculus,

EXPONENTIAL VELOCITY AND DISTANCE

Start with the numbers f=1, 2, 4, 8, 16. These are “powers of 2.” They start with the
zeroth power, which is 2° = 1. The exponential starts at 1 and not 0. Alfter j steps there
are j factors of 2, and f; equals 2/. Please recognize the difference between 2j and j*
and 2. The numbers 2j grow linearly, the numbers j? grow quadratically, the numbers
2/ grow exponentially. At j =10 these are 20 and 100 and 1024. The exponential 2/
quickly becomes much larger than the others.

The differences of =1, 2,4, 8, 16 are exactly v = 1, 2, 4, 8. We get the same beauti-
ful numbers. When the (s are powers of 2, so are the v's. The formula v;=2/"" is
slightly different from f; =2/, because the first v is numbered v,. (Then v, =2°=1.
The zeroth power of every number is 1, except that 0° is meaningless.) The two graphs
in Figure 1.8 use the same numbers but they look different, because f is piecewise
linear and v is piecewise constant.

.=2j_|
UJ

v,=21
v =t ——l
1 2 3 4 i 2 3 4
HAg. 1.8 The velocity and distance grow exponentially {powers of 2).

Where will calculus come in? It works with the smooth curve f(1) = 2. This expo-
nential growth is critically important for population and money in a bank and the
nationai debt. You can spot it by the following test: v(t) is proportional to f(f).

Remark The function 2' is trickier than t2. For f=t? the slope is v=2¢, It is
proportional to t and not t2. For f=2' the slope is v=c2, and we won’t find the
constant ¢ = .693 ... until Chapter 6. {The number ¢ is the natural logarithm of 2.}
Problem 37 estimates ¢ with a calculator—the important thing is that it’s constant.

OSCILLATING VELOCITY AND DISTANCE

We have scen a forward-back motion, velocity V followed by — V. That is oscillation
of the simplest kind. The graph of f goes linearly up and linearly down. Figure 1.9
shows another oscillation that returns to zero, but the path is more interesting.

The numbers in f are now 0,1, 1,0, —1, —1, 0. Since fs =0 the motion brings us
back to the start. The whole oscillation can be repeated.

11
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The differences in v are 1,0, —1, —1,0, 1, They add up to zero, which agrees with
Jass — frira- It 18 the same oscillation as in f (and also repeatabie), but shifted in time.

The f-graph resembles (roughly) a sine curve, The v-graph resembles (even more
roughly) a cosime curve. The waveforms in nature are smooth curves, while these are
“digitized”—the way a digital watch goes forward in jumps. You recognize that the
change from analog to digital brought the computer revolution. The same revolution
is coming in CD players. Digital signals (off or on, 0 or 1} seem to win every time.

The piecewise v and [ start again at ¢ = 6. The ordinary sine and cosine repeat at
t = 2n. A repeating motion is periodic—here the “period™ is 6 or 2z, (With ¢ in degrees
the period is 360-—a full circle. The period becomes 2n when angles are measured in
radians. We virtually always use radians—which are degrees times 27/360.) A watch
has a period of 12 hours. If the dial shows am and PM™, the period is

w1} it

i ﬁ 5 6 ' o v
-] * 4 1

Fig. 1.9 Piecewise constant “cosine” and piecewise linear “sine.” They both repeat.

A SHORT BURST OF SPEED

The next example is a car that is driven fast for a short time. The speed is V until
the distance reaches =1, when the car suddenly stops. The graph of f goes up
linearly with slope V, and then across with siope zero:

V upto t=T Vit upto t=T
v(t) = fi=
0 after t=T 1 after =T

This is another example of “function notation.” Notice the generai time ¢ and the
particular stopping time T. The distance is f(¢). The domain of f (the inputs) includes
all times ¢ 2 0. The range of [ (the outputs) includes all distances 0 < f< 1.

Figure 1.10 allows us to compare three cars—a Jeep and a Corvette and a Maserati.
They have different speeds but they all reach f= 1. So the areas under the s-graphs
are all 1. The rectangles have height V and base T=1/V.

Vi EQUAL AREAS EQUAL DISTANCES "

Maserati delta :: function

n step

Vol -} - i+ ‘

¢ j| Corvette : function
v, t !
I Jeep i
— —_—
Ty T¢ L Tu T¢ T,

Ag. 1.40 Bursts of speed with Vi, Ty, = Vo Te = ¥, T; = L. Step function has infinite slope.

Optional remark 1t is naturai to think about faster and faster speeds, which means
steeper slopes. The f-graph reaches ] in shorter times. The extreme case is a sfep
JSunction, when the graph of f goes straight up. This is the unit step U{t), which is
zero up to t =0 and jumps immediately to U =1 for t > 0.
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What is the slope of the step function? 1t is zero except at the jump. At that moment,
which is t = 0, the slope is infinite. We don’t have an ordinary velocity v(t)—instead
we have an impulse that makes the car jump. The graph is a spike over the single
point t =0, and it is often denoted by é6—so the slope of the step function is called
a “delta function.” The area under the infinite spike is 1.

You are absolutely not responsible for the theory of delta functions! Calculus is
about curves, not jumps.

Qur last example is a real-world application of slopes and rates—to explain “how
taxes work.” Note especially the difference between tax rates and tax brackets and
total tax. The rates are v, the brackets are on x, the total tax is f.

EXAMPLE 3 Income tax is piecewise linear. The slopes are the tax rates .15, .28, 31.

Suppose you are single with taxable income of x dollars (Form 1040, line 37—after
all deductions). These are the 1991 instructions from the Internal Revenue Service:

If x is not over $20,350, the tax is 15% of x.
If $20,350 < x < $49,300, the tax is $3052.50 4+ 28% of the amount over $20,350.
If x is over $49,300, the tax is $11,158.50 + 31% of the amount over $49,300.

The first bracket is 0 < x < $20,350. (The IRS never uses this symbol <, but I think
it is OK here. We know what it means.) The second bracket is $20,350 < x < $49,300.
The top bracket x > $49,300 pays tax at the top rate of 31%. But only the income in
that bracket is taxed at that rate.

Figure 1.11 shows the rates and the brackets and the tax due. Those are not average
rates, they are marginal rates. Total tax divided by total income would be the average
rate. The marginal rate of .28 or .31 gives the tax on each additional dollar of income—
it is the slope at the point x. Tax is like area or distance—it adds up. Tax rate is like
slope or velocity—it depends where you are. This is often unclear in the news media.

folen tax to pay flx)
Seem— p 180 119
: 'u'r ss 3| 11,158 tax rate = 31%
: e slope .28
area |
180 | _
area | | f(2)=40 : 3652 15% bl
40 1 Ly _ slope 20 ; 2, . ) et
2 . < 5 20350 49,300

Fig. 1.41 The tax rate is v, the total tax is f. Tax brackets end at breakpoints.

Question What is the equation for the straight line in the top bracket?

Answer The bracket begins at x = $49,300 when the tax is f(x)=$11,158.50. The
slope of the line is the tax rate .31. When we know a point on the line and the slope,
we know the equation. This is important enough to be highlighted.

1D For x in the top bracket the tax is f(x)=$11,158.50 + .31 (x — $49,300).
This is the tax on $49,300 plus the extra tax on extra income.

Section 2.3 presents this “point-slope equation” for any straight line. Here you see it
for one specific example. Where does the number $11,158.50 come from? It is the tax
at the end of the middle bracket, so it is the tax at the start of the top bracket.
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Figure 1.11 also shows a distance-velocity example. The distance at t=2 is
J(2) =40 miles. After that time the velocity is 60 miles per hour. So the line with
slope 60 on the f-graph has the equation

() =starting distance + extra distance = 40 + 60(t — 2).
The starting point is {2, 40). The new speed 60 multiplies the extra time ¢ — 2. The
point-slope equation makes sense. e row review this section, with comments.

Central idea Start with any numbers in [, Their differences go in v. Then the sum
of those differences is f,; — friret-

Subscript notation The numbers are fj, f;, ... and the first difference is v, =1, —f;.
A typical number is f; and the jth difference is v;=f; —f;_ ;. When those differences
are added, all f’s in the middle (like f,) cancel out:

o0t =L L)+ (- L)+ H L fim) = e
Examples f,=j or j* or 2. Then v;= | (constant) or 2j — 1 (odd numbers) or 2/ 1,

Functions Connect the f's to be piecewise linear. Then the slope v is piecewise
constant. The area under the v-graph from any ¢, to any t.,q equals f{t..4) —f{tyec):

Units Distance in miles and velocity in miles per hour. Tax in dollars and tax rate
in (dollars paid)/(dollars earned). Tax rate is a percentage like .28, with no units.

1.2 EXERCISES

Read-through questions

Start with the numbers f=1,6,2, 5. Their differences are
v=_0  Thesum of those differencesis __ & . This is equal
t0 fl, minus € . The numbers 6 and 2 have no effect on
this answer, because in (6 — 1) + (2 — 6) + (5 — 2} the numbers
6and 2 _d ., The slope of the line between f(0)=1 and

f{l)==61is _#® . The equation of that line is f{f)=_ !

With distances 1, 5, 25 at unit times, the velocities are
@__ . These are the _ b of the f~graph. The slope of the

tax graph is the tax __ 1 . If f(¢) is the postage cost for ¢
ounces Or ¢ grams, the slope is the _ ]  per _ k , For
distances 0, 1, 4,9 the velocities are __{ . The sum of the

first j odd numbers is f;=_m _ Then fsis _n _ and the
velocity vyp 15 _ ©

The piecewise linear sine has slopes __ B, Those form a
piecewise __Q___ cosine. Both functions have __r_ equal to
6, which means that f{t +6)=__s _for every 1. The veloci-
tiesv=1,2,4,8,... have y;=_ Y . In that case f,=1 and
Si=_4 . Thesumof1,2,4,8,16is_v . The difference
2/—2/"1 equals _ w ., After a burst of speed V to time T,
the distance is __x _ If f(T) =1 and V increases, the burst
lasts only to T=_¥ . When V approaches infinity, f{(t)
approaches a __ ¢  function. The velocities approach a

A__ function, which is concentrated at ¢ =0 but has area

B under its graph. The slope of a step function is _ €

Problems 1-4 are about numbers [ and differences v.

1 From the numbers /=0, 2, 7, 10 find the differences ¢ and
the sum of the three v's. Write down another f that leads
to the same »'s. For f=0,3,12,10 the sum of the ¢'s is
still

2 Starting from f=1, 3, 2, 4 draw the f-graph (linear pieces)
and the p-graph, What are the areas “under” the s-graph that
add to 4 — I? If the next number in f is 11, what is the area
under the next »?

3 From v=1,2,1,0, —1 find the f’s starting at f;=13.
Graph v and f. The maximum value of f occurs when
= . Where is the maximum f whenv=1,2,1, -1?

4 For f=1,b,c,7 find the differences v,, v, 0, and add
them up. Do the same for f=a,b,¢, 7. Do the same for
f=a,b,c,d

Problems 5--11 are about linear fuections and constant slopes.

5 Write down the slopes of these linear functions:
) fy=11r () f(H=1-2t () f{)=4+5(t—6).
Compute f(6) and f(7) for each function and confirm that
J (7 —f(6) equals the slope.

6 If f()=5+3(t—1) and g(t)=15+2.5(¢—1) what is
h{t) = /() — g(t)? Find the slopes of f, g, and h.
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7 Suppose v(t)=2fort <5 and v(t)=3 fort> 5.
(a) ¥ f{0)=0 find a two-part formula for f(z).
(b) Check that f(10) equals the area under the graph of
u(t) (two rectangles) up to ¢ =10.

8 Suppose oft) = 10 for ¢ < 1/10, v{t) =0 for ¢ > 1/10, Start-
ing from f(0)=1 find f{t} in two pieces,

9 Suppose g{t) =2t + 1 and f(t)= 4. Find g(3) and f(g(3))
and f(g(r}). How is the slope of f(g(t)) related to the slopes
of f and g?

10 For the same functions, what are f{3) and g(f(3)) and

g(f(1))? When t is changed to 4¢, distance increases
times as fast and the velocity is multiplied by

11 Compute f(5) and f(8) for the functions in Problem 5.
Confirm that the slopes v agree with

_ f(8})—f(6) changein f
" 8-6  chamgeint¢’

slope

Problems 12-18 are based on Example 3 about income taxes.

12 What are the income taxes on x=35§10,000 and
x =$30,000 and x = $50,0007

13 What is the equation for income tax f(x} in the second
bracket $20,350 £ x < $49,3007 How is the number 11,158.50
connected with the other numbers in the tax instructions?

14 Wrile the tax function F(x) for 2 married couple if the IRS
treats them as two single taxpayers each with taxable income
x/2. (This is not done.)

15 In the 15% bracket, with 5% state tax as a deduction, the
combined rate is not 20% but . Think about the tax
on an extra $100.

16 A piecewise linear function is continwous when f(t) at the
end of cach interval equals f(t) at the start of the following
interval. If f(f}=5t up to t =1 and v(t)=2 for ¢ > 1, define
f beyond ¢t=1 so it is {a) continuous {b)} discontinuous.
(c) Define a tax function f(x) with rates .15 and .28 so you
would lose by earning an extra dollar beyond the breakpoint.

17 The difference between a tax credit and a deduction from
income is the difference between f(x) — c and f{x — d). Which
is more desirable, a credit of ¢ =%$1000 or a deduction of
d = %1000, and why? Sketch the tax graphs when f(x)=.15x.

18 The average tax rate on the taxable income x is a{x) =
S (x){x. This is the slope between {0, 0) and the point (x, f(x)),
Draw a rough graph of a(x). The average rate a is below the
marginal rate v because .

Problems 19-30 involve oumbers [, f,. f, ... and their differ-
ences v; =f; — f;_. They give practice with subscripts 0, ._., j.

19 Find the velocities vy, v, v; and formulas for »; and f}:

@ f=1,357... b f=01,01,.. ) f=0424,..

20 Find f;, f,, f; and a formula for f; with fo=0:
@ v=1,248, .. ®) v=—1,1,—1,1, ...
21 The areas of these nested squares are 12,22, 32, ..., What

are the areas of the L-shaped bands (the differences between
squares)? How does the figure show that | + 34 54 7=427

7

21 From the area under the staircase (by rectangles and then
by triangles) show that the first j whole numbers 1 to j add
up to 3i2+ 4, Find 1+ 2+ - + 100,
2 1f v=1,3,5,... then' ;=72 I v=1,1,1,... then f;=
. Add those to find the sum of 2,4, 6, ..., 2j. Divide

by 2 to find the sum of 1,2, 3, ..., j. (Compare Problem 22.)
24 True (with reason) or falkse (with example).

(a) When the f’s are increasing so are the v's.

(b) When the »’s are increasing so are the fs.

(c) When the f’s are periodic so are the v's.

{d) When the v's are periodic so are the J™s.

25 If f{ty=t? compute f(99) and f(101). Between those
times, what is the increase in f divided by the increase in ¢?

26 If f{)=1¢*+1¢, compute f(99) and f(101). Between those
times, what is the increase in f divided hy the increase in ¢?

27 1 f;=j*+j+1 find a formula for v;.

28 Suppose the s increase by 4 at every step. Show by
example and then by algebra that the “second diflerence”

Siv1—2fi+f;-1 equals 4.
29 Suppose fyb=0and thervsare 1,4, 4,4, 1.1, . .... For
which j does f; =57

30 Show thatay=f;. —2f;+f;-1 alwaysequals v;,, —v;. If
v is velocity then a stands for .

Problems 31-34 involve periodic s and v’s (like sin ¢ and

cos t).

31 For the discrete sine f=0,1,1,0, —1, —1,0 find the
second differences a, =f, — 2f; + fpand a; =f; — 2f; + f; and
a;. Compare g, with f}.

32 If the sequence ¢, 13, ... has period 6§ and w,, w,, ... has
peried 10, what is the period of vy + wy, v; + w,, .7

33 Draw the graph of f{¢) starting from f; =0 when v =1,
—1, =1, 1. If v has period 4 find f(12), f£(13), f(100.1).

15
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3 Graph f{) from =010 fy=4 whenv=1,2,1,0. If v
has period 4, find f(12) and f(14) and f(16). Why doesnt f
have period 47

Problems 3542 are about exponential v’s and (s,

35 Find the s for f=1,3,9, 27 Predict v, and v;. Algebra
gives 3 — 31 = (3 - )3/~ 1,

3% Find 1 +2+4+ - +32andalso [+4+4+ - +4.

37 Estimate the slope of f(t)=2% at t =0. Use a calculator
to compute (increase in f)/(increase in t) when ¢ is small:
—fy 2-1 211 20—
=1 _2-1

2.001 _ |
7 1 7 20— and g

38 Suppose fo=1and v;=2f;_,. Find f,.
39 (a) From f=1,4, 1, § find v, v, v; and predict v;.
(b) Check f_} '_fa =0+ U+ 0; and ,)':"_J'_’f—l =Uj.
40 Suppose v;=r/, Show that f;=(+*'-1)/(r—1) starts

from fo=1 and has f;—f,_, =v;. (Then this is the correct
Si=1+4r+ < +ri=sum of a geometric series.)

41 From f;=(—I) compute v;. What is v, + v, + --- +1,?
42 Estimate the slope of f(t)=¢' at r =0, Use a calculator
that knows e (or else take e = 2,78) to compute

JO—fO) _e— el —1

1 E'm—l
— =——1 and K and o

Problems 43-47 arc about U(r) =step from 0 to 1 at ¢ =0.

43 Graph the four functions U{t — tyand U(¢) —2 and U(3¢)
and 4U{t). Then graph f(1)=4U3t-1)—-2.

1.3 The Velocity at an Instant

44 Graph the square wave U{t) — U(t — 1). I this is the veloc-
ity v(t), graph the distance f{¢). If this is the distance f{t),
graph the velocity.

45 Two bursts of speed lead to the same distance f= 10
v= to ¢ =.001
As V- @ the limit of the f{t)s is

v=VFiot=

46 Draw the staircase function U(t) + Ut — i)+ Ut — 2). Its
slope is a sum of three functions.

47 Which capital letters like L are the graphs of functions
when steps are allowed? The slope of L is minus a delta func-
tion. Graph the slopes of the others.

48 Write a subroutine FINDY whose input is a sequence
Jfos f1, ... fx and whose output is v, v, ..., vy. Include
graphical output if possible. Test on f;=2j and j* and 2/,

49 Write a subroutine FINDF whose input is oy, ..., by 2nd
fo. and whose output is f, f;, ..., fx. The default value of f;
is zero. Include graphical output if possible. Test v;=j.

50 If FINDYV is applied to the output of FINDF, what
sequence is returned? If FINDF is applied to the output of
FINDY, what sequence is returned? Watch f,,.

51 Arrange 2 and j2 and 2/ and ./j in increasing order
{a) when j is large; j=9 (b} when j is small: j=4.

§2 The average age of your family since 1970 is a piecewise
linear function A(t). Is it continuous or does it jump? What
is its slope? Graph it the best you can,

We have arrived at the central problems that calcujus was invented to solve. There
are two questions, in opposite directions, and [ hope you could see them coming.

1. If the velocity is changing, how can you compute the distance traveled?
2. If the graph of f{t) is not a straight line, what is its slope?

Find the distance from the velocity, find the velocity from the distance. Our goal is
to do both-—but not in one section. Calculus may be a good course, but it is not
magic. The first step is to let the velocity change in the steadiest possible way.

Question 4 Suppose the velocity at each time t Is v(t) = 2t. Find f(1).

With v= 2t, a physicist would say that the acceleration is constant (it equals 2). The
driver steps on the gas, the car accelerates, and the speedometer goes steadily up.
The distance goes up too—faster and faster. If we measure t in seconds and v in feet
per second, the distance f comes out in feet. After 10 seconds the speed is 20 feet
per second. After 44 seconds the speed is 88 feet/second (which is 60 miles/hour).
The acceleration is clear, but how far kas the car gone?
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Question 2 The distance traveled by time t is f(t) = t*. Find the velocity oft).

The graph of f(¢t) =t is on the right of Figure 1.12. Tt is a parabola. The curve starts
at zero, when the car is new. At ¢ = 5 the distance is f= 25. By £ = 10, f reaches 100,

Velocity is distance divided by time, but what happens when the speed is changing?
Dividing f= 100 by t= 10 gives v= 10—the average velocity over the first ten
seconds, Dividing f= 121 by ¢ = 11 gives the average speed over 11 seconds. But how
do we find the instantaneous velocity—the reading on the speedometer at the exact
instant when ¢t = 10?

: change in slope 2: + A
; distance approaches
V(42 -2 v="2

2tk + B2

lime f f r+h t

Ag. 1.12 The velocity v = 2¢ is linear. The distance /=t is quadratic.

I hope you see the problem. As the car goes faster, the graph of t? gets steeper—
because more distance is covered in each second, The average velocity between t = 10
and t =11 is a good approximation—but only an approximation—to the speed at
the moment ¢ = 10. Averages are easy to find:

distance at t =10 is f(10) = 10 = 100 distance at t= 11 is f(11)= 112 =121

11— (1 121 - 100
average velocity is il I 1)_{(() 0_ I =

21

The car covered 21 feet in that 1 second. Its average speed was 21 feet/second. Since
it was gaining speed, the velocity at the beginning of that second was below 21,

Geometrically, what is the average? It is a slope, but not the slope of the curve.
The average velocity is the slope of a straight line. The line goes between two points
on the curve in Figure 1.12. When we compute an average, we pretend the velocity
is constant—so we go back to the easiest case. It only requires a division of distance
by time:

, change in
average velocity = change in f

(1)

change in t

Calculus gnd the Law You enter a highway at 1:00. If you exit 150 miles away at
3:00, your average speed is 75 miles per hour. I'm not sure if the police can give you
a ticket. You could say to the judge, *“When was [ doing 757" The police would have

17
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to admit that they have no idea—but they would have a definite feeling that you
must have been doing 75 sometime.t

We return to the central problem—computing ©(10) at the instant t =10. The
average velocity over the next second is 21. We can also find the average over the
half-second between t = 10.0 and ¢ = 10.5. Divide the change in distance by the change
in time:

£10.5) - f(10.0) _ (10.5 — (10.0)* 11025 - 100
10.5-10.0 5 5

That average of 20.5 is closer to the speed at ¢ = 10. It is still not exact.

The way to find v(10) is to keep reducing the time interval. This is the basis for
Chapter 2, and the key to differential calculus. Find the slope between points that are
closer and closer on the curve. The “limit™ is the slope at a single point.

=20.5,

Algebra gives the average velocity between 1 = 10 and any later time ¢t =10+ h.
The distance increases from 10% to (10 + k)%, The change in time is k. So divide:

10+ H)2 — 10 100+ 20h+ A% — 100
Uaveragc=( 0 11 0 = 0 h =20+ h (2}

This formula fits our previous calculations. The interval from ¢ =10 to ¢t =11 had
h=1, and the average was 20+ h=21. When the time step was h= 4, the average
was 20+ +=20.5. Over a millionth of a second the average will be 20 plus
1/1,000,000-—which is very near 20.

Conclusion: The velocity ar ¢ = 10 is v=20. That is the slope of the curve. It aprees
with the v-graph on the left side of Figure 1.12, which also has v{10} = 20.

We now show that the two graphs match at all times. If f(z)=¢? then o{t)= 2t.
You are seeing the key computation of calculus, and we can put it into words before
equations. Compute the distance at time ¢ + h, subtract the distance at time ¢, and
divide by h. That gives the average velocity:

+ _ 2 L2 2 + 2.2
vm=f[t };l) f[r)={t+hil "t +2thhh I=2x+h. 6)

This fits the previous calculation, where t was 10. The average was 20 + h. Now the
average is 2t + h. It depends on the time step h, because the velocity is changing. But
we can see what happens as h approaches zero. The average is closer and closer to
the speedometer reading of 2, at the exact moment when the clock shows time ¢

1E As h approaches zero, the average velocity 2t + h approaches vft) = 2t.

Note The computation (3) shows how calculus needs algebra. If we want the whole
v-graph, we have to let time be a “variable.” It is represented by the letter ¢. Numbers
are enough at the specific time ¢ = 10 and the specific step h=1—but algebra gets
beyond that. The average between any ¢t and any ¢ + h is 2t + h. Please don’t hesitate
to put back numbers for the letters—that checks the algebra.

+This is our first encounter with the much despised **Mean Value Theorem.” If the judge can
prove the theorem, you are dead. A few v-graphs and f-graphs will confuse the situation
{(possibly also a delta function),
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There is also a step beyond algebra! Calculus requires the &mit of the average. As
k shrinks to zero, the points on the graph come closer. “Average over an interval”
becomes “velocity at an instant.” The general theory of limits is not particularly
simple, but here we don’t need it, (It isn’t particularly hard either.} In this example
the limiting value is easy to identify. The average 2t + h approaches 2t, as h— 0.

What remains to do in this section? We answered Question 2—to find velocity
from distance. We have not answered Question 1. If v{t) = 2t increases linearly with
time, what is the distance? This goes in the opposite direction (it is integration).

The Fundamental Theorem of Calculus says that no new work is necessary, If the
slope of f(t) leads to v(t), then the area under that v-graph leads back to the [-graph.
The odometer readings f= t* produced speedometer readings v = 2¢. By the Funda-
mental Theorem, the area under 2t should be t?. But we have certainly not proved
any fundamental theorems, so it is better to be safe—by actually computing the area.

Fortunately, it is the area of a triangle. The base of the triangie is t and the height
is v=2¢t. The area agrees with f(t):

area = }(base)(height) = ${¢)(2t) = +2. 4
EXAMPLE 1 The graphs are shifted in time. The car doesn’t start until £ = 1. Therefore
v=0 and f=0 up to that time. After the car starts we have v=2(tr— 1) and

f={t—1)*. You see how the time delay of 1 enters the formulas. Figure 1.13 shows
how it affects the graphs.

v=2(-1

1
L/

1 2 ] 2 i 2 1
Fig. 113 Delayed velocity and distance, The pairs v=at +b and f=14at> + bt.

EXAMPLE 2 The acceleration changes from 2 to another constant a. The velocity
changes from v= 2t to v = at. The acceleration is the slope of the velocity curve! The
distance is also proportional to a, but notice the factor %:

acceleration a <+ velocity p=at <= distance f= fat’

If @ equals 1, then v =t and f= §t. That is one of the most famous pairs in calculus.
If a equals the gravitational constant g, then v = gt is the velocity of a falling body.
The speed doesn’t depend on the mass (tested by Galileo at the Leaning Tower of
Pisa). Maybe he saw the distance f= }g#* more easily than the speed v = g¢. Anyway,
this is the most famous pair in physics.
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EXAMPLE 3 Suppose f(t)=3t+ t*. The average velocity from t to ¢t + h is

; _SeHR ) _ e+t —3t-1?
ave h - h .

The change in distance has an extra 3k (coming from 3(t + h) minus 3t). The velocity
contains an additional 3 (coming from 3h divided by k). When 3t is added to the
distance, 3 is added to the velocity, If Galileo had thrown a weight instead of dropping
it, the starting velocity v, would have added vyt to the distance.

FUNCTIONS ACROSS TIME

The idea of slope is not difficult—for one straight line. Divide the change in f by
the change in . In Chapter 2, divide the change in y by the change in x. Experience
shows that the hard part is to see what happens to the slope as the line moves,

Figure 1.14a shows the line between points A and B on the curve. This is a “secant
line.”” Its slope is an awverage velocity. What calculus does is to bring that point B
down the curve toward A.

speed
fu+hy 601 s
car C
vorf?
ot 30t
car D
' : } : ¢ 7 forv?
' t+h 1 1 3 1
4 2 4 L

Fg. 4.14  Siope of line, slope of curve. Two velocity graphs. Which is which?

. Question 1 What happens to the “change in " —the height of B above A?

Answer The change in f decreases to zero. So does the change in .

Question2 As B approaches A, does the slope of the line increase or decrease?
Answor [ am not going to answer that question. It is too important. Draw another
secant line with B closer to 4. Compare the slopes.

This question was created by Steve Monk at the University of Washington—where
57% of the class gave the right answer. Probably 97% would have found the right
slope from a formula. Figure 1.14b shows the opposite probiem. We know the veloc-
ity, not the distance. But calculus answers questions about both functions.

Queslion 3 Which car is going faster at time t = 3/4?
Answer Car C has higher speed. Car D has greater acceleration.

Question 4 If the cars start together, is D catching up to C at the end? Between
t=4%and t=1, do the cars get closer or further apart?

Answer This time more than half the class got it wrong. You won’t but you can see
why they did. You have to look at the speed graph and imagine the distance graph.
When car C is going faster, the distance between them
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To repeat: The cars start together, but they don’t finish together. They reach the
same speed at t = 1, not the same distance. Car C went faster. You really should draw

their distance graphs, to see how they bend.

These problems help to emphasize one more point. Finding the speed (or slope) is
entirely different from finding the distance (or area):

1. To find the slope of the f-graph at a-particular time ¢, you don’t have to know

the whole history.

2. To find the aree under the v-graph up to a parlicular time £, you do have to

know the whole history.

A short record of distance is enough to recover v(t). Point B moves toward point 4,
The problem of slope is local—the speed is completely decided hy f(¢t) near point A,

In contrast, a short record of speed is not encugh to recover the total distance. We
have to know what the mileage was earlier. Otherwise we can only know the increase

in mileage, not the total.

1.3 EXERCISES

Read-through guestions

Between the distances f(2) = 100 and f{6) = 200, the average
velocity is _ @ . If f(1)=4¢*> then f(6}=_Db_ and
f(8)=_< . The average velocity in betweenis _ @ The

instantaneous velocities at t=6 and t=8 are _ @ and
t

The average velocity is computed from f{¢) and f{r + k) by
Voe=_8 . If f{t)=t? then v,,,=_N , From t=1 to
t=1.1 the average ts __! . The instantaneous velocity
is the _ 1 of p,,.. If the distance is f(t)=13}ar? then the

velocity is o{ty=__&__ and the acceleration is __ |

On the graph of f{(¢), the average velocity between A4 and
Bis the slope of _m . The velocity at A isfound by _ n .
The velocity at B ts found by __ @ . When the velocity is
positive, the distance is _ ® . When the velocity is increas-

ing, the caris __Q

1 Compute the average velocity between t = 5 and = §:

(@ fiy==6t {b) fi)="6t+2
© Sf(ty=1a’ W) f)=1—1?
€ fie)=6 ) v(t)=2¢

2 For the same functions compute [ f{t + ) —f()]/h. This
depends on t and k, Find the limit as h — 0.

3 If the odometer reads f{t)=t>*+t {f in miles or kilo-
meters, ¢ in hours), find the average speed between
(a) t=1and t=2
(b)t=landt=1.1
{c)t=landr=1+k
{d) t=1and t=.9 (note h=—-.1)

4 For the same f{t)= ¢? + ¢, find the average speed between
(a) t=0and 1 (b} ¢t=0and} {(c) t=0and &

5 In the answer to 3{c), find the limit as h — 0. What does
that limit tell us?

6 Set h=0 in your answer to 4{c). Draw the graph of
S{t}=1t%+t and show its slope at t = (.

7 Draw the graph of s(t)=1+2t. From geometry find
the area under it from 0 to t. Find the slope of that area
function f(¢). :

8 Draw the graphs of »(t) =3 — 2 and the area f{z).

9 True or false
{a) I the distance f{t) is positive, so is o{t).
{b) If the distance f(¢) is increasing, so is v{t).
{€) If f{t) is positive, ¥(r) is increasing.
(d) If o(t) is positive, f(r) is increasing.

10 If f(:)=6t* find the slope of the f-graph and also the
v-graph. The slope of the v-graph is the .

11 If f(r}=t* what is the average velocity between : = 9 and
=1.17 What is the average between { —h and 1 + h?

12 (a) Show that for f{(t) = fat? the average velocity between
t —h and ¢ + & is exactly the velocity at ¢,
(b} The area under v(t) = at from ¢t —h to ¢ + h is exactly
the base 2k times .

13 Find f(r} from vz} = 20¢ if £(0)=12. Also if f(1)=12.

14 True or faise, for any distance curves.

{a) The slope of the line from A to Bis the average velocity
between those points,
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{b) Secant lines have smaller slopes than the curve,

(c) If f{t) and F(t) start together and finish together, the
average velocities are equal.

(d) If o{t) and F{t) start together and finish together, the
increases in distance are equal.
15 When you jump up and fall back your height is y = 2¢ — ¢*
in the right units.
(a} Graph this parabola and its slope.
(b) Find the time in the air and maximum height.
(c} Prove: Half the time you gre above y = 1.
Basketball players “hang” in the air partly because of (c).
16 Graph f(t}=1t* and g(t)=f(t}—2 and h{)=,(2t), all
from ¢ =0 to ¢t = 1. Find the velocities.
17 (Recommended} An up and down velocity is v(t) = 2t for

€3, vft)=12— 2t for ¢ = 3. Draw the piecewise parabola
S(t). Check that f(6) = area under the graph of o(t).

18 Suppose v(t) =1 for t €2 and v{t)=2 for t 2 2. Draw the
graph of f(¢) out to t = 3.

19 Draw f(1) up to 1 = 4 when u(t) increases linearly from
{a 0to 2 by —1to1l (c) —2to 0.

20 (Recommended) Suppose »ff) is the piecewise linear sine
function of Section 1.2. {In Figure 1.8 it was the distance.}

1.4 Circuiar Motion

Find the area under vt) between t =0 and t=1,2,3,4,5,6
Plot those points f{1), ..., f(6) and draw the complete piece-
wise parabola f(t).

21 Draw the graph of f(t}={1—t?| for 0<¢t<2 Find a
three-part formula for v{t).
22 Draw the graphs of f(¢) for these velocities {to t = 2):
(@) vit)=1—1¢
(b) vity=|1—1|
&) v(t}={1—-8)+{1—1|
13 When does f(t)=1*—3r reach 10? Find the average

velocity up to that time and the instantaneous velocity at that
time.

24 If f(t)=4at2 + bt + ¢, what is v(t)? What is the slope of
v(t)? When does f(t)equal 41, f a=b=c=1?

25 If f{t)=1¢7 then v(t)= 2t. Does the speeded-up function
f{41) have velogity v(4¢) or du(t) or 4v(4)?

26 If f(t)=1t—1? find »(t) and f(3t). Does the slope of f(31)
equal v(3t) or 3u(t) or Ju(3:)?

27 For f(t)=1? find u,,.(t) between 0 and ¢. Graph v,.,(!)
and »(f).

28 If you know the average velocity ,,.(t), how can you find
the distance f(t)? Start from f{0)=0.

This section introduces completely new distances and velocities—the sines and cosines
from trigonometry. As 1 write that last word, I ask myself how much trigonometry it
is essential to know. There will be the basic picture of a right triangle, with sides cos ¢
and sin ¢t and 1. There will also be the crucial equation {(cos 1) + (sin t}* = 1, which
is Pythagoras’ law a® + % = ¢*. The squares of two sides add to the square of the
hypotenuse {(and the 1 is really 12). Nothing else is needed immediately. If you don’t
know trigonometry, don’t stop—an important part can be learned now.

You will recognize the wavy graphs of the sine and cosine. We intend to find the
slopes of those graphs. That can be done without using the formulas for sin(x + y)
and cos (x + y)—which later give the same slopes in a more algebraic way. Here it is
only basic things that are needed.} And anyway, how complicated can a triangle be?

Remark You might think trigonometry is only for surveyors and navigators (people
with triangles). Not at all! By far the biggest applications are to rotation and vibration
and escillation. 1t is fantastic that sines and cosines are so perfect for “repeating

motion” —around a circle or up and down.

tSines and cosines are so important that | added a review of trigonometry in Section 1.5. But
the concepts in this section can be more valuable than formulas.
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1~ I

v=coss f=sint

I /‘: 90°  180° 270°
radians

cos f

Fig. .45 As the angle t changes, the graphs show the sides of the right triangle.

Qur underlying goal is to offer one more example in which the velocity can be
computed by commeon sense. Calculus is mainly an extension of common sense, but
here that extension is not needed. We wiil find the slope of the sine curve. The straight
line f=ut was easy and the parabola f=Jat® was harder. The new example also
involves realistic motion, seen every day. We start with circufer motion, in which the
position is given and the velocity will be found.

A ball goes around a circle of radins one. The center is at x =0, y = 0 (the origin).
The x and y coordinates satisfy x? + y? = 1 to keep the ball on the circle. We specify
its position in Figure 1.16a by giving its angle with the horizontal. And we make the
ball travel with constant speed, by requiring that the angle is equal to the time . The
ball goes counterclockwise. At time 1 it reaches the point where the angle equals 1.
The angle is measured in radians rather than degrees. so a full circle is completed at
t = 2r instead of ¢ = 360.

The bail starts on the x axis, where the angle is zero. Now find 1t at time ¢:

The ball is ar the point where x = cos t and y = sin .

This is where trigonometry is useful. The cosine oscillates between 1 and —1, as the
ball goes from far right to far left and back again. The sine aisc oscillates between |
and —1, starting from sin 0 = 0. At time ;2 the sine (the height) increases te one.
The cosine is zcro and the ball reaches the top point x =0, y = 1. At time = the cosine
18 — 1 and the sine 1s back to zero—the coordinates are {(—1, 0). At t = 2 the circle
is compilete (the angle is also 27}, and x=cos 2z =1, y=sin 2r =0.

vertical

speed | ~ velocity

vertical
distance

Fig. 116 Circular motion with speed I, angle r, height sin . upward velocity cos ¢.

23



24

1 Infroduchtion o Calculus

Important point: The distance around the circle (its circumference) is 2nr = 2n,
because the radius is 1. The ball travels a distance 2z in a time 2n. The speed equals
1. It remains to find the velocity, which involves not only speed but direction.

Degrees vs. radians A full circle is 360 degrces and 27 radians. Therefore
1 radian = 360/2n dcgrees = 57.3 degrees
1 degree = 2n/360 radians & .01745 radians

Radians were invented to avoid those numbers! The speed is exactly 1, reaching ¢
radians at time t. The speed would be .01745, if the ball only reached ¢ degrees. The
ball would complete the circle at time T= 360. We cannot accept the division of the
circle into 360 pieces (by whom?), which produces these numbers.

To check degree mode vs. radian mode, verify that sin 1° =~ 017 and sin 1 2 .84.

VELOC!TY OF THE BALL

At time ¢, which direction is the ball going? Calculus watches the motion between ¢
and t + h. For a ball on a string, we don't need calculus—just let go. The direction
of motion is tangen! to the circle. With no force to keep it on the circle, the ball goes
off on a tangent. If the ball is the moon, the force is gravity. If it is a hammer swinging
around on a chain, the force is from the center, When the thrower lets go, the hammer
takes off—and it is an art to pick the right moment. (I once saw a friend hit by a
hammer at MIT. He survived, but the thrower quit track.) Calculus will find that
same tangent direction, when the points at t and ¢t + h come close,

The “velocity triangle” is in Figure 1.16b. It is the same as the position triangle,
but rotated through 90°. The hypotenuse is tangent to the circle, in the direction the
ball is moving. Its length equals 1 (the speed). The angle ¢ still appears, but now it is
the angle with the vertical. The upward component of velocity is cos t, when the upward
component of position is sin ¢. That is our common sense calculation, based on a
figure rather than a formula. The rest of this section depends on it—and we check
v =cos t at special points.

At the starting time t = 0, the movement is all upward. The height is sin 0 =0 and
the upward velocity is cos 0 = 1. At time n/2, the ball reaches the top. The height is
sin n/2=1 and the upward velocity is cos n/2 = 0. At that instant the ball is not
moving up or down.

The horizontal velocity contains a minus sign. At first the ball travels to the left.
The value of x is cos ¢, but the speed in the x direction is —sin t. Half of trigonometry
is in that figure (the good half), and you see how sin?¢+cos’t=1 is so basic.
That equation applies to position and velocity, at every time.

Application of plane geometry: The right triangles in Figure 1.16 are the same size
and shape. They look congruent and they are—the angle ¢+ above the ball equals the
angle t at the center, That is because the three angles at the bail add to 180°.

OSCILLATION: UP AND DOWN MOTION

We now use circular motion to study straight-line motion. That line will be the y axis.
Instead of a ball going around a circle, a mass will move up and down. It oscillates
between y=1 and y = — 1. The mass is the “shadow of the ball,”” as we explain in a
moment.
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There is a jumpy oscillation that we do not want, with v=1 and v= —1. That
“bang-bang” velocity is like a billiard ball, bouncing between two walls without
slowing down. If the distance between the walls is 2, then at ¢ = 4 the ball is back to
the start, The distance graph is a zigzag (or sawtooth) from Section 1.2.

We prefer a smoother motion. Instead of velocities that jump between +1 and —1,
a real oscillation slows down to zero and gradually builds up speed again. The mass
is on a spring, which pulls it back. The velocity drops to zero as the spring is fully
stretched. Then v is negative, as the mass goes the same distance in the opposite
direction. Simple harmonic motion is the most important back and forth motion,
while f= vt and = 4ar? are the most important one-way motions.

R et
sin—=1 | cos —=0 turn
2 . 2
1
1
sin0=0 4 cosO=1 up
.
sinm=10 + cos T=-1 down
I
1
sin3—“=—] ! ::053—11:0 tum
2 2

Ag. 4.47 Circular motion of the ball and harmonic motion of the mass (its shadow).

How do we describe this oscillation? The best way is to match it with the ball on
the circle. The keight of the ball will be the height of the mass. The “shadow of the
hail” goes up and down, level with the ball. As the ball passes the top of the
circle, the mass stops at the top and starts down. As the ball goes around the bottom,
the mass stops and turns back up the y axis. Halfway up (or down), the speed is 1.

Figure 1.17a shows the mass at a typical time t. The height is y = f(t) = sin ¢, level
with the ball. This height osciliates between f=1 and f= —1. But the mass does not
move with constant speed. The speed of the mass is changing although the speed of
the ball is always 1. The time for a full cycle is still 2x, but within that cycle the mass
speeds up and slows down. The problem is to find the changing velocity v. Since the
distance is f=sin ¢, the velocity will be the slope of the sine curve.

THE SLOPE OF THE SINE CURVE

At the top and bottom (¢ = n/2 and t = 3=/2) the ball changes direction and v = 0.
The slope at the top and bottom of the sine curve is zero.t At time zero, when the ball
is going straight up, the slope of the sine curve is v = 1. At 1 = n, when the bail and
mass and f-graph are going down, the velocity is v = —1. The mass goes fastest at
the center. The mass goes slowest (in fact it stops) when the height reaches a maximum
or minimum, The velocity triangle yields v at every time ¢.

To find the upward velocity of the mass, look at the upward velocity of the ball.
Those velocities are the same! The mass and ball stay level, and we know v from
circular motion: The apward velocity is v=cos t.

tThat looks easy but you will sec later that it is extremely important. At @ maximum or
minimum the slope is zero. The curve levels ofl.

25
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Figure 1.18 shows the result we want. On the right, f=sin t gives the height. On
the left is the velocity » = cos 1. That velocity is the slope of the f-curve. The height
and velocity (red lines) are oscillating together, but they are out of phase—just as
the position triangle and velocity triangle were at right angles, This is absolutely
fantastic, that in calculus the two most famous functions of trigonometry form a pair:
The slope of the sine curve is given by the cosine curve.

When the distance is {(t) = sin t, the velocity is v(t) = cos 1.

Admission of guilt: The slope of sin ¢ was not computed in the standard way.
Previously we compared (¢ + h)? with ¢2, and divided that distance by k. This average
velocity approached the slope 2t as h became small. For sin ¢ we could have done the
same:
change insin ¢ _ sin(t + k) —sin ¢ )

change in t h '

average velocity =

This is where we need the formula for sin (t + ), coming soon. Somehow the ratio in
(1) shouid approach cos't as h — 0. (It does.) The sine and cosine fit the same pattern
as t? and 2t—our shortcut was to watch the shadow of motion around a circle.

! v=Cost \ ! F=sint f
!

Fig. 4.48 p=cost when f=sin{ {red), v = —sin t when f=cos ¢ (black).

Question 1 What if the ball goes twice as fast, to reach angle 2t at time ?

Answer The speed is now 2. The time for a fuil circle is only n. The ball's position
is x = cos 2t and y = sin 2r. The velocity is still tangent to the circle—but the tangent
is at angle 2t where the ball is. Therefore cos 2t enters the upward velocity and
—sin 2t enters the horizontal velocity. The difference is that the velocity triangle is
twice as big. The upward velocity is not cos 2t but 2 cos 2t. The horizontal velocity
s —2sin 2¢t, Notice these 2s!

Question 2 What is the area under the cosine curve fromt =0 to t = /2?7

You can answer that, if you accept the Fundamentai Theorem of Calculus—
computing arcas is the oppasite of computing slopes. The slope of sin t is cos ¢, so the
area under cos ¢ is the increase in sin t. No reason 1o believe that yet, but we use it
anyway.

From sin 0 =0 to sin n/2 = 1, the increase is 1. Please realize the power of calculus.
No other method could compute the area under a cosine curve so fast.



1.4 Clrcular Metion
THE SLOPE OF THE COSINE CURVE

I cannot resist uncovering another distance and velocity (another f-v pair) with no
extra work. This time f is the cosine., The time clock starts at the top of the circle.
The old time ¢ = #/2 is now t = 0. The dotted lines in Figure 1.18 show the new start.
But the shadow has exactly the same motion—the hall keeps going around the circle,
and the mass follows it up and down. The f-graph and v-graph are still correct, both
with a time shift of x/2.

The new f-graph is the cosine. The new v-graph is minus the sine. The slope of the
cosine curve follows the negative of the sine curve. That is another famous pair, twins
of the first:

When the distance is f(t) = cos t, the velocity is v(t)= —sin t.

You could see that coming, by watching the ball go left and right (instead of up and
down). Its distance across is f= cos t. Its velocity across is v = —sin r. That twin pair
completes the calcolus in Chapter 1 (trigonometry to come). We review the ideas:

v is the velocity
the slope of the distance curve
the limit of average velocity over a short time
the derivative of f.

S is the distance
the area under the velocity curve
the fimit of total distance over many short times
the integral of v.

Differential calculus: Compute v from f. Integral calculus. Compute f from v.

With constant velocity, f equals pt. With constant acceleration, v = at and f= ka2,
In harmonic motion, v=cos ¢t and f=sin £. One part of our goal is to extend that
list—for which we need the tools of calculus. Another and more important part is
to put these ideas to use.

Before the chapter ends, may I add a note about the book and the course? The
book is more personal than usual, and I hope readers will approve. What I write is
very close to what T would say, if you were in this room. The sentences are spoken
before they are written.t Calculus is alive and moving forward—it needs to be taught
that way.

One new part of the subject has come with the computer. It works with a finite
step h, not an “infinitesimal” limit. What it can do, it does quickly-—even if it cannot
find exact slopes or areas. The result is an overwhelming growth in the range of
problems that can be solved. We landed on the moon because ' and v were s0
accurate. (The moon’s orbit has sines and cosines, the spacecraft starts with v=at
and f'= 1at?. Only the computer can account for the atmosphere and the sun’s gravity
and the changing mass of the spacecraft.) Modern mathematics is a combination of
exact formulas and approximate computations. Neither part can be ignored, and 1
hope you will see numerically what we derive algebraically. The exercises are to help
you master both parts.

1On television you know immediately when the words are live. The same with writing,
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The course has made a quick start—not with an abstract discussion of sets or
functions or limits, but with the concrete questions that led to those ideas. You have
seen a distance function f and a limit v of average velocities, We will meet more
functions and more limits (and their definitions!) but it is crucial to study important
examples early. There is a lot to do, but the course has definitely begun.

1.4 EXERCISES

Read-through questions

A ball at angle r on the unit circle has coordinates x=__ @

andy=_b  Itcompletesafullcircleatt=__c . Itsspeed
is _d . Its velocity points in the direction of the _e |
whichis __t to the radius coming out from the center. The

upward velocity is __ g and the horizontal velocityis __b

A mass going up and down level with the ball has height -

fit)=__1 . Thisiscalled simple __) _motion. The velocity
isv(f)=_ % . Whent=n/2the hetghtis f=_ 1 and the
velocity ts = _ m . If a speeded-up mass reaches f=sin 2t
at time ¢, its velocity is p=__n__, A shadow traveling under

the ball has f=cost and v =_ o . When f is distance =
area =integral, vis _® =_4aq =_s

1 For a ball going around a unit circle with speed |,
{a) how long does it take for 5 revolutions?
(b) at time ¢ = 3n/2 where is the ball?
(c) at t =22 where is the ball (approximately)?

2 For the same motion find the exact x and y coordinates
at ¢ =2n/3. At what time would the ball hit the x axis, il it
goes off on the tangent at t = 2x/3?

3 A ball goes around a circle of radius 4. At time ¢ (when it
reaches angle ) find

(a) its x and y coordinates
{b) the speed and the distance traveled
{c) the vertical and horizonta! velocity.
4 On a circle of radius R find the x and y coordinates at

time ¢t (and angle 1). Draw the velocity triangle and find the
x and y velocities.

5 A ball travels around a unit circle (raaius 1} with speed 3,
starting from angle zero. At time ¢,

(a) what angle does it reach?
(b} what are its x and y coordinates?
(<} what are its x and y velocities? This part is harder.
6 If another ball stays n/2 radians ahead of the ball with

speed J, find its angle, its x and y coordinates, and its vertical
velocity at time .

7 A mass moves on the x axis under or over the original
ball {(on the unit circle with speed 1). What is the position
x=f{t)? Find x and v at t =n/4. Plot x and pup to t =n#.

8 Does the new mass (under or over the ball) meet the old
mass (level with the ball)? What is the distance between
the masses at fime £?

9 Draw graphs of f(t}=co§ 3¢t and cos 2nt and 2mcost,
marking the time axes. How long until each f repeats?

10 Draw graphs of f=sin{r+a) and v =cos{t+ n). This
oscillation stays level with what ball?

1t Draw graphs of f=sin(n/2 —{) and v= —cos(nf2 —¢).
This oscillation stays level with a ball going which way start-
ing where?

12 Draw a graph of f(¢) =sin f + cos t. Estimate its greatest
height (maximum f) and the time it reaches that height. By
computing f2 check your estimate.

13 How [ast should you run across the circle to meet the ball
again? It travels at speed 1.

14 A mass falls from the top of the unit circle when the ball
of speed 1 passes by. What acceleration & is necessary to meet
the ball at the bottom?

Find the area under v = cos ¢ from the change in f=sin
15 fromt=0tot=m }6 fromt=0tot=n/6
17 fromt=0tot=2n 18 from t ==/2 to ¢ = 3nf2.

19 The distance curve f=sin 4t yields the velocity curve
v =4 cos 4. Explain both 4's.

20 The distance curve f=2 cos 3t yields the velocity curve
v = — 6 sin 3¢. Explain the —6.

21 The velocity curve v=cos 4t yields the distance curve
f==4%sin 4¢. Explain the .

22 The velocity v = 5 sin 5t yields what distance?
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23 Find the slope of the sine curve at ¢ =#/3 from v =cos t.
Then find an average slope by dividing sin =/2 —sin n/3 by
the time difference n/2 — n/3.

The oscillation x = 0, y = sin ¢ goes (1) up and down (2) between
—1 aod 1 (3) starting from x=0, y=0 (4) at velocity
v =cos {. Find (1}(2)(3){4} [or the oscillations 31-36.

24 The slope of f=sint at t=0 is cos 0=1. Compute
average slopes (sin ¢)/t for ¢ =1, .1, .01, .001.

3l x=cos¢, =0
33 x=0, y=2sin(t + 0)
35 x=0,y=—2cos 4t

32 x=0, y=sin 5t

M x=cost, p=cos!

The ball at x=cost, y=sin ¢ circles (1) counterclockwise
(2) with radius 1 (3) starting from x=1, y=0 (4) at speed 1.
Find {1}(2)(3)(4) for the motions 25-30.

25 x=cos 3, y=—sin 3t

36 x =cos?t, y=sin?¢

37 If the ball on the unit circle reaches t degrees at time ¢,
find its position and speed and uwpward velocity.

. 28 Choose the number k so that x =cos kt, y =sin kt com-
26 x =3 cos 4, y =3 sin 4t pletes a rotation at ¢ = 1. Find the speed and upward velocity.
77 x=3sindt, y=3cos 39 If a pitcher doesn’t pause before starting to throw, a balk
is called. The American League decided mathematically (hat
there is always a stop between backward and forward motion,
even if the time is too short to see it. (Therefore no balk.) Is

that true?

28 x=1+cost, y=sint
29 x=cos(t+ 1), y=sin(t + 1)
30 x =cos(—t), y=sin{—t)

I 1.5 AReview of Trigonometry NN

Trigonometry begins with a right triangle. The size of the trangle is not as important
as the angles. We focus on one particular angle—call it #—and on the ratios between
the three sides x, y,r. The ratios don't change if the triangle is scaled to another
size. Three sides give six ratios, which are the basic functions of trigonometry:

x  near side r 1
cos = - = ———— sec=—-=
r hypotenuse x cosf
r
Y ) opposite side 1
sin 0 = 2 = 2PPOSTC S1C¢ cscf=1= .
r  hypotenuse y siné@
3 y _ opposite side x 1
tan == ——— cot@===
Fig. 1.19 X near side y tand

Of course those six ratios are not independent. The three on the right come directly
from the three on the left. And the tangent is the sine divided by the cosine:

Note that “tangent of an angle” and “tangent to a circle” and “tangent line to a
graph” are different nses of the same word. As the cosine of 8 goes to zero, the tangent
of & goes to infinity. The side x becomes zero, § approaches 90°, and the triangle is
infinitely steep. The sine of 90° is y/r=1.

Triangles have a serious limitation. They are excellent for angles up to 90°, and
they are OK up to 180°, but after that they fail. We cannot put a 240° angle into a
triangle. Therefore we change now to a circle.
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2T y =2sin@

-+ y=sin20

rfa

_2 -|.

Fg. 1.20 Trigonometry on a circle. Compare 2 sin @ with sin 26 and tan 0 (periods 2r, =, n}.

Angles are measured from the positive x axis {counterclockwise). Thus 90° is
straight up, 180° is to the left, and 360° is in the same direction as 0°. (Then 450° is
the same as 30°.} Each angle yields a point on the circle of radius r. The coordinates
x and y of that point can be negative (but never r). As the point goes around the
circle, the six ratios cos 8, sin 8, tan 8, ... trace out six graphs. The cosine waveform
is the same as the sine waveform—just shifted by 90°.

One more change comes with the move to a circle. Degrees are out. Radians are
in. The distance around the whole circle is 2ar. The distance around to other points
is 8r. We measure the angle by that muitiple 8. For a half-circle the distance is mr,
so the angle is = radians—which is 180°. A quarter-circle is /2 radians or 90°.
The distance around to angle § is r times 8.

When r =1 this is the ultimate in simplicity: The distance is §. A 45° angle is § of
a circle and 2#/8 radians—and the length of the circular arc is 2n/8. Similarly for 1°:

360° = 2x radians 1° = 27/360 radians ! radian = 360/2x degrees.

An angle going clockwise is negative. The angle —n/3 is —60° and takes us } of the
wrong way around the circle. What is the effect on the six functions?

Certainly the radius r is not changed when we go to — 8. Also x is not changed
(see Figure 1.20a). But y reverses sign, because —8 is below the axis when +8 is
above. This change in y affects yfr and y/x but not x/r:

cosi—B)=cos @ sin{— @)= —sin @ lan(~8)= —tan 6.
The cosine is even (no change), The sine and tangent are odd (change sign).

The same point is £ of the right way around. Therefore # of 2n radians (or 300°)
gives the same direction as —n/3 radians or —60°. 4 difference of 2n makes no
difference ta x, y, r. Thus sin @ and cos # and the other four functions have period 2n.
We can go five times or a hundred times around the circle, adding 10z or 200z to
the angle, and the six functions repeat themselves.

EXAMPLE Evaluate the six trigonometric functions at § = 2n/3 (or § = —4n/3).

This angle is shown in Figure 1.20a (where r = 1). The ratios are
cos B=x/r=—1/2 sin@=yr=./32 tanf=yx=-.3
sec =—2 csc9=2/ﬁ cot8=—1{\/§
Those numbers illustrate basic facts about the sizes of four functions:
[cos 8] <1 [sin 8] € 1 [sec 8] = 1 lesc 0] = 1.

The tangent and cotangent can fall anywhere, as long as cot § = 1/tan 6.
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The numbers reveal more. The tangent — ﬁ is the ratio of sine to cosine. The
secant —2 is 1/cos 8. Their squares are 3 and 4 (differing by 1). That may not seem
remarkable, but it is. There are three relationships in the sguares of those six numbers,
and they are the key identities of trigonometry:

cos?d +sin2d=1 1+tan? 8 =sec?d cot?8@+ 1 =csc? @

Everything flows from the Pythagoras formula x* + y? =r?. Dividing by 7* gives
{x/r)? + (y/r)* = 1. That s cos? # + sin? @ = 1. Dividing by x? gives the second identity,
which is 1+ (y/x)? = (r/x)°. Dividing by y? gives the third. All three will be needed
throughout the book—and the first one has to be unforgettable.

DISTANCES AND ADDITION FORMULAS

To compute the distance between points we stay with Pythagoras. The points are in
Figure 1.21a. They are known by their x and y coordinates, and 4 is the distance
between them. The third point completes a right triangle.

For the x distance along the bottom we don’t need help. It is x, — x; (or |[x; — x,|
since distances can’t be negative). The distance up the side is |y, — y,|. Pythagoras
immediately gives the distance d:

distance between points = d=/(x,— x;)* + (y2— y.)*- (1)
X=CORS
y=sins
(X5, ¥5) x=cos(s— 1)
= §i -1
1 X=cost y=sinls=1)
d=v =t y=sint 1 d
|27 1l f St
=1
=0
_A(.\'l,yl} Y

|ty =]

Fig. 1.24 Distance between points and equal distances in two circles.

By applying this distance formula in two identical circles, we discover the cosine
of s — t. (Subtracting angles is important.) In Figure 1,21b, the distance squared is

d? = (change in x)* + (change in y)*
= (cos s — cos )2 + (sin s —sin )% 2

Figure 1.21c shows the same circle and triangle (but rotated). The same distance
squared is
d%=(cos(s—t)— 1) + (sin(s — 1))*. (3)

Now multiply out the squares in equations (2) and (3). Whenever (cosine)® + (sine)?
appears, replace it by !. The distances are the same, so (2) = (3):

()=1+1—-2cosscost—2sinssint
3=1+1-2cos{s—t).
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After canceling 1 + 1 and then — 2, we have the “addition formula™ for cos(s—t):

The cosine of 5 — ¢t equals cos s cos £ + sin s sin ¢. (4)

The cosine of s+ ¢ equals cos s cos t — sin s sin ¢. (5)

The easiest is £ = 0. Then cos t = 1 and sin ¢ = 0. The equations reduce to cos s = cos s.

To go from (4) to (5) in all cases, replace ¢ by —t. No change in cos ¢, but a “minus”
appears with the sine. In the special case s=1i, we have cos(t+¢)=
(cos t){cos t) — (sin £){sin t). This is a much-used formula for cos 2¢:

Double angle: cos 2t = cos®t —sin?t =2 cos’t — 1 =1 — 2 sin’1. {6)

I am constantly using cos?t + sin?z = I, to switch between sincs and cosines.

We also need addition formulas and double-angle formulas for the sine of s — ¢
and s+ t and 2t. For that we connect sine to cosine, rather than (sine)? to (cosine)?.
The connection goes back to the ratio y/r in our original triangle. This is the sine of
the angle 8 and also the cosine of the complementary angle =2 — 0

sin 8= cos (z/2 — 0) and cos 8 =sin{x/2 — §). N

The complementary angle is #/2 — § because the two angles add to /2 (a right angle).
By making this connection in Problem 19, formulas (4—5-6) move from cosines to
sines:

sin(s —¢)=sin s cos t —cos s sin ¢ (8)
sin{s+ £)=sin s cos t + ¢os s sin ¢ (9)
sin 2t =sin{t+t}=2sin ¢t cos ¢ (10)

I want to stop with these ten formulas, even if more are possible. Trigonometry is
full of identities that connect its six functions—basically because all those functions
come from a single right triangle. The x, y, r ratios and the equation x* + y2 =r? can
be rewritten in many ways. But you have now seen the formulas that are needed by
calculus.t They give derivatives in Chapter 2 and integrals in Chapter 5. And it is
typical of our subject to add something of its own—a limit in which an angle
approaches zero. The essence of calculus is in that limit.

Review of the ten formulas Figure 1.22 shows d*=(0— 1) +(1 - ﬁﬁ)z.

COS = = ¢OS = €OS ~ + sin = sin — (s—1) $in = = 8in = cos ~ — ¢OS = sin —
6 2°9°73 27y ¢ 6 2 3 273

COSE=COSECOSE—SinESiI}E (s+n sin5—“=sinEcos£+c05£sinE
6 2 3 2 3 6 2 3 2 3
n T n T T n
2_= 20 _gin2= i — in — —

cos 3 cos 3 sin 3 (21 sm23 2sm3cos3
A 7 . N n

cos i sin 3" ﬁfl (5 0) sin i cos 3= 172

tCalculus turns (6} around to cos?t = (1 + cos 2¢) and sin? ¢ = 4(1 — cos 21).
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1.5 EXERCISES

Read-through questions

Starting with a __o__triangle, the six basic functlions are the

b__ of the sides. Two ratios {the cosine x/r and the _¢ )
are below 1. Two ratios {the secant r/x and the _d ) are
above 1. Two ratios {the _ e _and the __ f__}can take any
value. The six functions are defined for all angles 8, by chang-

ing from a triangletoa _g .

The angle 0 is measured in __h . Afullcircleis=__t
when the distance around is 2rr. The distance to angle 8 is
| __. All six functions have period __k__. Going clockwise

changes thesignof fand _ ! and _m_ . Sincecos(—8)=

cos 8, the cosine is __n

Coming from x4 y*=#¢? are the three identities
sin?@+cos*f=1and _o and _p . (Divide by r* and

a__and _r ) The distance from (2,5 to (3,4) is
d=__3 _, The distance from (I, 0} to {cos(s — ¢}, sin{s —1})
leads to the addition formula cos(s —1)=__t . Changing
the sign of ¢ gives cos(s+¢t)=_u . Choosing s=1 gives
cos2t=_v _or _w__. Therefare 4{l+cos2t}=_x ,
a formula needed in calculus.

1 In a 60-60—60 triangle show why sin 30° =1.

2 Convert =, 3n, —n/4 to degrees and 60°, 90°, 270° to
radians. What angles between 0 and 2x correspond to
0 =480° and § = —1*7

3 Draw graphs of tan 8 and cot # from 0 to 2r. What is their
(shortest) period?

4 Show that cos 26 and cos* # have period # and draw them
on the same graph.

5 At 0= 3rn/2 compute the six basic functions and check
cos? 0 +sin? 8, sec? @ —1an? 0, cse? § — cot? 8.

6 Prepare a table showing the values of the six basic func-
tions at # =0, n/4, /3, n/2, ®.

7 The area of a circle is nr2. What is the area of the sector
that has angle 87 It is a fraction of the whole area.

8 Find the distance from (1, 0) to {0, 1) along (a} a straight
line (b) a quarter-circle (¢} a semicircle centered at (4, £).

9 Find the distance 4 from (1, 0) to {4, ./3/2) and show on
a circle why &d is less than 2w,

10 In Figure 1.22 compute d° and {with calculator) 124. Why
is 124 close to and below 2x?

11 Decide whether these equations are true or false:

sin § 1+cos @

(a) l—cos® sind
seccl+csclf |
(b} m—sm 8+cos 8

(c) cos 8 —sec @ =sin 6 tan 8
(d) sin{2n — &) =s5in 8

12 Simplify sin{rz — 8), cos(rx — &), sin{r/2 + 8), cos(n/2 + 8).

13 From the formula for cos(2r +¢) find cos 3¢ in terms of
cos L.

14 From the formula for sin(2t + 1) find sin 3t in terms of
sint.

15 By averaging cos(s — ¢t) and cos{s + ¢} in {4-5) find a for-
mula for cos s cos t. Find a similar formula for sin s sin £,

16 Show that (cos ¢ +i sin £)2 = cos 2t + i sin 2r, if i* = -1,

17 Draw cos & and sec @ on the same graph. Find all points
where cos § =sec 8.

18 Find all angles s and ¢ between 0 and 2n where sin (s + ¢} =
sin s + sin ¢.

19 Camplementary angles have sin 0 = cos(r/2 — 0). Write
sin(s+¢) as cos{rf2—s—t) and apply formula (4}
with =n/2 — 5 instead of s. In this way derive the addition
formula (9).

20 If formula (9) is true, how do you prove {B)?

21 Check the addition formulas (4-5} and (8-9) for
s=t=m/4.

21 Use (5) and (9) to find a formula for tan {5 + ).
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In 23-28 find every ( that satisfies the equation.

23 sinfi=-1 24 secf=-2
25 sin @ =cos 0 26 sinf=8
27 sec’@ 4 csc?@ =1 28 tan 0=0

29 Rewrite cos 0+ 5in @ as \/5 sin{@ + ¢} by choosing the
correct “phase angle” ¢. (Make the equation correct at
& = 0. Square both sides to check.)

3 Match asin x + b cos x with A sin(x + ¢). From equation
(9) show that 2= A cos ¢ and b = A4 sin ¢. Square and add to
find A= . Divide to find tan ¢ = b/a.

31 Draw the base of a triangle from the origin 0= (0, 0} to
P =(a, (). The third corner is at () = (b cos &, b sin #). What
are the side lengths OP and 0Q? From the distance formula

Infroduction o Calculus

{1) show that the side PQ has length
d*=a’+b*—2abcos 0 (lew of cosines).

32 Extend the same triangle 10 a parallelogram with its fourth
corner at R ={a + b cos 0, b sin &). Find the length squared of
the other diagonal OR.

Draw graphs for equations 33-36, and mark three points,

33 y=sin 2x 3 y=2sin ax
35 y=+4cos 2ax 36 y=sin x +cos x

37 Which of the six trigonometric functions are infinite at
what angles?

38 Draw rough graphs or compuler graphs of ¢sint and
sin 4¢ sin ¢ from 0 to 2=z,

1.6 A Thousand Points of Light

The graphs on the back cover of the book show y=sinn. This is very different
from y=sin x. The graph of sin x is one continuous curve. By the time it reaches
x = 10,000, the curve has gone up and down 10,000/2x times. Those 1591 oscillations
would be so crowded that you couldn’t see anything, The graph of sin n has picked
10,000 points from the curve—and for some reason those points seem to lic on more
than 40 separate sine curves.

The second graph shows the first 1000 points. They don’t seem to lie on sine curves.
Most people see hexagons. But they are the same thousand points! It is hard to believe
that the graphs are the same, but I have learned what to do. Tilt the second graph
and look from the side at a narrow angle. Now the first graph appears. You see
“diamonds.” The narrow angle compresses the x axis—back to the scale of the first
graph.
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The effect of scale is something we don’t think of We understand it for maps.
Computers can zoom in or zoom out—those are changes of scale. What our eyes see

W -
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depends on what is “‘close.”” We think we see sine curves in the 10,000 point graph,
and they raise several questions:

1. Which points are near {0, 0)?
2. How many sine curves are there?
3. Where does the middle curve, going upward from (0, 0), come back to zero?

A point near (0, 0) really means that sin n 1s close to zero. That is certainly not true
of sin 1 {1 is one radian!), In fact sin 1 is up the axis at .84, at the start of the seventh
sine curve. Stmilarly sin 2 is .91 and sin 3 is .14. (The numbers 3 and .14 make us
think of n. The sine of 3 equals the sine of = — 3. Then sin .14 is near .14.) Similarly
sin4, sin 5, ..., sin 21 are not especially close to zero.

The first point to come clpse is sin 22. This is because 22/7 is near n. Then 22 is
close to 7z, whose sine is zero:

sin 22 =sin(7n — 22) = sin(— .01 = — .01.

That is the first point to the right of (0, 0) and slightly below. You can see it on
graph 1, and more clearly on graph 2. It begins a curve downward.
The next point to come close is sin 44. This is because 44 is just past 14m.

44 = 14n + .02 S0 sin 44 = sin .02 = .02.

This point (44, sin 44) starts the middle sine curve. Next is (88, sin 88).

Now we know something. There are 44 curves. They begin near the heights sin 0,
sin 1, ..., sin 43. Of these 44 curves, 22 start upward and 22 start downward. I was
confused at first, because I could only kind 42 curves. The reason is that sin 11 equals
—0.99999 and sin 33 equals .9999. Those are so closc to the bottom and top that you
can’t see their curves. The sine of 11 is near —1 because sin 22 is near zero. It is
almost impossibie to follow a single curve past the top—coming back down it is not
the curve you think it is.

The points on the middle curve are at n = 0 and 44 and 88 and every number 44N
Where does that curve come back to zero? In other words, when does 44N come
very close to a multiple of 7?7 We know that 44 is 14n + .02. More exactly 44 is
14z + .0177. So we multiply .0177 until we reach =

il N=mn.0177 then 44N =(14n+ 0177)N = 14naN + =,

This gives N = 177.5. At that point 44N = 7810. This is half the period of the sine
curve. The sine of 7810 is very near zero.

If you follow the middle sine curve, you will see it come back to zero above 7810.
The actual points on that curve have n=44-177 and n =44 178, with sines just
above and below zero. Halfway between is n = 7810, The eguation for the middle sine
curve is ¥ = sin(ax;7810). Its period is 15,620—beyond our graph.

Question The fourth point on that middle curve looks the same as the fourth point

coming down from sin 3. What is this “double point?"

Answer 4 ttmes 44 is 176. On the curve going up. the point is {176, sin 176). On the

curve coming down it is (179, sin 179). The sines of 176 and 179 differ only by .00003.
The second graph spreads out this double point. Look above 176 and 179, at the

center of a hexagon. You can follow the sine curve all the way across graph 2.

Only a little question remains. Why does graph 2 have hexagons? I don’t know.
The problem is with your eyes. To understand the hexagons, Doug Hardin plotted
points on straight lines as well as sine curves. Graph 3 shows y = fractional part of
ni2m. Then he made a second copy, turned it over, and placed it on top. That
preduced graph 4—with hexagons. Graphs 3 and 4 are on the next page.
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This is called a Meiré pattern. 1f you can get a transparent copy of graph 3, and
turn it slowly over the original, you will see fantastic hexagons. They come from
interference between periodic patterns—in our case 44,7 and 25/4 and 19/3 are near
2m. This interference is an enemy of printers, when color screens don’t line up. It can
cause vertical lines on a TV. Also in making cloth, operators get dizzy from seeing
Moiré patterns move. There are good applications in engineering and optics —but
we have to get back to calculus.

1.7 Computing in Calculus

Software is available for calculus courses—a lot of it. The packages keep getting
better. Which program to use (if any) depends on cost and convenience and purpose.
How to usc it is @ much harder question. These pages identify some of the goals, and
also particular packages and calculators. Then we make a beginning (this is still
Chapter 1) on the connection of computing to calculus,

The discussion will be informal. [t makes no sense to copy the manual. Our aim
15 to support, with examples and information, the effort to use computing to help

icarning.

For calculus, the greatest advantage of the computer Is to offer graphics, You see
the function, not just the formula. As you watch, f(x) reaches a maximum or a
minimum or zere. A separate graph shows its derivative. Those statements are not

100% true, as everybody learns right away

as soon as a few functions are typed in.

But the power to see this subject is enormous, beeause it is adjustable, If we don’t
like the picture we change to a new viewing window.

This is computer-based graphics. It combines mumerical computation with
graphical computation. You get pictures as well as numbers—a powerful combination.
The computer offers the experience of actually working with a function. The domain
and range are not just abstract ideas. You choose them. May I give a few examples.

EXAMPLE 1

Certainly x

3

cquals 3 when x =3, Do those graphs ever meet again?

At this point we don't know the full meaning of 3", except when x is a nice number.
(Neither does the computer.} Checking at x =2 and 4, the function x? is smaller
both times: 27 is below 32 and 4° = 64 is below 3* = 81. If x* is always less than 3*
we ought to know—these are among the basic functions of mathematics.
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The computer will answer numerically or graphically. At our command, it sclves
x¥ = 3* At another command, it plots both functions—this shows more. The screen
proves a point of logic (or mathematics) that escaped us. If the graphs cross once,
they must cross again— because 3* is higher at 2 and 4. A crossing point near 2.5 is
seen by zooming in. I am less interested in the exact number than its position—it
comes before x =3 rather than after.

A few conclusions from such a basic example:

1. A supercomputer is not necessary,
2. High-ievel programming is not necessary.
3. We can do mathematics without completely understanding it.

The third point doesn’t sound so good. Write it differently: We can learn mathematics
while doing it. The hardest part of teaching calculus is to turn it from a spectator
sport into a workout. The computer makes that possible.

EXAMPLE2 (mental computer} Compare x? with 2*. The functions meet at x = 2.
Where do they meet again? Is it before or after 2?

That is mental computing because the answer happens to be a whole number (4).
Now we are on a different track. Does an accident like 2* = 42 ever happen again?
Can the machine tell us about integers? Perhaps it can plot the solutions of x* = b*,
1 asked Mathematica for a formula, hoping to discover x as a function of 5—but the
program just gave back the equation. For once the machine typed HELP irstead of
the user.

Well, mathematics is not helpless. I am proud of calculus, There is a new exercise
at the end of Section 6.4, to show that we never see whole numbers again.

EXAMPLE 3 Find the number b for which x* = b* has only enae solution(at x = b).

When b is 3, the second solution is below 3. When b is 2, the second solution {4) is
above 2. If we move b from 2 to 3, there must be a special “double point”—where
the graphs barely touch but don’t cross. For that particular b—and only for that
one value-——the curve x* never goes above b*.

This special point b can be found with computer-based graphics. In many ways it
is the “center point of calculus.” Since the curves touch but don't cross, they are
tangent. They have the same slope at the double point. Calculus was created to work
with slopes, and we already know the slope of x*. Soon comes x®. Eventuaily we
discover the siope of b, and identify the most important number in calculus.

The point is that this number can be discovered first by experiment.

EXAMPLE4 Graph y(x) = ¢* — x*. Locate its minimum.

The next example was proposed by Don Small. Solve x* — [1x3+ 5x —2=0. The
first tool is algebra—try to factor the polynomial. That succeeds for quadratics, and
then gets extremely hard. Even if the computer can do algebra better than we can,
factoring is seldom the way to go. In reality we have two good choices:

1. (Mathematics) Use the derivative. Solve by Newton’s method.
2. (Graphics) Plot the function and zoom in.

Both will be done by the computer. Both have potential problems! Newton’s method
is fast, but that means it can fail fast. (It is usually terrific.) Plotting the graph is also
fast—but solutions can be outside the viewing window. This particular function is
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zero only once, in the standard window from —10 to 10. The graph seems to be
leaving zero, but mathematics again predicts a second crossing point. So we zoom
out before we zoom in.

The use of the zoom is the best part of graphing. Not only do we choose the domain
and range, we change them. The viewing window is controlied hy four numbers. They
can be the limits A< x< B and C< y<D. They can be the coordinates of two
opposite corners: {4, C) and (B, D). They can be the center position (a, b) and the
scale factors ¢ and 4. Clicking on opposite corners of the zoom box is the fastest way,
unless the center is unchanged and we only need to give scale factors. (Even faster:
Use the default factors.) Section 3.4 discusses the centering transform and zoeom
transform—a change of picture on the screen and a change of variabie within the
function.

EXAMPLE 5 Find all real solutions to x*— 11x3 +5x—2=0.

EXAMPLES Zoom out and in on the graphs of y=cos 40x and y= xsin(l/x).
Describe what you see.

EXAMPLE 7 What does y=(tan x —sin x)/x®> become at x=0? For small x the
machine eventually can’t separate tan x from sin x. It may give y=0. Can you get
close enough to see the limit of y?

For these examples, and for most computer exercises in this book, a menu-driven
system is entirely adequate. There is a list of commands to choose from. The user
provides a formula for y(x), and many functions are built in. A calculus supplement
can be very useful—MicroCalc or True BASIC or Exploring Calculus or MPP (in
the public domain). Specific to graphics are Surface Plotter and Master Grapher and
Gyrographics (animated). The best software for linear algebra is MATLAB.

Powerful packages are increasing in convenience and decreasing in cost. They are
capable of symbelic computation— which opens up a third avenue of computing in
calculus.

SYMBOLIC COMPUTATICN

In symbolic computation, answers can be formulas as well as numbers and graphs.
The derivative of y = x? is seen as “2x.” The derivative of sin ¢ is “‘cos ¢.” The slope
of b* is known to the program. The computer does more than substitute numhers
into formulas—it operates directly on the formulas. We need to think where this fits
with learning calculus.

In a way, symbolic computing is close to what we ourselves do. Maybe too close—
there is some danger that symbolic manipulation is all we do. With a higher-level
language and enough power, a computer can print the derivative of sin(x?). So why
icarn the chain rule? Because mathematics goes deeper than “algebra with formulas.”
We deal with ideas.

I want to say clearly: Mathematics is not formulas, or computations, or even proofs,
but ideas. The symbols and pictures are the language. The book and the professor
and the computer can join in teaching it. The computer should be non-threatening
(like this book and your professor)—you can work at your own pace. Your part is
to learn by doing.

EXAMPLES A computer algebra system quickly finds 100 factorial. This is 100! =
(100)(99)(98) ... (1}. The number has 158 digits (not written out here). The last 24
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digits are zeros. For 10! = 3628800 there are seven digits and two zeros. Between 10
and 100, and beyond, are simple questions that need ideas:

1. How many digits (approximately} are in the number N!?
2. How many zeros {exactly) are at the end of N1?

For Question 1, the computer shows more than N digits when N = 100. It will never
show more than N2 digits, because none of the N terms can have more than N digits.
A much tighter bound would be 2N, but is it true? Does N always have fewer than
2N digits?

For Question 2, the zeros in 10! can be explained. One comes from 10, the other
from 5 times 2. (10 is also 5 times 2.) Can you explain the 24 zeros in 100!? An idea
from the card game blackjack applies here too: Count the fives.

Hard question: How many zeros at the end of 200!?

The outstanding package for full-scale symbolic computation is Mathematica. It
was used to draw graphs for this book, including y =sin n on the back cover. The
complete command was ListPlot[ Table [Sin[n], {n, 10000} ]]. This system has rewards
and also drawbacks, including the price. Its original purpose, like MathCAD and
MACSYMA and REDUCE, was not to teach calculus—but it can. The computer
algebra system MAPLE is good.

As I write in 1990, DERIVE is becoming well established for the PC. For the
Macintosh, Calculus T/L is a “sleeper” that deserves to be widely known. It builds
on MAPLE and is much more accessible for calculus. An important alternative is
Theorist. These are menu-driven (therefore easier at the start) and not expensive.

I strongly recommend that students share terminals and work together. Two at a
terminal and 3-5 in a working group seems to be optimal, Mathematics can be
learned by talking and writing—it is a human activity. Our goal is not to test but to
teach and learn.

Writing in Calculus May | emphasize the importance of writing? We totally miss it,
when the answer is just a number. A one-page report is harder on instructors as weil
as students—but much more valuable. A word processor keeps it neat. You can’t
write sentences without being forced to organize ideas—and part of yourself goes
into it.

I will propose a writing exercise with options. If you have computer-based graph-
ing, follow through on Examples 1-4 above and report. Without a computer, pick a
paragraph from this book that should be clearer and make it clearer. Rewrite it with
examples. Ideniily the key idea at the start, explain it, and come back to express it
differently at the end. Ideas are like surfaces—they can be seen many ways.

Every reader will understand that in software there is no last word. New packages
keep coming {Analyzer and EPIC among them). The biggest chalienges at this
moment are three-dimensional graphics and calculus workbooks. In 3D, the problem
is the position of the eye—since the screen is only 2D. In workbooks, the problem is
to get past symbol manipulation and reach ideas. Every teacher, including this one,
knows how hard that is and hopes to help.

GRAPHING CALCULATORS

The most valuable feature for calculus—computer-based graphing—is available on
hand calculators. With trace and zoom their graphs are quite readable. By creating
the graphs you subconsciously learn about functions. These are genuinely personal
computers, and the following pages aim to support and encourage their use.
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Programs for a hand-heid machine tend to be stimple and short. We don't count
the zeros in 100 factorial (probably we could). A calculator finds crossing points and
maximum points to good accuracy. Most of all it allows you to explore calculus by
yourself. You set the viewing window and define the function. Then you see it.

There 1s a choice of calculators—which one to buy? For this book there was also
a choice—which one to describe? To provide you with listings for useful programs,
we had to choose. Fortunately the logic 1s so clear that you can translate the instruc-
tions into any language—for a computer as well as a calcuiator. The programs given
here are the “greatest common denominator™ of computing in calculus,

The range of choices starts with the Casio fx 7000G—the first and simplest, with
very limited memory but a good screen. The Casio 7500, 8000, and 8500 have increas-
ing memory and extra features. The Sharp £7.-5200 (or 9000 in Canada and Europe)
is comparable to the Casio 8000. These machines have algebraic entry—the normal
order as in y= x+ 3, They are inexpensive and good. More expensive and much
tmore powerful are the Hewlett-Packard calculators—the HP-28S5 and HP-485X.
They have large memories and extensive menus {(and symbolic algebra}. They use
reverse Polish notation—numbers first 1n the stack, then commands. They require
extra time and effort, and other books do justice to their amazing capabilities. [t is
estimated that those calculators could get 95 on a typical caiculus exam.

While this book was being written, Texas Instruments produced a new graphing
calculator: the Ti-81. It is closer to the Casio and Sharp (emphasis on graphing, easy
to learn. no symbolic algebra, moderate price). With earlier machines as a starting
point, many improvements were added. There is some risk in a choice that is available
only Ar before this textbook is published, and we hope that the experts we asked are
right. Anyway, owr programs are for the TI-81. Tt is impressive.

Thesce few pages arc no substitute for the manual that comes with a calculator. A
valuable supplement is a guide directed especially at calculus—my absolute favorites
are Calculus Activities for Graphic Calculators by Dennis Pence (PWS-Kent, 1990 for
the Casio and Sharp and HP-288, 1991 for the T/-81). A series of Calculator Enhance-
ments, using H P’s, is being published by Harcourt Brace Jovanovich. What foilows
is an introduction 1o onc part of a calculus laboratory. Later in the book, we supply
TI-81 programs close to the mathematics and the exercises that they are prepared
for.

A few words to start: To select from a menu, press the item number and ENTER.
Edit a command line using DEL{ete) and INS{ert). Every line ends with
ENTER. For calculus select radians on the MODE screen. For powers use ~ . For
special powers choose x2, x "', /x. Multiplication has priority, so (=)3+2x 2
produces 1. Use keys for SIN, IF, IS, ... When you press letters. I multipiies S.

If a program says 3 — C, type 3 STO C ENTER. Storage locations are A to Z
or Greek &.

Functions A graphing calculator helps you (forces you?) to understand the concept
of a function. It also helps you to understand specific functions—especially when
changing the viewing window.

To evaluate y = x* — 2x just once. use the home screen. To define yv(x) for repeated
use, move to the function edit screen: Press MODE. choose Func tion, and press
Y =. Then type in the formula. Fmporrant tip: for X on the TI-81. the key X| T is faster
than two steps Alpha X. The Y= edit screen is the same placc where the formula
is needed for graphing.
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Example Y1=X2-2X ENTER onthe Y= screen. &4 STO X ENTER on the home
screen. Y1 ENTER on the Y-VARS screen. The screen shows 8, which is ¥{4). The
formula remains when the calculator is off.

Graphing  You specify the X range and Y range. {We should say X domain but we
don’t.) The screen is a grid of 96 x 64 little rectangles called “pixels.” The first column
of pixels represents Xm1in and the last column is Xmax. Press RANGE to reset.
With Xr e s = 1 the function is evaluated 96 times as it is graphed. Xsc l and Yscl
give the spaces between ticks on the axes.

The Z0OM menu is a fast way to set ranges. ZO0OM Standard gives the default
-10€xg10, - 10 y<10. ZOOM Triggives —2n<x52r, —3Ky<3.
The keystroke GRAPH shows the graphing screen with the current functions.

Example Set the ranges (—)2< X <3 and (—)150< Y < 50. Press Y= and store
Y1 =X {in MATH)® —28X2 + 15X + 36 ENTER. Press GRAPH. You won’t sce
much of the graph! Press RANGE and reset (—)10 < X < 30,(—)4000 < Y < 2300.
Press GRAPH. See a cubic polynomial.

“Smart Graph™ recalls the graph instantly without redrawing it, if no settings have
changed. The DR AW menu is for points, lines, and shaded regions. This is perfect for
our piecewise linear functions—just connect the breakpoints with lines. In Section 3.6
the lines show an iteration by its *“cobweb.”

Pragramming This book contains programs that you can type in once and save.
We chose Autoscaling, Newton’s Method, Secant Method, Cobweb Iteration, and
Numerical Imegration, You will create others—to do calculations or to add features
that are not available as single keystrokes. The calculator is like a computer, with a
fairly small set of instructions. One difference: Memory is too precious to store com-
ments with the code. You have to sec the logic by rereading the program.

To enter the world of programming, press PRGM. Each PRGM submenu lists al
programs by name—a digit, a letter, or # (37 names). The program title has up to
eight characters. Select the ED I T submenu and press G for the edit screen. Type the
title GRAPHS and press ENTER. Practice on this one:

:"X2+X" STO (Y-VARS) Y1 ENTER
:"X=-1" STO (Y-VARS) Y2 ENTER
:(PRGM) (1/0) DispGraph

The menus to call are in parentheses. Leave the edit screen with QUIT (not
CLEAR—that erases the line with the cursor). Set the default window by ZOOM
Standard.

To execute, press PRGM (EXEC) G ENTER. The program draws the graphs. It
leaves Y1 and Y2 on the Y= screcn. To erase the program from the home screen,
press (PRGM){ERASE)G, Practice again by creating PrgmZ:FUNC. Type
:f X STO Yand : (PRGM) (1/0)Disp Y. Move to the home screen, store
X by 4 STO X ENTER, and execute by {PRGM) (EXEC)2 ENTER. Also try
X = — 1. When it fails to imagine i, select 1: Goto Error.

Piecewise functions and Input (to a running program). The definition of a piecewise
function includes the domain of each piece. Logical tests like " IF X = 7" determine
which domain the input value X fails into. An I F statement only affects the following

line—which is executed when TES T = 1 (meaning true) and skipped when TEST=0

{meaning false). I F commands are in the PRGM (CTL) submenu; TEST calls the
menu of inequalities.
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An input value X =4 need not be stored in advance. Program P stops while
running to request input. Execute with P ENTER after selecting the PRGM {(EXEC)
menu. Answer ? with 4 and ENTER. After completion, rerun by pressing ENTER
again. The functionis y=14—xif x<7, y=xifx2"7

PrgmP;: PIECES

:Disp "X=" PGRM (I/0) Ask for input
:Input X PGRM (I1/0) Screen ? ENTER X
114=X—Y First formula for all X

tIfT 7 <X PRGM (CTL) TEST

X =Y Overwrite if TEST =1

:Disp ¥ Display Y(X)

Overwriting is faster than checking both cnds 4 € X < B for each piece. Even faster:
a whole formula (14 — X)(X < 7)+ (X)(7 £ X) can go on a single line using | and 0
from the tests. Compute-store-display Y(X) as above, or define Y 1 on the edit screen.

Exercise Define a third piece Y=8 + X if X < 3. Rewrite P using Y1 =. A product
of tests (3 < XY (X <7) evaluates to 1 if all true and to 0 if any false.

TRACE and ZOOM The best featurc s graphing. But a wholc graph can be hikc a
whole book—too much at once. You want to focus on one part. A computer or
calculator will trace along the graph, stop at a point, and zoom in.

There is also ZOOM OUT, to widen the ranges and see more. Our eyes work the
same way—they put together information on differcnt scales. Looking around the
room uses an amazingly large part of the human brain. With a big enough computer
we can try to imitate the eyes—this is a key problem in artificial intelligence. With
a small computer and a zoom feature, we can use our eyes to undcrstand functions.

Press TRACE to locate a point on the graph. A blinking cursor appears. Move
left or right—the cursor stays on the graph. Its coordinates appear at the bottom of
the screen. When x changes by a pixel. the calcuiator evaivates y{x). To solve y(x)=20,
read ofl x at the point when y is nearest to zero. To minimize or maximize y{x), read
off the smallest and largest y. In all these problems, zoom in for more accuracy.

To blow up a figure we can choose new ranges. The fast way 15 10 use & ZOOM
command. Feor a preset range, use ZOOM Standardor ZOOM Trig. To shrink
or stretch by XFact or YFact (default values 4). use ZOOM Inor ZOOM Out.
Choose the center point and press ENTER. The new graph appears. Change those
scaling factors with ZOOM Set Factors. Best of all, create your own viewing
window. Press ZOOM Box.

To draw the box, move the cursor to one corner. Press ENTER and this point is
a small square. The same keys move a second (blinking) square to the opposite
corner—the box grows as you move. Press ENTER. and the box is the new viewing
window. Thc graphs show the same function with a change of scale. Section 3.4 will
discuss the mathematics—here we concentrate on the graphics.

EXAMPLE®? Place :Y1=Xs1in (1/X) inthe Y= editscreen. Press ZOOM Trig
for a ficst graph. Set XFact =1land YFact =2.5 Press ZOOM In with center at
(0, 0). To see a larger picture, use XFact =10and YFact =1 Then Zoom Qut
again. As X gets large, the function X sin(l/X) approaches

Now return to ZOOM Trig. Zoom In with the factors set to 4 (defau]t} Zoom
again by pressing ENTER. With the center and the factors fixed, this is faster than
drawing a zoom box.



4.7 Computing In Calculus

EXAMPLE 10 Repeat for the more erratic function ¥ = sin(1/X). After ZOOM Trig,
create a box to see this function near X = .01. The Y range is now

Scaling is crucial. For a new function it can be tedious. A formula for y(x) does
not easily reveal the range of y’s, when 4 £ x < B is given. The following program is
often more convenient than zooms. It samples the function L= 19 times across the
x-range (every 5 pixels). The inputs Xmin, Xmax, ¥, are previously stored on other
screens. After sampling, the program sets the y-range from C= Ymin to D= Ymax
and draws the graph.

Notice the Joop with counter K. The loop ends with the command IS> (K, L),
which increases K by 1 and skips a line if the new K exceeds L. Otherwise the
command Goto 1 restarts the loop. The screen shows the short form on the left.

Example: Y1 =x*+10x*— 7x+ 42 with range Xmin=—12 and Xmax = 10.
Set tick spacing Xs¢cl =4 and Yscl =250. Execute with PRGM (EXEC) A
ENTER. For this program we also list menu locations and comments.

PrgmA : AUTOSCL Menu (Submenu) Comment

tALL-0ff Y-VARS (OFF) Turmn off functions
iXmin— A VARS (RNG) Store Xmin using STO
119-L Store number of evaluations (19)
:(Xmax-A)Y/L—-H Spacing between evaluations

iAo X Start at x= A

t¥Y1»¢C Y-VARS (Y) Evaluate the function
L Start C and D with this value

:1-K Initialize counter K = 1

:Lbl 1 PRGM (CTL) Mark loop start
:A+KH- X Calculate next x

Y1 ¥ Evaluate function at x

tIFY<C PGRM (CTL) New minimum?

Y= (C Update C

tIFD<Y PRGM (CTL) New maximum?
tY=D Update D

IS> (K, L) PRGM (CTL) Add 1 to K, skip Goto if > L
:Goto 1 PRGM (CTL) Loop returnto LbL 1
:Y1-0n Y-VARS (ON) Tumon Y1
tC—Y¥min STO VARS (RNG) Set Ymin=C
:D—- Ymax STO YARS (RNG) Set Ymax =D

:DispGraph PRGM (I/0) Generate graph
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CHAPTER 2

Derivatives

I 2.1 The Derivative of a Function TN

This chapter begins with the definition of the derivative. Two examples were in
Chapter 1. When the distance is t2, the velocity is 2t. When f(t)=sin t we found
v(t) = cos t. The velocity is now called the derivative of f(t). As we move to a more
formal definition and new examples, we use new symbols f' and df/dt for the
derivative.

2A At time t, the derivative f'(t) or df /dt or v(t) is

)= tim LEHAD=SO)

At—0 At

(1)

The ratio on the right is the average velocity over a short time At. The derivative, on
the left side, is its limit as the step At (delta t) approaches zero.

Go slowly and look at each piece. The distance at time ¢ + At is f(t + At). The
distance at time ¢t is f(t). Subtraction gives the change in distance, between those
times. We often write Af for this difference: Af'=f(t + At) — f(t). The average velocity
is the ratio Af/At—change in distance divided by change in time.

The limit of the average velocity is the derivative, if this limit exists:

i A
i AT A @

This is the neat notation that Leibniz invented: Af/At approaches df /dt. Behind the
innocent word “limit” is a process that this course will help you understand.

Note that Af is not A times f! It is the change in f. Similarly At is not A times t.
It is the time step, positive or negative and eventually small. To have a one-letter
symbol we replace At by h.

The right sides of (1) and (2) contain average speeds. On the graph of f(t), the
distance up is divided by the distance across. That gives the average slope Af/At.
The left sides of (1) and (2) are instantaneous speeds df /dt. They give the slope at
44 the instant ¢. This is the derivative df/dt (when At and Af shrink to zero). Look again
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at the calculation for f(t) =t

Af _ fe+A)—f() _ >+ 2t At + (Ar)® — 12
At At - At

=2t + Ar. (3)

Important point: Those steps are taken before At goes to zero. If we set At =0 too
soon, we learn nothing. The ratio Af/At becomes 0/0 (which is meaningless). The
numbers Af and At must approach zero together, not separately. Here their ratio is
2t + At, the average speed. ’

To repeat: Success came by writing out (¢t + At)? and subtracting t? and dividing
by At. Then and only then can we approach A¢t= 0. The limit is the derivative 2t.

There are several new things in formulas (1) and (2). Some are easy but important,
others are more profound. The idea of a function we will come back to, and the
definition of a limit. But the notations can be discussed right away. They are used
constantly and you also need to know how to read them aloud:

f({t)="f of t”” = the value of the function f at time ¢
At = “delta t”” = the time step forward or backward from ¢
f(t+ At)="f of t plus delta ¢’ = the value of f at time t + At
Af=“delta = the change f(t + At) —f(t)
Af/At = “delta f over delta t” = the average velocity
Sf'(t)="“f prime of ¢’ = the value of the derivative at time ¢
dffdt="dfdt” = the same as f’ (the instantaneous velocity)

lim = “limit as delta ¢ goes to zero” = the process that starts with
429 numbers Af/At and produces the number df/dt.

From those last words you see what lies behind the notation df/dt. The symbol At
indicates a nonzero (usually short) length of time. The symbol dt indicates an
infinitesimal (even shorter) length of time. Some mathematicians work separately
with df and dt, and df/dt is their ratio. For us df/dt is a single notation (don’t
cancel d and don’t cancel A). The derivative df/dt is the limit of Af/At. When that
notation df /dt is awkward, use f' or v.

Remark The notation hides one thing we should mention. The time step can be
negative just as easily as positive. We can compute the average Af/At over a time
interval before the time ¢, instead of after. This ratio also approaches df/dt.

The notation also hides another thing: The derivative might not exist. The averages
Af/At might not approach a limit (it has to be the same limit going forward and
backward from time ¢). In that case f'(t) is not defined. At that instant there is no
clear reading on the speedometer. This will happen in Example 2.

EXAMPLE 1 (Constant velocity V= 2) The distance f is V times t. The distance at
time ¢ + At is V times ¢t + At. The difference Af is V times At:

Af VAt _ ... df
Ar - Ar =¥ so the limit is dt_V'

The derivative of Vr is V. The derivative of 2t is 2. The averages Af/At are always
V=2, in this exceptional case of a constant velocity.

45



46

2 Derivatives

EXAMPLE 2 Constant velocity 2 up to time ¢t = 3, then stop.

For small times we still have f(t)=2t. But after the stopping time, the distance is

fixed at f(¢)= 6. The graph is flat beyond time 3. Then f(t + Af)=f(t) and Af=0

and the derivative of a constant function is zero:

flt+ A —£(0) _
At

.0
Jim, 5 =0 g

t>3 f(t)—gz_'m0

In this example the derivative is not defined at the instant when t = 3. The velocity
falls suddenly from 2 to zero. The ratio Af/At depends, at that special moment, on
whether At is positive or negative. The average velocity after time ¢t = 3 is zero. The
average velocity before that time is 2. When the graph of f has a corner, the graph
of v has a jump. It is a step function.

One new part of that example is the notation (df/dt or f’ instead of v). Please look
also at the third figure. It shows how the function takes ¢ (on the left) to f(t). Especially
it shows At and Af. At the start, Af/At is 2. After the stop at t =3, all t’s go to the
same f(t)=6. So Af=0 and df/dt=0.

time distance

v=dfldt=f

2+—0
(3) not defined

—0O—
3

Fig. 2.4 The derivative is 2 then 0. It does not exist at t = 3.

THE DERIVATIVE OF 1/t

Here is a completely different slope, for the “demand function” f(t) = 1/t. The demand
is 1/t when the price is t. A high price t means a low demand 1/z. Increasing the price
reduces the demand. The calculus question is: How quickly does 1/t change when t
changes? The “marginal demand” is the slope of the demand curve.

The big thing is to find the derivative of 1/t once and for all. It is —1/¢2,

1 1 1 . t—(t+Ar) —At
E =— Af=———-.Th 1 = .
EXAMPLE3 f(t) thas f TTA T is equals e+ A G+ A
. Af -1 a -1
: —— = h — —_.
Divide by At and let At -0 Al T AD approaches i

Line 1 is algebra, line 2 is calculus. The first step in line 1 subtracts f(t) from
f(t + At). The difference is 1/(¢t + Ar) minus 1/t. The common denominator is ¢ times
t + At—this makes the algebra possible. We can’t set At = 0 in line 2, until we have
divided by At.

The average is Af/At=—1/t(t + At). Now set At=0. The derivative is —1/¢2.
Section 2.4 will discuss the first of many cases when substituting At = 0 is not possible,
and the idea of a limit has to be made clearer.
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[Af
t f==1

Fig. 2.2 Average slope is —$#, true slope is — 4. Increase in ¢ produces decrease in f.

Check the algebra at t =2 and ¢t + At = 3. The demand 1/t drops from 1/2 to 1/3.
The difference is Af= — 1/6, which agrees with —1/(2)(3) in line 1. As the steps Af
and At get smaller, their ratio approaches —1/(2)(2) = —1/4.

This derivative is negative. The function 1/t is decreasing, and Af is below zero. The
graph is going downward in Figure 2.2, and its slope is negative:

An increasing f(t) has positive slope. A decreasing f(t) has negative slope.

The slope —1/t2 is very negative for small t. A price increase severely cuts demand.

The next figure makes a small but important point. There is nothing sacred about t.
Other letters can be used—especially x. A quantity can depend on position instead
of time. The height changes as we go west. The area of a square changes as the side
changes. Those are not affected by the passage of time, and there is no reason to use
t. You will often see y =f(x), with x across and y up—connected by a function f.

Similarly, f is not the only possibility. Not every function is named f! That letter
is useful because it stands for the word function—but we are perfectly entitled to
write y(x) or y(t) instead of f(x) or f(t). The distance up is a function of the distance
across. This relationship “y of x” is all-important to mathematics.

The slope is also a function. Calculus is about two functions, y(x) and dy/dx.

Question If we add 1 to y(x), what happens to the slope? Answer Nothing.
Question If we add 1 to the slope, what happens to the height? Answer
The symbols ¢t and x represent independent variables—they take any value they

want to (in the domain). Once they are set, f(t) and y(x) are determined. Thus f and
y represent dependent variables—they depend on t and x. A change At produces a

i Afnegative
1 Ay negative

21

I 2
Fig. 2.3 The derivative of 1/t is —1/t2, The slope of 1/x is —1/x2.
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change Af. A change Ax produces Ay. The independent variable goes inside the
parentheses in f(¢) and y(x). It is not the letter that matters, it is the idea:

independent variable ¢ or x
dependent variable f or g or y or z or u
derivative df/dt or df /dx or dy/dx or ---

The derivative dy/dx comes from [change in y] divided by [change in x]. The time
step becomes a space step, forward or backward. The slope is the rate at which y
changes with x. The derivative of a function is its “rate of change.”

I mention that physics books use x(t) for distance. Darn it.

To emphasize the definition of a derivative, here it is again with y and x:

Ay y(x+Ax)—y(x) _ distance up dy .. Ay
Ax Ax distance across dx Alalcr—l?o Ax 7 )

The notation y’(x) pins down the point x where the slope is computed. In dy/dx that
extra precision is omitted. This book will try for a reasonable compromise between
logical perfection and ordinary simplicity. The notation dy/dx(x) is not good; y'(x) is
better; when x is understood it need not be written in parentheses.

You are allowed to say that the function is y = x* and the derivative is y' = 2x—
even if the strict notation requires y(x) = x> and y'(x) = 2x. You can even say that
the function is x? and its derivative is 2x and its second derivative is 2—provided
everybody knows what you mean.

Here is an example. It is a little early and optional but terrific. You get excellent
practice with letters and symbols, and out come new derivatives.
EXAMPLE 4 If u(x) has slope du/dx, what is the slope of f(x) = (u(x))*?

From the derivative of x? this will give the derivative of x*. In that case u = x* and
f=x*. First point: The derivative of u* is not (du/dx)*. We do not square the derivative
2x. To find the “square rule” we start as we have to—with Af=f(x + Ax) — f(x):

Af= (u(x + Ax))? — (u(x))* = [u(x + Ax) + u(x)][u(x + Ax) — u(x)].

This algebra puts Af in a convenient form. We factored a® — b? into [a + b] times
[a — b]. Notice that we don’t have (Au)?. We have Af, the change in u. Now divide
by Ax and take the limit:

Af ] [u(x + Ax) — u(x)

= + Ax) + approaches 2u(x)d—u 5
Ax [u(x + Ax) +u Ax PP dx’ (5)

This is the square rule: The derivative of (u(x))* is 2u(x) times du/dx. From the
derivatives of x? and 1/x and sin x (all known) the examples give new derivatives.

EXAMPLE 5 (1= x?) The derivative of x* is 2u du/dx = 2(x*)(2x) = 4x>.
EXAMPLE 6 (1= 1/x) The derivative of 1/x? is 2u du/dx = (2/x)(—1/x*)= —2/x>.

EXAMPLE 7 (u=sin x, du/dx = cos x) The derivative of u?> =sin*x is 2 sin x cos x.

Mathematics is really about ideas. The notation is created to express those ideas.
Newton and Leibniz invented calculus independently, and Newton’s friends spent a
lot of time proving that he was first. He was, but it was Leibniz who thought of
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writing dy/dx—which caught on. It is the perfect way to suggest the limit of Ay/Ax.
Newton was one of the great scientists of all time, and calculus was one of the great
inventions of all time—but the notation must help. You now can write and speak
about the derivative. What is needed is a longer list of functions and derivatives.

2.1 EXERCISES

Read-through questions

The derivative is the __a

Here Af equals _ ¢ . The step At can be positive or _d__.
The derivative is writtenvor_e or_t . Iff(x)=2x+3
and Ax=4 then Af=_g . IfAx=—1 then Af=_h
If Ax=0 then Af=_1 . The slope is not 0/0 but

dffdx=__}

The derivative does not exist where f(t) hasa _ k _ and
v(tyhasa _ I . For f(t)= 1/t the derivativeis _m_ . The
slope of y=4/x is dy/dx = __n _. A decreasing function has
a _o derivative. The __p __ variable is ¢ or x and the

q__ variable is f or y. The slope of y? (is) (is not) (dy/dx)>.
The slope of (u(x))*is __r__ by the square rule. The slope of
(2x+3)is _s

of Af/At as At approaches __b

1 Which of the following numbers (as is) gives df /dt at time
t? If in doubt test on f(t) =12

fe+A) -1 (@) ft+2h) -1

(@) At (6) fim 2h
. fit—~A)—f(t) . fE+A)—f(t)
© lim === (d) lim ———F——

2 Suppose f(x) = x*. Compute each ratio and set h =0:
fx+h—fx) J(x +50) —f(x)

(@) = (b) =
Sx+h—fx—h fx+1D)—-f(x)
O @O

3 For f(x) =3xand g(x) =1+ 3x, find f(4 + h) and g(4 + h)
and f'(4) and g'(4). Sketch the graphs of f and g—why do
they have the same slope?

4 Find three functions with the same slope as f(x) = x2.

5 For f(x)=1/x, sketch the graphs of f(x) + 1 and f(x + 1).
Which one has the derivative —1/x2?

6 Choose c so that the line y = x is tangent to the parabola
y=x?+c. They have the same slope where they touch.

7 Sketch the curve y(x)=1—x* and compute its slope at
x=3.

8 If f(t) = 1/t, what is the average velocity between t = § and
t=2? What is the average between t =% and t=1? What
is the average (to one decimal place) between t=3% and
t=101/200?

9 Find Ay/Ax for y(x) = x + x> Then find dy/dx.
10 Find Ay/Ax and dy/dx for y(x) = 1 + 2x + 3x2.

11 When f(t) = 4/t, simplify the difference f(t + At)—f(t),
divide by At, and set At =0. The result is f'(t).

12 Find the derivative of 1/t2 from Af(t) = 1/(t + At)® — 1/t
Write Af as a fraction with the denominator t2(t + At)2.
Divide the numerator by At to find Af/At. Set At =0.

13 Suppose f(t) =7t to t = 1. Afterwards f(t) =7+ 9(t — 1).
(a) Find df/dt at t=% and t =3.
(b) Why doesn’t f(t) have a derivative at ¢t = 1?

14 Find the derivative of the derivative (the second derivative)
of y = 3x%. What is the third derivative?

15 Find numbers A and B so that the straight line y = x fits
smoothly with the curve Y = 4 + Bx + x? at x = 1. Smoothly
means that y =Y and dy/dx=dY/dx at x=1.

16 Find numbers A and B so that the horizontal line y =4
fits smoothly with the curve y= A+ Bx + x? at the point
x=2.
17 True (with reason) or false (with example):

(a) If f(t) <O then df /dt <O.

(b) The derivative of (f(t))* is 2 df /dt.

(c) The derivative of 2f(¢) is 2 df /dt.

(d) The derivative is the limit of Af divided by the limit
of At.

18 For f(x) = 1/x the centered difference f(x + h) — f(x — h) is
1/(x + h) — 1/(x — h). Subtract by using the common denomi-
nator (x + h)(x — h). Then divide by 2k and set h=0. Why
divide by 2h to obtain the correct derivative?

19 Suppose y =mx + b for negative x and y= Mx + B for
x20. The graphs meet if . The two slopes are
. The slope at x=0is (what is possible?).

20 The slope of y=1/x at x=1/4is y' = —1/x? = —16. At
h=1/12, which of these ratios is closest to —16?
yx+h—yx)  yx)—yx—h  yx+h—yx—h
h h 2h

21 Find the average slope of y=x? between x =x,; and
X = Xx,. What does this average approach as x, approaches x?

22 Redraw Figure 2.1 when f(t)=3—2¢ for t<2 and
f({t)=—1for t = 2. Include df/dt.
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23 Redraw Figure 2.3 for the function y(x)=1-—(1/x).
Include dy/dx.

24 The limit of 0/At as At — 0 is not 0/0. Explain.

25 Guess the limits by an informal working rule. Set At = 0.1
and —0.1 and imagine At becoming smaller:

1+ At |A|

@ > ar ® 5
At + (At)? t+Ar

) At—(Ar)? @ A

*26 Suppose f(x)/x — 7 as x —» 0. Deduce that f(0)=0 and
f(0)y="17. Give an example other than f(x)=7x.

fB+x)—f0)
X

27 What is lin(l) if it exists? What if x — 1?
Problems 28-31 use the square rule: d(u?)/dx = 2u(du/dx).

28 Take u = x and find the derivative of x* (a new way).

29 Take u=x* and find the derivative of x® (using
dufdx = 4x>).
30 If u=1 then u?> = 1. Then d1/dx is 2 times d1/dx. How is
this possible?

31 Takeu= \/; The derivative of u? = x is 1 = 2u(du/dx). So
what is du/dx, the derivative of \/;?

32 The left figure shows f(t) = t2. Indicate distances f(t + At)
and At and Af. Draw lines that have slope Af/At and f'(¢).

t o+ AN
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33 The right figure shows f(x) and Ax. Find Af/Ax and f'(2).
34 Draw f(x) and Ax so that Af/Ax =0 but f'(x) #0.

35If f=u? then df/dx=2udu/dx. If g=f2 then
dg/dx = 2f df /dx. Together those give g=u* and dg/dx =

36 True or false, assuming f(0)=0:
(@) If f(x)<x for all x, then df/dx < 1.
(b) If df /dx < 1 for all x, then f(x) < x.
37 The graphs show Af and Af /hfor f(x) = x2. Whyis 2x + h

the equation for Af/h? If h is cut in half, draw in the new
graphs.

38 Draw the corresponding graphs for f(x)=3}x.

39 Draw 1/x and 1/(x + h) and Af/h—either by hand with
h=1 or by computer to show h — 0.

40 For y = ¢, show on computer graphs that dy/dx = y.

41 Explain the derivative in your own words.

This section has two main goals. One is to find the derivatives of f(x)= x> and x*
and x* (and more generally f(x)= x"). The power or exponent n is at first a positive
integer. Later we allow x™ and x?-? and every x".

The other goal is different. While computing these derivatives, we look ahead to
their applications. In using calculus, we meet equations with derivatives in them—
“differential equations.” Tt is too early to solve those equations. But it is not too early
to see the purpose of what we are doing. Our examples come from economics and

biology.
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With n= 2, the derivative of x? is 2x. With n=— 1, the slope of x * is —1x~2.
Those are two pieces in a beautiful pattern, which it will be a pleasure to discover.
We begin with x* and its derivative 3x2, before jumping to x".

EXAMPLE 1 If f(x) = x> then Af= (x + h)> — x> = (x> + 3x2h + 3xh? + h®) — x>
Step 1: Cancel x>. Step 2: Divide by h. Step 3: h goes to zero.

éh[ =3x%+ 3xh + h* approaches j—{c = 3x2.

That is straightforward, and you see the crucial step. The power (x + h)* yields four
separate terms x> + 3x2h + 3xh? + h3. (Notice 1, 3, 3, 1.) After x> is subtracted, we
can divide by h. At the limit (k= 0) we have 3x?.

For f(x)= x" the plan is the same. A step of size h leads to f(x + h)=(x + h)".
One reason for algebra is to calculate powers like (x + h)*, and if you have forgotten
the binomial formula we can recapture its main point. Start with n=4:

(x+h(x+hx+hx+h=x*+ 227 +hr* (1

Multiplying the four x’s gives x*. Multiplying the four &’s gives h*. These are the easy
terms, but not the crucial ones. The subtraction (x + h)* — x* will remove x*, and the
limiting step h — 0 will wipe out h* (even after division by h). The products that matter
are those with exactly one h. In Example 1 with (x + h)?, this key term was 3x?h.
Division by h left 3x2.

With only one h, there are n places it can come from. Equation (1) has four h’s in
parentheses, and four ways to produce x>h. Therefore the key term is 4x> . (Division
by h leaves 4x>.) In general there are n parentheses and n ways to produce x" 'k, so
the binomial formula contains nx" ! h:

(x+h'=x"+nx""'h+ - +h" )

2B Forn=1,2, 3,4, ..., the derivative of x" is nx""!.

Subtract x" from (2). Divide by h. The key term is nx"~*. The rest disappears as h — 0:

+ hyY — x" n—1 S A
éji:(x h) x" _nx h h o gf*=nx

Ax h h dx

n—1

The terms replaced by the dots involve h? and h* and higher powers. After dividing
by h, they still have at least one factor h. All those terms vanish as h approaches zero.

EXAMPLE 2 (x + h)* = x* +4x3h + 6x*h> + 4xh® + h*. This is n=4 in detail.

Subtract x*, divide by h, let h — 0. The derivative is 4x>. The coefficients 1, 4, 6, 4, 1
are in Pascal’s triangle below. For (x + h)® the next row is 1, 5, 10, 7.

Remark The missing terms in the binomial formula (replaced by the dots) contain
all the products x" k. An x or an h comes from each parenthesis. The binomial
coefficient “n choose j” is the number of ways to choose j h’s out of n parentheses. It
involves n factorial, which is n(n — 1) --- (1). Thus 5!=5+4-3-2-1=120.
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These are numbers that gamblers know and love:

1 Pascal’s
. n n! 11 triangle
“n choose "= | =- . 121
) =ik 1331  n=

In the last row, the coefficient of x*h is 4!/1!3!=4-3-2+1/1-3-2-1=4. For
the x*h? term, with j =2, there are 4-3:2-1/2+1+2+1 =6 ways to choose two h’s.
Notice that 1+ 4+ 6+ 4+ 1 equals 16, which is 2*. Each row of Pascal’s triangle
adds to a power of 2.

Choosing 6 numbers out of 49 in a lottery, the odds are 49-48-47-46-45-44/6!
to 1. That number is N = **49 choose 6 = 13,983.816. It is the coefficient of x*3h°®
in (x + h)*°. If 4 times N tickets are bought, the expected number of winners is 4. The
chance of no winner is e *. The chance of one winner is le *. See Section 8.4.

Florida’s lottery in September 1990 (these rules) had six winners out of 109,163,978
tickets.

DERIVATIVES OF POLYNOMIALS

Now we have an infinite list of functions and their derivatives:
xx2x3xt 1 2x 3x2 4x3 5x* ...

The derivative of x" is n times the next lower power X" '. That rule extends beyond
these integers 1,2, 3, 4, 5 to all powers:

f=1/x has f'=-1/x% Example 3 of Section 2.1 (n=—1)
f=1/x* has f=-2/x% Example 6 of Section 2.1 (n=—2)
f= \/§ has f'=4x"12% true but not yet checked (n=1)

2 1/2

Remember that x 2 means 1/x* and x~!/* means 1/\/;. Negative powers lead to
decreasing functions, approaching zero as x gets large. Their slopes have minus signs.

Question What are the derivatives of x!° and x?-? and x /2?2

Answer 10x° and 2.2x'? and —ix7 %2 Maybe (x+ h)*? is a little unusual.
Pascal’s triangle can’t deal with this fractional power, but the formula stays firm:
After x*2 comes 2.2 x'-*h. The complete binomial formula is in Section 10.5.

That list is a good start, but plenty of functions are left. What comes next is really
simple. A tremendous number of new functions are “'linear combinations™ like

flx)=6x> or 6x*+3x? or 6x*—1ix?.

What are their derivatives? The answers are known for x* and x2, and we want to
multiply by 6 or divide by 2 or add or subtract. Do the same to the derivatives:

f(x)=18x* or 18x?+x or 18x*—x.

2C The derivative of ¢ times f(x) is ¢ times f'(x).

2D The derivative of f(x)+ g(x) is f'(x) + g'(x).

The number ¢ can be any constant. We can add (or subtract) any functions. The rules
allow any combination of f and g: The derivative of 9f(x) — 7g(x) is 9f'(x) — 7g'(x).
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The reasoning is direct. When f(x) is multiplied by ¢, so is f(x + h). The difference
Af is also multiplied by c. All averages Af/h contain c, so their limit is ¢f’. The only
incomplete step is the last one (the limit). We still have to say what “‘limit” means.

Rule 2D is similar. Adding f+ g means adding Af+ Ag. Now divide by h. In the
limit as h — 0 we reach '+ g'—Dbecause a limit of sums is a sum of limits. Any
example is easy and so is the proof-—it is the definition of limit that needs care
(Section 2.6).

You can now find the derivative of every polynomial. A “‘polynomial” is a combina-
tion of 1, x, x2, ..., x"—for example 9 + 2x — x°. That particular polynomial has slope
2 — 5x*. Note that the derivative of 9 is zero! A constant just raises or lowers the
graph, without changing its slope. It alters the mileage before starting the car.

The disappearance of constants is one of the nice things in differential calculus.
The reappearance of those constants is one of the headaches in integral calculus.
When you find v from f, the starting mileage doesn’t matter. The constant in f has
no effect on v. (Af is measured by a trip meter; At comes from a stopwatch.) To find
distance from velocity, you need to know the mileage at the start.

A LOOK AT DIFFERENTIAL EQUATIONS (FIND y FROM dy/dx)

We know that y = x> has the derivative dy/dx = 3x?. Starting with the function, we

found its slope. Now reverse that process. Start with the slope and find the function.

This is what science does all the time—and it seems only reasonable to say so.
Begin with dy/dx = 3x*. The slope is given, the function y is not given.

Question Can you go backward to reach y = x3?

Answer Almost but not quite. You are only entitled to say that y= x>+ C. The
constant C is the starting value of y (when x=0). Then the differential equation
dy/dx = 3x? is solved.

Every time you find a derivative, you can go backward to solve a differential
equation. The function y = x2 + x has the slope dy/dx = 2x + 1. In reverse, the slope
2x + 1 produces x* + x—and all the other functions x* + x + C, shifted up and down.
After going from distance f to velocity v, we return to f+ C. But there is a lot more
to differential equations. Here are two crucial points:

1. We reach dy/dx by way of Ay/Ax, but we have no system to go backward. With
dy/dx = (sin x)/x we are lost. What function has this derivative?

2. Many equations have the same solution y = x*. Economics has dy/dx = 3y/x.
Geometry has dy/dx = 3y*. These equations involve y as well as dy/dx. Func-
tion and slope are mixed together! This is typical of differential equations.

To summarize; Chapters 2—4 compute and use derivatives. Chapter 5 goes in reverse.
Integral calculus discovers the function from its slope. Given dy/dx we find y(x). Then
Chapter 6 solves the differential equation dy/dt =y, function mixed with slope.
Calculus moves from derivatives to integrals to differential equations.

This discussion of the purpose of calculus should mention a spgcific example.
Differential equations are applied to an epidemic (like AIDS). In most epidemics the
number of cases grows exponentially. The peak is quickly reached by ¢, and the
epidemic dies down. Amazingly, exponential growth is not happening with AIDS—
the best fit to the data through 1988 is a cubic polynomial (Los Alamos Sciehce, 1989):

The number of cases fits a cubic within 2%: y = 174.6(t — 1981.2)* + 340.
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This is dramatically different from other epidemics. Instead of dy/dt =y we have
dy/dt = 3y/t. Before this book is printed, we may know what has been preventing ¢*
(fortunately). Eventually the curve will turn away from a cubic—I hope that
mathematical models will lead to knowledge that saves lives.

Added in proof: In 1989 the curve for the U.S. dropped from t3 to 2.
MARGINAL COST AND ELASTICITY IN ECONOMICS

First point about economics: The marginal cost and marginal income are crucially
important. The average cost of making automobiles may be $10,000. But it is the
$8000 cost of the next car that decides whether Ford makes it. ’ The average describes
the past, the marginal predicts the future.” For bank deposits or work hours or wheat,
which come in smaller units, the amounts are continuous variables. Then the word
“marginal” says one thing: Take the derivative.t

The average pay over all the hours we ever worked may be low. We wouldn’t work
another hour for that! This average is rising, but the pay for each additional hour
rises faster—possibly it jumps. When $10/hour increases to $15/hour after a 40-hour
week, a 50-hour week pays $550. The average income is $11/hour. The marginal
income is $15/hour—the overtime rate.

Concentrate next on cost. Let y(x) be the cost of producing x tons of steel. The
cost of x + Ax tons is y(x + Ax). The extra cost is the difference Ay. Divide by Ax,
the number of extra tons. The ratio Ay/Ax is the average cost per extra ton. When
Ax is an ounce instead of a ton, we are near the marginal cost dy/dx.

Example: When the cost is x2, the average cost is x%/x = x. The marginal cost is
2x. Figure 2.4 has increasing slope—an example of “diminishing returns to scale.”

marginal |
cost 2x average demand £ '
cost.x X ! fixed supply
E=-1 - - - ——E=0
any price
¢/ slope 2.x su;;:pl=y lmx any supply E=oo
24 ~ average v fixed price © ~
- I
. ¢
X quantity equilibrium price price

Fig. 2.4 Marginal exceeds average. Constant elasticity E = +1. Perfectly elastic to perfectly
inelastic (I' curve).

This raises another point about economics. The units are arbitrary. In yen per
kilogram the numbers look different. The way to correct for arbitrary units is to work
with percentage change or relative change. An increase of Ax tons is a relative increase
of Ax/x. A cost increase Ay is a relative increase of Ay/y. Those are dimensionless, the
same in tons/tons or dollars/dollars or yen/yen.

A third example is the demand y at price x. Now dy/dx is negative. But again the
units are arbitrary. The demand is in liters or gallons, the price is in dollars or pesos.

tThese paragraphs show how calculus applies to economics. You do not have to be an
economist to understand them. Certainly the author is not, probably the instructor is not,
possibly the student is not. We can all use dy/dx.



2.2 Powers and Polynomials

Relative changes are better. When the price goes up by 10%, the demand may drop
by 5%. If that ratio stays the same for small increases, the elasticity of demand is §.

Actually this number should be — 4. The price rose, the demand dropped. In our
definition, the elasticity will be — . In conversation between economists the minus
sign is left out (I hope not forgotten).

DEFINITION The elasticity of the demand function y(x) is

= o Ayly _ dyldx
E() = A]ir—r»lo Ax/x  y/x

3

Elasticity is “marginal” divided by “average.”” E(x) is also relative change in y divided
by relative change in x. Sometimes E(x) is the same at all prices—this important case
is discussed below.

EXAMPLE 1 Suppose the demand is y=c/x when the price is x. The derivative
dy/dx = — ¢/x? comes from calculus. The division y/x = c/x? is only algebra. The ratio
isE=—1:

For the demand y = c/x, the elasticity is (—c/x?)/(c/x*)= —1.

All demand curves are compared with this one. The demand is inelastic when |E| < 1.
It is elastic when |E| > 1. The demand 20/\/; is inelastic (E= — %), while x~3 is
elastic (E = —3). The power y = cx", whose derivative we know, is the function with
constant elasticity n:

if y=cx" then dy/dx=cnx""! and E=cnx""'/(cx"/x)=n.

It is because y = cx" sets the standard that we could come so early to economics.
In the special case when y = ¢/x, consumers spend the same at all prices. Price x
times quantity y remains constant at xy = c.

EXAMPLE 2 The supply curve has E > 0—supply increases with price. Now the
baseline case is y=cx. The slope is ¢ and the average is y/x = c. The elasticity is
E=clc=1.

Compare E =1 with E=0 and E = 0. A constant supply is “perfectly inelastic.”
The power n is zero and the slope is zero: y=c. No more is available when the
harvest is over. Whatever the price, the farmer cannot suddenly grow more wheat.
Lack of elasticity makes farm economics difficult.

The other extreme E = oo is “perfectly elastic.” The supply is unlimited at a fixed
price x. Once this seemed true of water and timber. In reality the steep curve
x = constant is leveling off to a flat curve y = constant. Fixed price is changing to
fixed supply, E = oo is becoming E =0, and the supply of water follows a “gamma
curve’ shaped like I".

EXAMPLE3 Demand is an increasing function of income—more income, more
demand. The income elasticity is E(I)= (dy/dI)/(y/I). A luxury has E > 1 (elastic).
Doubling your income more than doubles the demand for caviar. A necessity has
E <1 (inelastic). The demand for bread does not double. Please recognize how the
central ideas of calculus provide a language for the central ideas of economics.

Important note on supply = demand This is the basic equation of microeconomics.
Where the supply curve meets the demand curve, the economy finds the equilibrium
price. Supply = demand assumes perfect competition. With many suppliers, no one can
raise the price. If someone tries, the customers go elsewhere.
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The opposite case is a monopoly—no competition. Instead of many small producers
of wheat, there is one producer of electricity. An airport is a monopolist (and maybe
the National Football League). If the price is raised, some demand remains.

Price fixing occurs when several producers act like a monopoly—which antitrust
laws try to prevent. The price is not set by supply = demand. The calculus problem
is different—to maximize profit. Section 3.2 locates the maximum where the marginal

profit (the slope!) is zero.

Question on income elasticity From an income of $10,000 you save $500. The
income elasticity of savings is E =2. Out of the next dollar what fraction do you

save?
Answer

The savings is y = cx? because E =2. The number ¢ must give 500 =

¢(10,000)%, so ¢ is 5+ 107 6. Then the slope dy/dx is 2cx = 10+107%+ 10* = &. This is
the marginal savings, ten cents on the dollar. Average savings is 5%, marginal savings

is 10%, and E = 2.

2.2 EXERCISES

Read-through questions

The derivative of f=x*is f’=_a . That comes from
expanding (x + h)* into the five terms __b . Subtracting x*
and dividing by h leaves the four terms _ ¢ . This is Af/h,

and its limitis _ d

The derivative of f=x"1s f'=__e . Now (x + h)" comes
from the __t  theorem. The terms to look for are x"~ !4,
containing only one _ g . There are __h __ of those terms,
$o (x+h)"=x"+_i +---. After subtracting _ i _ and
dividing by h, the limit of Af/h is __k . The coefficient of
X""Jhi, not needed here, is “‘n choose j”=__ | , where n!

means __m

2 2

The derivative of x"2is _ n . The derivative of x'/? is

o . The derivative of 3x + (1/x)is _p__, which uses the
following rules: The derivative of 3f(x)is __a  and the deriv-
ative of f(x)+ g(x)is __r__. Integral calculus recovers __s
from dy/dx. If dy/dx = x* then y(x)= __1

1 Starting with f= x®, write down /' and then f”. (This is
“f double prime,” the derivative of f".) After deriva-
tives of x® you reach a constant. What constant?

2 Find a function that has x® as its derivative.

Find the derivatives of the functions in 3—10. Even if n is nega-
tive or a fraction, the derivative of x" is nx"~!.

3 xP+7x+5 4 14 (7/x) 4+ (5/x?)
5 14+x+x2+x3+x* 6 (x2+1)?
7 x"+x7" 8 x"/n!

1 2 1 3 1 4 2 3/2 2 5/2
9 1+X+;_;X +6X +ﬂx ]05’( +§x

11 Name two functions with df /dx = 1/x2.

12 Find the mistake: x* is x + x + --- + x (with x terms). Its
derivative is 1 + 1 + --- + 1 (also x terms). So the derivative
of x? seems to be x.

13 What are the derivatives of 3x'/3 and —3x~ '3 and
(3x1/3)—1?

14 The slope of x + (1/x) is zero when x = . What

does the graph do at that point?
15 Draw a graph of y = x> — x. Where is the slope zero?

16 If df /dx is negative, is f(x) always negative? Is f(x) nega-
tive for large x? If you think otherwise, give examples.

17 A rock thrown upward with velocity 16 ft/sec reaches
height f= 16t — 16¢? at time t.

(a) Find its average speed Af/At fromt=0to t=1%.

(b) Find its average speed Af/At fromt=3tot=1.

(c) What is df /dt at t =47
18 When f is in feet and ¢ is in seconds, what are the units

of /" and its derivative f"? In f= 16t — 16t2, the first 16 is
ft/sec but the second 16 is

19 Graph y = x3 4 x? — x from x = — 2 to x = 2 and estimate
where it is decreasing. Check the transition points by solving
dy/dx =0.

20 At a point where dy/dx =0, what is special about the
graph of y(x)? Test case: y = x2.

21 Find the slope of y = \/§ by algebra (then h — 0):

Ay V/x—+-h—\/.7< _ V/x+h—\/§ ,/x+h+\/;
ho h h Jx+h+x

22 Imitate Problem 21 to find the slope of y = 1,/\/@
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23 Complete Pascal’s triangle for n=15 and n=6. Why do
the numbers across each row add to 2"?

24 Complete (x + h)* = x° + . What are the bino-

mial coefficients (f) and (;) and (g) ?

25 Compute (x + h)® —(x — h)3, divide by 2k, and set h=0.
Why divide by 2h to find this slope?

26 Solve the differential equation y” = x to find y(x).

27 For f(x)= x*+ x3, write out f(x + Ax) and Af/Ax. What
is the limit at Ax = 0 and what rule about sums is confirmed?

28 The derivative of (u(x))? is
this rule on u = x". ’

from Section 2.1. Test

29 What are the derivatives of x” + 1 and (x + 1)7? Shift the
graph of x”.

30 If df /dx is v(x), what functions have these derivatives?
(@) 4v(x) (b) v(x) + 1
©) v(x+1) (d) v(x)+ v'(x).
31 What function f(x) has fourth derivative equal to 1?
32 What function f(x) has ath derivative equal to 1?
33 Suppose df /dx =1+ x + x* + x*. Find f(x).
34 Suppose df /dx =x"% —x 3. Find f(x).

35 f(x) can be its own derivative. In the infinite polynomial
f=1+x+3x*+5x° + , what numbers multiply x*
and x° if df /dx equals f?

36 Write down a differential equation dy/dx = that
is solved by y = x?. Make the right side involve y (not just 2x).
37 True or false: (a) The derivative of x™ is nx™

(b) The derivative of ax"/bx" is a/b.

(c) If df/dx = x* and dg/dx = x* then f(x)=g(x).

(d) (f(x)—f(a))/(x — a) approaches f'(a) as x — a.

(e) The slope of y=(x—1)%is y’ =3(x — 1)

Problems 38-44 are about calculus in economics.

38 When the cost is y = y, + cx, find E(x) = (dy/dx)/(y/x). Tt
approaches for large x.

39 From an income of x = $10,000 you spend y = $1200 on
your car. If E =%, what fraction of your next dollar will be

spent on the car? Compare dy/dx (marginal) with y/x

(average).

40 Name a product whose price elasticity is
(a) high (b) low

41 The demand y = ¢/x has dy/dx = — y/x. Show that Ay/Ax

is not —y/x. (Use numbers or algebra.) Finite steps miss the
special feature of infinitesimal steps.

42 The demand y=x" has E=
(price times demand) has elasticity E =

(c) negative (?)

. The revenue xy

43 y=2x + 3 grows with marginal cost 2 from the fixed cost
3. Draw the graph of E(x).

44 From an income I we save S(I). The marginal propensity
to save is . Elasticity is not needed because S and
have the same . Applied to the whole economy this
is (microeconomics) (macroeconomics).

45 2' is doubled when ¢ increases by . t3 is doubled
when ¢ increases to t. The doubling time for AIDS
is proportional to t.

46 Biology also leads to dy/y = n dx/x, for the relative growth
of the head (dy/y) and the body (dx/x). Isn>1orn<1fora
child?

47 What functions have df/dx =x° and df/dx = x"? Why
does n= —1 give trouble?

48 The slope of y = x* comes from this identity:

(x+h)?—x*
h

(a) Check the algebra. Find dy/dx as h —0.
(b) Write a similar identity for y = x*.

=(x+h)?* + (x + h)x + x>

49 (Computer graphing) Find all the points where y=

x* +2x* — 7x% + 3 =0 and where dy/dx = 0.

50 The graphs of y;(x) = x* + x* and y,(x) = 7x — 5 touch at
the point where ys(x) = =0. Plot y3(x) to see what is
special. What does the graph of y{x) do at a point where
y=y =0?

51 In the Massachusetts lottery you choose 6 numbers out
of 36. What is your chance to win?

52 In what circumstances would it pay to buy a lottery ticket
for every possible combination, so one of the tickets would
win?
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I 2.3 The Slope and the Tangent Line TN

Chapter 1 started with straight line graphs. The velocity was constant (at least piece-
wise). The distance function was linear. Now we are facing polynomials like x> — 2
or x* — x2 + 3, with other functions to come soon. Their graphs are definitely curved.
Most functions are not close to linear—except if you focus all your attention near a
single point. That is what we will do.

Over a very short range a curve looks straight. Look through a microscope, or zoom
in with a computer, and there is no doubt. The graph of distance versus time becomes
nearly linear. Its slope is the velocity at that moment. We want to find the line that
the graph stays closest to—the “tangent line —before it curves away.

The tangent line is easy to describe. We are at a particular point on the graph of
y=f(x). At that point x equals a and y equals f(a) and the slope equals f’(a).
The tangent line goes through that point x = a, y=f(a) with that slope m= f'(a).
Figure 2.5 shows the line more clearly than any equation, but we have to turn the
geometry into algebra. We need the equation of the line.

EXAMPLE 4 Suppose y = x* — x* + 3. At the point x = a = 1, the height is y = f(a) = 3.
The slope is dy/dx = 4x> — 2x. At x = 1 the slope is 4 —2=2. That is f'(a):

The numbers x =1, y =3, dy/dx = 2 determine the tangent line.
The equation of the tangent line is y — 3= 2(x — 1), and this section explains why.

y=3.1
curve
y=xtox243 y=2v+l to (4, 9)
ZOOM
fla) =3+ BOX
tangent
y=2x+1
y=29 + X
r=09 a=1 x=1.1

Fig. 2.5 The tangent line has the same slope 2 as the curve (especially after zoom).

THE EQUATION OF A LINE

A straight line is determined by two conditions. We know the line if we know two
of its points. (We still have to write down the equation.) Also, if we know one point
and the slope, the line is set. That is the situation for the tangent line, which has a
known slope at a known point:

1. The equation of a line has the form y=mx+b
2. The number m is the slope of the line, because dy/dx =m
3. The number b adjusts the line to go through the required point.

I will take those one at a time—first y = mx + b, then m, then b.

1. The graph of y = mx + b is not curved. How do we know? For the specific example
y = 2x + 1, take two points whose coordinates x, y satisfy the equation:

x=0,y=1 and x=4,y=9 bothsatisfy y=2x+1.
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Those points (0, 1) and (4, 9) lie on the graph. The point halfway between has x =2
and y=5. That point also satisfies y = 2x + 1. The halfway point is on the graph. If
we subdivide again, the midpoint between (0, 1) and (2, 5) is (1, 3). This also has
y=2x+ 1. The graph contains all halfway points and must be straight.

2. What is the correct slope m for the tangent line? In our example it is m =f"(a)= 2.
The curve and its tangent line have the same slope at the crucial point: dy/dx = 2.
Allow me to say in another way why the line y = mx + b has slope m. At x =0 its
height is y=b. At x =1 its height is y = m + b. The graph has gone one unit across
(0to 1) and m units up (b to m + b). The whole idea is

distance up

slope= —————
P distance across

_m 1
Each unit across means m units up, to 2m+b or 3m+ b. A straight line keeps a
constant slope, whereas the slope of y = x* — x?> + 3 equals 2 only at x = 1.

3. Finally we decide on b. The tangent line y = 2x + b must go through x=1, y = 3.
Therefore b = 1. With letters instead of numbers, y = mx + b leads to f(a)= ma+ b.
So we know b:

2E The equation of the tangent line has b = f(a) — ma:
y=mx+f(a)—ma or y—f(a)=m(x — a). 2)

That last form is the best. You see immediately what happens at x = a. The factor
x — a is zero. Therefore y = f(a) as required. This is the point-slope form of the equa-
tion, and we use it constantly:

)= 3 distance
y=3=2x—1 or Y= P

x—1 distance across

= slope 2.

EXAMPLE 2 The curve y=x>—2 goes through y=6 when x=2. At that point
dy/dx = 3x* = 12. The point-slope equation of the tangent line uses 2 and 6 and 12:

y—6=12(x—2), whichisalso y=12x—18.

There is another important line. It is perpendicular to the tangent line and perpen-
dicular to the curve. This is the normal line in Figure 2.6. Its new feature is its slope.
When the tangent line has slope m, the normal line has slope —1/m. (Rule: Slopes of

\ tangent line:
y=f) & .
_dy distance
slope m = ar
’ track
_ . . vr + ..
Yo =f(a) -._ normal line: 2 7y |waiting + catch up

car .. T=8,V=12

slope — L e
m

,-*" your speed is V

+ . —> time
/ Xg=a 0,0) a 4 T

- . . 1 .
Fig. 2.6 Tangent line y — yo = m(x — xo). Normal line y — y, = — — (x — x,). Leaving a roller-
coaster and catching up to a car. "

59



60

2 Derivatives

perpendicular lines multiply to give —1.) Example 2 has m = 12, so the normal line
has slope —1/12:

tangent line: y — 6= 12(x — 2) normal line: y — 6 = — 5(x — 2).

Light rays travel in the normal direction. So do brush fires—they move perpendicular
to the fire line. Use the point-slope form! The tangent is y = 12x — 18, the normal is
not y=—fx—18.

EXAMPLE 3 You are on a roller-coaster whose track follows y = x? + 4. You see a
friend at (0, 0) and want to get there quickly. Where do you step off?

Solution  Your path will be the tangent line (at high speed). The problem is to choose
X = a so the tangent line passes through x =0, y = 0. When you step off at x=aq,

the height is y = a? + 4 and the slope is 2a
the equation of the tangent line is y — (a* + 4) = 2a(x — a)
this line goes through (0, 0) if —(a®>+4)= —2a? or a= + 2.

The same problem is solved by spacecraft controllers and baseball pitchers. Releasing
a ball at the right time to hit a target 60 feet away is an amazing display of calculus.
Quarterbacks with a moving target should read Chapter 4 on related rates.

Here is a better example than a roller-coaster. Stopping at a red light wastes gas.
It is smarter to slow down early, and then accelerate. When a car is waiting in front
of you, the timing needs calculus:

EXAMPLE4 How much must you slow down when a red light is 72 meters away?
In 4 seconds it will be green. The waiting car will accelerate at 3 meters/sec’. You
cannot pass the car.

Strategy Slow down immediately to the speed V at which you will just catch that
car. (If you wait and brake later, your speed will have to go below V.) At the catch-
up time T, the cars have the same speed and same distance. Two conditions, so the
distance functions in Figure 2.6d are tangent.

Solution At time T, the other car’s speed is 3(T — 4). That shows the delay of 4
seconds. Speeds are equal when 3(T —4) =V or T=3V + 4. Now require equal dis-
tances. Your distance is V times T. The other car’s distance is 72 + {at*:

72+4-3(T—4>=VT becomes 72+3-3V2=V(EFV+4)

The solution is V' = 12 meters/second. This is 43 km/hr or 27 miles per hour.
Without the other car, you only slow down to V= 72/4 = 18 meters/second. As
the light turns green, you go through at 65 km/hr or 40 miles per hour. Try it.

THE SECANT LINE CONNECTING TWO POINTS ON A CURVE

Instead of the tangent line through one point, consider the secant line through two
points. For the tangent line the points came together. Now spread them apart. The
point-slope form of a linear equation is replaced by the two-point form.

The equation of the curve is still y = f(x). The first point remains at x = a, y = f(a).
The other point is at x = ¢, y = f(c). The secant line goes between them, and we want
its equation. This time we don’t start with the slope—but m is easy to find.
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EXAMPLE5 The curve y = x> —2 goes through x =2, y=6. It also goes through
x =3, y=25. The slope between those points is

_ change in y_25-6
" changein x 3-2

=19.

The point-slope form (at the first point) is y — 6 = 19(x — 2). This line automatically
goes through the second point (3, 25). Check: 25— 6 equals 19(3 —2). The secant
has the right slope 19 to reach the second point. It is the average slope Ay/Ax.

A look ahead The second point is going to approach the first point. The secant
slope Ay/Ax will approach the tangent slope dy/dx. We discover the derivative (in
the limit). That is the main point now—but not forever.

Soon you will be fast at derivatives. The exact dy/dx will be much easier than
Ay/Ax. The situation is turned around as soon as you know that x° has slope
9x® Near x=1, the distance up is about 9 times the distance across. To find
Ay = 1.001° — 1°, just multiply Ax = .001 by 9. The quick approximation is .009, the
calculator gives Ay = .009036. It is easier to follow the tangent line than the curve.

Come back to the secant line, and change numbers to letters. What line connects
x=a, y=f(a) to x=c, y=f(c)? A mathematician puts formulas ahead of numbers,
and reasoning ahead of formulas, and ideas ahead of reasoning:

distanceup _ f(c) —f(a)
distance across  c—a
(2) The height is y=f(a) at x=a
(3) The height is y=f(c) at x=c (automatic with correct slope).

(1) The slope is m=

2F The two-éoim form uses the slope between the points:

(f © f(a)) G—a). )

 secant lne:  y—f(@)=

At x = a the right side is zero. So y =f(a) on the left side. At x = c the right side has
two factors ¢ — a. They cancel to leave y = f(c). With equation (2) for the tangent line
and equation (3) for the secant line, we are ready for the moment of truth.

THE SECANT LINE APPROACHES THE TANGENT LINE

What comes now is pretty basic. It matches what we did with velocities:

A distance _ f(t + At) — f(¢)
A time At )

average velocity =

The limit is df /dt. We now do exactly the same thing with slopes. The secant line
turns into the tangent line as c approaches a:

Af _fl—fla)
Ax c—a

df Af

slope of tangent line: i limit of Ax’

slope of secant line:
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There stands the fundamental idea of differential calculus! You have to imagine more
secant lines than I can draw in Figure 2.7, as ¢ comes close to a. Everybody recognizes
¢ —a as Ax. Do you recognize f(c)— f(a) as f(x + Ax) —f(x)? It is Af, the change
in height. All lines go through x = a, y =f(a). Their limit is the tangent line.

Ax secant

1)
£©) ::zz: secant y—f(a)= f() f(a) ————(x—a)
flo

f@ tangent tangent y—f(a)=f"(a)(x — a)

a c¢ccc¢
Fig. 2.7 Secants approach tangent as their
slopes Af/Ax approach df/dx.

Intuitively, the limit is pretty clear. The two points come together, and the tangent
line touches the curve at one point. (It could touch again at faraway points.) Mathe-
matically this limit can be tricky—it takes us from algebra to calculus. Algebra stays
away from 0/0, but calculus gets as close as it can.

The new limit for df /dx looks different, but it is the same as before:

f=tim 1O=1@ “

EXAMPLE 6 Find the secant lines and tangent line for y =f(x)=sin x at x=0.
The starting point is x = 0, y = sin 0. This is the origin (0, 0). The ratio of distance up
to distance across is (sin c)/c:

. sin ¢ ,
secant equation y = ——Xx tangent equation y = 1x.
4

As ¢ approaches zero, the secant line becomes the tangent line. The limit of (sin c)/c
is not 0/0, which is meaningless, but 1, which is dy/dx.

EXAMPLE 7 The gold you own will be worth \/; million dollars in ¢t years. When
does the rate of increase drop to 10% of the current value, so you should sell the
gold and buy a bond? At t = 25, how far does that put you ahead of \/Z =5?

Solution The rate of increase is the derivative of /2, which is 1 /2./t. That is 10%
of the current value \/E when 1 /2\/_ \/E/ 10. Therefore 2t = 10 or t = 5. At that time
you sell the gold, leave the curve, and go onto the tangent line:

y~\/- ‘/—(t—S) becomes y— \/_ 2./5 at t=25.

With straight interest on the bond, not compounded, you have reached
y= 3\/5 = 6.7 million dollars. The gold is worth a measly five million.

2.3 EXERCISES

Read-through questions of the __¢ . The point-slope form of the tangent equation

A straight line is determined by

b . The slope of the tangent line equals the slope

and the

isy—fla)=

points, or one point

The tangent line to y= x>+ x at x =1 has slope

-]

CIts
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equation is _ 1
x axis at __h

and the
. The normal line at this point (1, 2) has

. It crosses the y axis at _ 9

slope __ I . Its equation is y—2=_1J . The secant line
from (1,2) to (2,__k ) has slope __! . Its equation is
y—2=_m

The point (c, f(c)) is on the line y —f(a) =m(x — a) pro-
vided m=__Nn__. As c approaches a, the slope m approaches
© . The secant line approaches the __ P line.

1 (a) Find the slope of y =12/x.
(b) Find the equation of the tangent line at (2, 6).
(c) Find the equation of the normal line at (2, 6).
(d) Find the equation of the secant line to (4, 3).

2 For y=x? + x find equations for
(a) the tangent line and normal line at (1, 2);
(b) the secant line to x =1+ h, y=(1 +h?*+(1 +h).

3 A line goes through (1, —1) and (4, 8). Write its equation
in point-slope form. Then write it as y = mx + b.

4 The tangent line to y=x3>46x at the origin is
y= . Does it cross the curve again?

5 The tangent line to y=x®—3x?+x at the origin is
y= . It is also the secant line to the point

6 Find the tangent line to x = y? at x =4, y=2.

7 For y=x? the secant line from (g, a?) to (c, ¢?) has the
equation . Do the division by ¢ —a to find the tan-
gent line as ¢ approaches a.

8 Construct a function that has the same slope at x =1 and
x =2. Then find two points where y = x* — 2x? has the same
tangent line (draw the graph).

9 Find a curve that is tangent to y =2x — 3 at x = 5. Find
the normal line to that curve at (5, 7).

10 For y = 1/x the secant line from (a, 1/a) to (c, 1/c) has the
equation . Simplify its slope and find the limit as ¢
approaches a.

11 What are the equations of the tangent line and normal
line to y =sin x at x = n/2?

12 If ¢ and a both approach an in-between value x = b, then
the secant slope (f(c) — f{(a))/(c — a) approaches

13 At x = a on the graph of y = 1/x, compute
(a) the equation of the tangent line
(b) the points where that line crosses the axes.

The triangle between the tangent line and the axes always has
area

14 Suppose g(x) =f(x) + 7. The tangent lines to f and g at
x =4 are . True or false: The distance between those
lines is 7.

15 Choose ¢ so that y =4x is tangent to y = x? + ¢. Match
heights as well as slopes.

16 Choose c so that y = 5x — 7 is tangent to y = x* + cx.

17 For y = x3 + 4x? — 3x + 1, find all points where the tan-
gent is horizontal.

18 y =4x can’t be tangent to y = cx2. Try to match heights
and slopes, or draw the curves.

19 Determine ¢ so that the straight line joining (0, 3) and
(5, —2) is tangent to the curve y =c¢/(x + 1).

20 Choose b, ¢, d so that the two parabolas y = x*>+ bx + ¢
and y = dx — x? are tangent to each otherat x =1,y = 0.
21 The graph of f(x) = x® goes through (1, 1).

(a) Another pointis x=c=14+h, y=f(c)=

(b) The change in f is Af=

(c) The slope of the secant is m =

(d) As h goes to zero, m approaches

22 Construct a function y =f(x) whose tangent line at x = 1
is the same as the secant that meets the curve again at x = 3.

23 Draw two curves bending away from each other. Mark
the points P and Q where the curves are closest. At those
points, the tangent lines are and the normal lines
are

*24 1f the parabolas y = x> + 1 and y = x — x? come closest at
(a, a*> + 1) and (c, ¢ — ¢?), set up two equations for a and c.

25 A light ray comes down the line x = a. It hits the parabolic
reflector y = x? at P = (a, a®).
(a) Find the tangent line at P. Locate the point Q where
that line crosses the y axis.
(b) Check that P and Q are the same distance from the
focus at F = (0, 1).
(c) Show from (b) that the figure has equal angles.

(d) What law of physics makes every ray reflect off the
parabola to the focus at F?

vertical ray

I
13

=

[

y

focus| 75

i

26 In a bad reflector y=2/x, a ray down one special line
x = a is reflected horizontally. What is a?
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27 For the parabola 4py = x2, where is the slope equal to 1?
At that point a vertical ray will reflect horizontally. So the
focus is at (0, ).

28 Why are these statements wrong? Make them right.
(a) If y=2x is the tangent line at (1, 2) then y= —1x is
the normal line.
(b) As c approaches a, the secant slope (f(c) — f(a))/(c — a)
approaches (f(a) —f(a))/(a — a).
(c) The line through (2, 3) with slope 41is y — 2 = 4(x — 3).

29 A ball goes around a circle: x =cos t, y =sin t. At ¢t = 3n/4
the ball flies off on the tangent line. Find the equation of that
line and the point where the ball hits the ground (y = 0).

30 If the tangent line to y=f(x) at x = a is the same as the
tangent line to y = g(x) at x = b, find two equations that must
be satisfied by a and b.

31 Draw a circle of radius 1 resting in the parabola y = x2.
At the touching point (a, a?), the equation of the normal line
is . That line has x =0 when y = . The dis-
tance to (g, a®) equals the radius 1 when a = . This
locates the touching point.

32 Follow Problem 31 for the flatter parabola y =%x? and
explain where the circle rests.

33 You are applying for a $1000 scholarship and your time
is worth $10 a hour. If the chance of success is 1 — (1/x) from
x hours of writing, when should you stop?

34 Suppose |f(c)—f(a)| < |c — a| for every pair of points a
and c. Prove that |df /dx| < 1.

35 From which point x = a does the tangent line to y = 1/x?
hit the x axis at x =3?

2.4 The Derivative of the Sine and Cosine

36 If u(x)/v(x) =7 find u'(x)/v'(x). Also find (u(x)/v(x)).

37 Find f(c)=1.001'° in two ways—by calculator and by
f(c)—f(@)~f"(@)(c — a). Choose a=1 and f(x)=x'°.

38 At a distance Ax from x = 1, how far is the curve y=1/x
above its tangent line?

39 At a distance Ax from x = 2, how far is the curve y = x?3
above its tangent line?

40 Based on Problem 38 or 39, the distance between curve
and tangent line grows like what power (Ax)??

41 The tangent line to f(x)=x2—1 at x,=2 crosses the
x axis at x, = . The tangent line at x, crosses the
Xx axis at x,= . Draw the curve and the two
lines, which are the beginning of Newton’s method to solve

f(x)=0.

42 (Puzzle) The equation y = mx + b requires two numbers,
the point-slope form y — f(a) =f"(a)(x — a) requires three, and
the two-point form requires four: a, f(a), c, f(c). How can
this be?

43 Find the time T at the tangent point in Example 4, when
you catch the car in front.

44 1If the waiting car only accelerates at 2 meters/sec?, what
speed V must you slow down to?

45 A thief 40 meters away runs toward you at 8 meters
per second. What is the smallest acceleration so that v = at
keeps you in front?

46 With 8 meters to go in a relay race, you slow down badly
(f=—8+ 6t —4t?). How fast should the next runner start
(choose v in f=vt) so you can just pass the baton?

This section does two things. One is to compute the derivatives of sin x and cos x.
The other is to explain why these functions are so important. They describe oscillation,
which will be expressed in words and equations. You will see a “differential equation.”
It involves the derivative of an unknown function y(x).

The differential equation will say that the second derivative—the derivative of the
derivative—is equal and opposite to y. In symbols this is y” = — y. Distance in one
direction leads to acceleration in the other direction. That makes y and y' and y” all
oscillate. The solutions to y” = — y are sin x and cos x and all their combinations.

We begin with the slope. The derivative of y = sin x is y’ = cos x. There is no reason
for that to be a mystery, but I still find it beautiful. Chapter 1 followed a ball around
a circle; the shadow went up and down. Its height was sin ¢ and its velocity was cos t.
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2.4 The Derivative of the Sine and Cosine

We now find that derivative by the standard method of limits, when y(x)=sin x:

dy .. . Ay . sin(x+h)—sinx
dx limit of Ax }:l—r»% h ’
The sine is harder to work with than x? or x3. Where we had (x + h)? or (x + h)?, we

now have sin(x + k). This calls for one of the basic “‘addition formulas” from trigo-
nometry, reviewed in Section 1.5:

ity

sin(x + h)=sin x cos h+ cos x sin h 2
cos (x + h)=cos x cos h — sin x sin h. (3)

Equation (2) puts Ay =sin(x + h) — sin x in a new form:

. o _1 i h
éX=s1nxcos h+cos x sin h smx___sin N cos h + cos x sin @
Ax h h h

The ratio splits into two simpler pieces on the right. Algebra and trigonometry got
us this far, and now comes the calculus problem. What kappens as h — 0? It is no
longer easy to divide by h. (I will not even mention the unspeakable crime of writing
(sin h)/h = sin.) There are two critically important limits—the first is zero and the
second is one:

. cosh—1 . sinh

jy S0 wd fim SR ®
The careful reader will object that limits have not been defined! You may further
object to computing these limits separately, before combining them into equation (4).
Nevertheless—following the principle of ideas now, rigor later—I would like to pro-
ceed. It is entirely true that the limit of (4) comes from the two limits in (5):

d
;é = (sin x)(first limit) + (cos x)(second limit) = 0 + cos x. (6)

The secant slope Ay/Ax has approached the tangent slope dy/dx.

26 Amydcﬁéatiw of y=sinx is :dy/dx= cos x.

We cannot pass over the crucial step—the two limits in (5). They contain the real
ideas. Both ratios become 0/0 if we just substitute h = 0. Remember that the cosine of
a zero angle is 1, and the sine of a zero angle is 0. Figure 2.8a shows a small angle h
(as near to zero as we could reasonably draw). The edge of length sin 4 is close to
zero, and the edge of length cos A is near 1. Figure 2.8b shows how the ratio of sin h
to h (both headed for zero) gives the slope of the sine curve at the start.

When two functions approach zero, their ratio might do anything. We might have

h? h Jh

-h——>0 or ﬁ—+1 or T-—»oo.

No clue comes from 0/0. What matters is whether the top or bottom goes to zero
more quickly. Roughly speaking, we want to show that (cos h — 1)/h is like h%*/h and
(sin h)/h is like h/h.

Time out The graph of sin x is in Figure 2.9 (in black). The graph of sin(x + Ax)
sits just beside it (in red). The height difference is Af when the shift distance is Ax.
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Fig. 2.9 sin(x + h) with h=10° = x/18 radians. Af/Ax is close to cos x.

Now divide by that small number Ax (or h). The second figure shows Af/Ax. It is
close to cos x. (Look how it starts—it is not quite cos x.) Mathematics will prove
that the limit is cos x exactly, when Ax — 0. Curiously, the reasoning concentrates
on only one point (x =0). The slope at that point is cos 0 = 1.

We now prove this: sin Ax divided by Ax goes to 1. The sine curve starts with
slope 1. By the addition formula for sin (x + h), this answer at one point will lead to
the slope cos x at all points.

Question Why does the graph of f(x + Ax) shift left from f(x) when Ax > 0?
Answer When x =0, the shifted graph is already showing f(Ax). In Figure 2.9a, the
red graph is shifted left from the black graph. The red graph shows sin 2 when the
black graph shows sin 0.

THE LIMIT OF (sin h)/h IS 4

There are several ways to find this limit. The direct approach is to let a computer
draw a graph. Figure 2.10a is very convincing. The function (sin h)/h approaches 1 at
the key point h= 0. So does (tan h)/h. In practice, the only danger is that you might
get a message like “undefined function” and no graph. (The machine may refuse to
divide by zero at h = 0. Probably you can get around that.) Because of the importance
of this limit, I want to give a mathematical proof that it equals 1.

tanh/ p

sin A

-n/2 h=0 n/2
Fig. 2.10 (sin h)/h squeezed between cos x and 1; (tan h)/h decreases to 1.

Figure 2.10b indicates, but still only graphically, that sin & stays below h. (The first
graph shows that too; (sin h)/h is below 1.) We also see that tan h stays above h.
Remember that the tangent is the ratio of sine to cosine. Dividing by the cosine is
enough to push the tangent above h. The crucial inequalities (to be proved when h
is small and positive) are

sin h<h and tan h> h. )
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Since tan k= (sin h)/(cos h), those are the same as

sin b <1 and sin b > cos h. 8)

h h
What happens as k goes to zero? The ratio (sin h)/h is squeezed between cos h and 1.
But cos h is approaching 1! The squeeze as h — 0 leaves only one possibility for
(sin h)/h, which is caught in between: The ratio (sin h)/h approaches 1.

Figure 2.10 shows that “squeeze play.” If two functions approach the same limit, so
does any function caught in between. This is proved at the end of Section 2.6.

For negative values of h, which are absolutely allowed, the result is the same. To
the left of zero, h reverses sign and sin & reverses sign. The ratio (sin h)/h is unchanged.
(The sine is an odd function: sin(— h) = — sin h.) The ratio is an even function, sym-
metric around zero and approaching 1 from both sides.

The proof depends on sin h < h < tan h, which is displayed by the graph but not
explained. We go back to right triangles.

area%h < area ;—tan h

Fig. 2.41 Line shorter than arc: 2 sin h < 2h. Areas give h <tan h.

Figure 2.11a shows why sin h < h. The straight line PQ has length 2 sin h. The
circular arc must be longer, because the shortest distance between two points is a
straight line.t The arc PQ has length 2h. (Important: When the radius is 1, the arc
length equals the angle. The full circumference is 2z and the full angle is also 2x.)
The straight distance 2 sin h is less than the circular distance 2h, so sin h < h.

Figure 2.11b shows why h < tan h. This time we look at areas. The triangular area
is 4(base)(height) = (1)(tan h). Inside that triangle is the shaded sector of the circle.
Its area is h/2% times the area of the whole circle (because the angle is that fraction
of the whole angle). The circle has area nr? = =, so multiplication by h/2rn gives 3h
for the area of the sector. Comparing with the triangle around it, 4 tan h > h.

The inequalities sin h < h <tan h are now proved. The squeeze in equation (8)
produces (sin h)/h — 1. Q.E.D. Problem 13 shows how to prove sin h < h from areas.

Note All angles x and h are being measured in radians. In degrees, cos x is not the
derivative of sin x. A degree is much less than a radian, and dy/dx is reduced by the
factor 27/360.

THE LIMIT OF (cos h — 1)/h IS 0

This second limit is different. We will show that 1 — cos h shrinks to zero more quickly
than h. Cosines are connected to sines by (sin h)? + (cos h)?> = 1. We start from the

TIf we try to prove that, we will be here all night. Accept it as true.
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¥ =sin v is increasing ¥ =cos v is decreasing

V' = cos .\ is positive
_—

2 Derivatives

known fact sin h < h and work it into a form involving cosines:

(1 —cos h)(1 + cos h)=1—(cos h)*> = (sin h)*> < h%. )
Note that everything is positive. Divide through by h and also by 1+ cos h:
1 —cos h h
0< < . 10
h 1+ cos h 10

Our ratio is caught in the middle. The right side goes to zero because h — 0. This is
another “squeeze”’—there is no escape. Our ratio goes to zero.

For cos h — 1 or for negative h, the signs change but minus zero is still zero. This
confirms equation (6). The slope of sin x is cos x.

Remark Equation (10) also shows that 1 — cos h is approximately $h2. The 2 comes
from 1+ cos h. This is a basic purpose of calculus—to find simple approximations
like 1h%. A “‘tangent parabola” 1 —1h? is close to the top of the cosine curve.

THE DERIVATIVE OF THE COSINE

This will be easy. The quick way to differentiate cos x is to shift the sine curve by
n/2. That yields the cosine curve (solid line in Figure 2.12b). The derivative also shifts
by n/2 (dotted line). The derivative of cos x is —sin x.

Notice how the dotted line (the slope) goes below zero when the solid line turns
downward. The slope equals zero when the solid line is level. Increasing functions
have positive slopes. Decreasing functions have negative slopes. That is important, and
we return to it.

There is more information in dy/dx than “function rising” or ‘“‘function falling.”
The slope tells how quickly the function goes up or down. It gives the rate of change.
The slope of y = cos x can be computed in the normal way, as the limit of Ay/Ax:

Ay cos(x+ h)— cos x (cosh—l) . <sinh)
— = =cos x [ ———— | —sin x

Ax h h h

dy . .

—= =(cos x)(0) — (sin x)(1)= — sin x. (11)
dx

The first line came from formula (3) for cos(x + k). The second line took limits,
reaching 0 and 1 as before. This confirms the graphical proof that the slope of cos x
is —sin x.

Vv =sin f bends down
A N

’

N M 4
V' =—sin.xis negative V'=cos t decreases
~ . ~ .

_____

¥’ =—sintis negative

Fig. 2.12 y(x) increases where }' is positive. y(x) bends up where 3" is positive.

THE SECOND DERIVATIVES OF THE SINE AND COSINE

We now introduce the derivative of the derivative. That is the second derivative of the
original function. It tells how fast the slope is changing, not how fast y itself is
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changing. The second derivative is the “rate of change of the velocity.” A straight line
has constant slope (constant velocity), so its second derivative is zero:

f@)=5t has df/dt=5 and d*f/dt*=0.
The parabola y = x? has slope 2x (linear) which has slope 2 (constant). Similarly
f(t)=*%at* has df/dt=at and d*fjdt*=a.

There stands the notation d?f/dt? (or d?y/dx?) for the second derivative. A short
form is f” or y”. (This is pronounced f double prime or y double prime). Example:
The second derivative of y = x is y” = 6x.

In the distance-velocity problem, f” is acceleration. It tells how fast v is changing,
while v tells how fast f is changing. Where df/dt was distance/time, the second
derivative is distance/(time)?. The acceleration due to gravity is about 32 ft/sec? or
9.8 m/sec?, which means that v increases by 32 ft/sec in one second. It does not mean
that the distance increases by 32 feet!

The graph of y = sin ¢ increases at the start. Its derivative cos t is positive. However
the second derivative is —sin t. The curve is bending down while going up. The arch
is “concave down™ because y” = — sin ¢ is negative.

At t = 7 the curve reaches zero and goes negative. The second derivative becomes
positive. Now the curve bends upward. The lower arch is “concave up.”

y” > 0 means that y' increases so y bends upward (concave up)

y” <0 means that y' decreases so y bends down (concave down).

Chapter 3 studies these things properly—here we get an advance look for sin t.

The remarkable fact about the sine and cosine is that y” = —y. That is unusual
and special: acceleration = — distance. The greater the distance, the greater the force
pulling back:

y=sint has dy/dt=+cost and d?y/dt*=—sint=—y.
y=cost has dy/dt=—sint and d?y/dt*=—cost=—y.

Question Does d?y/dt? < 0 mean that the distance y(t) is decreasing?
Answer No. Absolutely not! It means that dy/dt is decreasing, not necessarily y.
At the start of the sine curve, y is still increasing but y” < 0.

Sines and cosines give simple harmonic motion—up and down, forward and back,
out and in, tension and compression. Stretch a spring, and the restoring force pulls
it back. Push a swing up, and gravity brings it down. These motions are controlled
by a differential equation:

2

= (12)

IS W

All solutions are combinations of the sine and cosine: y= Asint+ Bcost.

This is not a course on differential equations. But you have to see the purpose of
calculus. It models events by equations. It models oscillation by equation (12). Your
heart fills and empties. Balls bounce. Current alternates. The economy goes up and
down:

high prices — high production — low prices — ---

We can’t live without oscillations (or differential equations).
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2.4 EXERCISES

Read-through questions

The derivative of y=sin x is y = __a . The second deriva-
tive (the __ b of the derivative) is y"=__¢ . The fourth
derivative is y”'=_d Thus y=sinx satisfies the
differential equations y"=__e and y"=__t

. So does
y=cos x, whose second derivativeis _ g .

All these derivatives come from one basic limit: (sin h)/h
approaches __h . The sine of .01 radians is very close
to 1 . Soisthe _i of .01. The cosine of .01 is
not .99, because 1 —cos & is much __k _ than h. The ratio
(1 —cos h)/h? approaches _ | . Therefore cos h is close to

1—4h? and cos .01 ~ __m__, We can replace h by x.

The differential equation y" = —yleadsto _n . When y
is positive, y" is __o . Therefore y' is __p . Eventually y
goes below zero and y” becomes _q . Then yis _«
Examples of oscillation in real life are _ s and _

1 Which of these ratios approach 1 as h — 0?
sin® h © sin h
H? © sin 2h

2 (Calculator) Find (sin h)/h at h=0.5 and 0.1 and .0l.
Where does (sin h)/h go above .99?

3 Find the limits as h — 0 of

sin(—h)
h

@ — (b) @

sin h

sin 5h sin h
h

4 Where does tan h = 1.01h? Where does tan h = h?

sin®h sin 5h
p (b)

@ (©)

5 y=sinx has period 2z, which means that sinx=
. The limit of (sin(2x + h) —sin 21:)/h is 1 because
. This gives dy/dx at x =

6 Draw cos(x + Ax) next to cos x. Mark the height differ-
ence Ay. Then draw Ay/Ax as in Figure 2.9.

7 The key to trigonometry is cos?6=1—sin?f. Set
sin@x~0 to find cos?’0~1—02 The square root is
cos @~ 1—4602 Reason: Squaring gives cos?6 ~
and the correction term is very small near 0 =0.

8 (Calculator) Compare cos  with 1 —462 for

@ 0=01 (b) 8=05 (c) =30° (d) 0=3"

9 Trigonometry gives cos 0 = 1 — 2 sin?46. The approxima-
tion sin $6 ~ leads directly to cos 6 ~ 1 — 402

10 Find the limits as h — 0:

1—cosh 1—cos?h
(a) W (b) R
1 —cos?h 1—cos 2h
© “Gah @

11 Find by calculator or calculus:

. sin 3k 1 —cos 2h
(a) ;l.l—l»r(l) sin 2h (®) I llwo l—cosh’

12 Compute the slope at x = 0 directly from limits:
(@) y=tan x (b) y=sin(~x)

13 The unmarked points in Figure 2.11 are P and S. Find the
height PS and the area of triangle OPR. Prove by areas that
sinh<h.

14 The slopes of cos x and 1 —4x? are —sin x and
The slopes of sin x and are cos x and 1 —3$x%

15 Chapter 10 gives an infinite series for sin x:

x3 x5

X
1732.175433.2:1°

From the derivative find the series for cos x. Then take its
derivative to get back to —sin x.

sin x =

16 A centered difference for f(x)=sin x is
fx+h)—f(x—h) sin(x+h)—sin(x—h)
2h h 2h
Use the addition formula (2). Then let h - 0.

=17

17 Repeat Problem 16 to find the slope of cos x. Use formula
(3) to simplify cos(x + h) — cos(x — h).

18 Find the tangent line to y =sin x at
(@ x=0 (b) x==n (c) x=mn/4

19 Where does y = sin x + cos x have zero slope?

'20 Find the derivative of sin (x + 1) in two ways:

(a) Expand to sin x cos 1 + cos x sin 1. Compute dy/dx.
(b) Divide Ay =sin(x + 1 + Ax) —sin(x + 1) by Ax. Write
X instead of x + 1. Let Ax go to zero.

21 Show that (tan h)/h is squeezed between 1 and 1/cos h. As
h — 0 the limit is

22 For y =sin 2x, the ratio Ay/h is
sin 2(x + h) —sin 2x _ sin 2x(cos 2k~ 1) + cos 2x sin 2h
h B h )
Explain why the limit dy/dx is 2 cos 2x.

23 Draw the graph of y = sin $x. State its slope at x =0, /2,
7, and 2n. Does 4 sin x have the same slopes?

3 cos x. Its maximum
. The slope at that point

24 Draw the graph of y=sinx +
valueisy = atx =
is

25 By combining sin x and cos x, find a combination that
starts at x =0 from y = 2 with slope 1. This combination also
solves y" =
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26 True or false, with reason: 29 If his measured in degrees, find lim, .o (sin )/h. You could

.. . . set your calculator in degree mode.
(@) The derivative of sin? x is cos? x y &

(b) The derivative of cos (—x) is sin x 30 Write down a ratio that approaches dy/dx at x ==. For

(c) A positive function has a negative second derivative. y=sin x and Ax =.01 compute that ratio.

(d) If y' is increasing then y” is positive. 31 By the square rule, the derivative of (u(x))? is 2u du/dx.
Take the derivative of each term in sin® x + cos? x = 1.

27 Find solutions to dy/dx =sin 3x and dy/dx = cos 3x. 32 Give an example of oscillation that does not come from

28 If y=sin 5x then y =5 cos 5x and y” = — 25 sin 5x. So physics. Is it simple harmonic motion (one frequency only)?

this function satisfies the differential equation y” = . 33 Explain the second derivative in your own words.

I 2.5 The Product and Quotient and Power Rules TN

What are the derivatives of x + sin x and x sin x and 1/sin x and x/sin x and sin"x?
Those are made up from the familiar pieces x and sin x, but we need new rules.
Fortunately they are rules that apply to every function, so they can be established
once and for all. If we know the separate derivatives of two functions u and v, then
the derivatives of 4 + v and uv and 1/v and u/v and u" are immediately available.

This is a straightforward section, with those five rules to learn. It is also an impor-
tant section, containing most of the working tools of differential calculus. But I am
afraid that five rules and thirteen examples (which we need—the eyes glaze over with
formulas alone) make a long list. At least the easiest rule comes first. When we add
Junctions, we add their derivatives.

Sum Rule
du dv

The derivative of the sum u(x) + v(x) is 4 u+tv)=—+—. 1)
dx dx dx

EXAMPLE 1 The derivative of x + sin x is 1 + cos x. That is tremendously simple,
but it is fundamental. The interpretation for distances may be more confusing (and
more interesting) than the rule itself:

Suppose a train moves with velocity 1. The distance at time ¢ is t. On the train
a professor paces back and forth (in simple harmonic motion). His distance from
his seat is sin t. Then the total distance from his starting point is ¢ + sin ¢, and
his velocity (train speed plus walking speed) is 1 + cos ¢.

If you add distances, you add velocities. Actually that example is ridiculous, because
the professor’s maximum speed equals the train speed (= 1). He is running like mad,
not pacing. Occasionally he is standing still with respect to the ground.

The sum rule is a special case of a bigger rule called “linearity.” It applies when
we add or subtract functions and multiply them by constants—as in 3x — 4 sin x. By
linearity the derivative is 3 — 4 cos x. The rule works for all functions u(x) and v(x).
A linear combination is y(x)= au(x) + bv(x), where a and b are any real numbers.
Then Ay/Ax is

au(x + Ax) + bv(x + Ax) — au(x) — bv(x) _  u(x + Ax)— u(x) b v(x + Ax) — v(x)
Ax -4 Ax Ax )
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The limit on the left is dy/dx. The limit on the right is a du/dx + b dv/dx. We are
allowed to take limits separately and add. The result is what we hope for:

Rule of Linearity

The derivative of au(x) + bu(x) i s (au +bv)=a gﬁ +b Z_U @)
X

The product rule comes next. It can’t be so simple—products are not linear. The
sum rule is what you would have done anyway, but products give something new.
The derivative of u times v is not du/dx times dv/dx. Example: The derivative of x>
is 5x*. Don’t multiply the derivatives of x> and x2. (3x2 times 2x is not 5x*)
For a product of two functions, the derivative has two terms.

Product Rule (the key to this section)

The derivative of u(x)v(x) is _‘!_ (uv) =y s_’{ +u % 3)

EXAMPLE2 4= x3 times v = x? is uv = x>. The product rule leads to 5x*:

dv du
E RN e QU | + x2(3x2) = 2x% + 3x% = 5x*.
x T x T x°(2x) + x*(3x%) = 2x* + 3x* = 5x

EXAMPLE 3 In the slope of x sin x, I don’t write dx/dx = 1 but it’s there:

d, . .
E—(xs1nx)=xcosx+smx.
X

EXAMPLE 4 If u =sin x and v = sin x then up = sin? x. We get two equal terms:

sin x 4 (sin x) + sin x 4 (sin x) = 2 sin x cos X.
dx dx

This confirms the “square rule” 2u du/dx, when u is the same as v. Similarly the slope
of cos? x is —2 cos x sin x (minus sign from the slope of the cosine).

Question Those answers for sin? x and cos? x have opposite signs, so the derivative
of sin? x + cos? x is zero (sum rule). How do you see that more quickly?

EXAMPLE 5 The derivative of uvw is uow’ + uv'w + 'vw—one derivative at a time.
The derivative of xxx is xx + xx + xx.

u(x + h)

product

vx) u(x)v(x)

sumu+U Au+Av

u(x) Au »
Fig. 2.43 Change in length = Au + Av. Change in area = u Av + v Au + Au Av.
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After those examples we prove the product rule. Figure 2.13 explains it best. The
area of the big rectangle is uv. The important changes in area are the two strips u Av
and v Au. The corner area Au Av is much smaller. When we divide by Ax, the strips
give u Av/Ax and v Au/Ax. The corner gives Au Av/Ax, which approaches zero.

Notice how the sum rule is in one dimension and the product rule is in two
dimensions. The rule for uvw would be in three dimensions.

The extra area comes from the whole top strip plus the side strip. By algebra,

u(x + h)o(x + h) — u(x)v(x) = u(x + h)[v(x + h) = v(x)] + v(x)[ulx+ k) — u(x)]. 4)

This increase is u(x + h)Av + v(x)Au—top plus side. Now divide by h (or Ax) and let
h — 0. The left side of equation (4) becomes the derivative of u(x)v(x). The right side
becomes u(x) times dv/dx—we can multiply the two limits—plus v(x) times du/dx.
That proves the product rule—definitely useful.

We could go immediately to the quotient rule for u(x)/v(x). But start with u= 1.
The derivative of 1/x is —1/x? (known). What is the derivative of 1/v(x)?

Reciprocal Rule
1 —
The derivative of —— s d—vz/d)f (5)
v(x) v

The proof starts with (v)(1/v) = 1. The derivative of 1 is 0. Apply the product rule:

d (1 1 dv d (1 —dv/dx
—(=}+-=—= that —(-|)= : 6
Y ix (b) v dx S0 that Ix <v> v? ©
It is worth checking the units—in the reciprocal rule and others. A test of dimen-
sions is automatic in science and engineering, and a good idea in mathematics. The

test ignores constants and plus or minus signs, but it prevents bad errors. If v is in
dollars and x is in hours, dv/dx is in dollars per hour. Then dimensions agree:

d (1) _(dollars) . —dvjdx _dollars/hour
dx hour v*  (dollars)?

~

From this test, the derivative of 1/v cannot be 1/(dv/dx). A similar test shows that
Einstein’s formula e = mc? is dimensionally possible. The theory of relativity might
be correct! Both sides have the dimension of (mass)(distance)?/(time)?, when mass
is converted to energy.t

EXAMPLE 6 The derivatives of x™!, x 2, x "are —1x72, —2x7 3, —nx""" L.

Those come from the reciprocal rule with v = x and x? and any x™:

d _,  _df1\_ nmx""'_ n1
a;(x )—a(;)— = nx .

The beautiful thing is that this answer —nx~""! fits into the same pattern as x".
Multiply by the exponent and reduce it by one.

For negative and positive exponents the derivative of x" is nx"~*. (7

.

tBut only Einstein knew that the constant is 1.
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Reci 1 1 1 _ A Au
. eaprocal ¥ A v v(v + Av) "
tient utAu u_vAu—ulv
Av v Quotient 3 Av o ww+A) A v

Fig. 2.14 Reciprocal rule from (—Av)/v?. Quotient rule from (v Au — u Av)/v>.

1 +sin x —COS X
re

EXAMPLE 7 The derivatives of and — 74 — .
cosx  sinx  cos*x sin® x

Those come directly from the reciprocal rule. In trigonometry, 1/cos x is the secant
of the angle x, and 1/sin x is the cosecant of x. Now we have their derivatives:

d sin x 1 sinx

—(ec x)=—5—= = sec x tan x. (8)
dx COS“X COS X COS X

d coS X 1 cosx

—(scx)=——5—=— = —— = — CSC X COt X. )]
dx sin® x sin x sin x

Those formulas are often seen in calculus. If you have a good memory they are worth
storing. Like most mathematicians, I have to check them every time before using
them (maybe once a year). It is really the rules that are basic, not the formulas.

The next rule applies to the quotient u(x)/v(x). That is u times 1/v. Combining the
product rule and reciprocal rule gives something new and important:
Quotient Rule
u(x) i 1du _ dvjdx _v du/dx — u dv/dx
v(x) vix U 12 v? ’
You must memorize that last formula. The v? is familiar. The rest is new, but not very
new. If v=1 the result is du/dx (of course). For u=1 we have the reciprocal

rule. Figure 2.14b shows the difference (u + Au)/(v + Av) — (u/v). The denominator
(v + Av) is responsible for v?.

The derivative of

EXAMPLE 8 (only practice) If u/v = x%/x3 (which is x2) the quotient rule gives 2x:
d (xs) _x(5x*) — x°(3x?) _ 5x7—3x7 _

— | = 2x.
dx \ x3 x© x5

EXAMPLE 9 (important) For u=sin x and v = cos x, the quotient is sin x/cos x =
tan x. The derivative of tan x is sec® x. Use the quotient rule and cos® x + sin?x = 1:

d (sin x cos x(cos x)— sin x(—sin x 1
dx (cos x) N = : ) - 5 = sec’ x. (11)

cos?x cos? x
Again to memorize: (tan x)' = sec? x. At x =0, this slope is 1. The graphs of sin x
and x and tan x all start with this slope (then they separate). At x=n/2 the sine
curve is flat (cos x = 0) and the tangent curve is vertical (sec? x = o).
The slope generally blows up faster than the function. We divide by cos x, once
for the tangent and twice for its slope. The slope of 1/x is —1/x2. The slope is more
sensitive than the function, because of the square in the denominator.

EXAMPLE 10

d <sinx)_xcos x —sin x

dx \ x x2
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That one I hesitate to touch at x = 0. Formally it becomes 0/0. In reality it is more
like 03/02, and the true derivative is zero. Figure 2.10 showed graphically that (sin x)/x
is flat at the center point. The function is even (symmetric across the y axis) so its
derivative can only be zero.

This section is full of rules, and I hope you will allow one more. It goes beyond x"
to (u(x))". A power of x changes to a power of u(x)—as in (sin x)° or (tan x)’ or
(x? + 1)%. The derivative contains nu"~* (copying nx" '), but there is an extra factor
du/dx. Watch that factor in 6(sin x)* cos x and 7(tan x)° sec? x and 8(x* + 1)7(2x):

Power Rule

n . n— du

The derivative of ey 12
e derivative o I:u(x)] is n[u(x)]‘ . (12)
For n=1 this reduces to du/dx = du/dx. For n=2 we get the square rule 2u du/dx.

Next comes u>. The best approach is to use mathematical induction, which goes from
each n to the next power n+ 1 by the product rule:

dix(u"“)= %(u"u)=u"% + u(nu"‘1 :—:) =n+ l)u"%.

That is exactly equation (12) for the power n + 1. We get all positive powers this way,
going up from n = 1—then the negative powers come from the reciprocal rule.

Figure 2.15 shows the power rule for n=1,2,3. The cube makes the point
best. The three thin slabs are u by u by Au. The change in volume is essentially
3u?Au. From multiplying out (u+ Au)®, the exact change in volume is
3u® Au + 3u(Au)? + (Au)>*—which also accounts for three narrow boxes and a midget
cube in the corner. This is the binomial formula in a picture.

A
T SR o1
PRl ot
PRI N -.‘;.-_.9/
- 1 . ]
P HE B 2 H
ulu — (Auy? B ] S
¢ Vot
) 1 13
v ' ¥ [}
] ) 1
A S :"‘,‘I‘“'
u2 uAu u u3 3 % (RIS :,"’__-
u
Au u Au u Au

Fig. 2.45 Length change = Au; area change ~ 2u Au; volume change ~ 3u® Au.

d . . .
EXAMPLE 11 Ix (sin x)" = n(sin x)" ! cos x. The extra factor cos x is du/dx.

Our last step finally escapes from a very undesirable restriction—that n must be
a whole number. We want to allow fractional powers n= p/q, and keep the same
formula. The derivative of x" is still nx"~*.

To deal with square roots I can write (,/x)? = x. Its derivative is 2/x(/x) =1.
Therefore (\/;)’ is 1/2\/;, which fits the formula when n=4. Now try n= p/q:

75

(Au)
1 cube

u(Au)?
3 bricks

u? Au
3 slabs
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Fractional powers Write u = x? as u? = x?. Take derivatives, assuming they exist:

d .
qui! d—: =px?~!  (power rule on both sides)

-1

% = 2 ),j—l (cancel x? with u?)

du n—1 n

L (replace p/q by n and u by x")

EXAMPLE 12 The slope of x'/3 is $x~2/3. The slope is infinite at x =0 and zero at
x=o0. But the curve in Figure 2.16 keeps climbing. It doesn’t stay below an
“asymptote.”

17 17 slope 4/3
slope 1/3
121 fy=x13
. zero y=x43
infinite slope slope
/ 1 N6} ,
1/8 1 118 1

Fig. 2.16 Infinite slope of x" versus zero slope: the difference between 0 <n<1 and n> 1.

EXAMPLE 13 The slope of x*? is $x'/3. The slope is zero at x =0 and infinite at
x = o0. The graph climbs faster than a line and slower than a parabola (% is between
1 and 2). Its slope follows the cube root curve (times %).

WE STOP NOW! I am sorry there were so many rules. A computer can memorize
them all, but it doesn’t know what they mean and you do. Together with the chain
rule that dominates Chapter 4, they achieve virtually all the derivatives ever computed
by mankind. We list them in one place for convenience.

Rule of Linearity {au+ bv) =au' + by
Product Rule (uv) = uv' + vu
Reciprocal Rule (1/vy = —v'Jv?
Quotient Rule (u/v) = (vu' — uv')/v?
Power Rule @Y =nm" o

The power rule applies when n is negative, or a fraction, or any real number. The
derivative of x™is nx™ !, according to Chapter 6. The derivative of (sin x)* is
And the derivatives of all six trigonometric functions are now established:

(sin x) = cos x (tan x) = sec®x (sec x)'= sec x tan x

(cos x) = —sin x (cot xy = —csc’x  (csc x) = — csc x cot x.
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2.5 EXERCISES

Read-through questions

The derivatives of sin x cos x and 1/cos x and sin x/cos x
and tan® x come fromthe __a__rule, _b__rule, ¢ rule,
and _d_ rule. The product of sinx times cosx has
(wy=uv'+_e =_ 1 . The derivative of 1/vis _g ,
so the slope of sec x is __h . The derivative of ufvis _ |
so the slope of tanx is _ 1 . The derivative of tan3x is

k . The slope of x"is __I _ and the slope of (u(x))" is

m . With n=—1 the derivative of (cosx)~!is _n
which agrees with the rule for sec x.

Even simpler is the rule of _o , which applies to
au(x) + bv(x). The derivative is __p__. The slope of 3 sin x +

4 cosx is __a . The derivative of (3 sin x +4cos x)? is
r__. The derivative of __s _is 4 sin® x cos x.
Find the derivatives of the functions in 1-26.
1 (e+x—1) 2 (22 + 1)(x2— 1)
1 + 1 4 _1_ + _1—
1+x 14sinx 14+x? 1—sinx
5@x—1)(x—2)(x—3) 6 (x—1)%(x—2)?
7 x? cos x + 2x sin x 8 x!/%(x +sin x)

x*+1 sinx

x3+1 cosx
217
x*—1 cosx

+ —
x+1 sin x

9 10

12 x%2 sin® x 4 (sin x)%/2

14 /x(/x+ D(/x+2)

16 (x —6)*° +sin'®x

11 x'2 sin® x + (sin x)!/2

13 x*cos x + x cos* x

15 1x? sin x — x cos x + sin x
17 sec?x —tan?x 18 csc2x —cot? x

4 4

19 + Sin X —COS X
=5 " 5—xPP

sin x + cos x
22 X COS X CSC X

24 [u(x)1*[v(x)]?

21 (sin x cos x)® + sin 2x
23 u(x)v(x)w(x)z(x)
1 1

26 x sin x +cos x
tan x cot x

27 A growing box has length ¢, width 1/(1 +¢), and height
cOs ¢.

(a) What is the rate of change of the volume?

(b) What is the rate of change of the surface area?

28 With two applications of the product rule show that the
derivative of uow is uvw’ + uv'w + w'vw. When a box with sides
u, v, w grows by Au, Av, Aw, three slabs are added with volume
uv Aw and and

29 Find the velocity if the distance is f(t) =

5t2 for t < 10, 500 + 100/t — 10 for ¢ > 10.

3/2

t t
—— and height h=——.
[ o and height h=1-7

(2) What is the rate of change of its volume?
(b) What is the rate of change of its surface area (including
top and base)?
31 The height of a model rocket is f(t) =t3/(1 +¢).
(a) What is the velocity v(t)?
(b) What is the acceleration dv/dt?

30 A cylinder has radius r =

32 Apply the product rule to u(x)u*(x) to find the power rule
for u*(x).

33 Find the second derivative of the product u(x)v(x). Find
the third derivative. Test your formulas on u =v = x.

34 Find functions y(x) whose derivatives are
@x* O © (1-x"7
35 Find the distances f(t), starting from f(0)=0, to match
these velocities:
(a) v(t)=cos tsint
© v(t)=+/1+¢
36 Apply the quotient rule to (u(x))*/(u(x))® and —uv'/v>.
The latter gives the second derivative of ..

(d) cos?x sin x.

(b) v(t) =tan t sec?¢

37 Draw a figure like 2.13 to explain the square rule.
38 Give an example where u(x)/v(x) is increasing but du/dx =
dvofdx = 1.
39 True or false, with a good reason:
(a) The derivative of x2" is 2nx2"~ !,
(b) By linearity the derivative of a(x)u(x)+ b(x)v(x) is
a(x)du/dx+ b(x) dv/dx.
(c) The derivative of |x|3 is 3|x|2
(d) tan? x and sec? x have the same derivative.
() (wv)y =u'v’ is true when u(x)= 1.
40 The cost of u shares of stock at v dollars per share is wv
dollars. Check dimensions of d(uv)/dt and u dv/dt and v du/dt.

41 If u(x)/v(x) is a ratio of polynomials of degree n, what are
the degrees for its derivative?

42 For y=5x + 3, is (dy/dx)* the same as d? y/dx??

43 If you change from f(t)=tcost to its tangent line at
t =m/2, find the two-part function df /dt.

44 Explain in your own words why the derivative of u(x)v(x)
has two terms.

45 A plane starts its descent from height y=h at x=—L
to land at (0,0). Choose a,b,c,d so its landing path
y = ax® + bx? 4 cx + d is smooth. With dx/dt = V = constant,
find dy/dt and d?y/dt*> at x=0 and x=—L. (To keep
d?y/dt? small, a coast-to-coast plane starts down L> 100
miles from the airport.)
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I 26 Limits I

You have seen enough limits to be ready for a definition. It is true that we have
survived this far without one, and we could continue. But this seems a reasonable
time to define limits more carefully. The goal is to achieve rigor without rigor mortis.

First you should know that limits of Ay/Ax are by no means the only limits in
mathematics. Here are five compietely different examples. They involve n — oo, not
Ax - 0:

1. a,= (n—3)/(n+ 3) (for large n, ignore the 3’s and find a, — 1)
2. a,=%a,_; +4 (start with any a, and always a, — 8)

3. a, = probability of living to year n (unfortunately a, — 0)

4. a,=fraction of zeros among the first n digits of = (a, — 1%57)

5. a,= 4, a,= .49, a; = 493, .... No matter what the remaining decimals are, the
a’s converge to a limit. Possibly a, — .493000 ..., but not likely.

The problem is to say what the limit symbol — really means.

A good starting point is to ask about convergence to zero. When does a sequence
of positive numbers approach zero? What does it mean to write a, — 0? The numbers
a,, a,, as, ..., must become “small,” but that is too vague. We will propose four
definitions of convergence to zero, and I hope the right one will be clear.

1. All the numbers a, are below 10~ 1°. That may be enough for practical purposes,
but it certainly doesn’t make the a, approach zero.

2. The sequence is getting closer to zero—each a, ., is smaller than the preceding
a,. This test is met by 1.1, 1.01, 1.001, ... which converges to 1 instead of 0.

3. For any small number you think of, at least one of the a,’s is smaller. That pushes
something toward zero, but not necessarily the whole sequence. The condition would
be satisfied by 1,1, 1,4, 1, 1, ..., which does not approach zero.

4. For any small number you think of, the a,’s eventually go below that number and
stay below. This is the correct definition.

I want to repeat that. To test for convergence to zero, start with a small number—
say 107!°, The a,’s must go below that number. They may come back up and go
below again—the first million terms make absolutely no difference. Neither do the
next billion, but eventually all terms must go below 1071, After waiting longer
(possibly a lot longer), all terms drop below 1072°. The tail end of the sequence
decides everything.

Question 1 Does the sequence 1073,1072,1075,107%,107°, 1078, ... approach 0?
Answer Yes. These up and down numbers eventually stay below any &.

non-convergence

Fig. 2.17 Convergence means: Only a finite number of @’s are outside any strip around L.



2.6 Limits

Question2 Does 1074, 1076, 1074, 1078, 1074, 10719, ... approach zero?
Answer No. This sequence goes below 10~* but does not stay below.

There is a recognized symbol for “an arbitrarily small positive number.” By
worldwide agreement, it is the Greek letter ¢ (epsilon). Convergence to zero means
that the sequence eventually goes below ¢ and stays there. The smaller the ¢, the tougher
the test and the longer we wait. Think of ¢ as the tolerance, and keep reducing it.

To emphasize that ¢ comes from outside, Socrates can choose it. Whatever ¢ he
proposes, the a’s must eventually be smaller. After some ay, all the a’s are below the
tolerance ¢. Here is the exact statement:

Jor any ¢ there is an N such that a, <¢if n> N.

Once you see that idea, the rest is easy. Figure 2.17 has N = 3 and then N =6.

EXAMPLE 1 The sequence %, %, %, ... starts upward but goes to zero. Notice that
1,4,9,...,100, ... are squares, and 2, 4, 8, ..., 1024, ... are powers of 2. Eventually 2"
grows faster than n?, as in a,, = 100/1024. The ratio goes below any e.

EXAMPLE2 1,0,1,0,%,0, ... approaches zero. These a’s do not decrease steadily
(the mathematical word for steadily is ‘‘monotonically’”) but still their limit is zero.
The choice ¢ = 1/1000 produces the right response: Beyond a,q,, all terms are below
1/1000. So N = 2001 for that &.

The sequence 1,4, 4,4, 4,4, ... is much slower—but it also converges to zero.

Next we allow the numbers a, to be negative as well as positive. They can converge
upward toward zero, or they can come in from both sides. The test still requires the
a, to go inside any strip near zero (and stay there). But now the strip starts at —&.

The distance from zero is the absolute value |a,|. Therefore a, — 0 means |a,| — 0.
The previous test can be applied to |a,|:

Jor any ¢ there is an N such that |a,| <¢if n> N.

EXAMPLE3 1,—14,4, —1,...convergestozerobecause 1,3,4,4, ... converges to zero.

It is a short step to limits other than zero. The limit is L if the numbers a, — L
converge to zero. Our final test applies to the absolute value |a, — L|:

Jor any ¢ there is an N such that |a,— L|<eifn> N.

This is the definition of convergence! Only a finite number of a’s are outside any strip
around L (Figure 2.18). We write a, —» L or lima, =L or lim,_, ., a, = L.

Ag.2.18 a, - 0in Example 3; a, — 1 in Example 4; a, — oo in Example 5 (but a,,, ; — a, — 0).

79



80

2 Derivatives

EXAMPLE 4 The numbers 3, 2, Z, ... converge to L= 1. After subtracting 1 the
differences 3, §, £, ... converge to zero. Those difference are |a, — L|.

EXAMPLE 5 The sequence 1,1+3, 1 +1+3, 1+3+3+3, ... fails to converge.

The distance between terms is getting smaller. But those numbers a,, a,, a3, a4, ... g0
past any proposed limit L. The second term is 14. The fourth term adds on {+14,
so a, goes past 2. The eighth term has four new fractions ++i+1+1, totaling
more than § + § + § + 3 = . Therefore ag exceeds 24. Eight more terms will add more
than 8 times ¢, so a,¢ is beyond 3. The lines in Figure 2.18c are infinitely long, not
stopping at any L.

In the language of Chapter 10, the harmonic series 1 + % + % + .- does not converge.
The sum is infinite, because the ““partial sums” a, go beyond every limit L (asgq0 is
past L=9). We will come back to infinite series, but this example makes a subtle
point: The steps between the a, can go to zero while still a, — 0.

Thus the condition a,,, — a, — 0 is not sufficient for convergence. However this
condition is necessary. If we do have convergence, then a,,, — a, — 0. That is a good
exercise in the logic of convergence, emphasizing the difference between “sufficient”
and “necessary.” We discuss this logic below, after proving that [statement A] implies
[statement B]:

If [a, converges to L] then [a,., — a, converges to zero]. 1

Proof Because the a, converge, there is a number N beyond which |a, — L| < ¢ and
also |a,+, — L) <e. Since a,,; — a, is the sum of a,,, — L and L— a,, its absolute
value cannot exceed ¢ + ¢ = 2&. Therefore a, ., — a, approaches zero.

Objection by Socrates: We only got below 2¢ and he asked for &. Our reply: If he
particularly wants |a,. , — a,| < 1/10, we start with ¢ = 1/20. Then 2¢ = 1/10. But this
juggling is not necessary. To stay below 2¢ is just as convincing as to stay below .

THE LOGIC OF “IF” AND “ONLY IF”

The following page is inserted to help with the language of mathematics. In ordinary
language we might say “I will come if you call.” Or we might say “I will come only
if you call.”” That is different! A mathematician might even say “I will come if and
only if you call.” Qur goal is to think through the logic, because it is important and
not so familiar.t

Statement 4 above implies statement B. Statement A4 is @, — L; statement B is
a,., — a, — 0. Mathematics has at least five ways of writing down A= B, and I
though you might like to see them together. It seems excessive to have so many
expressions for the same idea, but authors get desperate for a little variety. Here are
the five ways that come to mind:

A=B
A implies B
if A then B
A is a sufficient condition for B

B is true if A is true

tLogical thinking is much more important than ¢ and 4.
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EXAMPLES If [positive numbers are decreasing] then [they converge to a limit].
If [sequences a, and b, converge] then [the sequence a, + b, converges].
If [ f(x) is the integral of v(x)] then [v(x) is the derivative of f(x)].

Those are all true, but not proved. A is the hypothesis, B is the conclusion.

Now we go in the other direction. (It is called the “converse,” not the inverse.) We
exchange A and B. Of course stating the converse does not make it true! B might
imply A, or it might not. In the first two examples the converse was false—the a,
can converge without decreasing, and a,+ b, can converge when the separate
sequences do not. The converse of the third statement is true—and there are five
more ways to state it:

A<B

A is implied by B
if B then A
A is a necessary condition for B
B is true only if A is true

Those words “necessary” and “‘sufficient” are not always easy to master. The same
is true of the deceptively short phrase “if and only if.” The two statements A= B and
A < B are completely different and they both require proof. That means two separate
proofs. But they can be stated together for convenience (when both are true):

A<B
A implies B and B implies A
A is equivalent to B
A is a necessary and sufficient condition for B

A is true if and only if B is true
EXAMPLES [a,— L] < [2a,—2L] <« [a,+1->L+1] < [a,—L-0].
RULES FOR LIMITS

Calculus needs a definition of limits, to define dy/dx. That derivative contains two
limits: Ax - 0 and Ay/Ax — dy/dx. Calculus also needs rules for limits, to prove the
sum rule and product rule for derivatives. We started on the definition, and now we
start on the rules.

Given two convergent sequences, a, — L and b, - M, other sequences also converge:

Addition: a,+b,—»L+M  Subtraction: a,—b,>L—M
Multiplication: a,b, - LM Division: a,/b, > L/M (provided M # 0)

We check the multiplication rule, which uses a convenient identity:
a,b,— LM = (a, — L)(b, — M) + M(a, — L)+ L(b, — M). 2

Suppose |a, — L| < ¢ beyond some point N, and |b, — M| < ¢ beyond some other point
N’. Then beyond the larger of N and N’, the right side of (2) is small. It is less than
e~&+ Me+ Le. This proves that (2) gives a,b, » LM.

An important special case is ca, — cL. (The sequence of b’s is ¢, ¢, ¢, ¢, ....) Thus a
constant can be brought “outside” the limit, to give lim ca, = ¢ lim a,,.
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THE LIMIT OF 7/ (x) AS x — a

The final step is to replace sequences by functions. Instead of a,, a,, ... there is a
continuum of values f(x). The limit is taken as x approaches a specified point a
(instead of n— o). Example: As x approaches a =0, the function f(x)=4— x>
approaches L= 4. As x approaches a = 2, the function 5x approaches L= 10. Those
statements are fairly obvious, but we have to say what they mean. Somehow it must
be this:

if x is close to a then f(x) is close to L.

If x — a is small, then f(x) — L should be small. As before, the word small does not
say everything. We really mean “arbitrarily small,” or “below any &.”” The difference
f(x)— L must become as small as anyone wants, when x gets near a. In that case
lim,_,, f(x)= L. Or we write f(x) > L as x > a.

The statement is awkward because it involves two limits. The limit x — a is forcing
f(x) = L. (Previously n — oo forced a, — L.) But it is wrong to expect the same ¢ in
both limits. We do not and cannot require that |x — a| < ¢ produces |f(x) — L| <e.
It may be necessary to push x extremely close to a (closer than ¢). We must guarantee
that if x is close enough to a, then |f(x) — L| <e.

We have come to the “epsilon-delta definition” of limits. First, Socrates chooses &.
He has to be shown that f(x) is within ¢ of L, for every x near a. Then somebody
else (maybe Plato) replies with a number &. That gives the meaning of “near a.”
Plato’s goal is to get f(x) within ¢ of L, by keeping x within ¢ of a:

if 0<|x—a|<d then |f(x)—Ll<e. 3)

The input tolerance is J (delta), the output tolerance is &. When Plato can find a ¢
for every ¢, Socrates concedes that the limit is L.

EXAMPLE Prove that lin; 5x=10. In this case a=2 and L= 10.

Socrates asks for |5x — 10| < e. Plato responds by requiring |x — 2| < . What é should
he choose? In this case |5x — 10] is exactly 5 times |x — 2|. So Plato picks é below &/5
(a smaller 6 is always OK). Whenever |x — 2| < ¢/S, multiplication by 5 shows that
[5x — 10} <e.

Remark 1 In Figure 2.19, Socrates chooses the height of the box. It extends above
and below L, by the small number ¢. Second, Plato chooses the width. He must make
the box narrow enough for the graph to go out the sides. Then |f(x)— L| <e.

A fx)>Lasx—a limit L is not f(a) f(x) = step function
ﬂa).. [ ) |——

Lre 7 y/ 5 1 VY | t | nolimit L

| T 1 : asx—a
s W[ /1 | _ ;

—
+—+—+ x +—t—t x et
a-8 a+d a a

Fig. 2.19 S chooses height 2¢, then P chooses width 28. Graph must go out the sides.
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When f(x) has a jump, the box can’t hold it. A step function has no limit as x
approaches the jump, because the graph goes through the top or bottom—no matter
how thin the box.

Remark 2 The second figure has f(x) — L, because in taking limits we ignore the
final point x = a. The value f(a) can be anything, with no effect on L. The first figure
has more: f(a) equals L. Then a special name applies— f is continuous. The left figure
shows a continuous function, the other figures do not.

We soon come back to continuous functions.

Remark 3 In the example with f= 5x and é = ¢/5, the number 5 was the slope. That
choice barely kept the graph in the box—it goes out the corners. A little narrower,
say 6=¢/10, and the graph goes safely out the sides. A reasonable choice is
to divide ¢ by 2|f'(a)|. (We double the slope for safety.) I want to say why this §
works—even if the e-¢ test is seldom used in practice.

The ratio of f(x)— L to x —a is distance up over distance across. This is Af/Ax,
close to the slope f’(a). When the distance across is 4, the distance up or down is
near d|f’(a)|. That equals ¢/2 for our “reasonable choice” of —so we are safely
below &. This choice solves most exercises. But Example 7 shows that a limit might
exist even when the slope is infinite.

EXAMPLE 7 lirln+ VXx—1=0 (a one-sided limit).

Notice the plus sign in the symbol x — 1*. The number x approaches a =1 only from
above. An ordinary limit x — 1 requires us to accept x on both sides of 1 (the exact
value x = 1 is not considered). Since negative numbers are not allowed by the square
root, we have a one-sided limit. It is L= 0.

Suppose ¢ is 1/10. Then the response could be 6 = 1/100. A number below 1/100
has a square root below 1/10. In this case the box must be made extremely
narrow, 6 much smaller than &, because the square root starts with infinite slope.

Those examples show the point of the -0 definition. (Given ¢, look for 6. This
came from Cauchy in France, not Socrates in Greece.) We also see its bad feature:
The test is not convenient. Mathematicians do not go around proposing &’s and
replying with 8’s. We may live a strange life, but not that strange.

It is easier to establish once and for all that 5x approaches its obvious limit 5a.
The same is true for other familiar functions: x" — 4" and sin x —sina and
(1-x)"!' > (1 —a)"'—except at a=1. The correct limit L comes by substituting
X = a into the function. This is exactly the property of a ““continuous function.” Before
the section on continuous functions, we prove the Squeeze Theorem using ¢ and §.

2H Squeezc leomn Suppose f(x)ég(x)&h(x) Ior X near a. H f(x)—-vL
andh(x}—»Lasx—-»a,thenthehmxtofg(x)fsalsoL

Proof g(x)is squeezed between f(x) and h(x). After subtracting L, g(x) — L is between
f(x)— L and h(x) — L. Therefore
lg(x)— Li<e if |f(x)—L|<e¢ and |h(x)— L|<e.

For any ¢, the last two inequalities hold in some region 0 < |x — a| < J. So the first
one also holds. This proves that g(x) — L. Values at x = a are not involved—until
we get to continuous functions.
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2.6 EXERCISES

Read-through questions

The limit of a, = (sinn)/nis __a . The limit of a, = n*/2" is
b__. Thelimitofa,=(—1)"is _c¢ . The meaningofa, — 0
is:Only__d_ ofthe numbers |a,|canbe __e . The meaning
of a,— L is: For every __f  thereis an __ g such that
h_ifn>_i . Thesequencel, 1+ 1+1+1 . isnot

i__ because eventually those sums go past _ k

The limit of f(x)=sinx as x »ais __| . The limit of

Sx)=x/|x| as x > —21is _m_, but the limit as x — 0 does
not _ n_ . This function only has _ o -sided limits. The

meaning of lim, ,, f(x)= L is: For every ¢ there is a é such
that | f(x) — L| < & whenever __p

Two rules for limits, when a,— L and b,— M, are
d,+b,—__a anda,b,—__ 1 . The corresponding rules

for functions, when f(x)— L and g(x)—> M as x—a, are
s and __t . In all limits, |a,— L] or |f(x)— L| must
eventually go below and __u__ any positive __v

A= B means that 4isa _ w__ condition for B. Then B is
true __x  Aistrue. A<>Bmeansthat Aisa__y condition
for B. Then Bistrue __z A is true.

1 What is a, and what is the limit L? After which N is
la, — L| <57 (Calculator allowed)

a) —1, +4, -4, .. (b) 3, 3+5 3+3+4, ...
a,=n/2" (d) LL LI LI, .
e) a,="/n ) a,=/n*+n—n

2 Show by example that these statements are false:
(a) Ifa, > L and b, — L then a,/b, — 1
(b) a, — L if and only if a? — L?
(¢) If a,<0and a,— L then L<0

(d) If infinitely many a,’s are inside every strip around
zero then a, — 0.

3 Which of these statements are equivalent to B= A"
(a) If Ais true sois B
(b) A is true if and only if B is true
(c) B is a sufficient condition for A
(d) A is a necessary condition for B.

4 Decide whether A == B or B= A or neither or both:
(a) A=[a,~1] B=[-a,—»>—1]
(by A=[a,~0] B=[a,—a,-,~0]
(¢) A=[a,<n] B=[a,=n]
(d) A=[a,—»0] B=[sin a,— 0]
(e) A=[a,— 0] B=[1/a, fails to converge]

(f) A=[a,<n] B=[a,/nconverges]

*5 If the sequence a,, a,, a3, ... approaches zero, prove that
we can put those numbers in any order and the new sequence

still approaches zero.

*6 Suppose f(x) —» L and g(x) - M as x — a. Prove from the
definitions that f(x)+g(x) > L+ M as x — a.

Find the limits 7-24 if they exist. An ¢-J test is not required.

9 lim

lim (careful)

S+ 1)~
h

. sinh cos?h
1 Jim =

13 lim m(one-sided)
x=0*t X

21 lilTi [f(x)=f(@)])

sin x

23 1 -
3 xl—r»r(IJ sin x/2

2
g lim 3
-2 t—2

10 lim LD =11

h=0 h

14 lim |—x—l(one-sided)
x=>0" X

16 lim fle)—f(a)
c~a  C—d

18 lim x° =25
x5 X —

20 lim Y2 =X

=2 /64 x

22 lirr}2 (sec x —tan x)

i —1
24 lim _.Smgx )
=1 x°—1

25 Choose J so that | f(x)| <55 if 0 < x < 6.

J09=1/x

f(x)=10x

f(x)=sin 2x

f{x)=xsin x

26 Which does the definition of a limit require?
M Ifx)—Ll<e = 0<|x—a|<$é
@) Ifx)—Li<e = 0<|x—a|<9d
Q) Iflx)—Ll<e < 0<|x—al<d

27 The definition of “f(x) > L as x — oc™ is this: For any

¢ there is an X such that

<¢ if x> X. Give an

example in which f(x) - 4 as x — oC.

28 Give a correct definition of *'f(x) - 0 as x > —oc.

29 The limit of f(x)=(sin x)/x as x — o is

.

. For

¢=.01 find a point X beyond which |f(x)| <e.

30 The limit of f(x)=2x/(l1+x) as x>« is L=2. For
¢=.01 find a point X beyond which |f(x)— 2| <e.

31 The limit of f(x)=sin x as x — o does not exist. Explain

why not.
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32 (Calculator) Estimate the limit of (1 + i) as x — o0.

33 For the polynomial f(x)=2x— 5x*+ 7x* find
(@) lim f(x) (b) lim f(x)

© in 23 @ im 23
34 For f(x)=6x®+ 1000x find
@ lim 79 fx) ) lim f(x)
f (x) f (x)
(© 11m - d kL l_,w il

Important rule As x — oo the ratio of polynomials f(x)/g(x)
has the same limit as the ratio of their leading terms. f(x)=
x3—x +2 has leading term x3 and g(x) = 5x%+ x + 1 has
leading term 5x°. Therefore f(x)/g(x) behaves like x3/5x° — 0,
g(x)/f(x) behaves like 5x5/x> — o0, (f(x))*/g(x) behaves like
x8/5x% - 1/5.

35 Find the limit as x — oo if it exists:

x% + 1000
x3 —1000

36 If a particular ¢ achieves |f(x) — L| <&, why is it OK to
choose a smaller 6?

3x2+2x+1 x*
342x+x?  x¥+x?

.1
xsin —.
x

37 Thesumof 1 +r+r*+ -+ +r" " Lis g, =(1 —r™)/(1 —1).
What is the limit of a, as n — c0? For which r does the limit
exist?

2.7 Continuous Functions

38 If a, — L prove that there is a number N with this prop-
erty: If n> N and m > N then |a, — a,,| < 2¢. This is Cauchy’s
test for convergence.

39 No matter what decimals come later, a, = .4, a, = .49,
a; =.493, ... approaches a limit L. How do we know (when
we can’t know L)? Cauchy’s test is passed: the a’s get closer
to each other.

(a) From a, onwards we have |a, — a,,| <

(b) After which ay is |a, —a,| < 1077?

40 Choose decimals in Problem 39 so the limit is L =.494.
Choose decimals so that your professor can’t find L.

41 If every decimal in .abcde--- is picked at random from
0, 1, ..., 9, what is the “average” limit L?

42 If every decimal is 0 or 1 (at random), what is the average
limit L?

43 Suppose a, =%a,_, +4 and start from a, = 10. Find a,
and a; and a connection between a, — 8 and a, - ; — 8. Deduce
that a, — 8.

44 “For every 0 there is an ¢ such that | f(x)| <e if |x| < 4.”
That test is twisted around. Find ¢ when f(x)=cos x, which
does not converge to zero.

45 Prove the Squeeze Theorem for sequences, using & If
a,—~Land c,—» Land a,<b,<c,forn>N, then b, - L.

46 Explain in 110 words the difference between “we will get
there if you hurry” and “we will get there only if you hurry”
and “we will get there if and only if you hurry.”

This will be a brief section. It was originally included with limits, but the combination
was too long. We are still concerned with the limit of f(x) as x — a, but a new number
is involved. That number is f(a), the value of f at x = a. For a “limit,” x approached
a but never reached it—so f(a) was ignored. For a “continuous function,” this final

number f(a) must be right.

May I summarize the usual (good) situation as x approaches a?

1. The number f(a) exists
2. The limit of f(x) exists

(f is defined at a)
(it was called L)

3. The limit L equals f(a) (f(a) is the right value)

In such a case, f(x) is continuous at x = a. These requirements are often written in a
single line: f(x) — f(a) as x — a. By way of contrast, start with four functions that are

not continuous at x = 0.
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1
= =— 1
70 o= 0= 1
/ f(x) =sin =
) =x
= ﬁ i
1

Fig. 220 Four types of discontinuity (others are possible) at x = 0.

In Figure 2.20, the first function would be continuous if it had f(0) = 0. But it has
f(0)= 1. After changing f(0) to the right value, the problem is gone. The discontinuity
is removable. Examples 2, 3, 4 are more important and more serious. There is no
“correct” value for f(0):

2. f(x)=step function (jump from 0 to 1 at x=10)
3. f(x)=1/x? (infinite limit as x — 0)
4, f(x)=sin(1/x) (infinite oscillation as x — 0).

The graphs show how the limit fails to exist. The step function has a jump discontinu-
ity. It has one-sided limits, from the left and right. It does not have an ordinary (two-
sided) limit. The limit from the left (x - 07) is 0. The limit from the right (x - 0%)
is 1. Another step function is x/|x|, which jumps from —1 to 1.

In the graph of 1/x2, the only reasonable limit is L= + oo. I cannot go on record
as saying that this limit exists. Officially, it doesn’t—but we often write it anyway:
1/x? = oo as x — 0. This means that 1/x2 goes (and stays) above every L as x — 0.

In the same unofficial way we write one-sided limits for f(x)=1/x:

From the left, lim 1 =~ 0. From the right, lim 1_ + 0. 1)
x-0- X x-0* X
Remark 1/x has a “pole” at x=0. So has 1/x?> (a double pole). The function
1/(x?> — x) has poles at x =0 and x = 1. In each case the denominator goes to zero
and the function goes to + oo or — co. Similarly 1/sin x has a pole at every multiple
of 7 (where sin x is zero). Except for 1/x? these poles are “simple” —the functions are
completely smooth at x =0 when we multiply them by x:

(x) (l> =1 and (x)( 1 ) = 1 and (x) (—1—) are continuous at x=0.
¥ sin x

x*-x/ x-1

1/x* has a double pole, since it needs multiplication by x? (not just x). A ratio of
polynomials P(x)/Q(x) has poles where Q =0, provided any common factors like
(x + 1)/(x + 1) are removed first.

Jumps and poles are the most basic discontinuities, but others can occur. The
fourth graph shows that sin(1/x) has no limit as x — 0. This function does not blow
up; the sine never exceeds 1. At x =% and } and g5 it equals sin 3 and sin 4 and
sin 1000. Those numbers are positive and negative and (?). As x gets small and 1/x
gets large, the sine oscillates faster and faster. Its graph won’t stay in a small box of
height ¢, no matter how narrow the box.

CONTINUOUS FUNCTIONS

DEFINITION f is “continuous at x = a” if f(a) is defined and f(x) - f(a) as x — a.
If f is continuous at every point where it is defined, it is a continuous function.
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Objection The definition makes f(x) = 1/x a continuous function! It is not defined
at x =0, so its continuity can’t fail. The logic requires us to accept this, but we don’t
have to like it. Certainly there is no f(0) that would make 1/x continuous at x = 0.

It is amazing but true that the definition of “continuous function” is still debated
(Mathematics Teacher, May 1989). You see the reason—we speak about a discontinu-
ity of 1/x, and at the same time call it a continuous function. The definition misses
the difference between 1/x and (sin x)/x. The function f(x) = (sin x)/x can be made
continuous at all x. Just set f(0)=1.

We call a function “continuable” if its definition can be extended to all x in a way
that makes it continuous. Thus (sin x)/x and \/)_C are continuable. The functions 1/x
and tan x are not continuable. This suggestion may not end the debate, but I hope
it is helpful.

EXAMPLE 1 sin x and cos x and all polynomials P(x) are continuous functions.
EXAMPLE 2 The absolute value |x| is continuous. Its slope jumps (not continuable).
EXAMPLE 3 Any rational function P(x)/Q(x) is continuous except where Q = 0.

EXAMPLE 4 The function that jumps between 1 at fractions and 0 at non-fractions
is discontinuous everywhere. There is a fraction between every pair of non-fractions
and vice versa. (Somehow there are many more non-fractions.)

EXAMPLES The function 0** is zero for every x, except that 0° is not defined. So

define it as zero and this function is continuous. But see the next paragraph where
0° has to be 1.

We could fill the book with proofs of continuity, but usually the situation is clear.
“A function is continuous if you can draw its graph without lifting up your pen.”
At a jump, or an infinite limit, or an infinite oscillation, there is no way across the
discontinuity except to start again on the other side. The function x" is continuous
for n> 0. It is not continuable for n < 0. The function x° equals 1 for every x, except
that 0° is not defined. This time continuity requires 0° = 1.

The interesting examples are the close ones—we have seen two of them:

sin x 1—cos x )
and — are both continuable at x = 0.

EXAMPLE 6

Those were crucial for the slope of sin x. The first approaches 1 and the second
approaches 0. Strictly speaking we must give these functions the correct values
(1 and 0) at the limiting point x = 0—which of course we do.

It is important to know what happens when the denominators change to x2.

EXAMPLE 7 sx:zx blows up but l%osx has the limit % at x=0.

Since (sin x)/x approaches 1, dividing by another x gives a function like 1/x. There
is a simple pole. It is an example of 0/0, in which the zero from x? is reached more
quickly than the zero from sin x. The “race to zero” produces almost all interesting
problems about limits.
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For 1 — cos x and x? the race is almost even. Their ratio is 1 to 2:

l—cosx  1—cos’x sin? x 1 1
2 =2 =2 -
X x*(1 + cos x) X l+cosx 1+1

as x — 0.

This answer 3 will be found again (more easily) by “I’'Hopital’s rule.”” Here I emphasize
not the answer but the problem. A central question of differential calculus is to know
how fast the limit is approached. The speed of approach is exactly the information in
the derivative.

These three examples are all continuous at x = 0. The race is controlled by the
slope—because f(x)— f(0) is nearly f7(0) times x:

derivative of sin xis 1 «<  sin x decreases like x
derivative of sinx is 0 «— sin® x decreases faster than x

derivative of x!® is o0 < x!/3 decreases more slowly than x.
DIFFERENTIABLE FUNCTIONS

The absolute value |x| is continuous at x = 0 but has no derivative. The same is true
for x'®. Asking for a derivative is more than asking for continuity. The reason is
fundamental, and carries us back to the key definitions:

Continuous at x:  f(x+ Ax)—f(x)>0as Ax—->0

flx+ Ax) — f(x)

Derivative at x:
Ax

—f'({x) as Ax - 0.

In the first case, Af goes to zero (maybe slowly). In the second case, Af goes to zero
as fast as Ax (because Af/Ax has a limit). That requirement is stronger:

21 At a point where f(x) has a derivative, the function must be continuous.
But f(x) can be continuous with no derivative.

Proof The limit of Af=(Ax)(Af/Ax) is (0)(df/dx)=0. So f(x+ Ax)—f(x)— 0.

The continuous function x'/3 has no derivative at x = 0, because $x ~*’> blows up.
The absolute value |x| has no derivative because its slope jumps. The remarkable
function 3 cos 3x + 1 cos 9x + --- is continuous at all points and has a derivative at
no points. You can draw its graph without lifting your pen (but not easily—it turns
at every point). To most people, it belongs with space-filling curves and unmeasurable
areas—in a box of curiosities. Fractals used to go into the same box! They are
beautiful shapes, with boundaries that have no tangents. The theory of fractals is
very alive, for good mathematical reasons, and we touch on it in Section 3.7.

I hope you have a clear idea of these basic definitions of calculus:

1 Limit (n > > or x —»a) 2 Continuity (at x=a) 3 Derivative (at x = a).

Those go back to ¢ and 4, but it is seldom necessary to follow them so far. In the
same way that economics describes many transactions, or history describes many
events, a function comes from many values f(x). A few points may be special, like
market crashes or wars or discontinuities. At other points df/dx is the best guide to
the function.



2.7 Continuous Functions

This chapter ends with two essential facts about a continuous function on a closed
interval. The interval is a < x < b, written simply as [a, b].T At the endpoints a and
b we require f(x) to approach f(a) and f(b).

Extreme Value Property A continuous function on the finite interval [a, b] has a
maximum value M and a minimum value m. There are points X, and X, in [a, b]
where it reaches those values:

fGma) =M = f(x) = f(Xma)=m for all x in [a, b].

Intermediate Value Property If the number F is between f(a) and f(b), there is a
point ¢ between a and b where f(c)= F. Thus if F is between the minimum m and
the maximum M, there is a point ¢ between X, and x,,,, where f(c)=F.

Examples show why we require closed intervals and continuous functions. For
0 < x <1 the function f(x)= x never reaches its minimum (zero). If we close the
interval by defining f(0) = 3 (discontinuous) the minimum is still not reached. Because
of the jump, the intermediate value F = 2 is also not reached. The idea of continuity
was inescapable, after Cauchy defined the idea of a limit.

2.7 EXERCISES

Continuity requires the _ @ of f(x) to exist as x = a and

Read-through questions x<0
3 fx)= 4 flx)=
to agree with

atx=0is

reason that 1/cos x is discontinuous at _e _is __ 1 . The S f(x)
reason that cos(1/x) is discontinuous at x=0is _ g

The function f(x)=__h _ has a simple pole at x = 3, where

pole. 7 f(%)
The power x" is continuous at all x provided nis __ 1 _ . It

f?hasa

[]

2cx x20

b . The reason that x/[x| is not continuous
. This function does have __d__ limits. The { c+x x<0

6 flx)=

A+x2 x>0

x<c¢
8 f(x)
x+1 x=c¢

has no derivative at x=0 when nis _k . f(x)=sin(~x)/x

vided we define f(0)=_n__. A “continuous function” must -
be continuous at all _ o . A “continuable function” can be
extended to every point x so that _ p

If f has a derivative at x =a then f is necessarily _ @ at

approaches __|

x=0

11 f(x)= 12 f(x) {

1/x* x

x°
0

ex x<l1

2cx x=21

xX#
x#0
=0
x+¢c x<c

x>c

x<0

secx x=0

x=a. The derivative controls the speed at which f(x)
approaches _ r . On a closed interval [a, b], a continuous
fhasthe __s value property and the __t _ value property.
It reachesits _4 M andits_v__ m, and it takes on every
value _ W

In Problems 1-20, find the numbers ¢ that make f(x) into
(A) a continuous function and (B) a differentiable function.
In one case f(x) — f(a) at every point, in the other case Af/Ax
has a limit at every point.

sinx x<1 cos’x x#m
lf(x)={ 2f(>€)={

¢ x=1 c X=n

as x — 0, so thisis a _ m__ function pro- 9 f(x) {(sm /xt x#0 10 f(x) {

2

1

X

x3 ¢
8 =
x
1
{ ¢
x#1 — xX#c
13 f(x)= 14 f(x)=¢ x—¢
2c x=c
{ %2

(tan x)/x x#0 x<c

15 f(x)= 16 f(x)= {

2x x>c¢

(c+cos x)/x x#0
17 f(x)= 0 18 f(x)=|x+c¢|

0 X =

+The interval [a, b] is closed (endpoints included). The interval (a, b) is open (a and b left out).

The infinite interval [0, co) contains all x > 0.
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(sin x —x)/x* x#0

20 f(x) =|x%+c?
0 £=0 fx)=| |

19 f(x)= {
Construct your own f(x) with these discontinuities at x = 1.
21 Removable discontinuity

22 Infinite oscillation

23 Limit for x - 1*, no limit for x > 1~

24 A double pole

25 xl_i}}l_ Jx)=4+ xl_i.I}l* f(x)

26 lim f(x) = oo but lim (x— 1)f(x)=0
27 lim (x— /(9 =5

28 The statement “3x — 7 as x = 1” is false. Choose an ¢ for
which no & can be found. The statement “3x - 3 as x —» 1" is
true. For ¢ =1 choose a suitable J.

29 How many derivatives f’, f”, ... are continuable

functions?

(a) f=x%? (b) f=x%2sin x (©) f=(sin x)>?
30 Find one-sided limits at points where there is no two-
sided limit. Give a 3-part formula for function (c).

Ix|

@ =

31 Let f(1)=1 and f(—1)=1 and f(x)=(x*—x)/(x*-1)
otherwise. Decide whether f is continuous at
(@ x=1- (b) x=0
*32 Let f(x)=x?sin 1/x for x #0 and f(0)=0. If the limits
exist, find
(2) lim f(x) (© lim f'(x).

33 If f(0)=0 and f'(0)=3, rank these functions from
smallest to largest as x decreases to zero:
&), x, xf(x), f()+2x, 2(f/(x)—x), (f(x))

34 Create a discontinuous function f(x) for which f2(x) is
continuous.

. d ,
(b) sin [x| © 7 [x*—1]

() x=-1.

(b) df/dx at x=0

35 True or false, with an example to illustrate:

(a) If f(x) is continuous at all x, it has a maximum
value M.

(b) If f(x)< 7 for all x, then f reaches its maximum.
(©) If f(1)=1 and f(2) = —2, then somewhere f(x)=0.
(d) If f(1)=1 and f(2)=—2 and f is continuous on
[1, 2], then somewhere on that interval f(x)=0.

36 The functions cos x and 2x are continuous. Show from

the property that cos x = 2x at some point between
O and 1.

37 Show by example that these statements are false:

(a) If a function reaches its maximum and minimum then
the function is continuous.

(b) If f(x) reaches its maximum and minimum and all
values between f(0) and f(1), it is continuous at x =0.

(c) (mostly for instructors) If f(x) has the intermediate
value property between all points a and b, it must be
continuous.

38 Explain with words and a graph why f(x) = x sin (1/x) is
continuous but has no derivative at x =0. Set f{0) =0.

39 Which of these functions are continuable, and why?

sinx x<0 sin 1/x x<0
filx)= { fa(x)= {

cos x x>1 cos 1/x x>1

= .i. 1 = 0 x2
S3(x)= pra whensinx#0 f,(x)=x"+0

40 Explain the difference between a continuous function and
a continuable function. Are continuous functions always con-
tinuable?

*41 f(x) is any continuous function with f(0) =f(1).
(a) Draw a typical f(x). Mark where f(x)=f(x + ).
(b) Explain why g(x) =f(x +4) —f(x) has g(}) = — g(0).
(c) Deduce from (b) that (a) is always possible: There must
be a point where g(x)=0 and f(x)=/f(x +3).

42 Create an f(x) that is continuous only at x =0.

43 If f(x) is continuous and 0 <f(x) < 1 for all x, then there
is a point where f(x*)= x*. Explain with a graph and prove
with the intermediate value theorem.

44 In the &6 definition of a limit, change 0 <|x —a| <éd to
|x —al <. Why is f(x) now continuous at x = a?

45 A function has a at x=0 if and only if
(fG)—f@)/xis __atx=0.
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CHAPTER 3

Applications of the Derivative

Chapter 2 concentrated on computing derivatives. This chapter concentrates on using
them. Qur computations produced dy/dx for functions built from x” and sin x and
cos x. Knowing the slope, and if necessary also the second derivative, we can answer
the questions about y = f{x) that this subject was created for:

1. How does y change when x changes?
2. What is the maximum value of y? Or the minimum?
3. How can you tell 2 maximum from a minimum, using derivatives?

The information in dy/dx is entirely local. It tells what is happening close to the point
and nowhere else. In Chapter 2, Ax and Ay went to zero. Now we want to get them
back. The local information explains the larger picture, because Ay is approximately
dyfdx times Ax.

The problem is to connect the finite to the infinitesimal—the average slope to the
instantaneous slope. Those slopes are close, and occasionally they are equal. Points
of equality are assured by the Mean Value Theorem—which is the local-global
connection at the center of differential calculus. But we cannot predict where dy/dx
equals Ay/Ax. Therefore we now find other ways to recover a function from its
derivatives—or to estimate distance from velocity and acceleration.

It may seem surprising that we learn about y from dy/dx. All our work has been
going the other way! We struggled with y to squeeze out dy/dx. Now we use dy/dx
to study p. That’s life. Perhaps it really is life, to understand one generation from
later generations.

I 3.1 Llinear Approximation TIEENGEGEGEGEEENNN

The book started with a straight line /= vt. The distance is linear when the velocity
is constant. As soon as v begins to change, f= vt falls apart. Which velocity do we
choose, when oft) is not constant? The solution is to take very short time intervals, 1



92

3 Applicofions of the Derivaiive

in which v is nearly constant:
f=uvt is completely false
Af= vAt is nearly true
df=vdt is exactly true.

For a brief moment the function f{¢) is linear—and stays near its tangent line.

In Section 2.3 we found the tangent line to y = f(x). At x = g, the slope of the curve
and the slope of the line are f*(a). For points on the line, start at y = f{g). Add the
slope times the “increment” x — a:

Y=fla)+{a)(x — a). (B

We write a capital Y for the line and a small y for the curve. The whoie point of
tangents is that they are close (provided we don’t move too far from a):

y =Y o flx) = fla)+flalx—a) 2

That is the all-purpose linear approximation. Figure 3.1 shows the square root
function y= \/f and its tangent line at x = a = 100. At the point y=_/100=10,
the slope is 1/2\/; = 1/20. The table beside the figure compares p(x) with Y(x).

¥

1 Y= 10+"'—_2Tl]30 x Y y=x
151 y=vx 100 10 10
ol ~102 101 100995
S o 110 105 1049
St (02 200 LS 14.1
y : : { 400 25 20

X
100 200 300 400

Fg. 3.1 Y{(x) is the linear approximation to \/; near x=a= 100,

The accuracy gets worse as x departs from 100. The tangent line leaves the curve.
The arrow points to a good approximation at 102, and at 101 it would be even better.
In this example Y is larger than y—the straight line is above the curve. The slope of
the line stays constant, and the slope of the curve is decreasing. Such a curve will
soon be called “concave downward,” and its tangent lines are above it.

Look again at x = 102, where the approximation is good. In Chapter 2, when we
were approaching dy/dx, we started with Ay/Ax:

: slope = V1027 /100 (3)
v Pe ™ 2100
Now that is turned around! The slope is 1/20. What we don’t know is | /102:
102 = /100 + (slope) (102 — 100). (4

You work with what you have, Eariier we didn’t know dy/dx, so we used (3). Now
we are experts at dy/dx, and we use (4). After computing ¥ = 1/20 once and for
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all, the tangent line stays near \/; for every number near 100. When that nearby
number is 100 + Ax, notice the error as the approximation is squared:

% 1
+— =100+ Ax + —(Ax).
(,xloo 20Ax) 100 + Ax (Ax)

The desired answer is 100 + Ax, and we are off by the last term involving (Ax)?. The
whole point of linear approximation is to ignore every term after Ax.

There is nothing magic about x = 100, except that it has a nice square root. Other
points and other functions allow y= Y. I would like to express this same idea in
different symbols. Instead of starting from a and going to x, we start from x and go a
distance Ax to x + Ax. The letters are different but the mathematics is identical.

3A At any point x, and for any smooth function y = f{x},
_ Jlx+ Ax)— flx)
slope at x =~ — 5
For the approximation to f{x + Ax), multiply both sides by Ax and add f{x):
for+Ax) & f{x)+ (slope at x)(Ax). (6)

EXAMPLE 4 An important linear approximation: {1 + x)" = 1 + nx for x near zero.

EXAMPLE 2 A second important approximation: 1/(1 + x)¥" =~ | — nx for x near zero.

Discussion  Those are really the same. By changing n to —n in Example 1, it becomes
Example 2. These are linear approximations using the slopes n and —n at x =0

(1+x)" &~ 1+ (slope at zero) times (x — 0)= 1+ nx.
Here is the same thing with f(x} = x". The basepoint in equation (6) is now 1 or x:
1+ Axy ~ 1+nAx {x+Ax)" ~ x"+nx""!Ax,
Better than that, here are numbers. For n=3 and —1 and 100, take Ax = .01:

1 1 100
3~ — — et
(L0~ 108 x99 (1+ 100) x2

Actualiy that last number is no good. The 100th power is too much. Linear approxi-

mation gives 1+ 100Ax = 2, but a calculator gives (1.01)!%° =2.7.... This is close to

¢, the all-important number in Chapter 6. The binomial formula shows why the

approximation failed:

(100)(99)
2)1)

Linear approximation forgets the (Ax)? term. For Ax = 1/100 that error is nearly 3.
It is too big to overlook. The exact error is $(Ax)?f"(c), where the Mean Value
Theorem in Section 3.8 places ¢ between x and x + Ax. You aiready see the point:

(1+Ax)!%°=1+100Ax+ {Ax)* + .

y — Y is of order (Ax)*. Linear approximation, quadratic error.

DIFFERENTIALS

There is one more notation for this linear approximation. It has to be presented,
because it is often used. The notation is suggestive and confusing at the same time—
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it keeps the same symbols dx and dy that appear in the derivative. Eariter we took
great pains to emphasize that dy/dx is not an ordinary fraction.t Until this paragraph,
dx and dy have had no independent meaning. Now they become separate variables,
like x and y but with their own names. These quantities dx and dy are called
differentials.

The symbols dx and dy measure changes along the tangent line. They do for the
approximation Y(x) exactly what Ax and Ay did for p{x). Thus dx and Ax both
measure distance across.

Figure 3.2 has Ax = dx. But the change in y does not equai the change in Y. One
is Ay (exact for the function). The other is dy (exact for the tangent line). The
differential dy is equal to AY, the change along the tangent line. Where Ay is the true
change, dy is its linear approximation (dy/dx)dx.

You often see dy written as f'{x)dx.

y+Ay ¢t y(x)
oA &
4 Ay =change in y (along curve)
v dr | | dy =change in ¥ (along tangent)
—Ax Fig. 3.2 The linear approximation to Ay is
x=a x+dr=x+Ax dy=f"'(x)dx.

EXAMPLE3 y=x?hasdy/dx =2xsody=2xdx. The table has basepoint x=2.
The prediction dy differs from the true Ay by exactly (Ax)> = .01 and .04 and .09.

dx dy Ax Ay
y=x? 1 04 1 041 Ay=(2+ Ax)?—2?
dy = ddx 2 08 2 084 Ay =4Ax + (Ax)?
3 1.2 J 129

The differential dy = f"(x)dx i1s consistent with the derivative dy/dx=["(x). We
finally have dy = (dy/dx)dx, but this is not as obvious as it seems! It looks like
cancellation—it is really a definition. Entirely new symbols could be used, but dx
and dy have two advantages: They suggest small steps and they satisfy dy =f"(x)dx.
Here are three examples and three rules:

dix™ = nx" " dx df+gy=df +dg
d(sin x)=cos x dx dicfy=cdf
d(tan x) = sec’x dx d(fey=/fdg + gdf

Science and engineering and virtually all applications of mathematics depend on
linear approximation. The true function is “lirearized,” using its slope ©

Increasing the time by At increases the distance by = vAt
Increasing the force by Af increases the deflection by = vAf

Increasing the production by Ap increases its value by = vAp.

tFraction or not, it is absolutely forbidden to cancel the d’s.
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The goal of dynamics or statics or economics is to predict this multiplier v—the
derivative that equals the slope of the tangent line. The multiplier gives a local
prediction of the change in the function. The exact law is nonlinear—but Ohm’s law
and Hooke’s law and Newton’s law are linear approximations.

ABSOLUTE CHANGE, RELATIVE CHANGE, PERCENTAGE CHANGE

The change Ay or Af can be measured in three ways. So can Ax:

Absolute change Af Ax

, Af Ax
Relative change e "
Percentage change % x 100 % x 100

Relative change is often more realistic than absolute change. If we know the distance
to the moon within three miles, that is more impressive than knowing our own height
within one inch. Absolutely, one inch is closer than three miles. Relatively, three miles
is much closer:

3 miles 1 inch

o 0
300,000 miles “ 70 inches .001% < 1.4%.

EXAMPLE 4 The radius of the Earth is within 80 miles of r = 4000 miles.
(8) Find the variation dV in the volume V = #nr°, using linear approximation.
(b) Compute the relative variations dr/r and dV/V and AV}V.

Solution The job of calculus is to produce the derivative. Alter dV/dr = 4nr?, its
work is done. The variation in volume is dV = 4n(4000)%(80) cubic miles. A 2%
relative variation in r gives a 6% relative variation in V:

dr 80 dv _ 47(4000)%(80) _
r 4000 VvV 4n(4000)%/3
Without calculus we need the exact volume at r = 4000 + 80 (also at r = 3920);
AV _ 47(4080)3/3 — 4n(4000)*/3
4 4n(4000)%/3

One comment on dV = 4nr?dr. This is (area of sphere) times (change in radius). It is
the volume of a thin shell around the sphere. The shell is added when the radius
grows by dr. The exact AV/V is 3917312/640000%, but calculus just calls it 6%.

6%.

~6.1%

3.1 EXERCISES

Read-through questions In terms of x and Ax, linear approximation is
. T +Ax)xfix)+__1 . The error is of order {Axy’ or

On the graph, a linear approximation is given by the _ o fx ) _ . .

line. At x =g, the equation for that lineis Y=f(g)+ b _, [J,r —ay wth p=_1_. The differential dy equals __k

Near x =a = 10, the linear approximation to y = x3 is ¥ = times the differential __1__. Those movements are along the

.Atx=11theexactvalueis(11)*>=_"d . The

approximation is Y=_e . In this case Ay=__t_ and
dy=__¢g_ .Ifweknow sin x, then to estimate sin{x 4 Ax) we

m__ line, where Ay is along the __n

Find the linear approximation ¥ to y = f{x) near x = a:

1flx)=x+x%a=0 2fi)=1/x,a=2
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ix)=tan x. g = ni4 4 fix)=sin x, a= w2

3f

5 fix)=xsin x, a=2n 6 flxy=sinx, =0
Compute 7-12 within .01 by deciding on fix). choosing the
basepoint a. and evaluating fla) + [{al{x —a). A ecalculator
shows the error.

7 12.001)" B sin(.02)
9 cost.03) 10 (15.99)%
11 198 12 sini3.14)

Calculate the numerical error in these linear approximations
and compare with }(Ax)?f"(xx

13 (Lo = | + 3(.01)
15 (sin .01 = 0+ 0L01)
17 (L4 =2

14 cos( .0~ 1 + 0.01)
16 (1.01) *=1-3{.01
18 xW) > 3+ 3(—.01)

Confirm the approximations 19-21 by computing /*{0):
19 /1T—xx1—1ix

20 I\I——:E =t dx? fuse f= 1,.-'\r-ﬁ—_u, then put u = x?%)

a

¥ I L
21 el xPret 57T {usc flu) = /¢’ +u, then put u=x%

22 Write down the differentials df for fix)=cosx and
(x4 Dix — 1) and (x? + 1}

3.2 Maximum and Minimum Problems

In 23-27 find the linear change dF in the volume or ¢A in the
surface area.

23 4V if the sides of a cube change from 10 to 10.1.
24 d A if the sides of a cube change from x to x +dx.
25 dA if the radius of a sphere changes by dr.

26 dV if u circular cylinder with r = 2 changes height from 3
te 3.05 (recall ¥ = ar’h),

27 dV if a cylinder of height 3 changes from r=2to r=1.9.
Extra credit: What is dV if ¥ and h both change (dr and dh)?

28 In relativity the mass is mu,.-'\,/]_—{r,.-"c]2 at velocity . By
Problem 20 this is near mq + for small v. Show that
the kinetic energy imp? and the change in mass satisfy
Einstein's equation e = {Am)c’.

29 Enter 1.1 on your calculator. Press the square root key 5
times {slowly). What happens each time to the number after
the decimal point? This is because /1 + x =

30 In Problerm 29 the numbers you see are less than 1.05,
[.025, .... The second derivative of 1+ xis so the
linear approximation is higher than the curve.

31 Enter 0.9 on your calculator and press the square root
key 4 times. Predict what will appear the fifth time and press
again, You now have the root of 0.9. How many
decimals agree with 1 - 35(0.13?

Qur goal is to learn about fix) from dfidx. We begin with two quick questions.
If dfidx 1s positive, what docs that say about f? If the slope is negative. how 1s that
reflected 1n the function? Then the third question 1s the critical one:

How do you identify a maximum or minimum?  Normal answer:  The slope is zero.

This may be the most important application of calculus, to reach dfdx =0,
Take the casy questions first, Suppose dfidx 1s pasitive for every x between ¢ and b,
All tangent lines slope upward. The function fix) is increasing as x goes from a to b,

3B If df/dx >0 then f(x) is increasing. I dfidx <0 then f(x) is decreasing.

To define increasing and decreasing. look at any two points x < X. “Increasing”
requires fix) < fIX). " Decreasing™ requires fix) > LX) 4 positive slope does not mean
a positive functien. The function itself can be positive or negative.

EXAMPLE 1 fi{x} = x* — 2x has slope 2x — 2. This slope is positive when x> 1 and
negative when x < 1. The function increases after x = 1 and decreases before x = 1.
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84
fto |
6“ f‘n"“lx \fﬂ'l'.l.‘t
44 Jr‘min
21 Y oD D -4)
dx

f nin

xi-2x

Fig. 3.3 Slopes are — +. Slope is + — + — + so f is up-down-up-down-up.

We say that without computing f{x) at any point! The parabola in Figure 3.3 goes
down to its minimum at x = 1 and up again.

EXAMPLE2 x? — 2x + 5 has the same stope. Its graph is shifted up by 5, a number
that disappears in df;dx. All functions with siope 2x — 2 are parabolas x? — 2x + C,
shifted up or down according to C. Some parabolas cross the x axis (those crossings
are sclutions to f{x) = 0). Other parabolas stay above the axis. The solutions to
x? = 2x+ 5=0 are complex numbers and we don’t see them. The special parabola
x?—2x+ 1 ={x — 1)? grazes the axis at x= 1. It has a “‘double zero.” where f(x) =
dfidx =10,

EXAMPLE 3 Suppose dfidx=(x— D{x—2)ix— 3){x —4). This slope is positive
beyond v =4 and up to x=1 (df/dx=24 at x=10). And df/dx is positive again
between 2 and 3. At x =1, 2. 3, 4, this slope is zero and f{x) changes direction.

Here fix) is a ifth-degree polynomial. because f(x} is fourth-dcgree. The graph of
[ goes up-down-up-down-up. It might cross the x axis five times. It must cross
at leust once (like this one). When compiex numbers are allowed, every ffth-degree
polynomial has five roots.

You may feel that “positive slope implies increasing funcrion™ 1s obvious—perhaps
it is. But there is stifl something delicate. Starting from dfidx > 0 at every single point,
we have to deduce f{ X') > flx) at pairs of points. That is a *'local to global™ question,
{0 be handied by the Mean Value Theorem. It could also wait for the Fundamental
Theorem of Calculus: The difference [{X) — fix) equals the area under the graph of
dfidx. That area is positive. so f{ X'} exceeds f{x).

MAXIMA AND MINIMA

Which x makes f{x) as large as possible” Where 1s the smallest f{x)? Without calculus
we are reduced to computing values of f{x) and comparing. With calculus, the infor-
mation is in dfidx.

Suppose the maximum or minimurn is at a particular point x. It is possible that
the graph has a corner—and no derivative. Bur if dfidx exists, it must be zerv. The
tangent line is level. The parabolas in Figure 3.3 change from decreasing to increasing.
The slope changes from negative to positive. At this crucial point the slope is zero.

Q7
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3C Local Maximum or Minimum Suppose the maximum or minimum
occurs at a point x inside an interval where f(x) and df/dx are defined. Then

S'(x)=0.

The word “local” allows the possibility that in other intervals, f(x) goes higher or
lower. We only look near x, and we use the definition of df/dx.

Start with f{x + Ax) — f(x). If fix) is the maximum, this diflerence is negative or
zero, The step Ax can be forward or backward:

x+ Ax) - i )
ifax>q JOTANZSX)_negative i the limit L <0,
Ax positive dx
. + Ax) — ti
ifax<q JCTAXNT/)_megative o in the imit L 50
Ax negative x

Both arguments apply. Both conclusions df/dx <0 and df/dx > 0 are correct. Thus
dffdx=0.

Maybe Richard Feynman said it best. He showed his friends a plastic curve that
was made in a special way — “no matter how you turn it, the tangent at the lowest
point is horizontal” They checked it out. It was true.

Surely You're Joking, Mr. Feynman! is a pood book (but rough on mathematicians).

EXAMPLE 3 (continued) Look back at Figure 3.3b. The points that stand out
are not the “ups” or “downs” but the “turns.” Those are srationary points, where
dfidx = 0. We see two maxima and two minima. None of them are absolute maxima
or minima, because f{x) starts at ~ 2 and ends at + oc.

EXAMPLE 4 f{x) = 4x® — 3x* has slope 12x? — 12x*. That derivative is zero when
x% equals x*, at the two points x=0 and x= 1. To decide between minimum and
maximum ({iocal or absolute), the krst step is to evaluate f{x) at these stationary points.
We find fi0) =0 and f(1)= 1.

Now look at large x. The function goes down to — o¢ in both directions. (You can
mentally substitute x = 1000 and x = —1000). For large x, — 3x* dominates 4x*.

Conclusion f=1 1s an absolutc maximum, /=0 is not a maximum Or minimutn
{local or absolute). We have to recognize this exceptional possibility, that a curve (or
a car}can pause for an instant (/' = 0) and continue in the same direction. The reason
is the ““double zero” in 12x% — 12x3, from its double factor x?.

absolute max

end
point

Jtey=1xl

local max

end
potnt

Fig. 3.4 The graphs of 4x* — 3x* and x — x~'. Check rough points and endpoints.

-3 rough point 2



3.2 Moaximum and Minimum Problems

EXAMPLE 5 Define fix)=x+ x~* for x > 0. Its derivative 1 — 1/x? is zero at x = 1.
At that point f{1)=2 is the minimum value. Every combination like §+ 3 or $+3
is larger than f,,, = 2. Figure 3.4 shows that the maximum of x + x~ 1 js + 0.t

Important The maximum always occurs at a stationary point (where df/dx=0)or a
rough point (no derivative) or an eadpoint of the domain. These are the three types
of eritical points. All maxima and minima occur at critical points! At every other
point df/dx > 0 or df/dx < 0. Here is the procedure:

L. Solve df/dx = 0 to find the stationary points f{x).
2. Compute f{x) at every critical point—stationary point, rough point, endpoint.
3. Take the maximum and minimum of those critical values of f{x).

EXAMPLE 6 (Absolute valne f(x}= |x{) The minimum is zero at a rough point. The
maximum is at an endpoint. There are no stationary points.

The derivative of y= |x! is never zero. Figure 3.4 shows the maximum and mini-
mum on the interval [—3, 2]. This is typical of piecewise linear functions.

Question Could the minimum be zero when the function never reaches f{ix) =0?
Answer  Yes, fix)= 1/(1 + x)? approaches but never reaches zero as x — oo,

Remark1 x — 1+ o and f{x) = + oo are avoided when [ is continuous on a closed
interval a € x £ b. Then f{x) reaches its maximum and its minimum (Extreme Velue
Theorem). But x - o0 and f{x) -+ oo are too important to rule out. You test x — oo
by considering large x. You recognize f{x} — o0 by going above every finite value,

Remark 2 Note the difference between critical points (specified by x) and critical
values (specified by f{x)). The example x + x ! had the minimum point x = 1 and the
minimum velue f{1)=2.

MAXIMUM AND MINIMUM [N APPLICATIONS

To find a maximum or minimum, solve f(x)= 0. The slope is zero at the top and
bottom of the graph. The idea is clear—and then check rough points and endpoints.
But to be honest, that is not where the problem starts.

In a real ‘application, the first step {often the hardest) is to choose the unknown
and find the function. It is we ourselves who decide on x and fi{x). The equation
df/dx = 0 comes in the middle of the problem, not at the beginning. I will start on
a new example, with a question instead of a function.

EXAMPLE7? Where should you get onto an expressway for minimum driving time,
if the expressway speed is 60 mph and ordinary driving speed is 30 mph?

I know this problem well—it comes up every moming. The Mass Pike goes to MIT
and I have to join it somewhere. There is an entrance near Route 128 and another
entrance further in. I used to take the second one, now I take the first. Mathematics
should decide which is faster—some mornings I think they are maxima.

Most models are simplified, to focus on the key idea. We will allow the expressway
to be entered at any point x (Figure 3.5). Instead of two entrances (a discrete probiem)

tA good word is appreach when f(x) — 0. Infinity is not reached. But I still say “the maximum
is oc.”
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3 Applicdations of the Derivative

we have a continuous choice {a calculus problem). The trip has two parts, at speeds
30 and 60:
a distance /a® + x* up to the expressway, in /a” + x2/30 hours
a distance & x on the expressway, in (b — x)/60 hours
o . ' = 1
Problem  Minimize fix) = total time = ﬁ\ a-+x" + aa{h =X
We have the function f{x). Now comes calculus. The first term uses the power rule:

The derivative of u''? is 4u~""?dujdx. Here u = a* + x? has dujdx = 2x:

. [ 1 . 1
Jix)= 0 5[(12 + x3) 7 2x) - 50 (1

To solve f'{x) = 0, multiply by 60 and square both sides:

(@*+ %) Y2xp=1 gives 2x=(a’+ X" and 4x? =4+ X2 (2)
Thus 3x?=4* This yields two candidates, x= a,.-"vfﬁ and x= — a,f\/?;. But a
negative x would mean uselcss driving on the expressway. In fact /7 is not zero at
x= —aj/3. That falsc root entered when we squared 2x.
MIT » driving tme f{x) driving time f{v}
when fr > a/v' 3 when b < a/N 3
- A ok s s o i ‘
f':k-‘é-'ﬂ:
cnter Jr':;:
freeway ’
Ry

b b

A

Fig. 3.9 Join the freeway at x  minimize the driving time f(x).

I notice something surprising. The stationary point x = a,-'\_,-@ does not depend on
b, The total time includes the constant b;/60, which disappeared in df/dx. Somehow
b must enter the answer, and this 13 a warning to go carefuily. The minimum might
occur at a rough point or an endpoint. Those are the other critical points of /. and
our drawing may not be realistic, Certainly we expect x < b, or we are entering the
expressway beyond MIT.

Continue with calculus. Compute the driving time f{x) for an cntrance at
X*=a{ /3

| gy 1 a Ll b .
S T R L I
= gva Tt g (b \.;3) 60 oo

The square root of 4a%/3 is 2(1_.-':».?'3, We combined 230 — 1/60= 360 and divided
by /3. Is this stationary value [* @ minimum? You must look also at endpoints:

enter at x = O: travel Ume 15 ¢ 30 + h.60 = f**

enter at x = travel time is . @” + h7730 = j¥¥%,



3.2 Maximum and Minimum Problems

The comparison f* < f** should be automatic. Entering at x =0 was a candidate
and calculus didn't choose it. The derivative is not zero at x = 0. It is not smart to
go perpendicular to the expressway.

The second comparison has x=b. We drive directly to MIT at speed 30. This
option has 1o be taken scriousiy. In fact it is optimal when & is smail or a is large.

This choice x = b can arise mathematically in two ways. If all entrances are between
0 and b, then b is an endpoint. If we can enter beyond MIT, then b is a rough point.
The graph in Figure 3.5¢ has a corner at x =&, where the derivative jumps. The
reason is that distance on the expressway is the absolute vaiue |b — x|-—never negative.

Either way x = b is a critical point. The optimal x is the smaller of af\/g and b,

if a,-“\/i < b: stationary point wins, enfer at x = aj\/i total time f/™*
if a,-‘\/i = b no stationary peint, drive directly to MIT, time f***

The heart of this subject is in “word problems.” All the calculus is in a few lines,
computing /* and solving /*(x) = 0. The formulation took longer. Step | usually does:

1. Express the quantity to be minimized or maximized as a function f(x).
The variable x has to be selected.
2. Compute f"(x), solve f*(x) =0, check critical points for f,;, and f..-

A picture of the problem {and the graph of f(x)) makes all the difference.

EXAMPLE 7 (continued) Choose x as an angle instead of a distance. Figure 3.6
shows the triangle with angle x and side 4. The driving distance to the expressway is
a sec x. The distance on the expressway is & -- 4 tan x. Dividing by the speeds 30 and
60, the driving time has a nice form:

dsecx b—atanx

(x) = total time = -
f(x) = total time 70 0 3
The derivatives of sec x and tan x go into df/dx:
i
z}; = % sec x tan x — %scczx, 4
Now set dffdx = 0, divide by a, and muitiply by 30 cos*x;
sin x = 4. {5)

This answer is beautiful. The angle x is 30°! That optimal angle (z/6 radians) has
sin x = 4. The triangle with side a and hypotenuse a;"\/ﬁ 15 a 30 60 90 right triangle.

I don’t know whether you prefer \/a®+ x? or trigonometry. The minimum is
exactly as before—either at 30" or going directly to MIT.

° I . 12000 +
L & ! t
e > ;28}: T Income
fr—la tan 4 :.\C i« Chergy T
o ; [ Cost
__ o N )
p= Y Ax-
enter ; -
X
p=
o tan x ; ) Profit
- Pontiil B
ENEFEY — MY L 0 20 30

fig. 3.6 (a) Driving at angle x. {b) Energies of spring and mass. {¢) Prefit = income - cost.
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3 Applications of the Derivative

EXAMPLE 8 In mechanics, nature chooses minimum energy. A spring is pulled down
by a mass, the energy is f{x), and df/dx =0 gives equilibrium. It is a philosophical
question why so many laws of physics involve minimum energy or minimum time—
which makes the mathematics easy.

The energy has two terms—for the spring and the mass. The spring energy is
$kx?—positive in stretching (x > 0 is downward) and also positive in compression
(x < Q). The potential energy of the mass is taken as —mx—decreasing as the mass
goes down. The balance is at the minimum of f{x) = $kx* — mx.

I apologize for giving you such a small problem, but it makes a crucial point.
When f(x) is quadratic, the equilibrium equation dffdx = 0 is linear.

dfidcx=kx ~m=20.

Graphically, x = m/k is at the bottom of the parabola. Physically, kx = m is a balance
of forces—the spring force against the weight. Hooke's law for the spring force is
elastic constant k times displacement x.

EXAMPLE ¢ Derivative of cost = marginal cost {our first management example).

The paper to print x copies of this book might cost C = 1000+ 3x doliars. The
derivative is dC/dx = 3. This is the marginal cost of paper for each additional book.
If x incrcases by onc book, the cost C increases by $3. The marginal cost is like the
velocity and the total cost is like the distance.

Marginal cost is in doflars per book. Total cost is in doltars. On the plus side, the
income is I(x) and the marginal income is df{dx. To apply calculus, we overlook the
restriction to whole numbers.

Suppose the number of books increases by dx.t The cost goes up by {(dCjdx) dx.
The income goes up by (di/dx)dx. If we skip ail other costs, then profit P(x)=
income [({x) — cost C(x). In most cases P increases to a maximum and falls back.

At the high point on the profit curve, the marginal profit is zero:

dP:dx=0 or dl:dx=dCidx (6)
Profit is maximized when marginal income | equals marginal cost C'.
This basic rule of economics comes directly from calculus, and we give an example:

C(x) = cost of x advertisements = 900 + 400x — x?
setup cost 900, print cost 400x, volume savings x>

{(x) = income due to x advertisements = 600x — 6x?
sales 600 per advertisement, subtract 6x* for diminishing returns

optimal decision dCidx=dl/dx or 400—2x=600—-12x or x=20
profit = income — cost = 9600 — 8500 = 1100

The next section shows how to verify that this profit is 4 maximum not a minimum.
The first exercises ask you to soive df/dx = 0. Later exercises also look for f{x).

tMaybe dx is a differential calculus book. I apelogize for that,
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3.2 EXERCISES

Read-throngh questions

If df{dx> 0 in an interval then f{x)is _ o . If a maximum
or minimum occurs at x then f(x)=_ b__. Points where
f(x)=0are called __¢__points, The function flx) = Ix* — x
has a (minimum)(maximum)at x =__d . A stationary point
that is not a maximum or minimum occurs for flx})= __e

is not defined
oratthe g of the domain, The minima of |x| and 5x for
—2gxg2areat x=_h and x=__1 , even though
dffdx is not zero. x* is an absolute __ 1  when f{x%) = f(x)
for all x. A __ % minimum occurs when f{x*) < f{x) for

all x near x*.

Extreme values can also occur where

The minimum of 4ax®* —bxis __1__atx=_m

Find the stationary points and rough points end endpoints.
Decide whether each point is a [ocal or absolute minimum nr
maximum.

1fix)=x24+4x+5 —w<x<w
2 flx)=x~12x, —w0 <X <0
3 =x*+3, —1€xg4
4 fl)=x>+{2x) L <x<4
5 fx)=(x—xH%, ~1<xx1
6 flx)=1/(x-x})0<x<1
TA)=3x* +8x" - 18x?, ~m <x <0
8 fla)={x"-4xforO<x<l, x*—4for 1 €x<2}
9 flx)=/x—1+,/9-x,1<x<9
10 fix}=x+sinx, 0 g xg2n
) =x*1-x5 —w<x<w
12 fix)=x/(1+x), 0< x < 100
13 flx) =distance from x > 0 to nearest whole number
14 flx)=distance from x = 0 to nearest prime number
15 f()=|x+1|+[x—1], —3gx52
16 fix)=x/1-x%0<x<1
17 fix}=x"?—x¥, 0g x4
18 fix}=sin x +cos x, 0K x € 2=n
19 ixy=x4smx, 0K x<2n
20 0y =cos’fsin b, —n<Bn
NSfiN=4sinf@—3cos 0, 00<2x
2 fiy={x*+1forxgl,x*~4x+5forxz1)

In applied problems, choose metric units if you prefer.

23 The airlines accept a box if length + width + height=
[+w+h<62" or 158 cm. If k is fixed show that the maxi-
mum volume (62-w—kjwh is V=31 —4h)>. Choose # to
maximize V. The box with greatest volume is a .

24 If a patient’s pulse measures 70, then 80, then 120, what
least squares value minimizes (x — 701 + (x — 80)® +
(x — 120)*? If the patient got nervous, assign 120 a lower
weight and minimize (x — 702 + (x ~ 80)* + 4{x — 120)%.
25 At speed p, a truck uses av + (b/v) gallons of fuel per mile.
How many miles per gallon at speed v? Minimize the fuel
consumption, Maximize the number of miles per gallon.
26 A limousine gets (120 —2v)/5 miles per gallon. The
chaufieur costs $10/hour, the gas costs §1/gallon.

(a) Find the cost per mile at speed v.

(b) Find the cheapest driving speed.
27 You should shoot a basketball at the angle 8 requiring
minimum speed. Avoid line drives and rainbows. Shooting
from (0,0) with the basket at (a,b), minimize ff)=
1/(a sin 8 cos 8 — b cos?6).

(a)If b=0 you are level with the basket. Show that

& =45° is best (Jabbar sky hook).

(b) Reduce df/df =0 to tan 280 = — afb. Solve when a = b,

(c) Estimate the best angle for a free throw.

The same angle allows the largest margin of error {Sports
Science by Peter Brancazio). Section 12.2 gives the fiight path.

28 On the longest and shortest days, in June and December,
why does the length of day change the least?

29 Find the shortest ¥ connecting P, Q, and B in the figure.
Originally B_was a birdfeeder. The length of ¥ is L{x)=
b—x)+2./a%* +x%

(a) Choose x to minimize L (not allowing x > b).

{b} Show that the center of the ¥ has 120° angles.

(c) The best ¥ becomes a V when a/b= .

cost
2
1 income
R=3¢-x?

30 If the distance function is fTt) = (1 + 3)/(1 + 3t2), when
does the forward motion end? How far have you traveled?
Extra credit: Graph f{r) and df/dt.
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In 31-34, we make and sell x pizzas. The income is R(x) =
ax + bx? and the cost is Clx} = ¢ + dx + ex?.

31 The profit is TI{x)= . The average profit per
pizzais = . The marginal profit per additional pizza
is  dllidx= . We should maximize the
(profit} (average profit) (marginal profit).

32 We receive R{x)=ax + hx*> when the price per pizza is
px)= . In reverse: When the price is p we sell x =
pizzas (a function of p). We expect b < 0 because

33 Find x to maximize the profit [T{x). At that x the marginal
profit is dITjdx =

34 Figure B shows R(x)=3x—x? and C,(x}=1+x? and
C,(xy=2+ x* With cost C,, which sales x makes a profit?
Which x makes the most profit? With higher fixed cost in C,,
the best plan is

The cookie box and popcorn box were created by Kay Dundas
froma 12" x 12" square. A box with no top is a calculus classic.

ha| =
Y

bh-x &)

35 Choose x to find the maximum volume of the cookie box.
36 Choose x to maximize the volume of the popcorn box.

37 A high-class chocolate box adds a strip of width x down
across the front of the cookie box. Find the new volume Fix)
and the x that maximizes it. Extra credit: Show that V_,, is
reduced by more than 20%.

38 For a box with no top, cut four squares of side x from the
corners of the 12" square. Fold up the sides so the height is
x. Maximize the volume.

Geometry provides many problems, more applied than they
seem.

39 A wire four feet long is cut in two pieces. One picee forms
a circle of radius r, the other forms a square of side x, Choose
r to minimize the sum of their areas. Then choose r to
maximize,

3 Appiications of the Derlvative

40 A fixed wall makes one side of a rectangle. We have 200
feet of fence for the other three sides. Maximize the area A in
4 steps:

1 Draw a picture of the situation.

2 Select one unknown quantity as x (but not 4.

3 Find all other quantities in terms of x.

4 Solve dA/dx = 0 and check endpoints.

41 With no [ixed wall, the sides of the rectangle satisfy
2x + 2y = 200. Maximize the area, Compare with the area of
a circle using the same fencing.

42 Add 200 meters of fence to an existing straight 100-meter
fence, to make a rectangle of maximum area {invented by
Professor Klee).

43 How large a rectangle fits into the triangle with sides
x=0, p=0, and x/4 + »/6 =17 Find the point on this third
side that maximizes the area xy.

44 The largest rectangle in Problem 43 may not sit straight
up. Put one side along x/4 + y/6 =1 and maximize the area.

45 The distance around the rectangle in Problem 43 s
P = 2x + 2y, Substitute for y to find P{x). Which rectangle
has P, =127

46 Find the right circular cylinder of largest volume that fits
in a sphere of radius 1.

47 How large a cylinder fits in a cone that has base radius R
and height H? For the cylinder, choose r and k on the sloping
surface r/R + #/H = | to maximize the volume V = nr?h.

48 The cylinder in Problem 47 has side area A =2nrh.
Maximize A4 instead of V.

49 Including top and bottom, the cylinder has area
A= 2nrh 4 2nr? = 20rH(1 — (¢/R}} + 2072,
Maximize 4 when H > R. Maximize 4 when R > H,

*50 A wall § feet high is 1 foot from a house. Find the length
L of the shortest ladder over the wall to the house, Draw a
triangle with height v, base 1 + x, and hypotenuse L.

51 Find the closed cylinder of volume V =nr?h = 16n that
has the least surface area.

52 Draw a kitc that has a triangle with sides [, 1, 2x next to
a triangle with sides 2x, 2, 2. Find the area 4 and the x that
maximizes it. Hint: In dAjdx simplify /1 — x? — x%/ /1 —x*
to (1 —2x2)//1—x.

In 53-56, x and ) are nonnegative numbers with x + v =10.
Maximize and minimize:

53 xy 54 x%4y? 55 y—{1/x)

57 Find the total distance f{x} from 4 to X to C. Show that
dfidx = 0 leads to sin 2 = sin ¢. Light reflects at an equal angle
to minimize travel time.

56 sin x sin ¥
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58 Fermat's principle says that light travels from A to B on
the quickest path. Its velocity above the x axis is v and below
the x axis is w.

(a) Find the time T{x) ftom A4 to X to B. On AX, time=
distance/velocity = . /72 + x3/v.

(b) Find the equation for the minimizing x.

{c) Deduce Srell’s law (sin a)fv = (sin b)/w.

“Closest point problems™ are models for many applications.
%9 Where is the parabola y = x2 closest to x =0, y=2?
60 Where is the line y = 5 — 2x closest to (0, 0)?

61 What point on y= —x* is closest 1o what point on
y=75—2x? At the nearest points, the graphs have the same
slope. Sketch the graphs.

62 Where is y=x* closest 10 {0, 4? Minimizing
¥+ (y—$)* +y+(y— 1 gives y < 0. What went wrong?

63 Draw the ]#ne ¥ == mx pasging near (2, 3),(1, 1), and (-1, 1}.
For a least squares fit, minimize

G=2mP+(1—m?+{1 +m?

3.3 Second Derivatives: Bending and Acceleration
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64 A triangle has corners (—1, 1}, (x, x?), and (3, 9) on the
parabola y = x*. Find its maximum area for x between —1
and 3. Hint: The distance from (X,Y) to the line y=mx + b

is )Y — mX — b)f/1 + m™.

65 Submarines are located at (2, 0) and (1, 1). Choose the
slope m so the line y = mx goes between the submarines but
stays as far as possible from the nearest one.

Problems 66—72 go back to the theory.

66 To find where the graph of y(x} has greatest s[ope solve
. For y= 1/(1 4 x*) this point is

67 When the difference between f(x) and g{x) is smallest, their
slopes are . Show this point on the graphs of
S=2+x*and g=2x —x2.

68 Suppose y is fixed. The minimum of x* + xy — ¥* {a func-
tion of x) is m(y) = . Find the maximumn of m{y}.

Now x is fixed. The maximum of x? + xy — y* (a function
of y) is M(x)= . Find the minimum of M{x).

69 For each m the minimum value of f{x) —
m. What is f{x)?

70 y = x + 2x? sin{1/x) has slope 1 at x ={0. But show that y
is not increasing on an interval around x = 0, by finding points
where dy/dx =1 —2 cos(1/x) + 4x sin(1/x) is negative.

mx occurs at x =

71 True or false, with a reason: Between two local minima of
a smooth function f{x} there is a local maximum.

72 Create a function y(x) that has ils maximum at a rough
point and its minimum at an endpoint.

73 Draw a circular pool with a lifeguard on one side and
a drowner on the opposite side, The lifeguard swims with
velocity v and tuns around the rest of the pool with velocity
w = 10v. If the swim direction is at angle § with the direct
line, choose @ to minimize and maximize the arrival time.

When f’(x) is positive, f(x) is increasing. When dy/dx is negative, y{x) is decreasing.
That is clear, but what about the second derivative? From looking at the curve,
can you decide the sign of f*(x) or d?y/dx>? The answer is yes and the key is in the

bending.

A straight line doesn’t bend. The slope of y = mx + b is m (a constant). The second
derivative is zero. We have to go to curves, to see a changing slope. Changes in the

derivative show up in f"(x):

f=x%has f"=2x and f” =2 (this parabola bends up)

y =sin x has dy/dx = cos x and d?p/dx* = — sin x (the sine bends down)
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The slope 2x gets larger even when the parabola is falling. The sign of f or f* is not
revealed by /. The second derivative tells about change in slope.

A function with f“(x) > O is concave up. It bends upward as the slope increases. It
is also called convex. A function with decreasing slope—this means f"{x) < 0-—is
concave down. Note how cos x and | + cos x and even | + $x + cos x change from
concave down to concave up at x =x/2. At that point f”= — cos x changes from
negative to positive. The extra 1 + 4 x tilts the graph but the bending is the same.

X
F+=+cosy

2 tangent ahove

"< y= gt 242

Fren

bend
down

tangent
Crosses

a1

Fig. 3.7 Increasing slope =concave up (/> 0). Concave down is /7 <. Inflection point "= 0.

Here is another way to see the sign of f*. Watch the tangent lines. When the curve
is concave up, the tangent stays below it. A linear approximation is too low. This
section computes a quadratic approximation—which includes the term with /" > 0.
When the curve bends down (/" < 0), the opposite happens——the tangent lines are
above the curve. The linear approximation is too high, and /™ lowers it.

In physical motion, /”(f) is the acceleration—in units of distance/(time). Accelera-
tion 1s rate of change of velocity. The oscillation sin 2t has v = 2 cos 2 (maximum
speed 2) and @ = — 4 sin 2t {maximum acceleration 4).

An increasing population means f* > 0. An increasing growth rate means {" > 0.
Those are different. The rate can slow down while the growth continues.

MAXIMUM VS. MINIMUM

Remember that {'(x)=0 locates a stationary point. That may be a minimum or a
maximum. The second derivative decides! Instead of computing f{x) at many points,
we compute f(x) at one peint-~the stationary point. It is a minimum if /“{x) > 0.

3D When f'(x)=0and f"(x) > 0, there is a lecal minimum at x,
When f'(x) =0 and f"{x) <0, there is a lecal maximum at x.

To the left of 2 minimum, the curve is falling. After the minimum, the curve rises. The
slope has changed from negative to positive. The graph bends upward and /"(x) > 0.

At a maximum the slope drops from positive to negative. In the exceptional case.
when [(x}=0 and also f“(x)= 0, anything can happen. An example is x*. which
pauses at x = 0 and continuges up (its slope is 3x?  0). However x* pauses and goes
down (with a very flat graph).

We emphasize that the information from f'(x) and f“(x) is only “local.”” To be
certain of an absolute minimum or maximum, we need information over the whole
domain.
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EXAMPLE1 f(x)=x>—-x?* has f'(x)=3x—2x and f{x)=6x—2

To find the maximum and/or minimum, solve 3x* — 2x = 0. The stationary points
are x =0 and x = 4. At those points we need the second derivative. It is f"(0) = — 2
(local maximum) and f“(§) = + 2 (local minimum).

Between the maximum and minimum is the imflection point. That is where
J"(x}=0. The curve changes from concave down to concave up. This example has
f"(x}= 6x — 2, so the inflection point is at x =4,

INFLECTION POINTS

In mathematics it is a special event when a function passes through zero. When the
function is f, its graph crosses the axis. When the function is f, the tangent line is
horizontal. When f” goes through zero, we have an inflection point.

The direction of bending changes at an inflection point. Your eye picks that out in
a graph. For an instant the graph is straight (straight lines have f* = 0). It is easy to
see crossing points and stationary points and inflection points. Very few people can
recognize where ' =0 or /" = 0. I am not sure if those points have names.

There is a2 genuine maximum or minimum when f'(x) changes sign. Similarly, there
is a genuine inflection point when f“(x) changes sign. The graph is concave down on
one side of an inflection point and concave up on the other side.t The tangents are
above the curve on one side and below it on the other side. At an inflection point,
the tangent line crosses the curve (Figure 3.7b).

Notice that a parabola y = ax? + bx + ¢ has no inflection points: y” is constant. A
cubic curve has one inflection point, because f is linear. A fourth-degree curve might
or might not have inflection points—the quadratic f“(x) might or might not cross
the axis.

EXAMPLE2 x* - 2x? is W-shaped, 4x® — 4x has two bumps, 12x2 — 4 is U-shaped.
The table shows the signs at the important values of x:

x =2 -t -3 0 131 /2

0 - 0,0 - 0
£ 0 + 0 - 0
S 0 - 0

Between zeros of f(x) come zeros of f'{x) {stationary points). Between zeros of f'(x)
come zeros of /(x) {inflection points). In this example f(x) has a double zero at the
origin, so a single zero of ' is caught there. It is a local maximum, since f"(0) < 0.

Inflection points are important—not just for mathematics. We know the world
population will keep rising. We don’t know if the rate of growth will slow down.
Remember: The rate of growth stops growing at the inflection point. Here is the 1990
report of the UN Population Fund.

The next ten years will decide whether the world population trebles or merely
doubies before it finally stops growing. This may decide the future of the carth as
a habitation for humans. The population, now 5.3 billion, is increasing by a quarter
of a million every day. Between 90 and 100 million people will be added every year

¥That rules out f{x}=x* which has f” =12x?> 0 on both sides of zero. Its tangent line is
the x axis. The line stays below the graph—so no inflection point.
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during the 1990s; a billion people-—a whole China—over the decade. The fastest
growth will come 1n the poorest countries.

A few vears ago it seemed as if the rate of population growth was slowingt
cverywhere except in Africa and parts of Scuth Asia. The world’s population
seemed set to stabilize around 10.2 billion towards the end of the next century.

Today, the situation looks less promising. The world has overshot the marker
points of the 1984 “most likely’” medivm projection. It i1s now on course for an
eventual total that will be closer to 11 biliion than to 10 billion.

If fertility reduetions continue to be slower than projected, the mark could be
missed again. In that case the world could be headed towards a total of up to 14
billicn people.

Starting with a census, the UN follows each age group in each country. They
estimate the death rate and fertility rate—the medium estimates are published. This
report 1s saying that we are not on track with the estimate.

Section 6.5 will come back to population. with an equation that predicts 10 billion.
[t assumes we are now at the inflection point. But China’s second census just started
on July 1, 1990. When it’s finished we will know if the inflection point is still ahead.

You now understand the meaning of /“(x). Its sign gives the direction of bending—
the change in the slope. The rest of this section computes how much the curve bends—
using the size of f” and not just its sign. We find quadratic approximations based on
F{x). In some courses they are optional—the main points are lighlighted.

CENIERED DIFFERENCES AND SECOND DIFFERENCES

Caiculus begins with average velocities, computed on either side of x:

x+Ax) — S0 A
’M and ————~-- are close to  f'{x). (1)
Ax Ax
We never mentioned it, but a better approximation to f'(x) comes from averaging
those two averages. This produces a centered difference, which is based on x+ Ax
and x — Ax. It divides by 2Ax;
! [.f_'!_-\' A9 -fiv ﬂm*] _ i+ A —fix - AY)

Ax Ax

We claim this is better. The test is to try it on powers of x.

For f{x) = x these ratios ali give f" =1 (exactly). For f{x)= x?, only the centercd
difference correctly gives /= 2x. The one-sided ratio gave 2x + Ax (in Chapter [ it
was 2t + h). It is only "first-order accuratc.” But ccntering leaves no error. We are
averaging 2x — Ax with 2x — Ax. Thus the centered difference is “second-order
accurate.”

JANES AL (2)

I ask now: What ratio concerges to the second derivarive? One answer (s to take
differences of the first derivative. Certainly Af"/Ax approaches /7. But we want a
ratio involving f itself. A natural dea 15 to take differences of differences. which
brings us to “second differences™:

St 8x) ~ S fix — AX)
Ax Ax fix+ Ax) = 2+ fix - Ax) df
Ax (Ax)? T

3

+The United Nations watches the second derivative!



3.3 Second Derivatives: Bending and Acceleration

On the top, the difference of the difference is A(Af)= A*f. It corresponds to d’f.
On the bottom, (Ax)* corresponds to dx?*. This explains the way we place the 2’s in
d*f/dx*. To say it differently: dx is squared, df is not squared—as in distance/(time)?.

Note that (Ax)? becomes much smaller than Ax. If we divide Af by (Ax)?, the ratio
blows up. It is the extra cancellation in the second difference A*f that allows the limit
to exist. That limit is f"(x).

Application The great majority of differential equations can’t be solved exactly.
A typical case is f(x) = — sin f(x) (the pendulum equation). To compute a solution,
I would replace f”(x) by the second difference in equation (3). Approximations at
points spaced by Ax are a very large part of scientific computing.

To test the accuracy of these differences, here is an experiment on f(x)=
sin x + cos x. The table shows the errors at x = 0 from formulas (1), (2), (3):

step length Ax one-sided errors centered errors second difference errors

1/4 1347 .0104 —.0052
1/8 .0650 .0026 —.0013
1/16 0319 0007 —.0003
1/32 0158 .0002 —.0001

The one-sided errors are cut in half when Ax is cut in half. The other columns
decrease like (Ax)?. Each reduction divides those errors by 4. The errors from one-
sided differences are O(Ax) and the errors from centered differences are O(Ax)>.

The “big O” notation When the errors are of order Ax, we write E = O(Ax). This
means that E < CAx for some constant C. We don’t compute C—in fact we don’t
want to deal with it. The statement “one-sided errors are Oh of delta x™ captures
what is important. The main point of the other columns is E = O(Ax)*.

LINEAR APPROXIMATION VS. QUADRATIC APPROXIMATION

The second derivative gives a tremendous improvement over linear approximation
fla) + f'(a)(x — a). A tangent line starts out close to the curve, but the line has no
way to bend. After a while it overshoots or undershoots the true function (see
Figure 3.8). That is especially clear for the model f(x) = x*, when the tangent is the
x axis and the parabola curves upward.

You can almost guess the term with bending. It should involve f”, and also (Ax)*.
It might be exactly f”(x) times (Ax)? but it is not. The model function x? has f” = 2.
There must be a factor 4 to cancel that 2:

3E The quadratic appro: to a smooth function f(x) near x =a is
f0) % fla)+[@)x = a) + 1" (@)(x — a). @

At the basepoint this is f(a) = f(a). The derivatives also agree at x = a. Furthermore
the second derivatives agree. On both sides of (4), the second derivative at x=a is
f"(a).

The quadratic approximation bends with the function. It is not the absolutely
final word, because there is a cubic term £f"(a)(x — a)* and a fourth-degree term
#1/""(a)(x — a)* and so on. The whole infinite sum is a “Taylor series.” Equation (4)
carries that series through the quadratic term—which for practical purposes gives a
terrific approximation. You will see that in numerical experiments.
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Two things to mention. First, equation (4) shows why [ > ( brings the curve above
the tangent line. The linear part gives the line, while the quadratic part is positive
and bends upward. Second, equation {4} comes from (2) and (3). Where one-sided
differences give fix + Ax) & f(x) + f'(x)Ax, centered differences give the quadratic:

from(2): fix+Ax) = fix—Ax)+2f(x) Ax

from (3): fix+Ax) = 2f(x)— fix — Ax) + f"(x)(Ax)2.
Add and divide by 2. The resuit is f(x + Ax) = f{x) + f(x)Ax + 4 f“(x}{A x)?. This is
correct through (Ax)? and misses by (Ax)?, as examples show:

EXAMPLE 3 (x+ Ax)® = (x¥)+ (3x*)(Ax) + $(6x)(Ax)? + error (Ax)°.

EXAMPLE4 (1+x) ~ 1+nx+4in(n— 1)x2

The first derivative at x =0 is n. The second derivative is n(n — 1). The cubic term
would be $n(n — 1)(n — 2)x*. We are just producing the binomial expansion!

i+
can't
bend 1 . .
EXAMPLE 5 I ~ 1+ x+ x*=start of a geometric series.
- x
l_“"_—’ - . - + .

-5 1/(1 — x) has derivative 1/(1 — x)°. Its second derivative is 2/(1 - x)*. At x =0 those
L+ x+x2 equal 1.1,2. The factor ¥ cancels the 2, which leaves 1,1,1. This explains 1 + x + x2.
near The next terms are x* and x*. The whole seriesis 1/(1 — x)=1+ x4+ x*+ x>+ -,

Fig. 3.8 Numerical experiment 1//1+ x~1—}x+§x? is tested for accuracy. Dividing x

by 2 almost divides the error by 8. If we only keep the linear part 1 — ¥x, the error
is only divided by 4. Here are the errors at x = %, g, and §:

. 3
linear approximation (errorzgxl): 0194 0053 .0014

-5
quadratic approximation (error = Ex’): ~.00401 —.00055 —.00007

3.3 EXERCISES

Read-through questions

The direction of bending is given by the sign of __a
second detivative is __ D
cave up {or convex). The graph bends _ ¢
lines are
cave __#®

d

. If the
in an interval, the function is con-
. The tangent
the graph. If f"(x) <0 then the graph is con-

hold water.

1 A graph that is concave upward is inaccurately said to
“hold water,” Sketch a graph with f“(x) > 0 that would not

2 Find a function that is concave down for x < 0 and con-
cave up for 0 <« x < 1 and concave down for x > L.

, and the slope is __f

At a point where f'(x) =0 and f"(x) > 0, the function has a

g_ . Atapoint where __h __, the function has a maximum.
A point where f"(x)=0 is an __i__ point, provided f*
changes sign. The tangent line _ | the graph.

The centered approximation to f*(x) is [__k__]/2Ax. The
3-point approximation to f*(x)is [__! _J#{(Ax)*. The second-
order approximation to f{x + Ax} is flx)+f(x)Ax +_m__,
Without that extra term thisis just the _ n__ approximation.

With that term the erroris O(__©o__ ).

3 Can a function be always concave down and never cross
zero? Can it be always concave down and positive? Explain.

4 Find a function with f"(2)=0 and no other inflection

point.

True or false, when fix) is a 9th degree polynomial with
S{1)=0and f'(3)= 0. Give {or draw) a reason.

5 f{x)=0 somewhere between x =1 and x= 3.

6 f"(x})=0 somewhere between x =1 and x=3.
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7 There is no absolute maximum at x=3.
8 There are seven points of inflection.
9 If fix) bas nine zeros, it has seven inflection points.

10 If f{x) has seven inflection points, it has nine zeros,

In 11-16 decide which stationary points are maxima or

1! ﬂx} = xz - 6I
13 flx)==x*—6x°

15 fix)=sin x —cos x

12 fix)=x> —6x2
14 fx) = x!'! —6x!°
16 flx}=x +sin 2x

Locate the inflection points and the regions where ([x) is con-
cave up or down.

17 fix)=x +x? —x?
19 flx} = (x — 2)%{x —4)?

21 If fix) is an even function, the centered difference
{ flAx) — fil—Ax))/2Ax exactly equals £'(0) =0. Why?

22 If fix) is an odd function, the second difference
[ f{Ax) — 2 f{0) + fl— Ax)]/(Ax)? exactly equals £*(0) = 0. Why?

18 fix)=sin x+tan x
20 f(x) =sin x + (sin x)*

Write down the quadratic f{0) +/'(O)x + /”(0)x? in 23-26.

23 fix}=cos x+sin x 24 fix)=tan x

25 fix)=(sin x)/x 26 flx)=t+x+x?

In 26, ind 1)+ £ {(x — 1)+ 3/ (1)(x —1)? around a = 1.
27 Find A and B in /1 —x =1+ Ax + Bx®.

28 Find 4 and Bin 1/{1 —x}* = 1 + dx + Bx?

29 Substitute the quadratic approximation into
[fix + Ax) —fix)]/Ax, to estimate the error in this one-sided
approximation to f'(x).

30 What is the quadratic approximation at x = 0 to f{— Ax)?
31 Substitute for f{x + Ax) and f(x — Ax) in the centered
approximation [ f(x + Ax)—f(x — Ax)}/2Ax, 1o pget

S'(x)+ error. Find the Ax and (Ax)® terms in this error. Test
on fix)=x*at x=0.

32 Guess a third-order approximation flAx} = f(0)+
SOAx +3(0)Ax) + . Test it on fix) = x’.

Coustruct a table as in the text, showing the actual errors at
x=0 in one=sided differences, centered differences, second
differences, and quadratic approximations. By hand take two
values of Ax, by calculator take three, by computer take four.

33 fix}=x?+x* M )= 1/1—x)
35 f{x)=x*+sin x

36 Example 5 was 1/(1 —x) =~ 1 4+ x+ x% What is the error
at x =0.1? What is the error at x =2?

37 Substitute x =.01 and x = — 0.1 in the geometric serics
Yl—-x)=1+x+ x>+ to find 1/.99 and 1/1.1—first to
four decimals and then to all decimals.

38 Compute cos 1° by equation (4) with a =0. OK to check
on a calculator. Also compute cos 1. Why so far off?

39 Why is sin x = x not only a linear approximation but also
4 quadratic approximation? x =0 is an point.

40 If fix)is an even function, find its quadratic approximation
at x =0, What is the equation of the tangent line?

41 For fix)=x+x*+x? what is the centered difference
[f13)—f1))/2, and what is the true siope f'(2)?

42 For fix}=x+x?+x% what is the second difference
[f3) — 2/12) + fI1)]/12, and what is the exact /"(2)?

43 The error in flay+['(a){ix—a) is approximately
4/"(a)(x — a)*. This error is positive when the function is
. Then the tangent line is the curve,

44 Draw a piecewise linear p{x) that is concave up. Define
“concave up” without using the test d 2y/dx? 2 0. If derivatives
don't exist, a new definition is needed.

45 What do these sentences say about for ' or f” or /"7
1. The population is growing more slowly.
2. The plane is landing smoothly.
3. The economy is picking up speed.
4. The tax rate is constant,
5. A bike accelerates faster but a car goes faster,
6. Stock prices have peaked.
7. The rate of aceeleration is slowing down.
8. This course is going downbhill.

46 (Recommended) Draw a curve that goes up-down-up.
Below it draw its derivative. Then draw its second derivative,
Mark the same points on all curpes—the maximum, minimum,
and inflection points of the first curve.

47 Repeat Problem 46 on a printout showing wx)=
x* —4x? + x + 2 and dyfdx and d3y/dx* on the same graph.
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I 3.4 Graphs IS

Reading a graph is like appreciating a painting. Everything is there, but you have to
know what to look for. One way to learn is by sketching graphs yourself, and in the
past that was almost the only way, Now it is obsolete to spend weeks drawing
curves—a computer or graphing calculator does it faster and better. That doesn’t
remove the need to appreciate a graph {(or a painting), since a curve displays a
tremendous amount of information.

This section combines two approaches. One is to study actual machine-produced
graphs (especially electrocardiograms). The other is to understand the mathematics
of graphs—slope, concavity, asymptotes, shifts, and scaling. We introduce the
centering transform and zoom transform. These two approaches are like the rest of
calculus, where special derivatives and integrals are done by hand and day-to-day
applications are by computer. Both are essential —the machine can do experiments
that we could never do. But without the mathematics our instructions miss the point.
To create good graphs you have to know a few of them personally.

READING AN ELECTROCARDIOGRAM (ECG or EKG)
The graphs of an ECG show the electrical potential during a heartbeat. There are

twelve graphs---six from leads attached to the chest, and six from leads to the arms
50—  and left leg. (It doesn’t hurt, but everybody is nervous. You have to lie still, because

I r———
REFERENCE

x: contraction of other muscles will mask the reading from the heart.) The graphs record
clectrical impulses, as the cells depolarize and the heart contracts.

200— What can [ explain in two pages? The graph shows the fundamental pattern of the

~ 15— ECG. Note the P wave, the QRS complex, and the T ware. Those patterns, seen

3 19— differently in the twelve graphs, tell whether the heart is normal or out of rhythm—

13—  or suffering an infarction (a heart attack).

First of all the graphs show the kearr rate. The dark vertical lines are by convention
1 second apart. The light lines are 2 second apart. If the heart beats every 3 second
(one dark line) the rate is 5 beats per second or 300 per minute. That is extreme
tachycardia—not compatible with life. The normal rate is between three dark lines

50—  per beat (2 second, or 100 beats per minute) and five dark lines {one second between
beats, 60 per minute). A baby has a faster rate, over 100 per minute. In this figure
4s_._ therateis . A rate below 60 is bradycardia, not in itself dangerous. For a resting

athlete that is normal.

Doctors memorize the six rates 300, 150, 100, 75, 60, 50. Those correspond to 1, 2,
w— 3,4, 5, 6 dark lines between heartbeats. The distance is gasiest to measure between
spikes (the peaks of the R wave). Many doctors put a printed scale next to the chart.
One textbook emphasizes that “Where the next wave falls determines the rate. No
mathematical computation is necessary.” But you see where those numbers come
3¥— from.

HEART RATE (3 CYCLES FROM REFERENCE ARROW—CHART PAPER SPEED: 25 mm./
on
o
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The next thing to look for is heart rhythm. The regular rhylthm is set by the
pacemaker, which produces the P wave. A constant distance between waves is good—
and then each beat is examined. When there is a block in the pathway, it shows as
a delay in the graph. Sometimes the pacemaker fires irreguiarly. Figure 3.10 shows
sinus arrythmia (fairly normal). The time between peaks is changing. In disease or
emergency, there are potential pacemakers in all parts of the heart.

I should have pointed out the main parts. We have four chambers, an atrium-
ventricle pair on the left and right. The SA node should be the pacemaker. The
stimulus spreads from the atria to the ventricles—from the small chambers that
“prime the pump’ to the powerful chambers that drive blood through the body. The
P wave comes with contraction of the atria. There is a pause of {5 second at the AV
node. Then the big QRS wave starts contraction of the ventricles, and the T wave is
when the ventricles relax. The cells switch back to negative charge and the heart cycle
is complete.

Ag. 3.9 Happy person with a heart and a normal electrocardiogram.

The ECG shows when the pacemaker goes wrong. Other pacemakers take over—
the AV node will pace at 60/minute. An early firing in the ventricle can give a wide
spike in the QRS complex, foilowed by a long pause. The impulses travel by a slow
path. Also the pacemaker can suddenly speed up (paroxysmal tachycardia is
150-250/minute). But tbe most critical danger is fibrillation.

Figure 3.10h shows a dying heart. The ECG indicates irregular contractions—no
normal PQRST sequence at all. What kind of heart would generate such a rhythm?
The muscles are quivering or “fibrillating™ independently. The pumping action is
nearly gone, which means emergency care. The patient needs immediate CPR—
someone to do the pumping that the heart can’t do. Cardio-pulmonary resuscitation
is a combination of chest pressure and air pressure (hand and mouth) to restart the
thythm. CPR can be done on the street. A hospital applies a defibrillator, which
shocks the heart back to life. Tt depolarizes all the heart cells, so the timing can be
reset, Then the charge spreads normally from SA node to atria to AV node to
ventricles.

This discussion has not used all twelve graphs to locate the problem. That needs
vectors. Look ahead at Section 11.1 for the heart vector, and especially at Section 11.2
for its twelve projections. Those readings distinguish between atrium and ventricle,
left and right, forward and back. This information is of vital importance in the event
of a heart attack. A “heart attack” is a myocardial infarction {(MI).

An MI occurs when part of an artery to the heart is blocked (a coronary occlusion).
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Ischemia

: e

Infarction

Rg. 3.10 Doubtful rthythm. Serious fibrillation. Signals of a heart attack.

An area is without blood supply—therefore without oxygen or glucose. Often the
attack is in the thick left ventricle, which needs the most blood. The cells are first
ischemic, then injured, and finally infarcted (dead). The classical ECG signals involve
those three I's:

Ischemia: Reduced blood supply, upside-down T wave in the chest leads.
Injury:. An elevated segment between S and T means a recent attack.
Infarction; The @ wave, normally a Liny dip or absent, is as wide as a smali
square (s second). It may occupy a third of the entire QRS complex.

The Q wave gives the diagnosis. You can find all three I's in Figure 3.10c.
It is absolutely amazing how much a good graph can do.

THE MECHANICS OF GRAPHS

From the meaning of graphs we descend to the mechanics. A formula is now given
for f{x). The problem is to create the graph. It would be too old-fashioned to evaluate
f(x) by hand and draw a curve through a dozen points. A computer has a much
better idea of a parabola than an artist (who tends to make it asymptotic to a straight
ling). There are some things a computer knows, and other things an artist knows,
and still others that you and I know—because we understand derivatives.

Our job is to apply calculus. We extract information from f” and f” as well as f.
Small movements in the graph may go unnoticed, but the important properties come
through. Here are the main tests:

1. The sign of f(x}  (above or below axis: f= 0 at crossing point)

2. The sign of f(x)  {increasing or decreasing: /’ = 0 at stationary point)

3. The sign of f*(x) (concave up or down: f* = 0 at inflection point)

4. The behavior of f{x)as x - ww and x - — @

5. The points at which f{x) —» o or f{x} — — 0

6. Even or odd? Periodic? Jumps in for /"7 Endpoints? N

x? 2x wn 2+ 6x2

BAMPES (=17 SO ST g

The sign of f{x) depends on 1 — x2. Thus f{x) >0 in the inner interval where x*> < 1.
The graph bends upwards (f“(x) > 0) in that same interval. There are no inflection
points, since f” is never zero. The stationary point where f* vanishes is x =0. We
have a local minimum at x =0,

The guidelines (or asymptotes) meet the graph at infinity. For large x the important
terms are xZ and - x2. Their ratio is + x?/—x* = — 1—which is the limit as x »
and x —» — oo. The horizontal asymptote is the line y= — 1.

The other infinities, where f blows up, occur when 1 — x2 is zero. That happens at
x=1and x = — 1. The vertical asymptotes are the lines x = | and x = —1. The graph
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in Figure 3.11a approaches those lines.

if fix)—bas x -+ o0 or — oo, the line y = b is a horizontal asymptote
if f{x) =+ + 0 or — 0 as x— g, the line x = a is a vertical asymptote
if flx) = {mx+ b)— 0 as x » + o0 or — oo, the line y =mx + b is a sloping asymptote.

Finally comes the vital fact that this function is even: f{x) = f{— x) because squaring
x obliterates the sign. The graph is symmetric across the y axis.

To summarize the effect of dividing by 1 — x*: No effect near x = 0. Blowup at 1
and —1 from zero in the denominator, The function approaches —1 as x| — oo,

2 xZ—2x ., 2

oty IOy
This example divides by x — 1, Therefore x =1 is a vertical asymptote, where f{x)
becomes infinite. Vertical asymptotes come mostly from zero denominators.

Look beyond x = 1. Both f{x}) and f*(x) are positive for x > 1. The slope is zero at
x=2. That must be a local minimum.

What happens as x — oo? Dividing x2 by x — 1, the leading term is x. The function
becomes large. It grows lincarly—we expect a sloping asymptote. To find it, do the
division properly:

EXAMPLE 2 fix)=

Sx)=

x—1

2

i
=x+1+—0.
—1 Xt )

The last term goes to zero. The function approaches y = x + 1 as the asymptote.
This function is not odd or even. Its graph is in Figure 3.11b. With zeom out you
see the asymptotes. Zoom in for f=0o0r f'=0o0r f"=0.

nid+

S0 . sin 3x
« ra=1 y=8mx+

i? 2 4
T V! ~-7/4

Ag. 3.4 The graphs of x*/{t — x?} and x?/(x — 1) and sin x + 4 sin 3x.

EXAMPLE3  f{x)=sin x +4sin 3x has the slope f'(x)= cos x + cos 3x.

Above all these functions are periedic. If x increases by 2z, nothing changes. The
graphs from 2z to 4r are repetitions of the graphs from 0 to 2z. Thus f{x + 2r) = fx)
and the period is 2n. Any interval of length 2 will show a complete picture, and
Figure 3.11c picks the interval from —n to 7.

The second outstanding property is that f is edd. The sine functions satisfy
J1—x)= — fix). The graph is symmetric through the origin. By reflecting the right half
through the origin, you get the left half. In contrast, the cosines in f"(x) are even.

To find the zeros of f{x) and f(x) and f*(x), rewrite those functions as

fix)=2sin x—%sin®x f(x}= —2cos x+4 cos’x f"(x)= — 10 sin x + 12 sin®x.
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3 Applications of the Derivaitve

We changed sin 3x to 3sin x — 4 sin*x. For the derivatives use sin®x =1 — cos?x.
Now find the zeros—the crossing points, stationary points, and inflection points:

f=0 2sin x=%sin®x = sin x=0 or sin®x=3% = x=0, 7
=0 2cos x=4cos’x = cos x=0 or cos’x=% = x= +nr/4, +n/2, +3n/4
f7=0 Ssinx=6sinx = sin x=0 or sin’x=3% = x=0, £66°, +114° +=r

That is more than enough information to sketch the graph. The stationary points
r/d, n/2, 3r/4 are evenly spaced. At those points f{x) is \/%;‘3 (maximurn), 2/3 (local
minimum), \/§/3 {maximum). Figure 3.11c shows the graph.

I would like to mention a beautiful continuation of this same pattern:
fx)=sin x + % sin 3x+4 sin 5x+ - F{x}=cos x +cos Ix +cos 5x+ -

If we stop after ten terms, f{x) is extremely close to a step function. If we don’t stop,
the exact step function contains infinitely many sines. It jumps from —n/4 to +n/4 as
x goes past zero. More precisely it is a “‘square wave,” because the graph jumps back
down at = and repeats. The slope cos x + ¢os 3x + --- also has period 2r. Infinitely
many cosines add up to a delta function! (The slope at the jump is an infinite spike.)
These sums of sines and cosines are Fourier series.

GRAPHS BY COMPUTERS AND CALCULATORS

We have come to a topic of prime importance. If you have graphing software for a
computer, or if you have a graphing caleulator, you can bring calculus to life. A graph
presents (x) in a new way—different from the formula. Information that is buried
in the formula is clear on the graph. But don’t throw away y(x) and dyfdx. The
derivative is far from obsolete.

These pages discuss how calculus and graphs go together. We work on a crucial
problem of applied mathematics—to find where y(x) reaches its minimum. There is
no need to tell you a hundred applications. Begin with the formula. How do you find
the point x* where y(x) is smallest?

First, draw the graph. That shows the main features. We shouid see (roughly) where
x* lies. There may be several minima, or possibly none. But what we see depends on
a decision that is ours to make—the range of x and y in the viewing window.

If nothing is known about y(x), the range is hard to choose. We can accept a default
range, and zoom in or out. We can use the autoscaling program in Section 1.7.
Somehow x* can be observed on the screen. Then the problem is to compute it.

I would like to work with a specific example. We solved it by calculus—to find
the best point x* to enter an expressway. The speeds in Section 3.2 were 30 and 60.
The length of the fast road will be b = 6. The range of reasonable values for the entering
point is 0 < x < 6. The distance to the road in Figure 3.12 is a = 3. We drive a distance
/3% + x? at speed 30 and the remaining distance 6 — x at speed 60:

1 l
driving time y(x)= 0 /3% 4+ x* + @(6 - x). 2

This is the function to be minimized. Its graph is extremely flat.

It may seem unusual for the graph to be so level. On the contrary, it is common.
A flat graph is the whole point of dyfdx=0.

The graph near the minimum looks like y= Cx?. It is a parabola sitting on a
horizontal tangent. At a distance of Ax = .01, we only go up by C{Ax)* = .0001C.
Unless € is a large number, this Ay can hardly be seen.
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Ag. 3.12 Enter at x. The graph of driving time y(x). Zoom boxes locate x*.

The solution is to change scale. Zoom in on x*. The tangent line stays flat, since
dy/dx is still zero. But the bending from C is increased. Figure 3.12 shows the zoom
box blown up into a new graph of yx).

A calculator has one or more ways to find x*. With a TRACE mode, you direct a
cursor along the graph. From the display of y values, read y,,, and x* to the
nearest pixel. A zoom gives better accuracy, because it stretches the axes—each
pixel represents a smaller Ax and Ay. The TI-81 stretches by 4 as default. Even
better, let the whole process be graphical—draw the actual ZOOM BOX on the
screen. Pick two opposite corners, press ENTER, and the box becomes the new
viewing window (Figure 3.12).

The first zoom narrows the search for x*. It lies between x = 1 and x = 3. We build
a new Z0OM BOX and zoom in again. Now 1.5 £ x* < 2. Reasonable accuracy
comes quickly, High accuracy does not come quickly. It takes time to create the box
and execute the zoom.

Question 1 What happens as we zoom in, if all boxes are square (equal scaling)?
Answer The picture gets flatter and flatter. We are zooming in to the tangent line.
Changing x to X/4 and y to Y/4, the parabola y = x? flattens to Y= X?/4. To see
any bending, we must use a long thin zoom box.

I want to change to a totally different approach. Suppose we have a formula for
dyfdx. That derivative was produced by an infinite zoom! The limit of Ay/Ax came by
brainpower alone:

[ .
E; = m @ Cail this f(x)

This function is zero at x*. The computing problem is completely changed: Solve
Jix)=0. It is easier to find a root of f{x} than a minimum of ¥(x). The graph of f{x)
crosses the x axis. The graph of y(x) goes flat—this is harder to pinpoint.

Take the model function y = x? for |x| < .01. The slope f=2x changes from —.02
to +.02. The value of x? moves only by .0001 —its minimum point is hard to see.

To repeat: Minimization is easier with dy/dx. The screen shows an order of magni-
tude improvement, when we trace or zoom on fix) = 0. In caiculus, we have been
taking the derivative for granted. It is natural to get blasé about dy/dx = 0. We forget
how intelligent it 1s, to work with the slope instead of the function.

Question 2 How do you get another order of magnitude improvement?

Answer Use the next derivative! With a formula for df/dx, which is d2y/dx?, the
convergence js even faster. In two steps the error goes from .01 to .0001 to .00000001.
Another infinite zoom went into the formula for df/dx, and Newton’s method takes
account of it. Sections 3.6 and 3.7 study f{x)=0.
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3 Applications of the Derivative

The expressway example allows perfect accuracy. We can solve dy/dx = 0 by alge-
bra. The equation simplifies to 60x = 30, /32 + x2. Dividing by 30 and squaring yields
4x% =32 + x2. Then 3x2 = 32, The exact solution is x* = /3= 1.73205...

A model like this is a benchmark, to test competing methods. It also displays what
we never appreciated—the extreme flatness of the graph. The difference in driving
time between entering at x* =./3 and x =2 is one second.

THE CENTERING TRANSFORM AND ZOOM TRANSFORM

For a photograph we do two things—point the right way and stand at the right
distance. Then take the picture. Those steps are tbe same for a graph. First we pick
the new center point. The graph is shifted, to move that point from {a, b) to (0, 0).
Then we decide how far the graph should reach. It fits in a rectangie, just like the
photograph. Rescaling to x/c and y/d puts the desired section of the curve into the
rectangle.

A good photographer does more (like an artist). The subjects are placed and the
camera is focused. For good graphs those are necessary too. But an everyday calcula-
tor or computer or camera is built to operate without an artist—just aim and shoot.
I want to explain how to aim at y = f{x).

We are doing exactly what a calculator does, with one big difference. It doesn’t
change coordinates. We do. When x =1, y = — 2 moves to the center of the viewing
window, the calculator still shows that point as {1, —2). When the centering transform
acts on y+ 2= m{x — 1), those numbers disappear. This will be confusing unless x
and y also change. The new coordinates are X = x — 1 and Y=y +2. Then the new
equation is Y=mX,

The main point (for humans) is to make the algebra simpler. The computer has no
preference for Y=mX over y — y, = m(x — x;). It accepts 2x* — 4x as easily as x°.
But we do prefer Y=mX and y= x2, partly because their graphs go through (0, 0).
Ever since zero was invented, mathematicians have liked that number best.

3F A cestering transform shifis left by a and down by b:
X=x—aand Y=y— b change y=f(x)into Y+ b=fX +a).

EXAMPLE 4 The parabola y = 2x? — 4x has its minimum when dy/dx=4x—-4=0.
Thus x =1 and y = — 2. Move this bottom point to the center: y = 2x* — 4x is

Y+2=2X 17 -4X-1) or Y=2X2

The new parabola Y= 2X 2 has its bottom at (0, 0}. It is the same curve, shifted across
and up. The only simpler parabola is y = x2. This final step is the job of the zoom.

Next comes scaling. We may want more detail (zoom in to see the tangent line}.
We may want a big picture (zoom out to check asymptotes), We might stretch one
axis more than the other, if the picture looks like a pancake or a skyscraper.

3G A zoom transform scales the X and Y axes by c and d:
x=cX and y=d4Y change Y=F(X) to y=dF{x/c).
The new x and y are boldface letfers, and the graph is rescaled. Often ¢ = d.




3.4 Graphs

19

EXAMPLES Start with Y=2X?, Apply a square zoom with ¢ =4. In the new xy
coordinates, the equation is y/c = 2(x/c)*. The number 2 disappears if ¢ =d = 2. With
the right centering and the right zoom, every parabola that opens upward is y = x*.

Question 3 What happens to the derivatives (slope and bending) after a zoom?

Answer  The slope (first derivative) is multiplied by d/c. Apply the chain rule to y =
dF(xjc). A square zoom has d/c = 1—[ines keep their slope. The second derivative is
multiplied by d/c?, which changes the bending. A zoom out divides by small numbers

c =d, so the big picture is more curved.

Combining the centering and zoom transforms, as we do in practice, gives y in

terms of x:

y=fix) becomes Y=f{X+da—b andthen y= d[f(; + a) - b].

slope 1
31)

r=A r=A-3

slope 1

slope 2
(0.0) ©.0)

x=4(A~3)

y=8 y=8-1|

y=8(B-1)

Ag.3.14 Change of coordinates by centering and zoom. Calculators still show (x, y).

Quesiion4 Find x and y ranges after two transforms. Start between —1 and 1.
Answer The window after centering is ~1<x—a<! and —1<y—b<1. The
window after zoom is —1<e(x —d) <1 and —1 < d{y — b) < 1. The point (1, 1) was
originally in the corner. The point (¢! + a, d ~! + b) is now in the corner.

The numbers a, b, ¢, d are chosen to produce a simpler function (like y = x2). Or
clse—this is important in applied mathematics—they are chosen to make x and y
“dimensionless.” An example is y =% cos 8t. The frequency 8 has dimension 1/time.
The amplitude 4 is a distance. With d =2 cm and ¢ = 8 sec, the units are removed

and y=cost.

May I mention one transform that does change the slope? It is a rotation. The
whole plane is turned. A photographer might use it—but normally people are sup-
posed to be upright. You use rotation when you turn a map or straighten a picture.
In the next section, an unrecognizable hyperbola is turned into Y = 1/X.

3.4 EXERCISES

Read-through questions

The position, slope, and bending of y =f{x) are decided by
@ ., b and_¢ .If[fix)]> casx—aq,thelinex=
ais a vertical _ 9@ If fix)— b for large x, then y=h is a
8 . If fix)—mx—b for large x, then y=mx+ b is a
t . The asymptotes of y =x?/{x* —d4) are _g__ . This
function is even because W—x)=__h . The function sin kx

has period _ |,

Near a peint where dy/dx =0, the graph is extremely
) .Forthemodel y=Cx* x=_lgivesy=__ Kk _, Abox

around the graph lookslongand _ ' . We_ M _ into that
box for another digit of x*. But solving dy/dx =0 is more
accurate, because its graph _ n _ the x axis, The siope of

dy/dxis _© . Each dervative is like an _P __ zoom,

To move (g, b} to (0, 0), shift the variables to X =_ a
and Y=_1¢ _ This __3$ transform changes y=f{x) to
¥=_1 . The original slope at {(a, b} equals the new slope
at __u _. To stretch the axes by ¢ and d, set x=cX and

v .The_ w transformchanges ¥ =F(X)toy=_x
Slopes are mutftiplied by __¥ . Second derivatives are
multiplied by _ 2 .
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1 Find the pulse rate when heartbeats are 4 second or two
dark lines or x seconds apart.

2 Another way to compute the heart rate uses marks for
6-second intervals. Doctors count the cycles in an interval.

{a) How many dark lines in & seconds?
{b} With 8 beats per interval, find the rate.
(c) Rule: Heart rate = cycles per interval times

Which functions in 3-18 are even or odd or peripdic? Find all
asymptotes; y=b or x =a or y=mx + b. Draw rooghly by
hand or smoothly by computer.

4 f(x) = x" {any integer n)
3

3 f(x)=x—(9/x)

5 /x)= 6 ()=

x2+3 2+3
x2+1 8 =

9 f(x)=(sin x){sin 2x) 10 f{x)}=cos x +cos 3x+ cos 5x

7 flx)=

X stn X x
1 =50 12 [0 =
13 ﬂx}=x3+x" 14 fi{x)= ———2x
x*+1 sin x +¢os x
15 16~ 55 16 J= G s —oos x

17 fig=x—sinx 18 fl)=(ljx)—/x

In 19-24 construct ({x} with exactly these asymptotes.

19 x=1and y=2
21 y=xand x=4

W x=1,x=2y=0
12 y=2x+3and x=0
2} y=x{x—00), y=—x{x > — o)

U x=1x=3y=x

25 For P(x)/Q(x) to have y = 2 as asymptote, the polynomials
P and @ must be .

26 For P(x)/Q(x)to have a sloplng asymptote, the degrees of
P and Q must be

27 For P{x)/{Q{x) to have the asymptote y =0, the degrees of
P and @ must . The graph of x*/(1 + x*) has what
asymptotes?

28 Both 1j(x—1) and 1/(x—1)* have x=1 and y=0 as
asymptotes, The most obvious difference in the graphs is

29 If f(x) has asymptotes x=1 and y=3 then f(x) has
asymptotes

30 True (with reason) or fale (with example).
(a) Every ratio of polynomials has asymptotes
(b} If f{x) is even so is f"{x)
{c) If f"(x) is even so is f{x)
(d) Between vertical asymptotes, f'(x} touches zero.

31 Construct an f(x) that is “‘even around x =3."

32 Construct g(x) to be “odd around x =n.”

Create graphs of 33-38 on a computer or calculator,

B x)=(1+1/x)", -3<x<3
Mpx)=x"01gxg2

35 y(x) =sin{x/3) + sin{x/5)

36 Yx)=2-x}(2+x), —3Lx<]

37 y¥ix}=2x>+3x*—12x+50n [-3. 3] and [2.9, 3.1]

38 100(sin(x + .1) — 2 sin x + sin(x — .1}]

In 39—40 show the asymptotes on large-scale computer graphs.

x> +8x—15 xt—6x?+ 1
W@y==5 Or=Taa
xt—2 x*—x42

a (a}y_x3+8x—15 (b}y_x2—2x+l

41 Rescale y =sin x s0 X is in degrees, not radians, and Y
changes from meters to centimeters.

Problems 42-46 minimize the driving time y(x) in the text.
Some guestions may not fit your software.

42 Trace along the graph of y{x) to estimate x*. Choose an
xy range or use the defauit.

43 Zoom in by ¢ =4 =4. How many zooms until you reach
x* = 173205 or 1.73205087

44 Ask your program for the minimum of y{x} and the solu-
tion of dy/dx = 0. Same answer?

45 What are the scaling factors ¢ and 4 for the two zooms in
Figure 3.12? They give the stretching of the x and y axes.

46 Show that dyjdx = — 1/60 and d?yjdx? = 1/90 at x=0.
Linear approximation gives dy/dx = — 1/60 + x{90. So the
slope is zero near x = . This is Newton’s method,
using the next derivative.

Change the function to px)= /15 + x*/30 + (10 — x)/60.
47 Find x* using only the graph of ¥x).
48 Find x* using also the graph of dy/dx.

49 What are the xy and XY and xy equations for the line in
Figure 3.14?
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&0 Define f{x})=sinx+4sin3x+4sin5x+ - (n terms).
Graph fs and f;; from —=n to n. Zoom in and describe the
Gibbs phenomenon at x = 0.

On the graphs of 51-56, zoom in to all maxima and minima
{3 significant digits). Estimate inflection points.

51 y=2x%—16x* + 5x° — 37x® + 21x + 683
52 y=x—x*- /ix+1-2
53 y=1x{x — [}(x —2)x—4)

3.5 Parabolas, Ellipses, and Hyperbolas

84 y=7sin 2x+ 5 cos 3x
55 y=(x*—2x+ 1)/(x*—3x*~15), —3€x<S
56 y=xsin (I/x), 01<x<1

57 A 10-digit compuier shows y=0and dy/dx =01 at x*=1.
This root should be correct to about (8 digits) (10 digits)
(12 digits). Hint: Suppose y = .01 (x — 1 +error), What errors
don’t show in 10 digits of y?

%8 Which is harder to compute accuraiely: Maximum point
or inflection point? First derivative or second derivative?

Here is a list of the most important curves in mathematics, so you can tell what is

coming. It is not easy to rank the top four:

1. straight lines
2. sines and cosines (oscillation)
3. exponentials (growth and decay)

4. paraholas, ellipses, and hyperbolas (using 1, x, y, x%, xy, y*).

The curves that I wrote last, the Greeks would have written first. It is so natural to
go from linear equations to quadratic equations. Straight lines use 1, x, y. Second
degree curves include x%, xy, y2. If we go on to x* and y®, the mathematics gets
complicated. We now study equations of second degree, and the curves they produce.

It is quite important to see both the eguations and the curves. This section connects
two great parts of mathematics—analysis of the equation and geometry of the curve.
Together they produce “analytic geomertry.” You already know about functions and
graphs. Even more basic: Numbers correspond to points, We speak about “the point

(5, 2).” Euclid might not have understood.

Where Euclid drew a 45° line through the origin, Descartes wrote down y = x.
Analytic geometry has become central to mathematics—we now look at one part of it.

Ag. 3.45 The cutting plane gets steeper: circle to ellipse to parabola to hyperboia.
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3 Applications of the Derivalive

CONIC SECTIONS

The parabola and ellipse 2nd hyperbola have absolutely remarkable properties. The
Greeks discovered that all these curves come from slicing a cone by a plane. The
curves are *‘conic sections.” A level cut gives a circle, and a moderate angle produces
an elfipse. A steep cut gives the two pieces of a Ayperboia {Figure 3.15d). At the
borderline, when the slicing angle matches the cone angle, the plane carves out a
parabola. It has one branch like an ellipse, but it opens to infinity like a hyperbola.

Throughout mathematics, parabolas are on the border between ellipses and
hyperbolas.

To repeat: We can slice through cones or we can look for equations. For a cone
of light, we see an cllipse on the wall. (The wall cuts into the light cone.) For an
equation AxZ + Bxy+ Cy? + Dx + Ey + F =0, we will work to make it simpler. The
graph will be centered and rescaled (and rotated if necessary), aiming for an equation
like y = x*, Eccentricity and polar coordinates are left for Chapter 9.

THE PARABOLA y=ax®+ bx + ¢

You knew this function long before calculus. The graph crosses the x axis when
y = 0. The quadratic formula solves y = 3x? — 4x + 1 = 0, and so does factoring into
{x — 1}{3x — 1). The crossing points x = 1 and x = 3 come from algebra.

The other important point is found by calculus. It is the minimum point, where
dy/dx = 6x — 4= 0. The x coordinate is = £, halfway between the crossing points.
The height is yp;, = — §. This is the vertex V in Figure 3.16a—at the bottom of the
parabola.

A parabola has no asymptotes. The slope 6x — 4 doesn’t approach a constant.

To center the vertex Shift left by ¢ and up by {. So introduce the new variables
X=x—%and Y=y+4%. Then x=% and y= — { correspond to X = Y =0—which
is the new vertex:

y=3x2—4x+1 becomes Y=3X2 0

Check the algebra. Y =3X?2 is the same as y +§ = 3(x — $)>. That simplifies to the
original equation y = 3x% — 4x + 1. The second graph shows the centered parabola
Y=3X?, with the vertex moved to the origin.

To zoom in on the vertex Rescale X and ¥ by the zoom factor a:
Y=3X? becomes y/a=3{x/a).

The final equation has x and y in boldface. With a =3 we find y = x*—the graph is
magnified by 3. In two steps we have reached the model parabola opening upward.

lra)‘ Y=3Xz y:xz
y=3x—dx+1 'f |

| - L

l focusat Y T

| /

1

-4 <
X = I
V={0,0) directrix at y = - 11?

vertex at {2/3, —-1/3}
Ag. 3.14 Parabola with minimum at V. Rays reflect to focus. Centered in (b), rescaled in (c).
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A parabola has another important point—the focws. Its distance from the vertex
is called p. The special parabola y = x* has p= 1/4, and other parabolas ¥ =aX?
have p= 1/4a. You magnify by a factor a to get y=x2. The beautiful property of a
parabola is that every ray coming straight down is reflected to the focus.

Problem 2.3.25 located the focus F—here we mention two applications. A solar
collector and a TV dish are parabolic. They concentrate sun rays and TV signals
onto a point—a heat cell or a receiver collects them at the focus. The 1982 UMAP
Journal explains how radar and sonar use the same idea. Car headlights turn the
idea around, and send the light outward.

Here is a classical fact about parabolas. From eack point on the curve, the distance
to the focus equals the distance to the “directrix.” The directrix is the line y=—p
below the vertex (so the vertex is halfway between focus and directrix). With p=14,
the distance down from any (x, y) is y + 4. Match tbat with tbe distance to the focus
at (0, 3)— this is the square root below. Qut comes the special parabola y = x:

y+i=/x*+(y—1? —— (square both sides) —— y=x2 (2

The exercises give practice with all the steps we have taken—center the parabola to
Y= aX?, rescale it to y = x?, locate the vertex and focus and directrix.

Summary for other parabolas y= ax?+ bx + ¢ has its vertex where dy/dx is zero.
Thus 2ax+ b =0 and x= —b/2a. Shilting across to that point is “completing the
square”: '
b 2
ax*+bx+c equals a (x + 2?) +C. (3)
Here C = ¢ — (b*/4a) is the height of the vertex. The centering transform X = x + (b/2a),

Y=y— C produces Y= aX?Z. It moves the vertex to (0, 0), where it belongs.
For the ellipse and hyperbola, our plan of attack is the same:

1. Center the curve to remove any linear terms Dx and Ey.
2. Locate each focus and discover the reflection property.
3. Rotate to remove Bxy if the equation contains it.

xﬂ yl
ELLIPSES p= + = 1 (CIRCLES HAVE a= b)

This equation makes the ellipse symmetric about (0, 0)—the center. Changing x to
—x or y to —y leaves the same equation. No extra centering or rotation is needed.
The equation also shows that x%/a? and y%/b? cannot exceed one. (They add to
one and can't be negative.) Therefore xZ < a2, and x stays between — a and a. Similarly
y stays between b and —b. The ellipse is inside a rectangle.
By solving for y we get a function {or two functions!) of x:

? X x? b
%=l—? gives §=i 1-> or y=;ta./a2—x".

The graphs are the top half () and bottom half (—) of the ellipse. To draw the ellipse,
plot them together. They meet when y =0, at x = a on the far right of Figure 3.17
and at x = — a on the far left. The maximum y = b and minimum y = —b are at the
top and bottom of the ellipse, where we bump into the enclosing rectangle.

A circle is a special case of an ellipse, when a = b. The circle equation x* + y? = r?
is the ellipse equation with g = & = r. This circle is centered at (0, 0); other circles are
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centered at x = h, y = k. The circle is determined by its radius r and its center (h, k}:
Egaation of circle: (x — hy> + (y — k)* =r2. 4
In words, the distance from (x, y) on the circle to (h, k) at the center is r. The
equation has linear terms — 2Ax and — 2ky—they disappear when the center is (0, 0).
EXAMPLE 4 Find the circle that has a diameter from (1, 7) to (5, 7).
Solution The center is halfway at (3, 7). Sor=2and (x — 3)2 + (y — 7)? = 2%

EXAMPLE 2 Find the center and radius of the circle x* — 6x + y* — 14y = — 54.

Solution Complete x2 — 6éx to the square (x — 3)* by adding 9. Complete y* — 14y
to (y — 7)*> by adding 49. Adding 9 and 49 to both sides of the equation leaves
(x — 3)* + (y — 7)* = 4—the same circle as in Example 1.

Quicker Solution Match the given equation with (4). Then h=3, k=7 and r=2:
x2—6x+ y2— 14y =— 54 must agree with x> —2hx+ h*+y? —2ky+ k> =r%

The change to X = x— h and Y=y — k moves the center of the circle from (h, k)
to {0, Q). This is equally true for an ellipse:
x—hm? (y-k? X y?

" + B2 =1 becomes ?+b_2=1'
When we rescale by x = X/a and y = Y/b, we get the unit circle x> +y*> = 1.

The unit circle has area 7. The ellipse has area wab (proved later in the book). The
distance around the circle is 2z. The distance around an ellipse does not rescale—it
has no simple formula,

The ellipse

(x, ¥)

(0, -

Ag. 3.7 Uncentered circle. Centered ellipse x?/32 + y*/2% = 1. The distance from center to
far right is also a=13. All rays from F, reflect to F,.

Now we leave circles and concentrate on ellipses. They have twe foci (pronounced
fo-sigh). For a parabola, the second focus is at infinity. For a circle, both foci are at
the center. The foci of an ellipse are on its longer axis (its major axis), one focus on
each side of the center:

Fiisatx=c=./a*—-b and Fyisatx=—c.

The right triangle in Figure 3.17 has sides a, b, ¢. From the top of the ellipse, the
distance to each focus is a. From the endpoint at x = a, the distances to the foci are
a+c¢ and g —c. Adding (@ + ¢) + (a — ¢) gives 2a. As you go around the ellipse, the
distance to F, plus the distance to F, is constant {always 2a).
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3H At all points on the ellipse, the sum of distances from the foci is 2a. This
is another equation for the ellipse:

from F, and F, to (x, ) /(x—c+y* + J(x+cP+y*=2a. (5

To draw an ellipse, tie a string of length 2a to the foci. Keep the string taut and your
moving pencil will create the ellipse. This description uses a and ¢—the other form
uses @ and b (remember b? + ¢* = a*). Problem 24 asks you to simplify equation (5)
until you reach x?/a* + y*/b* = 1.

The “whispering gallery” of the United States Senate is an ellipse. If you stand at
one focus and speak quietly, you can be heard at the other focus (and nowhere else).
Your voice is reflected off the walls to the other focus—following the path of the
string. For a parabola the rays come in to the focus from infinity—where the second
focus is.

A hospital uses this reflection property to split up kidney stones. The patient sits
inside an ellipse with the kidney stone at one focus. At the other focus a lithotripter
sends out hundreds of small shocks. You get a spinal anesthetic (I mean the patient)
and the stones break into tiny pieces.

The most important focus is the Sun. The ellipse is the orbit of the Earth. See
Section 12.4 for a terrible printing mistake by the Royal Mint, on England’s last
pound note. They put the Sun at the center.

Question 1 Why do the whispers (and shock waves) arrive together at the second
focus?
Answer Whichever way they go, the distance is 2a. Exception: straight path is 2c.

Question 2 Locate the ellipse with equation 4x? + 9y* = 36.
Answer Divide by 36 to change the constant to 1. Now identify a and b:

2

% §= 1 so a=\/§and b=\/5ﬂ Foci at i\/9—4=4_-\/§-

Question 3  Shift the center of that ellipse across and down to x=1, y=— 5.
Answer Change x to x—1. Change y to y+5. The equation becomes
(x — 1)?/9 + (y + 5)%/4 = 1. In practice we start with this uncentered ellipse and go the
other way to center it.

x!

§=

y.?
HYPERBOLAS —; — 1
a

Notice the minus sign for a hyperbola. That makes all the difference. Unlike an ellipse,
x and y can both be large. The curve goes out to infinity. It is still symmetric, since
x can change to —x and y to —y.

The center is at (0, 0). Solving for y again yields two functions (+ and —):

pe 2 . y x? a
‘—,—Ez gives E=i l+55 or y=ig,/b"+x3. (6)

The hyperbola has two branches that never meet. The upper branch, with a plus sign,
has y > a. The vertex V, is at x =0, y=a—the lowest point on the branch. Much
further out, when x is large, the hyperbola climbs up beside its sloping asymptotes:

2 o

w X ye y. X X
if B = 1000 then = 1001. So - is close to b or — e
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radio signals -
reach curve light

waves
reflect

to F;

a
i v, m .
F,e(0,—) »* £, o

Fig. 3.48 The hyperbola ) —4x*=1hasa=2,b=3,¢=./4+ 9. The distances 1o F, and
F, differ by 2a=4.

The asymptotes are the lines yfa = x/b and y/a = — x/b. Their slopes are a/b and ~ a/b.
You can’t miss them in Figure 3.18.

For a hyperbola, the foci are inside the two branches. Their distance from the
center is still called ¢. But now ¢ = . /a? + b?, which is larger than a and b. The vertex
is a distance ¢ — a from one focus and ¢+ a from the other. The difference (not the
sum) is (¢ + g} — {¢ — a) = 2a.

All points on the hyperbola have this property: The difference between distances to
the foci is constantly 2q. A ray coming in to one focus is reflected toward the other.
The reflection is on the outside of the hyperbola, and the inside of the ellipse.

Here is an application to navigation. Radio signals leave two fixed transmitters at
the same time. A ship receives the signals a millisecond apart. Where is the ship?
Answer: It is on a hyperbola with foci at the trapsmitters. Radio signals travel
186 miles in a millisecond, so 186 = 2a. This determines the curve, In Long Range
Navigation {LORAN]) a third transmitter gives another hyperbola. Then the ship
is located exactly.

@uestion4 How do hyperbolas differ from parabolas, far from the center?
Answoar  Hyperbolas have asymptotes. Parabolas don't.

The hyperbola has a natural rescaling. The appearance of x/b is a signal to change
to X. Similarly y/a becomes Y. Then Y =1 at the vertex, and we have a standard
hyperbola:

yvia®? —x*b*=1 becomes ¥Y?-—X2=1,

A 90° turn gives X * — Y? = 1 —the hyperbola opens to the sides. A 45° turn produces
2XY=1. We show below how to recognize x*+ xy+y*=1 as an ellipse and
x* + 3xy + y? = 1 as a hyperbola. {They are not circles because of the xy term.) When
the xy coefficient increases past 2, x2 + y? no longer indicates an ellipse.

Question 5 Locate the hyperbola with equation 9y? — 4x% = 36.
Answer Divide by 36. Then y%/4 — x*/9 = 1. Recognize a = /4 and b= /9.

Question 6 Locate the uncentered hyperbola 9y? — 18y — dx? — dx = 28,

Answer Complete 9y* — 18y to 9y — 1)* by adding 9. Complete 4x*+4x to
4(x + %)* by adding 4($)* = 1. The equation is rewritten as 9y — 1> —4(x + }* =
28 + 9 — 1. This is the hyperbola in Question 5 — except its center is (— 4, 1).
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To summarize: Find the center by completing squares. Then read off a2 and b.

THE GENERAL EQUATION Ax? + Bxy + Cy*+ Dx+ Ey+ F=0

This equation is of second degree, containing any and all of 1,x,y, x% xy, y%
A plane is cutting through a cone. fs the curve a parabola or ellipse or hyperbola?
Start with the most important case Ax? + Bxy + Cy? = 1.

31 The equation Ax*+ Bxy + Cy? = 1 produces a hyperbola if B2 > 44C and
an ellipse if B* <4AC. A parabola has B> =4A4C.

To recognize the curve, we remove Bxy by rotating the plane. This also changes 4
and C—but the combination B? —4AC is not changed (proof omitted). An example
is 2xy=1, with B>=4. It rotates to y> — x? =1, with —~44C =4. That positive
number 4 signals a hyperbola—since A= — 1 and C =1 have opposite signs.

Another example is x* + y* = 1. It is a circle (a special ellipse). However we rotate,
the equation stays the same. The combination B2 —44C=0—4-1-1 is negative, as
predicted for ellipses.

To rotate by an angle «, change x and y to new variables x' and )"

x=x"cosx—y sin a xX'= xcosa+t ysina
and (7

:

y=x'sin 2+ y cos o ¥y =—ysin g+ xcos a.

Substituting for x and y changes Ax* + Bxy+ Cy*=1to A'x* + Bxy +C'y*=1.
The formulas for 4A’, B', C’ are painful so I go to the key point:

B is zero if the rotation angle « has tan 20 = B/(4 — C).

With B’ = 0, the curve is easily recognized from 4'x? + C'y*> = |. It is a hyperbola
if 4" and C’ have opposite signs. Then B'2 — 44" C’ is positive. The original B* —44C
was also positive, because this special combination stays constant during rotation.

After the xy term is gone, we deal with x and y—by cemtering. To find the center,
complete squares as in Questions 3 and 6. For total perfection, rescale to one of the
model equations y=x* or x* +y*=1ory* —x?=1,

The remaining question is about F = 0, What is thc graph of Ax? + Bxy+ Cy?=0?
The ellipse-hyperbola-parabola have disappeared. But if the Greeks were right, the
cone is still cut by a plane. The degenerate case F =0 occurs when the plane cuts
right through the sharp point of the cone.

A level cut hits only that one point (0, 0). The equation shrinks to x? + 3 =0, a
circle with radius zero. A steep cut gives two lines. The hyperbola becomes 1 =+ x? =0,
leaving only its asymptotes y = + x. A cut at the exact angle of the cone gives only
one line, as in x* = 0. A single point. two lines, and one line are very extreme cases of
an ellipse, hyperbola, and parabola.

All these “conic sections” come from planes and cones. The beauty of the geometry,
which Archimedes saw, is matched by the importance of the equations. Galileo dis-
covered that projectiles go along parabolas (Chapter 12). Kepler discovered that the
Earth travels on an ellipse (also Chapter 12). Finally Einstein discovered that light
travels on hyperbelas. That is in four dimensions, and not in Chapter 12.

127



128 3 Applications of the Derivative

equation vertices
P y=ax"+bx+c 5 c——
2a’ 4a
x2 yl
E ?+b—z=l,a>b (a,O)and(—a,O)
Pooxt
H F—b—z—l (O,a)and(O, _ﬂ)

3.5 EXERCISES

Joci

1 D
v above vertex, also infinity

(¢, 0) and (—¢, O) c= . /a® — b*
0, c)and (0, —c): c=./a*+b?

Read-through questions
The graph of y=x>+2x+5is a _9_ . lis lowest point

(the veriex} is (>, y)=(_P ). Centering by X =x+1 and
Y=_ ¢ moves the vertex to {0, (). The equation becomes
¥=_4d . The focus of this centered parabolais _ e , All

rays coming straight down are __!__ to the focus.

The graph of x> + 4y = 16isan _ 9 . Dividing by _ h

leaves x%/a’ + y?/b® =1 witha=_ 1 andb=_) . The
graph lies in the rectangle whose sides are _ k. The area is
aab= _} . The foci are at x=+¢=_m__. The sum of
distances from the foci to a point on this ellipse is always

n__, If we rescale to X =x/4 and Y = y/2 the equation

becomes __©  and the graph becomes a _ P

The graph of y? —x*=%isa _a . Dividing by ¢ leaves
yHa? —x*b*=1 with a=_1 _ and b=_3% . On the
upper branch y 2 __t . The asymptotes are the lines _
The fociareat y=+¢=_~¥ . The _w__ of distances from
the foci to a point on this hyperbola is __x

All these curves are conic sections—the intersection of a
¥ anda_ 2 , Asteep cutting angle yieldsa _ & | At
the borderline angle we get a _ B . The general equation is
Ax?+__€ +F =01 D= E =0 the center of the graph is
at _ D The equation Ax* + Bxy + Cy* = 1 gives an ellipse

when _E  The graph of 4x? + Sxy +6y>=1isa __F

1 The vertex of y=ax? 4+ bx + ¢ is at x = —b/2z. What is
special about this x? Show that it gives y = ¢ — {b?/4a).

2 The parabola y = 3x* — 12x has x,, = . At this
minimum, 3x? is as large as 12x. Introducing
X=x—2and ¥Y=y+ 12 centers the equation to

Draw the curves 3—14 by hand or calculator or computer.
Locate the vertices and foci.

3 p=x?—2x-3 4 py={x—1)?
5 4y=—x? 6 d4x =7
Tix—1P+y=-1*=1 8 x2+9p*=9

9 9x? +y> =9 10 x%j4—(y— 12 =1

1y —4x?=1
13 y2—x*=0

12 (y— 1P —dx?=1

M xy=0

Problems 1520 are abont parabolas, 21-34 are about ellipses,
35-41 are about hyperbolas.

15 Find the parabola y=ax? + bx + ¢ that goes through
(0, 0y and (1, 1) and (2, 12}.

16 y = x* — x has vertex at
(0, 0) set X = and Y=

. To move the vertex to
. Then Y= X2
17 (a) In equation {2) change % to p. Square and simplify.
(b) Locate the focus and direcirix of ¥ =3X2 Which
points are a distance { from the directrix and focus?

18 The parabola y =9 — x* opens with vertex at
. Centering by Y=y — 9 yields ¥ = —x?,
19 Find equations for all parabolas which
{a} open to the right with vertex at (0, 0}
(b) open upwards with focus at (0, 0)
{c} open downwards and go through {0, 0) and (1, 0).
20 A projectileis at x =¢, y = ¢ — * at time ¢. Find dx/d and

dy/dt at the start, the maximum height, and an xy equation
for the path.

21 Find the equation of the ellipse with extreme points at
(+2,0)and (0, 41}, Then shift the center to (1, I} and find the
new equation.

22 On the ellipse x%a*+y%b*=1, solve for y when

x=c=_/a® — b*. This height above the focus will be valuable
in proving Kepler's third law.

23 Find equations for the ellipses with these properties:
{a) through (5, 0} with foci at (+4, 0)
{(b) with sum of distances to (1, 1) and (5, 1) equal to 12
{¢) with both foci at (0,0 and sum of distances =
2a=10.

24 Move a square root to the right side of equation (5) and
square both sides. Then isolate the remaining squarze root and
square again. Simplify to reach the equation of an ellipse.
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25 Decide between circle-¢llipse-parabola-hyperbola, based
on the XY equation with X =x—1and ¥=y+3,

fa) x*—2x+y*+6y=6

by x* =2x—pi—6r=6

c) x*—2x+2y+12p=6

(dy x¥ —2x—y=06
26 A tilted cylinder has equation (x—2y—2z)°+

(¥ —2x — 22)% = 1. Show that the water surface at z=01is an
eftipse. What is its equation and what is B2 — 4AC?

27 (4, 9/5) is above the focus on the ellipse x?/25 4+ y%/9 = 1.
Find dy/dx at that point and the equation of the tangent line.

28 (2) Check that the line xx, + yp, =r? is langent to the
circle x? + ¥ = r at {xq, yq)
(b} Far the eliipse x*;a* + y*/b? = 1 show that the tangent
equation is xx,ja® 4 yy,/h® = 1. (Check the slope.)

29 The slope of the normal line in Figure A is s = — /(slope
of tangent}= . The slope of the line from F, is
5= . By the reflection property,

s | 1 1
S =cot JJ:E{CO‘L f1- tan 0}=i(s~— :)

Test your numbers s and § against this cquation.

M Figure B proves the reflecting property of an ellipse,
R is the mirror image of F, in the tangent line; Q is any other
poinl on the line. Deduce steps 2, 3, 4 from [, 2, X

. PE £ PF, < QF, + QF; teft side = 2a, Q is outside)
. PR+ PF, < QR + QF,

. P is on the straight line from F, to R

a = fi: the reflecting property is proved.

:ﬁhbdl‘...l—

31 Theellipse (x — 3)*4 +{v— )34 = | isreally a
with center at and radius __ . Choose X and
Y to produce X2+ ¥i=1

32 Compute the arca of a square that just fits inside the
ellipse x%ia? + y2ib2 = 1.

33 Rotate the axes of x2 + xy + y2 =1 by using equation (7)
with sin x =cos x = l,-"\/i. The x' ¥ equation should show an
ellipse.

34 What are 4. b, ¢ for the Earth’s orbit around the sun?

35 Find an equation for the hyperbola with
(1) vertices (0, =1}, Toci (0, +2)
{b) vertices ((, +3), asymptotes y = + 2x
{c) (2, 3) on the curve, asympiotes ¥ =+ x

36 Find the slope of p>—x*=1 at (xg,ve). Show that
¥¥o — XXg = | goes through this peint with the right slope (it
has to be the tangent line),

37 If the distances from (x, y) to (8, 0) and (—8, 0} differ by
10, what hyperbola contains (x, y)?

38 If a cannon was heard by Napoleon and one second later
by the Duke of Wellington, the cannon was somewhere on a
with foci at

39 24y is part of (y—2)%= and 2x% 4 12x

is part of 2(x+3)P= Therefore  y? —dy —

2x?—12x =0 pgives the hyperbola (y—2)2—2x+ 3=
. Its center is and it opens to the

40 Following Problem 39 turn v? +2p=x?+ 10x into
¥2=X?4 C with X, Y, and C equal to

41 Draw the hyperbola x* —d4y? =1 and fing its foci and
asymptotes,

Problems 42-46 are about second-degree curves (conics).

42 For which A, C. F does Ax?+ Cyv? + F =0 have no solu-
tion (empty graph)?

43 Show that x* + 2xy 4 y* + 2x + 2y + 1 = 0 is the equation
(squared) of a single linc.

44 Given any points in the plane, a second-degree

curve Ax?+ - + F =0 poes through those pomts.

45 {a) When the plane z=ax + by +¢ meets the cone
-? = x? + %, eliminate z by squaring the plane equation.

Rewrite in the form Ax® + Bxy 4+ Cv = Dx+ Ey+ F =0.

b} Compute B*- 4AC in terms of ¢ and b.

{c} Show that the plane meets the cone in an ellipse if

a® +b* < 1 and a hyperbola if a* + b2 > 1 {sreeper).

46 The roots of ax? + bx + ¢ = O also involve the special com-
bination b? — 4ac. This quadratic equation has two real roots
if and no real roots if . The roots come
together when b? = 4ac, which is the borderline case like a
parabola.
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I 3.6 lterations x,. 4= F(x,) TN

Iteration means repeating the same function. Suppose the function is F(x) = cos x.
Choose any starting value, say x, = 1. Take its cosine: x, = cos x, = .54. Then take
the cosine of x,;. That produces x, = cos .54 = B6. The iteration is x,,.; =cos x,,. |
am in radian mode on a calculator, pressing “‘cos” each time. The early numbers are
not important, what is important is the output after 12 or 30 or 100 steps:

EXAMPLE 1 x12=.75, x13=.73, X14=‘?4‘ ceey X29=.?391, X30=.7391.

The goal is to explain why the x’s approach x*= 739085 ..... Every starting value
x, leads to this same number x*. What is special abour 73917

Note on iterations Do x, =cos x, and x, =cos x, mean that x, = cos’ x,? Abso-
lutely not! Iteration creates a new and different function cos(cos x). It uses the cos
button, not the squaring button. The third step creates F(F(F(x))). As soon as you
can, iterate with x,,; = % cos x,. What limit do the x's approach? Is it 1(.7931)?

Let me slow down to understand these questions. The ecntral idea is expressed by
the equation x, ., = F(x,). Substituting x, into F gives x,. This output x, is the input
that leads to x,. In its turn, x, is the input and out comes x; = F(x,). This is iteration,
and it produces the sequence xq, x|, X3, ...

The x’s may approach a limit x¥*, depending on the function F. Sometimes x* also
depends on the starting value x,. Sometimes there is no limit. Look at a second
example, which does not need a calculator.

EXAMPLE2 x,,,= Fix,)=4x, + 4 Starting from x, = 0 the sequence is
X, =4 0+4=4, x;=3-4+4=6, x;=36+4=7, x,=3-7+4=73, ..

Those numbers 0, 4, 6, 7, 73, ... seem to be approaching x* = 8. A computer would
convince us. So will mathematics, when we see what is special about 8:

When the x’s approach x*, the limit of x,, , = $x, + 4
is x*=1x*+4. This limiting equation yields x* = 8.
8 is the “*steady state’” where input equals output: 8 = F(8). [t is the fixed point.

If we start at x, =8, the sequence is 8,8, 8,.... When we start at x, =12, the
sequence goes back toward 8:

=5 1244=10, x,=3-10+4=9, x,=}-9+4=85

Equation for limir: If the iterations x,, | = F(x,) converge to x*, then x* = F(x*).

To repeat: 8 is special because it equals 3+ 8 + 4. The number .7391. . is special because
it equals cos .7391.... The graphs of y = x and y = F(x) interseet at x*. To cxplain why
the x’s converge {or why they don't) is the job of calculus.

EXAMPLE 3 x,_, = x? has two fixed points: 0 =02 and 1 = 1%, Here F(x) = x™.

Starting from x, =1 the sequence %, 5. 33z, ... goes quickly to x* =0. The only

approaches to x* =1 are from x, =1 (of course) and from x4, = — 1. Starting from
xp =2 we get 4, 16, 256, ... and the sequence diverges to + .

Each limit x* has a “basin of attraction.”” The basin contains all starting points x,
that lead to x*. For Examples 1 and 2, every x, led to 7391 and 8. The basins were
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the whole line (that is still to be proved). Example 3 had three basins—the interval
—1 < x4 < 1, the two points x, = + 1, and all the rest. The outer basin |xg| > 1 led
to 1 o0, I challenge you to find the limits and the basins of attraction (by calculator)
for F{x)=x—tan x.

In Example 3, x* = 0 is attracting. Points near x* move toward x*. The fixed point
x* =1 is repelling. Points near 1 move away. We now find the rule that decides
whether x* is attracting or repelling. The key is the slope dF[dx at x*,

A} Siart from any x, near a fixed point x* = F(x*):

x* is attracting il |dF/dx| is below 1 at x*

x* is repelling if |dF[dx| is above 1 at x*.

First I will give a calculus proof. Then comes a picture of convergence, by “‘cobwebs.”
Both methods throw light on this crucial test for attraction: |dF{dx| < 1.

First proof: Subtract x* = F(x*) from x,,, = F(x,). The difference x,,, — x* is
the same as F(x,} — F(x*). This is AF. The basic idea of calculus is that AF is close
to F'Ax:

Xpe1 = X* = Flx,) = F(x*) = F'(x*)(x, = x*). (1

The “error™ x, — x* is multiplied by the slope dF/dx. The next error x,., — x* is
smaller or larger, based on |F'[< | or |F'| > | at x*. Every step multiplies approxi-
mately by F'(x*). Its size controls the speed of convergence.

In Example 1, F{x) is cos x and F'(x) is —sin x. There is attraction to .7391
because [sin x*| < 1. In Example 2, F is $x+ 4 and F’ is . There is attraction to 8.
In Example 3, F is x* and F’ is 2x. There is superattraction to x* =  (where F’ = ().
There is repulsion from x* = | (where F' =2),

I admit one major difficuity. The approximation in equation (1) only holds near
x* I x; s lar away, does the sequence still approach x*? When there are several
attracting points, which x* do we reach? This section starts with good iterations,
which solve the equation x* = F(x*) or f(x}=0. At the end we discover Newton's
method. The next section produces crazy but wonderful iterations, not converging
and not blowing up. They lead to "fractals” and “*Cantor sets” and “chaos.”

The mathematics of iterations is not finished. It may never be finished. but we are
converging on the answers. Please choose a function and join in.

THE GRAPH OF AN ITERATION: COBWEBS

The iteration x,,; = F(x,) involves two graphs at the same time. One is the graph
of y = F(x). The other is the graph of y = x (the 45" line}. The iteration jumps back
and forth between these graphs. It is a very convenient way to see the whole process.

Example 1 was x,.; = cos x,. Figure 3.19 shows the graph of cos x and the “cob-
web.” Starting at (x4, x,) on the 45° ling, the rule is based on x, = F{x,):

From (xg, xu) g0 up or down to (xq, x;) on the curve.
From (x,, x,) g¢ across to {x,, x,) on the 45° line.

These steps are repeated forever. From x, go up to the curve at F(x,}. That height
is x,. Now cross to the 45" line at (x5, x,}. The iterations are aiming for (x*, x*} =
(.7391, .7391). This is the crossing point of the two graphs y = F(x) and y = x.
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¥o Flx)=cosx Fiy 1
Flr) Foo)t R =%x+4
FGy1 Frpy 4
Feg) | o / Y=
y=x
54 .739 86 |
] Xy : —t—
no oxxox ‘o 4 Xy X3 4"

Ag. .42 Cobwebs go from (xo, xo) to (¥, X, ) to (x;, x, }—line to curve to line.

Example 2 was x,, = $x, + 4. Both graphs are straight lines. The cobweb is one-
sided, from {0, 0} to (0, 4) to (4, 4} to (4, 6} to (6, 6). Notice how y changes (vertical
line} and then x changes (horizontal line). The slope of F(x) is 4, so the distance to 8
is multiplied by % at every step.

Example 3 was x,,; = x?, The graph of y= x? crosses the 45° line at two fixed
points: 0> =0 and 1% = 1. Figure 3.20a starts the iteration close to 1, but it quickly
goes away. This fixed point is repelling because F'(1)= 2. Distance from x* =1 is
doubled (at the start). One path moves down to x* = 0—which is superatiractive
because F' = Q. The path from x4 > 1 diverges to infinity.

EXAMPLE4  F(x) has two attracting points x* (a repelling x* is always between).

Figure 3.20b shows two crossings with slope zero. The iterations and cobwebs con-
verge quickly, In between, the graph of F(x) must cross the 45° line from below. That
requires a stope greater than one. Cobwebs diverge from this unstable point, which
separates the basins of attraction. The fixed point x = n is in a basin by itself!

Note 1 To draw cobwebs on a calculator, graph y= F(x) on top of y=x. On a
Casio, onc way is to plot (xg, xo) and give the command LINE: PLOT X,Y
followed by EXE. Now move the cursor vertically to y = F(x} and press EXE. Then
move horizontally to y = x and press EXE. Continue. Each step draws a line.

2n T

attracting
*=0

n py:
Ag. 3.20 Converging and diverging cobwebs: F(x} = x? and F(x)= x —sin x,



3.6 MHeralons x,. , = F(x,;)

For the TI-81 (and also the Casio} a short program produces a cobweb. Store F{x)
in the Y= function siot Y 1. Set the range (square window or autoscaling). Run the
program and answer the prompt with x,:

PrgmC:COBWEB :Disp "INITIAL X0 :Input X :ALL-Off
:Y1-0n ::"X">Y4 :Lbl1 :X->S$ :¥Y1-T :Line(S$,S$,S5,T)
:Line(S,T,T,T) :T-X :Pause :Goto1

Note 2 The x’s approach x* from one side when 0 < dFfdx < 1.

Note 3 A basin of attraction can include faraway x,’s (basins can come in infinitely
many pieces). This makes the problem interesting. If no fixed points are attracting,
see Section 3.7 for “cycles” and ““chaos.”

THE ITERATION x,, , = X, — cf(x,)

At this point we offer the reader a choice. One possibility is to jump ahead to the
next section on “Newton’s Method.” That method is an iteration to solve f(x)=0.
The function F(x)combines x, and f(x,) and f’(x,) into an optimal formula for x, . , .
We will see how quickly Newton’s method works (when it works). It is the outstanding
algorithm to solve equations, and it is totally built on tangent approximations.

The other possibility is to understand (through calculus) a whole family of itera-
tions. This family depends on a number ¢, which is at our disposal. The best choice
of c¢ produces Newton’s method. 1 emphasize that iteration is by no means a mew
and peculiar idea. It is a fundamental technique in scientific computing.

We start by recognizing that there are many ways to reach f(x*)=0. (I write x*
for the solution.) A good algorithm may switch to Newton as it gets close. The
iterations use f(x,} to decide on the next point x,, ;:

Xp+1 ™ F(xn): Xn T Cf(xn)- (2)

Notice how F(x) is constructed from f(x)—they are different! We move f to the right
side and multiply by a “preconditioner” ¢. The choice of ¢ (or c,, if it changes from
step to step) is absolutely critical. The starting guess x, is also important—but its
accuracy is not always under our control.

Suppose the x, converge to x*. Then the limit of equation (2) is

x* = x* —cf (x*). 3)

That gives f{x*)= 0. If the x,’s have a limit, it solves the right equation. It is a fixed
point of F (we can assume ¢, = ¢ #0and f{x,) = f(x*)). There are two key questions,
and both of them are answered by the slope F'(x*):

1. How quickly does x, approach x* (or do the x, diverge)?
2. What is a good choice of ¢ (or ¢,)?

EXAMPLES f(x)=ax —b is zero at x* = b/a. The iteration x,,, = x, — ¢c(ax, — b)
intends to find b/a without actually dividing. (Early computers could not divide; they
used iteration.) Subtracting x* from both sides leaves an equation for the error:

Xp41 — X% =x, — x*—¢lax, — b).
Replace b by ax*. The right side is (1 — ca)(x, — x*). This “‘error equation” is

(error),,, = (1 — ca)(error),. (4)
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At every step the error is multiplied by (1 — ca), which is F'. The error goes to zero if
|F’| is less than 1. The absolute value |1 — ca| decides everything:

x, converges to x* ifand only if —1<1—ca<1. (5)

The perfect choice (if we knew it) is ¢ = 1/a, which turns the multiplier 1— ca into
zero. Then one iteration gives the exact answer: x, = xo - (1/a)(ax, — b) = b/a. That
is the horizontal line in Figure 3.21a, converging in one step. But look at the other
lines.

This example did not need calculus. Linear equations never do. The key idea is
that close to x* the nonlinear equation f(x) = 0 is nearly Iinear. We apply the tangent
approximation. You are seeing how calculus is used, in a problem that doesn’t start
by asking for a derivative.

THE BEST CHOICE OF ¢

The immediate goal is to study the errors x,— x*. They go quickly to zero, if
the multiplier is small. To understand x,,, =x, —¢f(x,), subtract the equation
x*=x*—cf(x*):

Xppy — X* = x, — x* —e(f(x,) = f(x*)). ()

Now calculus enters. When you see a difference of s think of df/dx. Replace
fix,)—f(x*) by A(x, — x*), where A stands for the slope df /dx at x*:
Xypy — x* (1 — cA)(x, — x*). (7

This is the error equation. The new error at step n + 1 is approximately the old error
multiplied by m=1 — cA. This corresponds to m= 1 — ca in the linear example. We
keep returning to the basic test |m| = |F'{(x*)| < 1:

3K Starting near x*, the errors x, — x* go to zero if the multiplier has im) < 1.
The perfect choice is ¢ = 1/A=1/f'(x*} Then m=1-cA=0.

There is only one difficulty: We don’t know x*. Therefore we don't know the perfect
c. It depends on the slope A =f'(x*) at the unknown solution. However we can come
close, by using the slope at x,,:

Choose ¢, = 1/f'(x,). Then X,y = X, = f(x,)/f"{x,) = F{x,).

This is Newton’s method. The multiplier m =1 — cA is as near to zero as we can make
it. By building df /dx into F(x), Newton speeded up the convergence of the iteration.

F(v) Flx) Fiat)
v—clax—h): good ¥ - flxyfy) 0018

x-fxyfx) 0.000
=il —1.435

x* 1
- x —E(ax —b) : best

P T
X —E(a.\ =k} tail

X, Fixy=2v—cosx

Fig. 3.2 The error multiplier is m =1 — ¢f’"{x*). Newton has ¢ = 1/f'(x,) and m - 0.



3.6 Heratlons x,,. .= F(x,)

EXAMPLE & Solve f(x)=2x — cos x = (0 with different iterations (different c’s).

The line y = 2x crosses the cosine curve somewhere near x = 3. The intersection
point where 2x* = cos x* has no simple formula. We start from x, =4 and iterate
Xy = X, — ¢{2x, — cos x,) with three different choices of c.

Take c=1 or ¢ =1/f"'{x,) or update ¢ by Newton's rule ¢, = 1/f"(x,):
Xp = .50 c=1 c=1{f"(xp) ¢, =1/f"(x,)

x, = 38 45063 45062669
Xy = .55 45019 45018365
Xy = A0 45018 45018361...

The column with ¢ =1 is diverging (repelled from x*}. The second column shows
convergence (attracted to x*}. The third column (Newton’s method) approaches x*
so quickly that 4501836 and seven more digits are exact for x;.

How does this convergence match the prediction? Note that f'(x}=2+ sin x so
A =2.435. Look to see whether the actual errors x, — x*, going down each column,
are multiplied by the predicted m below that column:

c=1 c=1/2+sin §) ¢, = /(2 +sin x,)
Xo—x*= 0.05 498102 498-10°2
Xy —x*= -0.07 4.43-107% 443-1074
X, x¥= 0.10 7.88-107° 363-10°8
Xy—x*= -0.15 1.41-10°7 278-1071®
multiplier m=—14 m= 018 m — ( (Newton)

The first column shows a muitiplier below —1. The errors grow at every step. Because
m is negative the errors change sign—the cobweb goes outward,

The second column shows convergence with m = 018. It takes one genuine Newton
step, then ¢ is fixed. Alter n steps the error is closely proportional to m" = (.018y'—
that is ‘‘limear convergence” with a good multiplier,

The third column shows the “‘guadratic comvergence” of Newton's method.
Multiplying the error by m is more attractive than ever, because m — 0. In fact m
itself is proportional to the error, so at each step the error is squared. Problem 3.8.31
will show that (error),, , < M(error)?. This squaring carries us from 10"2 to 10" % to
1072 to “machine ¢” in three steps. The number of correct digits is doubled at every
step as Newton converges.

Note 1 The choice ¢ =1 produces x,,, = x, — f{x,). This is “successive substitu-
tion.” The equaticn f{x)=0 is rewritten as x = x — f(x), and each x, is substituted
back to produce x,.,. Iteration with ¢ = 1 does not always fail!

Note 2 Newton’s method is successive substitution for f/f’, not f. Then m = 0.

Note3 Edwards and Penney happened to choose the same example 2x = cos x. But
they cleverly wrote it as x,., =1 cos x,, which has |F’| = |4 sin x| < 1. This iteration
fits into our family with ¢ = 4, and it succeeds. We asked earlier if its limit is ${.7391).
No, it is x* = 450....
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Note 4 The choice ¢ = 1/f"(x,) is “modified Newton.” Alter one step of Newton’s
methoed, ¢ is fixed. The steps are quicker, because they don’t require a new f’(x,).
But we need more steps. Millions of dollars are spent on Newton’s method, so speed
is important. In all its forms, f(x) =0 is the central problem of computing.

3.6 EXERCISES

Rend-through questions

X,+1 =X} describes,an __a . After one step x; = _b__,
After two steps x; = F(x;}=_ ¢ . Ifit happens that input =
output, or x¥*=_ d _ thenx*isa _ e _point. F=x3 has

f__ fixed points, at x* = __ g , Starting near a fixed point,
the x, will converge to it if _h 1. That is because
Xpp1 —X*=Fix,)— F(x*)=~__| The point is cailed

I . The x, are repelled if _ k . For F=x? the fixed

points have F'=__ | . The cobweb goes from (x,, x,) to

{ , Yto{ , ) and converges to {x* x*}=_m . This

is an intersection of y=x* and y=_ n_, and it is super-
attracting because _ o

Six)=0 can be solved iteratively by x,,, = x,—¢f(x,), in
which case F'(x*)=_ P . Subtracting x* = x* — ¢f(x*}, the
crror equation is x,,, —x*=m(__a__). The multiplier is

m=_rt . The errors approach zero if _ 3 , The choice
¢;=__t produces Newton’s method. The choice c=1is
“successive _ W " and c=__ ¥ is modified Newton. Con-

vergence to x* is _ w__ certain,

We have three ways to study iterations x,,, = F(x,):
(1) compute x,, x;,... from different x;, (2) find the fixed
points x* and test |dFfdx| <1 (3) draw cobwebs.

In Problems 1-8 start from x;=.6 and x,=2. Compute
Xy, X3, ... tD tess convergence:

2 x,,y=2x,{1 —x,)

4 x,01=1/3/x,

6 KXo+t =x3+xn_2

1
1 Xpt1 =x3_1

3 x4 =’\/x_u
5 Xat+y =3xn(1 —I“}

7 xn+1:§xn_"1 8 xu+l=|xn|

9 Check dF/dx at all fixed points in Problems 1-6. Are they
attracting or repelling?

10 From x, = — 1 compute the sequence x,., = — x3. Draw
the cobweb with its “cycle.” Two steps produce x,,; = xj,
which has the fixed points

11 Draw the cobwebs for x,,, =%x,— ! and x,., =1 —¥x,
starting from x,=2. Rule: Cobwebs are two-sided when
dF fdx is .

12 Draw the cobweb for x,., =x2—1 starting from the
periodic point xy =0. Another periodic point is .
Stant nearby at x,=.1 to sec if the iterations are
attractedto0, —1,0, —1,....

Solve equations 13—16 within 1% by iteration.
13 x=cos ix 14 x=cos®x
15 x=cos\/; 16 x=2x—-1{")

17 For which numbers 4 does x,, ; = a(x, — x?) converge to
x*=0F

18 For which numbers a does x, ., = a{x, — x2) converge to
x* =(a—1)/a?

19 lterale x,, 4 = 4{x, — x2) to see chaos. Why don't the x,
approach x* =37

20 One fixed point of F{x} = x? — 4 is attracting, the other is
repelling. By experiment or cobwebs, find the basin of x;'s
that go to the attractor.

21 (imporiant} Find the fixed point for F(x)=ax+ 5. When
is it attracting?

22 What happens in the linear case x,.; =ax,+4 when
a=1and whena=-1?

23 Starting with $1000, you spend half your money each year
and a rich but foolish aunt gives you a new $1000. What is
your steady state balance x*? What is x* if you start with a
million dollars?

24 The US national debt was once 31 trillion. Inflation
reduces its real value by 5% cach year (so multiply by
a =.95), but overspending adds another $100 billion. What
is the steady state debt x*?

25 x,,, =b/x, has the fixed point x*=./b. Show that
|dFfdx|=1 at that point-—what is the sequence starling
from x,?

26 Show that both fixed points of x,,,=x?+x,—3 are
repelling. What do the iterations do?

27 A 35 calculator takes square roots but not cube roots.
Explain why x,., =./2/x, converges to 3/5

28 Start the cobwebs for x,, | =sin x, and x,,; =tan x,. In
both cases dF {dx = 1 at x* = (.. (a} Do the iterations converge?
{b) Propose a theory based on F” for cases when F' =1,

Solve f{x} =0 in 29-32 by the iteration x, ., = x, —¢f{x.), to
find a ¢ that succeeds and a ¢ that fails.

29 flx)=x'—4 M f(x)=x?—4x+3

3 f(x)y=(x—2° ~1 32 fix)=(1—x""—3
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33 Newton's method computes a new c=1/f'(x,) at each
step. Write out the iteration formulas for f(x)=x*~2=0
and f{x}=sinx —4=0.

34 Apply Problem 33 to find the first six decimals of /2
and n/6.

35 By experiment find each x* and its basin of attraction,
when Newton’s method is applied to f(x) =x?—5x +4.

36 Test Newton’s method on x* — 1 =0, starting far out at
xo = 10°. At first the error is reduced by about m=4. Near
x* =1 the multiplier approaches m =0.

37 Find the muitiplier m at each fixed point of x,., =
x,— e(x2 —x,). Predict the convergence for different ¢ {to
which x*7).

38 Make a table of iterations for ¢ =1 and ¢ = 1/f"(x¢} and
c¢=1/f"(x,), when f(x}=x>—4and x,=1.

39 In the iteration for x* -2 =0, find dF/dx at x*

1 2
x)|+l=i xn+x_" .

3.7 Newton’s Method (and Chaos)

(b) Newton's iteration has F(x)=x —f(x){f'(x). Show
that F' =0 when f(x}=0. The multiplier for Newton is
m=10.

40 What are the solutions of f(x)=x?+2=0 and why is
Newton's method sure to fail? But carry out the iteration to
see whether x, — .

41 Computer project F(x) = x —tan x has fixed points where
tan x* =0. So x* is any multiple of n. From x, =2.0 and 1.8
and 1.9, which multiple do you reach? Test points in
1.7 < xq < 1.9 to find basins of attraction to =, 2m, 3n, 4=n.

Between any two basins there are basins for epery multiple
of n. And more basins between these (g fractal). Mark them
on the line from O to 1. Magnify the picture around x,=1.9
(in color?).

42 Graph cos x and cos(cos x) and cos(cos(cos x)). Also
(cos)®x. What are these graphs approaching?

43 Graph sin x and sin(sin x} and (sin)®x. What are these
graphs approaching? Why so slow?

The equation to be solved is f(x)=0. Its solution x* is the point where the graph
crosses the x axis. Figure 3.22 shows x* and a starting guess x,. Our goal is to come
as close as possible to x*, based on the information f(xy) and f*(x,).
Section 3.6 reached Newton’s formula for x, (the next guess). We now do that directly.
What do we see at x,? The graph has height f(x,) and siope f'(x,). We know
where we are, and which direction the curve is going, We don’t know if the curve
bends (we don’t have f”). The best plan is 1o follow the tangent lime, which uses all

the information we have.

Newton replaces f{x} by its linear approximation {(=tangent approximation):

f(x) = f(xo)+ [ (Xo}{x — xo). (1)

We want the left side to be zero. The best we can do is to make the right side zero!
The tangent line crosses the axis at x,, while the curve crosses at x*. The new guess
x, comes from f(xy} +f"(xp)(x; — x5)= 0. Dividing by f’(x,) and solving for x,, this

is step 1 of Newton's method:

X, =x

_ J(xa)
I(x0)”

2

At this new point, compute f(x,) and f'(x,)—the height and slope at x,. They
give a new tangent line, which crosses at x,. At every step we want f(x,,,)=0 and
we seftle for [(x,)+ [ (%, ){(x,+1 — x,)=0. Ahter dividing by f"(x,), the formula for

X, 4+ is Newton’s method.
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3L The tangent line from x, crosses the axis at x, ., ,:
S(xa)
Newton’s method i =N s 3
+1 n f (x”) ( )
Usually this iteration x, ., = F(x,) converges quickly to x*,
3
flx) = } -2

converge to x* =5

=T x5=121

1Yo

follow
tangent
line

"
1
'
'
"
'
'
'

Fig. 3.22 Newton’s method along tangent lines from x, to x, to x,.

Linear approximation involves three numbers. They are Ax (across) and Af (up)
and the slope f'(x). If we know two of those numbers, we can estimate the third. It
is remarkable to realize that calculus has now used all three calculations—they are
the key to this subject:

1. Estimate the slope ['(x) from Af/Ax (Section 2.1)
2. Estimate the change Af from f'(x) Ax (Section 3.1)
3. Estimate the change Ax from Af/f'(x) (Newton's method)

The desired Af is — f(x,). Formula (3) is exactly Ax = — f(x,)/f"(x,).

EXAMPLE 1 (Square roots) f(x)= x?>—b is zero at x*= ﬁ and also at — \/5
Newton’s method is a quick way to find square roots—probably built into your
calculator. The slope is f’(x,) = 2x,. and formula (3) for the new guess becomes

x2—b 1 = b
=Xz = J —
2%, " L

Kip =%, 4)
This simplifies to x, , , = 3(x, + b/x,). Guess the square root, divide into b, and average
the two numbers. The ancient Babylonians had this same idea. without knowing
functions or slopes. They iterated x, ., = F(x,):

Lf b . | S
F(x)—i(xwL;) and F(,\}—z(l xz) (5)

The Babylonians did exactly the right thing. The slope F’ is zero at the solution, when
x2 = b. That makes Newton’s method converge at high speed. The convergence test
is |F'(x*)| < 1. Newton achieves F'(x*)= 0—which is superconvergence.
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To find ﬂ, start the iteration x,,, = 3(x, +4/x,) at x, = 1. Then x; = §(1 + 4):
x; =25 x,=205 x;=20006 x,=2.000000009.

The wrong decimal is twice as far out at each step. Tke error is squared. Subtracting
x* = 2 from both sides of x,,, = F{x,) gives an error equation which displays that
square:

x,.+1~2=§(x,+xiu)— =2xin(x,,—2)2. ©)

This is (error),., & %(error)?. It explains the speed of Newton's method.

Remark 1 You can’t start this iteration at x, = 0. The first step computes 4/0 and
blows up. Figure 3.22a shows why—the tangent line at zero is horizontal. It will
never cross the axis.

Remark 2 Starting at x, = — 1, Newton converges to — \/5 instead of + ﬁ That
is the other x*, Often it is difficult to predict which x* Newton’s method will choose.
Around every solution is a “basin of attraction,” but other parts of the basin may be
far away. Numerical experiments are needed, with many starts x,. Finding basins of
attraction was one of the problems that led to fractals.

i
EXAMPLE2 Solve ——a=0to find x* = 1 without dividing by a.
x a

Here f{x)=(1/x)— a. Newton uses f*(x) = — 1/x%. Surprisingly, we don’t divide:

(Ux)—a

Xpp1 =X
SRR T

=x,+ X, — ax:. N
Do these iterations converge? I will take a = 2 and aim for x* = 4. Subtracting 4 from
both sides of (7) changes the iteration into the error equation:

Xp4y =2x,—2x2 becomes Xx,4;—1=—2(x,—1)% 8)

At each step the error is squared. This is terrific if (and only if) you are close to
x* = 3. Otherwise squaring a large error and multiplying by —2 is not good:

Xo= 70 x,= 42 x,= 487 x;=.4997 x,= 4999998
Xo=121 x;=—-5 x;=-15 x;=—-75 x,= —127.5

The algebra in Problem 18 confirms those experiments. There is {ast convergence if
0 < x4 < 1. There is divergence if x, is negative or x, > 1. The tangent line goes to a
negative x,. After that Figure 3.22 shows a long trip backwards.

In the previous section we drew F(x). The iteration x,,, = F{x,) converged to the
45° line, where x* = F(x*). In this section we are drawing f(x). Now x* is the point
on the axis where f(x*}=0.

To repeat: It is f{x*}=0 that we aim for. But it is the slope F’(x*) that decides
whether we get there. Example 2 has F(x)=2x — 2x?. The fixed points are x* =4
(our sotution) and x* = 0 (not attractive). The slopes F’'(x*) are zero {typical Newton)
and 2 (typical repeller). The key to Newtor's method is F' = Q at the solution:

_S&® L )

The slope of F(x)=x 70 is T

Then F'(x)=0 when f(x)=0.
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The examples x? = b and 1/x = g show fast convergence or failure. In Chapter 13,
and in reality, Newton’s method solves much harder equations. Here 1 am going to
choose a third example that came from pure curiosity about what might happen. The
results are absolutely amazing. The equation is x> = — 1.

EXAMPLE 3 What happens to Newton’s method if you ask it to solve f(x) = x* + 1 =(?

The only solutions are the imaginary numbers x* =i and x* = — i, There is no real
square root of —1. Newton’s method might as weli give up. But it has no way to
know that! The tangent line still crosses the axis at a new point x,.,, even if the

curve y = x2 + | never crosses. Equation (5) still gives the iteration for b= — 1:
1 1
Xnt1 =§ X, — — | = Flx,). 9
xﬂ

The x’s cannot approach i or —i (nothing is imaginary). So what do they do?

The starting guess x, = 1 is interesting. It is followed by x; = 0. Then x, divides
by zero and blows up. [ expected other sequences to go to infinity. But the experiments
showed something different (and mystifying). When x,, is large, x,, ; is less than half
as large. After x, = 10 comes x,,, = $(10 — i) = 4.95. After much indecision and a
long wait, a number near zero eventually appears. Then the next guess divides by
that small number and goes far out again. This reminded me of “‘chaos,”

It is tempting to retreat to ordinary examples, where Newton’s method is a big
success. By trying exercises from the book or equations of your own, you will see
that the fast convergence to \/4—1 is very typical. The function can be much more
complicated than x? — 4 (in practice it certainly is). The iteration for 2x = cos x was
in the previous section, and the error was squared at every step, If Newton’s method
starts close to x*, its convergence is overwhelming. That has to be the main point of
this section: Follow the tangent line.

Instead of those good functions, may I stay with this strange exampie x* + 1 =0?
[t is not so predictable, and maybe not so important, but somehow it is more interest-
ing. There is no real solution x*, and Newton’s method x, ., = ¥(x, — 1/x,) bounces
around. We will now discover x,,.

A FORMULA FOR x,,

The key is an exercise from trigonometry books. Most of those problems just give
practice with sines and cosines, but this one exactly fits 3(x, — 1/x,):

1fcos® sindy cos2f or 1 (o oy 120
2\sin® cosf/ sin20 2\ ety
In the left equation, the common denominator is 2 sin & cos 8 (which is sin 28). The

numerator is cos’@ —sin? @ (which is cos 28). Replace cosine/sine by cotangent,
and the identity says this:

If xg=cotf then x,=cot?28. Then x; = cot 4. Then x,=cot2"8.
This is the formula. Qur points are on the cotangent curve. Figure 3.23 starts from
xp=2=cot 8, and cvery iteration doubles the angle.

Example A The sequence xo = 1, x, = 0, x, = o0 matches the cotangents of n/4, 7/2,
and =n. This sequence blows up because x, has a division by x; = 0.
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2 £ X3 Xp=

Fig. 3.23 Newton’s method for x2 + 1 =0, Tteration gives x, = cot 2"0.

Example B The sequence 1/\/5, - 1/\/5, l/\/g matches the cotangents of n/3, 2x/3,
and 4=/3. This sequence cycles forever because xp=x,=x,=....

Example C  Start with a large x, (a small 8). Then x, is about half as large (at 28).
Eventually one of the angles 40, 80, ... hits on a large cotangent, and the x’s go far
out again. This is typical. Examples A and B were special, when 8/r was § or 3.

What we have here is chaos. The x’s can’t converge. They are strongly repelled by
all points. They are also extremely sensitive to the value of 8. After ten steps 8 is
muitiplied by 2!% = 1024. The starting angles 60° and 61° look close, but now they
are different by 1024°, If that were a multiple of 180°, the cotangents would still be
close. In fact the x,,’s are 0.6 and 14.

This chaos in mathematics is also seen in nature. The most familiar example is the
weather, which is much more delicate than you might think, The headline “Fore-
casting Pushed Too Far” appeared in Science (1989). The article said that the snow-
balling of small errors destroys the forecast after six days. We can’t follow the weather
equations for a month—the flight of a plane can change everything. This is & revolu-
tionary idea, that a simple rule can lead to answers that are too sensitive to compute.

We are accustomed to complicated formulas (or no formulas). We are not
accustomed to innocent-looking formulas like cot 2" 8, which are absolutely hopeless
after 100 steps.

CHAQS FROM A PARABOLA

Now I get to teil you about new mathematics. First I will change the iteration x, ., =
4{x, — 1/x,) into one that is even simpler. By switching from x to z = 1/(1 + x?), each
new z turns out to involve only the oid z and z%

Z,4q =4z, — 422, (10)

This is the most famous quadratic iteration in the world. There are books about it,
and Problem 28 shows where it comes from. Qur formula for x, leads to z,.:

1 !
BETEx2 1+ (cot 2707

= (sin 2"6)2. ay
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The sine is just as unpredictable as the cotangent, when 2"8 gets large. The new thing
is to locate this quadratic as the last member (when a = 4} of the family

zn+1=azn_a239 0%6@4 (12)

Example 2 happened to be the middle member a = 2, converging to 3. I would like
to give a brief and very optional report on this iteration, for different a’s.

‘The general principle is to start with a number z, between 0 and 1, and compute
), 23, Z3,.... It is fascinating to watch the behavior change as a increases. You can
see it on your own computer. Here we describe some things to look for. All numbers
stay between 0 and 1 and they may approach a limit, That happens when a is small:

for 0 £a < the z, approach z*=0
for 1 £ a<3 the z, approach z* =(a— 1)/a

Those limit points are the solutions of z = F(z). They are the fixed points where
z* = qz* — az*)?. But remember the test for approaching a limit: The slope at z*
cannot be larger than one. Here F=az — az* has F'=a— 2az. It is easy to check
[F'| €1 at the limits predicted above. The hard problem—sometimes impossible—
is to predict what happens above a= 3. Qur case is a= 4.

The z's cannot approach q limit when |F'(z*)| > 1. Something has to happen, and
there are at least three possibilities:

The z,’s can cycle or fill the whole interval (0, 1) or approach a Cantor set.
I start with a random number z,, take 100 steps, and write down steps 101 to 105:

a=134 a=335 a=38 a=40

Zyoy = 842 875 336 169
Z307 = 452 383 848 562
Zy03 = 842 827 491 985
Zy04 = 452 501 950 060
Zy05 = 842 875 182 225

The first column is converging to a “2-cycle.” It alternates between x = .842 and
y=.452. Those satisfy y = F(x) and x = F(y)= F(F(x)). If we look at a doubie step
when a =34, x and y are fixed points of the double iteration z,, , = F(F(z,)). When
a increases past 3.45, this cycle becomes unstable.

At that point the period doubles from 2 to 4. With a = 3.5 you see a “4-cycle” in
the table—it repeats after four steps. The sequence bounces from .875 to .383 to .827
to .501 and back to .875. This cycle must be attractive or we would not see it. But it
also becomes unstable as a increases. Next comes an 8-cycle, which is stable in a little
window (you could compute it} around a = 3.55. The cycles are stable for shorter and
shorter intervals of a’s. Those stability windows are reduced by the Feigenbaum shrink-
ing factor 4.6692.... Cycles of length 16 and 32 and 64 can be seen in physical
experiments, but they are ail unstable before a = 3.57. What happens then?

The new and unexpected behavior is between 3.57 and 4. Down each line of
Figure 3.24, the computer has plotted the values of 2,44, t0 z;9,—0mitting the first
thousand points to let a stable period {or chaos} become established. No points
appeared in the big white wedge. I don’t know why. In the window for peried 3, you
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The period 2, 4, ... is the oumber of 2’s in a cycle. 5

a=1383

Ag. 324 Period doubling and chags from iterating F{z) (stolen by special permission from
Introduction to Applied Mathematics by Gilbert Strang, Wellesley-Cambridge Press).

see only three z's. Period 3 is followed by 6, 12, 24, ... There is period doubling at the
end of every window (including all the windows that are too smail to see). You can
reproduce this figure by iterating z, , , = az, — az? from any z, and plotting the results.

CANTOR SETS AND FRACTALS

I can’t teil what happens at a = 3.8. There may be a stabie cycle of some long period.
The z’s may come close to every point between 0 and 1. A third possibility is to
approach a very thin limit set, which looks like the famous Cantor set:

To construct the Cantor set, divide [0, 1] into three pieces and remove the open
interval (1. 4). Then remove (§, 3) and (3, §) from what remains. At each step
take out the middle thirds. The points that are left form the Cantor set.

All the endpoints 4, %, &, 3, ... are in the set. So is § (Problem 42). Nevertheless the
lengths of the removed intervals add to 1 and the Cantor set has “‘measure zero.”
What is especially striking is its self-similarity: Between 0 and § you see the same
Cantor set three times smaller. From 0 to 4 the Cantor set is there again, scaled down
by 9. Every section, when blown up, copies the larger picture.

Fractals That sell-similarity is typical of a fractal. There is an infinite sequence of
scales. A mathematical snowflake starts with a triangle and adds a bump in the
middle of each side. At every step the bumps lengthen the sides by 4/3. The final
boundary is self-similar, like an infinitely long coastline.

The word “fractal” comes from fractional dimension. The snowflake boundary has
dimension larger than 1 and smaller than 2. The Cantor set has dimension larger
than 0 and smaller than 1. Covering an ordinary line segment with circles of radius
r would take ¢/r circles. For fractals it takes ¢/r® circles—and D is the dimension.
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0 1/3 2/3 ] 0

Rg. 3.25 Cantor set (middle thirds removed). Fractal snowflake (infinite boundary).

Our iteration z,,, = 4z, — 4z? has a = 4, at the end of Figure 3.24. The sequence
Z4, 24, ... goes everywhere and nowhere. [ts behavior is chaotic, and statisticaj tests
find no pattern. For all practical purposes the numbers are random.

Think what this means in an experiment (or the stock market). If simple rules
produce chaos, there is absolutely no way to predict the results. No measurement can
ever be sufficiently accurate. The newspapers report that Pluto’s orbit is chaotic—
even though it obeys the law of gravity. The motion is totaily unpredictable over
long times. I don’t know what that does for astronomy (or astrology).

The most readable book on this subject is Gleick's best-seller Chaos: Making a
New Science. The most dazzling books are The Beauty of Fractals and The Science
of Fractal Images, in which Peitgen and Richter and Saupe show photographs that
have been in art museums around the world. The most original books are Mandel-
brot's Fractals and Fractal Geometry. Our cover has a fractal from Figure 13.11.

We return to friendlier problems in which calculus is notl helpless.

NEWTON'S METHOD V5. SECANT METHOD: CALCULATOR PROGRAMS

The hard part of Newton’s method is to find df /dx. We need it for the slope of the
tangent line. But calculus can approximate by Af/Ax—using the values of f(x)
already computed at x, and x,_,.

The secant method follows the secant line instead of the tangent line:

(A{‘"{jjzi) where (g—f_) =f——-—-——{x;}:£(f"l_l). (13)

The secant line connects the two latest points on the graph of f(x). Its equation is
y—flx,)={(Af/Ax){x — x,). Set y=0 to find equation (13) for the new x=x,_,,,
where the line crosses the axis.

Prediction: Three secant steps are about as good as two Newton steps. Both should
give four times as many correct decimals: {error} -» (error}*. Probably the secant
method is also chaotic for x* +1=0.

These Newton and secant programs are for the TI-81. Place the formula for f(x)
in slot Y4 and the formula for f{x) in slot Y2 on the Y = function edit screen.
Answer the prompt with the initial x, = X0. The programs pause to display each
approximation x,, the value f{x,), and the difference x,— x,_,. Press ENTER to
continue or press ON and select item 2 1 Qu i t to break. If f{x,}= 0, the programs
display ROOT AT and the root x,,.

Secant: Xp41 =X, —
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PrgmN:NEWTON :Disp "ENTER FOR MORE"

:Disp "X@B=" :Disp "ON 2 TO BREAK"
:Input X :bisp "™
XS :Disp "XN FXN XN-XNMT"
1YY :Disp X
:Lbl 1 :Disp ¥
X-Y/Y2 X :Disp D
:X-8S-D :Pause
:X-$§ sIf Y0
AL § tGoto 1
:Disp "ROQOT AT"
:Disp X

3.7 EXERCISES

PrgmS:SECANT YT

tDisp "X@=" 1YY

:Input X :Disp "ENTER FOR MORE"
XS :Disp "XN FXN XN-XNM1"
Y17 :Disp X

:Disp "X1=" :Disp Y

:Input X :Disp D

Y1 :Pause

:Lbl I :I1f Y#Q

:X=-5-D :Goto 1

i X-8 :Disp "ROOT AT"®

:X=-YD/(Y-T)>X :Disp X

Read-through questions

When f(x)}=0 is linearized to f{x,) +f"(x,Xx — x,) =0, the
solution x=_ 9 is Newton'sx,,,. The _b to the curve
crosses the axis at x,,,, while the __¢ _ crosses at x*. The
errors at x, and x,.; are normally related by
{ecror), ., = M_d This is e convergence, The

number of correct decimals __1 __ at every step.

For f(x)=x? — b, Newton's iterationis x,,;, = _ 8 . The
x,convergeto _h  ifx,>0andto _t_ if xo<0. For
f(x}=x*+1, the iteration becomes x,,, = __| _. This can-

not converge to __ X . Instead it leads to chaos. Changing
to z=1/{x* + 1) yields the parabolic iteration z,,, = __|

For a<3, z,,, =62, —az’ converges to a single _m
After a=3 the limit is a 2-cycle, which means _n__. Later
the limit is a Cantor set, which is a one-dimensional example
ofa _© . The Cantor set is self-_ P

1 To solve f{x)=x>—b=0, what iteration comes from
Newion’s method?

2 For f(x}=(x—1)/(x + 1} Newton's formula is x,., =
Fix,})= . Solve x* = F(x*) and find F'(x*). What
limit do the x,’s approach?

3 I believe that Newton only applied his method in public
to one equation x? — 2x — 5=0, Raphson carried the idea
forward but got partiat credit at best. After two steps from
xo =2, how many decimals in x* = 2.09455148 are correct?

4 Show thai Newton’s method for f{x)=x"* gives the

strange formula x,,, =~ 2x,. Draw a graph to show the
iterations.

S Find x, if (a) fixo)=0; (b) f"{x,)=0.

6 Graph f(x} = x*—3x—1 and estimate its roots x*. Run
Newton's method starting from 0, 1, —4, and 1.1, Experiment
to decide which x, converge to which root.

7 Solve x? —6x + 5 =0 by Newton's method with xg = 2.5
and 3. Draw a graph to show which x, lead to which root.

8 If f(x} is increasing and concave up {f' >0 and f” > ()
show by a graph that Newton’s method converges. From
which side?

Solve 9-17 to four decimal places by Newton’s method with a
computer or calculator. Choose any x, except x*.
9 x?_10=0
10 x* — 100 =0 (faster or slower than Problem 97)
11 x* — x =0 (which x, to which root?)
12 x® — x = 0 (which x4 to which root?)
13 x + 5 cos x =0 {this has three roots)
14 x +tan x =0 {find two roots) (are there more?)
15 1/{1 —x}=2
16 1+x+x2+x¥+x*=2
17 2 +(x+1}*=10°

18 (a) Show that x,,, = 2x, — 2x? in Example 2 is the same
as (1 — 2x,4 ) =01 — 2x,)%.
(b) Prove divergence if |1 — 2x,| > 1. Prove convergence
i 11— 2xp] < 1 0r 0 < xq < 1.

1% With a=3 in Example 2, experiment with the Newton
iteration x, ., = 2x, — 3x2 to decide which x, lead to x* = 4.
20 Rewrite x, ., = 2x, —ax? as (1 — ax,, ;) ={1 —ax,)’. For
which x, does the sequence 1 —ax, approach zero (so
x, — lja)?

21 What is Newton’s method to find the kth root of 77
Calculate /7 to 7 places.

22 Find all solutions of x® =4x — ! (5 decimals).
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Problems 23-29 arc about x> + | =0 and chaos.

23 For 0=n/16 when does x,=cot 2"8 blow up? For
0 =n(7 when does cot 278 = cot 87 (The angles 2"9 and 6
differ by a multiple of n.}

24 For 8 =n/9 follow the sequence until x, = x,.
25 For 6 =1, x, never returns to x,=cot 1. The angles 2*
and 1 never differ by a multiple of 7 because
26 I zg equals sin? 8, show that z, = 4z — 4z] equals sin® 26,
27 If y=x?+1, each new yis
, 1 1y
yu+1=xu+1+1=_ Xg— 77 +1.
4 X,
Show that this equals y2/4({y, — 1).

28 Turn Problem 27 upside down, 1fy,,; =4(y, — 1)/¥, to
find the quadratic iteration (10) for z, = 1/y, = 1/{t + x?).

29 If F{z) = 4z — 4z* what is F(F(z)}? How many solutions to
z = F{F{(z})? How many are not solutions to z = F(z)!

30 Apply Newton's method to x* — .64x — .36 = 0 to find the
basin of attraction for x* = 1. Also find a pair of points for
which y= F{(z) and z=F{y). In this exampie Newton does
not always find a root.

M Newton’s method solves x/(I—x)=0 by x,.,=
. From which x, does it converge? The distance to
x* =0 is exactly squared.

Problems 3341 are about competitors of Newton.

32 At a double root, Newton only converges linearly. What
is the iteration to solve x? =07

33 To speed up Newton’s method, find the step Ax from
S(xa)+ Axf{x,) + HAxYf"(x,) =0. Test on flx)=x’—1
from x, = and explain,

34 Halley’s method uses [, + Axf, + +Ax{—f,/f.)f+ =0. For
Ji=x*—1 and x,=1+¢ show that x, =1+ 0c*)—
which is cubic convergence.

35 Apply the secant method to f(x)=x? —4 =0, starting
from x, =1 and x, =2.5. Find Af/Ax and the next point x,
by hand. Newton uses f(x,} =235 to reach x, = 2.05. Which
is closer to x* =27

35 Draw a graph of f{x) = x*> — 4 to show the secant line in
Problem 35 and the point x, where it crosses the axis.

3.8 The Mean Vaiue Theorem and FHépital’'s Rule

Bisection method If f{x) changes sign between x, and x,, find
its sign at the midpoint x, = #{x, + x,). Decide whether f(x)
changes sign between x, and x; or x; and x,. Repeat on that
half-length (bisected) interval. Continue. Switch to a faster
method when the interval is small enough.

37 fi(x)=x®%—4is negative at x = 1, positive at x = 2.5, and
negative at the midpoint x = 1,75, So x* lies in what interval?
Take a second step to cut the interval in half again,

38 Write a code for the bisection method. At each step print
out an interval that contains x*. The inputs are x, and x,;
the code calls f(x). Stop if f{x,) and f(x,} have the same
sign.

39 Three bisection éteps reduce the interval by what
factor? Starting from xq =0 and x, =8, take three steps for
J{¥)=x*-10.

40 A direct method is to zoom in where the graph crosses the

axis. Solve 10x? —8.3x2+2295x—.21141=0 by several
zooms.

41 If the zoom faclor is 10, then the number of correct
decimals for every zoom. Compare with Newton.

42 The number § equals 4(1 + & +dy + ). Show that it is in
the Cantor set. It survives when middle thirds are removed.

43 The solution to f{x)=(x—19/(x-200=01s x*=19.
Try Newton’s method from x,=1.5, 2.1, and 1.95. Extra
credit: Which x,’s give convergence?

44 Apply the secant method 1o solve cosx=0 from
Xo = 308,

45 Try Newton's method on cos x =0 from x,=.308. If
cot x4 is exactly =, show that x, = xo+ m (and x; =x; + 7).
From x, =.30816907]1 does Newton's method ever stop?

46 Use the Newion aad secant programs to solve
x* —10x% 4+ 22x + 6 =0 from x, =2 and 1.39.

47 Newton’s method for sinx=0 is x,4, =x,—tan x,.
Graph sin x and three jterations from x4 =2 and x,= 1.8
Predict the result for x, = 1.9 and test. This leads to the com-
puter project in Problem 3.6.41, which finds fractals.

48 Graph Y,(x}=34(x —x?) and Y,(x)= Y\(Yi(x)) in the
square window {0, 0} <(x, ¥} <(}, 1). Then graph Y;(x)=
Y.(Y,(x)) and Y,,..., ¥;. The cycle is from .842 to 452.

49 Repeat Problem 48 with 3.4 changed to 2 or 3,5 or 4.

Now comes one of the cornerstones of calculus: the Mean Value Theorem. It connects
the local picture {slope at a point) to the global piclure (average slope across an
interval). In other words it relates df /dx to Af/Ax. Calculus depends on this connec-
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150 + 0=50_, 150 + S s
100 + f@) e 1001 "+
. v=75 o
v=100 e Ua""_?S S .wc_75
50“ ,/ 50"/’ /,
1 =2 c 1 t=2

Fig. 3.26 (a) v jumps OVer Vyyerge- (b) v equals vy, erage-

tion, which we saw first for velocities. If the average velocity is 75, is there a moment
when the instantaneous velocity is 75?

Without more information, the answer to that question is no. The velocity could
be 100 and then 50—averaging 75 but never equal to 75. If we allow a jump in
velocity, it can jump right over its average. At that moment the velocity does not
exist. (The distance function in Figure 3.26a has no derivative at x = 1.) We will take
away this cheap escape by requiring a derivative at all points inside the interval.

In Figure 3.26b the distance increases by 150 when t increases by 2. There is a
derivative df/dt at all interior points (but an infinite slope at t=0). The average
velocity is

At 2-0 2

The conclusion of the theorem is that df /dt =75 at some point inside the interval.
There is at least one point where f’(c) = 75.

This is not a constructive theorem. The value of ¢ is not known. We don’t find c,
we just claim (with proof) that such a point exists.

3M Mean Value Theorem Suppose f(x) is continuous in the closed interval
a < x < b and has a derivative everywhere in the open interval a < x <b. Then

J(b)—f(a)

=5 =f"(c) at some point a<c¢<b. (1)

The left side is the average slope Af/Ax. It equals df/dx ac ¢. The notation for a
closed interval [with endpoints] is [a, b]. For an open interval (without endpoints)
we write (a, b). Thus f” is defined in (a, b), and f remains continuous at a and b. A
derivative is allowed at those endpoints too—but the theorem doesn’t require it.

The proof is based on a special case—when f(a)=0 and f(b)=0. Suppose the
function starts at zero and returns to zero. The average slope or velocity is zero. We
have to prove that f'(c)=0 at a point in between. This special case (keeping the
assumptions on f(x)) is called Rolle’s theorem.

Geometrically, if f goes away from zero and comes back, then f* =0 at the turn.

3N Rolle’s theorem Suppose f(a)=f(b) = 0 (zero at the ends). Then f’(c)=0
at some point with a<c¢<b.

Proof At a point inside the interval where f(x) reaches its maximum or minimum,
df /dx must be zero. That is an acceptable point ¢. Figure 3.27a shows the difference
between f=0 (assumed at a and b) and [’ = 0 (proved at ¢).
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Smail problem: The maximum could be reached at the ends a and b, if f{x)< 0 in
between. At those endpoints 4f/dx might not be zero. But in that case the minimum
is reached at an interior point ¢, which is equaily acceptable. The key to our proof
is that @ continuous function on [a, b] reaches its maximum and minimum. This is the
Extreme Value Theorem.t

It is ironic that Rolle himself did not believe the logic behind calculus. He may not
have believed his own theorem! Probably he didn’t know what it meant—the lan-
guage of “‘evanescent quantities” (Newton} and “infinitesimals” (Leibniz) was exciting
but frustrating. Limits were close but never reached. Curves had infinitely many flat
sides. Rolle didn’t accept that reasoning, and what was really serious, he didn’t accept
the conclusions. The Académie des Sciences had to stop his battles (he fought against
ordinary mathematicians, not Newton and Leibniz). So he went back to number
theory, but his special case when f(a) = f(b) = 0 leads directly to the big one.

slopedf/dx -- "~
equals
F)=0 slope Af/Ax .

- R — -

f(ﬂ)—:..;;___/

c\-/ ¢ b a ¢ b

Ag. 3.27 Rolle’s theorem is when f{a) = f{b) =0 in the Mean Value Theorem.

Proot of the Mean Value Theorern We are looking for a point where df /dx equals
AfjAx. The idea is to tilt the graph back to Rolle’s special case (when Af was zero).
In Figure 3.27b, the distance F{x) between the curve and the dotted secant line comes
from subtraction:

Fo =10~ | fla+ L x-a . @

At g and b, this distance is F(a) = F(b) = 0. Rolle’s theorem applies to F(x). There is
an interior point where F'(c)=0. At that point take the derivative of equation (2):
0=/"{c) — (Af/Ax). The desired point ¢ is found, proving the theorem.

EXAMPLE 4 The function f(x)= \/; goes from zero at x =0 to ten at x = 100. Its
average slope is Af/Ax = 10/100. The derivative f'{x)= 1,’2\/; exists in the open
interval (0, 100), even though it blows up at the end x=0. By the Mean Vaiue
Theorem there must be a point where 10/100=f'(¢)= 1}’2\/5. That point is ¢ = 25.

The truth is that nobody cares about the exact value of c. Its existence is what
matters. Notice how it affects the linear approximation f(x)=J(a)+ f'(a}x — a),
which was basic to this chapter. Close becomes exact ( =~ becomes = ) when 7 is
computed at ¢ instead of a:

tIf f(x)} doesn’t reach its maximum M, then 1/(M —f(x)) would be continuous but also
approach infinity. Essential fact: A comtinuous function on [a, b] cannot approach infinity.



3.8 The Mean Value Theorem and I'Hépital's Rule

30 The derivative at ¢ gives an exact prediction of f(x):
fx)=f(@+f'(e)x— a). 3)

The Mean Value Theorem is rewritten here as Af=f'(c)Ax. Now a<c¢<x.

EXAMPLE 2 The function f(x)=sin x starts from f(0)=0. The linear prediction
(tangent line) uses the slope cos 0 = 1. The exact prediction uses the slope cos ¢ at an
unknown point between 0 and x:

(approximate) sin x = x (exact) sin x = (cos ¢)x. (4)

The approximation is useful, because everything is computed at x = a = 0. The exact
formula is interesting, because cos ¢ <1 proves again that sin x < x. The slope is
below 1, so the sine graph stays below the 45° line.

EXAMPLE 3 If f'(c)= 0 at all points in an interval then f(x) is constant.

Proof When f’ is everywhere zero, the theorem gives Af= 0. Every pair of points
has f(b) = f(a). The graph is a horizontal line. That deceptively simple case is a key
to the Fundamental Theorem of Calculus.

Most applications of Af=f"(c)Ax do not end up with a number. They end up with
another theorem (like this one). The goal is to connect derivatives (local) to differences
(global). But the next application—I"Haépital’s Rule—manages to produce a number
out of 0/0.

L'HOPITAL'S RULE

When f(x) and g(x) both approach zero, what happens to their ratio f(x)/g(x)?

flx)  x? sin x X —sin x

r or
glx) «x X 1—cosx

0
all become 0 at x=0.

Since 0/0 is meaningless, we cannot work separately with f(x) and g(x). This is a
“race toward zero,” in which two functions become small while their ratio might do
anything. The problem is to find the limit of f(x)/g(x).
One such limit is already studied. It is the derivative! Af/Ax automatically builds
in a race toward zero, whose limit is df /dx:
(x) —f(a)

f(x)=fla)—0 - =
x— a -0 Bot Lllr: x—a =) )

The idea of 'Hépital is to use f*/g’ to handle f/g. The derivative is the special case
g(x) = x —a, with g'= 1. The Rule is followed by examples and proofs.

3P I’Hépital’s Rule Suppose f(x) and g(x) both approach zero as x — a. Then
J(x)/g(x) approaches the same limit as f'(x)/g’(x), if that second limit exists:

i L0 o gy £ 1@

; Normally this limit is ;
x-+a g(x) x=*a g'(x) Y gr(a)

(6)

This is not the quotient rule! The derivatives of f(x) and g(x) are taken separately.
Geometrically, I'Hopital is saying that when functions go to zero their slopes control
their size. An easy case is f= 6(x —a) and g = 2(x — a). The ratio f/g is exactly 6/2,

149
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Jx)=6{x—a)

5} = 2x —a)

=6 . flay=6 )
/] a
Ag.3.28 (a)—— /&) is exactly ACI 3. (b) f(x)
g(x} g'a glx)

the ratio of their slopes. Figure 3.28 shows these straight lines dropping to zero,
controlled by 6 and 2.

The next figure shows the same limit 6/2, when the curves are tangent to the lines.
That picture is the key to I’'Hépitai’s rule.

Generally the limit of f/g can be a finite number L or + o0 or — o0. (Also the limit
point x = a can represent a finite number or +a or —oo. We keep it finite.) The
one absolute requirement is that f{x) and g(x) must separately approach zero—we
insist on 0/0. Otherwise there is no reason why equation (6) should be true. With
J(x}=x and g(x) = x — 1, don't use I'Hopital:

09 oy L0.1

g® a-1 " )

Ordinary ratios approach lim f(x) divided by lim g(x). ’Hépital enters only for 0/0.

EXAMPLE4 (an old friend) lim ——"5% equals lim sme This equals zero.
x-=+0 X x—

’ 2
BAMPLES 7 = 8% leadsto L = X A¢ x =0 the limit is -
g sinx g cosx 1
BAMPLES L =X 780X g0 Lo L7005 X i x =0 this is still 2.
g 1—cosx I'4 sin x 0

Solution Apply the Rule to ['/g. It has the same limit as f”/g":
iff 0 0 f'x)_sinx O

E—’{—) and E—»a then compute 700 cosx 1

The reason behind VHapital’s Rule is that the following fractions are the same:

Jx} _ f(x)—fla) /g(x) — &)

£2(x) x—a x—a

g

That is just algebra; the limit hasn’t happened yet. The factors x — a cancel, and the
numbers f{g) and g(a) are zero by assumption. Now take the limit on the right side
of (7) as x approaches a.

What normally happens is that one part approaches f’ at x = a. The other part
approaches g'(4). We hope g'(a) is not zero. In this case we can divide one limit by
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the other limit. That gives the *‘normal” answer

lim f—{%) = limit of (7) = f1a) )

x~a g(x ga)

This is also I'Hopital’s answer. When f'(x) — f'(a) and separately g'(x) — g'(a), his
overall limit is f'(a)/g’(a). He published this rule in the first textbook ever written on
differential calculus. (That was in 1696—the limit was actually discovered by his
teacher Bernoulli.) Three hundred years later we apply his name to other cases
permitted in (6), when f”/g’ might approach a limit even if the separate parts do not.

To prove this more general form of 'Hopital’s Rule, we need a more general Mean
Value Theorem. I regard the discussion below as optional in a calculus course
(but required in a calculus book). The important idea already came in equation (8).

Remark The basic “indeterminate” is co — oo. If f(x) and g(x) approach infinity,
anything is possible for f(x)— g(x). We could have x* — x or x — x2 or (x +2) — x.
Their limits are co and —co and 2.

At the next level are 0/0 and oo/oo and 0+ co. To find the limit in these cases, try
I'Hépital’s Rule. See Problem 24 when f(x)/g(x) approaches oo/oo. When f(x) - 0
and g(x) — oo, apply the 0/0 rule to f(x)/(1/g(x)).

The next level has 0° and 1* and «°. Those come from limits of f(x)*™. If f(x)
approaches 0, 1, or oo while g(x) approaches 0, oo, or 0, we need more information.
A really curious example is x'/""*, which shows all three possibilities 0° and 1* and
o0°. This function is actually a constant! It equals e.

To go back down a level, take logarithms. Then g(x)In f(x) returns to 0/0 and
0-co and I'Hopital’s Rule. But logarithms and e have to wait for Chapter 6.

THE GENERALIZED MEAN VALUE THEOREM
The MVT can be extended to two functions. The extension is due to Cauchy, who

cleared up the whole idea of limits. You will recognize the special case g = x as the
ordinary Mean Value Theorem.

3Q Generalized MVT If f(x) and g(x) are continuous on [a,b] and
differentiable on (a, b), there is a point a < ¢ < b where

L/ (b) — fla)]g'(c) = [&(b) — gla) ] /" (c)- )

The proof comes by constructing a new function that has F(a) = F(b):

F(x)=[f(b)— f(a)]g(x) — [g(b) — gla)] f(x).
The ordinary Mean Value Theorem leads to F’(c) = 0—which is equation (9).

Application 1 (Proof of I'Hopital’s Rule) The rule deals with f(a)/g(a) = 0/0. Insert-
ing those zeros into equation (9) leaves f(b)g’'(c) = g(b)f'(c). Therefore
J(b) _ f(c)
gb) gl

As b approaches a, so does c¢. The point ¢ is squeezed between a and b. The limit of
equation (10) as b — a and ¢ — a is I'Hopital’s Rule.

(10)
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3 Applications of the Derfwative

Application 2 (Error in linear approximation) Section 3.2 stated that the distance
between a curve and its tangent line grows like (x — a)2. Now we can prove this, and
find out more. Linear approximation is

f(x)=f(a)+ f(a)(x — a) + error e(x). (11)

The pattern suggests an error involving f”(x) and (x — a)*. The key example f= x>
shows the need for a factor  (to cancel f* = 2). The error in linear approximation is

e(x)=31f"(c)x—a)? with
Key idea Compare the error e(x) to (x — a)*. Both are zero at x=a:
e=flx)—fl@—-fa)x—a) €€={x}~fa) €=f"(x)
g=(x—a)? g=2x—aqa g=2
The Generalized Mean Value Theorem finds a point C between a and x where
e(x)/g(x)=€(C)/g'(C). This is equation (10) with different letters. After checking

¢'(a)=g’(@) =0, apply the same theorem to ¢&(x) and g’(x). It produces a point ¢
between a and C—certainly between a and x—where
e(x) _ €'(c)

€(C) _e'ld and therefore —— =

g0 £ gx) g'©
With g=(x—a)* and g"=2 and ¢"=f", the equation on the right is e(x)=
$f“(c)(x —a)®>. The error formula is proved. A very good approximation is
1" (@)x — a).
1 1/ —1
= =100 J102m10+ (o= |2+ o { —= 2%
EXAMPLE?  f(x)=./x neara=100: /102~ 10 (m)z 2( )2

That last term predicts e = —.0005. The actual error is /102 — 10.1 = — .000496.

a<c<x. (12)

3.8 EXERCISES

Read-through questions

The Mean Value Theorem equates the average slope Af/Ax
overan_ @ [a, b]to the slope df/dx at an unknown _ b
The statement is __¢ . It requires f(x)to be __d__ on the
@ interval [a, b], witha __t __ on the open interval (a, b).
Rolle’s theorem is the special case when f{a)=f(b)=0, and
the point ¢ satisfies __g . The proof chooses ¢ as the point

where [ reaches its __h

Consequences of the Mean Valne Theorem include:
If f'(x}=0 everywhere in an interval then f{x)=__I
The prediction fix)=f(a}+__1_{x—a) is exact for
some ¢ between a and x. The quadratic prediction
Sxy=f@) +f ' (af{x —~a)+ __& _{x —a)* is exact for another
c. The error in f{a)+f*(a}(x —a} is less than §M(x—a)?
where M is the maximum of _ |

A chief consequence is I'Hopital’s Rule, which applies when
f(x) and g{x)=_m _as x—a. In that case the limit of
Sfix){g(x) equals the limit of __n | provided this limit exists.
Normally this iimit is f“{a}/g’(a). If this is also 0/0, go on to
the limit of _o

Find all points 0 < ¢ < 2 where (2} —f(0}=/"(c)(2 — 0).
1 f(x)}=x?

3 f{x)=tan 2nx
5 fl)=(x—1)"°

2 fi{x)=sin nx
4 fl)=1+x+x?
6 f(x)=(x—1
In 7-10 show that no point ¢ yields f{1)—f(—1)=S"(c)2).
Explain why the Mean Value Theorem fails to apply.
7 fix)=|x -4l 8 fi{x)= unit step function
9 flx)=Ix'" 10 f(x)=1/x*

11 Show that sec? x and tan® x have the same derivative, and
draw a conclusion about f(x)=sec®x — tan? x,

12 Show that csc? x and cot?® x have the same derivative and
find f{x)=csc? x —cot®x.

Evaluate the limits in 13-22 by ’'Hapital’s Rule.

2 2
_ -9
x 9 14 lim =
x=3 X+

13 lim

x=+3 X —
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(14X -1 frpp—
15 lim d+x -1 16 lim Y2 — 08
x+ X =+ x
17 lim =" 18 fim 21
x==x §INl X x—+1 §IN X
C (+xr—1 1
19 lim 431 20 lim A2 1=
x—+0 x x~0 X
. sinx—tan x _ -
21 lim ——— 2 lim YI¥E—1x
x=D x x—~0 x

23 For f=x?—4and g=x 1 2, the ratio f'/g’ approaches 4
as x — 2. What is the limit of f{x)/g(x)? What goes wrong in
I"Hpital’s Rule?

24 P'Hapital’s Rule still holds for f(x){g(x) = w/w: L is

S0 e . )R .. ()
e R T T R e ®)

Then L equals lim [ f*(x)/g’(x)] if this limit exists. Where did
we use the rule for 0/07 What other limit rule was used?

. 1 +(1jx) . xt+x
25 Compute 31‘1_1:1(1) {— (1) 26 Compute 11_31; -
X+Cos X

27 Compute lim -
x=w X480 X

I'Hépital gives no answer,

by common sense. Show that

. C5CX .
28 Compute lim —— by commeon sense or trickery.
x—+0 cot x

29 The Mean Value Theorem applied to f{x) = x? guarantees
that some oumber ¢ between ! and 4 has a certain property.
Say what the property is and find ¢.

30 If |df /dx| < 1 at all points, prove this fact:

S-Sy <|x—ylatall x and y.
31 The error in Newton’s method is squared at each step:
[Xn4+1 — x*| € M]|x, — x*|2. The proof starts from 0 =f{x*) =
S} 7 (x)0* — x,) + 47 ()x* — x,)°. Divide by f'(x,),
recognize x,. ,, and estimate M.

32 (Rolle’s theorem backward) Suppose f'(c)=0. Are there
necessarily two points around ¢ where f(a) = f(b)?

33 Suppose f{0) =0. If f{x)/x has a limit as x — 0, that limit
is better known to us as __ . L’Hdpital's Rule looks
instead at the limit of .

Conclusion from I'Hdpital: The limit of f*(x), if it exists,
agrees with f{0). Thus f'(x) cannot have a “‘removable

34 Itis possible that f'(x)/g"(x) has no limit but f{x)/g(x) — L.
This is why 1"Hdpital included an “if.”
(a) Find L as x — 0 when f{x) = x*cos(1/x) and g(x) = x.
Remember that cosines are below 1.
(b) From the formula f'(x) =sin(1/x) + 2x cos{1/x) show
that f’/g’ has no limit as x - 0,

35 Stein’s calculus book asks for the limiting ratio of
S({x)=triangular area ABC to g(x)=curved area ABC.
(a) Guess the limit of ffg as the angle x goes to zero,
(b) Explain why f(x) is 4(sin x —sin x cos x} and g{x) is
#{x —sin x ¢os x). (c) Compute the true limit of f{x)/g(x).

36 If you drive 3000 miles from New York to L.A. in 100
hours (sleeping and eating and going backwards are allowed)
then at some moment your speed is

37 As x - oo I'Hopital’s Rule still applies. The limit of
S(x)/g(x) equals the limit of f"(x)/g’{x), if that limit exists.
What is the limit as the graphs become parallel in Figure B?

38 Prove that f(x) is increasing when its slope is positive: If
J(€) >0 at all points c, then f(b)> f(a) at all pairs of points
b>a



CHAPTER 4
4.1
4.2
4.3
4.4

CHAPTER 5
5.1
5.2
5.3
54
5.5
5.6
5.7
5.8

CHAPTER 6
6.1
6.2
6.3
6.4
6.5
6.6
6.7

CHAPTER 7
7.1
7.2
7.3
7.4
7.5

CHAPTER 8
8.1
8.2
83
84
8.5
8.6

Contents

The Chain Rule
Derivatives by the Chain Rule
Implicit Differentiation and Related Rates
Inverse Functions and Their Derivatives
Inverses of Trigonometric Functions

integrals
The Idea of the Integral
Antiderivatives
Summation vs. Integration
Indefinite Integrals and Substitutions
The Definite Integral
Properties of the Integral and the Average Value
The Fundamental Theorem and Its Consequences
Numerical Integration

Exponentials and Logarithms
An Overview
The Exponential e*
Growth and Decay in Science and Economics
Logarithms
Separable Equations Including the Logistic Equation
Powers Instead of Exponentials
Hyperbolic Functions

Techniques of Integration
Integration by Parts
Trigonometric Integrals
Trigonometric Substitutions
Partial Fractions
Improper Integrals

Applications of the Integral
Areas and Volumes by Slices
Length of a Plane Curve
Area of a Surface of Revolution
Probability and Caleulus
Masses and Moments
Force, Work, and Energy

154
160
164
171

177
182
187
195
201
206
213
220

228
236
242
252
259
267
277

283
288
294
300
305

i
320
325
328
136
342



CHAPTER 4

Derivatives by the Chain Rule

I 4.4 The Chain Rule NN

You remember that the derivative of fix)gix) is not (df/dx)(dg/dx). The derivative
of sin x times x? is not cos x times 2x. The product rule gave two terms, not one
term. But there is another way of combining the sine function f and the squaring
function g into a single function. The derivative of that new function does involve
the cosing times 2x (but with a certain twist). We will first explain the new function,
and then find the “chain ride” for its derivative.

May I say here that the chain rule 1s important. It is easy to learn, and you will
use it often. I see it as the third basic way to find derivatives of new functions from
derivatives of old functions. (So far the old functions are x", sin x. and cos x. Stiil
ahead are ¢* and log x.) When f and g are added and multiplied. derivatives come
from the sum rule and product rule. This section combines [ and g in a third way.

The new function is sin{x?)—the sine of x*. It is created out of the two original
functions: if x =3 then x? =9 and sin{x?)=sin 9. There is a “’chain” of functions,
combining sin x and x? into the composite function sin(x?). You start with x, then
find g(x), then find [(g(x)):

The squaring function gives y = x2. This is g(x).

The sine function produces z = sin y = sin(x?). This is f(g(x)).
The “inside function” g(x) gives v. This is the input to the “outside function” f(y). That
15 called composition. 1t starts with x and ends with z. The composite function is

sometimes written [ g (the circle shows the difference from an ordinary product fg).
More often you will see flg(xh:

z(x) = f= g (x) = flglx)). {1
Other examples are cos 2x and (2x)%, with g = 2x. On a calculator yvou input x, then
push the “g” burton, then push the “f" button
From x compute y = g{x) From y compute z = f{y).

There is not a button for every function! But the squaring function and sine function
are on most calculators, and they are used in that order. Figure 4.1a shows how
154 squaring will stretch and squeeze the sine function.
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That graph of sin x? is a crazy FM signal {the Frequency is Modulated). The wave
goes up and down like sin x, but not at the same places. Changing to sin g{x) moves
the peaks left and right. Compare with a product g(x) sin x, which is an AM signal
(the Amplitude is Modulated).

Remark f(g(x)) is usually different from g{f(x)). The order of  and g is usually
important. For f(x) = sin x and g(x}= x2, the chain in the opposite order g(f{x)) gives
something different:

First apply the sine function: y = sin x
Then apply the squaring function: z = (sin x)*.

That result is often written sin’x, to save on parentheses. It is never written sin x2,
which is totally different, Compare them in Figure 4.1.

z=siny

Sflg(x)
(sinvm )?

4 ! 2 x
y = (sin 12

1

¥ = sin (x2)

sin(¥w 2
Ag. 4.1 fig(x)} is different from g(f{x)). Apply g then £, or fthen g,

EXAMPLE 4 The composite function fo g can be deceptive. If g(x) = x* and f{y) = »*,
how does f{g(x)) differ from the ordinary product f{x)g(x)? The ordinary product is
x7. The chain starts with y=x3, and then z = y* = x!?, The composition of x> and
y* gives flg(x) = x'2.

EXAMPLE 2 In Newton’s method, F(x) is composed with itself. This is iteration.
Every output x, is fed back as input, to find x, ., = F(x,). The example F(x)=4x + 4
has F{F(x))=4(3x + 4) + 4. That produces z=}x +6.

The derivative of F(x) is . The derivative of z= F(F(x)) is }, which is ¥ times 3.
We multiply derivatives. This is a special case of the chain rule.

An extremely special case is f(x) = x and g(x) = x. The ordinary product is x?. The
chain flg(x)) produces only x! The output from the “identity function” is g{x)= x.}
When the second identity function operates on x it produces x again. The derivative
is 1 times 1. I can give more composite functions in a {able:

y = glx) z=fy z = flg(x)
x2-1 ﬁ Jxi—1

cos X y {cos x)°
2= yid 2%
x+5 y—3 x

The last one adds 5 to get y. Then it subtracts 5 to reach z. So z= x. Here output

tA calculator has no button for the identity function. It wouldn’t do anything,
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equals input: fig(x))= x. These ‘‘inverse functions” are in Section 4.3. The other
examples create new functions z(x) and we want their derivatives.

THE DERIVATIVE OF A g{x))

What is the derivative of z=sin x?? It is the limit of Az/Ax. Therefore we look at a
nearby point x + Ax. That change in x produces a change in y = x?—which moves
to y+ Ay =(x+ Ax)?, From this change in y, there is a change in z=f{y). It is a
“domino effect,” in which each changed input yields a changed output: Ax produces
Ay produces Az. We have to connect the final Az to the original Ax.

The key is to write AzJAx as Az/Ay times Ay/Ax. Then let Ax approach zero.
In the limit, dz/dx is given by the “chain rule™:

.;ix{ = %5 % becomes the chain rule j—; = j—i% (2)

As Ax goes to zero, the ratio Ay/Ax approaches dy/dx. Therefore Ay must be going
to zero, and Az/Ay approaches dz/dy. The limit of a product is the product of the
separate limits {(end of quick proof). We multiply derivatives:

4A Chair Rale Suppose g(x) has a derivative at x and f{)) has a derivative
at y = g(x). Then the derivative of z = fg(x)) is

ﬁﬁﬁﬁﬁ = (&N g3) 3)

The slope at x is df/dy (at ) times dg/dx (at x).

Caution The chain rule does not say that the derivative of sin x* is (cos x)(2x).

True, cos y is the derivative of sin y. The point is that cos y must be evaluated at y
(not at x). We do not want df/dx at x, we want df/dy at y = x%

The derivative of sin x* is (cos x?} times (2x). “®

EXAMPLE 3 If z = (sin x)? then dz/dx = (2 sin x){cos x). Here y = sin x is inside.

In this order, z = y* leads to dz/dy = 2y. It does not lead to 2x. The inside function
sin x produces dy/dx = cos x. The answer is 2y cos x. We have not yet found the
function whose derivative is 2x cos x.

d dz d
EXAMPLE 4 The derivative of z = sin 3x is o = — 2%~ 3¢08 3x.
dx dydx
| z :
[ z=f) e
: Az Flgle)) : Az
- -— b 3 - = d
Ay Ax
t t x + + ¥y ¥ + X
. Az Az Ay dz  dzdy
.4.2 = —— —_— = e
Ag The chain rule Ax " AyAx approaches ix ~ dy dx
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The outside function is z = sin y. The inside function is y = 3x. Then dz/dy = cos y—
this is cos 3x, not cos x. Remember the other factor dy/dx = 3.

I can explain that factor 3, especially if x 1s switched to . The distance is z = sin 31.
That oscillates like sin ¢ except three times as fast. The speeded-up function sin 3¢
completes a wave at time 2xn/3 (instead of 2n). Naturally the velocity contains the
extra factor 3 from the chain rule.

EXAMPLE S Lct z =/{y)= )" Find the derivative of f{g(x)) = [g(x)]".

In this case dz/dy is ny"~'. The chain rule multiplies by dy/dx:

dz _ dy

- n—1 "1 i n_ " d_g
Lo o el = ale] o (5)

This is the power rale! It was already discovered in Section 2.5, Square roots (when
n = 1/2) are frequent and important. Supposc y = x* — 1
d

dx

X 1= %(xz — 1) 2x) = ©)

xt—1

Question A Buick uses 1/20 of a gallon of gas per mile. You drive at 60 miles per
hour. How many gallons per hour?

Answer  (Gallons/hour) = (gallons/mile)(miles{hour). The chain rule is (dy/dt)=
(dy/dx)(dx/dt). The answer is (1/20)(60) = 3 gallons/hour.

Proof of the chain rule  The discussion above was correctly based on
— = and —=——. (7)

It was here, over the chain rule, that the “battle of notation” was won by Leibniz.
His notation practically tells you what to do: Take the limit of each term. (I have to
mention thal when Ax is approaching zero, it is theoretically possible that Ay might
hit zero. If that happens, Az/Ay becomes 0/0. We have to assign it the correct meaning,
which is dz/dy.) As Ax — 0,

Ay Az

— oy and —

A % (x} an Ay
Then Az/Ax approaches f'( y} times g'(x), which is the chain rule (dz/dy}dy/dx). In the
table below, the derivative of (sin x)* is 3(sin x)? cos x. That cxtra factor cos x is easy
to forget. It 1s even easier to forget the —1 in the last example.

S =[(gx).

z={x"+ 1)’ dzjdx=5x%+1}* times 3x?
z =(sin x)? dz/dx = 3 sin’x times cos x
z=(1—x)? dzjdx=2(1—x) times —1

important  All kinds of letters are used for the chain rule. We named the output z.
Very often it is called y, and the inside function is called u:
du

dy
s — =COoS W—.
T Losudx

The derivative of y = sin u(x) i

Examples with dujdx are extremely common. | have to ask you to accept whatever
letters may come. What never changes is the key idea—derivative of outside function
times derivative of inside function,

157
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EXAMPLE 4 The chain rule is barely needed for sin{x — 1). Strictly speaking the
inside function is u=x— 1. Then du/dx is just 1 (not —1). If y=sin(x — 1) then
dy/dx = cos(x — 1). The graph is shifted and the slope shifts too.

Notice especially: The cosine is computed at x — 1 and not at the unshilted x.

RECOGNIZING F(y) AND g(x)

A big part of the chain rule is recognizing the chain. The table started with (x> + 1)5.
You look at it for a second. Then you see it as 4°. The inside function is u= x*+ 1.
With practice this decomposition (the opposite of composition) gets easy:

cos (2x+ 1)iscos u J1+sintis ﬂ x 8in x is ... (product rule!)
In calculations, the careful way is to write down all the functions:
z=cosu u=2x+1 dzfdx=(-sinu)(2)= —2sin(2x+1).

The quick way is to keep in your mind “the derivative of what’s inside,” The slope
of cos(2x + 1) is —sin(2x + 1), times 2 from the chain rule. The derivative of 2x+ 1
is remembered—without z or u or for g.

EXAMPLE? sin./l—xisachainof z=siny, y= ﬂ, u=1— x (three functions).
With that triple chain you will have the hang of the chain rule:
1
The derivative of sin /1 — x is (cos \/1 — x){ ——=—==](—1).
( )(2\/ﬁ)( }

This is (dz/dy){dy/du)(du/dx). Evaluate them at the right places y, u, x.
Finally there is the question of second derivatives. The chain rule gives dz/dx as a
product, so 22z/dx? needs the product rule:

dz  dzdy d%z dzd*y d (dz\ dy
- = —_——- 4 — [ — —_,

Cdx  dydx leads to dx?  dydx?  dx\dy/dx ®
u v u v + o v

That last term needs the chain rule again. It becomes d2z/dy* times {dy/dx)>.

EXAMPLE 8 The derivative of sin x* is 2x cos x*. Then the product rule gives
d?z/dx? = 2 cos x* — 4x? sin x2. In this case y” = 2 and (y)* = 4x*.

4.4 EXERCISES

Read-through questions cos u(x) has dy/dx = __m ___ The power rule for y = [1{x]]" is
the chain rule dy/dx=_ n___ Theslope of 5g(x}is _o__and

2 =_f(g[J;}} comes from z=f(y) and y~_a__. At x~2, the the slope of g{5x)is __® . When f = cosine and g = sine and
chain (x* — 1)° equals _ b . Its inside functionisy=_¢ , x =0, the numbers /{g(x)) and g(f(x)) and f(x)g(x} are _a .
its outside function is z=_d__, Then dz/dx equals _ e ’ —
The first factor is evaluated at y=_ t  (not at y=x).

N Coa dz

For z = sin{x* — 1) the derivative is _ g . The triple chain In 1-10 identify () and g(x). From their derivatives find —.

—_ 2 . .
z=cos(x + 1)* has a shilt and a __h_ _ and a cosine. Then 1 z=(x2—3) 2 z=(x =3
dzjdx = __|

— 3 —

The proof of the chain rule begins with Az/Ax= 3 z=cosl(x’) 4 z=tan 2x _

{__1 )_ k )andendswith 1 . Changing letters, vy = 5z=_/sin x 6 z=sin \/;
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7 z=tan(l/x) + l/tan x 8 z=sin(cos x)

9 7 =cos(x? + x + 1} 10 :=/%?

In 11-16 write down dz/dx. Don’t write down f and g.
11 z =sin(17x) 12 z=1tan{x+ I}
14 z=(x%*"

16 z=(9x + 4>

13 z = cos(cos x)

15 z=x?sin x

Problems 17-22 involve three functions z(y), y(u), and uix).
Find dz/dx from {dz/dy){d yidu)(du/dx).
17 z=sin x+1

19 z=_/1+5sin x

21 z =sin{l/sin x)

18 7= /sin(x -+ 1)

20 z =sin(\/x + 1)
22 z =(sin x?)?

In 23-26 find dz/dx by the chain rule and also by rewriting -.
23 z=((x1)%? 24 z=(3x)?

25 z=(x+1¥+sin(x+a) 26 z=/1—cos’x

27 ¥ fix)=x*+1 what is f{f{x))? i U(x) is the unit step
function {from 0 to 1 at x =0} draw the graphs of sin U(x}
and Usin x}. If R(x) is the ramp function ¥ x + |x)), draw the
graphs of R{x) and Rfsin x}.

28 (Recommended) If g(x)=x® knd f(v} so that f{g{x))=
x3 4+ 1. Then find A(y) so that A(g{x)) = x. Then find k(3 so
that k{g(x) = 1.

29 If fiy}=y — 2 find g(x) so that fig{x)) = x. Then find A(x}
so that fikix}) = x%. Then find k{x) so that fik(x)) = 1.

30 Find two different pairs fiy), gix)} so that figi{x)}=
F1—x2

W

M The derivative of fi fix)) is

your formula on f{x) = 1/x.

2 Iff(3)=3and g3)=15and f{3) =2 and g'(3) =4, find the
derivative at x = 3 if possible for

(@) fixglx) OV ietx)  ©@g(fix) () SiAxD

33 For Fix)=4x+8, show how iteration gives F(Fix))=
1x + 12 Find F{F{F(x})—also called F'*Y{x). The derivative
of F™(x)is

34 In Problem 33 the limit of F™{x) is a constant =
. From any start {try x =0) the iterations x,,, =
Fix,) converge to C.

35 Suppose g{x)=3x+1 and f(3) =% — 1) Then f{g(x)) =
and g f(y) = . These are inverse functions.

36 Suppose gix) is continuous at x = 4, say g(4} = 7. Suppose
Jy) is continuous at y =7, say f{7)=9. Then f(g(x)) is con-
tinuous at x =4 and f{g(4))=9.

Proof & is given, Because is continuous, there is a
& such that |fig(x))~9| <z whenever |g(x)— 7| < d. Then

. Is it (dfidx)y*? Test

because is continuous, there is a & such that
|g(x} = 7| < & whenever |x —4| < 8, Conclusion: If |x ~ 4| <@
then . This shows that f{g{x)) approaches f{g(4)).
37 Only six functions can be constructed by compositions (in
any sequence) of g{x)=1—x and f{x)= 1/x. Starting with g
and f, find the other four.

MBIfgxt=1—xthen glglxh=1—-{1 —x)=x. I g{x)=1/x
then glgix)y=1/{1/x)=x. Draw graphs of those g's and
explain from the graphs why g(g(x}} = x. Find two more g’s
with this special property.

39 Construct functions sc that fig(x)) is always zero, but f{y)
is not always zero.
40 True or false
{a) If fix) = f{—x) then ['(x}= ['(—x).
{b) The derivative of the identity function is zero.
(¢} The derivative of f{l/x) is —1/( fix)}*.
{(d) The derivative of fil + x) 15 f'(1 + x).
{e) The second derivative of f{g(x)) is f"{g(xDe"{x).
41 On the same graph draw the parabola y=x? and the

curve z =sin y (keep y upwards, with x and z across}. Starting
at x =3 find your way to z=sin 9.

42 On the same graph draw y=sin x and z = y* (y upwards
for both). Starting at x = z;4 find z = (sin x)? on the graph.

43 Find the second derivative of
(@ sin{x* +1)  {b)/x*—1

d {dz d2\ {dy
44 Explain why E(&})%éﬂ(&i) in equation (8)

Check this when =z = y?, y = x*.

{C)cos \/';

Final practice with the chain rule and other rules (and other
letters!). Find the x or ¢ derivative of z or j.

45 z =ik 46 2= u=x*
47 y=sin p{x)cos u(x) 48 y= \%
49 ¢ = x%ux) 50 y = f(x3) + (f(x)?
51 - = \_,_.-’1 — U, U= \;’;I Y §2 .- 1i4470)

83 s=fluhu=¢% b= \T

85 If f=x* and g = x* then /" = 4x* and g’ = 3x?. The chain
rule multiplies derivatives to get 12x°. But f{g{x} =x'? and
its derivative is not [2x°. Where is the flaw?

84 y=u u=x,x=1i1

56 The derivative of y = sin(sin x} is dyidx =
cos{cos X} sin{cos x)}os X Cos(Sin X)COs X Cos(Cos X)cos X,

57 {a) A book has 400 words per page. Therc arc 9 pages per
section. So there are words per section.

{b) You read 200 words per minute. So you read
pages per minute. How many minutes per section”
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58 (a) You walk in a train at 3 miles per hour. The train 59 Coke costs 1/3 dollar per bottle. The buyer gets
moves at 50 miles per hour. Your ground speed is bottles per dollar, If dy/dx = 1/3 then dx/dy =
miles per hour.
(b} You walk in a train at 3 miles per hour. The train is 60 (Computer) Graph F{x)=sinx and G{x)=sin{sin x)—
shown on TV (1 mile train =20 inches on TV screen). not much diflerence. Do the same for F'(x) and G'{x). Then
Your speed across the screen is inches per hour. plot F*(x} and G"(x} to see where the differcnce shows up.

BN 4.2 Implicit Differentiation and Related Rates

We start with the equations xy =2 and y*+ xy=3. As x changes, these y's will
change—1to keep (x, ) on the curve. We want to know dy/dx at a typical point. For
xy =2 that is no trouble, but the slope of y* + xy = 3 requires a new idea.

In the first case, solve for y = 2/x and take its derivative: dy/dx = — 2/x?. The curve
is a hyperbola. At x =2 the slope is —2/4= —1/2.

The problem with y°> + xy = 3 is that it can’t be solved for y. Galois proved that
there is no solution formula for fifth-degree equations.t The fumction y(x) canmot
be given explicitly. All we have is the implicit definition of y, as a solution to
y> + xy=3. The point x = 2, y = 1 satisfies the equation and lies on the curve, but
how to find dy/dx?

This section answers that question. It is a situation that often occurs. Equations
like sin y+ sin x =1 or ysin y = x (maybe even sin y = x) are difficult or impossible
to solve directly for y. Nevertheless we can find dy/dx at any point.

The way out is implicit differentiation. Work with the equation as it stands. Find
the x derivative of every term in y° + xy = 3, That includes the constant term 3, whose
derivative is zero.

EXAMPLE 1 The power rule for y* and the product rule for xy yield

dy d
5y4ﬁ+xa-§+y=0. 0

Now substitute the typical point x =2 and y = 1, and solve for dy/dx:

dy dy dy 1
Z+22+1= =
de de 1 =0 produces ix 3 (2)
This is implicit differentiation (1D), and you see the idea: Include dy/dx from the

chain rule, even if y is not known explicitly as a function of x.

d
EXAMPLE 2 sin y+sin x =1 leads to cos y§+cosx=0

: d .
EXAMPLE 3 y sin y=x leads to y cos y ﬁ +sin y
Knowing the slope makes it easier to draw the curve. We still need points (x, y)

that satisfy the equation. Sometimes we can solve for x. Dividing y* + xy=3 by y

B _,
dx

tThat was before he went to the famous duel, and met his end. Fourth-degree equations do
have a solution formula, but it is practically never used.
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gives x = 3/y — y*. Now the derivative (the x derivative!) is

_(_3 _,a\dy_ _ fl =
1 ( )2 4y )dx ?dx at y=1. (3)
Again dy/dx = — 1/7. All these examples confirm the main point of the section:

4B (Implicit differentiation) An equation F(x, y)=0 can be differentiated
directly by the chain rule, without solving for y in terms of x.

The example xy = 2, done implicitly, gives x dy/dx + y = 0. The slope dy/dx is — y/x.
That agrees with the explicit slope —2/x?.

ID is explained better by examples than theory (maybe everything is). The essential
theory can be boiled down to one idea: “Go ahead and differentiate.”

EXAMPLE 4 Find the tangent direction to the circle x? + y? = 25.
We can solve for y= +./25 — x2, or operate directly on x? + y* = 25:

Q=0 or 9 _ 2 (4)

2x+2 :
s T dx y

Compare with the radius, which has slope y/x. The radius goes across x and up y.
The tangent goes across — y and up x. The slopes multiply to give (—x/y)(y/x) = — L.
To emphasize implicit differentiation, go on to the second derivative. The top of the
circle is concave down, so d?y/dx? is negative. Use the quotient rule on — x/y:
dy x d’y _ ydx/dx—xdyldx _ _y+(x’ly) _ _y*+x?

— = i 5
dxy 7 dx s y? y? 9

RELATED RATES

There is a group of problems that has never found a perfect place in calculus. They
seem to fit here—as applications of the chain rule. The problem is to compute
df/dt. but the odd thing is that we are given another derivative dg/dt. To find df/dt,
we need a relation between fand g.

The chain rule is df/dt = (df/dg)(dg/dt). Here the variable is t because that is typical
in applications. From the rate of change of g we find the rate of change of f. This is
the problem of related rates, and examples will make the point.

EXAMPLE 5 The radius of a circle is growing by dr/dt = 7. How fast is the circum-
ference growing? Remember that C = 2zr (this relates C to r).

_ dC dCdr
Solution Tk 1 (2m)(7) = 14n.
That is pretty basic, but its implications are amazing. Suppose you want to put a
rope around the earth that any 7-footer can walk under. If the distance is 24,000
miles. what is the additional length of the rope? Answer: Only 147 feet.

More realistically, if two lanes on a circular track are separated by 5 feet, how
much head start should the outside runner get? Only 10z feet. If your speed around
a turn is 55 and the car in the next lane goes 56, who wins? See Problem 14.

Examples 6-8 are from the 1988 Advanced Placement Exams (copyright 1989 by
the College Entrance Examination Board). Their questions are carefully prepared.

161



162

4 Derivatives by the Chain Rule

x X 5 A 100 ¢

Ag. 4.3 Rectangle for Example 6, shadow for Example 7, balloon for Example 8.

EXAMPLE & The sides of the rectangle increase in such a way that dz/dt= 1 and
dx/dt = 3dy/dt. At the instant when x =4 and y =3, what is the value of dx/dt?

Solution  The key relation is x2 + y? = z2. Take its derivative (implicitly):

dx dy dz dx dy
—_ — = — —_— St h—==
2x 0 + 2y 7 2z o produces 8 7 6 m 10,
We used all information, including z = 5, except for dx/dt= 3dy/dr. The term 6dy/dt

equals 2dx/dt, so we have 10dx/dt = 10. Answer: dx/dt = 1.

EXAMPLE 7 A person 2 meters tall walks directly away from a streetlight that is 8
meters above the ground. If the person’s shadow is lengthening at the rate of 4/9
meters per second, at what rate in meters per second is the person walking?

Solution Draw a figure! You must relate the shadow length s to the distance x from
the streetlight. The problem gives ds/dt = 4/9 and asks for dx/dt:
.. ) X S dx _6ds 4\ 4
By similar triangles 6§73 % T35 ° (3)( ) =z
Note This problem was hard. I drew three figures before catching on to x and s,
It is interesting that we never knew x or s or the angle.

EXAMPLE 8 An observer at point A is watching balloon B as it rises from point C.
(The figure is given.} The balloon is rising at a constant rate of 3 meters per second
(this means dy/dt = 3) and the observer is 100 meters from point C.

{a) Find the rate of change in z at the instant when y = 50. (They want dz/dr))

dz dy
2_ .2 2 g _ 5 8F
=+ 100 = 22 5 2y It
dz_ 2-50+3  3./5
=/50°+100°=50/5 = —=——— ="
: V3= 2-50/5 5
(b) Find the rate of change in the area of right triangle BCA when y= 50,
1 dA dy
= = — =50-—==50-3=150.
A 2(100)(].’} 50y 7 o 3=15
(c) Find the rate of change in & when y = 50. (They want d8/dr.)

=50 = c059=£0-—=-2-—
Y 50\/5 ﬁ
dé 1 dy dé 2\ 3 3
sec =——" = —=
100 dr 100 dt dt
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In all problems I first wrote down a relation from the figure. Then I took its derivative.
Then I substituted known information. (The substitution is gfter taking the derivative
of tan 8 = y/100. If we substitute y = 50 too soon, the derivative of 50/100 is useless.)
“Candidates are advised to show their work in order to minimize the risk of not
receiving credit for it.” 50% solved Example 6 and 21% solved Example 7. From
12,000 candidates, the average on Example B (free response) was 6.1 out of 9.

EXAMPLE® A is a lighthouse and BC is the shoreline (same figure as the balloon).
The light at A turns once a second (d@/dt = 2n radians/second). How quickly does
the receiving point B move up the shoreline?

Solution The figure shows y = 100 tan 8. The speed dy/dt is 100 sec28 d6/d:. This is
2007 sec8, so B speeds up as sec § increases.

Paradox When # approaches a right angle, sec & approaches infinity. So does
dy{dt. B moves faster than fight! This contradicts Einstein’s theory of relativity. The
paradox is resolved (I hope) in Problem 18.

If you walk around a light at A, your shadow at B seems to go faster than light.
Same problem. This speed is impossible—something has been forgotten.

Smaller paradox (not destroying the theory of relativity). The figure shows y =z sin 8.
Apparently dy/dt = (dz/dt) sin 8. This is totally wrong. Not only is it wrong, the exact
opposite is true: dzfdt = (dy/dt) sin 8. If you can expiain that (Problem 15), then ID
and related rates hold no terrors.
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Read-through goestions
For x*+y°

A second example is y*=x, The x derivalive of this
equation is __@ . Therefore dyjdx=_h
by ,/_ this is dy,!dx =_ 1

In related rates, we are given dg/dt and we want df/de. We

=2 the derivative dy/dx comes from _ a
differentialion. We don’t have to solve for
term the derivative is 3x? +
d .Atx=y=]1thisslopeis _o
tangent line is y - 1=

9 x=tany

b, Term by
= 0. Solving for dy/dx gives
. The equation of the

duct of slopes is —1.)

12 Show that the circles {x — 2)* + y?
2 are tangent at the point (1, 1).

. Replacing y

Your radius is (a) 50 meters (b) 100 meters.

10 y=xatx=1

11 Show that the hyperbolas xy = C are perpendicular to the
hyperbolas x* — y? = D. (Perpendicular means that the pro-

=2and x4 (y—2)*=

13 At 25 meters/second, does your car turn faster or slower
than a car traveling 5 meters further out at 26 meters/second?

need a relation between fand _ ], ¥ f=g? then (df/dt)=

k _ (dgfdt). Tf f24g2=1, then dffdt=_1 . If the
sides of a cube grow by ds/dt =2, then its volume grows by
dVf{dt=_m . To find a number (8 is wrong), you also need
to know __ n

By implicit differentiation find dy/dx in 1-10.

1y+x"=1 2 xiy+yix=1
I(x-y*= x+\/_;=331x=4
5 x=F(y) 6 flx)+ F(y)=xy

7 xy=yix 8 x=siny

14 Equation (4} is 2x + 2y dy/dx = 0 (on a circle). Directly by
ID reach d%p/dx? in equation (3).

Problems 15-18 resolve the speed of light paradox in
Example 9.

18 (Small paradox first) The right triangle has z2 = y? + 100°.
Take the ¢ derivalive to show that z' = ¥ sin 8.

16 (Even smaller paradox) As B moves up the line, why is
dy/dt lacger than dz/dt? Cerlamly z is larger than y. But as 8
ingreases they become

17 (Faster than light) The derivative of y=100tan 8 in
Example 9 is y = 100sec?d ' =200n sec?d. Therefore y
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passes c¢ (the speed of light) when sec*f passes
Such a speed is impossible—we forget that light takes nme
to reach B.

f increases by 2n

B in 1 second
()
y(i) t is arrival time
8(1) of light
100

@ is dilferent from 2nt

18 (Explanation by ID) Light travels from A to B in time
zfc, distance over speed. Its arrival time is ¢ = 8/27 + z/¢ so
&f2r=1—"2jc. Then z'=y'sinf and y = 100sec®d @' (all
these are ID) lead to

y = 200mc/(c cos?0 + 200n sin 6)

As@a pproaches /2, this speed approaches

Note: y still exceeds ¢ for some negative angle. That is for
Einstein to explain. See the 1985 College Math Journal, page
186, and the 1960 Scientific American, “Things that go faster
than light.”

19 1f a plane follows the curve y = f(x), and its ground speed
is dx/dt = 500 mph, how fast is the plane going up? How fast
is the plane going?

20 Why can’t we differentiate x = 7 and reach 1 =07

Problems 21-29 are applications of related rates.

21 {Calculus classic) The bottom of a 10-foot ladder is going
away from the wall at dx/dr = 2 feet per second. How fast is
the top going down the wall? Draw the right triangle to find
dyfdt when the height y is {(a) 6 feet (b) 5 feet (c) zero.

22 The top of the 10-foot ladder can go faster than light. At
what height y does dy/dt = —¢?

23 How fast does the level of a Coke go down i you drink
a cubic inch a second? The cup is a cylinder of radius
2 inches—first write down the volume.

24 A jet flies at 8 miles up and 560 miles per hour. How fast
is it approaching you when (a) it is 16 miles from you; (b) its
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shadow is 8 miles from you (the sun is overhead); (c) the plane
is 8 miles from you (exactly above)?

25 Starting from a 3-4-5 night triangle, the short sides
increase by 2 meters/second but the angle between them
decreases by | radian/second. How fast does the area increase
or decrease?

26 A pass receiver is at x =4, y=_8t. The ball thrown at
t=3isat x=¢(t—3), y= 10t - 3).
(a) Choose ¢ so the ball meets the receiver,

*(b) At that instant the distance D between them is chang-
ing at what rale?

27 A thief is 10 meters away (8 meters ahead of you, across
a street 6 meters wide), The thief runs on that side at 7 meters/
second, you run at 9 meters/second. How fast are you
approaching if (a) you follow on your side; (b) you run toward
the thief; (¢} you run away on your side?

28 A spherical raindrop evaporates at a rate equal to twice
its surface area. Find dr/dt.

29 Starting from P=V =35 and maintaining PV =T, find
dVidt if dP/di =2 and dT}dt = 3.

30 (a) The crankshaft AB turns twice a second so d8/dt =

(b} Differentiate the cosine law 6% = 3% + x? ~ 2 (3x cos 0)
to find the piston speed dx/dt when § = 7/2 and 0 =n.

31 A camera turns at C to follow a rocket at R,
{a) Relate dz/dr to dy/dr when y =10,
({b) Relate d8/dt to dy/dt based on y=10tan 0.
{c) Relate d20/dt? 1o d2y/dt? and dy/dr.

There is a remarkable special case of the chain rule. It occurs when fTy) and gi(x) are

“inverse functions.”
J(g(x)} = x. Here is what that means.

Inverse functions;

That idea is expressed by a very short and powerful equation:

Start with any input, say x = 5. Compute y = g(x), say y = 3. Then

compute f{y), and the answer must be 5. What one function does, the inverse function
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undoes. If g(5)= 3 then f{3) = 5. The inverse function f takes the output y back to the

input x.

EXAMPLE 4 g{x)=x— 2 and f{y)= y + 2 are inverse functions. Starting with x =5,
the function g subtracts 2. That produces y=3. Then the function f adds 2. That
brings back x = 5. To say it directly: The inverse of y=x—2isx=y+ 2.

EXAMPLE2 y=g(x)=3{x — 32} and x=/{y)=3%y+ 32 are inverse functions (for
temperature). Here x is degrees Fahrenheit and y is degrees Ceisius. From x = 32
(freezing in Fahrenheit) you find y = 0 (freezing in Celsius). The inverse function takes
y = 0 back to x = 32, Figure 4.4 shows how x = 50°F matches y = 10°C.

Notice that 3{(x — 32) subtracts 32 first. The inverse #y + 32 adds 32 last. In the
same way g multiplies last by 3 while f multiplies first by %.

=2 y+32 domain of f =range of g
cC o 5 ¥y Z U
¥ >

10 -/'[ _v=%(1—32) x=y? y=Nx

3
/2 50 x°F o

range of f= domain of g
Fig. 4.4 “F10°C1o °F. Always g '(g{x))=x and glg (3 =y [ f=g 'theng=f""

The inverse function is written {= g ' and pronounced “‘g inverse.” It is not 1/g(x).

If the demand y is a function of the price x, then the price is a function of the demand.
Those are inverse functions. Their derivatives obey a fundamental rule: dy/dx times
dx/dy eguals 1. In Example 2, dy/dx is 5/9 and dx/dy is 9/5.

There is another important point. When f and g are applied in the oppesite order,
they still come back to the start. First fadds 2, then g subtracts 2. The chain g(f{y)) =
(y + 2) — 2 brings back y. If {is the inverse of g then g is the inverse of f. The relation
is completely symmetric, and so is the definition:

Inverse function. If y=g(x) then x =g '(y). If x=g (y) then y = g(x).

The loop in the figure goes from x to y to x. The composition g~ '{g(x)) is the “‘identity
function.” Instead of a new point z it returns to the original x. This will make the
chain rule particularly easy—leading to {dy/dx)(dx/dy)= L.

EXAMPLEY y=g(x)= \/; and x = f{y) = y? are inverse functions.

Starting from x=9 we find y = 3. The inverse gives 3* =9. The square of \/; is
flg{x)) = x. In the opposite direction, the square root of y* is g(f{y)) = y.
Caution That example does not allow x to be negative. The domain of g—the set
of numbers with square roots—is restricted to x 3 0. This matches the range of g~ *.
The outputs y? are nonnegative. With domain of g = range of g7, the equation x =
(v/x)? is possible and true. The nonnegative x goes into g and comes out of g ™",
In this example y is also nonnegative. You might think we could square anything,
but y must come back as the square root of y°. So y = 0.
To summarize: The domain of a function matches the range of its inverse. The inputs

to g~ ! are the outputs from g. The inputs to g are the outputs from g~*.
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If g(x)=y then solving that equation for x gives x =g~ '(y)
if y=3x—6 then x=4(y+6) (thisis g *(y)

ify=x*+1 thenx=3Yy—1 (thisis g *(y)

=1 is computed: Solve g(x)= y. This is the reason inverses

In practice that is how g

are important. Every time we solve an equation we are computing a value of g 7},
Not all equations have one solution. Not all functiorns kave inverses. For each y,

the equation g(x} = y is only allowed to produce one x. That solution is x = g~ 1(y).

If there is a second solution, then g~! will not be a function—because a function

cannot produce two x’s from the same y.

EXAMPLE 4 There is more than one solution to sin x= 4. Many angles have the
same sine. On the interval 0< x < x, the inverse of y=rsin x is not a function.
Figure 4.5 shows how two x’s give the same y.

Prevent x from passing n/2 and the sine has an inverse. Write x =sin" 'y,

The function g has no inverse if two points x, and x, give g(x,) = g(x,). Its inverse
would have to bring the same y back to x, and x,. No function can do that; g~ ()
cannot equal both x, and x,. There must be only one x for each y.

To be invertible over an interval, g must be steadily increasing or steadily decreasing.

x=sinly

x w2 5w X oon

Ag. 4.5 Inverse exists (one x for each y}. No inverse function {two x’s for one y).

THE DERIVAIIVE OF g~'

It is time for calculus. Forgive me for this very humble example.

EXAMPLE 5 (ordinary multiplication) The inverse of y = g{x) = 3x i8 x =f{y) = 1y.

This shows with special clarity the rule for derivatives: The slopes dy/dx=73 and
dx{dy = % multiply to give 1. This rule holds for all inverse functions, even if their
slopes are not constant. It is a crucial application of the chain rule to the derivative

of flg(x)) = x.

4C (Derivative of inverse Junction) From f{g(x))=x the chain rule gives
FgixNg’(x) = 1, Writing y = g(x) and x = f{y), this rule looks better:

dx dy dx 1
hax L T BT G @

The slope of x = g~ *(y} times the slope of y = g(x} equals one.

This i the chain rule with a special feature. Since f{g{x)} = x, the derivative of both
sides is 1. If we know g’ we now know f’. That rule will be tested on a familiar
example. In the next section it leads to totally new derivatives.
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EXAMPLE 6 The inverse of y = x* is x = y!/3, We can find dx/dy two ways:

1 44 - cdx_ 111

37 indirectly: o dyjdx 32 3P

The equation {dx/dy)(dy/dx) = 1 is not ordinary algebra, but it is true. Those deriva-
tives are limits of fractions. The fractions are (Ax/Ay){(Ay/Ax) =1 and we let Ax — 0.

directly: j—; =

Ag. 4.6 Graphs of inverse functions: x =4y is the mirror image of y = 3x.

Before going to new functions, I want to draw graphs. Figure 4.6 shows y = \/;c
and y = 3x. What is special is that the same graphs also show the inverse functions.
The inverse of y=./x is x =y The pair x =4, y=2 is the same for both. That is
the whole point of inverse functions—if 2 = g(4) then 4 =g~ !(2). Notice that the
graphs go steadily up.

The only problem is, the graph of x =g~ !(y) is on its side. To change the slope
from 3 to %, you would have to turn the figure. After that turn there is another
problem—the axes don’t point to the right and up. You also have to look in a mirror!
(The typesetter refused to print the letters backward. He thinks it’s crazy but it’s not.)
To keep the book in position, and the typesetter in position, we need a better idea.

The praph of x = 3y comes from turning the picture across the 45° line. The y axis
becomes horizontal and x goes upward. The point (2, 6) on the line y = 3x goes into
the point (6,2) on the line x=3y. The eyes see a reflection across the 45° line
(Figure 4.6¢). The mathematics sees the same pairs x and y. The special properties of
g and g~* allow us to know two functions—and draw two graphs—at the same
time.t The graph of x = g~ (y) is the mirror image of the graph of y = g(x).

EXPONENTIALS AND LOGARITHMS

I would like to add two more examples of inverse functions, because they are so
important. Both examples involve the exponential and the logarithm. One is made up
of linear pieces that imitate 2*; it appeared in Chapter 1. The other is the true function
2*, which is not yet defined—and it is not going to be defined here. The functions b*
and log,y are so overwhelmingly important that they deserve and will get a whole
chapter of the book (at least). But you have to see the graphs.

The slopes in the linear model are powers of 2. So are the heights y at the start of
each piece. The slopes 1,2, 4, ... equal the heights 1, 2, 4, _.. at those special points.

The inverse is a discrete model for the logarithm (to base 2). The logarithm of 1 is
0, because 2° = 1. The logarithm of 2 is 1, because 2! = 2. The logarithm of 2/ is the
exponent j. Thus the model gives the correct x =log,y at the breakpoints y=
1,2,4,8,.... Theslopes are 1, §, 1, §, ... because dx/dy = 1/(dy/dx).

11 have seen graphs with y=g(x} and also y =g~ !(x). For me that is wrong: it has to be
x=g '(y). If y=sin x then x =sin" 'y,
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The modei is good, but the real thing is better. The figure on the right shows the
true exponential y=2* At x=0, 1,2, ... the heights y are the same as before. But
now the height at x = } is the number 2!/2, which is \/yi The height at x = .10 is the
tenth root 21*% = 1.07.... The slope at x =0 is no longer 1—it is closer to Ay/Ax =
07/.10. The exact slope is a number ¢ (near .7) that we are not yet prepared to reveal.

The special property of y =2 is that the slope at all points is cy. The slope is
proportional to the function. The exponential solves dy/dx = cy.

Now lock at the inverse function—the logarithm. Its graph is the mirror image:

If y =2 then x = log,y. If 21/1° 2 1.07 then log, 1.07 = 1/10.

What the exponential does, the logarithm undoes—and vice versa. The logarithm of
2% is the exponent x. Since the exponential starts with slope ¢, the logarithm must
start with slope 1/c. Check that numerically, The logarithm of 1.07 is near 1/10. The
slope is near .10/.07. The beautiful property is that dx/dy = 1/cy.

x=log, ¥

X

1 2 4 12 4
Ag. 4.7 Piecewise linear models and smooth curves: y =2* and x =log, y. Base b = 2.

I have to mention that calculus avoids logarithms to base 2. The reason lies in that
mysterious number c. It is the “naturai logarithm™ of 2, which is .693147...—and
who wants that? Also 1/.693147... enters the slope of log, y. Then (dx/dyXdy/dx)=1.
The right choice is to use “natural logarithms” throughout. In place of 2, they are
based on the special number e:

y=¢& Is the inverse of x=1In y. (2)

The derivatives of those functions are sensational—they are saved for Chapter 6.
Together with x" and sin x and cos x, they are the backbone of calculus.

Note 1t is almost possible to go directly to Chapter 6. The inverse functions x =
sin”" 'y and x=tan"'y can be done quickly. The reason for including integrals first
(Chapter 5) is that they solve diflerential equations with no guesswork:

dy dx 1 dy
— = —_— = = —_ = + .
oY oor iy leads to de J p or x=lmy+C

Integrals have applications of all kinds, spread through the rest of the book. But do
not lose sight of 2* and ¢*. They solve dy/dx = cy—the key to applied caiculus,
THE INVERSE OF A CHAIN h{g{x))

The functions g(x) = x — 2 and h(y) = 3y were easy to invert. For g~' we added 2,
and for k! we divided by 3. Now the question is: If we create the composite function
z = hig(x)), or z = 3{x — 2), what is its inverse?



4.3 inverse Functions and Their Derivatives 169

Virtually all known functions are created in this way, from chains of simpler
functions. The problem is to invert a chain using the inverse of each piece. The answer
is one of the fundamental rules of mathematics:

4D The inverse of z = h(g(x)) is a chain of inverses in the opposite order:

x=g (A~ Hz)). (3)
h~* is applied first because h was applied last: g~ (b~ ! (h(g{x))) = x.

That last equation looks like a mess, but it holds the key. In the middle you see
# ! and h. That part of the chain does nothing! The inverse functions cancel, to leave
g '(g(x)). But that is x. The whole chain collapses, when g~' and h~! are in the
correct order—which is opposite to the order of h{g(x)).

EXAMPLE7 z=h(g(x))=3(x—2)and x=g " '(h Y (2))=4z+ 2

First A~ ! divides by 3. Then g "' adds 2. The inverse of hogis g 'k~ ". It can be
Jound directly by solving z = 3(x — 2). A chain of inverses is like writing in prose—we
do it without knowing it.

EXAMPLE8 Invert z=./x—2 by writing z* = x — 2 and then x=z>+2,

The inverse adds 2 and takes the square—but not in that order. That would give
{(z + 2)°, which is wrong. The correct order is z° + 2.

The domains and ranges are explained by Figure4.8. We start with xz 2.
Subtracting 2 gives y = 0. Taking the square root gives z > 0. Taking the square
brings back y = 0. Adding 2 brings back x » 2—which is in the original domain of g.

AU P
= h{gla)) =g b o=2x—1 2o+

yEgl) z=h() y=hTlzy v=g r=2y c=v—1l y=z+l x= %_\'

Hg. 48 The chain g~ '(h~ '(h(g(x))) = x is one-to-one at every step.

EXAMPLE 9 Inverse matrices (4B) '=B"'4~'  (this linear algebra is optional).

Suppose a vector x is multiplied by a squarc matrix B: y = g(x) = Bx. The inverse
function multiplies by the inverse matrix: x =g~ '(y)= B~ 'yp. It is like multiplication
by B=13 and B~ ! = 1/3, except that x and y are vectors.

Now suppose a second function multiplies by another matrix A: z = h{g(x)) = ABx.
The problem is to recover x from z. The first step is to invert 4, because that came
last: Bx= A" !z, Then the second step multiplies by B! and brings back x=
B7'A7'z. The product B A ' inverts the product AB. The rule for matrix inverses
is like the rule for function inverses—in fact it is a special case.

I had better not wander too far from calculus. The next section introduces the
inverses of the sine and cosine and tangent. and finds their derivatives. Remember
that the ultimate source is the chain rulc.
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4.3 EXERCISES

Read-throngh questions
The functions g{x)=x—4 and f{y)=p+4are _ o func-

tions, because flg(x))=_0b . Also g(fiy=_<c . The
notationisf=g " 'andg=_d . The composition _ e is
the identity function. By definition x =g~ (}) if and only if
y=_1__. When yisin therange of g, itisinthe _g of
¢! Similarly x is in the __h__ of g when it is in the __|

of g%, If g has an inverse then g(x,)__J g(x,) at any two
points. The function g must be steadily _ k  or steadily

I

The chain rule applied to f{g(x)) = x gives (df/dy)(_m )=
n_. The slope of g~! times the siope of g equals _ o
More directly dx/dy=1/_p . For y=2x+1 and x=
$y—1), the slopes are dy/dx=_a and dx/dy~=_—r .
Fory=xand x=__s__,theslopesaredy/dx=_ 1t and
dxfdy=_u . Substituting x2 for y gives dxjdy=_ v

Then (dx/dy)(dy/dx} = _w

The graph of y = g{x) is also the graph of x=_ x| but
with x across and y up. For an ordinary graph of g1, take
the reflection in the line _ ¥ _. If (3, 8) is on the graph of g,
then its mirror image (_ 2 ) is on the graph of g~ ', Those
particular points satisfy 8 =23 and 3=_ A

The inverse of the chain z = hig{x)) is the chain x==_ B .
If g{x})=3x and h(y}=)° then z=_ € __, Its inverse is x =
D, which is the compositionof _E and __F

Solve equations 1-10 for x, to find the inverse function x =
2 (y). When more than one x gives the same y, write
“no inverse.”

1 y=3x—6 2 y=Ax+ B

I y=x*-1 4 y=xj{x—1) [solve xy — y = x]
Sy=1+x"" 6 y=|x|

7 y=x*~1 8 y=2x+|[x|

9 y=sinx 10 y =x"/3 [draw graph]

+ay Now

. 1 1
11 Solving y= —a gives xy—ay=1or x=
solve that equation for y.

. +1 ., +1
12 Solving y = E—:—lgwcs xy—y=x-+1 0rx=%:—l. Draw
the graph to see why f and f ~! are the same. Compute.dy/dx
and dx/dy.
¥3 Suppose fis increasing and f{2) = 3 and f{3) = 5. What can
you say about f ~'(4)?

14 Suppose f[2)=3 and f{3)=35 and f{5) = 5. What can you
say about f 17

15 Suppose f{2)=3 and f13)=35 and f15)=0. How do you
know that there is no function f 7

16 Vertical &ne test: If no vertical line touches its graph twice
then fx) is a function (one y for each x). Horizomtal line
test. If no horizontal line touches its graph twice then f{x) is
invertible because

17 If f{x) and g(x} are increasing, which two of these might
not be increasing?
Jix) +glx) fix)g(x) Slg(x) =) 1/fix)
1B ¥ y=1/x then x=1/y. If y=1—2x then x=1—y. The
graphs are their own mirror images in the 45° line. Construct
two more functions with this property f=/ "1 or f{flx}} = x,
19 For which numbers m are these functions invertible?
(@y=mx+b (Dy=mx+x° {c) y=mx +sin x
20 From its graph show that y = |x} + cx is invertible f ¢ > 1

and also if ¢ « — 1. The inverse of a piecewise linear function
is piecewise

In 21-26 find dy/dx in terms of x and dx/dy in terms of y.

21 y=x*° 22 y=1{{x-1)

23 y=x"—1 24 y=1/x°
ax+b

2sy-__:r,—l 16y_cx+d

27 H dy/dx = 1}y then dx/dy = and x =

28 If dx/dy = 1/y then dy/dx = (these functions are
y=¢&" and x =In y, soon to be honored properly).

29 The slopes of f{x) = x> and g(x} = — 1/x are x? and 1/x2,
Why isn't /=g~ 12 What is g '? Show that g(g~ 1) = 1.

30 At the points x,, x;, x, 4 piecewise constant function
jumps to yy, yi, ¥3. Draw its graph starting from y(0)=0.
The mirror image is piecewise constant with jumps at the
points to the heights . Why isn’t this the
inverse function?

In 31-38 draw the graph of y = g(x). Separately draw its mirror
image x =g ().

3 y=5x-10 A2 y=cosx, 0<xExn

B y=1lfix+1) M y=Ix|—2x

5 y=1r 3% y=/1-x%,0<xx1
37 y=27% By=1//1-xL0gx<l

In 3942 find dx/dy at the given point.
39 y=sin x at x = /6 40 y=tan x at x==r/4

41 y=sinx*atx=3 42 y=x—sinxatx=0
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43 If y 1s a decreasing function of x, then x is a
function of y. Prove by graphs and by the chain rule.

44 If flx) > x for all x, show that £~ !(y)} < y.
45 True or folse, with example;
(a) If f(x} is invertible so is A(x) = (f{x))>.

(b) If f{x) is invertible so is M(x) = fx)).
{c) 7 '(y) has a derivative at every y.

In the ehains 46—51 write down g(x) and f{y) and their inverses.
Then fid x =g~ *(f ™ 2)).

46 z=5x—4) 47 z =(x"f
48 z=(6 +x)* MHzr=6+x>
50 z=Hix+4)+4 51 z =log(10%)

52 Solving fTx}=0is a large part of applied mathematics,
Express the solution x* in terms of f ~!: x* = .
53 (a) Show by example that d>x/dy? is not 1/(dy/dx?).

(b) If y is in meters and x is in seconds, then d2y/dx* is in
and d2x/dy? is in

4.4 Inverses of Trigonometric Functions
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54 Newton’s method solves f{x*)=0 by applying a lincar
approximation to j 7%

JTHOY = [T + df 7 dy) (0 — ).
For y=f{x) this is Newton's equation x* = x +

55 If the demand is 1/(p+ 1)* when the price is p, then the
demand is y when the price is . If the range of prices
is p 2 0, what is the range of demands?

56 If dFj/dx=f(x) show that the derivative of G{y)=
WD =-F(O) s f70)

57 For each number y find the maximum value of yx — 2x°,
This maximum is a function G{y). Verify that the derivatives
of G{y} and 2x* are inverse functions.

58 (for professors only} If G(y) is the maximum value of
yx — F(x), prove that F(x) is the maximum value of xy — G{y).
Assume that f{x})=dF/dx is increasing, like 8x® in
Problem 57.

59 Suppose the richest x percent of people in the world have
10,/ percent of the wealth. Then y percent of the wealth is
held by percent of the people.

Mathematics is built on hasic functions like the sine, and on basic ideas like the
inverse. Therefore it is totally natural to invert the sine function. The graph of x=
sin "'y is a mirror image of y = sin x. This is a case where we pay close attention to
the domains, since the sine goes up and down infinitely olten. We only want one piece

of that curve, in Figure 4.9.

For the hold line the domain is restricted. The angle x lies between —n/2 and + /2.
On that interval the sine is increasing, so each y comes from exactly one angle x. I
the whole sine curve is allowed, infinitely many angles would have sin x = 0. The sine

™
dy _ I=—=7
=0 2
y=17 ?
1] Y _ 3m x)
2 dx / 3
— X ¥ + ¥y
_® r il -1 1
2 6 2 2
x sin’1y+cos*'y=~2—
e

Ag. 4.9 Graphs of sin x and sin~ !y, Their slopes are cos x and 1/,/1 —y*.
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function could not have an inverse. By restricting to an interval where sin x is increas-
ing, we make the function invertible.
The inverse function brings y back to x. It is x = sin ™'y (the inverse sine).

x=sin" 'y when y =sin x and |x| < /2. (1)

The inverse starts with a number y between —1 and 1. It produces an angle x=
sin ~'y—zthe angle whose sire is y. The angle x is between —n/2 and n/2, with the
required sine. Historically x was calied the “arc sine” of y, and aresin is used in
computing. The mathematical notation is sin~'. This has nothing to do with 1/sin x.

The figure shows the 30° angle x = n/6. Its sine is y = §. The inverse sine of 3 is n/6.
Again: The symbol sin ™ !(1) stands for the angle whose sine is 1 {this angle is x =
n/2). We are seeing g~ (g(x)) = x:

sin” !(sin x) = x for — ; :.;xég sin(sin” 'y)=yfor —1<y<1,

EXAMPLE 1 (important) If sin x = y find a formula for cos x.

Solution We are given the sine, we want the cosine. The key to this problem must
be cos?x = | —sin’x. When the sine is y, the cosine is the square root of 1 — y*

cos x = cos(sin~'y)= /1 — y%. (2)

This formula is crucial for computing derivatives. We use it immediately.
THE DERIVATIVE OF THE INVERSE SINE

The calculus problem is to find the slope of the inverse function f{y)=sin"'y.
The chain rule gives (slope of inverse function)= l/{slope of original function).
Certainly the slope of sin x is cos x. To switch from x to y, use equation (2):

. . dy dx 1 1
y=sin x gives —— =¢os x 50 that — = =

dx dy cosx _/1—y* )
This derivative 1/, /1 — y* gives a new v—f pair that is extremely valuable in caiculus:
velocity u(t)=1//1—1¢2 distance  f(t)=sin"'t.
1

Inverse functions will soon produce two more pairs, from the derivatives of tan™ 'y
and sec™'y. The table at the end lists all the essential facts.

EXAMPLE2 The slope of sin 'y at y=1 is infinite: 1/./1— y* = 1/0. Expiain.
At y=1 the graph of y=sin x is horizontal. The slope is zero. S0 its mirror image
is vertical. The slope 1/0 is an extreme case of the chair rule.

Question What is d/dx (sin 'x)?  Answer 1/./1 — x2. I just changed letters.

THE INVERSE COSINE AND ITS DERIVATIVE

Whatever is done for the sine can be done for the cosine. But the domain and range
have to be watched. The graph cannot be allowed to go up and down. Each y from
—1to | should be the cosine of only one angle x. That puts x between 0 and n. Then
the cosine is steadily decreasing and y = cos x has an inverse:

cos ~ {cos x) = x and cos{cos " y) = y. (4)
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The cosine of the angle x = 0 is the number y = 1. The inverse cosine of y=1 is the
angle x = 0. Those both express the same fact, that cos 0= 1.

For the slope of cos 'y, we could copy the calculation that succeeded for sin™'y.
The chain rule could be applied as in (3). But there is a faster way, because of a
special relation between cos "'y and sin " 'y. Those angles always add to a right angle:

cos 'y+sinly=mn/2. (5)

Figure 4.9c shows the angles and Figure 4.10c shows the graphs. The sum is /2 (the
dotted line), and its derivative is zero. So the derivatives of cos ™'y and sin 'y must
add to zero. Those derivatives have opposite sign. There is a minus for the inverse
cosine, and its graph goes downward:

173

cos ly +sinly = =

The derivative of x=cos 'y is dx/dy= —1//1— )% (6)
(-Lm +
©.12) n =
2
¢ X 60)°
(m/2,0) T
30° -
(m.—1) (1,0)
F -+ V
-1 1 -1
(-1,-m/2)

Fig. 4.40 The graphs of y =cos x and x =cos " 'y. Notice the domain 0 < x < 7.

Question How can two functions x =sin "'y and x = —cos 'y have the same
derivative?
Answer sin 'y must be the same as —cos 'y + C. Equation (5) gives C = n/2.

THE INVERSE TANGENT AND ITS DERIVATIVE

The tangent is sin x/cos x. The inverse tangent is not sin 'y/cos 'y. The inverse
function produces the angle whose tangent is y. Figure 4.11 shows that angle, which
is between — /2 and =/2. The tangent can be any number, but the inverse tangent
is in the open interval —n/2 < x < /2. (The interval is “open’’ because its endpoints
are not included.) The tangents of n/2 and — /2 are not defined.

The slope of y = tan x is dy/dx = sec’>x. What is the slope of x = tan'y?

) dx 1 1 1
By the chain rule —=———= T =
dy sec’x l+tan“x 1+y

(7

df 1
j 1 = =1y ¢ =L =
4E The derivative of f(y)=tan™ 'y is G

(8)
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x=secly

32 -1 @ 1, 2 3
Ag. 444 x=tan"'y bas slope 1/(1 + y?). x=sec™ 'y has slope 1/[y./¥* — 1.

EXAMPLE 3 The tangent of x = n/4 is y = 1. We check slopes. On the inverse tangent
curve, dx/dy = 1{(1 + y*)= §. On the tangent curve, dy/dx = sec’x. At n/4 the secant
squared equals 2. The slopes dx/dy = 7 and dy/dx = 2 muitiply to give 1.

Important  Soon will come the following question. What function has the derivative
1/(1 + x*)? One reason for reading this section is to learn the answer. The function
is in equation (8)—if we change letters. It is f{x)=tan™x that has slope 1/(1 + x%).

csex
|
1 ] secx
sinx lany
*\
cOs X 1 cot x

Ag. 442 cos’x+4sin’x=1 and I 4tan®x=sec’x and 14 cot’x =cscix.

INVERSE COTANGENT, INVERSE SECANT, INVERSE COSECANT

There is no way we can avoid completing this miserable list! But it can be painiess.
The idea is to use 1/(dy/dx) for y = cot x and y =sec x and y=csc x:
- 1 -1
d_x=_Tl and d_x:_____ and d—x=———. (9
dy csc’x dy secxtanx dy cscxcotx

In the middle equation, replace sec x by y and tan x by +.,/y* — 1. Choose the sign
for positive slope (compare Figure 4.11). That gives the middle equation in (10):

The derivatives of cot 'y and sec™*y and csc ™'y are
d -1 d 1 d -1
—@ot™iyy=—— —ecTlyY)= —— —(es¢"lY)=———  (I10
PP Al 72 dy{ y) WS dy( y) =1 (10)

Note about the inverse secant When y is negative there is a choice for x =sec™'y.
We selected the angle in the second quadrant (between n/2 and =n). Its cosine is
negative, so its secant is megative. This choice makes scc™ 'y = cos™1(1/y), which
matches sec x = 1/cos x. It also makes sec™ 'y an increasing function, where cos !y
is a decreasing function. Se we needed the absolute value |y| in the denvative.
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Some mathematical tables make a different choice. The angle x couid be in the
third quadrant {(between —x and —#/2). Then the slope omits the absolute value.
Summary For the six inverse functions it is only necessary to learn three derivatives.
The other three just have minus signs, as we saw for sin~ 'y and cos~?y. Each inverse
function and its “cofunction” add to =/2, so their derivatives add to zero. Here are
the six functions for quick reference, with the three new derivatives.

Sunction f(y) inputs y

sin"'y, cos 'y ly <1

tan~ly, cot ™y all y

outpuls x slope dx/dy

TR 1
[‘ 0L 5j|, [0, n] + 1—_y2

T X 1
(* 7 5), 0, n) + 1—_}:;5

T

n * 1
sec 'y, esc”ly Iyl =1 [0, =1*, |:— = —] t———
22 vy -1

If y=cos x or y=sin x then |y| € 1. For y =sec x and y = ¢sc x the opposite is true;
we must have [y| 2 1. The graph of sec ™y misses all the points —1 <y < 1.

Also, that graph misses x = n/2—where the cosine is zero. The secant of n/2 would
be 1/0 (impossible). Similarly csc ™y misses x = 0, because y = csc 0 cannot be 1/sin 0.
The asterisks in the table are to remove those points x = /2 and x= 0.

The column of derivatives is what we need and use in calculus.

4.4 EXERCISES

Read-through questions

The relation x =sin"'y means that _ o is the sine of
b . Thus x is the angle whose sineis __¢ . The number
y lies between _d  and _ e . The angle x lies between
I and _ g . {If we want the inverse to exist, there
cannot be two angles with the same sine.} The cosine of the
angle sin~'y is h . The derivative of x=sin"ly is
dxfdy=__1 .

The relation x =cos™ 'y means that yequals __ | . Again
the number y lies between _ k  and _ 1 ., This time the
angle x lies between _ M and _ n__ (so that each y comes
from only one angle x). The sum sin”'y+cos™'y=_o
(The angles arecalled __p__, and theyaddtoa _a _angle.)

Therefore the derivative of x =cos™'yis dx/dy=_ 1, the
same as for sin~!yexeept fora _ 3 sign.

The relation x=tan"'y means that y=_t . The
numbet y lies between _u  and _ ¥ . The angle x lies
between _w__ and _ x . The derivative is dxfdy=_¥
Since tan™ 'y +cot"'y=_ 2 | the derivative of cot 'y is

the same except fora _ A sign.

The relation x =sec ™!y means that __B__. The number y
never lies between __ € and __ D, The angle x lies between
E and, F ,butneveratx=_ & . The derivative of

x=sec 'yisdxfdy=_H _

In 14, find the angles sin~'y and cos 'y and tan™'y in

radians.
1y=0 2y=-—1 Iy=1 4y=3
5 We know that sin n =0, Why isn’t 7 =sin~'0?
6 Suppose sin x = y. Under what restriction is x =sin™1y?

7 Sketch the graph of x =sin™ 'y and locate the points with
slope dx/dy = 2.

8 Find dx/dy if x =sin~' }y. Draw the graph.

9 If y=cos x find a formula for sin x. First draw a right
triangle with angle x and near side y—what are the other
two sides?

10 If y=sin x find a formula for tan x. First draw a right
triangle with angle x and far side y—what are the other sides?

11 Take the x derivative of sin ~!(sin x) = x by the chain rule,
Check that d(sin~y)/dy = 1/, /1 — y* gives a correct result.

12 Take the y derivative of cos(cos ~!y) = y by the chain rule.
Check that d(cos ™ 'y)/dy = —1/./1 — y* gives a correct result.

13 At y=0and y =1, find the slope dx/dy of x =sin~ 'y and
x=cos 'yand x=tan"'y.

14 At x=0and x = 1, find the slope dx/dy of x =sin~'y and
x=cos 'yand x =tan" !y
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15 True or false, with reason:
(a) (sin " 'y)? +(cos ™'y =1
(b} sin” 'y =cos ™'y has no solution
(c) sin” 'y is an increasing function
{(d)sin” 'y is an odd function
(e} sin”tyand —cos ™'y have the same slope—so they are
the same.
if) sin{cos x) = cos{sin x}
16 Find tan(cos '(sin x)} by drawing a triangle with sides
stn x, cos x, 1.

Compute the derivatives in 17-28 {using the letters as given).

17 4 =sin"lx 1B y=tan '2x

19 z=sin"!(sin 3x) 20 z=sin" Ycos x)
21 z=(sin”'x)? 22 z={sin "'x)7!

23 z=/t—y*sin"y 24 z={1 + x}tan" 'x
25 x=sec Y(y+1) 26 u=sec” '(sec x?)

1

i—y?
28 u=sin"'y+cos 'y+tan”'y

27 u=sin"!yjcos”

29 Draw a right triangle to show why tan ™'y +cot™ 'y =n/2.
30 Draw a right triangle to show why tan™ 'y =cot™ /{1/y).
31 If y=tan x find sec x in terms of y.

32 Draw the graphs of y=cot x and x =cot™'y.

33 Find the slope dx/dy of x =tan" !y at
(a}y=-1 (b}x=0 €©)x=-nr/4

34 Find a function u(t) whose slope satisfies &’ + t*u’ = L.
35 What is the second derivative d%x/dy? of x =sin~'y?

36 What is d?u/dy? for u=tan™')?

Find the derivatives in 37-44.
I y=sec ix 38 x=sec 12y
39 u=sec”H{x"

41 tany={x—1)f{x+ 1)

43 y=sec ' /x4 1

45 Diflerentiate cos™ '(1fy) to find the slope of sec™ 'y in a
new way.

40 u=sec” !(tan x)
42 z =(sin x)(sin " !x)

4 z —sin{cos™ 'x} — cos(sin~!x)

46 The domain and range of x =csc™ 'y are
47 Find a function u(y) such that dujdy = 4{./1 — y*.
48 Solve the differential equation dufdx = 1/(t + 4x?).

49 If dujdx = 2/ /1 — x® find (1) — u(0).

50 (recommended) With u{x) ={x — 1)/(x + 1), find the deriv-
ative of tan ™ 'u(x). This is also the derivative of . So
the difference between the two functions is a

51 Find u(x} and tan 'u{x} and tan™'x at x =0 and x = 0.
Conclusion based on Preblem 50: tan ™ ‘u{x) —tan ™ 'x equals
the number

52 Find w(x) and tan~'u(x) and tan"'x as x —» - ao. Now
tan ~ 'u(x) —tan” 'x equals . Something has hap-
pened 1o tan ™ 'ufx). At what x do u(x} and tan™ 'u(x) change

instankly?
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CHAPTER 5

Integrails

I 5.1 The idea of the Integral NG

This chapter is about the idea of integration, and also about the technigue of integ-
ration. We cxpiain how it is done in principle, and then how it is done in practice.
Integration is a problem of adding up infinitely many things, each of which is infini-
tesimally small. Doing the addition is not rccommended. The whole point of calculus
15 to offer a better way.

The problem of integration is to find a limit of sums. The key is te work backward
from a hmit of differences (which 1s the derivative). We can integrate v(x) if it furns
up as the derivative of another function f(x). The integral of v = cos x is f=sin x. The
integral of v = x is f=4x? Basically, f(x) is an “antiderivative™, The list of /s will
grow much longer (Section 5.4 is crucial). A selection is inside the cover of this book.
If we don’t find & suitable f{x), numerical integration can still give an excellent answer.

1 could go directly to the formulas for integrals, which allow you to compute areas
under the most amazing curves. (Area is the clearest example of adding up inhnitely
many infinitely thin rectangles, so it always comes first. [t is certainly not the only
problem that integral culculus can solve.) But [ am really unwilling just to write down
formulas, and skip over all the idcas. Newton and Leibniz had an absolutcly brilliant
intuition, and there is no reason why we can’t share it,

They started with something simpie. We will do the same.

SUMS AND DIFFERENCES

Integrais and derivatives can be mostly explained by working (very briefly) with sums
and differences. Instcad of functions, we have n ordinary numbers. The key idea is
nothing more than a basic fact of algebra. In the limit as n — 2c. it becomes the basic
fuct of calculus. The step of “going to the limit™ is the essential difference between
algebra and caleulust It has to be taken, in order to add up infinitely many
mAnitesimals— but we start out this side of it.
To see what happens before the limiting step, we need twa sets of n numbers. The
first set will be v, v,, ..., »,. where ¢ suggests velocity. The second set of numbers
will be f1, f5,....f,. where f recalls the idea of distance. You might think d would
be a better symbol for distance. but that is needed for the dx and dy of calcuius. 177
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A first example has n=4:
vy, Uy, U3, g =1,2,3,4 Ji.f2s S5, f4=1,3,6, 10

The relation between the v's and f's is seen in that example. When you are given
1, 3, 6, 10, how do you produce 1, 2, 3, 47 By taking differences. The diflerence
between 10 and 6 is 4. Subtracting 6 — 3 is 3. The difference f; - f; =3 —1is v, =2
Each v is the difference between two f’s:

v; is the difference {;—f;_,.

This is the discrete form of the derivative. I admit to a small difficulty at j =1, from
the fact that there is no f,. The first v should be f; —f;. and the natural idea is to
agree that f, is zero. This need for a starting point will come back to haunt us {or
help us) in calculus.

Now look again at those same numbers—but start with v. Fromv=1, 2, 3, 4 how
do you produce f= 1, 3, 6, 10? By taking sums. The first two v’s add to 3, which is f,.
The first three v’s add to f; = 6. The sum of all four v'sis 1 + 2+ 3 + 4= 10. Taking
sams is the apposite of taking differences.

That idea from algebra is the key to calculus. The sum f; involves ali the numbers
v, + v, 1+ - + v;. The diflerence v; involves only the two numbers f;— f;_,. The fact
that one reverses the other is the “Fundamental Theorem.” Calculus will change sums
to integrals and differences to derivatives—but why not let the key idea come through
now?

SA Fuwrdamental Theorem of Calewlus (before limits):
each =11, then v 3+ + = f, o

The differences of the s add up to f, — f;. All f°s in between are canceled, leaving
only the last f, and the starting f;, The sum “telescopes™

nto et re,=(-f)tL-f+ L+ H LoD

The number f; is canceled by —f;. Similarly —f, cancels f, and —f; cancels f;.
Eventually f, and —f, are left. When fj is zero, the sum is the final f,.
That completes the algebra. We add the v's by finding the ’s.

Question How do you add the odd numbers 14+ 3+ 5+ -+ + 99 {the v's)?
Answer They are the differences between 0, 1, 4,9, ... These f’s are squares. By the
Fundamental Theorem, the sum of 50 odd numbers is (50)%.

The tricky part is to discover the right f’s! Their differences must produce the v's.
In calculus, the tricky part is to find the right f{x). Its derivative must produce ¢{x).
It is remarkable how often f can be found—more often for integrals than for sums.
Qur next step is to understand how thke integraf is a limit of sums.

SUMS APPROACH INTEGRALS

Suppose you start a successful company. The rate of income is increasing. After
x years, the income per year is J; million dolars. In the first four years you reach
\/T, ﬁ, ﬁ, and \/Z million dollars. Those numbers are displayed in a bar graph
(Figure 5.1a, for investors). I realize that most start-up companies make losses, but
your company is an e¢xception. If the example is too good to be true, please keep
reading.
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Ag. 5.1 Total income = total area of rectangles = 6.15.

The graph shows four rectangles, of heights \/f, \/5, \/?‘,, \/Z Since the base of
each rectangle is one year, those numbers are also the areas of the rectangles, One
investor, possibly weak in arithmetic, asks a simple question: What is the total income
Jor all four years? There are two ways to answer, and I will give both.,

The first answer is \/1+./2+./3+./4. Addition gives 6.15 million dollars.
Figure 5.1b shows this total—which is reached at year 4. This is exactly like velocities
and distances, but now v is the iscome per year and fis the total income. Algebraically,
Srisstill o + - + v,

The second answer comes from geometry. The total income is the total area of the
rectangles. We are emphasizing the correspondence between addition and area. That
point may seem obvious, but it becomes important when a second investor (smarter
than the first) asks a harder question.

Here is the problem. The incomes as stated are false. The company did not make
a million dollars the first year, Aflter three months, when x was 1/4, the rate of income
was only ,/J—c = 1/2. The bar graph showed \/I = | for the whole year, but that was
an overstatement. The income in three months was not more than 1/2 times 1/4, the
rate multiplied by the time.

All other quarters and years were also overstated. Figure 5.2a is closer to reality,
with 4 years divided into 16 quarters, It gives a new estimate for total income.

Again tbere are two ways to find the total. We add Jm+ \/2_/2+ et /16/4,
remembering to multiply them all by 1/4 (because each rate applies to 1/4 year).
This is also the area of the 16 rectangles. The area approach is better because the 1/4
is automatic. Each rectangle has base 1/4, so that factor enters each area. The total
area is now 5.56 million dollars, closer to the truth.

You see what is coming. The next step divides time into weeks. Alter one week the
rate ,/.; is only ./1/52. That is the height of the first rectangle—its base is Ax =
1/52. There is a rectangle for every week, Then a hard-working investor divides time
into days, and the base of each rectangle is Ax =1/365. At that point there are
4 x 365 = 1460 rectangles, or 1461 because of leap year, with a total area below 54

179
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million doilars. The calculation is elementary but depressing—adding up thousands
of square roots, each multiplied by Ax from the base. There has to be a better way.

The better way, in fact the best way, is calculus. The whole idea is to allow for
continuous change. The geometry problem is to find the avea under the square root
curve, That question cannot be answered by arithmetic, because it involves a limit.
The rectangles have base Ax and heights \/Ax, V/2Ax. ...,V-/E. There are 4/Ax
rectangles—more and more terms from thinner and thinner rectangles. The area is

the limit of the sum as Ax — 0,

This limiting arca is the “integral.” We are looking for a number below 53.

Algebra (area of n rectangles): Compute ¢, + - + ¢, by finding [’s.
Key idea: If ¢;=f,—f;.., then the sum is f, — f;.

Calculus (area under curve). Compute the limit of Ax[t{A x)+ v(2Ax) + -]
Key idea: If v{x)= df/dx then area = integral to be explained next.

5.1 EXERCISES

Read-through questions

The problem of summation s 10 add ¢, ~ - + 1. [t 15 solved
if we find f°s such that v;=__a . Then v, + - ~t, equals
b__. The (i=fo)+ifa=fi)+ -+

canccllation  tn
(fo—/f-:)leaves only _ e . Taking sums is the _d  of
taking differences.

The differences between 0, 1,4, 9 are ¢, 05,6,= _ e

For lunctions, finding the integral is the reverse of __h
If the derivative of f{x} is o{x}, then the _ i of v{x) is f{x).
Ifeix)=10xthenfixj=_1 .Thisisthe __k ofatriangle
with basc x and height 10x,

Integrals begin with sums. The triangle under ¢ = 10x out
tox=4hasarea _ 1 . ltisapproximated by four rectangles
of heights 10, 20, 30, 40 and area __m___ It is hetter approxi-
mated by eight rectangles of heights _ n__ and area _ o
For n rectangles covering the triangle the area is the sum of

. As #- « this sum should approach the number

For f;— j* the difference between f,, and f, is vjp=_1
From thrs pattern 1 + 3+ 5+ - - 19 equals _g .

q . That is the integraf of v = 10x from 0 10 4,
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Problems 1-6 are about sums f; and differences ¢;.

1 With e=1.2, 4, 8. the formula for r; is {not 24),
Find f,,f,. /3. f starting from f; = 0. What is f5?
2 The saing v=1,24.8 ... are the differences between

f=1,2,4.8,16, ... Now fy=1 and f,= 2%, (a) Check that
2% — 2% equals v5. (b) Whatis 1 +2+4+ 8% + L6?

3 The diflerences between f=1, 1/2, 174, 1/ are p=
- 1i2, —1/4, —1/8. These negative ¢’s do not add up to these
positive {'s. Verify that vy + &, + 3 =f; — f; is still true.

4 Any constant € can be added to the antiderivative fix)
because the of a constant is zero. Any C can be
added to f.f,, ... because the between the /75 is
not changed.

§ Show that /;=rfi{r — Y hasf; —f,_, =/ . Therefore the
geometric series [+r+ - +rf7' adds up to
(remember 10 subtract f;).

6 The sums f;=(r/—1)i(r— I} also have f;—f;_; =ri"%
Now f, = . Therefore 1 +7+ - +r/"" adds up to
f; The sum | +7+ - +#" equals

7 Suppose t{x) =3 for x < | and v(x)= 7 for x = L. Find the
area fix) from 0O to x, under the graph of v{x). (Two pieces.)

81Me=1~23 -4, .., write down the {’s starting from
Jo=0. Find formulas for r; and f; when j s odd and j is even,

Problems 9-16 are about the company earning \\ per year.

9 When time s divided in1o weeks there are 4 x 52 = 208
rectangles. Write down the first area, the 208th area, and the
jth area.

10 How do you know that the sum over 208 weeks is smaller
than the sum over 16 quarters?

11 A pessimist would use \: al the heginning of cach time
period as the income rate for that period. Redraw Figure 5.1
(both parts) using heights \,6 \T ' 2 3. How much lower
is the estimate of total income?

12 The same pessimist would redraw Figure 5.2 with heights
0,14, ... What is the height of the last rectangle? How
much does this change reduce the total rectangular arca 5,567

13 At every step from years to weeks to days 1o hours, the
pessimist’s area goes and the optimist’s aren goes
. The difference between them is the area of the last

14 The cptimist and pessimist arrive at the same limit as
years are divided into weeks, days, hours, seconds. Draw the
' x curve between the rectangles to show why the pessmist
is ulways too low and the optimist is too high.

15 (Important} Let f{x) be the area under the , / x curve, above
the interval from Q to x, The area to x + Ax is fix + Ax). The
extra area 15 Af = . This is almost a rectangle with
base and height \/’;‘ So AffAxisclose to

As Ax — 0 we suspect that dfidx =

16 Draw the Vf’(; curve from x =0 to 4 and put triangles
below to prove that the area under it is more than 5. Look
left and right from the point where \/T =1

Problems 17-22 are about a company whose expense rate
t{x) = 6 — x is decreasing.

. The total
. This is the area

17 The expenses drop to zero at x =
expense during those years equals
of

18 The rectangles of heights 6,5,4,3, 2, [ give a total
estimated expense of . Draw them enclosing the
triangle to show why this total is too high.

19 How many rectangles {enclosing the triangle) would you
nced before their areas are within 1 of the correct triangular
area?

20 The accountant uses 2-vear intervals and computes » =
5,3, 1 at the midpoints (the odd-numbered yeuars). What is
her estimate, how accurate is it, and why?

21 What is the area f{x) under the line t{x) = 6 — x above the
interval from 2 to x? What is the derivative of this f{x)?

22 What is the area f{x) under the line 1{x) = 6 — x above the
interval from x to 67 What is the derivative of this f{x)?

23 With Ax =1/3, find the area of the three rectangles that
enclose the graph of t{x) = x.

24 Draw graphs of :.~=Vf§ and ¢=x? from 0 to 1. Which
areas add to 1” The same is true for r = x and v =

25 From x to x+ Ax, the area under e=x? is Af This
ts almost a rectangle with base Ax and height . So
Af7Ax is close to . In the limit we find dfidx = x°
and f{x) =

26 Compute the area of 208 rectangles under o{x) = \T from
x=0tox=4.
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The symbol | was invented by Leibniz to represent the integral. It is a stretched-out
8, from the Latin word for sum. This symbol is a powerful reminder of the whole
construction: Sum approaches integral, S approaches |, and rectangular area
approaches curved area:
curved area= | v(x) dx = | J; dx. 1
The rectangles of base Ax lead to this limit—the integral of J; The “dx” indicates
that Ax approaches zero. The heights v; of the rectangles are the heights v(x) of the
curve. The sum of v; times Ax approaches “the integral of v of x dx.” You can imagine
an infinitely thin rectangle above every point, instead of ordinary rectangles above
special points.
We now find the area under the square root curve. The “limits of integration™ are
0 and 4, The lower limit is x = 0, where the area begins. (The start could be any point
x = a.) The upper limit is x = 4, since we stop after four years. (The finish could be
any point x = b.) The arca of the rectangles is a sum of base Ax times heights J;
The curved area is the limit of this sum. That imit is the integral of ./x from 0 to 4:

x=

4
5lirn0 [(, /AXYAX)+(/2Ax)(Ax)+ - + (\/Z}(Ax)] = j ﬁ dx. (2)
= x=0
The outstanding problem of integral calculus is still to be solved. What is this limiting
area? We have a symbol for the answer, involving { and ,/x and dx—but we don’t
have a number.

THE ANTIDERIVATIVE

I wish I knew who discovered the area under the graph of J; It may have been
Newton. The answer was available earlier, but the key idea was shared by Newton
and Leibniz. They understood the parallels between sums and integrals, and between
differences and derivatives. I can give the answer, by following that analogy. I can’t
give the proof (yet)—it is the Fundamental Theorem of Calculus.

In algebra the difference f; — f;_, is v;. When we add, the sum of the v’s is f, — fo.
In calculus the derivative of f(x) is v(x). When we integrate, the area under the 1{x)
curve is f(x) minus f{0). Our problem asks for the area out to x = 4:

§B (Discrete vs. continuous, rectangles vs. curved areas, addition vs,
integration) The integral of v(x) is the difference in f{x):

Ifdfjdx =/ then area =23 /x dx = fi4) — f(O). ()

What is f(x)? Instead of the derivative of ﬁ, we need its “‘antiderivative,” We have
to find a function f{x) whose derivative is ﬁ It is the opposite of Chapters 2-4, and
requires us to work backwards. The derivative of x" is nx" ! —now we need the
antiderivative. The quick formula is f{x)=x"*1/{{n + 1)—we aim to understand it.

Solution Since the derivative lowers the exponent, the antiderivative raises it, We
go from x!/? to x*?. But then the derivative is (3/2)x'/2. It contains an unwanted
factor 3/2. To cancel that factor, put 2{3 intc the antiderivative:

S1x)= 3x32 has the required derivative (x) = x'2 = /x.
7
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Fig. 5.3 The integral of v{x) = ,/; is the exact area 16/3 under the curve.

There you see the key to integrals: Work backward from derivatives (and adjust).
Now comes a number—the exact area. At x =4 we find x¥% = 8. Multiply by 2/3
to get 16/3. Then subtract fi0) =
x=4 2 N\ 2 -\ 2 16
. — 3;2 32 _ —
ki = _— 4 ie fa = =
L=O VX dx 3( ) 3{0) 3{3) 3
The total income over four years is 16/3 = 5% million dollars. This is f{4) — f{0). The
sum from thousands of rectangles was slowly approaching this exact area 54.

4

Other areas The income in the first year, at x=1, is (1)** =% million dollars.
(The false income was | million dollars.) The total income after x years is $x%2,
which is the antiderivative f{x). The square root curve covers 2/3 of the overall rectangle
it sits in. The rectangle goes out to x and up to \/;, with area x¥*, and 2/3 of that
rectangle is below the curve. (1/3 is above.)

Other antiderivatives The derivative of x° is 5x*. Therefore the antiderivative of x*

is x*/5. Divide by 5 (or n + 1) to cancel the 5 (or n + 1) from the derivative. And don’t
allow n+1=0:

The derivative 1(x) = x" has the antiderivative [(x)= x"*"j(n+1).

EXAMPLE 1 The antiderivative of x? is §x*. This is the area under the parabola
¥{x) = x%. The area out to x =1 is 3(1)* — $(0)%, or 1/3.

Remark on . /x and x* The 2/3 from \/; and the 1/3 from x? add to 1. Those are
the areas below and above the \/; curve, in the corner of Figure 5.3. If you turn the
curve by 90°, it becomes the parabola. The functions y = \/; and x = y? are inverses!
The areas for these inverse functions add to a square of area 1.

AREA UNDER A STRAIGHT LINE

You aiready know the area of a triangle. The region is below the diagonal line v = x
in Figure 5.4, The base is 4, the height is 4, and the area is $(4)(4) = 8. Integration is
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Fig. 5.4 Triangular area § as the limit of rectangular areas 10, 9, 84, ...

not required! But if you allow calculus to repeat that answer, and build up the integral
fx)=}x? as the limiting area of many rectangies, you will have the beginning of
something important.

The four rectangles have area 1 + 2+ 3+ 4 = 10. That is greater than 8§, bccause
the triangle is inside. 10 1s a first approximation to the triangular area 8, and to
impreve it we need more rectangles.

The next rectangles will be thinner. of width Ax =12 instead of the original
Ax = |. There will be eight rectangles instead of four. They extend above the line,
so the answer is still too high, The new heights are 1/2, 1, 3/2,2, 5/2, 3,72, 4. The
total area in Figure 5.4b 1s the sum of the base Ax=1/2 times those heights:

area=3(3+ 1+ 3+ 2+ -+ 4)=9 {which is closer to §).

Quesfion What is the area of 16 rectangles? Their heights are 1. 3. ..., 4.
Answer  With base Ax=4%theareais {3 +3+ - +4) =83

The eflort of doing the addition is increasing. A formula for the sums is needed, and
will be established soon. (The next answer would be 81.) But more important than
the formula is the idea. We are carrying out a limiting process. one step at a time. The
area of the rectangles is approaching the area of the triangle, as Ax decreases. The
same limiting process will apply to other areas, in which the region is much more
complicated. Therefore we pause to comment on what is important.

Area Under a Curve

What requirements are imposed on those thinner and thinner rectdnbks” It is not
essential that they ali have the same width. And it is not required that they cover the
triangle completely. The rectangles could lic below the curve. The limiting answer
will still be &, even if the widths Ax are unequal and the rectangles fit inside the
triangle or across it. We only impose {wo rules:

I. The largest width Ax,,, must approach zero.

2. The top of each rectangle must touch or cross the curve.

The area under the graph is defined to be the limit of these rectangular areas, if that
limit exists. For the straight line, the limit does exist and equals 8. That limit is
independent of the particular widths and heights—as we absolutely insist it should
be.

Section 5.5 allows any continuous r{x). The question wili be the same— Does the
fimit exist? The answer will be the same— Yes. That limit will be the integral of v(x).
and it will be the area under the curve. It will be f{x).
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EXAMPLE2 The triangular area from 0 to x is j(base)(height) = (x)(x). That is
fix)=1x2 Tts derivative is o(x) = x. But notice that 4x + 1 has the same derivative.
So does f=4x? + C, for any constant C. There is a “constant of integration™ in f(x),
which is wiped out in its derivative o(x).

EXAMPLE 3 Suppose the velocity is decreasing: o(x) =4 — x. If we sample v at x=
1, 2, 3, 4, the rectangles lie under the graph. Because » is decreasing, the right end of
each interval gives v.;,. Then the rectangular area 3+ 2+ 1+ 0= 6 is less than the
exact area 8. The rectangles are inside the triangle, and eight rectangles with hase §
come closer:

rectangular area =3(33+ 3+ +4+0)=7.

Sixteen rectangles would have area 73, We repeat that the rectangles need not have
the same widths Ax, but it makes these calculations easier.

What is the area out to an arbitrary point (like x =3 or x=1)? We coulid insert
rectangles, but the Fundamental Theorem offers a faster way. Any antiderivative of
4 — x will give the area. We look for a function whose derivative is 4 — x. The derivative
of 4x is 4, the derivative of 1x? is x, so work backward:

to achieve dffdx = 4 — x choose f{x)=4x — {x2.

Calculus skips past the rectangles and computes f{3) = 73. The area between x =1
and x = 3 is the difference 75 — 35 = 4. In Figure 5.5, this is the area of the trapezoid.

The f-curve flattens out when the v-curve touches zero. No new area is being added.

251 -

zero slope
4 61
[~ Af=4
b
by
3 -
K. R S SS———
2T -
10 =[ @ -0dx=4x- 1r
zero velocity
I +
: S . : = , L
1 p 3 4 | 2 3 4

Ag.5.5 The area is Af= 74— 35 =4. Since v(x) dccreases,f(x} bends down.

INDEANITE INTEGRALS AND DEFINITE INTEGRALS
We have to distinguish two different kinds of integrals. They both use the antideriva-
tive f{x). The definite one involves the limits 0 and 4, the indefinite one doesn’t;
The indefinite integral is a _function f(x) = 4x — $x*.
The definite integraf from x =0 to x =4 is the sumber f{4) — f(0).

The definite integral is definitely 8. But the indefinite integral is not necessarily
4x — 4x2. We can change f(x) by a constant without changing its derivative (since the
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derivative of a constant is zero). The following functions are also antiderivatives:
fixy=dx—$x7+1,  fix)=4x—1x*-9, fi)=4x-§x*+C.

The first two are particular examples. The last is the general case. The constant C
can be anything (including zero), to give all functions with the required derivative.
The theory of calculus will show that there are no others. The indefinite integral is
the most general antiderivative (with no limits);

indefinite integral f(x}=[v(x) dx =4x —ix? + C. (5)

By contrast, the definite integral is a number. It contains no arbitrary constant C.
More that that, it contains no variable x. The definite integral is determined by the
function o(x) and the limits of integration (also known as the endpeoints). It is the area
under the graph between those endpoints.

To see the relation of indefinite to definite, answer this question: What is the definite
integral between x =1 and x=13? The indefinite integral gives f(3) =74+ C and
fil)= 34+ C. To find the area between the limits, subtract { at one fmit from [ at the
other limit:

ot dx=f)—fiN=(1%+ C) -3+ Ci=4, (6)

The constant cancels itself! The definite integral is the difference between the vaiues
of the indefinite integral. C disappears in the subtraction.

The difference f(3) — /(1) is like f, — f. The sum of v; from 1 to n has become *‘the
integral of v(x) from | te 3. Section 5.3 computes other areas from sums, and 5.4
computes many more from antiderivatives. Then we come back to the definite integral
and the Fundamental Theorem:

h h -
j vix) dx= j ? dx = flb) — fla). (7

i a dx

5.2 EXERCISES

Read-through questions

Integration yields the __ @ under a curve y = p{x). It starts
from rectangles with base __b__ and heights #{x) and areas

definite integral jé, vx)dx = f{1) = fl0).

a3 3 2
© . As Ax— 0 the area ¢;Ax+ - +v,Ax becomes the 1527+ dx 2 x +_12x
d__ of efx}). The symbol for the indefinite integral of v(x) is 3 IV: for x™ 'Y 4 (/x) for x*'2)
€ § x93 4 (2x)"3 6 133
The problem of integration is solved if we find f{x) such 7 2 sin x +sin 2x 8 secix + 1

Find an antiderivative {{x) for {x} in 1-14. Then compute the

that __f . Then fis the _ag of ¢, and j";’ vix} dx equals

b minus __i__.Thelimits ofintegrationare __ i This
isa__k integral, whichisa _ 1 _ and not a function fix}.

The example vix)=x has f{x)=_m . It also has fix) =
n . The area undervix)from2to61s @ . The constant
is canceled in computing the difference _ o minus __q
If p(x} = x® then fix}=_ ¢

The sum ¢, + - + ¢, =f, ~fy leads to the Fundamental
Theorem Jf: vix)dx=_s The __t  integral is fix) and

the _ 4 integral is f{b) — flu). Finding the __ v under the

v-graph is the opposite of finding the _ w __ of the f~graph.

9 x cos x (by experiment) 10 x sin x (by experiment}

11 sin x cos x 12 sin®x cos x

13 0 (find atl f) 14 —1 (find all f)

15 If dfidx = v(x) then the definite integral of o(x) from a 10
b s . If fi—fi_y=v; then the dcfinite sum of
vy+ -+ ls .

16 The areas include a factor Ax, the base of cach rectangle.
So the sum of v’s is multiplied by to approach the
integral. The difference of s is divided by 10
approach the derivative.
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17 The areas of 4, 8, and 16 rectangles were 10, 9, and 84,
containing the triangle out to x =4. Find a formula for the
area Ay of N rectangles and test it for N=3 and N=6,

18 Draw four rectangles with base 1 below the y = x line, and
find the total area. What is the area with N rectangles?

19 Draw y =sin x from 0 to #. Three rectangles (base =/3)
and six rectangles (base n/6) contain an arch of the sine func-
tion. Find the areas and guess the limit.

20 Draw an example where three lower rectangles under a
curve (heights m;, m;, m;) have less area than two rectangles.

21 Draw y = §/x? for 0 < x < 1 with two rectangles under it
{base 1/2). What is their area, and what is the area for four
rectangles? Guess the limit.

22 Repeat Problem 21 for y = 1/x,

23 (with calculator) For v{x) = 1;’\/; take enough rectangles
over 0 < x <1 to convince any reasonable professor that the
area is 2. Find f{x) and verify that {1}~ f10)=2.

24 Find the area under the parabola v=x* from x=0 to

x = 4. Relate it to the area 16/3 below /.

25 For v, and v, in the figure estimate the areas f[2) and f{4).
Start with T =0.

v (x)
1 1R 0,00

=

—_
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Uy (x}

Din
4

0 10 1 \_/

26 Draw y = o{x} so that the area f{x) increases until x=1,
stays constant to x = 2, and decreases to f{3)=1.

27 Describe the indefinite integrals of ¢, and ¢,. Do the areas
increase? Increase then decrease? ...

28 For v,(x) find the area f{d) — f1). Draw f,(x).

29 The graph of B(t) shows the birth rate: births per unit time
at time t. D{t) is the death rate. In what way do these numbers
appear on the graph?

1. The change in population from : =0 to ¢t = 10.

2. The time T when the population was largest.

3. The time t* when the population increased fastest.

30 Draw the graph of a function y,(x) whose area function
i8 v4(x).

31 If v,(x) is an antiderivative of y,(x), draw y,(x}.

32 Suppose o{x) increases from v{0) =0 to v{3) =4, The area
under y=uv(x) plus the area on the left side of x=rv"(})
equals .
33 True or false, when f{x) is an antiderivative of o(x).

(2) 2f[x) is an antiderivative of 2v(x) (try examples)

(b) f12x) is an antiderivative of n{2x)

(c) fix)+ | is an antidenivative of o(x) + 1

(d) filx + 1} is an antiderivative of v{x + 1).

(e) (f{x})* is an antiderivative of (tv{x))2.

This section does integration the hard way. We find explicit formulas for f, =
v; + - +v,. From areas of rectangles, the limits produce the area f{x) under a curve.
According to the Fundamental Theorem, dffdx should return us to #{x)—and we

verify in each case that it does.

May I recail that there is sometimes an easier way? H we can find an f{x) whose
derivative is «(x), then the integral of v is f. Sums and limits are not required, when f
is spotted directly. The next section, which explains how to look for f{x), will displace
this one. (If we can’t find an antiderivative we fall back on summation.) Given a
successful f, adding any constant produces another f—since the derivative of the
constant is zero. The right constant achieves f{0) = 0, with no extra effort.
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This section constructs fix) from sums. The next section searches for antiderivatives.
THE SIGMA NOTATION

In a section about sums, there has to be a decent way to express them. Consider
17+ 2%+ 32 + 4% The individual terms are v; = j*. Their sum can be written in sum-
mation notation, using the capital Greek letter £ (pronounced sigma):

3
124224+ 37 + 4% is written Y j2.
=1
Spoken aloud. that becomes “the sum of j* from j= 1 to 4.” It equals 30. The limits
on j {written below and above X) indicate where to start and stop:
I 9
ot Fr,= Y voand syt ot =Y . {n
i=1 k=23
The k at the end of (1) makes an additional point. There is nothing special about the
letter j. That is a ~“dummy variable.” no better and no worse than & (or {). Dummy
variables are only on one side (the side with ), and they have no eflect on the sum.
The upper limit 1 is on hoth sides. Here are six sums:

k=1

=1, I only one term]

4
PIRE
f-1
0
Z i
(=0

5
> 2i-h=1+3+-5+7+9=5"
i=1

-

] . i l I
jr= [meanmg]cssf’ Y =1+ _+

|

- =1 [inﬁnite series
- k )
, K5 2 2 4 '

i

The numbers 1 and 1 or } and 4 (or 0 und <) are the fower fimit and upper limit.
The dummy variable i or j or k is the index of summation. 1 hope it seems reasonable
that the infinite serigs 1 4+ 3 + 3 4+ -+ adds to 2. We will come back to it in Chapter 10.7

A sum like Z7_, 6 looks mcaningless, but it is actually 6 =6+ +6=6n.
It follows the rules. In fact E?_ .7 18 not meaningless cither. Every term is j* and
by the same rules. that sum is 4;%. However the i was probably intended to be ;.
Then the sum is 1 + 4+ 9+ 16 =30,

Question What happens to these sums when the upper limits are changed to »?
Answer  The sum depends on the stopping point n. A formula is required {when
possible). Integrals stop at x. sums stop at n. and we now look fer special cases when

fixyor f, can be found.

A SPECIAL SUMMATION FORMULA

How do you add the first 130 whole numbers? The problem is to compute

L)
2 i=1+2+3+ - +98+99+100="

i=1

tZeno the Greek belicved it was impossible 1o gel anywhere. since he would only go halfway
and then hall again and half again. Infinite sertes would have changed his whole [ife.
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If you were Gauss, you would sce the answer at once, (He solved this problem at a
ridiculous age, which gave his friends the idea of getting him inte another class.) His
solution was to combine 1 + 100, and 2 + 99, and 3 + 98, always adding to 101, There
are fifty of those combinations. Thus the sum is (50)(101) = 5050.

The sum from ! to n uses the same idea. The first and last terms add to n + 1. The
next terms n — 1 and 2 aiso add to n + 1. If n is even (as 100 was) then there are in
parts. Therefore the sum is 1n times n+ 1:

ij=1+2+---+(n—l)+n=*21-ﬂ(ﬂ+1}- (2)
=1

The important term is 1n?, but the exact sum is tr? + in.

What happens if n is an odd number {iike n = 99)? Formula (2) remains true. The
combinations 1 + 99 and 2 + 98 still add to n+ 1=100. There arc $99) = 495 such
pairs, because the middle term (which is 50) has nothing to combine with. Thus
1+ 2+ +99 equais 494 times 100, or 4950.

Remark That sum had to be 4950, because it is 5050 minus 100. The sum up to 99
equals the sum up to 100 with the last term removed. Qur key formula f, — f, -, = v,
has turncd up again!

EXAMPLE Find the sum 100 + 102 + -+ + 200 of the second hundred numbers.

First solution  This is the sum from 1 to 200 minus the sum from 1 to 1{0:

200 200 1400

Z_f=z.f—§j- (3}

101 1

The middic sum is $(200)(201) and the last is $(100)(101). Their difference is 15050.
Note! 1 left out “*j=""in the limits. It is there. but not written.

Second sclufion  The answer 15050 is exactly the sum of the first hundred numbers
{which was 5030} plus an additional 10000. Believing that a number like 10000 ¢an
never turn up by accident, we look for a reason. It is found through changing the
limits of summation:

200 100
Y. jis the same sum as Y (k + 100). 4
j~101 k=1

This 15 important, to be able to shift limits around. Often the lower limit is moved
to zero or one, for convenience. Both sums have 100 terms (that doesn’t change). The
dummy vaniable j is replaced by another dummy variable k. They are related by
Jj=k+ 100 or equivalently by & =j— 100,

The variable must change everywhere—in the lower limit and the upper limit as
well as inside the sum. If j starts at 101, then & = — 100 starts at 1. If j ends at 200,
k ends at 100. If j appears in the sum., it is replaced by k + 100 (and if j appeared it
would become (k + 100)%).

From equation (4) you see why the answer is 15050. The sum 1+ 2+ --- + 100 is
5050 as before. 100 is added to each of those 100 terms. That gives 10000.

EXAMPLES OF CHANGING THE VARIABLE (and the limits)

[~

a4
2'cquals 3 277! (here i=j—1). Both sumsarc | +2+4+8
=1

0

[ r-3
Y wv,equals Y t,.3 {herei=j+ 3 andj=i—3). Both sums are v; + =~ + v,.
i=3 i=0

189
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Why change n to n — 3? Because the upper limitis i=n. Soj+3=nandj=n—13.

A final step is possible, and you will often see it. The new varigble j can be changed
dack to i. Dummy variabies have no meaning of their own, but at first the result
looks surprising;

) & ]
Y 2'equals ) 2/7'equals ) 271
i<h = (=1

With practice you might do that in one step, skipping the temporary letter j. Every
i on the left becomes i — 1 on the right. Then i=0, ..., 5 changes to i=1, ..., 6. (At
first two steps are safer.) This may seem a minor point, but soon we will be changing
the limits on integrals instead of sums. Integration is parallel to summation, and it
is better to see a “change of variable” here first.

Note about | + 2+ - + n. The good thing is that Gauss found the sum $n{n + 1).
The bad thing is that his method looked too much like a trick. I would like to show
how this fits the fundamental rule connecting sums and differences:

fo,tv,+ - +u,=f thenv,=f,—f _,. 5

Gauss says that f, is $n(r + 1). Reducing n by 1, his formula for f,_ is 3(n — 1)n. The
difference [, — [, _ | should be the last term n in the sam:

fo— S =tnnt ) —dn—n=4n*+tn—-n*+n=n. (6

This is the one term v, = n that is included in f, but not in f, _,.

There is a degper point here. For any sum f,, there are two things to check. The
f’s must begin correctly and they must change correctly. The underlying idea is
mathematical induction: Assume the statement is true below n. Prove it for n.

Goal:  To prove that 1 +2+ - + n=14n(n + 1). This is the guess f,.
Proof by induction: Check [ (it equals 1). Check f,—f,_, (it equals n).

For n=1 the answer 4n(n+ 1)=4+1-2 is correct. For n=2 this formula §:2-3
agrees with 1+ 2. But that separate test is not necessary! If f, is right, and if the
change [, — f, ., is right for every n, then f, must be right. Equation (6) was the key
test, to show that the change in f's agrees with v.

That is the logic behind mathematical induction, but I am not happy with most
of the exercises that use it. There is absolutely no excitement. The answer is given by
some higher power {like Gauss), and it is proved correct by some lower power {(like
us). It is much better when we lower powers find the answer for ourselves.t Therefore
I will try to do that for the second problem, which is the sum of squares.

THE SUM OF 2 AND THE INTEGRAL OF x*

An important calculation comes next. It is the area in Figure 5.6. One region is made
up of rectangles, so its arca is a sum of n pieces. The other region lies under the
parabola v = x?, It cannot be divided into rectangles, and calculus is needed.

The first problem is to find f, = 124+ 22 + 3% + - + n%, This is a sum of squares,
with f, =1 and f, = 5 and f; = 14. The goal is to find the pattern in that sequence.
By trying to guess f, we are copying what will soon be done for integrals.

Calculus locks for an f(x) whose derivative is {x). There fis an antiderivative (or

+The goal of real teaching is for the student to find the answer. And also the problem.
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2_
o (ndx) Area
Area Y & (12+ .. +nh(ax)’
12+422+32=14 -

1 i (Ax)? ¢ SN R NS AN ; ;
1 2 3=n Ax 1 2 3=nAx [ 2 3

Fig. 5.6 Rectangles enclosing v = x? have area (3n + 4n% + §n)(Ax)* = J{nAx)* = §x7.

an integral}, Algebra looks for f.'s whose differences produce v,. Here f, could be
called an antidifference (better to call it a sum).

The best start is a good guess. Copying directly from integrals, we might try
f,=4n3. To test if it is right, check whether f, —f,_, produces v, = n*:

I =in- 1P =i’ -4 -3+ 3n-)=n*—n+3.

We see n?, but also —n + 1. The guess §n> needs correction terms. To cancel § in the
difference, I subtract in from the sum. To put back n in the difference, 1 add
1+2+ - +n=4n(n+ 1) to the sum. The new guess (which should be right) is

Si=3 Hian+ )= fn=13n" +1n* +§n. N

To check this answer, verify first that f; = 1. Also f; =5 and f; = 14. To be certain,
verify that f, — f,_, = a%. For calculus the important term is n*:

The sum Y j* of the first n squares is % n® plus corrections % n? andé n.
i=1

In practice $n> is an excellent estimate. The sum of the first 100 squares is approxi-
mately §(100)*, or a third of a million. If we need the exact answer, equation (7) is
available: the sum is 338,350. Many applications {exampie: the number of steps to
solve 100 linear equations) can settle for 3n’.

What is fascinating is the contrast with calculus. Calculus has no correction terms!
They get washed away in the limit of thin rectangies. When the sum is repiaced by
the integral (the area), we get an absolutely clean answer:

The integral of v = x* from x =0 to x = n is exactly yn’.

The area under the parabola, out to the point x = 100, is precisely a third of a million.
We have to explain why, with many rectangles.

The idea is to approach an infinite number of infinitely thin rectangies. A hundred
rectangles gave an area of 338,350. Now take a thousand rectangies. Their heights
are (1q)% (&) ... because the curve is v = x2. The base of every rectangle is
Ax =145, and we add heights times base:

area of rectangles = 1YL + FAYAS I 1000/ 1
r Bes=\10)\10) "\15/\10 10 J\10)

Factor out ({5)°. What you have left is 12+ 22 + -+ + 1000%, which fits the sum of
squares formula, The exact area of the thousand rectangles is 333,833.5. I could try
to guess ten thousand rectangles but I won't.

Main poirt: The area is approaching 333,333.333.... But the calculations are getting
worse. It is time for algebra—which means that we keep “Ax™ and avoid numbers.
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The interval of length 100 is divided into n pieces of length Ax. (Thus # = 100/Ax.)
The jth rectangle meets the curve ¢ = x7, so its height is {(jAx)?. Its base is Ax, and
we add arcas:

area = (Ax)H{Ax)+ 2Ax)HAx} + - + (nAx)*(Ax) = E (jAx)*(Ax), (8)

Factor out (Ax)*, leaving a sum of n squares. The arca is (Ax)? times f,, and n = EAQ—O:

100y | 1100 1 /100\] 1 0] 1

This cquation shows what is happening. The leading term is a third of a miilion,
as predicted. The other terms are approaching zero! They contain Ax. and as the
rectangles get thinner they disappear. They only account for the small corners of
rectangles that lic above the curve. The vanishing of those corners will eventually be
proved for any continucus functions—the area from the correction terms goes to
zera-—but here in equation (9) you see it explicitly.

The area under the curve came from the central idea of integration: 100/Ax rectan-
gles of width Ax approach the limiting arca = §(100)°. The rectangular area is T v:; Ax.
The exact avea is _[ vix)dx. In the limit T becomes I and v; becomes i{x) and Ax
becomes dx.

That comnpletes the calculation for a parabola. 1t used the formula for a sum of
squares. which was special. But the underlying idea is much more general. The limit
of the sums agrees with the antiderivative: The antiderivative afn: =x?isfix)=4x7
According to the Fundamental Theorem. the area under v{x) is f{x)

90 1x) dx = f(100) — £{0) = $(100)°.

)]
That Fundamental Theorem is not yet proved! | mean it is not proved by us. Whether
Leibniz or Newton managed to prove it. I am not guite sure. But it can be done.
Starting from sums of differences. the diffliculty 1 that we have too many limits at
once. The sums of r;Ax are approaching the integral. The differences Af7Ax approach
the derivative. A real proof has to separate those steps, and Section 5.7 will do it.
Proved or not. you are seeing the main point. What was true for the numbers f;
and r; is true in the limit for v{x) and fix). Now t{x) can vary continuously. but it 1s
still the slope of fix). The reverse of slope is area.

FANAY .
VA S g
VA S S
VY i F Vi 1f
FAVY AV VAN AV S
VA i / LAVATAY Y ;
LAy Ay i o

vy s e/ N
. .
Y 9

(1+2+3+D°=1"+2"+3+ 4
Proofl without words by Roger Nelsen ( Mathematics Magazine 1990),

Finally we review the area under = x. The sumof 1 -2+ -+ nis in® + tn. This
gives the area of n = 4;Ax rectangles, going out to x= 4. The heights arc jAx. the
bases are Ax, and we add areas:

42“(5 NAY) = (Ax)? 1 Ll WY § 4+ 2A 10
X Y LY - — = A
=Y Ax/) © 2\Ax * L)
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With Ax=1 the area is 1 + 2+ 3 + 4=10. With eight rectangles and Ax =4, the
area was 8 + 2Ax = 9. Sixteen rectangles of width § brought the correction 2A x down
to 4. The exact area is 8. The error is proportional to Ax.

Important note  There you see a question in applied mathematics. If there is an error,
what size is it? How does it behave as Ax — 0?7 The Ax term disappears in the limit,
and {Ax)* disappears faster. But to get an error of 1075 we need eight million
rectangles:

2Ax = 2+ 4/8,000,000 = 1075,

That is horrifying! The numbers 10, 9, 83, 84, ... seem to approach the area 8 in a
satisfactory way, but the convergence is much toe slow. It takes twice as much work
to get one more binary digit in the answer—which is absolutely unacceptable. Some-
how the Ax term must be removed. If the correction is (Ax)? instead of Ax, then a
thousand rectangles will reach an accuracy of 107°,

The problem is that the rectangles are unbalanced. Their right sides touch the graph
of v, but their left sides are much too high. The best is to cross the graph in the middle
of the interval—this is the midpoint rule. Then the rectangle sits halfway across the
line v = x, and the error is zero. Section 5.8 comes back to this rule—and to Simpson’s
rule that fits parabolas and removes the (Ax)? term and is built into many calculators.

Finally we try the quick way, The area under v = x is f= ¥x?, because df/dx is v.
The area out to x =4 is %(4)> = 8. Done.

1 1

unbalanced centered

Error rectangies Emor rectangles
174 1/4
179 = Work /9 Work
1 4 G 1 2 3

Fig. 8.7 Endpoint rules: error ~ lj{work) ~ 1/n. Midpoint rule is better: error ~ 1/(work)>.

Optional: pth powers Our sums are following a pattern. First, [ + - + nis £n® plus
$n. The sum of squares is n* plus correction terms. The sum of pth powers is

174204 - +pP = p41- I n?*! plus correction terms. (11)

The correction invoives lower powers of n, and you know what is coming. Those
corrections disappear in calculus. The area under v = x? from 0 to n is

H pd l nidx A V(A i I
x? dx= lim X)P(Ax)= .
L paem fim " Gagag= e 1
Calculus doesn’t care if the upper limit # is an integer, and it doesn’t care if the power
pis an integer. We only need p + 1 > 0 to be sure n”* ! is genuinely the leading term.
The antiderivative of v=x" is f=x?*'{(p+ 1).

We are close to interesting experiments. The correction terms disappear and the
sum approaches the integral. Here are actual numbers for p= 1, when the sum and
integral are easy: S, =1+ - + nand I, = [ x dx = }n’ The diflerence is D, = in. The
thing to watch is the relative error E,= D, /I

n S, I b,=S8,-1, E,=D,JI,
100 5050 5000 50 010
200 20100 20000 100 005

193
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The number 20100 is $(200)(201). Please write down the next line n = 400, and please
find g formula for E,. You can guess E, from the table, or you can derive it from
knowing S, and [,. The formula should show that £, goes to zero. More important,
it should show how quick (or slow) that convergence will be.

One more number—a third of a million—was mentioned earlier. It came from
integrating x2 from O to 100, whicb compares to the sum §,, of 100 squares:

n o p S, I,=4n® D=§~1 E=DjI
100 2 338350 3333334 50168 01505
200 2 2686700 26666663 20033 0075125

These numbers suggest a new idea, to keep n fixed and change p. The computer can
find sums without a formula! With its help we go to fourth powers and square roots:

n p S=PP+-+p [=p*Yp+1) D=S-1 E,,=D/I
100 4 2050333330 }100)° 50333330 0.0252
100 4 671.4629 #(100)%2 4.7963 0.0072

In this and future tables we don’t expect exact values. The last entres are rounded
off, and the goal is to see the pattern. The errors E, , are sure to obey a systematic
rule—they are proportional to 1/n and to an unknown number C{p) that depends
on p. I hope you can push the experiments far enough to discover C(p). This is not
an exercise with an answer in the back of the book—it is mathematics.

5.3 EXERCISES

Read-through questions

The Greek letter _ o _ indicates summation. In Z} pv; the
dummy varable is __ b The limits are __ ¢, so the first
term is

] L}
3 Evaluate the sum ) 2% and ), 2.
i=0 i=0

& ]
4 —iand ¥ (~1)%.
and the last term is __® . When v;=j this Evaluate ;:Z,{ [t an ,-);;( ¥

sum equals _ T . For n= 100 the leading term is _ @

- 5 Write these sums in sigma notation and compute them:

The correction term is _ N, The leading term equals the
integral of v = x from 0 to 100, which is written _ ¢ _ . The 24+4+64+4+100 14+3+5+-+199

sum is the total __| _ of 100 rectangles. The correction term
is the area between the __k__ and the __!

:2 s 4
The sum Z{_,i? is the same as X},

6 Express these sums in sigma notation:
U=yt Uy—vy Uyw Wt W
and Cqualﬁ ] 2 3 4 171 272 A

n_ . The sum ZI.’=4 v,is thesame as _ ¢  v;,, and equals 7 Convert these sums to sigma notation:

p__. Forf,=Z]_, v, the difference f, — /.-, equals _4a

The formula for 12+22 + - +n?isf,=__t . To prove
it by mathematical induction, check fi=__3  and check

_f;—f;a—1=.__

x=0to x=9is _ ¥ This is close to the area of __ ¥

rectangles of base Ax. The correction terms approach zero (@b = (n) o (")a"‘ gt (")b" _
very _ W 0 n i

4 5
1 Compute the numbers } 1/mand 22(21'—3).
n=1 i=

3
2 Compute Y (j*—j}and
pute 3, (*=J

n
. The area under the parabola v =x? from 8 The binomial formula uses coefficients (j

g

l

4
LoO

ot

19 10
1/24 10 On a computer find ;{-l)jfj! times Z‘ 14!

i}

J=1i

. Im . 4nm .
de+ax+ - +ax" 51n:+sm?+"-+sm 2n

9 With electronic help compute 3, 1/f and 3,
T g



3.4 Indefinite Infegrals and Subsiiutions 195

1 s.mplu'yz (a+b) + Z @—bF to 3, :

af a.nd

M:
||M:

n 2 n
12 Show that ( Y ai) # :be Z Z
i=1 =1 J= =

1 1
13 “Telescope™ the sums Z (2~ 2~ and E (J?H;)

All but two terms cancel.

L] 12
14 Simplify the sums )Z (f;—f4-1) and _;3 Ujer~1.

15 True or false. (a) Z vy = Z Bi-2 (b) _il o= i Ui—3
a-1 g
16 ‘; v;=j§o _ . and :Z'o i -:_(Zz .

17 The antiderivative of d2f/dx? is df{dx. What is the sum
(=21 +)+ (-2 + 1)+ +{fo—2a + o1

18 Induction; Verify that 12422+ +n? s f =
rin+1¥2n +1)/6 by checking that f; is correct and
N _ﬁc— 1= nt, ]

19 Prove by induction: 1+3+ - +(2n—1)=r"

20 Verify that 134 2% + - + n? is J, = dn’(n + 1)® by check-
ing f; and f, —f,-,. The text has a proof without words.

21 Suppose f, has the form an+ bn%+cn. If you know
fi=1, =85, fy=14, turn those into three equations for
a, b, ¢. The solutions a=4%, b =4, c =} give what formula?

22 Find q in the formula 1% + - + n® = gn® + correction.

23 Add n =400 to the table for §S,=1+ --- + n and find the
relative error E,. Guess and prove a formula for E,.

24 Add n=50to the table for 5, =12 + - + n? and compute
Esg. Find an approximate formula for E,.

25 Add p=1 and p=3 to the table for S,pp,=
1# 4 -+ + 100°. Guess an approximate formula for E, g .

26 Guess C(p) in the formula E, , = C{p)/n.

27 Show that |1 — 5| <|1] +|—35|. Always |, + p2| < |04 + |22
unless .

5.4 Indefinite Integrals and Substitutions

28 Let S be the sum 1 + x + x* + -+ of the (infinile) geometric
series. Then xS=x+ x4 x>+ - is the same as S minus

. Therefore S = . None of this makes sense
if x =2 because

29 The dowble sum i[z (I+]]]15 b= Z(l+_;) plus
i=1

3
vy = _El {2+ ). Compute v, and », and the double sum,

i=

2 3
30 The double sum Y (E w;,;) is (wy g +wizt+w )+
=1 U5

3 2
The double sum 3 (E w; J) is
i

Jj=1 =1

(Wy,1 +wa )+ (wya+ W)+ . Compare.

31 Find the flaw in the proof that 2"=1 for every
n=0,1,2 ... For n1=0 we have 2°=1. If 2*=1 for every
n<N, then 2¥ =2V 1. 28" LpN-2 _1.1/1=1.

32 Wrile out all terms to see why the following are true:

bromafe £ (£ ) (B)(E)

33 The average of 6, 11, 4 is 6=46+11+4). Then
6—o+{1l -+ {@d—0)= . The average of
Ugy -oes Dy IS T= . Prove that £(v; —0)=0.

34 The Schwarz inequdlity is (); a ) (}:a )(}:: bf).

Compute both sides if 4, =2, a;=13, b; =1, b;=4. Then
compute both sides for any a4y, a,, by, b;. The preol in
Section 11.1 uses vectors,

35 Suppose n rectangles with base Ax touch the graph of v(x)
at the poinis x = Ax, 2Ax, ..., nAx. Express the total rectan-
gular area in sigma notation. .

36 If 1/Ax rectangles with base Ax touch the graph of ux)
at the left end of each interval (thus at x=0, Ax, 24x, ...)
express the total area in sigma notation.

1/Ax A _ .
37 The sum Ax 5: fUAx) J;((: 1)Ax)

i=i
In the limit this becomes |, dx =

equals

This section integrates the easy way, by looking for antiderivatives. We leave aside
sums of rectangular areas, and their limits as Ax — 0. Instead we search for an f{x)
with the required derivative o(x). In practice, this approach is more or less indepen-
dent of the approach through sums—but it gives the same answer. And also, the
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search for an antiderivative may not succeed. We may not find f. In that case we go
back to rectangies, or on to something better in Section 5.8.

A computer is ready to integrate v, but not by discovering f. It integrates between
specified limits, to obtain a mumber (the definite integral). Here we hope to find a
Junction (the indefinite integrai). That requires a symbolic integration code like
MACSYMA or Mathematica or MAPLE, or a reasonably nice p(x), or both. An
expression for f(x) can have tremendous advantages over a list of numbers,

Thus our goal is to find antiderivatives and use them. The techniques will be further
developed in Chapter 7—this section is short but good. First we write down what
we know. On each line, f(x) is an antiderivative of v{x) because df /dx = v(x).

Known pairs Fuanction v(x) Antiderivative [(x)

Powers of x x" T+ 1+ C

n= —1 is not included, because n+1 would be zero. v=x""* will lead us to f=1In x.

Trigonometric functions COS X sin x+ C
sin x —cosx+C

sec’ x tan x + C

esc x —cotx+C

sec x tan x secx+C

€sc x cot x —ccx+C

Inverse fanctions Ifm sin"'x+C

/(1 + x®) tan 'x+C

x| /x?—1 sec 'x+ C

You recognize that each integration formula came directly from a differentiation
formula. The integral of the cosine is the sine, because the derivative of the sine is
the cosine. For emphasis we list three derivatives above three integrals:

d d d {x"*1 .\
d—;(constant)—f) a(x}—l E(n+ l)—x
xn+1
J‘de=C J‘ldx=x+C J‘x"dx= +C
n+1

There are two ways to make this list longer. One is to find the derivative of a new
f(x). Then f goes in one column and v = df/dx goes in the other column.t The other
possibility is to use rules for derivatives to find rules for integrals. That is the way to
extend the list, enormously and easily.

RULES FOR INTEGRALS

Among the rules for derivatives, three were of supreme importance. They were linear-
ity, the product rule, and the chain rule. Everything flowed from those three. In the

TWe will soon meet e, which goes in both columns. It is f{x} and also {x).
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reverse direction (from v to f) this is still true. The three basic methods of diflerential
calculus ailso dominate integral calculus:

linearity of derivatives — linearity of integrals
product rule for derivatives — integration by parts
chain rule for devivatives — integrals by substitution
The easiest is linearity, which comes first. Integration by parts will be left for

Section 7.1. This section starts on substitutions, reversing the chain rule to make an
integral simpler.

LINEARITY OF INTEGRALS

What is the integral of v(x) — w(x)? Add the 1wo separate integrals. The graph of
¢ +w has two regions below it, the area under ¢ and the area from v to v+ w.
Adding areas gives the sum rule. Suppose f and g are antiderivatives of v and w:

sum rule: [+ g isan antidenivative of ¢+ w
constant vule: of 1s an antiderivative of ot
linearity: af + bg 15 an antiderivative of av+ bw

This is a case of overkill. The first two rules are special cases of the third, so logically
the Tast rule is enough, However it is so important to deal quickiy with constants—
just ““factor them out”™ —that the rule ¢u— ¢f is stated separately. The proofs eome
from the linearity of derivatives: (af + bg) equals af' + bg" which equals av + bw.
The rules can be restated with integral signs:

sum rule: | [v(_\') + w(.\')] dx = [ e(x) dx + | wix) dx
constant rule: j ce{Xydx=r¢ j #(x) dx
linearity: i I av(x} —~ bw{x}J dx=a | v(x) dx+ b | w(x) dx

Noate about the constant in [(x)— C. All antiderivatives allow the addition of a con-
stant. For a combination like ai{x) + dwi(x), the antiderivative is af{x) + bg(x) + C.
Tie constants for each puart combine into a single constant. To give all possible antide-
rivatives of a function, just remember to write "+ ™ after one of them. The real
proeblem is teo find that one antiderivative,

EXAMPLE 4 The antiderivative of t = x>+ x "2 is f=x*3+(x ")/ (- D+ C.

EXAMPLE 2 The antiderivative of 6 cosr+ 7 sintis 6sin¢t— 7 cost+ C.

l—-sinx 1-—sinx

EXAMPLE 3 Rewrite =sec? x —sec x tan x.

N as ] - F
1 +sin x l —sin-x COs° X

The antiderivative is tan x — sec x + (. That rewriting is done by a symbolic algebra
code{or by you). Differentiation is often simpie, so most people check that df idx = e(x).

Question How to integrate tan? x?
Method Write it assec®x— 1. Answer tanx—x+ C.

197



198

S Imegrais
INTEGRALS BY SUBSTITUTION

We now present the most valuable technique in this section— substitution. To see the
idea, you have to remember the chain rule:

Sflg(x)) has derivative f'(g(x})(dg/dx)

2 has derivative (cos x?}{2x)

(x*+1)° has derivative 5(x>+ 1)*(3x?)

sin x

If the function on the right is given, the function on the left is its antiderivative! There
are two points to emphasize right away:

1. Constants are no problem—they can always be fixed. Divide by 2 or 15:
1
J‘ x cos(x?) dx = 3 sin{x*}+ C J‘ x2(x3 + *dx = %(x3 +1¥’+C

Notice the 2 from x?, the 5 from the fifth power, and the 3 from x°>.

2. Choosing the inside function g (ot u) commits us to its derivative:
the integral of 2x cos x? is sin x> + C (g =x?, dg/dx = 2x)
the integral of cos x? is ( failure} (no dgjdx)
the integral of x? cos x? is (failure)  (wrong dgjdx)

To substitute g for x?, we need its derivative. The trick is to spot an inside function
whose derivative is present. We can fix constants like 2 or 15, but otherwise dg/dx
has to be there. Very often the inside function g is written u. We use that letter to state
the substitution rule, when f is the integral of v;

[ ot 52 = sty + . 1

EXAMPLE4 | sin x cos x dx = 3(sin x)* + C u = sin x (compare Example 6)
EXAMPLES |sin’xcos x dx=4(sinx)?+C  u=sinx
EXAMPLE & | cos x sin x dx = — }{cos x}* + C u=cos x (compare Example 4}
EXAMPLE7 | tan*xsec?x dx=}{tan x*+C wu=tanx

The next example has u = x* — 1 and dufdx = 2x. The key step is choosing u:

EXAMPLES [ xdx/\/x*~1=/x*—1+C [x/x*—ldx=3(x*~-1+C
A shift of x {to x + 2) or a multiple of x (rescaling to 2x} is particularly easy:

EXAMPLES 9-10 [ (x+2)?dx=4{x+2*+C  [cos2xdx=}sin2x+C

You will soon be able to do those in your sleep. Officially the derivative of (x + 2)*
uses the chain rule. But the inside function u = x + 2 has du/dx = 1. The 1 is there
automatically, and the graph shifts over—as in Figure 5.8b.

For Example 10 the inside function is v = 2x. Its derivative is du/dx =2. This
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area f(x)
if f(0)=0
0 ' 2 0 !

Fig. 5.8 Substituting u=x + 1 and u = 2x and u = x?. The last graph has half of du/dx = 2x.

required factor 2 is missing in [ cos 2x dx, but we put it there by multiplying and
dividing by 2. Check the derivative of  sin 2x: the 2 from the chain rule cancels the
4. The rule for any nonzero constant is similar:

j vix+c)dx=f(x+c) and J v(ex) dx = %f(cx). (2)
Squeezing the graph by c divides the area by ¢. Now 3x + 7 rescales and shifts:

EXAMPLE 11 [cos(3x+7) dx=4sin(3x+7)+C [(3x+7)?dx=%-43x+7°+C

Remark on writing down the steps  When the substitution is complicated, it is a good
idea to get du/dx where you need it. Here 3x* + 1 needs 6x:

7 7
J. Tx(3x2+ 1)* dx = — J. (3x2+ 1)*6x dx = - j ut ai dx
6 6 dx

: 7 u® 7 (3x%+ 1)3
Now integrate: -—+C=-———+C. 3

8 65 6 s ©)
Check the derivative at the end. The exponent 5 cancels 5 in the denominator, 6x from

the chain rule cancels 6, and 7x is what we started with.

Remark on differentials In place of (du/dx) dx, many people just write du:
| Bx*+ 1)*6x dx= [ u*du=4u’+ C. (4)

This really shows how substitution works. We switch from x to u, and we also switch
from dx to du. The most common mistake is to confuse dx with du. The factor du/dx
from the chain rule is absolutely needed, to reach du. The change of variables (dummy
variables anyway!) leaves an easy integral, and then u turns back into 3x* + 1. Here
are the four steps to substitute u for x:

1. Choose u(x) and compute du/dx

2. Locate v(u) times du/dx times dx, or v(u) times du
3. Integrate [ v(u) du to find f(u)+ C

4. Substitute u(x) back into this antiderivative f.

EXAMPLE 12 | (cos ﬁ)dxf2ﬁ=jcosudu= sinu+ C=sin . /x+C
(put in u) (integrate) (put back x)

The choice of u must be right, to change everything from x to u. With ingenuity,
some remarkable integrals are possible. But most will remain impossible forever. The
functions cos x? and 1/,/4 — sin” x have no “‘elementary” antiderivative. Those integ-
rals are well defined and they come up in applications—the latter gives the distance
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around an ellipse. That can be computed to tremendous accuracy, but not to perfect

accuracy.

The exercises concentrate on substitutions, which need and deserve practice. We
give a monexample— | (x* + 1)* dx does not equal §(x* + 1)>—1to emphasize the need
for du/dx. Since 2x is missing, u = x? + 1 does pot work. But we can fix up =

; . d 1 1
Jsmnxdx=Jsmuf=—-—cosu+c=—;cosnx+c.

5.4 EXERCISES
Read-through questions 25 dyfdx =1}y 26 dyjdx=x[y
Finding integrals by substitution is the reverse of the __ @ 27 d¥yfdxt=1 28 Jiyldx* =1
rule. The derivative of (sin x)* is __© _. Therefore the antide- 2 1 o
rivativeof _ € is__d . Tocompute [ (1 + sin x)? cos x dx, 2 dyldx*=—y 3 dyjdx = /xy

substitute w=_@ . Then du/dx=__1 s0 substitute
du=_49 . In terms of u the integral is {_h =_ 1

Returning to x gives the final answer.

The best substitutions for tan{x + 3)sec?{x + 3)dx
and [(x2+1)""xdx are u=_ 1 _ and u=_k , Then

du=_" _and _m _ The answersare _ " and %@
The antiderivative of vdp/dx is _® . [2xdxf(l+x?)
leads to § _a , which we don't yet know. The iniegra!
[ dx/(1 + x?) is known immediately as _ r

Find the indefinite integrals in 1-20.

1(/2+xdx (add+C) 2{./3—xdx (always+C)
I[x+1)dx 4 {(x+1)"dx
5[(*+1)xdx 6] /1—3xdx

7 [cos®x sin x dx

9 [ cos® 2x sin 2x dx
11 [ dt) /142

13 [Bdi) /146

15 [ (1 + /x) dx//x

17Isecxtanxdx

8 { cos x dx/sin’ x
10 § cos®x sin 2x dx
12 /1-1%dr
14 {3 /12 dt
16 § (1+x2)/x dx
18 | sec?x tan?x dx

19 [ cos x tan x dx 20 | sin’x dx

In 21-32 find a function y(x} that solves the differential
eguation.

2 dyfdx = x* +\/;

23 dyjdx = /1 — 2x

22 dyfdx=y* (try y=cx")

24 dyjdx=1/./1-2x

31 d*yldxt = /x 32 (dy/dx)? = /x

33 True or false, when f is an antiderivative of u:
() § v(u(x)} dx =f(u(x))+ C
b) [ Ax)dx=3/*x)+C
(©) | olx)(dujdx) dx = f(u(x))+ C
) [ v(x)(dvidx) dx=4f3(x)+ C

M True or false, when [ is an antiderivative of i:
(@) [ flx)dvjdx) dx=1f*(x)+ C
(b) | vlv(x))(dp/dx) dx = f(v(x)) + C
(c} Integral is inverse to derivative so f{v(x))=x
(d) Integral is inverse to derivative so [ (df/dx) dx =f{x)

B If dffdx=v(x) then I v(x—1}dx = and
Jo(x/2) dx= )
B I dffdx=vix) then [vx—1)dx= and
fo(x?)x dx = .
x? 1 x*dx
7 =1- =
1+x? : 1+xlmjl+x2

3B [(x*+ 1)*dx is not 4{x2 + 1)° but
3 [2xdxf(x? +1}is | du which will soon be In u.
40 Show that  2x*dx/(1 + x*P = [ (w — 1) dufu® =

41 The acceleration d2//dt? = 9.8 gives fit)= {two
integration constants).

42 The solution to d*y/dx* =01is { four constants).

43 If f{r) is an antiderivative of v(t), find antiderivatives of
{a) vt +3) (b) s{)+3 (c} 3u(e) (d) o(3t).



5.5 The Definite infegral 201

I 55 The Definite Integral TN

The integral of v(x) is an antiderivative f(x) plus a constant C. This section takes
two steps. First, we choose C. Second, we construct f{x). The object is to define the
integral—in the most frequent case when a suitable f{x) is not directly known.

The indefinite integral contains “+ C.” The constant is not settled because f(x)+ C
has the same slope for every C. When we care only about the derivative, C makes
no difference. When the goal is a numher—a definite integral— C can be assigned a
definite value at the starting point.

For mileage traveled, we subtract the reading at the start. This section does the
same for area. Distance is f(f) and area is f(x)—while the definite integral is
Sf(b) — f{a). Don’t pay attention to t or x, pay attention to the great formula of integral
calculus:

) b
J‘ v(t) dt =J‘ v(x) dx =f(b)— f(a). (0

[] 2

Viewpoint 1: When [ is known, the equation gives the area from a to b.
Viewpoint 2: When f is not known, the equation defines f [rom the area.

For a typical v(x), we can’t find f(x) by guessing or substitution. But still »(x) has an
“area” under its graph—and this yields the desired integral f(x).

Most of this section is theoretical, leading to the definition of the integrai. You
may think we should have defined integrals before computing them —which is logi-
cally true. But the idea of area {(and the use of rectangles) was already pretty clear in
our first examples. Now we go much further. Every continuous function v(x) has an
integral (also some discontinuous functions). Then the Fundamentai Theorem com-
pletes the circle: The integral leads back to df/dx =v(x). The area up tc x is the
antiderivative that we couldn’t otherwise discover.

THE CONSTANT OF INTEGRATION

Qur goeal is to turn f{x) + C into a definite integral—the area between a and b. The
first requirement is to have area = zero at the start:

Jla)+ C=starting area=0 so C=—f(a) (2)
For the area up to x (moving endpoint, indefinite integral), use ¢ as the dummy variable:
the area from a to x is [ o(f) df =f(x) —f(a) (indefinite integral)
the area from ato b is |2 v(x) dx=f(b)—f(a) (definite integral)
EXAMPLE 1 The area under the graph of 5(x + 1)* from a to b has f{x}=(x + 1):
P51 dx=(x+1)° L=+ 10~ @+ 1)

The calculation has two separate steps—first find f(x), then substitute b and a. After
the first step, check that df /dx is v. The upper limit in the second step gives plus f(b),
the lower limit gives minus f(a). Notice the brackets (or the vertical bar):

f@l=ro-r@ *P=8-1 [cosx]}'=cos2t—1.

Changing the example to f{x) = (x+ 1}* — 1 gives an equally good antiderivative—
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and now f{(0}=0. But f(b — f(a) stays the same, because the —} disappears:
[(x+ 1)~ l:l:=((b+ B-D-{@+1)-1D)=0+1¥—-@a+1).

EXAMPLE2 When v=2x sin x? we recognize f= —cos x. The area from 0 to 3 is

. 3
fa 2x sin x* dx = —cos x’:|0= —cos 9 +cos 0.

The upper limit copies the minus sign. The lower limit gives —{—cos 0), which is
+cos 0. That example shows the right form for solving exercises on definife integrals,

Example 2 jumped directly to f(x)= — cos x%. But most problems involving the
chain rule go more slowly—by substitution. Set u = x%, with du/dx = 2x;

3 3 du )
J‘ 2x sin x? dx=J‘ sin u—dx=J‘ sin u du. (3)
0 o dx ?

We need new limits when u replaces x*. Those limits on u are a2 and b (In this case
a> =02 and b*=3*=9.) If x goes from a to b, then u goes from u(a) to u(b).

g du (b}
J‘ vlu(x)) o dx = .f . v(u) du = f(u(b)) — f(u(a)). (@)
EXAMPLE 3 J‘:___o (x4 5°x dx:J‘“is ua%ﬂ=f‘8:]:=%_%'

In this case u = x? + §. Therefore dufdx = 2x {or du = 2x dx for differentials). We have
to account for the missing 2. The integral is 4u*. The limits on u=x?+5 are
u(0)=02+5 and u(1)= 12+ 5. That is why the u-integral goes from 5 to 6. The

alternative is to find f(x} = §(x + 5)* in one jump (and check it).

EXAMPLE 4 j'f, sin x? dx = 77 (mo elementary function gives this integral).

If we try cos x2, the chain rule produces an extra 2x—no adjustment will work. Does
sin x? still have an antiderivative? Yes! Every continuous v(x) has an f(x). Whether
f(x) has an algebraic formula or not, we can write it as | v{x)dx. To define that
integral, we now take the limit of rectangular areas.

INTEGRALS AS LIMITS OF "RIEMANN SUMS"

We have come to the definition of the integral. The chapter started with the integrals
of x and x?, from formulas for 1 + --- + nand 12+ ... + n%, We will not go hack to
those formulas. But for other functions, too irregular to find exact sums, the rectangu-
lar areas also approach a limit.

That limit is the integral. This definition is a major step in the theory of calculus.
It can be studied in detail, or understood in principle. The truth is that the definition
is not so painful—you virtually know it already.

Problem Integrate the continuous function v(x) over the interval [a, b].
Step 1 Split [g, b] into » suhintervals [a, x; 1, [x, 3], ..oy [x,—1, P

The *“meshpoints” x,, x,, ... divide up the interval from a to b. The endpoints are
xy = a and x,=b. The length of subinterval k is Ax; = x, — x,_,. In that smaller
interval, the minimum of v(x) is m,. The maximum is M,.
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Now construct rectangles. The “lower rectangle’ over interval k has height m,. The
“upper rectangle” reaches to M,. Since v is continuous, there are points x;, and x,,,
where v = m, and v = M, (extreme value theorem). The graph of v(x) is in between.

Important: The area under v(x) contains the area *‘s” of the lower rectangles:

1> v(x) dx =myAxy + myAx, + - + m,Ax, =s. (5)
The area under v(x) is contained in the area “S” of the upper rectangles:
2 v(x) dx < M, Ax, + MyAx, + -+ + M,Ax,=S. (6)

The lower sum s and the upper sum S were computed earlier in special cases—when
v was x or x* and the spacings Ax were equal. Figure 5.9a shows why s < area <8§.

a ‘tk

Fig. 5.9 Area of lower rectangles =s. Upper sum § includes top pieces. Riemann sum S* is in between.

Notice an important fact. When a new dividing point x’ is added, the lower sum
increases. The minimum in one piece can be greater (see second figure) than the
original m,. Similarly the upper sum decreases. The maximum in one piece can be
below the overall maximum. As new points are added, s goes up and S comes down.
So the sums come closer together:

5§ €48 < EN e (7)

I have left space in between for the curved area—the integral of v(x).

Now add more and more meshpoints in such a way that Ax,,, — 0. The lower
sums increase and the upper sums decrease. They never pass each other. If v(x) is
continuous, those sums close in on a single number A. That number is the definite
integral—the area under the graph.

DEFINITION The area A is the common limit of the lower and upper sums:
s—+Aand §— A as Ax,,,— 0. (8)

This limit A4 exists for all continuous v(x), and also for some discontinuous functions.
When it exists, 4 is the “Riemann integral’ of v(x) from a to b.

REMARKS ON THE INTEGRAL

As for derivatives, so for integrals: The definition involves a limit, Calculus is built
on limits, and we always add “if the limit exists.” That is the delicate point. I hope
the next five remarks (increasingly technical) will help to distinguish functions that
are Riemann integrable from functions that are not.

Remark 1 The sums s and S may fail to approach the same limit. A standard
example has V(x)=1 at all fractions x = p/q, and V(x) =0 at all other points. Every
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interval contains rational points (fractions) and irrational points (nonrepeating deci-
mals). Therefore m, =0 and M, = 1. The lower sum is always s = 0. The upper sum
is always § = b — a (the sum of 1’s times Ax’s). The gap in equation (7) stays open. This
function ¥(x) is not Riemann integrable. The area under its graph is not defined (at
least by Riemann—see Remark 5).

Remark 2 The step function U(x) is discontinuous but still integrable. On every
interval the minimum m, equals the maximum M,—except on the interval containing
the jump. That jump interval has m, =0 and M, = 1. But when we multiply by Ax,,
and require Ax,,,, — 0, the difference between s and § goes to zero. The area under
a step function is clear—the rectangles fit exactly.

Remark 3 With patience another key step could be proved: If s —» A and S — A for
one sequence of meshpoints, then this limit A is approached by every choice of mesh-
points with Ax,,.. — 0. The integral is the lower bound of all upper sums S, and it is
the upper bound of all possible s—provided those bounds are equal. The gap must
close, to define the integral.

The same limit A is approached by “in-between rectangles.” The height v(x}) can
be computed at any point xf in subinterval k. See Figures 5.9¢ and 5.10. Then the
total rectangular area is a “Riemann sum’ between s and S:

§* =p(xT)Ax, + v(x¥)Ax, + -+ +v(x¥)Ax,. (9)

We cannot tell whether the true area is above or below S*. Very often A is closer to
§* than to s or S. The midpoint rule takes x;f in the middle of its interval (Figure 5.10),
and Section 5.8 will establish its extra accuracy. The extreme sums s and S are used
in the definition while S* is used in computation.

right mid min max

Fig. 5.10 Various positions for x in the base. The rectangles have height v(x§).

Remark 4 Every continuous function is Riemann integrable. The proof is optional (in
my class), but it belongs here for reference. It starts with continuity at x*: “For any
¢ thereis ad ....” When the rectangles sit between x* — ¢ and x* + ¢, the bounds M,
and m, differ by less than 2e. Multiplying by the base Ax,, the areas differ by less
than 2¢(Ax;). Combining all rectangles, the upper and lower sums differ by less than
2e(Ax; + Ax, + -+ + Ax,) = 2¢e(b — a).

As ¢ — 0 we conclude that S comes arbitrarily close to s. They squeeze in on a
single number A. The Riemann sums approach the Riemann integral, if v is continuous.

Two problems are hidden by that reasoning. One is at the end, where S and s come
together. We have to know that the line of real numbers has no “holes,” so there is
a number A to which these sequences converge. That is true.

Any increasing sequence, if it is bounded above, approaches a limit.

The decreasing sequence S, bounded below, converges to the same limit. So A exists.
The other problem is about continuity. We assumed without saying so that the
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width 24 is the same around every point x*. We did not allow for the possibility that
J might approach zero where v(x) is rapidly changing—in which case an infinite
number of rectangles could be needed. Our reasoning requires that

v(x) is uniformly continuous: b depends on ¢ but not on the position of x*.

For each ¢ there is a & that works at all points in the interval. A continuous function
on a closed interval is umiformly continuous. This fact (proof omitted} makes the
reasoning correct, and »(x) is integrable.

On an infinite interval, even v = x? is not uniformly continuous. It changes across
a subinterval by (x* + §)2 — (x* — §)% = 4x*§. As x* gets larger, & must get smaller—
to keep 4x*J5 below £. No single d succeeds at all x*. But on a finite interval [0, 5],
the choice § = /4b works everywhere—s0 v = x? is uniformly continuous.

Remark 5 1f those four remarks were fairly optional, this one is totally at your
discretion. Modern mathematics needs to integrate the zero-one function F(x) in the
first remark. Somehow V has more 0's than 1’s. The fractions {where V(x)= 1) can
be put in a list, but the irrational numbers (where ¥V(x) = 0) are “uncountable.” The
integral ought to be zero, hut Riemann’s upper sums all involve M, = 1.

Lebesgue discovered a major improvement. He allowed infinitely many subintervals
(smaller and smaller). Then all fractions can be covered with intervals of total width
&. (Amazing, when the fractions are packed so densely.) The idea is to cover 1/g, 2/qg,
..., /g by narrow intervals of total width £/29. Combining all g = 1, 2, 3, ..., the total
width to cover all fractions is no more than (3 +3+§+ ---)=¢. Since V{x)=0
everywhere else, the upper sum S is only . And since & was arbitrary, the ““Lebesgue
integral” is zero as desired.

That completes a fair amount of theory, possibly more than you want or need—
but it is satisfying to get things straight. The definition of the integral is still being
studied by experts {and so is the derivative, again to allow more functions). By
contrast, the properties of the integral are used hy everybody. Therefore the next
section turns {rom definition to properties, collecting the rules that are needed in
applications. They are very straightforward.
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Read-through questions
In [7 o(t) dt =f(x) + C, the constant C equals _a_ . Then

at x=a the integral is _ b . At x = b the integral becomes
e The notation f(x)]. means __d__. Thus cos x]; equals
o . Also [cos x + 3]; equals _ t, which shows why
the antiderivative includes an arbitrary _ g . Substituting
u=2x—1 changes [} ./2x—1{dx into _h__ (with limits
on u).

The integral | v(x) dx can be defined for any _ | func-

tion #(x), even if we can’t find a simple __| . First the mesh-
points x,,Xx;,... divide [a, b] into subintervals of length
Ax,=_ k. The upper rectangle with base Ax; has height

M,=_1t . The upper sum § is equal to _m_ . The lower

sum s is _n . The _o _is between s and S. As more
meshpoints are added, S_p and s_q . If S and s

approach the same __r _, that defines the integral. The inter-
mediate sums S*, named after _ s, use rectangles of height
v{x¥). Here x is any point between __ t ,and §*=_ u
approaches the area.
If v(x) = df /dx, what comstants C make 1-10 true?

1[5 olx) dx=f(b)+C

2§} o(x) dx=f(d)+C

3 o(t)dt=—f(x)+C

4 _[:!2 v(sin x) co8 x dx=f(sin b} +C

5 7 o(tydt=f(t)+ C (careful)

6 dfjdx =v(x)+C

7 fo (= 1P dx=[ widu.
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B 2 o) dt=fx*)+ €
9 |* b(—x) dx = C (change —x to t; also dx and limits)
10 {2 u(x) dx = C [, o2t} dt.

Choose u{x) in 11-18 and change Limits. Compute the integral
in 11-16.

11 [5 (2 +1)'%x dx
13 [¥* tan x sec®x dx
15 [* sec?x tan x dx

17 f1dx/x (take u=1/x)

12 {7 sin®x cos x dx
14 {3 x™* 1 dx  (lake u=x?)

16 {3 x dx}./1—x?

18 [; x*(1—x)*dx (u=1-—x)

With Ax =4 in 19-22, find the maximom M, and minimum
m, and upper and lower sams S and s,

19 {3 (x*+ 1)*dx 20 {3 sin 2zx dx
21 §2 x*dx 22 f', xdx

23 Repeat 19 and 20 with Ax =$ and compare with the cor-
TECL ANSWer,

24 The difference § —s in 21 is the area 2* Ax of the far right
rectangle. Find Ax so that § < 4.001.

25 If v(x) is increasing for a < x < b, the difference § — s is the
area of the reclangle minus the area of the
rectangle. Those areas approach zero. So every increasing
Sunction on [a, b] is Riemann integrable.

5.6 Properties of the Integral and Average Value

26 Find the Riemann sum S* for F(x) in Remark I, when
Ax = 1/n and each x} is the midpoint. This §* is well-behaved
but still F(x) is not Riemann integrable.

27 W(x) equals 1 at x=14,4,4, ..., and elsewhere W(x}=0.
For Ax =.01 find the upper sum $. Is W(x) integrable?

28 Suppose M(x) is a multistep function with jumps of 4, 4,
4, ... at the points x =4, 4, §, .... Draw a rough graph with
M{0)=0 and M{l)=1. With Ax =} find § and s.

29 For M(x) in Problem 28 find the difference § — s (which
approaches zero as Ax —0). What is the area under the
graph?
30 If dffdx = —v(x) and f(1} =0, explain f(x)={; v(t) dt.
31 (a) fdffdx= +rv(x)and f{0)=3, find f(x).

{b) If df /dx = +v(x) and f{3)=0, find f(x).
32 In your own words define the integral of v{x} from a to b.

33 True or false, with reason or example.
{(a) Every continuous u{x) has an antiderivative f(x).
(b) If »(x) is not conlinuous, § and s approach different
fimits.
(c) If S and s approach A as Ax — (), then all Riemann
sums S* in equation {9) also approach A.
(d) ¥ v,(x)+ vy{x} =v3{x), their upper sums satisly
h) 1+ h) 2= S;.
{e) If v,(x)+ v3(x} =1v4(x), their Riemann sums at the
midpoints x} satisfy S + §3 =S§1.

" {f) The midpoint sum is the average of § and s.

(2) One xf in Figure 5.10 gives the exact area.

The previous section reached the definition of _[: t(x) dx. But the subject cannot stop
there. The integral was defined in order to be used. Its properties are important, and
its applications are even more important. The definition was chosen so that the
integral has properties that make the applications possible.

One direct application is to tbe gverage value of v(x). The average of n numbers is
clear, and the integral extends that idea—it produces the average of 2 whole contin-
uum of numbers r(x). This develops from the last rule in the following list (Property
7). We now collect together seven basic properties of definite integrals.

The addition rule for | [b(x) + w(x)] dx will not be repeated—even though this
property of linearity is the most fundamental. We start instead with a different kind
of addition. There is only one function v(x), but now there are two intervals.

The integral from a to b is added to its neighbor from b to c. Their sam is the integral
from a to ¢. That is the first (not surprising) property in the list.
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Property 1 Areas over neighboring intervals add to the area over the combined
interval:
_[: v(x) dx + [, v(x) dx = [ v(x) dx. (1)

This sum of areas is graphically obvious (Figure 5.11a). It also comes from the formal
definition of the integral. Rectangular areas obey (1)—with a meshpoint at x=b to
make sure. When Ax,,, approaches zero, their limits also obey (1). All the normal
rules for rectangular areas are obeyed in the limit by integrals.

Property 1 is worth pursuing. It indicates how to define the integral when a = b.
The integral “from b to b” is the area over a point, which we expect to be zero. It is.

Property 2 I3 v(x) dx =0.

That comes from Property 1 when ¢ = b. Equation (1) has two identical integrals, so
the one from b to b must be zero. Next we see what happens if ¢ = a—which makes
the second integral go from b to a.

What happens when an integral goes backward? The “lower limit” is now the larger
number b. The “upper limit” a is smaller. Going backward reverses the sign:

Property 3 f3 v(x) dx = — j: v(x) dx = f(a) = f(b).

Proof When ¢ = a the right side of (1) is zero. Then the integrals on the left side
must cancel, which is Property 3. In going from b to a the steps Ax are negative. That
justifies a minus sign on the rectangular areas, and a minus sign on the integral
(Figure 5.11b). Conclusion: Property 1 holds for any ordering of a, b, c.

0 3 ] 2
EXAMPLES J‘r2d1=—% Jd:=—1 j?=o
x 1 2

Property 4 For odd functions [*, v(x) dx=0. “Odd” means that o(—x)= — v(x).
For even functions [* , v(x) dx =2 fo v(x) dx. *“Even” means that v(— x) = + v(x).

The functions x, x3, x%, ... are odd. If x changes sign, these powers change sign. The
functions sin x and tan x are also odd, together with their inverses. This is an impor-
tant family of functions, and the integral of an odd function from — a to a equals zero.
Areas cancel:

%, 6x%dx= xﬁ]“_a =a®—(—a)P°=0.

If v(x) is odd then f(x) is even! All powers 1, x?, x4, ... are even functions. Curious
Sact: Odd function times even function is odd, but odd number times even number is
even.

For even functions, areas add: [* , cos x dx = sin a — sin(—a) = 2 sin a.

Fig. 5.41 Properties 1-4: Add areas, change sign to go backward, odd cancels, even adds.
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The next properties involve inequalities. If v(x) is positive, the area under its graph
is positive (not surprising). Now we have a proof: The lower sums s are positive and
they increase toward the area integral. So the integral is positive:

Property 5 1If v(x)> 0 for a < x < b then ﬁ v(x) dx > 0.

A positive velocity means a positive distance. A positive v lies above a positive area.
A more general statement is true. Suppose v(x) stays between a lower function I(x)
and an upper function u(x). Then the rectangles for v stay between the rectangles for /
and u. In the limit, the area under v (Figure 5.12) is between the areas under [ and u:

Property 6 If I(x) < v(x) < u(x) for a < x <b then

2 1(x) dx < {2 v(x) dx < [ u(x) dx. 2)
EXAMPLE4 cost<1 = [gcostdt<[jldt = sinx<x

EXAMPLE2 1<sec’t = [glde<[gsec’tdt = x<tanx

. 1
EXAMPLE 3 Integrating T <1leads totan ' x < x.
%

All those examples are for x > 0. You may remember that Section 2.4 used geometry
to prove sin h < h < tan h. Examples 1-2 seem to give new and shorter proofs. But I
think the reasoning is doubtful. The inequalities were needed to compute the deriva-
tives (therefore the integrals) in the first place.

uzv
0
2 .
<

Fig. 5.2 Properties 5-7: v above zero, v between ! and u, average value (+ balances —).

Property7 (Mean Value Theorem for Integrals) 1f v(x) is continuous, there is a
point ¢ between a and b where v(c) equals the average value of v(x):

b
v(c) = B—l—a j v(x) dx = “average value of v(x).” (3)

a

This is the same as the ordinary Mean Value Theorem (for the derivative of f(x)):

/6 ) f( JO~ja) _. ‘average slope of f.” (4)

f'le)=
With f' = v, (3) and (4) are the same equation. But honesty makes me admit to a flaw
in the logic. We need the Fundamental Theorem of Calculus to guarantee that
S(x)=[7 v(t) dt really gives ["=v.

A direct proof of (3) places one rectangle across the interval trom a to b. Now raise
the top of that rectangle, starting at v,,;, (the bottom of the curve) and moving up to
Umax (the top of the curve). At some height the area will be just right—equal to the
area under the curve. Then the rectangular area, which is (b — a) times v(c), equals
the curved area [? v(x) dx. This is equation (3).
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uix) =sin x

Fig. 513 Mean Value Theorem for integrals: area/(b — a) = average height = e{¢) at some ¢.

That direct proofl uses the intermediate value theorem: A continuous function u(x)
takes on every height between v, and v,,,. At some point {at two points in
Figure 5.12c) the function »(x} equals its own average value.

Figure 5.13 shows equal areas above and below the average height vic)=v,,..

EXAMPLE 4 The average value of an odd function is zere (between —1 and 1):

11! J x* 1 1 0 Hote | 1
— Xdx=— = — - = = —
2} 41, 4 4 b—a 2

For once we know c. It is the center point x = 0, where v(¢) = v,,, = 0.

EXAMPLE 5 The average value of x* is { (between 1 and —1):

L 2 d E R D note L _1
2] T8 s 6/ 3 b—a 2
Where does this function x? equal its average value 3? That happens when ¢ =1, so

¢ can be either of the points 1;"\/5 and —1!!\/5 in Figure 5.13b. Those are the Gauss
points, which are terrific for numerical integration as Section 5.8 will show.

EXAMPLE & The average value of sin? x over a period (zero to n) is 4:

1 nsi e d x—sinxcosx [ 1 note 1 1
—_ x _————-e--m- —— _ —
T Jo i * 2n o 2 b—a =

The point ¢ is n/4 or 3r/d, where sin c = 3. The graph of sin® x oscillates around its
average value ;. See the figurc or the formuia:

sinx=1— 1% cos 2x. (35)

The steady term is 4, the oscillation is — § cos 2x. The integral is f{x) = 4x — § sin 2x,
which is the sume as 1x — § sin x cos x, This integral of sin” x will be seen again. Please
verify that df /dx = sin® x.

THE AVERAGE VALUE AND EXPECTED VALUE

The “*average value” from a to b is the integral divided by the length b — g, This
was computed for x and x* and sin? x, but not explained. It is a major application
of the integral, and it is guided by the ordinary average of n numbers:

1

b 1
bae = 3 J‘ v(x) dx comes from Uave = —(0y T 03+ - +0,)
—al, n

Integration is parailel to summation! Sums approach integrals. Discrete averages

209



210

3 Iregrals

approach continuous averages. The average of 4, §, ¥ is §. The average of §, £, 2, {,
% is 3. The average of n numbers from 1/n to n/n is

_1{1 2 m\ _n+1
u,,‘_n(n+n+...+;)_ 1 )

The middie term gives the average, when n is odd. Or we can do the addition. As
n — oo the sum approaches an integral (do you see the rectangles?). The ordinary
average of numbers becomes the continuous average of v(x)= x:

n+1 1 1 1 1
o, = - te =1
o - > and L x dx > (no r— )

In ordinary language: “The average value of the numbers between 0 and 1 is 4.”* Since
a whole continuum of numbers lies between 0 and 1, that statement is meaningless
until we have integration.

The average value of the squares of those numbers is (x?),,. = | x*dx/(b—a)=§.
If you pick a number randomly between 0 and 1, its expected value is § and its expected
square is §.

To me that sentence is a puzzle. First, we don’t expect the number to be exactly
+—so we need to define “‘expected value.” Second, if the expected value is §, why is
the expected square equal to 4 instead of 7 The ideas come from probability theory,
and calculus is leading us to continuous prodability. We introduce it briefly here, and
come back to it in Chapter 8.

PREDICTABLE AVERAGES FROM RANDOM EVENTS

Suppose you throw a pair of dice. The outcome is not predictable. Otherwise why
throw them? But the average over more and more throws is totally predictable. We
don’t know what will happen, but we know its probahility.

For dice, we are adding two numbers between 1 and 6. The outcome is between 2
and 12. The probability of 2 is the chance of two ones: (1/6){1/6) = 1/36. Beside each
outcome we can write its probability:

2(56)25e) 4 50) (36) () () 25 ) o) ) ()

To repeat, one roll is unpredictable. Only the probabilities are known, and they add
to 1. (Those fractions add to 36/36; all possibilities are covered.) The total from a
million rolls is even more unpredictable—it can be anywhere between 2,000,000 and
12,000,000. Nevertheless the average of those million outcomes is almost completely
predictable. This expected value is found by adding the products in that line above:

Expected value: multiply (outcome) times (probability of outcome) and add.

2 6 12 20 30 42 40 36 30 22 12
Sttt ot —F =+ =+ 2=
% 36736736 %6 %6 363636 36 36
Il you throw the dice 1000 times, and the average is not between 6.9 and 7.1, you get
an A. Use the random number generator on a computer and round off to integers.

Now comes continnous probability. Suppose all numbers between 2 and 12 are
equally probable. This means all numbers—not just integers. What is the probability
of hitting the particular number x = n? It is zero! By any reasonable measure, = has
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no chance to occur. In the continuous case, every x has probability zero. But an
interval of x’s has a nonzero probability:

the probability of an outcome between 2 and 3 is 1/10
the probability of an cutcome between x and x + Ax is Ax/10

To find the average, add up each outcome times the probability of that outcome.
First divide 2 to 12 into intervals of length Ax=1 and probability p=1/10. I we
round off x, the average is 63:

(o) ()

Here all outcomes are integers (as with dice). It is more accurate to use 20 intervals
of length 1/2 and probability 1/20. The average is 62, and you see what is coming.
These are rectangular areas (Riemann sums). As Ax —+ 0 they approach an integral.
The probability of an cutcome between x and x + dx is p(x) dx, and this problem has
plx) = 1/10. The average outcome in the continuous case is not a sum but an integral.

12 12 dx x2 12
expected valye E(x) .I‘z xp(x) dx L T 20]2 7.
That is a big jump. From the point of view of integration, it is a limit of sums. From
the point of view of probability, the chance of each outcome is zero but the probability
density at x is p(x)=1/10. The integral of p(x) is 1, because some outcome must
happen. The integral of xp(x) is x,,.= 7, the expected value. Each choice of x is
random, but the average is predictablc.

This completes a first step in probability theory. The second step comes after more
calculus. Decaying probabilities use ¢ * and ¢~ *—then the chance of a large x is
very small. Here we end with the expected values of x” and l/\/; and I/x, for a
random chotice between 0 and 1 (so p(x)= 1}

: 1 1 Vdx 1\ _ (tax_
E[x]—L = —— E(ﬁ)-Lﬁ—z E(;)—J‘D — = o)

A CONFUSION ABOUT “EXPECTED' CLASS SIZE

A college can advertise an average class size of 29, while most students are in large
classes most of the time. I will show quickly how that happens.

Suppose there are 95 classes of 20 students and 5 classcs of 200 students. The total
enroliment in 100 classes is 1900 + 1000 = 2900. A random professor has expected
class size 29. But a random student sees it differently. The probability is 1900/2900
of being in a small class and 1000/2900 of being in a large class. Adding class size
times probability gives the expected class size for the student:

1900 1000 .
(20) (2900) (200) (2900) 82 students in the class

Similarly, the average waiting time at a restaurant seems like 40 minutes (1o the
customer). To the hostess, who averages over the whole day. it is 10 minutes. If you
came at a random time it would be 10, but if you are a random customer it is 40,

Traffic problems could be eliminated by raising the average number of people per
car to 2.5, or even 2. But that is virtually impossible. Part of the problem is the
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difference between (a) the percentage of cars with one person and (b) the percentage
of people alone in a ¢ar. Percentage (b) is smaller. In practice, most people would be

in crowded cars. See Problems 37-38.

5.8 EXERCISES

Read-through questions

The integrals [} v(x) dx and [} o(x) dx add to _a . The
integral Ia x) dx equals _® . The reason is _¢  If
v{x) < x then _[0 vix)dxg_d The average value of v(x) on
the interval 1 < x £ 9 is defined by _ @ . It is equal to v{c)
at a point x = ¢ which is __! . The rectangle across this
interval with height s{c) has the same area as _ @ . The

average value of #{x)=x+1 on the interval 1 €£x<9% is
h

If x is chosen from 1, 3, 5, 7 with equal probabilities %, its

expected value (average)is _ ! . The expected value of x?
is _ 1 . If xis chosen from 1, 2, ...

, 8 with probabilities ¥,
its expected value is __k _ If x is chosen from [ £ x £ 9, the
chance of hitting an integer is _ ! ___ The chance of falling
between x and x +dx is p(xjdx=_mM _, The expected value

E(x) is the integral _n . Tt equails _ o

In 1-6 find the average value of o(x} between a and b, and find
all points ¢ where v,,. = v{c).
1 p=xta=-10b=1 2p=x%a=—-1,b=1
3 p=cos’x,a=0,b=n 4 u=ﬁ,a=o,b=4
Su=1/xa=1,b=2 v={stn x)°, a=
7 Atx=8, F(x)=[; vt dr+jx vft) dt is

8 ﬁxdx+_[3xdx——jsxdx=

—mb=n

Are 9-16 true or false? Give a reason or an example.
9 The minimum of [ ot} dt is at x = 4.
10 The value of [** o(¢) dt does not depend on x.
11 The average value from x =0 to x =3 equals
Hopeon 0 x <)+ v, o0 1 x5

12 The ratio (f{b) —f(a)}/(b — a) is the average value of f(x)
ona<xsbh

13 On the symmetric interval —1 < x € 1, v(x) —v,,. is an
odd function.

14 If {(x) € fx) < w(x) then A/dx < dv/dx < du/dx.

15 The average of v(x) from 0 to 2 plus the average from 2
to 4 equals the average (rom () to 4.

16 (a) Antiderivatives of even functions are odd functions.
(b} Sguares of odd functions are odd functions.

17 What number # gives |* (v(x) — ) dx=0?

18 If f(2)=6 and f(6)=2 then the average of df/dx from
x=2t0x=61s

19 (a) The averages of cos x and [cos x| from O to n are

(b) The average of the numbers v, ..
the average of |v /[, ..., |v,].

LUy is than

20 (a) Which property of integrals proves [} »(x)dx <
fo lo(x)] dx?
(b) Which property proves —j; v{x) dx < ]‘; |e(x)j dx?
Together these are Property 8: |[3 v(x} dx| <[5 [v(x)] dx.

21 What function has o,,, (from 0 to x) equal te § #{x) at all
x? What functions have »,,, = v(x) at all x?

22 (a) If v(x} is increasing, explain from Property 6 why
[5 vlt) dt < xv(x) for x> 0.
(b) Take derivatives of both sides for a second proof.

23 The average of v(x}=1/{1+ x?) on the interval [D, b]

approaches as b— oo, The average of V{x)=
x%/(1 + x*} approaches

24 TIf the positive numbers v, approach zero as n - @ prove
that their average (v, + --- + v,)/r also approaches zero,

25 Find the average distance from x =g to points in the
interval 0< x < 2. Is the formula different if a < 2?7

26 (Computer experiment} Choose random numbers x
between 0 and 1 until the average value of x? is between .333
and .334. How many values of x? are above and below?
possible repeat ten times,

27 A point P is chosen randomly along a semicircle (see
figure: equal probability for equal arcs) What is the
average distance y from the x axis? The radius is 1.
28 A point Q is chosen randomly between —1 and 1.
(a) What is the average distance Y up to the semicircle?
(b) Why is this different from Problem 27?7

Buffon needle

3y > cosd

y<cosB
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29 (A classic way to compute 1} A 2" needle is tossed onto
a floor with boards 2" wide. Find the probability of falling
across a crack. (This happens when cos & > y = distance from
midpoint of needle to nearest crack. In the rectangle
0<8<7r/2,0< y< 1, shade the part where cos 8 > y and find
the fraction of area that is shaded.)

30 If Buffon’s needle has length 2x instead of 2, find the
probability P(x) of falling acress the same cracks.

31 If you roll three dice at once, what are the probabilities of
each outcome between 3 and 187 What is the expected value?

32 If you choose a random point in the square 0 x< 1,
0 <€ y < 1, what is the chance that its coordinates have y* € x?

33 The voltage V(i) =220 cos 2n¢/60 has frequency 60 heriz
and amplitude 220 volts. Find ¥,,, from 0 to ¢.

M (a) Show that v,,{x) = ${v(x} + v(— x)} is always even,
(b) Show that vg(x) = 4{v(x) — v(—x)) is always odd.

35 By Problem 34 or otherwise, write (x + 1)* and 1/(x + 1)
as an even function plus an odd function.

36 Prove from the definition of df /dx that it is an odd func-
tion if f(x)is even.
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37 Suppose four classes have 6, 8, 10, and 40 students, averag-
ing . The chance of being in the first class is
. The expected class size (for the student) is

() +(2) () 9(2)——

38 With groups of sizes x,, ..., x, adding to G, the average
size is . The chance of an individual belonging to
grouplis _ _ The expected size of his or ker group is
E(x)=x,{x,/G) + - + x,(x,/G). *Prove Z] x?/G > G/n.
39 True or lalse, 15 seconds each:
fa) If f{x) < g(x) then df/dx < dg/dx.
{b) If df /dx < dg/dx then f(x) < g{x).
{c) xv(x) is odd if o(x) is even.
{d) If v,,, <w,. on all intervals then v(x) < w(x) at all
points.
x* for x <3

2x for x <3
® va{x)={ {—x2 forx>3

—2xfor x>3 then f{x) =

Thus j’g vix} dx = f{4) — f{0) = —16. Correct the mistake.
41 I v{x)=1x—2| find f{x). Compute [} v(x) dx.

41 Why are there equal areas above and below v,,.?

5.7 The Fundamental Theorem and its Applications

When the endpoints are fixed at a and b, we have a definite integral. When the upper
Himnit is a variable point x, we have an indefinite integral. More generally: When the
endpoints depend in any way on x, the integral is a function of x. Therefore we can
find its derivative. This requires the Fundamental Theorem of Calculus.

The essence of the Theorem is: Derivative of integral of v equals v. We also compute
the derivative when the integral goes from a{x) to b(x}—both limits variabie.

Part 2 of the Fundamental Theorem reverses the order: Integral of derivative of [
equals {+ C. That will foliow quickly from Part 1, with help from the Mean Value
Theorem. It is Part 2 that we use most, since integrals are harder than derivatives.

After the proofs we go to new applications, beyond the standard problem of area
under a curve. Integrals can add up rings and triangles and shells—not just rectangles.
The answer can be a volume or a probability—not just an area,

THE FUNDAMENTAL THEOREM, PART 1

Start with a continuous function v. Integrate it from a fixed point a to a variable
point x. For each x, this integral f(x) is a number. We do not require or expect a
formula for f(x)—itis the area out to the point x. It is a function of x! The Fundamen-
tal Theorem says that this area function has a derivative (another limiting process).
The derivative df/dx equals the original v(x).
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5C (Fundamental Theorem, Part 1) Suppose v{x) is a continuous function:
If fx)y={>olt)dt then dfjdx=rv(x).

The dummy variable is written as ¢, so we can concentrate on the limits. The value
of the integral depends on the limits @ and x, not on ¢.
To find dffdx, start with Af=f(x + Ax) — f(x) = difference of areas:

Af= I:Mx v{t) dt — [, o{t) dt = Eux o(t) dt. (1)

Officially, this is Property 1. The area out to x + Ax minus the area out to x equals
the small part from x to x + Ax. Now divide by Ax:

Af _ 1 X +Ax _ _
Ax A j; v(t) dt = average value = vic). (2)
This is Property 7, the Mean Value Theorem for integrals. The average value on this
short interval equals v(c). This point ¢ is somewhere between x and x + Ax (exact
position not known), and we let Ax approach zero. That squeezes ¢ toward x, 50 v{c)
approaches v{x)—remember that v is continuous. The limit of equation (2) is the .
Fundamental Theorem:

Af df df _

Ax - Ix and w»{c)—v(x) so I v(x). (3)
If Ax is negative the reasoning still holds. Why assume that »(x) is continuous?
Because if v is a step function, then f{x) has a corner where df/dx is not v(x).

We could skip the Mean Value Theorem and simply bound v above and below:

for ¢ between x and x + Ax: Umin © V() € 0py
integrate over that interval: UminAX € Af Kovg,.Ax )
divide by Ax: Brnin S AS{AX & Vag

As Ax =0, vy, and v,,, approach v(x). In the limit df/dx again equals v(x).

b area under 0(0) fix+AY)
= increase in f{xv) Af= v(x)Ax
, fin Iy

+ PR
t +

X X+AaAx I yv+Ax
FAg. 5.44 Fundamental Theorem, Part 1: (thin area Af)/(base length Ax) — height u(x).

Graphical meaning The f-graph gives the area under the p-graph. The thin strip m
Figure 5.14 has area Af. That areq is approximately v(x) times Ax. Dividing by its
base, Af/Ax is close to the height v(x). When Ax — 0 and the strip becomes infinitely
thin, the expression “close to™ converges to “‘equals.” Then df /dx is the height at v(x).

DERIVATIVES WITH VARIABLE ENDPOINTS

When the upper limit is x, the derivative is v(x). Suppose the lower limit is x. The
integral goes from x to b, instead of a to x. When x moves, the lower limit moves.
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The change in area is on the left side of Figure 5.15. As x goes forward, area is removed.
So there is a minus sign in the derivative of area:

. b . dg
The derivative of g(x)=J‘ v(t) dt is E=—v(x). (5)

The quickest proof 1s to reverse b and x, which reverses the sign (Property 3):

g{x)= —j v(t) dr so by Part 1 dg = — tv{x).
b dx

o(b(x)) 1

iy T ola) 1 - gain
lose lose : Hb(x)1Ah
U{vAX ;

» X
r X+ AX b alx) alx +Ax)  b(x) Blx+ AX)

Ag. 5.15 Area from x to b has dg/dx = — v(x). Area ub)db is added, area {a)da is lost

The general case is messier but not much harder (it is quite useful}. Suppose both
limits are changing. The upper limit b{x) is not necessarily x, but it depends on x.
The lower limit g{x) can also depend on x (Figure 5.15b), The area A between those
limits changes as x changes, and we want dA/dx:

btx) dA dh da
If A= (t) dr  th — = p(bi{x)}) — — —.
Iif Lm v(t) di  then ix v(b(x)} i v(a(x)) I (6)
The figure shows two thin strips, one added to the area and one subtracted.

First check the two cases we know. When a =0 and b = x, we have da/dx =0 and

db/dx = 1. The derivative according to (6) is #(x) times 1 —the Fundamental Theorem.

The other case has a2 = x and b = constant. Then the lower limit in {6) produces — v(x).
When the integral goes from a = 2x to b = x?, its derivative is new:

EXAMPLE 1 A=} cos ¢ dt=sin x> —sin 2x

dAjdx = (cos x*)(3x?) — {cos 2x)(2).

That fits with (), because db/dx is 3x? and da/dx is 2 (with minus sign). It also looks
like the chain rule—which it is! To prove (6) we use the letters v and f:

hix)
A =j l o(t) dt = f{b(x}) — fla{x)) (by Part 2 below)

a{x)
dd =f'(b(x}) @ - f{a(x)) da (by the chain rule)
dx dx dx

Since f’= 1, equation {6) is proved. [n the next example the area turns out to be
constant, although it seems to depend on x. Note that v(t)= 1/t so v{3x)= }/3x.

Ax
EXAMPLE2Z A= ldr hasd—A= L (3)— L (2y=0.
P dx Ix 2x
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x

dA
Question A= J. u(t} dt has ol v(x) + v{— x). Why does vi— x) have a plus sign’

THE FUNDAMENTAL THEOREM, PART 2

We have used a hundred times the Theorem that is now to be proved. It is the key
to integration. “*The integral of df /dx is f(x)+ C.”” The application starts with r{x).
We search for an f(x} with this derivative. If df/dx = ¢(x), the Theorem says that

-I‘ o{x) dx = -I‘ j—f dx=f(x)+C.

X

We can't rely on knowing formulas for » and f -only the definitions of | and d/dx.
The proof rests on one extremely special case: df /dx is the zere function. We casily
find f(x)= constant. The problem is to prove that there are no other possibiiities: f
must be constant. When the slope is zero, the graph must be flat. Everybody knows
this is true, but intuition is not the same as prool.
Assume that df /dx = O in an interval. If f(x) is not constant, there are points where
fia) #f(b). By the Mecan Valu¢c Theorem, there 15 a point ¢ where

f(b)—fla)
b

But f'(c) 5 0 directly contradicts df /dx = 0. Therefore f{x) must be constant.

Note the cruciai role of the Mean Value Theorem. A local hypothesis (df jdx =0
at each point) vields a global conclusion {f= constant in the whole interval). The
derivative narrows the field of view, the integral widens it. The Mean VYalue Theorem
connects instantaneous to average, local to giobal, points to intervals. This special
case (the zero function) applies when A{x) and f{x) have the same derivative:

If ddjdx=df/dx an an interval, then Alx)=f(x}+ C. (7)

fey= (this is not zero because f(a) #f(h))

Reason: The derivative of A{x) - f{x) is zero. So A{x) — f{x} must be constant.
Now comes the big theorem. It assumes that u(x) is continuous, and integrates

using fix):

b
5D (Fundamental Theorem, Part 2) If u(x)= g—{c— then -I‘ v(x) dx = f(b) — f{a).

i

Proof  The antiderivative is f{x). But Part 1 gave another antiderivative for the sume
t(x). It was the intcgral —constructed from rectangles and now called A(x):

"y
Alx)=} (1) dt alse has aa_ B(x).
dx

)

Since A" = ¢ and " = ¢, the special casc in equation (7} states that A(x)=f(x)+ .
That is the essential point: The integral from rectangles equaly f(x)+ C.

At the lower limit the area integral is 4 =0. So f{a)+ C =0. At the upper limit
Fihy + € = A(b). Subtract to find A(b), the definitc intepral:

Alh) = [° vix) dx = f(h) — f(a).

Calculus 1s beautiful  its Fundamental Theorem is also its most useful theorem.
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Another proof of Part 2 starts with ' =v and looks at subintervals:

f(xy)—f(a)=v(x¥)(x, —a) (by the Mean Value Theorem)
S(x3) = f(xy)=v(x¥)(x; — x;) (by the Mean Value Theorem)

fb)—f(x,—y)=v(x¥)b— Xx4-1) (by the Mean Value Theorem).
The left sides add to f(b) — f(a). The sum on the right, as Ax — 0, is _[: v(x) dx.

APPLICATIONS OF INTEGRATION

Up to now the integral has been the area under a curve. There are many other
applications, quite different from areas. Whenever addition becomes **continuous,” we
have integrals instead of sums. Chapter 8 has space to develop more applications, but
four examples can be given immediately—which will make the point.

We stay with geometric problems, rather than launching into physics or engineering
or biology or economics. All those will come. The goal here is to take a first step
away from rectangles.

EXAMPLE 3 (for circles) The area A and circumference C are related by dA/dr = C.

The question is why. The area is nr®. Its derivative 2nr is the circumference. By the
Fundamental Theorem, the integral of C is 4. What is missing is the geometrical
reason. Certainly nr? is the integral of 2zr, but what is the real explanation for 4 =
fC(r) dr?

My point is that the pieces are not rectangles. We could squeeze rectangles under
a circular curve, but their heights would have nothing to do with C. Our intuition
has to take a completely different direction, and add up the thin rings in Figure 5.16.

shell volume = 47r2Ar

ring area = 2nrAr

Fig. 5.46 Area of circle = integral over rings. Volume of sphere = integral over shells. -

Suppose the ring thickness is Ar. Then the ring area is close to C times Ar. This is
precisely the kind of approximation we need, because its error is of higher order (Ar)*.
The integral adds ring areas just as it added rectangular areas:

A='|‘ Cdr=J~ 2nr dr = nr?.
0 0

That is our first step toward freedom, away from rectangles to rings.
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The ring area AA can be checked exactly—it is the difference of circles:
AA = n(r+ Ar)? — nr? = 2nr Ar + n(Ar)2.

This is CAr plus a correction. Dividing both sides by Ar — 0 leaves dA/dr = C.

Finally there is a geometrical reason. The ring unwinds into a thin strip. Its width
is Ar and its length is close to C. The inside and outside circles have different perime-
ters, so this is not a true rectangle—but the area is near CAr.

EXAMPLE 4 For a sphere, surface area and volume satisfy A =dV/dr.

What worked for circles will work for spheres. The thin rings become thin shells. A
shell goes from radius r to radius r + Ar, so its thickness is Ar., We want the volume
of the shell, but we don’t need it exactly. The surface area is 4nr?, so the volume is
about 4nr? Ar. That is close enough!

Again we are correct except for (Ar)%. Infinitesimally speaking dV = A4 dr:

V=j A dr='[ 4nr2dr=§nr3.

0 0

This is the volume of a sphere. The derivative of V' is 4, and the shells explain why.
Main point: Integration is not restricted to rectangles.

EXAMPLE 5 The distance around a square is 4s. Why does the area have dA/ds = 2s?

The side is s and the area is s2. Its derivative 2s goes only half way around the square.
I tried to understand that by drawing a figure. Normally this works, but in the figure
dA/ds looks like 4s. Something is wrong. The bell is ringing so I leave this as an
exercise.

EXAMPLE 6 Find the area under v(x)=cos ! x from x=0to x=1.

That is a conventional problem, but we have no antiderivative for cos ™! x. We could
look harder, and find one. However there is another solution—unconventional but
correct. The region can be filled with horizontal rectangles (not vertical rectangles).
Figure 5.17b shows a typical strip of length x = cos v (the curve has v = cos ! x). As
the thickness Av approaches zero, the total area becomes | x dv. We are integrating
upward, so the limits are on v not on x:

{2

2 . n
area= (7~ cos v dv=sin v]n =1.

The exercises ask you to set up other integrals—not always with rectangles. Archi-
medes used triangles instead of rings to find the area of a circle.

Ci e e Bl L i n/2
i 3 ! v=cos lx
' ! X=cosv
I 1
i s! dv
[ ! x
1 1 2

| area=— r-A@
! 5 ! v 2
[} 1
————————— 4

AA = 4sAs? de 1

Fig. 5.47 Trouble with a square. Success with horizontal strips and triangles.
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5.7 EXERCISES

Read-through questions

The area f(x) = [} v(t) dt is a function of _a . By Part 1 of
the Fundamental Theorem, its derivative is _ b . In the
proof, a small change Ax produces the area of a thin _ ¢

This area Af is approximately _d  times _e . So the

derivative of % t* dtis __t

The integral j: t? dt has derivative _ g . The minus sign
is because __h . When both limits a(x) and b(x) depend on
x, the formula for df /dx becomes __ | minus _ | . In the
example [ ¢ dt, the derivative is __&

By Part 2 of the Fundamental Theorem, the integral of
df/dxis __I__. In the special case when df /dx =0, this says
that _m . From this special case we conclude: If d4/dx =
dB/dx then A(x)=_n . If an antiderivative of 1/x is In x

(whatever that is), then automatically j': dx/x=_o

The square 0<x<s, 0<y<s hasarea A=_p .Ifs
is increased by As, the extra area has the shape of _a_ .
That area AA is approximately _ r . So dA/ds= __s

Find the derivatives of the following functions F(x).

1 [} cos?t dt 2 |1 cos 3t dt

3 |2t 4 [2x"dt
5 (7 u’du 6 [2 v(u) du
7 [**1 o(t) dt (a “running average” of v)

8 % J v(t) dt (the average of v; use product rule)

0

1 x I x+2
9 —J sin’ ¢ dt 10 —j t*dt
X o 2 »

11 {5 [fo v(w) du] de 12 % (df/d)? dt
13 [G o(t) de + [ v(e) dt 14 [3 o(—1) dt
15 |2, sin¢? dt 16 [*, sintdt

17 2 u(tyo(e) dt 18 [0 5 de
sin x 1

19 j sin~'¢ dr 20 _[ Y
. o dt

21 True or false

(a) If df /dx = dg/dx then f(x)= g(x).

(b) If d>f/dx? = d*g/dx? then f(x)=g(x)+ C.

(c) If 3> x then the derivative of [} v(t) dt is —v(x).

(d) The derivative of ﬁ v(x) dx is zero.
22 For F(x)=[2*sin t dt, locate F(n + Ax)— F(r) on a sine
graph. Where is F(Ax)— F(0)?
23 Find the function v(x) whose average value between 0 and
x is cos x. Start from (3 v(t) dt = x cos x.

24 Suppose df /dx = 2x. We know that d(x?)/dx = 2x. How
do we prove that f(x)=x?*+C?

25 If [ wo(t) dt = [} o(t) dt (equal areas left and right of
zero), then v(x) is an function. Take derivatives to
prove it.

26 Example 2 said that |5 dt/t does not really depend on x
(or t!). Substitute xu for t and watch the limits on u.

27 True or false, with reason:
(a) All continuous functions have derivatives.
(b) All continuous functions have antiderivatives.
(c) All antiderivatives have derivatives.
(d) A(x) = [3F dt/t* has dA/dx = 0.

Find [} o(r) dt from the facts in 28-29.

d(x") x x
28 = s
i v(x) 29 L v(t) dt = s
30 What is wrong with Figure 5.17? It seems to show that
dA =4s ds, which would mean A = [ 4s ds = 25°.

31 The cube 0<x, y, z<s has volume V= . The

three square faces with x = s or y =s or z = s have total area

A= . If s is increased by As, the extra volume has

the shape of . That volume AV is approximately
.SodV/ds= 3

32 The four-dimensional cube 0<x, y, z, t <s has hyper-

volume H = . The face with x=s is really a
. Its volume is V= . The total volume of

the four faoes with x =5, y=s, z=s, or t=sis

When s is increased by As, the extra hypervolume is

AH =~ . So dH/ds =

33 The hypervolume of a four-dimensional sphere is H =
4n?r*. Therefore the area (volume?) of its three-dimensional
surface x> + y* + 22+ 12 =ris

34 The area above the parabola y=x? from x=0to x=1
is §. Draw a figure with horizontal strips and integrate.

35 The wedge in Figure (a) has area irz d0. One reason: It is

a fraction dfl/2n of the total area nr®. Another reason: It is

close to a triangle with small base rdf and height

Integrating 4r?d6 from 6 =0to 0 = gives the area
of a quarter-circle.

36 A=[, \/r?—x*dx is also the area of a quarter-circle.
Show why, with a graph and thin rectangles. Calculate this
integral by substituting x =r sin § and dx =r cos 0 d6.
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37 The distance r in Figure (b) is related to 0 by r =
Therefore the area of the thin triangle is $r? 46 =
Integration to ff = gives the total area 4.

38 The x and y coordinates in Figure (¢) add to
rcos@+rsinf= . Without integrating explain why

I B
o (cos0+sing)? =

39 The horizontal strip at height y in Figure (d) has width dy
and length x = .Sothearecauptoy=2is
What length are the vertical strips that give the same area?

40 Use thin rings to find the area between the circles r=2
and r = 3. Draw a piciure to show why thin reclangies would
be extra difficult.

(e)

1 2 3 4 ada 1
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41 The length of the strip in Figure (e) is approximately
. The width is . Therefore the triangle has
area j; — da{do you get }?).

42 The area of the ellipse in Figure (f) is 2nr2. Its derivative
is 4mr. But this is not the eorrect perimeter. Where does the
usual reasoning go wrong?

43 The derivative of the integral of v{x) is v(x}. What is the
corresponding statement for sums and differences of the num-
bers v,? Prove that statement.

44 The integral of the decivative of f{x)is f(x) + C. What is
the corresponding statement for sums of differences of f?
Prove that statement.

45 Does d*f{dx* = a(x)lead to [¢ ([7 alt) dt) dx =f(1)— f(0)?
46 The mountain y = — x? +¢ has an area A(t) above the x
axis. As ¢ increases so does the area. Draw an xy graph of the

mountain at ¢ = 1. What line gives d4/dr? Show with words
or derivatives that d2A4/dt* > 0.

This section concentrates on definite integrals. The inputs are y{x) and two endpoints
a and b. The output is the integral I. Qur goal is to find that number
_[: ¥(x) dx = I, accurately and in a short time. Normally this goal is achievable—as
soon as we have a good method for computing integrals.

Our two approaches so far have weaknesses. The scarch for an antiderivative
succeeds in important cases, and Chapter 7 extends that range—but generally f(x)
is not available. The other approach (by rectangles) is in the right direction but oo
crude. The height is set by y(x) at the right and left end of each small interval. The
right and left rectangle rules add the areas (Ax times y):

R,=(Ax)(y,+y,+ -+ +y,) and L,={(Ax){yo+y;+ - +y,_1)

The value of y(x) at the end of interval j is y;. The extreme left value y, = y(a) enters
L,. With r equal intervals of length Ax = (b — a)/n, the extreme right value is y, =
y(b). It enters R,. Otherwise the sums are the same—simple to compute, easy to
visualize, but very inaccurate.

This section goes from slow methods (rectangles) to better methods (trapezoidal
and midpoint) to good methods (Simpson and Gauss). Each improvement cuts down
the error. You could discover the formuias without the book, by integrating x and
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x? and x*. The rule R, would come out on one side of the answer, and L, would be
on the other side. You would figure out what to do next, to come closer to the exact
integral. The book can emphasize one key point:

The quality of a formula depends on how many integrals
| 1dx, | xdx, | x*dx, ..., it computes exactly. If | x”dx
is the first to be wrong, the order of accuracy is p.

By testing the integrals of 1, x, x?, ..., we decide how accurate the formulas are.

Figure 5.18 shows the rectangle rules R, and L,. They are already wrong when
y=x. These methods are first-order: p=1. The errors involve the first power of
Ax—where we would much prefer a higher power. A larger p in (Ax)” means a
smaller error.

-“j+l

Y| veomamas

Yo

Ax Ax Ax
Fig. 5.48 Errors E and e in R, and L, are the areas of triangles.

Ax

When the graph of y(x) is a straight line, the integral I is known. The error triangles
E and e have base Ax. Their heights are the differences y;,, — y;. The areas are
4(base)(height), and the only difference is a minus sign. (L is too low, so the error
L— I is negative.) The total error in R, is the sum of the E’s:

R, = I=3Ax(y, = yo) + -+ + 3Ax(Yn = Ya-1) = 3A%(y, =~ yo). (1
All y’s between y, and y, cancel. Similarly for the sum of the e’s:
L,—I=—3Ax(y, = yo) = — $Ax[y(b) — y(@)]. (2)

The greater the slope of y(x), the greater the error—since rectangles have zero slope.

Formulas (1) and (2) are nice—but those errors are large. To integrate y = x from
a=0to b= 1, the error is $Ax(1 — 0). It takes 500,000 rectangles to reduce this error
to 1/1,000,000. This accuracy is reasonable, but that many rectangles is unacceptable.

The beauty of the error formulas is that they are “asymptotically correct™ for all
functions. When the graph is curved, the errors don’t fit exactly into triangles. But
the ratio of predicted error to actual error approaches 1. As Ax —0, the graph is
almost straight in each interval—this is linear approximation.

The error prediction $Ax[ y(b) — y(a)] is so simple that we test it on y(x)= \/w_c

I=[3 /xdx=% n= 1 10 100 1000
error R,— I = 33 .044 .0048 .00049
error L,—I= —.67 —.056 —.0052 —.00051

The error decreases along each row. So does Ax =1, .01, .001, .0001. Multiplying n
by 10 divides Ax by 10. The error is also divided by 10 (almost). The error is nearly
proportional to Ax—typical of first-order methods.

The predicted error is 2Ax, since here y(1)= 1 and y(0) = 0. The computed errors
in the table come closer and closer to 3Ax = .5, .05, .005, .0005. The prediction is the
“leading term” in the actual error.
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The table also shows a curious fact. Subtracting the last row from the row above
gives exact numbers 1, .1, .01, and .001. This is (R, — I)— (L, — I), which is R,— L,.
It comes from an extra rectangle at the right, included in R, but not L,. Its height is
1 and its area is 1, .1, .01, .001.

The errors in R, and L, almost cancel. The average T,=4(R, + L,) has less error—
it is the “‘trapezoidal rule.” First we give the rectangle prediction two final tests:

| n=10 n=100 n=1000
I(,\'z-x} dx: errors 1.7-107" 1.7-107% 17-107% 1.7-1077
| dx/(10 + cos 2nx): errors —1+107%  2-107'* 40" “0”

Those errors are falling faster than Ax. For y = x? — x the prediction explains why:
¥(0) equals y(1). The leading term, with y(b) minus y(a), is zero. The exact errors are
1(Ax)?, dropping from 10" to 1073 to 1075 to 10~ ". In these examples L, is identical
to R, (and also to T,), because the end rectangles are the same. We will see these
1(Ax)? errors in the trapezoidal rule.

The last row in the table is more unusual. It shows practically no error. Why do
the rectangle rules suddenly achieve such an outstanding success?

The reason is that y(x) = 1/(10 + cos 2nx) is periodic. The leading term in the error
is zero, because y(0) = y(1). Also the next term will be zero, because y'(0) = y'(1). Every
power of Ax is multiplied by zero, when we integrate over a complete period. So the
errors go to zero exponentially fast,

Personal note 1 tried to integrate 1/(10 + cos 2nx) by hand and failed. Then I was
embarrassed to discover the answer in my book on applied mathematics. The method
was a special trick using complex numbers, which applies over an exact period.
Finally I found the antiderivative (quite complicated) in a handbook of integrals, and
verified the area l(\/@.

THE TRAPEZOIDAL AND MIDPOINT RULES

We move to integration formulas that are exact when y = x. They have second-
order accuracy. The Ax error term disappears. The formulas give the correct area
under straight lines. The predicted error is a multiple of (Ax)?. That multiple is found
by testing y = x>—for which the answers are not exact.

The first formula combines R, and L,. To cancel as much error as possible, take
the average 3(R,+ L,). This yields the trapezoidal rule, which approximates
J y(x) dx by T,:

T;1 = %Rn T %Ln = A‘\.(%J}U i W £ V2 it EEEERp Yn—1 + %."’rn)‘ (3}

Another way to find T, is from the area of the “trapezoid™ below y = x in Figure 5.19a.

] [+ 1 j [+ 1
Ax Ax Ax d Ax 4 . Ax ‘

Fig. 5.19 Second-order accuracy: The error prediction is based on v = x°.
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The base is Ax and the sides have heights y;_, and y;. Adding thosc areas gives
$(L, + R,) in formula (3)—the coefficients of y; combine into 4 + 4= 1. Only the first
and last intervals are missing a neighbor, so the rule has 3y, and 4y,. Because
trapezoids (unlike rectangles) fit under a sloping line, 7T, is exact when y= x.

What is the difference from rectangles? The trapezoidal rule gives weight $Ax to
¥o and y,. The rectangle rule R, gives full weight Ax to y, (and no weight to y;).
R, — T, is exactly the leading error 4y, — 4y,. The change to T, knocks out that error.

Another important formula is exact for y(x) = x. A rectangle has the same area as
a trapezoid, if the height of the rectangle is halfway between y;., and y;. On a straight
line graph that is achieved at the midpoint of the interval. By evaluating y(x) at the
halfway points }Ax, 3Ax, Ax, ..., we get much better rectangles. This leads to the
midpoint rule M.

M, =Ax{y o+ yap+ - ty_y2) 4

For J; x dx, trapezoids give $(0) + 1 + 2+ 3+ 4(4)=8. The midpoint rule gives
4+ 3+4+ =8, again correct. The rules become different when y = x?, because Y1
is no longer the average of y, and y,. Try both second-order rules on x:

1=, x* dx n= 1 10 100
error T,— I = 1/6 1/600 1/60000
error M, -1 = —1/12 —1/1200 —1/120000

The ertors fall by 100 when n is multiplied by 10. The midpoint mle is twice as good
(—1/12 vs. 1/6). Since all smooth functions are close to parabolas (quadratic approxi-
mation it each interval), the leading errors come from Figure 5.19. The trapezoidal
error is exactly 3(Ax)* when y(x) is x* (the 12 in the formula divides the 2 in y'):

L-Ix @0+ -+t v = @2[n-%]  ©

M= I 3= 4] = - 5, 0 [y - y@ ] ©)

For exact error formulas, change y'(b)— y'(a) to (b — a)y”(c). The location of ¢ is
unknown (as in the Mean Value Theorem). In practice these formulas are not much
used—they involve the pth derivative at an unknown location ¢. The main point
about the error is the factor (Ax)?.

One crucial fact is easy to overlook in our tests. Each value of y(x) can be extremely
hard to compute. Every time a formula asks for y;, a computer calls a subroutine. The
goal of numerical integration is to get below the error tolerance, while calling for a
minimum number of values of y. Second-order rules need about a thousand values for
a typical tolerance of 1075, The next methods are better.

FOURTH-ORDER RULE: SIMPSON

The trapezoidal error is nearly twice the midpoint error (1/6 vs. —1/12). So a
good combination will have twice as much of M, as 7,. That is Simpson’s rule:

1 2 1
3Bt IMa= Ax[ ot dyn T 2y 2ttt ()

Multiply the midpoint values by 2/3 = 4/6. The endpoint values are multiplied by

5, =
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2/6, except at the far ends a and b (with heights y, and y,). This 1-4-2-4-2-4-1
pattern has become famous.

Simpson’s rule goes deeper than a combination of T and M. It comes from a
parabolic approximation to y(x) in each interval. When a parabola goes through y,,
Y12, V1, the area under it is §Ax(yo + 4y,,, + y,). This is S over the first interval. All
our rules are constructed this way: Integrate correctly as many powers 1, x, x*, ... as
possible. Parabolas are better than straight lines, which are better than flat pieces.
S beats M, which beats R. Check Simpson’s rule on powers of x, with Ax = 1/n:

error if y = x? 0
error if y = x>
errorif y=x*  833-107%  8.33-1077  833-107!!

Exact answers for x? are no surprise. S, was selected to get parabolas right. But the
zero errors for x* were not expected. The accuracy has jumped to fourth order, with
errors proportional to (Ax)*. That explains the popularity of Simpson’s rule.

To understand why x> is integrated exactly, look at the interval [—1, 1]. The odd
function x* has zero integral, and Simpson agrees by symmetry:

I 2
- 4 — ‘ 143 3 i S
I_lx dx-zx]_l~0 and E[( 1)* +4(07 + 1° | =o0. ®)
1
4 L
2 % O & |
1 4 6"0"' Yn 4 6 3
6 52 %, L% 1
Yo ._3_6‘.0' 6 2
S S S
L J J+1 J j+1
Ax Ax Ax Ax AxN3

Fig. 5.20 Simpson versus Gauss: E = ¢(Ax)*(yj}, — y") with ¢s=1/2880 and ¢; = —1/4320.
THE GAUSS RULE (OPTIONAL)

We need a competitor for Simpson, and Gauss can compete with anybody. He
calculated integrals in astronomy, and discovered that two points are enough for a
fourth-order method. From —1 to 1 (a single interval) his rule is

I'y y(x) dx 2 y(—1/4/3) + y(1//3). 9)

Those “Gauss points” x = —1/\/5 and x= l,fﬁ can be found directly. By placing
them symmetrically, all odd powers x, x°, ... are correctly integrated. The key is in
y = x?, whose integral is 2/3. The Gauss points —x; and + x get this integral right:
2=(—Jc )2+ (xg)? soac2=l and Xx =+L
3 G Gl oo G 3 G — \/3
Figure 5.20c shifts to the interval from 0 to Ax. The Gauss points are
(1+ ljﬁ}Ax{Z. They are not as convenient as Simpson’s (which hand calculators
prefer). Gauss is good for thousands of integrations over one interval. Simpson is
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good when intervals go back to back—then Simpson also uses two Vs per interval.
For y = x*, you see both errors drop by 10™* in comparing n=1to n= 10
I=Jg x* dx Simpson error  8.33-107° 8.33-1077
Gauss error -556-107° —-556-107"

DEFINITE INTEGRALS ON A CALCULATOR

It is fascinating to know how numerical integration is actually done. The points are
not equally spaced! For an integral from 0 to 1. Hewlett-Packard machines might
internally replace x by 3u? — 2u? (the limits on w are also 0 and 1). The machine
recmembers to change dx. For example,

M

b ) [16(u—u2)du -IAlﬁ[l—u}du
—~ become = =
Ju Jx Jo 32 o

Algebraically that looks worse—but the infinite value of 1/,/x at x =0 disappears
at u = 0. The differential 6{u — u?) du was chosen to vanish at u=0 and u=1. We
don’t need y(x) at thc cndpoints—where infinity is most common. In the u variable
the integration points are equally spaced—therefore in x they are not.

When a difficult point is inside [a, b], break the interval in two pieces. And chop
off integrals that go out to infinity. The integral of ¢ * should bc stopped by
x = 10, since the tail is so thin. (It is bad to go too far.) Rapid oscillations are among
the toughest—the answer depends on cancellation of highs and lows, and the calcula-
tor requires many integration points.

Ji-2u

The change from x to u affects periodic functions. I thought equal spacing was
good, since 1/(10 + cos 2nx} was integrated above to enormous accuracy. But there
is a danger called afiasing. If sin 87x is sampled with Ax = 1/8, it 15 always zero. A
high frequency 8 is confused with a low frequency O (its “alias™ which agrces at the
sample points). With unequal spacing the problem disappears. Notice how any integ-
ration method can be deceived:

Ask for the integral of y =0 and specify the accuracy. The calculator
samples v at x,, ..., x,. (With a PAUSE key, the x’s may be dispiayed.)
Then integratc Y{x)=(x— x,)* -+ (x — x,)*. That also rcturns the
answer zero (now wrong), because the calculator follows the same steps.

On the HP-285 you enter the function, the endpoints, and the accuracy. The
variable x can be named or not (see the margin). The outputs 4.67077 and 4.7E-5 are
the requested integral jf ¢* dx and the estimated ¢rror bound. Your input accuraey
.00001 guarantees
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3:'EXP(X)!T f— : 3: ((EXP))
2-{%X 1 213 relative error in y = true;omuzrzgut‘cd L = .00001. 2. {1 2}
1: .00001 putee y 1:.00001

The machine estimates accuracy based on its experience in sampling y(x). If you
guarantee ¢* within (0000000001, it thinks you want high accuracy and takes longer.
In consulting for HP, William Kahan chose formulas using 1. 3, 7, 15, ... sample
points. Each new formula uses the sampies in the previous formula. The calculator
stops when answers are close. The tast paragraphs are based on Kahan's work.
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TI-81 Program to Test the Integration Methods L, R, T, M, §

PrgmI:NUM INT :D/2-H :A+JD-X :Disp "L, R, M,
tDisp "A=" iAo X :R+Y1-R T, §"

:Input A 1Y1=L :IS>CJ, N3 :Disp L

:bisp "B=" 114 :Goto 1 iDisp R

:Input B :P-R :{(L+R-Y1)D—-L :Disp M

:LbL N tPoM :RD—-R :Disp T

:Disp "N=" :LbL 1 :MD-M :Disp S

:Input N :X+HoX :(L+R) /2T :Pause
:(B-A)/N-D tM+Y1oM : (2M+T) /3-S5 :Goto N

Place the integrand y{x) in the Y 1 position on the Y = function edit screen. Execute
this program, indicating the interval [ 4, B] and the number of subintervals N. Rules
L and R and M use N evaluations of y(x). The trapezoidal rule uses N +1 and
Simpson’s rule uses 2N + 1. The program pauses to display the results. Press ENTER
to continue by choosing a different N. The program never terminates (only pauses).
You break out by pressing ON. Don't forget that 1S, Goto, ... are on menus.

5.8 EXERCISES

Read-through questions

To integrate y(x), divide [a, b] into n pieces of length
Ax=_4a . R, and L, place a _b&  over each piece,
using the height at the right or e endpoint:
R,=Ax(y,+ - +y,) and L,=_d . These are _ o
order methods, because they are incorrect fory=_ 1 . The
total error on [0,17 is approximately _ g . For y=cos nx
this leading term is _ # _ . For y =cos 2nx the error is very
small because [0, 1] is a complete __i '

A much better method is T,=4R.+_1 =
Ax[4yo+_® y,+ -+ +_t y]1 This _m rule is

n__-order because the error for y=xis _ o . The error
for y=x*fromatobhis _p .The g ruleis twice as
accurate, using M, =Ax[_r 7.

Simpson’s method is S, =4M,+_s . Itis _t _ -order,
because the powers _u  are integrated correctly. The
coefficients of yo, ¥, ¥, are _ v times Ax. Over three
intervals the weights are Ax/6 times 1-4—_ w . Gauss uses

x__ points in each interval, separated by Axfﬁ. For a
method of order p the error is nearly proponticnal to _y .

1 What is the difference L, — T,? Compare with the leading
error term in {2).

2 If you cut Ax in half, by what factior is the trapezoidal
error reduced (approximately)? By what factor is the error in
Simpson’s rule reduced?

3 Compute R, and L, for f} x*dx and n=1,2, 10. Either
verify (with computer) or use (without computer) the formula
P22+ - w2 =inn+ )2

4 One way to compute T, is by averaging ¥(L,+ R,).
Another way is to add $y, + y, + - +1y,. Which is more
efficient? Compare the number of operations.

5 Test three different rules on I =, x*dx forn=2, 4, 8.

6 Compute n to six places as 4_[:, dx/(1 + x*?), using any
rule.

7 Change Simpson’s rule to Ax{}yo + 4,2 +1y,) in each
interval and find the order of accuracy p.

8 Demonstrate superdecay of the error when 1/(3 + sin x) is
integrated from 0 to 2x.

9 Check that {(Ax)*(yj+; — ¥;)/12 is the correct error for
y=1and p=x and y=x? from the first trapezoid (j =0).
Then it is correct for every parabola over every interval.

10 Repeat Problem 9 for the rmidpoint error
~{Ax)}{(¥}+,1 — ¥})/24. Draw a figure to show why the rectan-
gle M has the same area as any trapezoid through the mid-
point (including the trapezoid tangent to y{x)).

11 In principle [*_ sin?x dx/x? = . With a symbolic alge-
bra code or an HP-288, how many decimal places do you
get? Cut off the integral to j‘:‘, and test large and small A.

12 These four integrals all equal =:

Vo dx ® sin x -3 © x 12y
dx - | sin®xdx :
0 \/x(l—x} e X 3)e o Il+x

(a) Apply the midpoint rule to two of them until
n = 3.1416.

(b) Optional: Pick the otber two and find w3,
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13 To compute in 2= |7 dx/x =.69315 with error less than
001, how many intervals should T, need? Its leading error is
(AxY[y'(b) — ¥'(a)]/12. Test the actual error with y = 1/x.

14 Compare T, with M, for {3 \/x dx and n= 1, 10, 100. The
error prediction breaks down because y'(0) = .

15 Take f{(x}= |, p(x)dx in error formula 3R to prove that
§o© ¥(x) dx — p(0) Ax is exactly ¥{Ax)?y'(c) for some point c.

16 For the periodic function y(x) = 1/{2 + cos 6ax) from —1
to 1, compare T and S and G for n=2,

17 For I'= f; \/1 — x? dx, the leading etror in the trapezoi-
dal rule is . Try n=2, 4, 8 to defy the prediction.

18 Change to x=sin 8, /1 —x? =cos 6, dx =cos 8 46, and
repeat T on §¥* cos?d d. What is the predicied error after
the change to &7

19 Write down the three equations Ay(0} + By(3) + CH{1} =1

for the three integrals = {; 1 dx, f; x dx, f§ x* dx. Solve for -

A, B, C and name the rule.

20 Can you invent a rule using Ayo+ Bys+Cyipn+
Dy, + Ey, to reach higher accuracy than Simpson’s?

21 Show that T, is the only combination of L, and R, that
has second-order accuracy.

22 Calculate § e™*" dx with ten intervals from 0 to 5 and 0
to 20 and 0 to 400. The integral from 0 to o is }./x. What
is the best point to chop off the infinite integral?

23 The graph of p(x) = 1/(x% + 107 1°) has a sharp spike and
a long tail. Estimate j'; y dx from T, and Tyq, (don’t expect
much). Then substitute x = 1075 tan &, dx =105 sec? 9 df
and integrate 10° from 0 to =/4,

24 Compute [, |x—n|dx from T, and compare with the
divide and conquer method of separating [3 {x — #| dx from
§& 1x — =) dx.

25 Find a,b,¢c so that p=ax?+bx+c equals 1,3,7 at
x=0, 4, 1 (three equations). Check that -1 +%-3+%-7
equals {5 y dx.

26 Find ¢ in §— I = c(Ax)*[y"(1) — ¥"(0)] by taking y= x*
and Ax =1,

27 Find ¢ in G—I=c{Ax)*[y"{1}—y"(-1)] by taking
y=x*%Ax=2, and G=(~1/,/3)* +(1// )"

28 What condition on y(x) makes L ,=R,=T, for the
integral [° y(x} dx?

29 Suppose Wx) is concave up. Show from a piclure that the
trapezoidal answer is too high and the midpoint answer is
too low. How does y* > 0 make equation (5) positive and {6)
negative?
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CHAPTER 6

Exponentials and Logarithms

This chapter is devoted to exponentials like 2* and 10* and above ail ¢*. The goal is
to understand them, differentiate them, integrate them, solve equations with them,
and invert them (to reach the logarithm). The overwhelming importance of ¢* makes
this a crucial chapter in pure and applied mathematics.

In the traditional order of calculus books, ¢° waits until other applications of the
integral are complete. I would like to explain why it is placed earlier here. I believe
that the equation dy/dx = y has to be emphasized above techniques of integration.
The laws of nature are expressed by differential equations, and at the center is ¢*. Its
applications are to life sciences and physical sciences and economics and engineering
(and more—wherever change is influenced by the present state). The model produces
a differential equation and I want to show what calculus can do.

The key is always b™*" = (b™)(b". Section 6.1 applies that rule in three ways:

1. to understand the logarithm as the exponent,;
2, to draw graphs on ordinary and semilog and log-log paper;
3. to find derivatives. The slope of b* will use b**2* = (b*)(p™),

N 51 An Overview NN

There is a good chance you have met logarithms. They turn multiplication into
addition, which is a lot simpler. They are the basis for slide rules (not so important)
and for graphs on log paper (very important). Logarithms are mirror images of
exponentials—and those I know you have met.

Start with expenentials. The numbers 10 and 10? and 10> are basic to the decimal
system. For completeness I also include 109, which is “ten to the zeroth power™ or
1. The logarithms of those numbers are the exponents. The logarithms of 1 and 10 and
100 and 1000 are 0 and 1 and 2 and 3. These are logarithms *‘to base 10,” because
the powers are powers of 10.

Questlon When the base changes from 10 to b, what is the logarithm of 17
228 Answer  Since b° = 1, log,1 is always zero. To base b, the logarithm of " is n.
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Negative powers are also needed. The number 10* is positive, but its exponent x can
be negative. The first examples are 1/10 and 1/100, which are the same as 10~ ' and
10~ 2. The logarithms are the exponents —1 and —2:

1000 = 10? and log 1000 =3
1/1000=10"3 and log 1/1000 = —3.

Multiplying 1000 times 1/1000 gives 1 = 10°. Adding logarithms gives 3 +(—3)=0
Always 10™ times 10" equals 10" *". In particular 10® times 10? produces five tens:

(10)(10)(10) times (10)(10) equals (10)(10)(10)(10)(10) = 10°.

The law for h™ times b" extends to all exponents, as in 10*° times 10%. Furthermore
the law applies to all bases (we restrict the base to b>0 and b # 1). In every case
multiplication of numbers is addition of exponents.

6A b times b" equals b™*", so logarithms (exponents) add
b™ divided by b" equals b™ ", so logarithms (exponents) subtract

logy(yz) = logyy +log,z  and  logy(y/z) = log,y — log,z. (1)

Historical note 1In the days of slide rules, 1.2 and 1.3 were multiplied by sliding
one edge across to 1.2 and reading the answer under 1.3. A slide rule made in
Germany would give the third digit in 1.56. Its photograph shows the numbers on a
log scale. The distance from 1 to 2 equals the distance from 2 to 4 and from 4 to 8.
By sliding the edges. you add distances and multiply numbers.

Division goes the other way. Notice how 1000/10 = 100 matches 3 — 1 = 2. To divide
1.56 by 1.3, look back along line D for the answer 1.2.

The second figure, though smaller, is the important one. When x increases by 1, 2*
is multiplied by 2. Adding to x multiplies y. This rule easily gives y =1, 2, 4, 8, but
look ahead to calculus—which doesn’t stay with whole numbers.

Calculus will add Ax. Then y is multiplied by 2**. This number is near 1. If
Ax = {5 then 2%~ 1.07—the tenth root of 2. To find the slope, we have to consider
(24% — 1)/Ax. The limit is near (1.07 — 1)/i% = .7, but the exact number will take time.
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Fig. 6.4 An ancient relic (the slide rule). When exponents x add, powers 2* multiply.
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Base Change Bases other than 10 and exponents other than 1, 2, 3, ... are needed
for applications. The population of the world x years from now is predicted to grow
by a factor clese to 1.02*. Certainly x does not need to be a whole number of years.
And certainly the base 1.02 should not be 10 {or we are in real trouble). This prediction
will be refined as we study the differential equations for growth. It can be rewritten
to base 10 if that is preferred (but look at the exponent):

1.02%  is the same as 1008 1-02)x

When the base changes from 1.02 to 10, the exponent is multiplied —as we now see.
For practice, start with base b and change to base ¢. The logarithm to base a will
be written “log.”” Everything comes from the rule that logarithm = exponent:

hase change for numhers: b= o'
Now raise both sides to the power x. You see the change in the exponent:
base change for exponentiuls. b~ = oEMx,

Finally set y = b*. Its logarithm to base b is x. [ts logarithm to base a is the exponent
on the right hand side: log,y = (log,b)x. Now replace x by log,y:

base change for logarithms:  loy, y = (log, bKlog, v).
We absolutely need this ability to change the base. An example with a=2 is
b=8=2° g2 =232 =12° log, 64 =13-2=(log,8)(logs64).

The rule behind base changes is (a™)* = g™. When the mth power is raiscd to the
xth power, the exponents multiply. The square of the cube is the sixth power:

(@)(a)(a) times (a)a){a) equals (a)(a)(a}{a)(a)a): (&’ = a°.

Another base will soon be more important than 10-—here are the rules for base
changes:

&B To change numbers, powers, and logarithms from base b to base a, use
b=att  pr=glet  log,y=(log,b)(0g,) @)

The first is the definition. The second is the xth power of the first. The third is the
logarithm of the second (remember y 18 §%). An important case is y = a:

log,a = (log, b)(log,a) =1 50 Jog, b = lilog,u. (3)

EXAMPLE 8 =23 means 8!/ = 2. Then (log,8)(logg2) = (3)(1/3)=1.

This completes the algebra of logarithms. The addition rules A came from
(b™)(b") = b™*". The multiplication rule 6B came from (a™} = a™. We still need to
define b* and a* for all real numbers x, When x is a fraction, the definition is easy.
The square root of a® is a* (m = 8 times x = 1/2). When x is not a fraction, as in 2%,
the graph suggests one way to fill in the hole.

We could define 2" as the limit of 2°, 221110, 23141100 Ag the fractions r approach
7, the powers 27 appreach 27. This makes y = 2% into a continuous function, with the
desired properties (2™){2") = 2"*" and (2™)* = 2™*—whether m and n and x are inte-
gers or not. But the ¢’s and #’s of continuity are not attractive, and we eventually
choose (in Section 6.4) a smoother approach based on integrals.
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GRAPHS OF b" AND log,¥y
It is time to draw graphs. In principle one graph should do the job for both functions,

because y = b* means the same as x = log, y. TAese are inverse functions. What one
function does, its inverse undoes. The logarithm of g(x)=b"is x:

£ '(g(x)) = logy(¥*) = x. )
In the opposite direction, the exponential of the logarithm of y is y:
gg (= blewr =y, (5)

This holds for every base b, and it is valuable to see b=2 and b=4 on the same
graph. Figure 6.2a shows y = 2* and y = 4*, Their mirror images in the 45° line give
the logarithms to base 2 and base 4, which are in the right graph.

When x is negative, y = b* is still positive. If the first graph is extended to the left,
it stays above the x axis. Sketch it in with your pencil. Also extend the second graph
down, to be the mirror image. Don’t cross the vertical axis.

16 1

L 2 3 4 124 8 16
Fig. 6.2 Exponentials and mirror images (logarithms). Different scales for x and y.

There are interesting relations within the left figure. All exponentials start at 1,
because b° is always 1. At the height y = 16, one graph is above x = 2 (because 4° =
16). The other graph is above x = 4 (because 2* = 16). WAy does 4* in one graph equal
2% in the other? This is the base change for powers, since 4 = 22,

The figure on the right shows the mirror image—the logarithm. All logarithms
start from zero at y = 1. The graphs go down to — o at y =0. (Roughly speaking
27 ® is zero.) Again x in one graph corresponds to 2x in the other (base change for
logarithms). Both logarithms climb slowly, since the exponentials climb so fast.

The number log, 10 is between 3 and 4, because 10 is between 2* and 2*. The slope
of 2% is proportional to 2*—which never happened for x". But there are two practical
difficulties with those graphs:

1. 2* and 4" increase too fast. The curves turn virtually straight up.
2. The most important fact about Ab* is the value of b—and the base
doesn’t stand out in the graph.

There is also another point. In many problems we don’t know the function y =
f(x). We are looking for it! All we have are measured values of y (with errors mixed
in). When the values are plotted on a graph, we want to discover f{x).

Fortunately there is a solution. Scale the y axis differemtly. On ordinary graphs,
each unit upward adds a fixed amount to y. On a log scale each unit multiplies y by
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a fixed amount. The step from y =1 to y = 2 is the same length as the step from 3 to
6 or 10 to 20.

On a log scale, y= 11 is not haliway between 10 and 12. And y = 0 is not there at
all. Each step down divides by a fixed amount—we never reach zero. This is com-
pletely satisfactory for Ab*, which also never reaches zero.

Figure 6.3 is on semtlog paper (also known as log-linear), with an ordinary x axis.
The graph of y = Ab" is a straight line. To see why, take logarithms of that equation:

log y=log A+ xlog b, (6)

The relation between x and log y is linear. It is reaily log y that is plotted, so the graph
is straight. The markings on the y axis allow you to enter y without looking up its
logarithm—you get an ordinary graph of log y against x.

Figure 6.3 shows two examples. One graph is an exact plot of y =2+ 107, It goes
upward with slope 1, because a unit across has the same length as multipiication by
10 going up. 10* has slope 1 and 109°#®" (which is b*) will kave slope log b. The
crucial number log b can he measured directly as the slope.

20
16 / 16
slope -1 slope 3 slope 12
/ o
10
8 B
=2« 107
y y—éb‘ri‘/2
/ slope |
4 4
2
¥ ¥
[
2 2
y=4.10__.‘./2 \
slope — 1/2 {
l ] 1 + . —
0 .2 4 6 B 1.0 ] 2 3 4 5 6 78910 16

Fg.63 2-10" and 4- 10" %* on semilog paper. Fig. 8.4 Graphs of Ax* on log-log paper.

The second graph in Figure 6.3 is more typical of actual practice, in which we start
with measurements and look for f{x). Here are the data points:

x=00 02 04 06 08 10
y=40 32 24 20 16 13

We don’t know in advance whether these values fit the model y = Ab*. The graph is
strong evidence that they do. The points lie close to a line with negative slope—
indicating log b <0 and b < 1. The slope down is haif of the earlier slope up, so the
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model is consistent with
y=A-107%2 or logy=1log A—ix. (7)

When x reaches 2, y drops by a factor of 10, At x =0 we see 4 =4,

Another model—a power y = Ax* instead of an exponential—also stands out with
logarithmic scaling. This time we use log—fog paper, with both axes scaled. The
logarithm of y = Ax® gives a linear relation between log y and log x:

log y=1log A+ k log x. (8)

The exponent k becomes the slope on log—log paper. The base b makes no difference.
We just measure the slope, and a straight line is a lot more attractive than a power
curve.

The graphs in Figure 6.4 have slopes 3 and 4 and —1. They represent Ax> and
Aﬁ and A/x. To find the A’s, look at one point on the line. At x = 4 the height is
8, so adjust the A’s to make this happen: The functions are x*/8 and 4\/; and 32/x.
On semilog paper those graphs would not be straight!

You can buy log paper or create it with computer graphics.

THE DERIVAITVES OF y = b" AND x= log,y

This is a calculus book. We have to ask about slopes. The algebra of exponents is
done, the rules are set, and on log paper the graphs are straight. Now come limits.

The central question is the derivative. What is dy/dx when y = b*? What is dx/dy
when x is the logarithm log,y? Thpse questions are closely related, because b* and
log,y are inverse functions, If one slope can be found, the other is known from
dx/dy = 1f(dy/dx). The problem is to find one of them, and the exponential comes
first.

You will now see that those questions have gquick {and beautiful) answers, except
Jor a mysterious constant. There is a multiplying factor ¢ which necds morc time. |
think it is worth separating out the part that can be done immediately, leaving ¢ in
dy/dx and ljc in dx/dy. Then Section 6.2 discovers ¢ by studying the special number
called e {but ¢ #e).

8C The denvative of #* is a multiple ¢b*. The number ¢ depends on the
base b.

The product and power and chain rules do not yield this derivative. We are pushed
all the way back to the original definition, the limit of Ay/Ax:
+ — xthk _ px
dy o xR oy b b

dx k0 h N E-T:l) h ' &

Key idea: Split b*~* into b times b". Then the crucial quantity »* factors out. More
than that, b* comes outside the limit because it does not depend on h. The remaining
limit, inside the brackets, is the number ¢ that we don't yet know:

cdy L bRt [ B -1
ﬂ_llﬂT_b[P—% P = ¢b*. {10

This equation is central to the whole chapter: dy/dx equals cb™ which equals cy. The
rate of change of y is proportional to y. The slope incrcases in the same way that b*
increases (except for the factor ¢). A typical example is money in a bank, where
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interest is proportional to the principal. The rich get richer, and the poor get slightly
richer. We will come back to compound interest, and identify b and ¢.
The inverse function is x =log,y. Now the unknown factor is 1/¢:

8D The slope of log,y is 1/cy with the same c (depending on b).

Proof Il dy/dx = cb* then dxjdy= ljch* = ljcy. (an
That proof was like a Russian toast, powerful but too quick! We go more carefully:
i)Y =x {logarithm of exponential)
S Neb) =1 (x derivative by chain rule)
()= 1/ch* (divide by ch¥)
F'(y)=1jey (identify b* as y)

The logarithm gives another way to find ¢. From its slope we can discover 1/c. This
is the way that finally works (next section).

y=2°

slope ¢2°

Fig. 6.5 The slope of 2* is about .7+ 2*. The slope of log,y is about 1/.7y.

Final remark 1t is extremely satisfying to meet an f{y) whose derivative is 1/cy.
At last the “ —1 power” has an antiderivative. Remember that [x"dx = x""'/(n + 1)
is a failure when n= — 1. The derivative of x° {a constant} does not produce x .
We had no integral for x ', and the logarithm fills that gap. If y is replaced by x or ¢
(all dummy variables) then

i L amd Liog= 12

—_ k _ — n — T = -—.

dx & X X dt V6 ot (12)
The base & can be chosen so that ¢ = 1. Then the derivative is 1/x. This final touch
comes from the magic choice b = ¢—the highlight of Section 6.2.

6.1 EXERCISES

Read-through questions On ordinary paper the graphof y = __|

In 10* = 10,000, the exponent 4 is the _ o of 10,000. The is a straight line. Its slope is __¢© On log-log paper the

base is b= . The logarithm of 10™ times 10" is _¢ . graph of y=_ P is a straight line. Its slope is
The logarithm of 10™/10"is _d . The logarithm of 10,000" ot g L i
is I y=b* then x= 1. Here x is any number, The slope of y =0 is dyjdx=_ t _ where ¢ depends on

and y is always _ @

A base change gives b=a

and b*=a

y =2 it follows that log,8 times logg2 equals _ k. logyx is _ w

is a straight line.
Its slopeis _ ™ . On semilog paper the graph of y=_ n

b. The number ¢ is the limit as h — 0 of

log,y is the inverse, (dx/dydy/dx)=__1

. Then dyidx = cb™ yields dx/dy=_ 4 . Substituting b* for y, the
8% is 25 In other words log, v is __ 1 times loggy. When slope of log, v is __v . With a change of letters, the slope of
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Problems 1-10 use the rules for logarithms,

1 Find these logarithms (or exponents):
{a)log,32 (b} log,(1/32) (c) logs(1/32)
(d)logy;2 () logye(10/10) (1) log,(log;16)
1 Without a calculator find the values of
(a) 3tow* (b) 320825
(c) log,o5 +log;02  (d) (logsb)(log,9)
(&) 10°107*10? {f) log,56 —log,?

3 Sketch y=2"% and y=4{4") from —1 to 1 on the same
graph. Put their mirror images x = —log,y and x =log,2y
on a second graph.

4 Following Figure 6.2 sketch the graphs of y = (4Y and x =
logy,;z y. What are log, »2 and log, ,4?

5 Compute without a computer:

(a) log,3 + log, (b) log,(H'°
(c) log,,100*° (d) (log, g} (log, 10)
(&) 22°/(2% () log(1/e)

6 Solve the following equations for x;
(@) log,(10°} =7
(c) log 10=2
(ejlogx+logx=log 8

{b}log 4x —log 4 =log 3
(d)log(1/x) =2
(f) log(x"} =5
7 The logarithm of y=x"is log,y =
*8 Prove that (log,al{log.c) = (logga)(log,c).

9 2'%is close to 10% (1024 versus 1000). If they were equal
then log,10 would be . Also log,,2 would be
instead of {.301.

10 The number 2!°%° has approximately how many (decimal)
digits?

Questions 11~-19 are about the graphs of y = b* and x =log, y.

11 By hand draw the axes for semilog paper and the graphs
of y=1.1" and y = 10(1.1),

12 Display a set of axes on which the graph of y =log,¢x is
a straight line. What other equations give straight lines on
those axes?

13 When noise is measured in decibels, amplifying by a factor
A increases the decibel level by 10 log A. If a whisper is 20db
and a shout is 70db then 10 log A =50 and A= .

14 Draw semilog graphs of y = 10' % and y = (/10

15 The Richter scale measures earthquakes by log,o(f/1) =
R. What is R for the standard earthquake of intensity {,? If
the 1989 San Francisco earthquake measured R = 7, how did
its intensity J compare to I,? The 1906 San Francisco quake
had R = 8.3, The record quake was four times as intense with
R=

16 The frequency of A ahove middle C is 440/second. The
frequency of the next higher A is . Since 272 2 1.5,
the note with frequency 660/sec is

17 Draw your own semilog paper and plot the data
y=7,11,16,28,44 at x=0,1/2, 1, 3/2, 2

Estimate A and b in y= Ab".

18 Sketch log-log graphs of y=x? and y = \/;

19 On log-log paper, printed or homemade, plot y =4, 11,
21,32, 45at x=1, 2, 3, 4, 5. Estimate 4 and k in y= Ax*.

Questions 20-29 are about the derivative dy/dx = cb™.
20 g(x)=b* has slope g’ =cg. Apply the chain rule to
gL = y to prove that dffdy = 1/cy.

21 If the slope of log x is 1/ex, find the slopes of log (2x) and
log (x*) and log (27}, ’

22 What is the equation {inciuding ¢} for the tangent line to
y=10° at x =07 Find also the equation at x = 1.

23 What is the equation for the tangent line to x =log, oy at
y = 1? Find also the equation at y = 10.

24 With b =10, the slope of 10° is ¢10*. Use a calculator for
small h to estimate ¢ = lim (10" — 1)/h.

25 The unknown constant in the slope of y={1y is
L=lim (.1*"—1)/h. (a) Estimate L by choosing a small A
(b) Change & to —h to show that L = — ¢ from Problem 24.

26 Find a base b for which (" — 1)/h = 1. Use k= 1/4 by hand
or h=1/10 and 1/100 by calculator.

27 Find the second derivative of y = b* and also of x = log, .

28 Show that C=Ilim (100* -- 1)/h is twice as large a5 ¢ =
lim (10* — 1)/h. (Replace the last 4's by 2h.)

29 In 28, the limit for b= 100 is twice as large as for b = 10,
So ¢ probably involves the of b.
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I 6.2 The Exponential & TN

The last section discussed &* and log,y. The base b was arbitrary—it could be 2 or 6
or 9.3 or any positive number except 1. But in practice, only a few bases are used.
I have never met a logarithm to base 6 or 9.3. Realistically there are two leading
candidates for b, and 10 is one of them. This section is about the other one, which is
an extremely remarkable number. This number is not seen in arithmetic or algebra
or geometry, where it looks totally clumsy and out of place. In calculus it comes into
its own.

The number is e. That symbol was chosen by Euler (initially in a fit of selfishness,
but he was a wonderful mathematician). It is the base of the aatural logarithm.
It also controls the exponential ¢", which is much more important than In x.
Euler also chose n to stand for perimeter—anyway, our first goal is to find e.

Remember that the derivatives of b* and log,y include a constant ¢ that depends
on b. Equations (10) and {11) in the previous section were

d f

Eb"=cb" and %logby=c—y. )
At x =0, the graph of b* starts from b° = 1. The slope is ¢. At y= 1, the graph of
log,y starts from log,1 = 0. The logarithm has slope 1/c. With the right choice of the
base b those slopes will equel 1 (because ¢ will equal 1).

For y = 2* the slope ¢ is near .7. We already tried Ax = .1 and found Ay = .07. The
base has to be larger than 2, for a starting slope of ¢ = 1.

We begin with a direct computation of the slope of log,y at y=1:

1 ! .
- = slope at 1 = }’1_1:13 ;[logb(l + hy— logbl] = ,1.1_1:1(1) log,,[(l + h)”":l. 2)

Always log,1 = (). The fraction in the middle is log,(1 + k) times the number 1/h. This
number can go up into the exponent, and it did.

The quantity (1 + k)™ is unusual, to put it mildly. As h — 0, the number 1+ h is
approaching 1. At the same time, 1/k is approaching infinity. In the limit we have
1°. But that expression is meaningless {like 0/0). Everything depends on the
balance between “nearly 1" and “nearly o0.” This balance produces the extraordinary
number e:

] 1y
DEFINITION  The mumber ¢ is equal to };i“rlj (1 + W' Equivalently ¢ = lim (1 + ;) .

n=+a

Before computing e, look again at the slope l/c. At the end of equation (2) is the
logarithm of e:

1/c =log,e. (3)
When the base is b= e, the slope is log,e = 1. That base e has ¢ = 1 as desired.
1
The derivative of " is 1+ ¢ and the dervivative of log,y is 1—y (4)

This is why the base ¢ is all-important in calculus. It makes ¢ = 1.

To compute the actual number 2 from (1 + k)'*, choose h =1, 1/10, 1/100, .... Then
the exponents 1/hare n=1, 10, 100, .... (All limits and derivatives will become official
in Section 6.4.) The table shows (1 + h)!** approaching ¢ as h —» 0 and n - oc:
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noh=t pep=1+l (1+h)”“=(1+1)
n H n
1 1.0 2.0 2.0
2 05 L5 2.25
10 0.1 1.1 2.593742
100  0.0¢ 1.01 2.704814
1000 0.001 1.001 2.716924
10000 0.0001 1.0001 2.718146

The last column is converging to e {not quickly). There is an infinite series that
converges much faster. We know 125,000 digits of ¢ (and a biliion digits of ). There
are no definite patterns, although you might think so from the first sixteen digits:

¢=2.7 1828 1828459045 - (and l/e= .37).
The powers of ¢ produce vy =¢*. At x=2.3 and 5, we are close to y =10 and 150.

The logarithm is the inverse function. The logarithms of 150 and 10, to the base ¢,
are close to x = 5 and x = 2.3. There is a special name for this logarithm——the ratural
fogarithm. There is also a special notation “In” to show that the base is e:

In y means the same as log,y. The natural logarithm is the exponent in & = y.

The notation ln y {or In x—it is the function that matters, not the variable) is standard
in calculus courses. After calculus, the base is generally assumed te be e. In most of
science and engineering, the natural logarithm is the automatic choice. The symbol
“exp {x)” means ¢, and the truth is that the symbol “log x™ generally means In x.
Base ¢ is understood even without the letters In. But in any case of doubt—on a
calculator key for examplc—the symbol “ln x™ emphasizes that the base is e.

THE DERIVATIVES OF & AND In x

Come back to derivatives and slopes. The derivativc of " is ¢b*, and thc dcrivative
of log,y 18 licy. If h=¢ then ¢ =1. For all bases. equation {3) is l/c=log,e.
This gives ¢—the slope of &% at x=O:

6k The number c is 1/log,e = log,b. Thus ¢ equais In b. (3}

¢=1In b is the mysterious constant that was not available earlier. The slope of 2% is
In 2 times 2%, The slopc of ¢* 15 In ¢ times ¢¥ (but In e = 1). We have the derivatives
on which this chapter depends:

6F The derivatives of ¢* and In y are ¢* and 1/y. For other bases

1
(In by’

d d
Tx 5 =(In bp* and — logyy =

5 ©

To make clear that those derivatives come from the functions (and not at all from
the dummy variablcs), we rewrite them using ¢ and x:

d , , d 1
Ee =¢ and = In x——x. (N
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Remark on slopes at x = 0: It would be satisfying to see directly that the stope of 2*
is below 1, and the slope of 4* is above 1. Quick proof: e is between 2 and 4.
But the idea is to see the slopes graphically. This is a small puzzle, which is fun to
solve but can be skipped.

2% rises from 1 at x=0 to 2 at x= 1. On that interval its average slope is 1. Its
slope at the beginning is smaller than average, so it must be less than | —as desired.
On the other hand 4” rises from § at x = — 4 to 1 at x = 0. Again the average slope
is $/3 = 1. Since x =0 comes at the end of this new interval, the slope of 4* at that
point exceeds 1. Somewhere between 2* and 4* is €%, which starts out with slope 1.

This is the graphical approach to e. There is also the infinite series, and a fifth
definition through integrals which is written here for the record:

1. e is the number such that ¢* has slope 1 at x=0
2. e is the base for which in y =log,y has slope | at y=1

1 (]
3. e is the hmit of(l + —) as n—
R
1 1 1 | 1 1
e=—t -ttt =l bt o Fe
de=gtutaty 276
5. the area [ x~* dx equals 1.

The connections between 1, 2, and 3 have been made. The slopes are | when e is the
limit of (1 + 1/n)". Multiplying this out wlll lead to 4, the infinite series in Section 6.6.
The official definition of In x comes from {dx/x, and then 5 says that In e = 1. This
approach to ¢ (Section 6.4) seems less intuitive than the others.

Figure 6.6b shows the graph of e ™*. It is the mirror image of e* across the vertical
axis. Their product is e*e¢ *=1. Where e¢* grows exponentially, e ™ decays
exponentially—or it grows as x approaches — oo, Their growth and decay are faster
than any power of x. Exponential growth is more rapid than polynomial growth, so
that e*/x" poes to infinity (Probiem 59). It is the fact that ¢* has slope ¢* which keeps
the function climbing so fast.

4. 3 E,.\' 2.\'

¢

C= (,—.\:.I’Z
JMTQ§\,

N N

x

FAg. 6.6 ¢ grows between 2* and 4% Decay of ™%, faster decay of e~ =2,

The other curve is y = e~ **2, This is the famous “bell-shaped curve” of probability
theory. After dividing by \/ﬂ, it gives the mormal distribution, which applies to so
many averages and so many experiments. The Gallup Poll will be an example in
Section 8.4, The curve is symmetric around its mean value x = 0, since changing x to
— x has no effect on x2.

About two thirds of the area under this curve is between x= — 1 and x = 1. I you
pick points at random below the graph, 2/3 of all samples are expected in that

interval. The points x = — 2 and x = 2 ar¢ “two standard deviations” from the center,
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enclosing 95% of the area. There is only a 5% chance of landing beyond. The decay
is even faster than an ordinary exponential, because $x? has replaced x.

THE DERIVATIVES OF e* AND e“*?

The slope of e* is *. This opens up a whole world of functions that calculus can deal
with. The chain rule gives the slope of ¢** and ¢*"* and every ¢“*:

6G The derivative of ™ is ¢ times du/dx. (8)

Special case u = cx: The derivative of e is ce®™. 9)

EXAMPLE 1 The derivative of e** is 3e** (here ¢ =3). The derivative of e~ is
e"*cos x (here u=sin x). The derivative of f(u(x)) is df/du times du/dx. Here
f=¢€" so df/du= e". The chain rule demands that second factor du/dx.

EXAMPLE 2 "2 js the same as 2*. Its derivative is In 2 times 2*. The chain rule
rediscovers our constant ¢ = In 2. In the slope of b* it rediscovers the factor ¢ =In b.

Generally e* is preferred to the original b*. The derivative just brings down the
constant c. It is better to agree on e as the base, and put all complications (like ¢ =
In b) up in the exponent. The second derivative of e is ¢Ze™.

EXAMPLE 3 The derivative of e **/? is —xe ™ */2 (here u= — x2/2 so du/dx = — x).
EXAMPLE 4 The second derivative of f= ¢ ~*"/2, by the chain rule and product rule,

18
fomA) e PR d Rl = 62 = 1) VB, (10)

Notice how the exponential survives. With every derivative it is multiplied by more
factors, but it is still there to dominate growth or decay. The points of inflection,
where the bell-shaped curve has f” = 0 in equation (10), are x=1 and x= — 1.
EXAMPLES (u=nln x). Since ¢"'™* is x" in disguise, its slope must be nx" !

d n
1 — phinx =M = H— l.
slope = ¢ dx(n In x)=x (x) nx (11)

This slope is correct for all n, integer or not. Chapter 2 produced 3x? and 4x? from
the binomial theorem. Now nx"~ ' comes from In and exp and the chain rule.

EXAMPLE 6 An extreme case is x* = (¢"*)*. Here u = x In x and we need du/dx:
d ; 1
—(xF) =" Inx+x*—|=x%In x+ 1).
dx X

INTEGRALS OF e AND e du/dx

The integral of e* is e*. The integral of e** is not ¢*. The derivative multiplies by ¢ so
the integral divides by c. The integral of ¢ is ¢**/c (plus a constant),

EXAMPLES |e¥*dx= 122“‘ +C b*dx = b 4=1C
2 Inb
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1 2 .
Je“"“‘dx= 533{J‘+1]+C Je‘”z dx — failure

The first one has ¢ = 2. The second has ¢ =1n b—remember again that b* = "%~
The integral divides by In b. In the third one, ¢*** ! is ¢** times the number ¢* and
that number is carried along. Or more likely we see ™ * D as ¢, The missing du/dx =
3 is fixed by dividing by 3. The last ¢xample fails because dujdx is not there. We
cannot integrate without du/dx:

6H The indefinite integral Je’j—idx equals & + C.

Here are three examples with du/dx and one without it:
Je’“‘" cos x dx= e + C J‘Jce‘z’r2 dx=¢e""?+C

Vx *d -1
AP e = c
(1+ ¢

ﬁ 1+€t+

The first is a pure e“du. So is the second. The third has u=./x and dufdx = 1/2,/x,
so only the facter 2 had to be fixed. The fourth example does not belong with the
others. Tt is the integrai of du/u?, not the integral of ¢*du. I don’t know any way to
tell you which substitution is best—except that the complicated part is | + & and it
is natural to substitute u. If it works, good.

Without an extra ¢* for dufdx, the integral {dx/(1 + ¢*)? looks bad. But u =1+ ¢*
is still worth trying. It has du = ¢*dx = (u — 1)dx:

dx du 1 1 1
(1+e (u—l)uz_.[du(u—l ﬂ;‘?)' (12)

That last step is “partial fractions.” The integral splits into simpler pieces (explained
in Section 7.4) and we integrate each piece. Here are three other integrals:

Je‘*”'dx Je"(-’-l + &% )dx Je X4+ g¥)dx

The first can change to ~ [ edu/u?, which is not much better. (It is just as impossible.)
The second is actually {udu, but I prefer a split: [4e* and {e®* are safer to do
separately. The third is | (4e * + 1)dx, which also separates. The exercises offer prac-
tice in reaching ¢*du/dx — ready to be integrated.

Warning about definite integrals When the lower limit is x =0, there is a natural
tendency to expect f{0) = 0—in which case the lower limit contributes nothing, For
a power /= x* that is true. For an exponential f= ¢3* it is definitely not true, because

fi)=1:

b | L o, 1 P 1
J.Oe dx—je :|0—§[e —1) Lxe" dx—ie :|0—5(e-—l).
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6.2 EXERCISES

Read-through questions

The number e is approximately _ o . It is the limit of {1 + h)
to the power _ b . This gives 1.01'°® when h=_ ¢ . An

equivalent form is e=lim{_d .

When the base is b = ¢, the constant ¢ in Section 6.1is __®
Therefore the derivative of y=¢"isdy/dx=__t . Thederiv-

ative of x =log,y is dx/dy=_9 . The slopes at x=0 and

y=1are both __h__ The notation for log,yis __| __, which
isthe __| logarithm of y.
The constant ¢ in the slope of b isc = __ k___ The function

b* can be rewritten as _ 1 __ . Its derivative is _m . The
derivative of ¢** is __ n__, The derivative of &™™* is _ o

The derivative of e~ brings down a factor __p

The integral of ¢* is __a_ . The integral of ¢*is __r__,
The integral of e**'du/dx is _ 8. In general the integral of

"™ by itself is __t__ to find.

Find the derivatives of the functions in 1-18.

1 7™ 2 -7 7

3 (9 4"

5 3% 6 &3

7 2737 8 4%

9 (1l + ¢ 10 gt ®
11 &% 4 x7¢ 12 xe'”
13 xe* — ¢ 14 x%¢* - 2xe* + 2¢°
15 ::;: 16 67 + Ine")

17 %% 4+ gin ¢~ 18 x~ U [Whlch is 8'—_)

19 The difference between ¢ and (1 + 1/r)" is approximately
Ce/n. Subtract the calculated values for n = 10, 100, 1000 from
2.7183 to discover the number C.

20 By algebra or a calculator find the limits of (1 + 1/n)*" and
(1+ 1mpv™.

21 The limit of (11/10)'9, (101/100)*°°, ... is e. So the limit of
(10/111°, (100/101)1°°, . _ s . So the limit of
(10/11)'1, (100/101}1°L, ... is . The last sequence is
(1— 1/ny".

22 Compare the number of correct decimals of ¢ for
(1.001)!9°° and (1.0001)'9°°° and if possible {1.00001)'%°°°°,
Which power n would give all the decimals in 2.71828?7

23 The function y=¢* sclves dy/dx =y, Approximate this
equation by AY/Ax=7Y, which is ¥Y(x+ h)— ¥(x}=h¥(x}.
With k=1 find ¥(h) after one step starling from ¥{0)=1,
What is ¥{1) after ten steps?

24 The function that solves dy/dx = — y starting from y =1
at x=0 1s . Approximate by Y(x+h)— Y(x)=
— hY(x). If h =1 what is Y(h) after one step and what is ¥{1)
after four steps?

25 Invent three functions f, g, h such that for x> 10
{1+ 1jx)" < f{x) < & < g(x) < &** < h{x) < x.

26 Graph &= and ./e* at x= — 2, —1, 0, 1, 2. Another form
of \/e* is :

Find antiderivatives for the functions in 27-36.

27 & 4+ ¢™* 28 (2**)(e™)

29 I+ 2+ ¥ w2

31 (26 + 2¢° 32 (1) + (1/x%)

33 xe¥ + xe ¥ M (sin x)e*™* + (cos x)e™*
35 \/e_‘+ (e9)? 36 x&® (trtal and error)

37 Compare ¢~ * with e *". Which one decreases faster near
x =(? Where do the graphs meet again? When is the ratio of
2 ** 10 e * less than 171007

38 Compare ¢ with x*: Where do the graphs meet? What
are their slopes at that point? Divide x* by ¢* and show that
the ratio approaches infinity.

39 Find the tangent line to y = ¢* at x = a. From which point
on the graph does the tangent line pass through the origin?
40 By comparing slopes, prove that if x > 0 then
(a)e>14+x (b)e*>1—x.

41 Find the minimum value of y = x* for x > 0. Show from
d?y/dx® that the curve is concave upward.

42 Find the slope of y = x'** and the point where dy/dx =0,
Check d2y/dx? to show that the maximum of x'/* is

43 If dy/dx =y find the derivative of ¢”*y by the product.
rule. Deduce that )x) = Ce* for some constant C.

44 Prove that x® =¢" has only one positive solution.

Evaluate the integrals in 45-54. With infinite limits, 4950 are
“improper.”

1 ]

45 | e dx 46 | sin x &% dx
JO JO
1 1

47 2* dx 48 275 dx
J-1 J-1
ﬂm ﬂu:

49 e *dx 50 xe * dx
J0 JO
ﬂl ﬂl

51 el ** dx 52 el x dx
o D
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55 Inlegrate the integrals that can be integrated:

[ &
J dufdx

dx

1
53 | 2x cos x dx 54 J‘ {1—e9'° & dx
1]

[ fdu\? , du

] & (E) dx J‘(e’*) i dx.

56 Find a function that solves y{x)= Sy(x) with W0} =2.
57 Find a function that solves p(x) = 1/¥{(x) with )= 2.

58 With electronic help graph the function (1 + 1/x)". What
are its asymptotes? Why?

6 Exponenfials and Logarithms

The maximum of x"/&%, at x =, is n"fe".

59 This exercise shows that F{x)=x"/¢* =0 as x — oo,
{(a) Find dF/dx. Notice that F{x) decreases for x>n>(.

(b} F(2x) = 2x)'/e** = "x"je* - &* § 21" - &~

J’dum Deduce that F(2x) —» 0 as x — @, Thus F(x) = 0.
d

¢ * 60 With n =6, graph F(x) = x%/¢" on a calculator or com-

many decimal digits in 10!?

6.3 Growth and Decay in Science and Economics

The derivative of y = ¢~ has taken time and eflort. The result was y' = ce™, which
means that y' = cy. That computation brought others with it, virtually for free—the
derivatives of b* and x* and &“*). But I want to stay with y' = cy—which is the most
important differential equation in applied mathematics.

Compare y' = x with v = y. The first only asks for an antiderivative of x. We quickly
find y = §x* + C. The second has dy/dx equal to y itself—which we rewrite as dy/y =
dx. The integral is In y= x + C. Then y itself is e*¢. Notice that the first solution is
#x? plus a constant, and the second solution is ¢* times a constant.

b

There is a way to graph slope x versus slope y. Figure 6.7 shows ““tangent arrows,’
which give the slope at each x and y. For parabolas, the arrows grow steeper as x

Ag. §.7 The slopes are ¥’ = x and y = y. The solution curves fit those slopes.

puter. Estimate its maximum. Estimate x when you reach
F{x)=1. Estimate x when you reach F(x)=4,

61 Stirling's formula says that nl = . /2an n"/e". Use it to esti-
mate 6%/2% to the nearest whole number. Is it correct? How

62 x%e* — 0 is also proved by "'Hépital’s rule (at x = oo):
lim x%/e* = lim 6x%/¢* = fill this in = 0.
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grows—because ) =slope = x. For exponentials, the arrows grow steeper as y
grows—the equation is ¥ = slope = y. Now the arrows are connected by y = Ae*.
A differential equation gives a field of arrows (slopes). Its solution is a curve that stays
tangent to the arrows — then the curve has the right slope.

A field of arrows can show many solutions at once (this comes in a differential
equations course). Usually a single y, is not sacred. To understand the equation we
start from many y,—on the left the parabolas stay parallel, on the right the heights
stay proportional. For y' = — y all solution curves go to zero.

From y' = y it is a short step to )’ = cy. To make ¢ appear in the derivative, put ¢
into the exponent. The derivative of y = ¢ is ce™, which is ¢ times y. We have reached
the key equation, which comes with an initial condition—a starting value y,:

dy/dt = cy with y =y, at t=0. (1)

A small change: x has switched to t. In most applications time is the natural variable,
rather than space. The factor ¢ becomes the “growth rate” or ““decay rate”—and e**
converts to e“.

The last step is to match the initial condition. The problem requires y =y, at
t=0. Our ¢ starts from ¢°=1. The constant of integration is needed now—the
solutions are y = Ae“'. By choosing A = y,, we match the initial condition and solve
equation (1). The formula to remember is y,e.

61 The exponential law y = y,e® solves y' = cy starting from y,.

The rate of growth or decay is ¢. May I call your attention to a basic fact? The
formula yoe” contains three quantities y,,c,t. If two of them are given, plus one
additional piece of information, the third is determined. Many applications have one
of these three forms: find t, find c, find y,.

1. Find the doubling time T if ¢ = 1/10. At that time y,e’" equals 2y,:

" =2 yields ¢T=1In 2 so that T= 1(—2 x ——: (2)
The question asks for an exponent T. The answer involves logarithms. If a cell grows
at a continuous rate of ¢ = 10% per day, it takes about .7/.1 =7 days to double in
size. (Note that .7 is close to In 2.) If a savings account earns 10% continuous interest,
it doubles in 7 years.
In this problem we knew c. In the next problem we know T.

2. Find the decay constant ¢ for carbon-14 if y =4y, in T= 5568 years.
eT =14 yields ¢T=1In % so that ¢~ (In $)/5568. (3)

After the half-life T= 5568, the factor ¢‘” equals 4. Now c is negative (In 3= —In 2).
Question 1 was about growth. Question 2 was about decay. Both answers found
eT as the ratio y(T)/y(0). Then ¢T is its logarithm. Note how ¢ sticks to T.
T has the units of time, ¢ has the units of **1/time.”
Main point: The doubling time is (In 2)/c, because ¢T=1In 2. The time to multiply
by e is 1/c. The time to multiply by 10 is (In 10)/c. The time to divide by e is —1/c,
when a negative ¢ brings decay.

3. Find the initial value y, if ¢ =2 and y(1)=5:

Wt) = yoe yields yo= yt)e ™ =5e" 2
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2 y=yge’ (1.0513)%
Set compound (1.05)20
continuonsly
$21 y=e0 2

8y =¥
$1 ')’ =1 + .05t
y=ype simple interest

-+ t

T=ln2 5 10 15 20 years
Ag. 6.8 Growth (¢ > 0} and decay (c < 0). Doubling time T ={(In 2)/c. Future value at 5%.

All we do is run the process backward. Start from 5 and go back to y,. With time
reversed, ¢ becomes ¢~ %, The product of ¢? and ¢~ ? is 1—growth forward and
decay backward.

Equally important is T+ t. Go forward to time Tand go onte T+ 1.

WT+1) is yoerm*" which is (y,eT)e". @

Every step ¢, at the start or later, multiplies by the same ¢. This uses the fundamental
property of exponentials, that eT*' = T ¢/,

EXAMPLE 1 Population growth from birth rate b and death rate d (both constant):
dy/dt=by—dy=cy (thenetrateis c=b—d).

The population in this model is yoe® = ype®e™*. It grows when b > d (which makes

¢ > 0). One estimate of the growth rate is ¢ = 0.02/year:

The earth’s population doubles in about T= % e F?Z

=35 years.

First comment: We predict the future based on c. We count the past population
to find c. Changes in ¢ are a serious problem for this model.

Second comment: yee™ is not a whole number. You may prefer to think of bacteria
instead of people. (This section begins a major application of mathematics to economics
and the life sciences.) Malthus based his theory of human population on this equation
y' = cy—and with large numbers a fraction of a person doesn’t matter so much. To
use calculus we go from discrete to continuous. The theory must fail when t is very
large, since populations cannot grow exponentially forever. Section 6.5 introduces the
logistic equation y' = cy — by?, with a competition term — by? to slow the growth.

Third comment: The dimensions of b, ¢, d are “1/time.” The dictionary gives birth
rate = number of births per person in a unit of time. It is a relative rate—people
divided by peopie and time. The product ct is dimensionless and ¢ makes sense {(also
dimensionless). Some texts replace ¢ by A (lambda). Then 1/4 is the growth time or
decay time or drug elimination time or diffusion time.

EXAMPLE 2 Radioactive dating A gram of charcoal from the cave paintings in
France gives 0.97 disintegrations per minute. A gram of living wood gives 6.68 disin-
tegrations per minute. Find the age of those Lascaux paintings.

The charcoal stopped adding radiocarbon when it was burned (at ¢ =0). The
amount has decayed to yoe'. In living wood this amount is still y,, because cosmic
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rays maintain the balance. Their ratio is ¢ = 0.97/6.68. Knowing the decay rate ¢
from Question 2 above, we know the present time

0.97 ) _ 5568 (0.97\ _
ct=In (?‘?;) yields ¢= —_Fln(m) = 14,400 years.

Here is a related problem—the age of uranium. Right now there is 140 times as much
U-238 as U-235. Nearly equal amounts were created, with half-lives of (4.5)10° and
(0.7)10° years. Question. How long since uranium was created? Answer: Find ¢ by
spbstituting ¢ = (In 3)/(4.5)10° and C = (In $)/(0.7)10°:

In 140
c—C

=140 = ct—Ct=In 140 = t= = 6(10°) years.

EXAMPLE 3 Calculus in Economics: price inflation and the value of money

We begin with two inflation rates — a continuous rate and an annual rate. For the
price change Ay over a year, use the annual rate:

Ay = (annugl rare) times (y) times (Af). (5)
Calculus applies the continuous rate to each instant dt. The price change is dy:
dy = (continuous rate) times (y) times (dt). (&
Dividing by dt, this is a differential equation for the price:
dy/dt = (continuous rate) times (y) = .05y.
The solution is yoe®™. Set = 1. Then ¢® & 1.0513 and the annual rate is 5.13%.

When you ask a bank what interest they pay, they give both rates: 8% and 8.33%.
The higher one they call the “effective rate.” It comes from compounding (and depends
how often they do it). If the compounding is continuous, every dr brings an increase
of dy—and % is near 1.0833.

Section 6.6 returns to compound interest. The interval drops from a month to a
day to a second. That leads to (1 + [/n}", and in the limit to e. Here we compute the
effect of 5% continuous interest:

Future value A dollar now has the same value as ¢'**T dollars in T years.
Present value A dollar in T years has the same value as ¢ -**7 dollars now.
Doubling time Prices double (¢%*7 = 2)in T=1In 2/.05 = 14 years.

With no compounding, the doubling time is 20 years. Simple interest adds on 20
times 5% = 100%. With continuous compounding the time is reduced by the factor
In 2 = .7, regardless of the interest rate,

EXAMPLE 4 In 1626 the Indians sold Manhattan for $24. Qur calculations indicate
that they knew what they were doing. Assuming 8% compound interest, the original
$24 is multiplied by ¢'°. After ¢ = 365 years the multiplier is ¢2°-2 and the $24 has
grown to 115 trillion dollars. With that much money they could buy back the land
and pay off the national debt.

This seems farfetched. Possibly there is 2 big flaw in the model. It is absolutely
true that Ben Frankiin left money to Boston and Philadelphia, to be invested for 200
years. In 1990 it yielded millions (not trillions, that takes longer). Our next step is a
new model.
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Question How can you estimate ¢*°2 with a $24 calculator (log but not In)?
Answer Muitiply 29.2 by log,, e = .434 to get 12.7. This is the exponent to base 10.

Alter that base change, we have 1027 or more than a trillion.
GROWTH OR DECAY WITH A SOURCE TERM

The equation y' = y will be given a new term. Up to now, all growth or decay has
started from y,. No deposit or withdrawal was made later. The investment grew by
itself—a pure exponential. The new term s allows you to add or subtract from the
account. 1t is a “source” —or a “sink” if s is negative. The source s =5 adds 5dt,
proportional to dt but not to y:

Constant source: dy/dt=y+ 5 starting from y=y,.

Notice y on both sides! My first guess y = ¢'* * failed completely. Its derivative is ' * *
again, which is not y + 5. The class suggested y = ¢ + 5¢. But its derivative ¢’ + 5 is
still not y+ 5. We tried other ways to produce 5 in dy/dt. This idea is doomed to
failure. Finally we thought of y = Ae' — 5. That has y' = Ae' = y + 5 as required.
Important: A is aot y,. Set t = 0 to find y; = A — 5. The source contributes 5¢' — 5:

The solution is (y, + 5)¢' — 5. That is the same as y,¢' + 5(¢' — 1}.

s = 5 muitiplies the growth term &' — 1 that staris at zero. yge' grows as hefore.

EXAMPLES dy/di= —y+ 5has p=(y,— S '+ 5. Thisis ye "+ 5{1 —e ). I 10¢' -5
That final term from the souftce is still positive. The other term ype " decays to zero. 5 /
The limit as t —» oo is y, = 5. A negative ¢ leads to a steady state y,. 0 ol 5

Based on these examples with ¢ =1 and ¢ = - 1, we can find y for any ¢ and s. 0; _5

-5 _
d
EQUATION WITH SOURCE d—'l: = ¢y + s starts from y =y, at t=0. (7) 0
Se1+5

The source could be a deposit of s = $1000/year, after an initial investment of y, = 5 5=y
$8000. Or we can withdraw funds at s = — $200/year. The units are “doliars per year” _Se1 15
to match dy/dt. The equation feeds in $1000 or removes $200 continuously—not all ¢
at once.

Note again that y = ¢“**" is not a solution. Its derivative is (c + s)y. The combina- Ag. 6.9
tion y =¢" + s is also not a solution (but closer). The analysis of ¥ = cy + s will be
our main achievement for differential equations (in this section). The equation is not
restricted to finance—far from it—but that produces excellent exampies.

I propose to find y in four ways. You may feel that one way is enough.t The first
way is the fastest—only three lines—but please give the others a chance. There is no
point in preparing for reai problems if we don’t solve them.

Solution by Maethod 1 {fast way) Substitute the combination y = A¢** + B. The solu-
tion has this form—exponential plus constant. From two facts we find A and B:

the equation ¥y =cy + s gives cAe” = c(de” + B) + 5
the initial value at t =0 gives A + B = y,.

tMy class says one way is more than enough. They just want the answer. Sometimes ] cave
tn and wote down the formula: y is y,e” plus s(e” — 1)/c from the source term.
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The first line has cA¢”" on both sides. Subtraction leaves ¢B+s5=0, or B= — s/c.
Then the second line becomes 4 = yo — B = y, + (s/c):

KEY FORMULA y= (yo + S)e"— S or  y=ye+ E(e"— 1). (8)

With s=0 this is the old solution y,¢" (no source). The example with ¢ =1 and
s = 5 produced (y, + 5)¢' — 5. Separating the source term gives y,&' + 5(¢' — 1).

Solution by Method 2  (slow way) The input y, produces the output y,e”. After ¢
years any deposit is multiplied by &”. That also applies to deposits made after the
account is opened. If the deposit enters at time T, the growing time is only t— 7.
Therefore the multiplying factor is only &~ T, This growth factor applies to the smail
deposit (amount sdT) made between time Tand T +dT.

Now add up all outputs at time ¢. The output from y, is y,¢”. The small deposit
sdT near time T grows to "~ sdT. The total is an integral:

H

D= yoe™ +'[ et NdT, (9)
T=0

This principle of Duhamel would still apply when the source s varies with time.

Here s is constant, and the integral divides by ¢:

s{ e mar=% [ =-243p (10)

That agrees with the source term from Method 1, at the end of equation (8). There
we looked for “‘exponential plus constant,” here we added up outputs.

Method 1 was easier. It succeeded because we knew the form Ae” + B—with
“undetermined coefficients.”” Method 2 is more complete. The form for y is part of
the output, not the input. The source s is a continuous supply of new deposits, all
growing separately. Section 6.5 starts from scratch, by directly integrating y' = cy + s.

Remark Method 2 is often described in terms of an integrating factor. First write
the equation as y' — ¢y = s. Then multiply by a magic factor that makes integration
posstble:

(Y —cyle " =se " multiply by the factor e~
ye‘"]:, = - Se‘“]:) integrate both sides
ye - yo=— S(e‘“— 1) substitute 0 and ¢t

y=éy, + E{e" — 1)  isolate y to reach formula (8)

The integrating factor produced a perfect derivative in line 1. I prefer Duhamel’s idea,
that ali inputs y, and s grow the same way. Either method gives formula (8) for y.

THE MATHEMATICS OF FINANCE (AT A CONTINUOUS RATE)

The question from finance is this: What inputs give what outputs? The inputs can
come at the start by y,, or continuously by s. The output can be paid at the end or
continuously. There are six basic questions, two of which are already answered.
The future value is y,¢* from a deposit of y,. To produce y in the future, deposit
the present vaiue ye . Questions 3—6 involve the source term s. We fix the continuous
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rate at 5% per year (c = .05), and start the account from y, = 0. The answers come
fast from equation (8).

Question 3  With deposits of s = $1000/year, how large is y after 20 years?

y= -:—(e" -1)= __1(())(;0(8{_05}(30, ~ 1)= 20,000(¢ — 1) ~ $34,400,

One big deposit yields 20,000e 2 $54,000. The same 20,000 via s yields $34,400.

Noticc a small by-product (for mathematicians). When the interest rate is ¢ =0,
our formula s(¢” — 1)/c turns into 0/0. We are absolutely sure that depositing
$1000/year with no interest produces $20,000 after 20 years. But this is not obvious
from 0/0. By ’'Hopital’s rule we take c-derivatives in the fraction:

ot _
fim D iy S‘T‘f = st. This is (1000)(20) = 20,000. (11)

20 ¢ c=0

Question 4 What continuous deposit of s per year yields $20,000 after 20 years?
= 5 aosnz0) _ i _ 1000
20,000 G (e 1) requires s 1 ~ 582,

Deposits of $582 over 20 years total $11,640. A single deposit of y, = 20,000/¢ =
$7,360 produces the same $20,000 at the end. Better to be rich at 1 =0.

Questions 1 and 2 had s= 0 (no source). Questions 3 and 4 had y, = 0 (no initial
deposit). Now we come to ¥y =0. In 5, everything is paid out by an anmaity. In 6,
everything is paid up on a loan.

Question 5 What deposit y, provides $1000/year for 20 years? End with y = 0.
5 _ s i
¥ = yoe + E{e“ - 1) = 0 requires y, = :_(1 —e ),

Substituting s = — 1000, ¢ = .05, t = 20 gives y, = 12,640, If you win $20,000 in a
lottery, and it is paid over 20 years, the lottery only has to put in $12,640. Even less
if the interest rate is above 5%.

Question 8 What payments s will clear a loan of y, = $20,000 in 20 years?

Unlfortunately, s exceeds $1000 per year. The bank gives up more than the $20,000
to buy your car (and pay tuition). {1 also gives up the interest on that money. You pay
that back too, but you don’t have to stay even at every moment. Instead you repay
at a constant rate for 20 years. Your payments mostly cover interest at the start and
principal at the end. After t = 20 years you are even and your debt is y = 0.

This is like Question 5 (also y = 0), but now we know y, and we want s;

¥= yoe' + ° (¢~ 1) = 0 requires 5 = ~ cyoefe” — 1)

The loan is y, = $20,000, the rate is ¢ = .05/year, the time is ¢ = 20 years. Substituting
in the formula for s, your payments are $1582 per year.

Puzzle How is s = §1582 for loan payments related to s = $582 for deposits?
0 — $582 per year — 820,000 and $20,000 —» — $1582 per year —» 0.
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That difference of exactly 1000 cannot be an accident. 1582 and 582 came from
e 1 . . e—1
1000 —— and 1000 —— with difference 1000 —— = 1000.
e—1 e—1 e—1

Why? Here is the real reason. Instead of repaying 1582 we can pay only 1000 (to
keep even with the interest on 20,000). The other 582 goes into a separate account.
After 20 years the continuous 582 has built up to 20,000 (including interest as in
Question 4). From that account we pay back the loan.

Section 6.6 deals with daily compounding—which differs from continuous com-
pounding by only a few cents. Yearly compounding differs by a few dollars.

s=-1000 20

Fig. 6.40 Questions 3-4 deposit 5. Questions 5-6 repay loan or annuity. Steady state — s/c.

TRANSIENTS VS. STEADY STATE

Suppose there is decay instead of growth. The constant ¢ is negative and yqe® dies
out. That is the “transient” term, which disappears as t — co. What is left is the
“steady state.” We denote that limit by y_ .

Without a source, y,, is zero (total decay). When s is present, y, = — s/c:

6J The solution y= ( Yo+ g)e“ = E approaches y, = — g when ¢“— 0.

At this steady state, the source s exactly balances the decay cy. In other words
¢y +s=0. From the left side of the differential equation, this means dy/dt = 0. There
is no change. That is why y_, is steady.

Notice that y_, depends on the source and on c—but not on y,.

EXAMPLE 6 Suppose Bermuda has a birth rate b= .02 and death rate d =.03. The
net decay rate is ¢ = — .01. There is also immigration from outside, of s = 1200/year.
The initial population might be y, = 5 thousand or y, = 5 million, but that number
has no effect on y_ . The steady state is independent of y,,.

In this case y, = — s/c =1200/.01 = 120,000. The population grows to 120,000 if
Vo is smaller. It decays to 120,000 if y, is larger.

EXAMPLE 7 Newton’s Law of Cooling: dyfdt=c(y—y,). (12)

This is back to physics. The temperature of a body is y. The temperature around it
is y,.. Then y starts at y, and approaches y, , following Newton’s rule: The rate is
proportional to y — vy, . The bigger the difference, the faster heat flows.

The equation has —cy,, where before we had s. That fits with y_ = — s/c. For the
solution, replace s by —cy,, in formula (8). Or use this new method:
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Solution by Method 3 The new idea is to look at the difference y — y ., . Its derivative
is dy/dt, since y, is constant. But dy/dt is o(y — y)—this is our equation. The differ-
ence starts from y, — y,, and grows or decays as a pure exponenlial:

L= ya) =y~ ya) has the solution (v~ yo)= (0~ ya)é.  (13)

This solves the law of cooling. We repeat Method 3 using the letters s and ¢;

d 5 § 5 s
—_ + - = - i "= + = n“
dt( c) c(y + c) has the solution (y + c) (yo C)e (14)

Moving s/c to the right side recovers formula (8). There is a constant term and an
exponential term. In a differential equations course, those are the “ particular solution”
and the “homaogeneous solution.” Tn a calculus course, it’s time to stop.

EXAMPLE8 1In a 70° room, Newton's corpse is found with a temperature of 90°. A
day later the body registers 80°. When did he stop integrating (at 98.6°)?

Solution Here y, = 70 and y, = 90. Newton’s equation (13) is y = 20¢™ + 70. Then
y= 80 at ¢ = 1 gives 20¢° = 10. The rate of cooling is ¢ = In . Death occurred when
20¢7 + 70 =98.6 or ¢” = 1.43. The time was ¢t =In 1.43/ln % = half a day earlier.

6.3 EXERCISES

Read-through exercises

If ¥ =cy then Wt)=_9a . If dy/dt =Ty and y, =4 then
W)= __b_ . Thissolution reaches 8att=__¢ . Ifthedou-

bling time is Tthenc=_4d . If y¥ =3y and y(1}=9 then y,

was _ e . When ¢ is negative, the solution approaches
1 ast—+m.

The constant solution to dy/dt=y+6is y=_g . The
general sojutionis y=Ade' — 6. If yo =4 then A=_ h_ . The
solution of dy/dt =cy + s starting from y, is y=Ae* + B=

! _. The output from the source s is __I__. An input at
time T grows by the factor _ k _ at time ¢,

At ¢ = 10%, the interest in time dt is dy=_1 . This
equation yields yf)=_m . With a source term instead of
¥o. @ continuous deposit of s = 4000/year yields y=__n
after 10 years. The deposit required to produce 10,000 in 10
years is s=__ © (exactly or approximately). An income of
4000/year forever (!) comes from yo=_ P . The deposit to
give 4000/year for 20 years is yo=_ a . The payment rate
5 to clear a loan of 10,000 in 10 yearsis __r

The solution to y' = — 3y + s approaches y, = __$

Solve 1-4 starting from y, = 1 and from y, = — 1. Draw both
solutions on the same graph.

dy dy dy
1 —=2 2 = 3 == = =
di d dt Zy 4 y

Solve 5-8 starting from y, = 10. At what time does y increase
to 100 or drop to 17

dy dy dy dy _
522 6 = — EF_ et 8 _
dt 4y dt u 7 di ¢ a ¢
9 Draw a field of “tangent arrows” for y' = — y, with the
solution curves y=¢ *and y= —pg~ %,

10 Draw a direction field of arrows for ' = y — 1, with solu-
tton curves y=¢*+ 1 and y=1,

Problems 11-27 involve y,¢®. They ask for c or ¢ or y,.

11 If a culture of bacteria doubles in two hours, how many
hours to multiply by 107 First find c.

12 If bacteria increase by factor of ten in ten hours, how
many hours to increase by 100? What is ¢?

13 How old is a skull that contains 4 as much radiocarbon
25 2 modern skull?

14 If a relic contains 90% as much radiocarbon as new mate-
rial, could it come from the time of Christ?

13 The population of Cairo grew from 5 million to 10 million
in 20 years, From y =cy find ¢. When was y = 8 million?

16 The populations of New York and Los Angeles are grow-
ing at 1% and 1.4% a year. Starting from 8 million (NY) and
6 million (LA}, when will they be equal?
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17 Suppose the value of §1 in Japanese yen decreases at 2%
per year. Starting from 31 = Y240, when will 1 dollar equal 1
yen?

18 The effect of advertising decays exponentially. If 40%
remember a new product after three days, find ¢. How long
will 20% remember it?

19 If y=1000 at t=3 and y=3000 at t=4 (exponential
growth), what was y, at t =0?

20 If y=100 at t =4 and y =10 at ¢ = 8 (exponential decay)
when will y = 1? What was y,?

21 Atmospheric pressure decreases with height according to
dp{dh = ¢p. The pressures at A =0 (sea level) and A =20 km
are 1013 and 50 millibars. Find ¢, Explain why p=

+/ 1013-50 halfway up at h = 10.

221 For exponential decay show that y{¢) is the square root of
Y(0) times ¥2¢). How could you find y{(31) from y(t) and ¥{2¢)?

23 Most drugs in the bloodstream decay by y =cy (first-
order kinetics). (a) The half-life of morphine is 3 hours. Find
its decay constant ¢ (with units). (b} The half-life of nicotine
is 2 hours. Aflter a six-hour flight what fraction remains?

24 How often should a drug be Laken if its dose is 3 mg, it is
cleared at ¢ =.01/hour, and 1 mg is required in the blood-
stream at all times? (The docior decides this level based on
body size.)

25 The antiseizure drug dilantin has constant clearance rate
¥ =—auntil y=y,. Then ¥ = — ay/y,. Solve for ) in two
pieces from y,. When does y reach y,?

26 The actual elimination of nicotine is multiexponential; y =
Ae” + Be®. The first-order equation (d/dt — c)y = 0 changes
to the second-order equation (d/dt — c){d/dt — C)y = 0. Write
out this equation starting with ", and show that it is satisfied
by the given y.
27 True or fulse. If false, say what's true,

(a) The time for y = ¢” to double is (In 2)/(In c).

b If y=cyand 2 =cz then (y+ 2) =2y + 2).

() If ¥ = cy and 2’ =cz then (yfz) =0.

(d}If ¥ =cy and z' = Cz then (yz) = (c + O)yz
28 A rocket has velocity v. Burnt fuel of mass Am leaves at
velocity v — 7. Total momentum is constant;

mp = {m—Am)(v + Av) + Am{v — 7).

What differential equation connects m to v? Solve for vim) not
K}, starting from vy = 20 and m,=4.

Problems 29-36 are about solutions of ¥ =cy +s.

29 Solve y' =3y + 1 with y, =0 by assuming y=Ae* + B
and determining A and B.

M Solve y' =8 — y starting from y, and y = de™* + B.

Solve 31-3 with y, =0 and graph the solution.

d
1oy

dt 32;:}!—1

dy dy

- _ - 7 QA
1n it y+1 2 y—1

35 (a) What value y = constant solves dy/dt = — 2y + 127
(b) Find the solution with an arbitrary constant A.
(c) What solutions start from y, =0 and y, = 10?
(d) What is the steady state y,?

36 Choose + signs in dy/dt= +3y+6 to achieve the

following results starting from y, = 1. Draw graphs,
(a) y increases to oo (b} y increases to 2
{c} y decreases to —2 (d) y decreases to — @

37 What value y = constant solves dy/dt =4 — y? Show that
¥ =dAe™* + 4 is also a solution. Find y{1} and p,, if yo=13.

I8 Solve ¥ =y+¢' from y,=0 by Method 2, where the
deposit €7 at time Tis multiplied by ¢~T. The total output
attime tis W)= [ye’ e TdT= . Substitute back to
check y' =y + €.

39 Rewrite y' =y +¢' as ¥ — y=¢'. Multiplying by €7, the
left side is the derivative of . Integrate both sides
from y, =0 to find ¥e).

40 Solve y'= —y+1 from y, =0 by rewriting as j' +y=1,
multiplying by ¢, and integrating both sides.

41 Solve y' = y + tfrom y, =0 by assuming y = 4¢’ + Bt + C.

Problems 42-57 are about the matbematics of finance.

42 Dollar bills decrease in value at ¢ = — .04 per year because
of inflation. If you hold $1000, what is the decrease in dt
years? At what rate s should you print money to keep even?

43 If a bank offers annual interest of 4% or continuous
interest of 74%, which is better?

44 What continuous interest rate is equivalent to an annual
rate of 9%? Extra credit: Telephone a bank for both rates
and check their calculation.

45 At 100% interest (¢ = 1) how much is a continuous deposit
of s per year worth after one year? What initial deposit p,
would have produced the same output?

46 To have $50,000 for college tuition in 20 years, what gift
Yo should a grandparent make now? Assume ¢ = 10%. What
continuous deposit should a parent make during 20 years? If
the parent saves s = $1000 per year, when does he or she reach
$50,000 and retire?
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47 Income per person grows 3%, the population grows 2%,
the total income grows . Answer if these are {a)
annual rates (b) continuous rates.

48 When dy/dr = ¢y + 4, how much is the deposit of 4dT at
time T worth at the later time ¢? What is the value at r = 2 of
deposits 4dT from T=010 T=1?

49 Depositing s = 351000 per year leads to $34,400 after 20
years {Question 3). To reach the same result, when should vou
deposit $20,000 all at once?

S0 For how long can you withdraw = $500/year after
depositing y, = $5000 at 8%. before you run dry?

51 What continuous payment 5 clears a 31000 loan in 60
days, if a loan shark charges 1% per day continuously?

52 You arc the loan shark. What is §1 worth after a year of
continuous compounding at 1% per day?

53 You can aflord payments of s =3%100 per month for 48
months. If the dealer charges ¢ = 6%. how much can vou
borrow?

54 Your income is {,e2" per year. Your expenses are Eq e

per year. {a) At what future time are they equal? {b) If you
borrow the difference until then, how much money have you
borrowed?

55 If a student loan in your freshman year is repaid plus 20%
four vears later, what was the effective interest rate?

56 Is a variable rate mortgage with ¢ =.09 +.001r for 20
years better or worse than a fixed rate of 10%?

57 At 10% instead of 8%, the 824 paid for Manhattan is
worth after 365 vears.

6.4 Logarithms

Problems 58-65 approach a steady state v, as ¢t —» x.
58 If dyjdr = — vy + 7 what is 3,7 What is the dertvative of
¥y, ?Then v — ¥, equals y5— 3, limes
59 Graph w1 when 3" =3y — (2 and y, is
{a) below 4

{byequal to 4 (c) above 4

60 The solutions to dvidi =c(y—L2) converge to ), =
provided ¢ 1s

61 Suppose the time unit in dy;dt = ¢y changes from minutes
to heurs. How does the equation change? How does dy/dt =
- ¥+ 5 change? How does v, change?
62 True or false, when y, and y, both satisfy ¥ =ey + 5.
ta) The sum y =y, + v, also satisfics this equation.
{b} The average v = H 1, + y,) satisfies the same cquation.
{c) The derivative y = v satisfies the same equation.

63 If Newton's coffec cools from 80 to 60 in 12 minuiecs
{roomn temperaturc 20°), iind . When was the coffee at 100 ?

64 If v, =100 and W) =90 and ¥2) =84, whatis y,?
65 If v, =100 and (1) =90 and 3(2) =81, what is v, ?
66 To cooi down collee, should you add milk now or later?

The cellee is at 70°C, the milk is at 10, the room is at 20°,

{a) Adding 1 part milk to 5 parts coffee makes it 60°. With
v, =20, the white collee cools to ) =

. The milk
Mixing at timec ¢ gives

{b) The black coffee cools 10 vin =
warms to v {fil—
(Sv.+v,)6=

We have given first place to ¢* and a lower place to In x. In applications that is
absclutely correct. But logarithms have one important theoretical advantage {plus
many applications of their own). The advantage 15 that the derivative of In x is 1/x,
whereas the derivative of ¢* is ¢*. We can’t define ¢ as its own integral, without
circular reasoning. But we can and do define In x (the natural logarithm) as the

integral of the ** —1 power™ which is 1ix:

|
lanJ‘ —dx
l.t

L |
or In y=J‘ —du. {n

1 1

Note the dummy variables. first x then u. Note also the live variables, first x then y.
Especially note the lower limit of integration, which is | and not 0. The logarithm is
the area measured from 1. Therefore In 1 =0 at that starting point—as required.
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Earlier chapters integrated all powers except this “—1 power.” The logarithm is
that missing integral. The curve in Figure 6.11 has height y = 1/x—it is a hyperbola.
At x =0 the height goes to infinity and the area becomes infinite: log 0= — c0.
The minus sign is because the integral goes backward from 1 to 0. The integral
does not extend past zero to negative x. We are defining In x only for x > 0.}

Fig. 6.41 Logarithm as area. Neighbors In a + In b =In ab. Equal areas: —In3=In2=%In4.

With this new approach, In x has a direct definition. It is an integral (or an area).
Its two key properties must follow from this definition. That step is a beautiful
application of the theory behind integrals.

Property 1: Inab=Ina+ Inb. The areas from 1 to a and from a to ab combine into
a single area (1 to ab in the middle figure):

a ab ab
Neighboring areas: J. %dx + .[ = dx= J chdx. (2)

1 X 1

The right side is In ab, from definition (1). The first term on the left is In a. The
problem is to show that the second integral (a to ab) is In b:

abl ” bl
J‘ —dx = J ;du = Inb. (3)

a 1

We need u =1 when x = a (the lower limit) and u = b when x = ab (the upper limit).
The choice u= x/a satisfies these requirements. Substituting x = au and dx=a du
yields dx/x = du/u. Equation (3) gives In b, and equation (2) is In a +1n b =1n ab.

Property 2: Inb"=nln b. These are the left and right sides of

| 5 P11
'f —dx 2 nj ~du. (4)
1 X 1 U

This comes from the substitution x = u". The lower limit x = 1 corresponds to u= 1,
and x = b" corresponds to u = b. The differential dx is nu"~ 'du. Dividing by x = u"
leaves dx/x = n du/u. Then equation (4) becomes In b"=nIn b.

Everything comes logically from the definition as an area. Also definite integrals:

3x 1 : 3
EXAMPLE 1 Compute J ?dr. Solution: In 3x — In x=1In ?x =In 3.

X

1
EXAMPLE 2 ComputeJ -I-dx. Solution: In 1 —1In .1 =1n 10. (Why?)
1X

1

+The logarithm of —1 is 7i (an imaginary number). That is because ¢* = —1. The logarithm
of i is also imaginary—it is $xi. In general, logarithms are complex numbers.

253
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EXAMPLE3 Compute J idu. Solution: In e* = 2. The area from 1 to ¢* is 2.

1

Remark While working on the theory this is a chance to straighten out old debts.
The book has discussed and computed (and even differentiated) the functions e¢* and
b* and x", without defining them properly. When the exponent is an irrational number
like ©t, how do we multiply e by itself n times? One approach (not taken) is to come
closer and closer to © by rational exponents like 22/7. Another approach (taken now)
is to determine the number e" = 23.1... by its logarithm.t Start with e itself:

e is (by definition) the number whose logarithm is 1
e™ is (by definition) the number whose logarithm is 7.

When the area in Figure 6.12 reaches 1, the basepoint is e. When the area reaches n,
the basepoint is e*. We are constructing the inverse function (which is ¢*). But how
do we know that the area reaches m or 1000 or —1000 at exactly one point? (The
area is 1000 far out at e'°°°, The area is —1000 very near zero at e '°°°,) To define
e we have to know that somewhere the area equals 1!

For a proof in two steps, go back to Figure 6.11c. The area from 1 to 2 is more
than % (because 1/x is more than 4 on that interval of length one). The combined area
from 1 to 4 is more than 1. We come to area =1 before reaching 4. (Actually at
e=2.718....) Since 1/x is positive, the area is increasing and never comes back to 1.

To double the area we have to square the distance. The logarithm creeps upwards:

1
In x> o0 but —nx—>0. (5)
X

The logarithm grows slowly because e* grows so fast (and vice versa—they are
inverses). Remember that ¢* goes past every power x". Therefore In x is passed by
every root x'/". Problems 60 and 61 give two proofs that (In x)/x'"" approaches zero.

We might compare In x with \/; At x = 10 they are close (2.3 versus 3.2). But out
at x = ¢'° the comparison is 10 against e*, and In x loses to \/x.

e 1 et 1 e

Fig. 6.12 Area is logarithm of basepoint. Fig. 6.43 In x grows more slowly
than x.

+Chapter 9 goes on to imaginary exponents, and proves the remarkable formula ™ = — 1.
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APPROXIMATION OF LOGARITHMS

The limiting cases In 0= — oo and In co = + oo are important. More important are
logarithms near the starting point In 1 = 0. Our question is: What is In (1 + x) for x
near zero? The exact answer is an area. The approximate answer is much simpler.
If x (positive or negative) is small, then

In(1+x)x~x and e*x]1+x. (6)

The calculator gives In 1.01 = .0099503. This is close to x = .01. Between 1 and 1 + x
the area under the graph of 1/x is nearly a rectangle. Its base is x and its height is 1.
So the curved area In (1 + x) is close to the rectangular area x. Figure 6.14 shows
how a small triangle is chopped off at the top.

The difference between .0099503 (actual) and .01 (linear approximation) is
—.0000497. That is predicted almost exactly by the second derivative: 4 times (Ax)?
times (In x)” is $(.01)*(—1) = — .00005. This is the area of the small triangle!

In(1 + x) ~ rectangular area minus triangular area = x — §x*.

The remaining mistake of .0000003 is close to $x* (Problem 65).

May I switch to e*? Its slope starts at ¢® = 1, so its linear approximation is 1 + x.
Then In (¢¥) ~ In (1 + x) &~ x. Two wrongs do make a right: In (e¥) = x exactly.

The calculator gives e'°" as 1.0100502 (actual) instead of 1.01 (approximation). The
second-order correction is again a small triangle: 3x* = .00005. The complete series
for In (1 + x) and e* are in Sections 10.1 and 6.6:

In(1+x)=x—x*2+x*3—... F=1+x+x¥2+x36+....
DERIVATIVES BASED ON LOGARITHMS

Logarithms turn up as antiderivatives very often. To build up a collection of integrals,
we now differentiate In u(x) by the chain rule.

6K The derivative of In x 1s i The derivative of In u(x) is ég

The slope of In x was hard work in Section 6.2. With its new definition (the integral
of 1/x) the work is gone. By the Fundamental Theorem, the slope must be 1/x.

For In u(x) the derivative comes from the chain rule. The inside function is u, the
outside function is In. (Keep u > 0 to define In u.) The chain rule gives

| 1 d 3
Rinadl =—¢=-(! o) 3=13x2/x3="2
o In cx cxc x('} 7 In x° = 3x%/x =
iln (2+1)=2x/(x>+1) Eln cos x=——2X_ _tan x
dx dx cos x
d = _ _i i
alne =e*le*=1 dxln(lnx)—lnxx.

Those are worth another look, especially the first. Any reasonable person would
expect the slope of In 3x to be 3/x. Not so. The 3 cancels, and In 3x has the same
slope as In x. (The real reason is that In 3x = In 3 + In x.) The antiderivative of 3/x is
not In 3x but 3 In x, which is In x?.
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Before moving to integrals, here is 2 new method for derivatives: logarithmic differen-
tiation or LD. It applies to products and powers. The product and power rules are
always available, but sometimes there is an easier way.

Main idea: The logarithm of a product p{x) is a sum of logarithms. Switching to
In p, the sum rule just adds up the derivatives. But there is a catch af the end, as you
see in the example.

EXAMPLE 4  Find dp/dx if p(x)= x*/x — 1. Here In p(x)=x In x+ 4 In(x — 1).

o 1dp 1
: T =x— + + .
Take the derivative of In p pdx X . In x 3 - 1)
Now multiply by p(x) N .
) = x .
uiiply by p dx 7 Ax-1)

The catch is that last step. Multiplying by p complicates the answer. This can’t be
helped —logarithmic differentiation contains no magic. The derivative of p = fg is the
same as from the product rule: In p=1Inf+In g pives

LA & and p'=p(f—-+£)=f’g+f§'- (7
r f k g

For p = xe* sin x, with three factors, the sum has three terms:

. , 1 cos X
Inp=Inx+tx+insin xand p=p|-+1+ .
X sin x

We multiply p times p'/p (the derivative of In p). Do the same for powers:

. 1 p_ [1 in:
EXAMPLES p=x'" = lnp=-lnx = ;_f’zp[_’_ “2‘]_
X X

X~ X

21n x
EXAMPLES p=x"* = Inp=(nx)® = j—p=p[ - ‘}-
X

EXAMPLE7 p=x'"" = In p=%in x=1= %=0 )
X A

INTEGRALS BASED ON LOGARITHMS

Now comes an important step. Many integrals produce logarithms. The foremost
example is 1/x. whose integral is In x. In a certain way that is the only example. but
its range is enormously cxtcnded by the chain rule. The derivative of In u(x) is u'ru.
5o the integral gocs from 'iu back to In u:

Cdiidx
Joulx)

dx=In u(x) or cquivalently .I‘EE =1in y.
U

Try to choose u(x) so that the integral contains du/dx divided by u.

dx
cx+7

" d
EXAMPLES J Y inpx+ 7| [

1
— =-Inlex—7
x+7 ¢ ajex |
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Final remark When u is negative, ln u cannot be the integral of 1/u. The logarithm
is not defined when « < 0, But the integral can go forward by switching to —u:

Jdu/dxd _J dujdx dx = In(—u). ®

H

Thus In{— u) succeeds when In u fails.t The forbidden case is u = 0. The integrals In u
and In{—u), on the plus and minus sides of zero, can be combined as In|ui. Every
integral that gives a logarithm allows u < 0 by changing to the absolute value |u|:

“idx -1 ¢ dx
.[_e ?—[ln|x|]_e =Inl—-Ine L o

The areas are —1 and —In 3. The graphs of 1/x and 1/(x — 5) are below the x axis.
We do not have logarithms of negative numbers, and we will not integrate 1/(x —5)
from 2 to 6. That crosses the forbidden point x = 5, with infinite atea on both sides.

s=[inlx=s[;=ln1-mm3.

The ratio dufu leads to important integrals. When u = cos x or v =sin x, we are
integrating the tangent and cotangent. When there is a possibility that u < 0, write
the integrai as In|u].

J‘tan xdx= J‘ S0 jx = —In |cos xi J‘ x dx ln(x +7
cos X

7172
Cos X dx
.[cotxdx=.[ dx =In |sin x| .[—=ln|ln x|
sin x xInx

Now we report on the secant and cosecant. The integrals of [/cos x and 1/sin x
also surrender to an attack by logarithms — based on a crazy trick:

sec x + tan x

secxdx=|secx | —— )} dx=1In |sec x + tan x| (9)
sec x +tan x
csc x —cot x

.[csc x dx = .[csc x (—-ﬂ——) dx =1In |csc x — cot x]. (10)
¢sc x —cot x

Here u = sec x + tan x is in the denominator; du/dx = sec x tan x + sec? x is above it.
The integral is In |u|. Similarly (10} contains dufdx over u=csc x — cot x.

In closing we integrate In x itself. The derivative of xIn x is In x + 1. To remove
the extra 1, subtract x from the integral: jln xdx=xInx—x.

In contrast, the area under 1/(In x) has no elementary formula. Nevertheless it is
the key to the greatest approximation in mathematics—the prime mumber theorem.
The area [0 dx/In x is approximately the number of primes between a and b. Near ¢'°%°,
about 11000 of the integers are prime.
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Read-through questions

The natural logarithm of x is {] __@ _. This definition leads
tolnxy=_P and lnx"=_¢ . Then e is the number
whose logarithm (area under 1fx curve)is _ d . Similarly
€* is now defined as the number whose natural logarithm is

L As x— @, Inx approaches _ ! . But the ratic
. The domain and range of In x

{In x),r‘\/; approaches _ g
are _b

The derivative of In x is

tThe integral of 1/x (odd function) is In [x| (even function). Stay clear of x=0.

. The derivative of In(1 + x}
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is _ 1. The tangent approximation to In{l + x) at x =0 is
k. The quadratic approximationis | . The quadratic
approximation to e*is _ m

. Thus
iIncos x} =__ © . An antiderivative of tan xis _ P, The
product p= x e**hasIn p=__a__. The derivative of this equ-
ation is __f__. Multiplying by p gives p'=_ ¢ | which is
LD or logarithmic diflerentiation.

The integral of w{x)ju(x) is __t . The integral of
2xf(x? +4)is _ v, Theintegral of 1/exis __¥ . The integ-
ral of 1f(ct + s)is __w . The integral of 1/cos x, after a trick,
is _ x . We should write In |x| for the antiderivative of 1/x,
since this allows _¥ . Similarly {du/u should be written

T

The derivative of In u{x) by the cbain ruleis _n

Find the derivative dy/dx in 1-10.

1 y=In(2x) 2 y=In(2x + 1)
Iy=@nx)"? 4 y=(n x}/x
Sy=xlnpx—x 6 y=logox
7 y=In{sin x) 8 y=In(ln x)

9 y=71In4dx 10 y=In({4x)’)

Find the indefinite (or definite) integral in 11-24.

(" dt " dx
11 |— —
J 3 12 J1+x
[t dx fl
13
Jo 3+I 14-0 3+2t
(% x dx (2 x3 dx
5 Jalb————
! Jo ¥*+1 16_0x2+1
e dx e dx
18 ——5
17 Jz x(in x) J2 x(in x)?
(cos x dx *n/4
19 - 20 tan x dx
sin x Jo
~ -
21 | tan 3x dx 22 | cot 3x dx
7 ((In x)* dx 24 [ dx
J x J x(in x){ln In x)

28 Graph y=In(1 +x) 26 Graph y =In(sin x}

Compute dy/dx by differentiating In y. This is LD:

27 y=+/x*+1 8 y=/x*+1/x 1

29}!:(:‘““‘ my=x—1.ix

31 y=e 2 y=x*
33 y=x'* My = (/) (x)
35 y=x—lﬂnx 6 y=e-lnx

Evaluate 37-42 by any method.

10 10x
w| & -_[ &
Sx t

b :?‘s-l’e"ﬁ+j--1ﬁ
s 1 X -7 X
1 2
wi 4 4 [
dx |, t x|
d 2
41 — In(sec x +tan x} 42 sec’x 4 sec x tan x
ax seC x + 1an x

Verify the derivatives 4346, which give mseful antiderivatives:
3 % In(x + /X2 +1) = ﬁ

44 dix 1n(i;;—z) - (x22+a2)

s 111(1 e _xz) =- l_l_xz

i H 2___._5_
46dxln[x+,/x a'}_\/xz—_ﬂ_2

Estimate 47-50 to linear accuracy, then quadratic accuracy,
by e* 2 1 + x + 4x°. Then use a calculator.

47 In(1.1) 48 ¢! 49 n(.99) 5 ¢’

BI+X) & Compute lim © !
x Ean

51 Compute lirr|1)

logu(l +x) 54 Compute Iir% ot
x x—+

53 Compute lir%
55 Find the area of the “hyperbolic quarter-circle” enclosed
by x=2and y=2 above y=1/x.

56 Estimate the area under y = 1/x from 4 to 8 by four upper
rectangles and four lower rectangles. Then average the
answers {trapezoidal rule). What is the exact area?

1 1
57 Why is > + 3 o+ % near In a? Is it above or below?
58 Prove thatIn x Z(ﬁ — 1) for x » 1. Compare the integ-
rais of 1/t and 1 ,-‘\/f, from 1 to x.

59 Dividing by x in Problem 58 gives (In x}{x < Z(ﬁ — 1)/x.
Deduce that (In x)/x — 0 as x — oo. Where is the maximum
of (In x)/x?

60 Prove that (In x)/x'" also approaches zero. (Start with
{In x'™y/xi™ — 0.) Where is its maximum?
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61 Forany power n, Problem 6.2.59 proved &* > x" for large
x. Then by logarithms, x > r In x. Since (In x)/x goes below
1/n and stays below, it converges to

62 Prove that yIn y approaches zero as y - 0, by changing
y to 1/x. Find the limit of y¥ (take its logarithm as y — Q).
What is .1'! on your ealculator?

63 Find the limit of In x/log,ox as x — <.

64 We know the integral L "t de =[R] = (x* — 1)k
Its limit as h = O is

65 Find linear approximations near x =0 for ¢™* and 2%

66 The x? correction to In{1 + x) yields x - §x* + §x>. Check

that In 1.01 =~ .00%9503 and find In 1.02.

67 An ant crawls at 1 foot/second along a rubber band whose
original length is 2 feet. The band is being stretched at 1
foot/second by pulling the other end. At what time T, if ever,
does the ant reach the other end?

One approach: The band’s length at time ¢ is ¢ + 2. Let y{t)
be the fraction of that length which the ant has covered, and
explain

@ y=1t+2)y (byy=In{t+2)—In2 (c) T=2e—-2.

68 If the rubber band is stretched at 8 feet/second, when if
ever dogs the same ant reach the other end?

69 A weaker ant slows down to 2/(f + 2) feet/second, so y' =
2/(t + 2)%. Show that the other end is never reached.
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70 The slope of p = x* comes two ways from In p=xIn x:
1 Logarithmic differentiation (LD); Compute (In p)’ and
multiply by p.
2 Exponential differentiation (ED); Write x* as &*"¥,
take its derivative, and put back x*

TN Ifp=2"thenInp= . LD gives p'=(p}iln py =
.EDgivesp=¢______ and then p' =

72 Compute In 2 by the trapezoidal rule and/or Simpson’s
rule, to get five correct decimals.

73 Compute In 10 by cither rule with Ax =1, and compare
with the value on your calculator.

74 Estimate 1/In 90,000, the fraction of numbers near 90,000
that are prime. {879 of the next 10,000 numbers are actually
prime.)

75 Find a pair of positive integers for which x¥ = y*. Show
how to change this equation to (In x)/x = (In ¥)/y. So look for
two points at the same height in Figure 6.13. Prove that you
have discovered all the integer solutions,

¥76 Show that (In x)/x ={In y)/y is satisfied by

t+1Y r+ 1yt
X= _T al'ldy= T

with ¢ #£ 0. Graph those points to show the curve x¥ =
crosses the line y=xat x= , where t — ao.

Ve It

This section begins with the integrals that solve two basic differential equations:

dy

d
prial and v

Y+ 5.
&t cy+s 1

We aiready know the solutions. What we don’t know is how to discover those solu-
tions, when a suggestion “try ¢”’ has not been made. Many important equations,
including these, separate into a y-integral and a i-integrai. The answer comes directly
from the two separate integrations. When a diflerentiai equation is reduced that far—
to integrals that we know or can look up—it is solved.

One particular equation will be emphasized. The logistic eguation describes the
speedup and slowdown of growth. Its solution 1s an S-curve, which starts slowly,
rises quickly. and ievels off. (The 1990’s ar¢ near the middle of the §, if the
prediction is correct for the world pepulation.) S-curves are soluticns to nonfinear
cquations, and we will be solving cur first nonlinear model. It is highly important
in biology and all life sciences.
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SEPARABLE EQUATIONS

The equations dy/dt = cy and dy/dt = cy + s (with constant source s} can be solved
by a direct method. The idea is to separate y from t:

d d
e cdt and 4
¥ y +(s/c}

All y’s are on the left side. All £’s are on the right side {and ¢ can be on either side).
This separation would not be possible for dy/di =y +¢.

Equation (2) contains differentials. They suggest integrals. The ¢-integrals give ct
and the y-integrais give logarithms:

=¢ dr. 2

s
In y= ct + constant and ]n(y + —) = ¢t + constant. 3
c

The constant is determined by the initial condition. At t = 0 we require y = y,, and the
right constant will make that happen:

Iny=ct+In yg and In(y + S) =ct+ ln(yo + S) 4)

Then the final step isolates y. The goal is a formula for y itself, not its logarithm, so
take the exponential of both sides (e is y):

5 s
y = yot and y+ , = (yo + E)e“. (5)

It is wise to substitute y back into the differential equation, as a check.

This is our fourth method for y' = ¢y + 5. Method 1 assumed from the start that
y= Ae + B. Method 2 multiplied all inputs by their growth factors e =™ and added
up outputs. Method 3 solved for y — y,,. Method 4 is separation of variables (and all
methods give the same answer). This separation method is so useful that we repeat
its main idea, and then explain it by using it.

To solve dy/dt = u(y)o(t), separate dyfu(y) from v(t)dt and integrate both sides:

_[ dyfu(y) = _[ wt)dt + C. (6)
Then substitute the initial condition to determine C, and solve for y(t).

EXAMPLE 1  dy/dr = y* separates into dy/y* = dt. Integrate to reach —1/y=1t+C.
Substitute t =0 and y = y, to find C= — 1/y,. Now solve for y:
1
- —=t— l and y= ...L.
y Yo L=y,
This solution blows up (Figure 6.15a) when t reaches 1/y,. If the bank pays interest
on your deposit squared (¥ = y?), you soon have ail the money in the world.

EXAMPLE 2 dy/d: = ty separates into dy/y = t dt. Then by integration ln y = £ + C.
Substitute t=0 and y=y, to find C=1In y,. The exponential of 4> +In y, gives
y = yoe'/2. When the interest rate is ¢ = ¢, the exponent is t%/2.

EXAMPLE 3 dy/dt=y+1t is not separable. Method 1 survives by assuming y=
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¥ ¥
1 t
_— Y
| Dt { y= _0
f 1-1y,
yoz 14 |
1 [
1 i ;
Yo= 58 1 T
2 | blowup times it =—
| 1 yD
1 L t —
0 1 2

Ag. 645 The solulions to separable equations % =y* and —=n

Aé' + B + Dt—with an extra coeflicient D in Problem 23. Method 2 also succeeds—
but not the separation method.

EXAMPLE 4 Secparate dy/dt = ny/tinto dy/y = ndt/t. By integrationln y=nln ¢+ C.
Substituting t =0 produces ln 0 and disaster. This equation cannot start from time
zero (it divides by t). However y can starl from y, at t = 1, which pives C=1n y,. The
solution is a power function y= y,t".

This was the first differential equation in the book (Section 2.2). The ratio of dy/y
to dtft is the “elasticity” in economics. These relative changes have units like
dollars/dollars—they are dimensionless, and y = t" has constant elasticity n.

On log-log paper the graph of In y=nlInt + C is a straight line with slope n.

THE LOGISTIC EQUATION

The simplest model of population growth is dy/dt = cy. The growth rate ¢ is the birth
rate minus the death rate. If ¢ is constant the growth goes on forever—beyond the
point where the model is reasonable. A population can’t grow all the way to infinity!
Eventually there is competition for food and space, and y = ¢” must slow down.

The trae rate ¢ depends on the population size y. It is a function ¢(y) not a constant.
The choice of the model is at least half the problem:

Problem in biology or ecology:. Discover ¢l y).
Problem in mathematics: Solve dyfdt = e(y)y.

Every model looks linear over a small range of y’s—but not forever, When the rate
drops off, two models are of the greatest importance. The Michaelis—Menten equation
has e(y) = ¢y + K). The logistic equation has ¢(y) = ¢ — by. It comes first.

The nonlinear effect is from *interaction.” For two populations of size y and z, the
number of interactions is proportional to y times z. The Law of Mass Action produces
@ quadratic term byz. It is the basic model for interactions and competition. Here we
have one population competing within itself, so z is the same as y. This competition
slows down the growth, because —by? goes into the equation.

The basic model of growth versus competition is known as the logistic equation:
dy/dt = cy — by*. ?

Normally b is very small compared to ¢. The growth begins as usual (close to ).
The competition term by? is much smaller than cy, until y itself gets large. Then by*
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(with its minus sign) slows the growth down. The solution follows an S-curve that
we can compute exactly.

What are the numbers b and ¢ for human population? Ecologists estimate the
natural growth rate as ¢ = .029/year. That is not the actual rate, because of b, About
1930, the world population was 3 billion. The cy term predicts a yearly increase of
(-029)(3 billion) = 87 million. The actual growth was more like dy/dt = 60 million/year.
That difference of 27 million/year was by*:

27 million/year = b(3 billion)* leads to b= 3- 10~ 1?/year.

Certainly b is a small number (three trillionths) but its effect is not small. It reduces
87 to 60. What is fascinating is to calculate the steady seate, when the new term by?
equals the old term cy. When these terms cancel each other, dy/dt = cy — by? is zero.
The loss from competition balances the gain from new growth: cy = by? and y = c/b.
The growth stops at this equilibrium point—the top of the S-curve:

029

Voo = 7 = T 102 2 10 billion people.

oo

According to Verhulst’s logistic equation, the world population is converging to 10
billion. That is from the model. From present indications we are growing much faster.
We will very probably go beyond 10 billion. The United Nations report in Section 3.3
predicts 11 billion to 14 billion.

Notice a special point halfway to y., = c/b. (In the model this point is at 5 billion.)
It is the inflection point where the S-curve begins to bend down. The second derivative
d?yjdi? is zero. The slope dy/dr is a maximum. It is easier to find this point from the
differential equation (which gives dy/dt) than from y. Take one more derivative:

Y =(cy - by’) =cy — 2byy' = (c — 2by)y. ®
The factor ¢ — 2by is zero at the inflection point y = ¢/2b, halfway up the Scurve.

THE $-CURVE

The logistic equation is solved by separating variables y and t:
dy/dt = cy — by? becomes jdy/(cy - by?) = jdt. 9

The first question is whether we recognize this y-integral. No. The second question
is whether it is listed in the cover of the book. Ne. The nearest is | dx/(a* — x*), which
can be reached with considerable manipulation (Problem 21). The third question is
whether a general method is available. Yes. “Partial fractions™ is perfectly suited to
/ey — by?), and Section 7.4 gives the following integral of equation (9):

Y —c+cC and then in-22— ¢, (10)

1
nc—by ¢ — by,

That constant € makes the solution correct at £ = 0. The logistic equation is integ-
rated, but the solution can be improved. Take exponentials of both sides to remove
the logarithms:

c~by = c—by,

¥ eﬂ Yo (11)

This contains the same growth factor ¢ as in linear equations. But the logistic
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equation is not linear—it is not y that increases so fast. According to (11), it is
y/(c — by) that grows to infinity. This happens when ¢ — by approaches zero.
The growth stops at y = ¢/b. That is the final population of the world (10 billion?).
We stili need a formula for y. The perfect S-curve is the graph of y=1/{1 +e&™"). It
equals 1 when ¢ = oo, it equals 4+ when t =0, it equals 0 when ¢ = — oc. [t satisfies
¥ =y—y%, with c=b=1. The general formula cannot be so beautiful, becausc it
allows any ¢, b, and y,. To find the S-curve, multiply equation (11) by ¢ — by and
solve for y:
B c _ ¢
b+e Mc— byo)ve Y bt de

When t approaches infinity, e ™ approaches zero. The complicated part of the for-
mula disappears. Then y approaches its steady state ¢/b, the asymptote in Figure 6.16.
The S-shape comes from the inflection point halfway up.

¥y (12)

----- 10 billion <= -
b
1
}*l +e!
! 5 billion = |
T ; 2h
Y04
_____ S S T = } f
1234 1988

Fig. 6.46 The standard S-curve y = 1{(1 + ¢™’). The population S-curve (with prediction).

Surprising observation: z = 1]y satisfies a linear equation. By calculus z' =
— r+ _.'2 o
’=C}72b}= ~Stb=—cztbh
y ¥

This equation z' = — ¢z + b is solved by an exponential ¢ plus a constant:

tImmigration does not enter for the world population model (at least not yet).
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(13)

Year  US Model
Population 2= Ae "+ !—? = (l — é)e‘” + !—? (14)
1790 39 = 39 ¢ Vo € ‘
1800 53 53 Turned upside down, y=1/z is the S-curve (12}. As z approaches bjc, the S-curve
1810 7.2 7.2 approaches ¢/b. Notice that z starts at 1/y,.
1820 9.4 2.8
1830 129 13.4 EXAMPLE 1 (United States population) The table shows thc actual poputation and
1840 17.1 75 the model. Pearl and Reed used census figures for 1790, 1850, and 1910 to compute
1850 232 = 232 . . . ] .
1860 314 30.4 ¢ and b. In between, the fit is good buF not fa.ntaspc. One reason is war—another is
. 1870 38.6 a94 | depression. Probably more important is immigration.t In fact the Pearl-Reed steady
' 1880  50.2 502  statec/bis below 200 million, which the US has already passed. Certainly their modet
1890 62.9 &2 8 can be and has been improved. The 1990 census predicted a stop before 300 million.
1900 76.0 769 For constant immigration s we could stili solve ¥ = cy — by? + s by partial fractions—
1910 920 = 920 but in practice the computer has taken over. The tabic comes from Braun's book
1920 105.7 107.6 Differential Equations (Springer 1975).
1930 1228 1231
1940  131.7 # 136.7
© 1950 1507 149.1
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Remark For good scicnee the y* term should be explained and justified. Tt gave a
nonlinear model that could be completely solved, but simplicity is not necessarily
truth. The basic justification is this: In a population of size y, the number of encounters
is proportional to y*. If thosc encounters are fights, the term is — hy?. If those
encounters increase the population, as some like to think, the sign is changed. There
is a cooperation term + by?, and the population increascs very fast.

EXAMPLES ' =cy+by*: y goes to infinity in a finite time.

EXAMPLES ' = —dy+by> y dies to zero if y, < d/b.

In Example 6 death wins. A smalil population dies out before the cooperation by?
can save it. A population below d/b is an endangered species.
The iogistic equation can't predict oscillations—those go beyond dy/d: = f{y).

The y line  Here is a way to understand every nonlinear equation y' = f{y). Draw a
“y line.”” Add arrows to show the sign of f{y). When y' = f{y) is positive, y is increasing
(it follows the arrow to the right). When (s negative, y goes to the left. When fis zero,
the equation is ¥ = 0 and y is stationary:

<0 m <0 0 0 :
JJ“( I> A ja:l ) f)}\ - f< « /{‘:-[Jy
Voo T \__/

LT TN v=dib

¥ =cy— by (this is f() y'= —dy+ by (this is f(y))

The arrows take you left or right, to the steady state or to infinity, Arrows go toward
stable steady states. The arrows go away, when the stationary point is unstable. The
¥ line shows which way y moves and where it stops.

The terminal velocity of a falling body is ¢, = \/,_E in Problem 6.7.54. For fiy}=
sin y therc are several steady states:

—e TN \
) ./—\"? - ;w=\"?.\ D i} n Zn 3n :

2

Julling body: dejdi =g — 1 dyfdt=sin y

EXAMPLE 7 Kinetics of a chemical reaction mA + nB - pC.

The reaction combines m molecules of A with n molecules of B to produce p
molecules of C. The numbers m, n, p are 1. I, 2 for hydrogen chloride: H, + Cl, =
2 HCI. The Law of Mass Action says that the reaction rate is proportional to the
product of the concentrations [A] and [B]. Then [A4] decays as [C] grows:

d[A)/dt = — r[A][B] and d[Clidr = + k[A}[B]. {13}

Chemistry measures r and k. Mathematics solves for [4] and [C]. Write y for the
concentration [C], the number of molecules in a unit volume. Forming those
molecules drops the concentration [A] from aq to ap — (m/p)y. Similarly [B] drops
from b, to by — (n/p)y. The mass action law (15) contains y*:

dy m n
Rl o) CEh) e
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This fits our nonlinear model (Problem 33-34). We now find this same mass action
in biology. You recognize it whenever there is a product of two concentrations.

THE MM EQUATION dy/dt= —- cy/(y + K)

Biochemical reactions are the keys to life. They take place continually in every living
organism. Their mathematical description is not easy! Engineering and physics go
far with linear models, while biology is quickly nonlinear. It is true that y = cy is
extremely effective in first-order kinetics (Section 6.3), but nature builds in a nonlinear
regulator.

It is emzpmes that speed up a reaction. Without them, your life would be in slow
motion. Blood would take years to clot. Steaks would take decades to digest. Calculus
would take centuries to learn. The whole system is awesomely beautiful —DNA tells
amino acids how to combine into useful proteins, and we get enzymes and eiephants
and Isaac Newton.

Briefly, the enzyme enters the reaction and comes out again, It is the carafyst. Its
combination with the substrate is an unstable intermediate, which breaks up into a
new product and the enzyme (which is ready to start over).

Here are examples of catalysts, some good and some bad.

1. The piatinum in a catalytic converter reacts with pollutants from the car engine.
(But platinum also reacts with lead—ten gallons of leaded gasoline and you
can forget the platinum.)

2. Spray propellants (CFC’s) catalyze the change from ozone (O,) into ordinary
oxygen (O,). This wipes out the ozone layer-—our shield in the atmosphere.

3. Milk becomes yoghurt and grape juice becomes wine.

4, Blood clotting needs a whole cascade of enzymes, amplifying the reaction at
every step. In hemophilia—the “Czar’s disease” —the enzyme called Factor VIII
is missing. A small accident is disaster; the bleeding won’t stop.

5. Adolph’s Meat Tenderizer is a protein from papayas. It predigests the steak,
Tbe same enzyme (chymopapain) is injected to soften herniated disks.

6. Yecast makes bread rise. Enzymes put the sour in sourdough.

Of course, it takes enzymes to make enzymes. The maternal egg contains the material
for a cell, and also half of the DNA. The fertilized egg contains the full instructions.

We now look at the Michaelis—Menten (MM) equation, to describe these reactions.
It is based on the Law of Mass Action. An enzyme in concentration z converts a
substrate in concentration y by dy/dt = — byz. The rate constant is &, and you see
the product of “enzyme times substrate.” A similar law governs the other reactions
(some go backwards). The equations are nonlinear, with no exact solution. It is
typical of applied mathematics (and nature) that a pattern can still be found.

What happens is that the enzyme concentration z(z) quickly drops to z,K/{(y + K).
The Michaelis constant K depends on the rates (like b) in the mass action laws.
Later the enzyme reappears (z, = zy). But by then the first reaction is over. Its law
of mass action is effectively

dy _ cy

iR i (17)

with ¢ = bzgK. This is the Michaelis—Menten eguation—basic to biochemistry.
The rate dy/dt is all-important in biology. Look at the function cy/(y + K):

when y is large, dy/dt = — ¢ when y is small, dy/dt =~ — cy/K.
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The start and the finish operate at different rates, depending whether y dominates K
or K dominates y. The fastest rate is ¢.
A biochemist solves the MM equation by separating variables:

+ K .
J‘} ; dy-———J.cdt gives y+Klny=—c+C. (18)

Set ¢ =0 as usual. Then C = y, + K In y,. The ¢xponentials of the two sides are
e'yK = g~ tproy k. (19)

We don't have a simple formula for y. We are tucky to pet this close. A computer
can quickly graph 1{t})—and we see the dynamics of enzymes.

Problems 27-32 follow up the Michaelis—-Menten theory. In science, concentrations
and rate constants come with units. In mathematics, variables can be made dimen-
sionless and constants become 1. We solve dY/dT = Y/(Y+ 1) and then switch back
to , ¢, ¢, K. This idea applies to other equations too.

Essential point: Mast applications of calculus come through differential equations,
That is the language of mathematics—with poputations and chemicals and epidemics
obeying the same equation. Running parallel to dy/dt = cy are the difference equations
that come next.

6.5 EXERCISES

Read-through questions

The equations dy/df =cy and dyjdt=cy+s and dyidt =
u( y)e(t) are called __ @ because we can separate y from 1.
Integration of {dy/y={cdt gives _b_ _ Integration of
[dyily+sic)=[edt gives _e¢ . The equation dyidx=
—x/yleadsto _d __.Theny®+ x*=_ e and the solution
stays on a circle.

The logistic equationis dyidt = _ t . The new term — by?
represents _ @  when ¢y represents growth. Separation gives
Jdyitey —by*)={ dt, and the y-integral is 1/ timesIn __h
Substituting v, at ¢ =0 and taking exponentials produces
vile—by)=e"(__1_ ). Ast— oo, y approaches __| . That
is the steady state where ¢y —byZ= _k . The graph of v

looks like an __ 1, because 1t has an inflection point at

¥y= LaL]

In biclogy and chemistry, concentrations y and - react at
a rate proportional to y times _ n__. This is the Law of

© . In a model equation dyidt = ¢ y)y, the rate ¢ depends
on _p . The MM equation is dy:dt=_ q . Separating
vartables yields { _ r dy=_8s =-c14C.

Separate, integrate, and solve equations 1-8.
1dyjdi=y+5 yo=2
2 dyidt=1:/v, yy=1
3 dyldx=x/13 yo=1

4 dydx=y 41, y,=0

§ dyjdx=(y+ Dftx+1), yo=0
6 dy/dx=tan ycos x, y,=1

7 dyjdr =y sin ¢, yo =

8 dyldt=¢""% yy=¢

9 Suppose the rate of growth is proportional to \/j instead
of y. Solve dy/di = c‘\fy starting from yg.

10 The equation dy/dx = ny/x for constant elasticity is the
same as d&{ln y)id{ln x) = . The sclution is iny=

11 When ¢ = 0 in the logistic equation, the only term is ' =
— hy?. What is the steady state y.? How long until » drops
from v, to +y,?

12 Reversing signs in Problem 11, suppose ¥ = + by?. At
what time does the population explode to y = oz, starting
from vy =2 (Adam + Eve)?

Problems 13-26 deal with Jogistic equations y' = ¢y — by,

13 Show that y =1/} + ¢~ solves the equation ¥ = y — 32,

Draw the graph of y from starting values § and }.

14 (a) What logistic equation is solved by v =2/(1 — e~ %)?
{b) Find ¢ and 5 in the equation solved by y = 1/{1 + ¢ 3,

15 Solve o' = — =z + | with z; = 2. Turned upside down as in
(13). whatis y=1:2?
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16 By algebra find the S-curve (12) from y = 1/z in (14).

17 How many years to grow from y, = §c/b to y = 3c/b? Use
equation (10) for the time ¢ since the inflection point in 1988.
When does y reach 9 billion = .9¢/b?

18 Show by differentiating 4 = y/(c — by) that if y' = cy — by?
then & = cu. This explains the logistic solution (11} — it is
u= quﬂ.

19 Suppose Pittsburgh grows from y, = 1 million people in
1900 to y =3 million in the year 2000. If the growth rate is
¥y = 12,000/year in 1900 and y' = 30,000/year in 2000, substi-
tute in the logistic equation to find ¢ and b, What is the steady
state? Extra credit: When does y =y, /2 = c/2b?

20 Supposec=1butb= — |, giving cooperation ¥ = y + y2.
Solve for pt) if yo = 1. When does y become infinite?

21 Draw an S-curve through (0, 0) with horizontal asymp-
totes y= — | and y=1. Show that y=(¢' — e *)/(¢' + ¢ ") has
those three properties. The graph of y? is shaped like

22 To solve y =cy — by® change to u= 1/y® Substitute for
¥ in & = —2y}y* to find a linear equation for u. Solve it as
in (14} but with u, = 1/y3. Then y=1//u.

23 With y=r¥ and t=sT, the equation dy/dt=cy—by?
changes to d¥/dT= ¥— Y2 Find r and s.

24 Inachange to y =rYand ¢t = sT, how are the initial values
Yo and yj related to Yy and Yy?

25 A rumor spreads according to ¥ = YN —y). If y people
know, then N — y don’t know. The product N — y) measures
the number of meetings (to pass on the rumor).

(a) Solve dy/dt = YN — y) starting from y, = 1.

(b) At what time T have N/2 people heard the rumor?
{c) This model is terrible because T goes to as
N — o0, A better model is y =bp{N — y).

26 Suppose b and ¢ are beth multiplied by 10. Does the
middle of the S-curve get steeper or flatter?

Prohlems 27-34 deal with mass action and the MM equation
y=—eylly+K}).

2?7 Most drugs are eliminated acording to ¥ = —cy but
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aspirin follows the MM equation, With ¢ = K =y, = 1, does
aspirin decay faster?

28 If you take aspirin at a constant rate d (the maintenance
dose), find the steady state level where d = cy/{y + K). Then
y=0

29 Show that the rate R =cyf(y + K) in the MM equation
increases as y increases, and find the maximum as y — oo,

30 Graph the rate R as a function of y for K=1and K=
10. (Take ¢ = 1.} As the Michaelis constant increases, the rate
. At what value of y is R=1%c?

31 With y=KY and ¢t=KT, find the “nondimensional”
MM equation for dY/dT. From the solution e'¥=
e~ T e"Y, recover the y, ¢ solution (19).

32 Graph ¥t) in (19) for difierent ¢ and K (by computer).

33 The Law of Mass Action for A+B—-C is y=
Iao — y)(by — y). Suppose yy =0, ay = by = 3, k= 1. Solve for
y and find the time when y =2,

A4 In addition to the equation for d[C]/d¢, the mass action
law gives d[A]/dt = .

35 Solve y' =y + tfrom y, = 0 by assuming y = Ae' + B+ Dt
Find A, B, D. '

36 Rewrite cy — by? as a* — x%, with x = /by —¢/2,/b and

a= . Substitute for a and x in the integral taken
from tables, to obtain the y-integral in the text:
dx 1 a+x dy 1 ¥
=—1 =21
J.nzlz—x2 2a a—x J.cy—by2 ¢ "e—by

37 (Important) Draw the y-lines (with arrows as in the text)
for y =y/{(1~y) and y =y-y® Which steady states are
approached from which initial values y,?

38 Explain in your own words how the y-line works.

39 (a) Solve y =tan y starting from yo=n/6 to find
sin y =4e".
(b) Explain why £ =1 is never reached.

(c) Draw arrows on the y-line to show that y approaches
n/2 — when does it get there?

40 Write the logistic equation as y =cp{l —y/K). As )
approaches zero, y approaches . Find y, y', y* at the
inflection point.

You may remember our first look at e. It is the special base for which ¢* has slope 1
at x=0. That led to the great equation of exponential growth: The derivative of
€ equals e*. But our look at the actual number e =2.71828... was very short,
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It appeared as the limit of (1 + 1/n)". This seems an unnatural way to write down
such an important number.

I want to show how (1 + 1/n}* and (1 + x/r)* arise naturally. They give discrete
growth in finite steps—with applications to compound interest. Loans and life insur-
ance and money market funds use the discrete form of y' = cy + s. {(We include extra
information about bank rates, hoping this may be useful some day.) The applications
in science and engineering are equally important. Scientific computing, like account-
ing, has difference equations in parallel with differential equations.

Knowing that this section will be full of formulas, I would like to jump ahead and
tell you the best one. It is an infinite series for ¢*. What makes the series beautiful is
that its derivative is itself.

Start with y=1+ x. This has y=1 and y'=1 at x =0. But y" is zero, not one.
Such a simple function doesn’t stand a chance! No polynomial can be its own deriva-
tive, because the highest power x" drops down to nx*~'. The only way is to have no
highest power. We are forced to consider infinitely many terms—a power series—to
achieve ““derivative equals function.”

To produce the derivative 1 + x, we need 1 + x + 4x%. Then $x? is the derivative
of £x3, which is the derivative of 7gx*. The best way is to write the whole series at
once:

Infinite series & =1+ x+3x2+ x>+ fxt + o, N
This must be the greatest power series ever discovered. Its derivative is itself:
de*fdx=0+1+x+px* +3° + - =2~ 2

The derivative of each term is the term before it. The integral of each term is the one
after it (so fe*dx = &* + C). The approximation e* ~ 1 + x appears in the first two
terms. Other properties like (e¥)(e*) = e** are not so obvious. (Multiplying series is
hard but interesting.} It is not even clear why the sum is 2.718.,, when x=1.
Somehow 1+ 1 +3+ 4+ - equals e. That is where (1 + 1/n)" will come in.

Notice that x" is divided by the product 1+2+3----- 1. This is “n factorial.” Thus
x* is divided by 1+2-3+-4=41=24, and x° is divided by 5! = 120. The derivative of
x*{120 is x*/24, because 5 from the derivative cancels 5 from the factorial. In general
x"{n! has derivative x"~'/(n — 1)! Surprisingly 0! is 1.

Chapter {0 emphasizes that x"/n! becomes extremely smail as » increases. The
infinite series adds up to a finite number—which is ¢*. We turn now to discrete
growth, which produces the same series in the limit.

This headline was on page one of the New York Times for May 27, 1990,

213 Years After Loan, Uncle Sam is Dunned

San Antonio, May 26—More than 200 years ago, a wealthy Pennsylvania
merchant named Jacob DeHaven ilent $450,000 to the Continental Congress to
rescue the troops at Valley Forge. That loan was apparently never repaid.

So Mr. DeHaven’s descendants are taking the United States Government to
court to collect what they believe they are owed. The total: $141 billien if the
interest is compounded daily at 6 percent, the going rate at the time, If com-
pounded yearly, the bill is only $98 billion.

The thousands of family members scattered around the country say they are
not being greedy. “It’s not the money—it’s the principle of the thing,” said
Carolyn Cokerham, a DeHaven on her father’s side who lives in San Antonio.
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“You have to wonder whether there would even be a United States if this man
had not made the sacrifice that he did. He gave everything he had.”

The descendants say that they are willing to be flexibie about the amount of
settlement. But they also note that interest is accumulating at $190 a second.

“None of these people have any intention of bankrupting the Government,”
said Jo Beth Kloecker, a lawyer from Staflord, Texas. Fresh out of law school,
Ms. Kloecker accepted the case for less than the customary 30 percent
contingency.

It is unclear how many descendants there are. Ms. Kloecker estimates that
based on 10 generations with four children in each generation, there could be as
many as half a miilion.

The initial suit was dismissed on the ground that the statute of limitations is
six years for a suit against the Federal Government. The family’s appeal asserts
that this violates Article 6 of the Constitution, which declares as valid all debts
owed by the Government before the Constitution was adopted.

Mr. DeHaven died penniless in 1812, He had no children.

COMPOUND INTEREST

The idea of compound interest can be applied right away. Suppose you invest 31000
at a rate of 100% (hard to do). If this is the anpual rate, the interest after a year is
another $1000. You receive $2000 in ali. But il the interest is compounded you receive
more:

after six months: Interest of $500 is reinvested to give $1500
end of year: New interest of $750 {50% of 1500} gives $2250 total.

The bank multiplied twice by 1.5 (1000 to 1500 to 2250). Compounding quarterly
multiplies four times by 1.25 (1 for principal, .25 for interest):

after one quarter the total is 1000 + (.25){1000) = 1250

after two quarters the total is 1250 + (.25)(1250) = 1562.50

after nine months the total is 1562.50 + (.25)(1562.50) = 1953.12

after a full year the total is 1953.12 + (.25)(1953.12) = 2441.41

Each step muitiplies hy 1+ (1/n}, to add one nth of a yg.":ar’s interest—still at 100%:

quarterly conversion: (1 + 1/4)* x 1000 = 2441.41
monthly conversion: (1 + 1/12)'% x 1QbO= 2613.04
daily conversion: (1 + 1/365)3%% x 1000 = 2714.57.

Many banks use 360 days in a year, although computers have made that obsolete.
Very few banks use minutes {525,600 per year). Nobody compounds every second
(n = 31,536,000). But some banks offer continuous compounding. This is the limiting
case (n — oo) that produces e:

(1 + —1-) x 1000 approaches e x 1000 = 2718.28.
n

1
1. Quick method for (1 + V/n)": Take its logarithm. Use In(1 + x) =~ x with x = ;:
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ln(] + l)"= n In(l + 1) Y n(l) =1. 3
n n n

As 1/n gets smaller, this approximation gets better. The limit is 1. Conclusion:
(1 + 1/n)" approaches the number whose logarithm is 1. Sections 6.2 and 6.4 define
the same number {which is e).

2. Slow method for (1 + 1/n)y"; Maltiply out all the terms. Then let n — w.

This is a brutal use of the binomial theorem. It involves nothing smart like logarithms,
but the result is a fantastic new formula for e

. 1y 1 321 32111
Practice for n=3: (l+§) ~1+3(§)+ﬁ(3) +m—(§)

Binomial theorem for any positive integer n:

1y _ 1\, an=1D/1V  nan—Dm-2(1% (1Y
P R B O R e R T

Each term in equation (4) approaches a limit as n — oo, Typical terms are

rn—- 11V 1 an—n—2(1Y 1
-2 (n)"l-z and 1-2:3 \n) "1-2:3

Next comes 1/1+2+3-4. The sum of all those limits in (4) is our new formula for e:

- P 1 1
1im(1+1) PP
n

+ +...=‘ S
1.2 1-2+3 1-2-3-4 ¢ (3)

In summation notation this is £.°_ ; 1/k! = e. The factorials give fast convergence:
1+ 1+.5+.16667 +.04167 + 00833 + .00139 + .00020 + .00002 = 2.71828.

Those nine terms give an accuracy that was not reached by » = 365 compoundings.
A limit is still involved {to add up the whole series). You never see e without a limit!
It can be defined by derivatives or integrals or powers (1 + 1/n)® or by an infinite
series. Something goes to zero or infinity, and care is required.

All terms in equation (4) are below (or equal to) the corresponding terms in (5).
The pawer (1 + | /nY approaches e from below. There is a steady increase with n. Faster
compounding yields more interest. Continuous compounding at 100% yields e, as
each term in (4) moves up to its limit in (5).

Remark Change (1 + 1/n)" to (1 + x/r)". Now the binomial theorem produces e*;

xy xN\  nln—1){xV x?
— = — — e + — e
(1 + n) 1+ n(n) + ) (n) + -+ approaches 1+ x 3 +- (6)

Please recognize ¢* on the right side! It is the infinite power series in equation (1).
The next term is x?/6 (x can be positive or negative). This is a final formula for e*;

&L The limit of (1 + x/n)" is *. At x= 1| we find e.

The logarithm of that power is n1n(1 + x/n) = n(x/n) = x. The power approaches &

To summarize: The quick method proves {1 + 1/n)" — £ by logarithms. The slow
method (multiplying out every term) led to the infinite series. Together they show the
agreement of all our definitions of e.
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DIFFERENCE EQUATIONS VS. DIFFERENTIAL EQUATIONS

We have the chance to see an important part of applied mathematics. This is not a
course on differential equations, and it cannot become a course on difference equ-
ations. But it is a course with a purpose—we aim to use what we know. Our main
application of e was to solve ¥ = cy and y' = ¢y + 5. Now we solve the corresponding
difference equations.

Above all, the goal is to see the connections. The purpose of mathematics is to
understand and explain patterns. The path from ““discrete to continuous™ is beautifully
illustrated by these equations. Not every class will pursue them to the end, but I
cannot fail to show the pattern in a difference eguation:

e+ 1)=ap). 4

Each step multiplies by the same number a. The starting value y, is followed by ay,,
a’y,, and a’y,. The solution at discrete times t=0, 1, 2, ... is ¥t) = a'y,.
This formula a'y, replaces the continuous solution &y, of the differential equation.

decaying
oscillation o™
decay g growth

0250 1 &

Rg. 6.17 Growth for [a| > |, decay for [a] < 1. Growth factor a compares to &

A source or sink {birth or death, deposit or withdrawal) is like y = cy + 5.
wet+ 1) =apt) +s. 8
Each step multiplies by a and adds s. The first outputs are
W)=ayo+s, 2=d’yo+as+s, y3)=a’yo+a’s+tas+s.

We saw this pattern for differential equations—every input s becomes a new starting
point. It is multiplied by powers of a. Since s enters later than y,, the powers stop at
t— 1. Algebra turns the sum into a clean formula by adding the geometric series:

W) =da'y, +s[.a'_I +a& 2+ - +a+ 1:|= a'yo + (@ — Vj{a—1). "

EXAMPLE 1 Interest at 8% from annual IRA deposits of s = $2000 {(here y, =0).

The first deposit is at year ¢ = 1. In a year it is multiplied by a = 1.08, because 8% is
added. At the same time a new s = 2000 goes in. At t= 3 the first deposit has been
muitiplied by (1.08)%, the second by 1.08, and there is another s = 2000. After year ¢,

W)= 2000(1.08" — 1)/(1.08 - 1). (10
With =1 this is 2000. With ¢ =2 it is 2000 (1.08 + 1)—two deposits. Notice how
a — 1 (the interest rate .08) appears in the denominator.
EXAMPLE2 Approach to steady state when |a| < 1. Compare with ¢ < 0.

With a> 1, everything has been increasing. That corresponds to ¢ >0 in the
differential equation (which is growth). But things die, and money is spent, so a can
be smailer than one. 1n that case &'y, approaches zero—the starting balance disap-
pears. What happens if there is aiso a source? Every year half of the balance 1) is
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spent and a new $2000 is deposited. Now a=14:

We+ 1) =3+ 2000 yields p(e)= (yo + 2000[((%)‘ - Dig— 1]]—
The limit as ¢ — co is an equilibrium point. As () goes to zero, 1) stabilizes to
Vo = 200000 — 1)/(3 — 1) = 4000 = steady state. 1y

Why is 4000 steady? Because half is lost and the new 2000 makes it up again. The
iteration is y,., = iy, + 2000. Its fixed point is where y = 3y, + 2000.

In general the steady equation is y., = ay, +s. Solving for y, gives s/(1 —a).
Compare with the steady differential equation y' =cy+s=0:

5

™|t

(difference equation).  (12)

¥ = — —{differential equation) wvs. y,= ]

—-a

EXAMPLE 3 Demand equals supply when the price is right.

Difference equations are basic to economics. Decisions are made every year (by a
farmer) or every day (by a bank) or every minute (by the stock market). There are
three assumptions:

1. Supply next time depends on price this time: 8(t + 1) = cP(¢).
2. Demand next time depends on price next time: D(t + 1)= —dP(t + 1) + b.
3. Demand next time equals supply next time: D(t + 1) = S(t + 1).

Comment on 3: the price sets itsell to make demand = supply. The demand slope — 4
is negative. The supply slope ¢ is positive. Those lines intersect at the competitive
price, where supply equals demand. To find the difference equation, substitute 1 and
2into 3

Difference equation. —dP(t+ 1)+ b= cP(})
Steady state price: —dP,+b=cP,. Thus P =bf(c+d)

If the price starts above P_, the difference equation brings it down. If below, the
price goes up. When the price is P, it stays there. This is not news—economic
theory depends on approach to a steady state. But convergence only occurs if ¢ < d.
If supply is less sensitive than demand, the economy is stable.

Bilow-up example: ¢ = 2, b =4 = 1. The difference equation is — P{t + 1)+ 1 = 2P(1).
From P(0) = 1 the price oscillates as it grows: P=—1,3, -5, 11, ...

Stable example: ¢ = 1/2, b=d = 1. The price moves from P(0)=1 to P{oc) = 2/3:

i 135 2
-Pt+D+1= EP(t} yields P=1 approaching 3

* 55 Es gy Tray
Increasing d gives greater stability. That is the effect of price supports. For d=0
(fixed demand regardless of price) the economy is out of control.

THE MATHEMAJICS OF FINANCE

It would be a pleasure to make this supply-demand model more realistic—with
curves, not straight lines. Stability depends on the slope—calculus enters. But we
also have to be realistic about class time. I believe the most practical application is
to solve the fundamental problems of finance. Section 6.3 answered six questions about
continuous interest. We now answer the same six questions when the annual rate is
x=.05=5% and interest is compounded n times a year.
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First we compute effective rates, higher than .05 because of compounding:

&
compounded guarterly (1 + %) = 1.0509 [eﬂ'ecriue rate 0509 = 5.09%]

compounded continuously  e9° =1.0513 [eﬁectiue rate 5.13%]

Now come the six questions. Next to the new answer (discrete) we write the old
answer (continuous). One is algebra, the other is calculus. The time period is 20 years,
so simple interest on y, would produce (.05)(20)(y,). That equals y, — money doubles
in 20 years at 5% simple interest.

Questions 1 and 2 ask for the future value y and present value y, with compound
interest n times a year:

., 05 20a
1. y growing from y,: y= (1 + T) Yo y =t 030y,
; 05 =20n
2. deposit y, to reach y: Yo = (1 + T) y Yo = g 0520y,

Each step multiplies by a =(1 + .05/n). There are 20n steps in 20 years. Time goes
backward in Question 2. We divide by the growth factor instead of multiplying. The
future value is greater than the present value (unless the interest rate is negativel). As
n— oo the discrete y on the left approaches the continuous y on the right.

Questions 3 and 4 connect y to s (with yo = 0 at the start). As soon as each s is
deposited, it starts growing. Then y= s+ as+ as + .

+. 201 _ (.05)(20) _
3. y growing from deposits s: y= s[(l——oqtg]n—l] y= s[e__ns__l:\

. _ 05/n 05
4. depOSItS s to reach ¥ §=y m 5=y m

Questions 5 and 6 connect y, to 5. This time y is zero—there is nothing left at the
end. Everything is paid. The deposit y, is just enough to allow payments of s. This
is an annuity, where the bank earns interest on your y, while it pays you s (n times
a year for 20 years). So your deposit in Question 5 is less than 20ns.

Question 6 is the oppositc—a fean. At the start you borrow y, (instead of giving
the bank pg). You can earn interest on it as you pay it back. Therefore your payments
have to total more than y,. This is the calculation for car loans and mortgages.

5. Annuity: Deposit y, to receive 20n payments of s:

1- {1 + ‘05’{”}—20» _1 — e-LOS)(ZUJ
EN = B —
Yo 05/n Yoo 705
6. Loan: Repay y, with 20n payments of s
_ .05/n [ 0
= Yol T2 T 05jm) S5 Yol [ omcoman

Questions 2, 4, 6 are the inverses of 1, 3, 5. Notice the pattern: There are three num-
bers y, yo. and s. One of them is zero each time. If all three are present, go back to
equation (9).

The algebra for these lines is in the exercises. It is not calculus because At is not dt.
All factors in brackets [ ] are listed in tables, and the banks keep copies. It might
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also be helpful to know their symbols. If a bank has interest rate i per period over
N periods, then in our notation a=1+i=1+.05/n and =N = 20n:

future value of y, =51 (line 1): WN)=(1 +i)¥
present value of y =51 (line 2 yo=(1+i)~ "
future value of s = $1 (line 3): YN)= sy, = [(1 +if — 1]/1‘

present value of s = $1 (line 5): yo =apmi = [1 —{t+ ")_N]/"

To tell the truth, I never knew the last two formulas until writing this book. The
mortgage on my home has N = (12)(25) monthly payments with interest rate i=
.07/12, In 1972 tbe present value was $42,000 = amount borrowed. I am now going
to see if the bank is honest.t

Remark In many loans, the bank computes interest on the amount paid back
instead of the amount received. This is called discounting. A loan of 31000 at 5%
for one year costs $50 interest. Normally you receive $1000 and pay back $1050.
With discounting you receive $950 (called the proceeds) and you pay back $1000.
The true interest rate is higher than 5% —because the $50 interest is paid on the
smaller amount $950. In this case the “discount rate’ is 50/950 = 5.26%.

SCIENTIARC COMPUTING: DIFFERENTIAL EQUATIONS BY DIFFERENCE EQUATIONS

In biology and business, most events are discrete. In engineering and physics, time
and space are continuous. Maybe at some quantum level it’s all the same, but the
equations of physics (starting with Newton’s law F = ma) are differential equations,
The great contribution of calculus is to model the rates of change we see in nature.
But to solve that mode! with a computer, it needs to be made digital and discrete.

These paragraphs work with dy/dt = cy. 1t is the test equation that all analysts use,
as soon as a new computing method is proposed. Its solution is y = ¢, starting from
¥o=1. Here we test Euler’s method (nearly ancient, and not well thought of). He
replaced dy/dt by Ay/At:

e+ A — 1)
At B

The left side is dy/dt, in the limit At — 0. We stop earlier, when At > 0.
The problem is to solve (13). Multiplying by At, the equation is

W+ A= (1 + cADWt) (with p0)= 1),
Each step multiplies by @ =1 + cAt, so n steps multiply by a":
y=da"=(1+ cAt)" at time nAt. (14)

Euler’s Method ot). (13)

This is growth or decay, depending on a. The correct ¢ is growth or decay, depending
on c. The question is whether a" and ¢ stay close. Can one of them grow while the
other decays? We expect the difference equation to copy ¥ = cy, but we might be
WIOTE,

A good example is y' = — y. Then ¢ = — 1 and y = e ~*—the true solution decays.

TIt’s not. s is too big. I knew it.
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The calculator gives the following answers a” for n =2, 10, 20

At a=1t+cAt & at? a?0

3 -2 4 1024 1048576

1 0 0 0 0
110 % 81 35 .12
1/20 95 90 60 .36

The big step At =3 shows total instability (top row). The numbers blow up when
they should decay. The row with At =1 is equally useless (all zeros). In practice the
magnitude of cAf must come down to .10 or .05. For accurate calculations it would
have to be even smaller, unless we change to a better difference equation, That is the
right thing to do.

Notice the two reasonable numbers. They are .35 and .36, approaching e ™! = .37.
They come from nr = 10 {with At = 1/10) and n = 20 {with At = 1/20). Those have the
same clock time nAt=1;

1 10 i 20 1y X
(lfﬁ) =.35 (l_ﬁ) =.36 (1—;)—»;3 =3

The main diagonal of the tabie is executing (1 + x/n)" — ¢* in the case x= — 1.

Final question: How quickly are .35 and .36 converging to e~ = .37? With At = .10
the error is .02, With At = .05 the error is .01. Cutting the time step in half cuts the
error in half. We are not keeping enocugh digits to be sure, but the error seems close
to +At. To test that, apply the “quick method™ and estimate a* = (1 — Aty from its
logarithm:

in(l — Aty =n In(l - A mn| —Ac—HAD? | = — 1A (15)
The clock time is rAt = 1, Now take exponentials of the far left and right;
a"=(1—Atf'=e le 2 e (1 — A1), (16)

The difference between @” and e~ is the last term {Ate™*. Everything comes down
to one question: Is that error the same as 1Ar? The answer is yes, because ¢~!/2 is
1/5. If we keep only one digit, the prediction is perfect!

That took an hour to work out, and I hope it takes longer than At to read. I wanted
you to see in use the properties of In x and ¢*. The exact property ln a" = nin a came
first. In the middle of (15) was the key approximation In(1 + x) & x — 4x2, with x =
— At. That x2 term uses the second derivative (Section 6.4). At the very end came
exl+x

A linear approximation shows convergence: (1 + x/n)" — ¢*. A quadratic shows the
error: proportional to At = 1/a. Tt is like using rectangles for areas, with error propor-
tional to Ax. This minimal accuracy was enough to define the integral, and here it is
enough to define e. It is completely unacceptable for scientific computing.

The trapezoidal rule, for integrals or for ¥ = ¢y, has errors of order (Ax)? and (Af)%.
All good software goes further than that, Euler’s first-order method could not predict
the weather before it happens.

Euler’s Method for ‘;—3: = F(y, 1) }—'@—J’w = F({0), D).
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6.6 EXERCISES

Read-throogh questions

The ifinite series for ¢*is @ . Its derivativeis __ & . The
denominatorn!iscalled”_ ¢ anditequals _d_ . Atx=
1 the series foreis _ ®

To maich the original definition of e, multiply out
{(1+1/m"=__t (first three lerms). As n— o those terms
approach _ g im agreement with ¢. The first three terms of
(1+x/nf are _h . As n— o they approach _ I__ in
agreemeni with " Thus {1 + x/n)" approaches _1 . A
quicker method computes In(l +x/m)" =k _ {first term
only) and takes the exponential.

Compound interest (# times in one year at annual rate x)
multiplies by (__ | )" As n — o0, continuous compounding
multiplies by _m . At x = 10% with continuous compound-
ing, $1 growsto__n__ in a year.

The difference equation Wt + 1) = ay(t) yields Wr)=_ o
times yo. The equation Wt + 1) =ay(t)+ s is solved by y=
@yo+s{l +a+-+a"']. The sum in brackets is _p
When a = 1.08 and y, =0, annual deposits of s =1 produce
y=_4a _ after ¢ years. If a=1% and y, =0, annual deposits
of s=6leave _ ¢ after ¢ years, approaching y,=_ 3
The steady equation y, = ay, + s gives p,=__1

When i = interest rate per period, the value of y, =31 after
N periods is Y N)=_u . The deposit to produce yN) =1
is yo=__¥ . The value of s = 31 deposited after each period

grows to ¥(N)=_w . The deposit to reach YN)=11iss5=

]

Euler's method replaces y' =cy by Ay =cyAt. Each step
multiplies ¥ by _ ¥ . Therefore y at £ =1 is (1 + cA)!y,,
which convergesto __ 2 as At — 0. The error is proportional
to A whichistoo __B  for scientific computing,

1 Write down a power series y = 1 —x + -+~ whose derivative
s —y

2 Write down a power series y =1 + 2x + --- whose deriva-
tive is 2y.

3 Find two series that are equal to their second derivatives.

4 By comparing e=1+1+4+4§++4+ - with a larger
series (whose sum is easier) show that e < 3,

5 At 5% interest compute the output from $1000 in a year
with 6-month and 3-month and weekly compounding,

6 With the quick method In{1 + x} = x, estimate In{l — 1 /m)"
and In(1 + 2/n)". Then take exponentials to find the two limits.

7 With the slow method multiply out the three terms of
{1 —})? and the five terms of (1 — })*. What are the first three
terms of (1 — 1/n)", and what are their limits as n - o0?

8 The slow method leads to 1 — 1+ 1/2! — 1/3! + - for the

limit of (1 — 1/m)". What is the sum of this infinite series —
the exact sum and the sum after five terms?

9 Knowing that (1 + 1/r)" - ¢, explain (1 + 1/r}*" — &% and
(1 +2/N)¥ - &

10 What are the limits of {1+ 1/n%®" and {1+ 1/m}*?
QK to use a calculator to guess these limits.

11 (a) The power (1 + 1/n)" (decreases) (increases) with n, as
we compound more often. {b) The derivative of f{x)=
x In(1 + 1/x), which is , should be {<0)(>0). This is
confirmed by Problem 12.

12 Show that In{1 + 1/x) > 1/{x + 1) by drawing the graph of
1/t. Theareafromi=1 to 1+ I/xis . The rectangle
inside it has area

13 Take three steps of Yt + 1) = 2¥¢) from yo=1.
14 Take three steps of Wt + 1) =2y{t) + 1 from y, =0.

Solve the difference equations 15-22.

15 Mt +1D=3%0), yo=4 16 At + D) =dyt), yo=1

17 i+ D=t} + 1, =0 18 W+ =Wt)—1, yo=0
19 Mt+1)=300+ 1 yo=0 20 Wt + D=3x1) +5 yo=1
21 Wi+ =ayt)+s, y0=0 22 Wt + D) =apt)+s, yo=5

In 23-26, which initial value produces y, = y, (steady state)?
23yt +1)=21t)—6 U Y+ 1}=3p)—6
25 Jt+)=—y)+06 26 {t+ )= —dyn+6

27 In Problems 23 and 24, start from y; =2 and take three
steps to reach y,. Is this approaching a steady state?

28 For which numbers 2 does (1 — «")f(} — a} approach a limit
as f — o and what is the limit?

29 The price P is determined by supply =demand or
—dP{t + 1) + b =cP{t). Which price P is not changed from
one year to the next?

30 Find P(t) from the supply-demand eguation with ¢ =1,
d=2, b=8, P{0)=0. What is the steady state as t —» «?

Assume 10% interest (so a =1+ i = 1.1) in Problems 31-38.

31 At 10% interest compeounded quarterly, what is the effec-
tive rate?

32 At 10% interest compounded daily, what is the effective
rate?

33 Find the future value in 20 years of $100 deposited now.

M Find the present value of 31000 promised in twenty years.
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35 For a mortgage of $100,000 over 20 years, what is the
monthly payment?

36 For a car loan of $10,000 over 6 years, what is the monthly
payment?

37 With annual compounding of deposits s = $1000, what is
the balance in 20 years?

38 If you repay s = $1000 annually on a loan of $8000, when
are you paid up? (Remember interest.)

39 Every year two thirds of the available houses are sold, and
1000 new houses are built. What is the steady state of the
housing market — how many are available?

40 If a loan shark charges 5% interest a month on the $1000
you need for blackmail, and you pay $60 a month, how much

6.7 Hyperbolic Functions

do you still owe after one month (and after a year)?

41 Euler charges ¢ = 100% interest on his $1 fee for discover-
ing e. What do you owe (including the $1) after a year with
(a) no compounding; (b) compounding every week; (c) con-
tinuous compounding?

42 Approximate (1 + 1/n)" as in (15) and (16) to show that
you owe Euler about e — ¢/2n. Compare Problem 6.2.5.

43 My Visa statement says monthly rate = 1.42% and yearly
rate = 17%. What is the true yearly rate, since Visa com-
pounds the interest? Give a formula or a number.

44 You borrow y, = $80,000 at 9% to buy a house.
(a) What are your monthly payments s over 30 years?
(b) How much do you pay altogether?

This section combines ¢* with e™*. Up to now those functions have gone separate
ways—one increasing, the other decreasing. But two particular combinations have
earned names of their own (cosh x and sinh x):

&E+e* ) ; ) 5 — (,—.r
— hyperbolic sine sinh x = 5
The first name rhymes with “gosh™. The second is usually pronounced “cinch™.

The graphs in Figure 6.18 show that cosh x > sinh x. For large x both hyperbolic
functions come extremely close to 3¢*. When x is large and negative, it is e * that
dominates. Cosh x still goes up to + oo while sinh x goes down to — oo (because
sinh x has a minus sign in front of e ™).

hyperbolic cosine cosh x =

Fig. 6.48 Cosh x and sinh x. The hyperbolic

functions combine 3¢* and 3e *. Louis Visitors Commission.

The following facts come directly from 3(e* + ¢ *) and 3(e* — e *):
cosh(—x) = cosh x and cosh 0=1 (cosh is even like the cosine)

sinh(— x)= —sinh x and sinh 0=0 (sinh is odd like the sine)

Fig. 6.19 Gateway Arch courtesy of the St.
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The graph of cosh x corresponds to a hanging cable (hanging under its weight).
Turned upside down, it has the shape of the Gateway Arch in St. Louis. That must
be the largest upside-down cosh function ever built. A cable is easier to construct
than an arch, because gravity does the work. With the right axes in Problem 55, the
height of the cable is a stretched-out cosh function called a catenary:

y = a cosh (x/a) (cable tension/cable density = a).
Busch Stadium in St. Louis has 96 catenary curves, to match the Arch.

The properties of the hyperbolic functions come directly from the definitions. There
are too many properties to memorize—and no reason to do it! One rule is the most
important. Every fact about sines and cosines is reflected in a corresponding fact about
sinh x and cosh x. Often the only difference is a minus sign. Here are four properties:

1. (cosh x)* — (sinh x)* =1 [instead of (cos x)* + (sin x)? = l]

e +e V)P E—e X2 e+ 2+e F—ptF 42—
Check.|: 5 j| |: 3 ]— 7 =1

2. i{cosh x)=sinh x | instead of i (cos x)= —sin x
dx dx

3. i (sinh x)=cosh x | like i sin x = cos X
dx dx

4, J‘sinh xdx=cosh x+C and Jcosh x dx=sinh x+C

(cos t. sin 1)
-=""\area 1/2
~xf
j

Fig. 6.20 The unit circle cos®t +sin’t = 1 and the unit hyperbola cosh®t — sinh?t = 1.

¥(cosh 1, sinh 1)

Property 1 is the connection to hyperbolas. It is responsible for the “h” in cosh and
sinh. Remember that (cos x)> + (sin x)> = 1 puts the point (cos x, sin x) onto a unit
circle. As x varies, the point goes around the circle. The ordinary sine and cosine are
“circular functions.”” Now look at (cosh x, sinh x). Property 1is(cosh x)* — (sinh x)* =
1, so this point travels on the unit hyperbola in Figure 6.20.

You will guess the definitions of the other four hyperbolic functions:

sinh x _e*—e™*
coshx e +e*

coshx e*+e ™™

X

tanh x = coth x =

sinhx e —e”

1 2 1 2
= — csch x = =
coshx e +e *

sech x =

sinh x e*—e *

I think “tanh” is pronounceable, and “sech™ is easy. The others are harder. Their



6.7 Hyperbolic Funclions
properties come directly from cosh?x — sinh?x = 1. Divide by cosh®x and sinh?x:
1 —tanh 2x=sech’x and coth®*x —1=csch®x

(tanh x) =sech?x and (sech x} = —sech x tanh x

J‘tanh x dx =J‘5‘“h X dx =In(cosh x) + C.
cosh x

INVERSE HYPERBOLIC FUNCTIONS

You remember the angles sin~!x and tan~'x and sec”'x. In Section 4.4 we
differentiated those inverse functions by the chain rule. The main application was to
integrals. I we happen to meet jdx/(1+x?), it is tan~*x+ C. The situation for
sinh~*x and tanh ™ 'x and sech ™ 'x is the same except for sign changes — which are
expected for hyperholic functions. We write down the three new derivatives:

y=sinh™!x (meaning x =sinh y} has % = ﬁ (1)

= tanh™'x (meaning x = tanh y) has dy_ _1 )
Y B x y dx 1—x?
-1 . dy _l

y=sech™ 'x (meaning x =sech y) has — = ——— (3)

dx  x /1-x?

Problems 44-46 compute dy/dx from 1/{dx/dy). The alternative is to use logarithms.
Since In x is the inverse of ¢*, we can express sinh™'x and tanh™*x and sech ™ 'x as
logarithms. Here is y=tanh ™~ 1x:

1 [1+x dy 11 1 1 1
=-In|—>|hasslope X =2~ —2_1 - .
Y Zn[l—x:| B 2T+ x 21-x 1-x2 @

The last step is an ordinary derivative of 4In(1 + x) — 4 In(1 — x). Nothing is new
except the answer. But where did the logarithms come from? In the middle of the
following identity, multiply ahove and below by cosh y:

l+x_l+tanhy coshy+sinhy &
l-x 1—tanhy coshy—sinhy e7*

=g2¥,

Then 2y is the logarithm of the left side. This is the first equation in (4), and it is the
third formula in the following list:

sinh'1x=ln[x+,/x2+l] cosh‘1x=ln[x+,/x3—1]
tanh'lx=lln|:l +x:| sech_1x=ln|:l+4—— ‘H]

2 1-x x

Remark 1 Those are listed only for reference. If possible do not memorize them. The
derivatives in equations (1), {2), (3) offer a choice of antiderivatives — either inverse
functions or logarithms (most tables prefer logarithms). The inside cover of the book
has

dx 1 1+x . 1
J‘l—x2_21n|:1—x:|+c (in place of tanh~'x + C).

1

Remark 2 Logarithms were not seen for sin~'x and tan~'x and sec™ 'x. You might

279
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wonder why. How does it happen that tanh ~ !x is expressed by logarithms, when the
parallel formula for tan ~'x was missing? Answer: There must be a parallel formula.
To display it I have to reveal a secret that has been hidden throughout this section.
The secret is one of the great equations of mathematics. What formulas for cos x
and sin x correspond to ie*+e %) and ie*—e*)? With so many analogies
(circular vs. hyperbolic) you would expect to find something. The formulas do exist,
but they involve imaginary mumbers, Fortunatcly they are very simple and there is
no reasen to withhold the truth any longer:
1, . ; : | »
Cos x = E(e”‘ +e ) and sin x = E(e"‘ - e, (5)
It is the imaginary exponents that kept those identities hidden. Multiplying sin x by
i and adding to cos x gives Euler’s unbelievably beautiful equation

cos x + i sin x = ¢, (6)

That is parallel to the non-beautifu] hyperbolic equation cosh x + sinh x = ¢*.

1 have to say that {6) is infinitely more important than anything hyperbolic will
ever be. The sine and cosine are far more useful than the sinh and cosh. So we end
our record of the main properties, with exercises to bring out their applications.

6.7 EXERCISES
Read-through questions Find the derivatives of the functions 9-18:
Cosh x=_¢e and sinhx=_b and cosh’x —sinh*x = 9 cosh{3x + 1) 10 sinh x?
_ ¢ . Their derivatives are _d __and e and 11 1/cosh x 12 sinh(ln x)

The point (x, y)=(cosh ¢, sinh ) travels on the hyperbola
§ . A cable hangs in the shape of a catenary y = __h

The inverse functions sinh 'x and tanh™'x are equal 10

In[x + /x*+ 1] and $In__{__. Their derivatives are __}
and __k . So we have two ways to write theanti__ | The

parallel to cosh x +sinh x=¢" 15 Euler’s formula _ m
The formula cos x = (¢ + ¢ ™) involves _ n__ exponents,
The parailel formula for sinx is _o

1 Find cosh x + sinh x, cosh x —sinh x, and cosh x sinh x.

2 From the definttions of cosh x and sinh x, find their deriv-
atives.

3 Show that both functions satisfy 1 = y.

4 By the quotient rule, verify {tanh x)' = sech?x.

§ Derive cosh®x + sinh®x = cosh 2x, from the definitions.
6 From the derivative of Problem % find sinh 2x.

7 The parallel to {cos x +isin x)"=cosnx+isinnx is a
hyperbolic formula (cosh x + sinh x}* = cosh nx +

8 Prove sinh(x + y)=sinh x cosh y + cosh xsinh ¥ by
changing to cxponentials. Then the x-derivative gives
coshix + y) =

13 cosh®x + sinh3x 14 cosh?x — sinh®x

15 tanh \f'(xi.-.i-vlh 16 (I + tanh x)/{{1 — tanh x)
17 sinh®x 18 In{sech x + tanh x)

19 Find the minimum value of cosh(ln x) for x > 0.

20 From tanh x = £ find sech x, cosh x, sinh x, coth x, csch x.
21 Do the saume if tanh x= —12:13.

22 Find the other five values if sinh x =2,

23 Find the other five values if cosh x = 1.

24 Compute sinhiln 5) and tanh(2 In 4),

Find antiderivatives for the functions in 25-32:
28 cosh(2x + 1)

27 cosh®x sinh x

26 x cosh(x*}
28 tanh®y sech?x
sinh x e et

—_— 30 coth x =
1 + cosh x ef—e”F

31 sinh x + cosh x 32 (sinh x + cosh x)"
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33 The triangle in Figure 6.20 has area 4 cosh ¢ sinh ¢.
(a) Tntegrate to find the shaded area below the hyperbola
(b} For the area A in red verify that dd/dt=1}
{c) Conclude that A = ¢ + C and show C=0.

Sketch praphs of the functions in 34-40,
34 y=tanh x (with inflection point}
35 y =coth x (in the limit as x — w}
36 y=sech x

37 y=sinh~x

38 y=cosh!xforxz1

39 y=sech 'xfor0<xg1

I+x) for [x| < 1

1—x

4% {a) Mulliplying x=sinh y=}e¢"—e™%) by 2¢’ gives
()? — 2x(e") — 1 = 0. Solve as a quadratic equation for ¢”.

(b} Take logarithms to find y = sinh ~'x and compare with
the text.

1
40 y——-tanh"x=51n(

42 (2) Multiplying x=coshy=%4("+e™?) by 2 gives
(¢)* — 2x(e") + 1 = 0. Solve for ¢".
(b) Take logarithms to find y = cosh ™ 'x and compare with
the text.
43 Turn (4) upside down to prove y' = —1/(1—x%), if y=
coth ™ x,
44 Compute dy{dx =1 /\/;z-l-—l by differentiating x = sinh y
and using cosh?y —sinh?y =1,
45 Compute dy/dx =1/(1 —x¥) if y=tanh™'x by differen-
tiating x = tanh y and using sech®y + tanh?y = 1.

46 Compute dyjdx= —1/x./1-x* for y=sech™'x, by
differentiating x = sech y.

From fonnnlas (1), (2), (3) or otherwise, find antiderivatives in
47-52:

47 j dxj{d - x?) 48 J. dxfa® - x*)

49 Idx,-’, /2 +1
51 J.dx/x,fl-xz 52 J.dx/JI —x?

142 4 1 d
53 CornputeJ. 1___"__ and I x

o —-X 0 — X

50 Ix axi/x*+1

FL

54 A falling body with friction equal to velocity squared

obeys dvjdt — g —v?,
(a) Show that 1t} = ,/g; tanh \/g_'t satisfies the equation.
{b) Derive this v yourself, by integrating dv/(g — v%) = dt.
{c) Integrate 1ft) to find the distance f{t).

%% A cahle hanging under its own weight has slope § =dy/dx

that satisfies dS/dx =c./1 + §°. The constant ¢ is the ratio of
cable density to tension.

{a} Show that § =sinh ex satisfies the equation.

(b) Integrate dy/dx = sinh ex to find the cahle height y{x),
if Y0} = 1c.

(c) Sketch the cable hanging between x= —L and x=L
and find how far it sags down at x =0.

86 The simplest nonlinear wave equation (Burgers’ equation}
yields a waveform W(z) that satisfiecs W = WW' — W', One
integration gives W' =4W?> — W.

(a) Separate variables and integrate:

dx =dWiAW?* — W)= —dW/(2 - W)— dW/W.

(b} Check W =iW?2—W.
57 A solitary water wave has a shape satisfying the K4V
equation y" =y — 6py.

(a) Integrate once to find y*. Multiply the answer by y.

(b) Integrate again to find y (all conslants of integration
are zero).

(c) Show that y=14sech®(x/2) gives the shape of the
“soliton.™

58 Derive cosix=cosh x from equation (5). What is the
cosine of the imaginary angle i=./ ~1?

59 Dernive sin ix =i sinh x from (5). What is sin §?

60 The derivative of ¢ =cos x + i sin x is
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CHAPTER 7

Techniques of Integration

Chapter 5 introduced the integral as a limit of sums. The caiculation of areas was
started—by hand or computer. Chapter 6 opened a diflerent door. Its new functions
¢* and In x led to differential equations. You might say that all along we have been
solving the special differential equation dffdx = o(x). The solution is f= | {x)dx. But
the step to dy/dx = ¢y was a breakthrough.

The truth is that we are able to do remarkable things. Mathematics kas a language,
and you are learning to speak it. A short time ago the symbols dy/dx and |s(x)dx
were a mystery. (My own class was not too sure about i{x) itself—the symbol for a
function.) It is easy to forget how far we have come, in looking ahead to what is next.

I do want to look ahead. For integrals there are two steps to take—more functions
and more applications. By using mathematics we make it live. The applications are
most complete when we know the integral. This short chapter will widen (very much)
the range of functions we can integrate. A computer with symbolic algebra widens it
more.

Up to now, integration depended on recognizing derivatives. If »(x)= sec?x then
flx)=tan x. To integrate tan x we use a substitution:

i d
J.SInxdx=—J.—u= —Inu= —1Incos x.

Cos x u

What we need now are technigues for other integrals, to change them around until
we can attack them. Two examples are | x cos x dx and | /1 —x” dx, which are not
immediately recognizable. With integration by parts, and a new substitution, they
become simple.

Those examples indicate where this chapter starts and stops. With reasonable effort
(and the help of tables, which is fair) you can integrate important functions, With
intense effort you could integrate even more functions. In older books that extra
exertion was made—it tended to dominate the course. They had integrals like -
{ (x + Ddx//2x* — 6x + 4, which we could work on if we had to. Our time is too
valuable for that! Like long division, the ideas are for us and their intricate elaboration
is for the computer.

Integration by parts comes first. Then we do new substitutions. Partial fractions
is a useful idea (aiready applied to the logistic equation ¥ =cy— by?). In the last
section x goes to infinity or y(x) goes to infinity—but the area stays finite. These
improper integrals are quite common. Chapter 8 brings the applications.
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I 7.1 Integration by Parts NG

There are two major ways to manipulate integrals (with the hope of making them
easier). Substitutions are based on the chain rule, and more are ahead. Here we
present the other method, based on the product rule. The reverse of the product rule,
to find integrals not derivatives, is integration by parts.

We have mentioned [ cos®x dx and | In x dx. Now is the right time to compute
them (plus more examples). You will see how [ In x dx is exchanged for | 1 dx—a
definite improvement. Also | xe* dx is exchanged for | e* dx. The difference between
the harder integral and the easier integral is a known term—that is the point.

One note before starting: Integration by parts is not just a trick with no meaning.
On the contrary, it expresses basic physical laws of equilibrium and force balance.
It is a foundation for the theory of differential equations (and even delta functions).
The final paragraphs, which are completely optional, illustrate those points too.

We begin with the product rule for the derivative of u(x) times v(x):
dv du d
X) — + v(x) — = — (u(: L
u(x) i v(x) % gy (u(x)v(x)) (1)

Integrate both sides. On the right, integration brings back u(x)v(x). On the left are
two integrals, and one of them moves to the other side (with a minus sign):

dv , IS Y d_u
Ju(.\] = dx = u(x)v(x) JI.(.\} 7 dx. (2)

That is the key to this section—not too impressive at first, but very powerful. It is
integration by parts (u and v are the parts). In practice we write it without x’s:

7A  The integration by parts formula is [u dv=uv — [v du. 3)

The problem of integrating u dv/dx is changed into the problem of integrating
v du/dx. There is a minus sign to remember, and there is the “integrated term™ u(x)v(x).
In the definite integral, that product u(x)r(x) is evaluated at the endpoints a and b:

b d y b

u s dx = u(b)e(b) — u(a)vla) — | v Q dx. (4)
i - . dx

The key is in choosing u and v. The goal of that choice is to make [ v du easier than

[ u dv. This is best seen by examples.

EXAMPLE4 For j' In x dx choose u=In x and dv=dx (so v=x):

Jln x dx=uv— -[r du=x1n x— J‘x 1 dx.
X

I used the basic formula (3). Instead of working with In x (searching for an antideriva-
tive), we now work with the right hand side. There x times 1/x is 1. The integral of
1 is x. Including the minus sign and the integrated term uv = x In x and the constant
C, the answer is

flnxdx=xInx—x+C. (5)

For safety. take the derivative. The product rule gives In x + x(1/x) — 1, which is In x.
The area under y=Inx from 2to 3is 3In3—3—-2In2+ 2.
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To repeat: We exchanged the integral of In x for the integral of 1.

EXAMPLE 2 For { x cos x dx choose u = x and dv = cos x dx (so {x) = sin x):
{x cos x dx=uv — fovdu=xsin x— [sin x dx. (6)
Again the right side has a simple integral, which completes the solution:
§x cos x dx=x sin x + cos x + C. (7N

Note The new integral is not always simpler. We could have chosen u = cos x and
dv = x dx. Then v = }x2. Integration using those parts give the true but useless result

fx cos x dx =up—fvdu=§x* cos x + [ §x* sin x dx.
The last integral is harder instead of easier (x* is worse than x). In the forward
direction this is no help. But in the opposite direction it simplifies {4x” sin x dx. The
idea in choosing u and v is this: Try te give u a nice derivative and dv a nice integral.
EXAMPLE 3 For [(cos x)? dx choose u = cos x and dp = cos x dx (so v=sin x):
f{cos x)*dx =uv— [ v du=cos x sin x + | (sin x)* dx.

The integral of (sin x)* is no better and no worse than the integral of (cos x)2. But we
never see (sin x)* without thinking of 1 — {(cos x)°. So substitute for (sin x)*:

f{cos x)* dx =cos x sin x+ {1 dx — {(cos x)* dx.
The last integral on the right joins its twin on the left, and { 1 dx = x:
2 f(cos x)? dx = cos x sin x + x.
Dividing by 2 gives the answer, which is definitely not }{cos x)*. Add any C:
§(cos x)* dx = {cos x sin x + x) + C. (8)

Question Integrate {cos x)? from 0 to 2x, Why should the area be #?

Answer The definite integral is 3{(cos x sin x + x)]f)". This does give n. That area can
also be found by common sense, starting from {cos x)* + (sin x)? = I. The area under
1is 2r. The areas under (cos x)* and (sin x)? are the same. So each one is 7.

EXAMPLE 4 Evaluate [tan™'x dx by choosing u =tan"'x and v=x:
d
J.tan'lxdx=uv—'(.udu=xtan_1x—".x x ©

1+ x?

The last integral has w =1 + x? below and almost has dw = 2x dx above:

xdx 1 [dw 1 1 2
J.l+x2_2 " 2ln 2ln(l+x).

Substituting back into (9) gives f tan ™ *x dx as x tan~'x — §In(1 + x?). All the familiar
inverse functions can be integrated by parts (take v = x, and add “+ C™ at the end).

Our final example shows how twe integrations by parts may be needed, when the
first one only simplifies the problem half way.

EXAMPLES For j'xze"dx choose u = x? and dv = ¢"dx (so v=€*);
fx?e*dx = uv — [ v du= x*e* — | &(2x dx). (10)
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The last integral involves xe*. This is better than x?e*, but it still needs work:
| xe*dx =uv— [v du= xe*— [e*dx (now u= x). (11)
Finally ¢* is alone. After two integrations by parts, we reach | ¢*dx. In equation (11),
the integral of xe* is xe* — e*. Substituting back into (10),
| x?e"dx = x?e* — 2[xe* — €] + C. (12)
These five examples are in the list of prime candidates for integration by parts:
1 1

x"e*, x"sinx, x"cosx, x"lnx, e'sinx, e‘cosx, sin 'x, tan 'x,....

This concludes the presentation of the method—brief and straightforward.
Figure 7.1a shows how the areas [u dv and {vdu fill out the difference between the
big area u(b)v(b) and the smaller area u(a)v(a).

() 3(x) gy = v(0)3(x)
red area = large box v(x)
— small box — gray area

= Uylty = Uyl — IUdH

]
0

Fig. 7.1 The geometry of integration by parts. Delta function (area 1) multiplies v(x) at x=0.

In the movie Stand and Deliver, the Los Angeles teacher Jaime Escalante computed
J x*sin x dx with two integrations by parts. His success was through exercises—plus
insight in choosing u and v. (Notice the difference from [ x sin x* dx. That falls the
other way—to a substitution.) The class did extremely well on the Advanced Place-
ment Exam. If you saw the movie, you remember that the examiner didn’t believe
it was possible. I spoke to him long after, and he confirms that practice was the key.

THE DELTA FUNCTION

From the most familiar functions we move to the least familiar. The delta function is
the derivative of a step function. The step function U(x) jumps from 0 to 1 at x=0.
We write d(x) = dU/dx, recognizing as we do it that there is no genuine derivative at
the jump. The delta function is the limit of higher and higher spikes—from the
“burst of speed™ in Section 1.2. They approach an infinite spike concentrated at a
single point (where U jumps). This “non-function” may be unconventional—it is
certainly optional—but it is important enough to come back to.

The slope dU/dx is zero except at x =0, where the step function jumps. Thus
d(x) = 0 except at that one point, where the delta function has a “‘spike.” We cannot
give a value for J at x = 0, but we know its integral across the jump. On every interval
from — A to A, the integral of dU /dx brings back U:

A A Hz -
J 8(x) dx = .[ “dx=Ux|', =1 (13)
l i

_4 dx

“The area under the infinitely tall and infinitely thin spike §(x) equals 1.”

So far so good. The integral of d(x) is U(x). We now integrate by parts for a crucial
purpose—to find the area under v(x)d(x). This is an ordinary function times the delta
function. In some sense v(x) times d(x) equals v(0) times d(x)—because away from
x =0 the product is always zero. Thus ¢*d(x) equals d(x), and sin x d(x) = 0.
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The area under v(x)d(x) is v(0)—which integration by parts will prove:

7B The integral of v(x) times 8(x) is [* , v(x)d(x)dx = v(0).

The area is 1(0) because the spike is multiplied by v(0)—the value of the smooth
function v(x) at the spike. But multiplying infinity is dangerous, to say the least. (Two
times infinity is infinity). We cannot deal directly with the delta function. It is only
known by its integrals! As long as the applications produce integrals (as they do), we
can avoid the fact that J is not a true function.

The integral of v(x)d(x) = v(x)dU/dx is computed “by parts:”

j o(x)(x) dx = W) UR) |*, — I U(x) % dx. (14)
Remember that U =0 or U = 1. The right side of (14) is our area v(0):
o(A)-1— J.A Rl o(A) — (o(4) — (0)) = 1(0). (15)
0 dx

When v(x) = 1, this answer matches | ddx = 1. We give three examples:
[?,cos xd(x)dx=1 [, (Ux)+dx)dx=T7 [, (8(x))*dx= 0.

A nightmare question occurs to me. What is the derivative of the delta function?
INTEGRATION BY PARTS IN ENGINEERING

Physics and engineering and economics frequently involve products. Work is force
times distance. Power is voltage times current. Income is price times quantity. When
there are several forces or currents or sales, we add the products. When there are
infinitely many, we integrate (probably by parts).

I start with differential equations for the displacement u at point x in a bar:

dv . _,du
= f(x) with 1v(x) = kdx' (16)

This describes a hanging bar pulled down by a force f(x). Each point x moves through
a distance u(x). The top of the bar is fixed, so u(0) = 0. The stretching in the bar is
du/dx. The internal force created by stretching is v = k du/dx. (This is Hooke’s law.)
Equation (16) is a balance of forces on the small piece of the bar in Figure 7.2.

L
x=0 u(0)y=0
e

fAx "l v+ A

Fig. 7.2 Difference in internal force balances external force

x=1 H=w
—Av=fAx or —dv/dx =f(x) ' @ o

v= W at x = | balances hanging weight
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EXAMPLE & Suppose fix)= F, a constant force per unit length. We can solve (16):
Wx)=—-Fx+C and  ku(x)=—4Fx*+Cx+D. (17)

The constants C and D are settled at the endpoints (as usual for integrals}. At x=10
we are given 4=030 D=0. At x=1 we are given v=W so C= W+ F. Then o(x)
and u(x) give force and displacement in the bar.

To see integration by parts, multiply —dv/dx = f{x} by u(x) and integrate:

du

. 18
dx dx (18)

1 i dv 1 1
J' fox)utx) dx = —J' 7 ulx) dx = — u(xjo(x) |, + f ox)
¢ o dx ¢
The left side is force times digplacement, or external work. The last term is internal
force times stretching—or internal work. The integrated term has () = 0—the fixed
support does no work. It also has —u{1)W, the work by the hanging weight. The
balance of forces has been replaced by a balarce of work.

This is a touch of engineering mathematics, and here is the main point. Integration
by parts makes physical sense! When —dv/dx =f is multiplied by other functions—
called test functions or virtual displacements—then equation (18) becomes the
principle of virtual work. 1t is absolutely basic to mechanics.
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7.4 EXERCISES
Read-through questions 9 {e*sin x dx 10 fe*cos x dx
Inlegration by pans is the reverse of the _o  rule. It [9 and 10 need two integrations. I think e* can be w or 0.]

changes fudv into _ b minus _¢ . In case w=x and
dv = e**dx, it changes [xe*dx to _d _ minus _ e . The
definite integral §2 xe**dx becomes _t minus _ g _.

In choosing w and dv, the _h _ of ¥ and the _1__ of
dv/dx should be as simple as possible. Normally In x goes into
| and e"goes into __k__. Prime candidates are u = x or

x*and v=sinxor _1 _or _m . When u=x? we need
n__integrations by parts. For jsin~*x dx, the choice dv =
dxleadsto _ o  minus _p .

If U/ is the unit step function, dU//dx = 6§ is the unit __a
function. The integral from —A to A is U(A)— U{—A)=

r . The integral of w(x)}3{x} equals _ s . The integral
_[1_1 cos x 8(x)dx equals __ t . In engineering, the balance of
forces —dvfdx =/ is multiplied by a displacement u(x) and
integrated to give a balance of _ u

Integrate 1-16, usually by parts (sometimes twice).

I §xsinxdx 2 [xe*dx

3 [xe *dx 4 |xcos3xdx
5 [ x?cos x dx (use Problem 1}
6 [ xinxdx 7 §In(2x + 1)dx

8 | x? e*~dx (use Problem 2)

11 [ e™sin bx dx
13 f sin{ln x) dx
15 [ (n x)*dx

17 §sin"'x dx
19 | xtan~'x dx

12 | xe dx

14 § cos(in x) dx
16 j x*ln x dx
18 fcos™'(2x) dx

20 | x?sin x dx (from the movie)

21 §x*cos x dx 22 f x*sin x dx
23 | x%e"dx 24 § xsec”'x dx
25 § x sec?x dx 26 § x cosh x dx

Compute the definite integrals 27-34.

28 [ e/ dx (let u=1/x)
30 S In{x%)dx

32 (% xsinxdx

) .
34 [ x? sin x dx.

27 folnx dx

29 [ xe dx
31 [fxcos x dx
33 {3 In(x? + 1)dx
In 3540 derive “reduction formulas” from higher to lower
powers,

35 [x"edx=x"¢"—n [ X" " efdx
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36 [ x"e*dx =

37 [ x"cos x dx =x"sin x —n { X"~ 'sin x dx
38 [ x"sin x dx =

39 [(In x\'dx =x{In x)" —n [ (In x~'dx

40 | x(in xy'dx =

41 How would you compute | x sin x *dx using Problem 97
Not necessary to do it.

42 How would you compute | x £*tan™'x dx? Don’t do it.

43 (a) Integrate [ x%sin x?dx by substitution and parts.
(b) The integral [ xsin x?dx is possible if n is

44-54 are about optional topics at the end of the section.
44 For the delta function d(x) find these integrals:

@ [, e¥5(x)dx (b} [*, 0bxddx () [5cos x d(x)dx.
45 Solve dy/dx = 35(x) and dyfdx = 346{x) + ¥x).

46 Strange fact: 8(2x) is different from &(x). Integrate them
both from —1 to 1.

47 The intepral of d(x) is the unit step U(x). Graph the next
integrals R(x)= [ U(x)dx and Q(x}=[ R{x)dx. The ramp R
and quadratic spline () are zero at x =0.

48 In 5(x —4), the spike shifts to x = 4. It is the derivative of
the shifted step U{x — ). The integrat of v(x}é(x —}} equals
the value of » at x =4. Compute

(@) fo dx —Pdx;  (b) [ €*3(x — dx;
(© [* | 8(x)d(x — . :

49 The derivative of 6(x} is extremely singular. It is a “dipole”™
known by its integrals. Integrate by parts in {b} and (c):

Y dé LI’ ! dd ,
(a)J‘ —dx {b].l‘ xadx (c}.[_lv(x}adx=—v{(]].

g dx -1
50 Why is |1, U(x)é(x)dx equal to 4? (By parts.)

51 Choose limits of integration in o{x)= | f{x)dx so that
dojdx = —f{x)and v=0at x=1.

The next section will put old integrals into new forms. For example [ x?

1.2 Trigonometric Integrals

52 Draw the graph of u{x) if {1)=0 and —dvjdx = fix):
@r=x; by =Ux—1; (©/=3dx—1}

53 What integral u(x} solves k du/dx =u(x} with end con-
dition #(0} =07 Find u(x) for the three ¢'s (not f’s) in
Problem 52, and graph the three s,

54 Draw the graph of AU/Ax=[U{x + Ax)— U(x)]/Ax.
What is the area under this graph?
Problems 55—62 need more than one integration.
55 Two integrations by parts lead to V = integral of v
[uvdx =up— V' + [ Vu"dx,
Test this rule on | x*sin x dx.
56 After n integrations by parts, j u{dv/dx)dx becomes
ww — u' Vo, + u Do, ~ o+ 1) ™l

u™ is the ath derivative of u, and b, is the nth integral of v.
Integrate the last term by parts to stretch this formula to
n + | integrations.

57 Use Problem 36 to find | x*e*dx.

58 From f(x)—fi0)= [; f{r)di, integrate by parts (notice dr
not dx) to reach fx)=f0)+/(0)x + |3/ ()ix — )dt. Con-
tinuing as in Problem 56 produces Taylor's formula:

Slxy=fl0) + £ (O)x + % £+ + J‘ £ {—{;?txdr‘
- 0 .

n
59 What is the difference between j‘:} uw”dx and _[['} u'w dx?

60 Compute the areas A = [} In x dx and B = [, ¢* dy. Mark
them on the rectangle with corners (0, 0}, (e, 0), (e, 1), {0, 1).

61 Find the mistake. 1 don't believe ¢* cosh x = ¢*sinh x:
j e sinh x dx = ¢* cosh x — | e*cosh x dx
=e¢*cosh x —e“sinh x + _[ e*sinh x dx.

62 Choose € and D to make the derivative of
C ¢*cos bx + D ¢®sin bx equal to &**cos bx. Is this easier
than integrating ¢**cos bx twice by parts?

1—x*dx

will become [sin’@ cos?d d6. That looks simpler because the square root is gone. But
still sin?0 cos?8 has 1o be integrated. This brief section integrates any product of sines

and cosines and secants and tangents.

There are two methods to choose from. One uses integration by parts, the other
is based on trigonometric identities. Both methods try to make the integral easy {(but
that may take time). We follow convention by changing the letter § back to x.
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Notice that sin*x cos x dx is easy to integrate. It is u*du. This is the goal in
Example 1—to separate out cos x dx. It becomes du, and sin x is u.

EXAMPLE1 | sin’x cos’xdx (the exponent 3 is odd)

Solution Keep cos x dx as du. Convert the other cos?x to 1 —sinx:

sin*x  sin®x

+C.
3 5 ¢

J‘sinzx cos’x dx = J‘sinzx(l — sin®x)cos x dx =

EXAMPLE2 {sin®*xdx (the exponent 5 is 0dd)

Solution Keep sin x dx and convert everything else to cosines. The corversion is
always based on sin’x + cos’x = 1:

(1 = cos?x)sin x dx = J(1 ~ 2 cos’x + cos*x) sin x dx.
Now cos x is u and —sin x dx is du. We have {(—1 + 2u* — u*)du.
General method for { sin™x cos"x dx, when m or n is odd

If n is odd, separate out a single cos x dx. That leaves an even numher of cosines.
Convert them to sines. Then cos x dx is du and the sines are u's.

If m is odd, separate out a single sin x dx as du. Convert the rest to cosines.

If m and n are both odd, use either method.

If m and n are both even, a new method is needed. Here are two examples.

EXAMPLE3 [cos’x dx (m=0, n=2, both even)

There are two good ways to integrate cos®x, but substitution is not one of them. If
u equals cos x, then du is not here. The successful methods are integration by parts
and double-angle formulas. Both answers are in equation (2) below—I don’t see
either one as the obvious winner.

Integrating cos®x by parts was Example 3 of Section 7.1. The other approach, by
double angies, is based on these formulas from trigonometry:

cos’x=4(1+cos 2x)  sin’x =4(1 — cos 2x) (1

The integral of cos 2x is 4 sin 2x. So these formuias can be integrated directly. They
give the only integrals you should memorize—either the integration by parts form,
or the resuit from these double angles:

fcos’x dx equals ¥(x +sin xcosx} or Ix+gsin2x (plusC). (2)

{ sin?x dx equals (x — sin x cos x) or ix—%sin2x (plusC). (3)

EXAMPLE4 [cos®xdx (m=0, n=4, both are even)

Changing cos®x to ! — sin’x gets us nowhere. All exponents stay even. Substituting
u = sin x won't simplify sin*x dx, without du. Integrate by parts or switch to 2x. -

First solution Integrate by parts. Take u = cos®x and dv = cos x dx:
f (cos?x}{cos x dx) = up - | v du = cos*x sin x — [ (sin x)(— 3 cos’x sin x dx).

The last integral has even powers sin’x and cos’x. This looks like no progress.
Replacing sin®x by ! — cos?x produces cos*x on the right-hand side also:

[ cos*x dx = cos?x sin x + 3 | cos®x(1 — cos*x)dx.
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Always even powers in the integrals. But now move 3 [ cos®x dx to the left side:
Reduction 4 [ cos*x dx = cos®x sin x + 3 [ cos®x dx. 4

Partial success—the problem is reduced from cos*x to cos®x. Still an even power,
but a lower power. The integral of cosx is already known. Use it in equation (4):

| cos*x dx = cosx sin x + 2-%(x + sin x cos x} + C. (5)
Second solution  Substitute the double-angle formula cos®x = %+ 4 cos 2x:
jeos'x dx=[ (3 + % cos 2x)?dx =1} | (1 + 2 cos 2x + cos® 2x)dx.
Certainly | dx = x. Also 2 | cos 2x dx = sin 2x. That leaves the cosine squared:
fcos®2x = 4(1 + cos dx)dx =4x + § sin 4x+ C.
The integral of cos*x using double angles is
1[x+ sin 2x + x + §sin 4x] + C. {6)

That solution looks different from equation (5), but it can’t be. There all angles were
x, here we have 2x and 4x. We went from cos*x to cos?2x to cos 4x, which was
integrated immediately. The powers were cut in half as the angle was doubled.

Double-angle method for | sin™x cos"x dx, when m and n are even.

Replace sinx by ({1 ~ cos 2x) and cos?x by 3(1 + cos 2x}. The exponents drop to
mj2 and nj2. If those are even, repeat the idea (2x goes to 4x). If m/2 or n/2 is odd,
switch to the “general method™ using substitution. With an odd power, we have du.

EXAMPLE5 (Double angle) | sin®x cosx dx = { {1 —cos 2x)(1 + cos 2x)dx.

This leaves 1 — cos? 2x in the last integral. That is familiar but not necessarily easy.
We can look it up (safest) or remember it (quickest) or use double angles again:

1 2 1 1 1 x sindx
- — = — —_— - dx |dx= - — + .
4J‘(l cos* 2x)dx 2 J‘(l 2 cos x) x=3 C

2 32

Conclusion Every sin™x cos"x can be integrated. This includes negative m and n—
see tangents and secants below. Symbolic codes like MACSYMA or Mathematica
give the answer directly. Do they use double angles or integration by parts?

You may prefer the answer from integration by parts (I usually do). It avoids 2x
and 4x. But it makes no sense to go through every step every time. Either a computer
does the algebra, or we use a “reduction formula™ from nton—2:

Reduction n [ cos®x dx = cos" 'x sin x +(n— 1) [ cos"™ *x dx. N

For n= 2 this is { cos’x dx—the integral to learn. For n =4 the reduction produces
cos?x. The integral of cos®x goes to cos*x. There are similar reduction formulas for
sin™x and also for sin™x cos"x. I don’t see a good reason to memorize them.

INTEGRALS WITH ANGLES px AND gx
Instead of sin®x times cos®x, suppose you have sin 8x times cos 6x. How do you

integrate? Separately a sine and cosine are easy. The new question is the integral of
the product:
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EXAMPLE 6  Find (2" sin 8x cos 6x dx.  More generally find [2" sin px cos gx dx.

This is not for the sake of making up new problems. I believe these are the most
important definite integrals in this chapter (p and ¢ are 0, 1, 2, ...). They may be the
most important in all of mathematics, especially because the question has such a
beautiful answer. The imtegrals are zero. On that fact rests the success of Fourier
series, and the whole industry of signal processing.

One approach (the slow way) is to replace sin 8x and cos 6x by powers of cosines.
That involves cos'#x. The integration is not fun. A better approach, which applies to
all angles px and gx, is to use the identity

sin px cos gx =% sin{p + g)x + ¥ sin{p — g)x. (8)
Thus sin 8x cos 6x =4 sin 14x + 4 sin 2x. Separated like that, sines are easy to

integrate:
2 lcos 14x 1cos 2x |**
L sm8xcos6xdx—[ 1 1a 772 :L =Q,

Since cos 14x is periodic, it has the same value at 0 and 2z. Subtraction gives zero.
The same is true for cos 2x. The integral of sine times cosine is always zero over a
complete period {like O to 2x).

What about sin px sin gx and cos px cos gx7? Their integrals are also zero, provided
p is different from g. When p = g we have a perfect square. There is no negative area
to cancel the positive area. The integral of cos?px or sin’px is =.
EXAMPLE 7 o sin 8x sin Tx dx=0 and [3*sin? 8x dx=m.

With two sines or two cosines (instead of sine times cosine), we go back to the
addition formulas of Section 1.5. Problem 24 derives these formulas:

sin px sin gx = — 4 cos(p+ g)x + 3 cos(p — g)x 9

cos px cos gx= ¥ cos(p + g)x + 4 cos{p — g)x. (10)

With p=18and g =7, we get cos 15x and cos x. Their definite integrais are zero. With
p=238 and g =8, we get cos 16x and cos Ox (which is 1). Formulas (9} and (10) also
give a factor 5. The integral of § is 7

{2 sin 8x sin 7x dx = —4{3" cos 15x dx + §[2" cos xdx=0+0
[2" sin 8x sin 8x dx= —4[}" cos 16x dx + 43" cos Ox dx=0+x

The answer zero is memorable. The answer n appears constantly in Fourier series.
No ordinary numbers are seen in these integrals. The case p=g¢g=1 brings back
feos®xdx=3+7sin2x.

SECANTS AND TANGENTS

When we allow negative powers m and n, the main fact remains true. All integrals
§ sin™x cos"x dx can be expressed by known functions. The novelty for negative pow-
ers is that logarithms appear. That happens right at the start, for sin x/cos x and for
1/cos x {tangent and secant):

§ tan x dx = — | du/u= —In[cos x| (here u = cos x)

fsecxdx= [duju= |In|sec x+tan x| (here u=sec x +tan x).
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For higher powers there is one key identity: 1+ tan®x = sec®x. That is the old
identity cos?x + sin®x =1 in disguise (just divide by cos®x). We switch tangents to
secants just as we switched sines to cosines. Since (tan x)’ =sec’x and (sec x) =
sec x tan x, nothing else comes in.

EXAMPLE 8 | tan’x dx = [(sec’x — I)dx =tan x — x + C.

EXAMPLE ? | tan®x dx = [ tan x(sec?x — 1)dx.

The first integral on the right is [ du=}u?, with u=tanx. The last integral is
— { tan x dx. The complete answer is 3(tan x)* + In|cos x| + C. By taking absolute
values, a negative cosine is aiso allowed. Avoid cos x = (.

(tan x)™ 1

EXAMPLE 10 Reduction j(tan x)'dx = T~
m—

J}tan X" 2dx

Same idea—separate off (tan x)*> as sec?x — 1. Then integrate (tan x)™  Zsec’x dx,
which is ™~ 2du. This leaves the integral on the right, with the exponent lowered by
2. Every power (tan x)™ is eventually reduced to Example 8 or 9.

EXAMPLE 14 [ sec®x dx = uv ~ | v du = sec x tan x — | tan®x sec x dx

This was integration by parts, with 4 =sec x and v=tan x. In the integral on the
right, replace tan®x by sec?x — 1 (this identity is basic):

[ sec®x dx = sec x tan x — [ sec®x dx + [ sec x dx.

Bring | sec’x dx to the left side. That reduces the problem from sec’x to sec x.

I believe those examples make the point— trigonometric integrals are computable.
Every product tan™x sec”x can be reduced to one of these examples. If nt is even we
substitute u=tan x. If m is odd we set u=sec x. If m is even and » is odd, use a
reduction formula (and always use tan’x = sec?x — 1).

I mention very briefly a completely different substitution » = tan x. This seems to
all students and instructors (quite correctly) to come out of the blue:

2u 1—y? 2du

T and cosx=m and dx= T iy

sin x=

The x-integral can involve sums as well as products—not only sin™x cos"x but also
1/(5 + sin x — tan x). {(No square roots.) The u-integral is a ratio of ordinary polynomi-
als. It is done by partial fractions.

Application of | sec x dx to distance on a map (Mercator projection)

The strange integral In(sec x + tan x) has an everyday application. It measures the
distance from the equator to latitude x, on a Mercator map of the world.

All mapmakers face the impossibility of putting part of a sphere onto a flat page.
You can’t preserve distances, when an orange peel is flattened. But angles can be
preserved, and Mercator found a way to do it. His map came before Newton and
Leibniz. Amazingly, and accidentally, somebody matched distances on the map with
a table of logarithms—and discovered [ sec x dx before caiculus. You would not be
surprised to meet sin x, but who would recognize in(sec x + tan x)?

The map starts with strips at all latitudes x. The heights are dx, the lengths are
proportional to cos x. We stretch the strips by 1/cos x—then Figure 7.3c lines up
evenly on the page. When dx is also divided by cos x, angles are preserved—a small
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Rg. 7.3 Strips at latitude x are scaled by sec x, making Greenland too large.

square becomes a bigger square. The distance north adds up the strip heights

dxfcos x. This gives [ sec x dx.

The distance to the North Pole is infinite! Close to the Pole, maps are stretched
totally out of shape. When sailors wanted to go from A to B at a constant angle with
the North Star, they looked on Mercator’s map to find the angle.

7.2 EXERCISES

Read-through questions

To integrate sin“x cos®x, replace cosx by __a . Then
(sin*x —sin®x)cos xdx is __ b du. In terms of u =sin x the
integral is __¢ . This idea works for sin™x cos"x if either m
ornis _ 4

If both m and n are __® , one method is integration by

t . For | sin®x dx, split off v =sin x dx. Then — [ v du is

@ . Replacing cos’x by creates a new sin*x dx that
combines with the original one. The result is a reduction to
| sin?x dx, which is known to equat __1

The second method uses the double-angle formula sin?x =
i__. Then sin*x involves cos®’ __k__. Another doubling

comes from cos?2x = | . The integral contains the sine of
m

To integrate sin 6x cos 4x, rewrite it as 3sin 10x + __n

The indefinite integral is __© . The definite integral from

Oto 2mis __P . The product cos px cos gx is written as

Ycos(p+gix+ . Tts integral is also zero, except if
f __ when the answer is __$

With u = tan x, the integral of tan®x sec®x is __t . Simi-

larly §sec®x (sec xtanxdx)=_ u_ . For the combination
tan™x sec"x we apply the identity tan®x = __ v . After reduc-
tion we may need {tanxdx=__ % _and [secxdx=__ x

Compute 1-8 by the “peneral method,” when m or » is odd.
2 § cos®x dx
4 § cos®x dx

1§ sin?x dx

3 | sin x cos x dx
5 | sin®x cos’x dx 6 | sin’x cos®x dx

7 [ /sin x cos x dx 8 { ./sin x cos*x dx

9 Repeat Problem 6 starting with sin x cos x = $sin 2x.

10 Find { sin®ax cos ax dx and [ sin ax cos ax dx.

In 11-16 use the double-angle formulas (m, n even).
11 [f sin®x dx 12 [} sin®x dx

13 [ cos?3x dx 14 | sin’x cos®x dx
15 § sin’x dx + f cos’x dx 16 j sin*x cos*2x dx
17 Use the reduction formula (7) to integrate cos®x.

18 For n > 1 use formula (7) to prove

®i2 n—1 xi2
cos"x dx = —— cos” " 2x dx.
0 n 0

19 Forn=24,6, ...

W )1y
J’D X X = T D@

deduce from Problem 18 that

20 Forn=3,5,7, ... deduce from Problem 18 that

@@)n=1)
J’ e T

21 (a) Separate dv = sin x dx from u =sin®~ 'x and integrate
[ sin”x dx by parts.
(b) Substitute 1 —sin?x for cos?x to find a reduction
formula like equation (7).

22 For which n does symmetry give [f cos"x dx = 0?

23 Are the integrals (a)-(f) positive, negative, or zero?
a) [ cos 3x sin 3x dx  (b) f; cos x sin 2x dx
¢) [%,, cos x sin x dx  (d) {j (cos®x —sin®x) dx
() [2% cos px sin gx dx {f) [ cos*x dx
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24 Write down equation (9) for p=g =1, and (10) for p=12,
g = 1. Derive (9) from the addition formulas for cos(s + ¢) and
cos{s — £} in Section 1.5.

In 25-32 compute the indefinite integrals first, then the definite
integrals.

25 fa~ cos x sin 2x dx
27 [}, cos 99x sin 101x dx
29 [}, cos 99x cos 10tx dx
31 (3" cos x/2 sin x/2 dx

33 Suppose a Fourier sine series Asinx+ Bsin2x+
C sin 3x + -+ adds up 10 x on the interval from 0 to . Find
A by multiplying all those functions (including x) by sin x
and integrating from 0 to . (B and C will disappear.)

26 [} sin 3x sin 5x dx
28 [* cos?Ix dx
30 J2¥ sin x sin 2x sin 3x dx

32 [} x cos x dx (by parts)

34 Suppose a Fourier sine series A sinx+ Bsin2x+
C sin 3x + -+ adds up to 1 on the interval from 0 to n. Find
C by multiplying all functions (including 1) by sin3x
and integrating from O to n. (4 and B will disappear.)

35 In 33, the series also equals x from —n to 0, because all
functions are odd. Sketch the “sawtooth function,” which
equals x from —n to = and then has period 2n. What is the
sum of the sine series at x = n?

36 In 34, the series equals —1 from —= to 0, because sines
are odd functions. Sketch the *‘square wave,” which is
alternately —1 and +1, and find 4 and B.

37 The area under y=sin x from 0 to = is positive. Which
frequencies p have [g sin px dx = 07

38 Which frequencies g have [} cos gx dx =07
39 For which p, g is [}, sin px cos gx dx = 07

40 Show that [J sin px sin gx dx is always zero.

Compute the indefinite integrals 41-52.
41 { sec x tan x dx 42 | tan 5x dx

43 { tan%x sec?x dx 44 | tan’x sec x dx

7.3 Trigonometric Substitutions

45 | tan x sec’x dx 46 | sec*x dx
47 § tan*x dx 48 [ tan’x dx
49 f cot x dx 50 [cscxdx
+ int
1 js’"f dx 52 js'“f dx
cos’x cos3x

53 Choose 4 so that cos x —sin x= A cos(x + nf4). Then
integrate 1/(cos x —sin x).

54 Choose A 50 that cos x — \/5 sin x = 4 cos(x + n/3). Then
integrate 1/{cos x — \/3 sin x)2.
58 Evaluate 3" |cos x — sin x| dx.

56 Show that gcosx+bsinx=./a®+bicos(x —a) and
find the correct phase angie .

57 If a square Mercator map shows 1000 miles at latitude
30°, how many miles does it show at latitude 60°?

58 When lengths are scaled by secx, area is scaled by
. Why is the arca from the equator to latitude x
proportional to tan x?

59 Use substitution (11) to find [ dx/(1 + cos x).

60 Explain from areas why [j sin®x dx = [}, cos’x dx. These
integrals add to [} 1 dx, so they both equat

61 What product sin pxsingx is graphed below? Check
that {pcos px sin gx — g sin px cos gx)f{g> —p?) has this
derivative.

62 Finish j sec>x dx in Example 11. This is needed for the
length of a parabola and a spiral {Problem 7.3.8 and
Sections 8.2 and 9.3).

The most powerful tool we have, for integrating with pencil and paper and brain, is
the method of substitution. To make it work, we have to think of good substitutions—
which make the integral simpler. This section concentrates on the single most vaiu-
able collection of substitutions. They are the only ones you should memorize, and

two examples are given immediately.
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ra—t ; ) du, .
To integrate ./ 1 — x7, substitute x =sin 0, Do not set u=1— x* (a is missing

| a dx zos 0 di)
J\;"'l —x?dx —»J (cos t)(cos B df) j - R JLOS

V1-x cos

The expression /1 — x? is awkward as a function of x. It becomes graceful as a
function of 8. We are practically invited to use the equation 1 — (sin #)? = (cos 6)%.
Then the square root is simply cos 8—provided this cosine is positive.

Notice the change in dx. When x is sin 6, dx is cos 6 d8. Figure 7.4a shows the
original area with new letters. Figure 7.4b shows an equal area, after rewriting
[ (cos B)(cos 8 d6) as | (cos*8) d6. Changing from x to 0 gives a new height and a new
base. There is no change in area—that is the point of substitution.

To put it bluntly: If we go from /1 — x? to cos 8, and forget the difference between
dx and df, and just compute | cos § d6, the answer is totally wrong.

1 ! cos B
cos’h

da 0

m|.-_ﬂ
b3l d

Fig. 7.4 Same area for /1 — x? dx and cos*# df. Third area is wrong: dx # df

We still need the integral of cos?d. This was Example 3 of integration by parts, and
also equation 7.2.6, It is worth memorizing. The example shows this 8 integral, and
returns to x:

EXAMPLE 1 [ cos8 df = ¥ sin 8 cos 8 + 36 is after substitution

1

I e a9 P . .
J/1=x?dx=13x/1— x*+}%sin~'x is the original problem.

We changed sin 8 back to x and cos 8 to ./ 1 — x?. Notice that 8 is sin~ ' x, The answer
is trickier than you might expect for the area under a circular arc. Figure 7.5 shows
how the two pieces of the integral are the areas of a pie-shaped wedge and a triangle.

& 6 do
EXAMPLE 2 j = =j°°5 =0+C=sin 'x+C.
\,rl—xz cos #

Remember: We already know sin™!x. Its derivative 1/,/1 — x> was computed in
Section 4.4, That solves the example. But instead of matching this special problem

)
la=Lgnty : :

wedpe area > & 3 sin™' x ! |

! |

: |

! ]

¥ =Vl-£2 I ( 1

- | T i
B"triangle area %.\-\ll —a2 : area = mf2 J]
x 0 1 0 4

Fg.7.5 |./1—x*dxisasum of simpler areas. Infinite graph but finite area.
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with a memory from Chapter 4, the substitution x = sin & makes the solution auto-
matic. From [ d6 = 8 we go back to sin ™ ‘x.

The rest of this section is about other substitutions. They are more complicated
than x = sin 8 (but closely related). A table will display the three main choices—sin 6,
tan 8, sec §—and their uses.

TRIGONOMETRIC SUBSTIUTIONS

After working with . /1 — x?, the next step is . /4 — x*. The change x = sin 0 simplified
the first, but it does nothing for the second: 4 — sin?8 is not familiar. Nevertheless a
factor of 2 makes everything work. Instead of x = sin 8, the idea is to substitute x =

2sin &
Jd—x2=/4—4sin*0=2cos 0 and dx=2 cos & df.

Notice both 2’s. The integral is 4 { cos?8 df = 2 sin # cos § + 26. But watch closely.
This is not 4 times the previous [ cos®8 df! Since x is 2sin 8, & is now sin ~'(x/2).

EXAMPLEY (./4— x?dx=4[cos?0d8=x/1—(x/2)*+2sin" !(x/2).
Based on ./1— x* and /4 — x?, here is the general rule for ./a*— x*. Substitute

x =asin 8. Then tke a’s separate out:

Jat—xt=/a*>— a*in?8 =g cos 0 and dx=a cos 9 d8.

That is the automatic substitution to try, whenever the square root appears.

EXAMPLE 4 = do=

J'“ dx _J"‘” 4 cos 8 df _J'“” T
x=0/16—x% Jo=0. /42—~ 4*sin8)? Js=o 2
Here a? = 16. Then a= 4 and x = 4 sin 8. The integral has 4 cos & above and below,
s0 it is | df. The antiderivative is just 8. For the definite integral notice that x = 4
means sin & = 1, and this means & = r/2,

A table of integrals would hide that substitution. The tabie only gives sin~*(x/4).
There is no mention of [ d8 = 6. But what if 16 — x? changes to x* — 167

8
EXAMPLE 5 J' _dx
x=4 X2*16

Notice the two changes—the sign in the square root and the limits on x. Exampie 4
stayed inside the interval [x| <4, where 16 — x? has a square root. Example § stays
outside, where x? — 16 has a square root. The new problem cannot use x = 4 sin 6,
because we don’t want the square root of —cos?8,

The new substitation is x = 4 sec 8. This turns the square root into 4 tan 6:
x=4secf gives dx=4secftan #df and x?—16=16sec?d— 16 = 16 tan?4.

This substitution solves the example, when the limits are changed to &:

** 4 sec f tan 4§  [*/3 g
L " 4tan0 J.O sec 8 df = In(sec § + tan 9]]0 =In(2 + \/5)_

I want to emphasize the three steps. First came the substitution x=4secd. An
unrecognizable integral became [ sec 6 46. Second came the new limits (6 = 0 when
x =4, #=nr/3 when x = 8). Then | integrated sec .
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Example 6 has the same x? — 16. So the substitution is again x = 4 sec 0:

i 16dx (™ 64secOtan0df (™ cos 6 df
e Jx=s(x2—16}3’2_fs=,;3 (4 tan ) “L_@ sin%0

Step one substitutes x =4 sec 6. Step two changes the limits to 6. The upper limit
x = oo becomes 0 = /2, where the secant is infinite. The limit x = 8 again means 0 =
n/3. To get a grip on the integral, I also changed to sines and cosines.

The integral of cos f/sin’f needs another substitution! (Or else recognize
cot 0 csc 6.) With u = sin 0 we have [ du/u®> = — 1/u= — 1/sin 6:

/2 == n/2
Solution . T X BT
g3 Sin?0  sin 0 |, J3

Warning With lower limit 6 = 0 (or x = 4) this integral would be a disaster. It divides
by sin 0, which is zero. This area is infinite.

(Warning)> Example 5 also blew up at x = 4, but the area was not infinite. To make
the point directly, compare x '/? to x */?. Both blow up at x =0, but the first one
has finite area:

bl 1 LA -2
J.Dﬁdx=2\/;]o=2 J‘o'x'sﬁdx=$:|o=m.

Section 7.5 separates finite areas (slow growth of U\/;) from infinite areas (fast
growth of x */2),

Last substitution Together with 16 — x? and x? — 16 comes the possibility 16 + x?.
(You might ask about —16 — x2, but for obvious reasons we don’t take its square
root.) This third form 16+ x* requires a third substitution x=4tanf. Then
16 + x> = 16 + 16 tan’6 = 16 sec?6. Here is an example:

@ dx n/2 4SCC26 do 1 n/2 n
EXAM = | 2RSS 4TS
FLE? .[:=0 16 + x? J;zo 16 sec?0 4 1] 8

Table of substitutions for a* — x*, a® + x*, x* — a®
x=asin 0 replaces a®*—x* by a’cos’@ and dx by acos 0 df
x=atan 0 replaces a®>+ x> by a’sec’0 and dx by a sec’0 do

x=asec® replaces x*—a® by a*tan?@ and dx by asec 6 tan @ df

Note There is a subtle difference between changing x to sin # and changing sin 6 to u:
in Example 1, dx was replaced by cos 6 df (new method)
in Example 6, cos 0 df} was already there and became du (old method).

The combination cos 6 df was put into the first and pulled out of the second.

My point is that Chapter 5 needed du/dx inside the integral. Then (du/dx)dx
became du. Now it is not necessary to see so far ahead. We can try any substitution.
If it works, we win. In this section, x = sin  or sec f or tan 6 is bound to succeed.

dx , x dx du .
NEW J‘l o= G Jdﬂ by trying x = tan 6 OLD .[l - Jﬂ by seeing du

297
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We mention the hyperbolic substitutions tanh 8, sinh #, and cosh . The table below
shows their use. They give new forms for the same integrals. If you are familiar with
hyperbolic functions the new form might look simpler—as it does in Example 8.

x=atanh@ replaces o — x? by u?sech?8 and dx by asech?d 48

x=asinhf replaces a’+x* by a’cosh’¢ and dx by acosh ¢ df

x=acosh8 replaces x?—a? by 4?sinh2f and dx by asinh @ 40

=g#~C=cosh 'x+C.

x? = sinh 8

EXAMPLE 8 .[ dx - j'smh 8 a8
1

[ d8 is simple. The bad part is cosh™'x at the end. Compare with x = sec 6

.[ dx jsec&lan&d@

_ _ _ e
an 0 In(sec & + tan 8)_+ C=Inix+/x*—-1H+C

JE-1
This way looks harder, but most tables prefer that final logarithm. It is clearer than
cosh " x, even if it takes more space. All answers agree if Problem 33 is correct.

COMPLETING THE SQUARE

We have not said what to do for \/xz —2x +2 or ./ —x*+ 2x. Those square roots
contain a linear term—a multiple of x. The device for removing linear terms is worth
knowing. It is called completing the square, and two examples will begin to cxplain it:

xP=2x+2=(x— 1} +1=u*+1
-xI+2x=—(x-1)PF+1=1-1%

The idea has three steps. First, get the x* and x terms into one square. Here that
square was (x — 1)* = x> — 2x + 1. Second, fix up the constant term. Here we recover
the original functions by adding 1. Third, set ¥ = x — | to leave no linear term. Then
the integral goes forward based on the substitutions of this section:

.[ dx =j' du j' dx =j' du
V-2 ) SR J2x—x? ] J1-w

The same idea applies to any quadratic that contains a linear term 2bx:

rewrite x?+2hx+ ¢ as (x+b)*+ C, with C=c—~ h?

rewrite x4 2hx+ ¢ as —{x—h7+C with C=c+ b’

To match the quadratic with the square, we fix up the constant:
x2+10x+16= (x+5°+Cleadsto C=16—25= -9
—x2+10x+16=—(x— 5%+ Cleads to C= 16+ 25=41.

EXAMPLE 9 & dx | B
x>+ 10x+ 16 {(x+5%-9 w-9

Here u=x+ 5 and du=dx. Now comes a choice—struggle on with 4= 3sec 8 or
look for [ du/(u® — a?) inside the front cover. Then set a = 3:

du —lln
ut—9 6

x+2
x+38

u—3 =lln
u+3 6
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Note If the quadratic starts with 5x? or —5x?, factor out the 5 first:
5x% — 10x + 25 = 5(x* — 2x + 5) = {complete the square) = S[(x — 1) + 4].
Now u = x ~ | produces 5[u? + 4]. This is ready for table lookup or u=2tan .

dx _ du 2 sec?0 do 1 6
Sx2—10x+25 | S[W2+4] | Sidsecid] 10 )
This answer is /10 + C. Now go backwards: 8/10 = (tan™ ! $1)/10 = {tan = 4{x — 1))/10.

Nobody could see that from the start. A double substitution takes practice, from x
to u to . Then go backwards from @ to u to x,

EXAMPLE 10

Final remark For u® +a® we substitute u = a tan 6. For u* — a® we substitute u=
a sec 8. This big dividing line depends on whether the constant C (after completing
the square) is positive or negative. We either have C=a? or C = —a? The same
dividing line in the original x% + 2bx + ¢ is between c > b and ¢ < b?. In between,
¢ = b? yields the perfect square (x + b)>— and no trigonometric substitution at all.
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Read-through questions

The function /1 -- x* sugpests the substitution x=__9
The square root becomes _ b and dx changes to _ ¢

The integral [(1 — x?)*?dx becomes | __d__ 4. The interval

4<x< 1changesto _o <O _ ¢
For ./a® ~x? the substitution is x=__ @ with dx=

h_ Forx*—a*weusex=_1 withdx=_i _, Then
f dx/(1+ x*) becomes |46, because | +tan?f#=_k . The
answer is #=tan 'x. We already knew that _ | is the

derivative of tan ™ !x.

The quadratic x2 + 2bx + ¢ contains a _ m__ term 2bx, To
remove it we __n_ the square. This gives (x + b)? + C with

——

C=_o__. The example x? +4x + 9 becomes __p__. Then

u = x + 2. In case x? enters with a minus sign, —x*+ 4x +9
becomes {_ 9 )*+__r . When the quadratic contains

4x?, start by factoring out __3 .

Integrate 1-20 by substitution. Change ¢ back to x,

] ( dx 2 f  dx
JJ4—x? ,:;xz—a’
o o
3 | /a-xtdx 4 13;;3
5 f x® dx 6 f  dx
JJ/1—x% Jxr/1—x?
7 ——d-"z—, 8 §/x*+a® dx (see 7.2.62)
1+
x?—125 x3 dx
10
J N

[ dx o
11 _G_TI 12 x® —x" dx

Ja/x"—x
£ dx dx
13 | ———5 —_—
J (l +x2)3f2 14 j.(l __IZ}S;‘).
;s (% g | V1T xdx
J [x2—9)3"2 J x
] )
dx
"0 x 2dx 8 xz
J X —l J x +4
" * x? dx

19 2 | —=
,x’:;x’+1 JJ1+x2
21 (Important) This section started with x =sin 8 and

Jaxi/1—x*=[df=8=sin""x.

(@) Use x =cos & to get a different answer.
(b) How can the same integral give two answers?

22 Compute [ dx/x./x* — 1 with x = sec . Recompute with
x =csc 6. How can both answers be correct?

23 Imegrate x/(x? + 1) with x = tan &, and also directly as a
logarithm. Show that the results agree.

24 Show that { dx/x/x* — 1 =4 sec™ (x2).
Calculate the definite integrals 25-32.

a
15 j. a® — x? dx = area of

1 1
2% J‘ (1 — x2P? dx 27 J
_l .
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T 29 J dx
g V_.-'xz_] , (k2132

30 [k 3 J” dx
Jox+ L xE+ g
"1 _

32 1 —x% dx =area of
J1.2

31 Combine the integrals to prove the reduction formula

{n#0):
xn*l 1 _in -_\.n—l d
xz-l—l”*n_ 2

34 Integrate Licos x and 1/(1 +cos x) and /1 +cos x.

IS fa)x=
{b) From the triangle, this answer is f'=In(x + \ﬁ}
Check that dfidx=1//x>— 1.

(c) Verify thatcoshf=4%{ef +¢ f)=x Thenf=cosh 'x,
the answer in Example &

36 (a) x=
tb) The second triangle converts this answer to ¢ = ln{x +
o X7+ 1), Check that dgide=1:/x> + 1.

() Verify that stnh g = }(efF — ¢ " ®)=x s0 g =sinh 'x.

gives [ dx//x? — 1 = In(sec § + tan 0).

gives [ dx’ ‘x2 4+ 1 =In(sec (! 4 tan .

1

vt =1

In 37-42 substitute x = sinh {1, cosh . or tanh ). After integ-
ratien change back to .

"odx dx
7| 38 e
gy =1 Xy l=x
r PP i
39 J W V- ldy 40 I\L*\';z--“ dx
" P+ X2
a J = a2 J SRR
| —x~ X

7.4 Partial Fractions

Rewrite 43—-d8 as (x + b)> + C or —(x — b)* + C by completing
the square.

43 x?—4x+8 44 —x*+2x+8
45 x?—6x 46 x>+ 10
47 21+ 2x+1 48 P +4x—12

49 For the three functions fix} in Problems 43, 45, 47
mtegrate 1/f(x).

50 For the EEC functions g{x) in Problems 44. 46, 48
integrate 17,/ g{x).

51 1“'0rj dxi(x® + 2bx + ¢) why does the answer have diflerent
forms for b2 = ¢ and b? < ¢? What is the answer if b2 =¢7

52 What substitution u = x + b or 4 = x — b will remove the

linear term?
dx dx
(@) J‘.\'Z—4x+(' [ }J‘3x2+6x

dx dx
(©) J‘—xz—i- 10x + ¢ [d)J2x2— x

53 Find the mistake. With x=sin 0 and /1 — x? =cos 0,
substituting dx = cos & i) changes

In o
‘. cos?t dft into [ J0U=x?dx.
[

Jo Ja
54 (a)If x =tan f then | ;1 + x%dx = 0.
{b) Converl $fsec 0 tan # + Injsec 0 + tan )] back to x.
{e) If x =sinh & then | 1+ x> dx=] an.

{d) Convert {[sinh ! cosh §§ 4 i] back to x.
These answers agree. In Section 8.2 they will gtve the length
of u parabela. Compare with Problem 7.2.62.

85 Rescale x and v in Figure 7.5b to produce the equal area
| vdx in Figure 7.5c. What happens to y and what happens
to dx?

8 Draw y—1 1—x% and vy~ ['16 —x? to the same
scale (17 across and up; 47 across and §7 up).

§7 What ts wrong. if anything. with

This section is about rational functions P{x):Q(x). Sometimes their integrals are also
rational functions (ratios of polynomials). More often they are not. Tt 1s very common
for the integral of P/Q to involve logarithms. We meet logarithms immediately in the
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simple case 1/(x — 2), whose integral is In|x — 2| + C. We meet them again in a sum
of simple cases:

1 3 4
— 4+ —Zldx=1n|x ~ +2(-
_H:x-?. x+2 x]dx Injx —2[+3ln|x +2[—4lnix|+ C.

Our plan is to split P{( into a sum like this—and integrate each piece.

Which rational function produced that particular sum? It was
1 + 3 _4_(x+d)+3x—-2x)—4x—2x+2  —4x+16
x—2 x+2 x (x— 2)(x + 2)(x) (x - 2(x+2)(x)

This is P/Q. 1t is a ratio of polynomials, degree 1 over degree 3. The pieces of P are
collected into — 4x + 16. The common denominator (x — 2)(x + 2)(x) = x> — dx is 0.
But I kept these factors separate, for the following reason. When we start with P/,
and break it into a sum of pieces, the first things we need are the factors of Q.

In the standard problem P/Q is given. To integrate it, we break it up. The goal of
partial fractions is to find the pieces—io prepare for integration. That is the technique
to learn in this section, and we start right away with examples.

EXAMPLE 1 Suppose P/Q has the same Q but a different numerator P:

£= 3x2+8x—4 _ A N B +§ 1
Q0 (x—-x+2(x) x—-2 x+2 x 4y]

Notice the form of those pieces! They are the “partial fractions™ that add to P/Q.
Each one is a constant divided by a factor of 0. We know the factors x —2and x + 2
and x. We don’t know the constants A, B, C. In the previous case they were 1, 3, —4.
In this and other examples, there are two ways to find them,

Method 1 (slow) Put the right side of (1} over the common denominator Q:
3x24+8x—4 _ Ax+ 2)x)+ Bx—2Kx)+ Clx — D(x+ 2)
¢ {x = 2)(x + 2){x)

Why is A multiplied by (x + 2)(x)? Because canceling those factors will leave 4/(x — 2)
as in equation (1). Similarly we have B/(x + 2) and C/x. Choose the numbers A, B, C
so that the numerators match. As soon as they agree, the splitting is correct.

(2)

Method 2 (quicker) Multiply equation (1) by x — 2. That leaves a space:

3Ix?+8x—4 Bx-2 C(x-2)
[x+2){x]_A+ 2 T ox

()

Now set x = 2 and immediately you kave A. The last two terms of (3) are zero, because
x— 2 is zere when x = 2. On the left side, x = 2 gives

P +8R) -4 _24

2+20 % =3 (which is A4).

Notice how multiplying by x — 2 produced a hole on the left side. Method 2 is the
“cover-up method.” Cover up x —2 and then substitute x=2. The result is 3=
A+ 040, just what we wanted.

In Method 1, the numerators of equation (2) must agree. The factors that multiply
B and C are again zero at x = 2. That leads to the same A—but the cover-up method
avoids the unnecessary step of writing down equation (2).
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Calculation of B Multiply equation {1) by x + 2, which covers up the (x + 2):

Ix2+8x—4  A(x+2) Cix +2)
= +B+ ==,
x—-2 (x x-2 B x @
Now set x= —2, 50 4 and C are multiplied by zero:
3(—2]2+8{—2}—4=—_8= —1=8
(~2-2) —2) 8 ’

This is almost full speed, but {4) was not needed. Just cover up in Q and give x the
right value (which makes the covered factor zero).

Calculation of C (gquickest) In equation (1), cover up the factor (x) and set x=0:

300 +80)—-4 -4
0-20+2) =3~ 1=¢ (5)

To repeat: The same result A= 3, B= — 1, C =1 comes from Method 1.

x+2 A B
EXAMPLE 2 = + .
(x—Dix+3 x-1 x+3
First cover up (x — 1) on the left and set x = 1. Next coverup(x+ 3)and set x= — 3:
1+2 3 -3+2 —1
—_— == 4 - - = _ =R,
( 1 +3) 4 (=3-1X ) -

The integral is #In|x — 1| + 3ln|x + 3|+ C.

EXAMPLE 3 This was needed for the logistic equation in Section 6.5:

1 __4,_B
He—by) 'y c—by

First multiply by y. That covers up y in the first two terms and changes B to By.
Then set y = 0. The equation becomes 1/c = A.

To find B, multiply by ¢ — by. That covers up ¢ — by in the outside terms. In the
middle, 4 times c — by will be zero at y=c¢/b. That leaves B on the right equal to
l/y=bfc on the left. Then A=1/c and B=bfc give the integral announced in

Equation 6.5.9:
dy dy bdy Iny Infc— by)
J.r:y—by2 ch J.c(c—by) c ¢ 7

It is time to admit that the general method of partial fractions can be very awkward,
First of all, it tequires the factors of the denominator . When @ is a quadratic
ax? + bx + ¢, we can find its roots and its factors. In theory a cubic or a quartic can
also be factored, but in practice only a few are possible—for example x*—-1 is
(x* — 1)(x* + 1). Even for this good example, two of the roots are imaginary. We can
split x2 — 1 into {x + 1)(x — 1). We cannot split x* + 1 without introducing i.

The method of partial fractions can work directly with x2 + 1, as we now see,

(6)

2+ 2x+
EXAMPLE 4 J.% dx {(a quadratic over a quadratic).

This has another difficulty. The degree of P equals the degree of Q (= 2). Partial
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fractions cannot start until P has lower degree. Therefore I divide the leading term x*
into the leading term 3x?. That gives 3, which is separated off by itself:

I+ 2x+7 . 2x+4 2

X+l T+ ®)
Note how 3 really used 3x? + 3 from the original numerator. That left 2x + 4. Partial
Jfractions will accept a linear factor 2x + 4 (or Ax + B, nol just A) above a quadratic.

This example contains 2x/(x?> + 1), which integrates to In(x?*+1). The final
4f(x* + 1) integrates to 4 tan~'x. When the denominator is x* + x + 1 we complete
the square before integrating. The point of Sections 7.2 and 7.3 was to make that
integration possible. This section gets the fraction ready—in parts.

The essential point is that we never have to go higher than quadratics. Every
denominator () can be split into linear factors and gquadratic factors. There is no magic
way to find those factors, and most examples begin by giving them. They go into
their own fractions, and they have their own numerators—which are the 4 and B
and 2x + 4 we have been computing.

The one remaining question is what to do if a factor is repeated. This happens in
Example 5.

2x+13 A B

EXAMPLE 5 {x_1)2=(x_1]+(x_1)2.

The key is the new term B/(x — 1)*. That is the right form to expect. With (x — 1)(x — 2)
this term would have been Bj(x — 2). But when {x — 1} is repeated, something new is
needed. To find B, multiply through by (x — 1)* and set x = 1:

2x+3=Ax— 1)+ B becomes 5=8B when x=1.

This cover-up method gives B. Then A=2 is easy, and the integral is

2 Inix — 1] — 5/{x — 1). The fraction 5/(x — 1)* has an integral without logarithms.

2x*+9x*+4 A B Cx+D E
==+ 5+ +

EXAMPLE —_—— = — .
é X2 +dx—1) x x* x*+4 x-—-1

This final example has almost everything! 1t is more of a game than a calculus
problem. In fact calculus doesn’t enter until we integrate (and nothing is new there).
Before computing 4, B, C, D, E, we write down the overail rules for partial fractions:

1. The degree of P must be less than the degree of Q. Otherwise divide their leading
terms as in equation (8) to lower the degree of P. Here 3 < 5.

2. Expect the fractions illustrated by Example 6. The linear factors x and x + 1
(and the repeated x*) are underneath constants. The quadratic x* + 4 is under a
linear term. A repeated {x? + 4)* would be under a new Fx + G.

3. Find the numbers A, B, C, ... by any means, including cover-up.

4. Integrate each term separately and add.

We could prove that this method always works. It makes better sense to show that
it works once, in Example 6.

To find E, cover up (x — 1) on the left and substitute x=1. Then £=23.
To find B, cover up x? on the left and set x =0. Then B=4/(0+4)(0— 1)= —1L.
The cover-up method has done its job, and there are several ways to find 4, C, D.

303
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Compare the numerators, after multiplying through by the common denominator {:
2x+9x2 + 4= Ax(x> + d)(x— 1) — (x? + d){x — 1) + (Cx + D}x®)(x — 1)+ 3x*(x* + 4),

The known terms on the right, from B= — 1 and E = 3, can move to the left:

—3x* + 3x% — 4x? + dx = Ax{x* + A)(x — 1)+ (Cx + D)x*(x — 1).

We can divide through by x and x — 1, which checks that B and E were correct:
—3x2—4=A(x*+4) +(Cx+ D)x.
Finally x=0 yields A= — 1. This leaves —2x?>=(Cx+ D)x. Then C= —2 and

D=0.

You should never have to do suck a problem! 1 never intend to do another one.
It completely depends on expecting the right form and matching the numerators.
They could also be matched by comparing coefficients of x*, x?, x?, x, 1—to give five
equations for A4, B, C, D, E. That is an invitation to human error. Cover-up is the
way to start, and usually the way to finish. With repeated factors and quadratic

factors, match numerators at the end.

7.4 EXERCISES

Read-threngh questions

The idea of __a fractions is to express P{x)/Q{x)asa_ b

of simpler terms, each one easy to integrate. To begin, the
degree of P should be __c _the degree of Q. Then Q is split
into__d factors like x — 5{possibly repeated) and quadratic
factors like x*+x+ 1 (possibly repeated). The quadratic
factors have two @ _ roots, and do not allow real linear

factors.

A factor like x—5 contributes a fraction 4/__t . Its
integral is _g . To compute A, cover up _b__ in the
denominator of P/@. Then set x=_1 _, and the rest of
P/ becomes A. An equivalent method puts all fractions over
a common denominator {which is _ | } Then match the

k . At the same point x=___ | _ this matching gives A.

A repeated linear factor (x —5)* contributes not only
Aftx — Sybut also B/_m___ A quadratic factor like x2 + x + 1
contributes a fraction __n_ f{x? + x + 1) involving C and D.
A repealed quadratic factor or a triple linear factor would
bring in (Ex + F)j{x* + x + 1)? or G/{x — 5)*. The conclusion
is that any P/ can be split into partial _ @ , which can
always be integrated.

1 Find the numbers A and B to split 1/{x* — x}:
1 A B
+

x(x—1) x x-—1

Cover up x and set x =0 to find A. Cover up x — 1 and set
x =1 to find B. Then integrate.

2 Find the numbers 4 and B to split 1/(x* — 1)

1 A B
x2—1 x—1 x+1

Multiply by x —1 and set x=1. Multiply by x + 1 and set
x = — 1. Integrate. Then find 4 and B again by method 1 —
with numerator A(x + 1} + B(x — 1) equal to 1.

Express the rational functions 3-16 as partial fractions:

1 X
R T
X+l !
{(x){x + 1(x +2) ©_x
7 Ix+1 Iy -+ 1
x? (x—1pP
9 32“'(d'v.f'd first 10 !
YT divide irst) GoD0TT D)
__.._] X
' xHx =1 12 Z—_a
! X241
B x(x— D{x=2){x =3 14 <t 1 (divide first}
1 1
15

P =1 (x+Dx—DxE+D)

6 Z—I—-— (remembcr the é term)
xx—1) X

17 Apply Method 1 (matching numerators) to Example 3:
1 A B Alc—by+By
cy—by* "y c—by  yc—by

March the numeraiors on the far left and far right. Why does
Aec =17 Why does —hA + B =0? What are A and B?
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18 What goes wrong if we look for A and B so that

x? ! N B
(x=3Px+3 x-3 x+3°

Over a common denominator, try to match the numerators.
What to do first?

19 split 25 = 3 into A 4 DX¥C
P e T = rx A1) O x—1  xax+l

(a) Cover up x — 1 and set x=1 to find A.
(b} Subtract Af(x — 1) from the left side. Find Bx + C.
{c) Integrate all terms. Why do we already know

In{x? — 1) =In(x — 1) + In{x* + x + 1)?
20 Solve dy/dt = 1 — y? by separating | dy/1 — y? = [ dt. Then

1 1 _l2 o ap
1-32 (1—p(t+y) 11—y 14y

=t+C. With yo=0 the con-
. Taking exponentials gives
. This is the S-curve,

Integration gives 4In
stant is C=
The solution is y =

7.5 Improper Integrals

By substitution change 21--28 to integrals of rational functions.
Probiem 23 integrates 1/sin & with no special trick.

21 :% 22 :%dx
25 :: i:: dx 26 :—3%-_—-’? dx

29 Multiply this partial fraction by x —a. Then let x - @
1 A
o) Tx-a
Show that 4 = 1/Q'(a). When x = g is a double root this fails
because @'{a} =

_ 4

Foi o1 + -, Use Problem 29.

30 Find 4 in

31 {for instructors only) Which rational functions P/Q are the
derivatives of other rational functions {no logarithms)?

“Improper” means that some part of j': wWx)dx becomes infinite. It might be b or a or
the function y. The region under the graph reaches infinitely far—to the right or left
or up or down, (Those come from b= o0 and a= — o and y— o and y = —®.)
Nevertheless the integral may “converge.” Just because the region is infinite, it is not
automatic that the area is infinite. That is the point of this section—to decide when

improper integrals have proper answers.

The first examples show finite area when b = oo, then a= — oo, then y= I/\/; at

x=0. The areas in Figure 7.6 are 1, 1, 2:

° Udx 1
1 J‘ cdx=e]" =1 J‘ Z oadx]y=2
a \/; L

—

-1

Ag. 7.6 The shaded areas are finite but the regions go to infinity.
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In practice we substitute the dangerous limits and watch what happens. When the
integral is —1/x, substituting b= oo gives “—1/c0 =0.” When the integral is e*,
substituting a = — oo gives “e” * = 0."” I think that is fair, and I know it is successful.
But it is not completely precise.

The strict rules involve a limit. Calculus sneaks up on 1/oo and e~ just as it
sneaks up on 0/0. Instead of swallowing an infinite region all at once, the formal
definitions push out to the limit:

o0 b b b
DEFINITION j _p'(,r]d.v=f’lim.[ wx)dx j‘ y(x)dx = lim J. w(x)dx.

The conclusion is the same. The first examples converged to 1, 1, 2. Now come two
more examples going out to b= oo:

: *d ©
The area under 1/x is infinite: J‘ ;x =In x]l =0 (1)
1
o 1-p]w
The area under 1/x? is finite if p > 1: _L % = f_ P]l = +I (2)

The area under 1/x is like 1+ 4+ 4+ 5+ -+, which is also infinite. In fact the sum
approximates the integral—the curved area is close to the rectangular area. They go
together (slowly to infinity).

A larger p brings the graph more quickly to zero. Figure 7.7a shows a finite area
1/(p — 1) = 100. The region is still infinite, but we can cover it with strips cut out of
a square! The borderline for finite area is p= 1. I call it the borderline, but p=1 is
strictly on the side of divergence.

The borderline is also p =1 when the function climbs the y axis. At x = 0, the graph
of y = 1/x” goes to infinity. For p = 1, the area under 1/x is again infinite. But at x =
0 it is a small p (meaning p < 1) that produces finite area:

Vdx 1 Ydx 2P 1
A - = o0 i Y oy 2. . 3
L - —lnx]0—~x _I:,.\'"—l p|0—1 ifp<l1 (3)

Loosely speaking “—In 0 = c0.” Strictly speaking we integrate from the point x=a
near zero, to get ) dx/x= —Ina. As a approaches zero, the area shows itself as
infinite. For y = 1/x2, which blows up faster, the area —l,fx][‘, is again infinite.

For y= l,‘\/J_c, the area from 0 to 1 is 2. In that case p= 3. For p=99/100 the area
is 1/(1 — p)=100. Approaching p=1 the borderline in Figure 7.7 seems clear. But
that cutoff is not as sharp as it looks.

=
99

y=

area = 100

area = 100

1 1 1
Fig. 7.7 Graphs of 1/x? on both sides of p=1. I drew the same curves!
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Narrower borderline Under the graph of 1/x, the area is infinite. When we divide
by In x or {In x)?, the borderline is somewhere in between. One has infinite area (going
out to x = aoj), the other area is finite:

= dx o * dx 1
L T g~ 0] = e j o3 lnx]e t @

The first is | dufu with 1 =1n x. The logarithm of In x does eventually make it to
infinity. At x=10'°, the logarithm is near 23 and In{ln x) is near 3. That is slow!
Even slower is In{ln{in x}) in Problem 11. No [unction is exactiy on the borderline.

The second integral in equation (4) is convergent (to 1). It is | du/u? with u=1In x.
At first I wrote it with x going from zero to infinity. That gave an answer I couldn’t
believe:

© 4y _ L m=
L xn x> In xl 0

There must be a mistake, because we are integrating a positive function. The area
can’t be zero. It is true that 1/ln b goes to zero as b — oo. It is also true that 1flna
goes to zero as a — 0. But there is another infinity in this imtegral, The trouble is at
x =1, where In x is zero and the area is infinite.

EXAMPLE 1 The factor ¢~ * overrides any power x” (but only as x -+ a0).
(o x*®e *dx=50! but [ x e *dx= co.

The first integral is (50)(49)(48)---(1). It comes from fifty integrations by parts (not
recommended). Changing 50 to %, the integral defines % factorial.” The product
3~ D% has no way to stop, but somehow 3! is 3./7. See Problem 28.
The integral |5 x% ™ *dx = 1 is the reason behind “zero factorial” = 1. That seems the
most surprising of all.

The area under e ~*/x is (—1)}! = oo, The factor e * is absolutely no help at x=20.
That is an example (the first of many) in which we do not know an antiderivative—
but still we get a decision. To integrate e~ */x we need a computer. But to decide that
an improper integral is infinite (in this case) or finite (in other cases), we rely on the
following comparison test:

7C (Comparison tesf) Suppose that 0 < w(x) < o(x). Then the area under u(x)
is smaller than the area under o(x);

Julx)dx < oo if fux}dx < a0 if fu{xMdx = co then [ux)dx = .

Comparison can decide if the area is finite. We don’t get the exact area, but we learn
about one function from the other. The trick is to construct a simple function {like
1/x*) which is on one side of the given function—and stays close to it:

© dx
—i'=l.

© x
EXAMPLE 2 .[1 77 i

converges by comparison with J.
1 x

=

idx

1 2\/3_:=C0'

= g
EXAMPLE 3 J. X diverges by comparison with J.
1

Jx+1

307
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EXAMPLE 4 1 dix diverges by comparison with l d_x =0
o X2 +4x gy B 5 5% '
Vodx . . Ldx

EXAMPLE 5 converges by comparison with | —=1.
0 J/x+1 i 1

In Examples 2 and S, the integral on the right is larger than the integral on the left.
Removing 4x and ./x increased the area. Therefore the integrals on the left are
somewhere between 0 and 1.

In Examples 3 and 4, we increased the denominators. The integrals on the right
are smaller, but still they diverge. So the integrals on the left diverge. The idea of
comparing functions is seen in the next examples and Figure 7.8.

* oo 1 o0
EXAMPLE 6 e “dx is bclowj ldx+j e "dx=1+1.
JO 0 1
fe 4 e d
EXAMPLE 7 X s above X =w
Jilnx i Xdn.x
™1
EXAMPLE 8 \/fL=2+2
— X

red

— area = —eo

Fig. 7.8 Comparing u(x) to v(x): [ dx/Inx=o0 and [;dx/\/x—x*<4. But o0 — oo #0.

There are two situations not yet mentioned, and both are quite common. The first is
an integral all the way from a= — o0 to b= + co. That is split into two parts, and
each part must converge. By definition, the limits at — oo and + co are kept separate:
0 0 o] 0 b
I ¥(x) dx =J y(x) dx + j y(x) dx= lim j ¥x) dx + blim J‘ ¥(x) dx.
- - w® 1] art=m. Ja =80 10
The bell-shaped curve y = e~ covers a finite area (exactly ﬁ). The region extends
to infinity in both directions, and the separate areas are ./n. But notice:
[ x dx is not defined even though [, x dx =0 for every b.

The area under y = x is + oo on one side of zero. The area is — co on the other side.
We cannot accept oo — o0 = 0. The two areas must be separately finite, and in this
case they are not.
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EXAMPLE 9 1/x has balancing regions left and nght of x = 0. Compute fl_l dx/x.

This integral does not exist. There is no answer, even for the region in Figure 7.8c.
(They are mirror images because 1/x is an odd function.) You may feel that the
combined integral from —1 to 1 should be zero. Cauchy agreed with that—his
“principal value integral is zero. But the rules say no: ¢ — « is not zero.

7.5 EXERCISES

Read-through questions

An improper integral j: Jx) dx has lower limita=__a_ or
upper limit b=_ b or y becomes _ ¢ in the interval
a<x<b. The example |7 dx/x* is improper because __d
We should study the limit of |* dx/x* as _s__. In practice
we work directly with —§x %] =_f . For p>1 the
improper integral __ g is [inite. For p< 1 the improper
integral __b __is finite. For y = ¢~ * the integral from 0 to o
is 1

Suppose 0 < u(x) < {x} for all x. The convergence of __i
implies the convergence of k The divergence of
[wu(x}dx __)__ the divergence of | o(x) dx, From — x 10 «,
the integral of 1/(e” + ¢~ "} converges by comparison with

m__. Strictly speaking we split {(—oc, oc}into{__n_, 0)and
(0, _o ) Changingto lj{e” —e™ ™) gives divergence, because

p . Also {7 _dx/sin x diverges by comparison with __q

The regions left and right of zero don’t cancel because =0 — «
is __t

Decide convergence or divergence in 1-16. Compute the integ-
rals that converge.

o dl.' 1 d

1| 2 2| =
Ji X Jo x
M dx (g

3| — 4 al
Jo Jl—x Jo 1—x
o dx il | d.\‘

[ 0t
Jo X o Iy

1 1 ; o )

7 nx dx 8 sin x dx
JU J -7
e ~r

9 | Iinxdx (by parts} 10 xe *dx  {by parts)
iy Jo

u 7 dx > f= x dx
Jioo XiIn x){In In x) Jo =17
* = fad

13 cos?x dx 14 tan x dx
s Jo

s & o | L4

T o X Jo =1y

In 17-26, find a larger integral that converges or a smaller
integral that diverges.

= dx L dx
18 _
]7_, x*+1 J.0x6+1
P RRAL g
Jo xT+1 e 1—x
21 e~ %sin x dx 22 J. x tdx
J1 1
o 1 ;
23 e¥e = dx 24 J. V —In x dx
Jo 0
Mo aial L
sin 1 |
25 e % | (-- dx
o X LoAvx o T+ x

27 Il p=> 0, integrate by parts to show that
fo xf¢ “dx=pl|; x" ‘e ‘dx.

The first integral is the definition of p! So the equation 1s p! =

. In particular 0! = . Another notation for
plis Tip+ [} using the gamma function emphasizes that p
need not be an integer.

28 Compute (— 4! by substituting x = u*:

O R L FEEY N = /rik .
{o x7 e dx = = ./ (known).

Then apply Problem 27 to find (3)!
29 Integrate [; x%e™"dx by parts.

30 The beta function Bim, n) =I:J XN —xp Ydx is finite
when m and » are greater than

31 A perpetual annuity pays s dollars a year forever. With
continuous interest rate ¢, its present value is yo = |5 se ™ "'dt.
To receive $1000/year at ¢ = 10%:, you deposit yq =

32 In a perpetual annuity that pays once & vear, the present

vilue s pp=si@+sial+ = . To receive

F1000:year at 10% (now a=1.1) you apain deposit yy =
. Infintte sums are like improper integrals.

33 The work to move a satellite (mass m) infinitely far from
the Earth (radius R, mass M) is W= [ GMm dx;x* Evaluate
W. What escape refociry at liftoff gives an energy %mv; that
equals W
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34 The escape velocity for a black hole exceeds the speed of
light: vy > 3+ 10® m/sec. The Earth has GM =4 -10'%m?/sec?.
If it were compressed to radius R = , the Earth
would be a black hole.

35 Show how the area under y = 1/2" can be covered (draw
a graph) by rectangles of area | + 5+ + -~ = 2. What is the
exact area from x =0 to x = oo?

36 Explain this paradox:

b w
.[ %}% =0 for every b but .[ lx+d; diverges.
_b -

37 Compute the arca between y =secx and y=tan x for
0 < x < n/2. What is improper?

7 Technigques of Infegration

*38 Compute any of these integrals found by geniuses:

- 152 m =X __ 52X
J‘x dx:r: .[ idx:an
{+x

o x
J‘ xe Feosxdx=0 .[ cos x*dx = ./n/8.
o 0

39 For which p is .[ dx w?

0 IP+X_P

40 Explain from Figure 7.6c why the red area is 2, when
Figure 7.6a has red area 1.
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I 5.1 Areas and Volumes by Slices

CHAPTER 8

Applications of the Integral

We are experts in one application of the integral—to find the area under a curve.
The curve is the graph of y= v(x), extending from x =a at the left to x=25 at the
right. The area between the curve and the x axis is the definite integral.

I think of that integral in the following way. The region is made up of thin strips.
Their width is dx and their height is p{x). The area of a strip is »{x) times dx. The
area of all the strips is jz o(x}dx. Strietly speaking, the area of one strip is
meaningless—genuine rectangles have width Ax. My point is that the picture of thin
strips gives the correct approach.

We know what function to integrate (from the picture). We also know how (from
this course or a calcuiator). The new applications to volume and length and surface
area cut up the region in new ways. Again the small pieces teli the story. In this
chapter, what to integrate is more important than how.

This section starts with areas between curves. Then it moves to velumes, where the
strips become slices. We arc weighing a loaf of bread by adding the weights of the
slices. The discussion is dominated by examples and figures—the theory is minimal.
The real problem is to set up the right integral. At the end we look at a different way
of cutting up volumes, into thin shells. Al formulas are collected into a final table.
Figure 8.1 shows the area between two curves. The upper curve is the graph of
y = 1{x). The lower curve is the graph of y = w{x). The strip height is o(x) — w(x), from
one curve down to the other. The width is dx (speaking informally again). The total
area is the integral of “top minus bottom™:
B

Lv(x) - w[x)] dx. (N

area between two curves = J‘

¢

EXAMPLE 1 The upper curve is y = 6x (straight line). The lower curve is y = 3x*
(parabela). The area lies between the points where those curves intersect.

To find the intersection points, solve u{x) = w(x) or 6x = 3x2.

311
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8 Applications of the Integral

circle
v=vIl-s2
- ’
- - 4
-~ L
< linew=x
bulge
kN —F + Ly
-1 | | el |
ir—— —
| - i
N2 §2
rd
4
rd
rd

Fig. 8.1  Area between curves = integral of v — w. Area in Example 2 starts with x = 0.

Onge crossing is at x = 0, the other is at x = 2. The area is an integral from ¢ to 2:

area = [* (v —w)dx = [ (6x— 3x?) dx = 3x? — x3]§ =4,

EXAMPLE 2 Find the arca between the cirele 6 = /1 — x? and the 45° line w= x.

First question: Which area and what limits? Start with the pie-shaped wedge in
Figure 8.1b. The arca begins at the y axis and ends where the circle meets the line.
At the intersection point we have v{x) = w(x):

from \/';1___— x? = x squaring gives | — x* = x* and then 2x* = [,
Thus x* = §. The endpoint is at x= l,.-"\/i. Now integrate the strip height v — n:

1:'v 2 T2
J. (V1 —x*=x)dx
1]

. l — 1
sin” 'x+ Ex\,/t —x2- EXZJ

b —

a

sin-t (ANl o1 L
72 e am2\a)

The area is n/8 (one cighth of the circle). To integrate /1 — x? dx we apply the
techniques of Chapter 7. Set x=sin{, convert to jms2 0 df)=1(0 + sin 8 cos 8.
convert back using ¢ =sin”' x. It is harder than expected. for a familiar shape.

I o—

Remark Suppose the problem is to find the whole area between the circle and the
line. The figure shows v= w at two points, which ar¢c x= 1,.-"\;5 (already used) and

also x = - l,f'\/i. [nstead of starting at x = 0, which gave § of a circle, we now include
the area to the left. _ _
Main point: Integrating from x = —1// 2 to x = 1/ /2 will give the wrong answer.

[t misses the part of the circle that bulges out over itself, at the far left. In that part,
the strips have height 2v instead of v — w. The figure is essential, to get the correct
area of this half-circle.

HORIZONTAL STRIPS INSTEAD OF VERTICAL STRIPS

There is morc than one way to slice a region. Vertical slices give x integrals. Horizontal
sfices give y integrals. We have a free choice, and sometimes the y integral is better.
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- x x

dr  dx 1dr 1 1 e

Fig. 8.2 Vertical slices (x integrals) vs. horizontal slices (y integrals).

Figure 8.2 shows a unit parallelogram, with base 1 and height 1. To find its area from
vertical slices, three separate integrals are necessary. You should see why! With hori-
zontal slices of length 1 and thickness dy, the area is just _[(1, dy=1.

EXAMPLE 3 Find the area under y=1n x {or beyond x=¢") out to x=e.

The x integral from vertical slices is in Figure 8.2c. The y integral is in 8.2d. The area
is a choice between two equal integrals (I personally would choose y):
f:zllnxdx=[xlnx—x]i=l or jlzo(e—e")dy=[ey—e’];=l.

¥

VOLUMES BY SLICES

For the first time in this book, we now look at volumes. The regions are three-
dimensional solids. There are three coordinates x, y, z—and many ways to cut up a
solid.

Figure 8.3 shows one basic way—using skices. The slices have thickness dx, like
strips in the plane. Instead of the height y of a strip, we now have the area A of a
cross-section. This area is different for different slices: A depends on x. The volume
of the slice is its area times its thickness: dV = A(x) dx. The volume of the whole solid
is the integral:

volume = integral of area times thickness = | A(x) dx. (2)

Note An actual slice does not have the same area on both sides! Its thickness is Ax
(not dx). Its volume is approximately A(x) Ax (but not exactly). In the limit, the
thickness approaches zero and the sum of volumes approaches the integral.

For a cylinder all slices are the same. Figure 8.3b shows a cylinder—not circular.
The area is a fixed number A, so integration is trivial. The volume is A times h. The

4
d¥ = A(x) dv

4

Fig. 8.3 Cross-sections have area A(x). Yolumes are j A(x) dx.
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letter k, which stands for height, reminds us that the cylinder often stands on its end.
Then the slices are horizontal and the y integral or z integral goes from 0 to k.
When the cross-section is a circle, the cylinder has volume nr?h.

EXAMPLE 4 The trigngular wedge in Figure 8.3b has constant cross-sections with
area A = ¥(3)(4) = 6. The volume is 6h.

EXAMPLE 5 For thc trigngular pyramid in Figure 8.3c. the area A(x} drops from 6
to 0. Tt is a general rule for pyramids or cones that their volume has an extra factor
1 (compared to cylinders). The volume is now 24 instead of 6/t. For a conc with base
area zr?, the volume is 1nrlh. Tapering the area 1o zero leaves only § of the volume.

Why the §? Triangles sliced from the pyramid have shorter sides. Starting from 3
and 4, the side lengths 3{1 — x/h) and 4(1 — x/h) drop to zero at x = h. The area is
A = 6(1 — x/k)*. Notice: The sidc lengths go down linearly. the area drops quadrati-
cally. The factor § really comes from integrating x? to get 3x*:

h P \2 A
J. A{x]dJr:J. 6(1~;-) dx————flh(l—'—)} = 2h.
o ] h h )

EXAMPLE & A half-sphere of radius R has known volume ${$7R"). Its cross-sections
are semicircles. The key relation is x? + r2 = R?, for the right triangle in Figure 8 4a.
The area of the semicircle is 4 = 1mr® = $7(R* — x*). So we integrate A(x):

volume = {* | 4¢x)dx=$n{R?x - %xa)—lfR =3nR’,

EXAMPLE7 Find the volume of the same half-sphere using horizontal slices
(Figure 8.4b). The sphere still has radius R. The new right triangle gives y* + r* = R,
Since we have full circies the area is 7 = n(R* — 3*). Notice that this is A{)) not
A(x). But the y integral starts at zero:

volume = [ A(y)dy = r{R’y — %_1-'3)]: =2nR> (as before).

Fig. 8.4 A half-sphere sliced vertically or horizontally. Washer area nf ¥ — ng?’.

SOLIDS OF REVOLUTION

Cones and spheres and circular cylinders are “*sclids of revolution.” Rotating a hori-
zontal line around the x axis gives a cylinder. Rotating a sloping line gives a cone.
Rotating a semicircle gives a sphere. If a eircie is moved away from the axis, rotation
produces a torus (a doughnut). The rotation of any curve y = f{x) produces a solid
of revolution,
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The volume of that solid is made easier because every cross-section is a circle. All
slices are pancakes (or pizzas). Rotating the curve y =f(x) around the x axis gives
disks of radius y, so the area is 4 = ny? = n[ f(x)]. We add the slices:

b b "
volume of solid of revolution = J ny* dx = J. ?T[f(.\')]" dx.

a a

EXAMPLE8 Rotatingy= \/;cwith A= n(\/)_c}z produces a “‘headlight” (Figure 8.5a):
volume of headlight = [ 4 dx = [? nx dx = }nx? ]z =2m.

If the same curve is rotated around the y axis, it makes a champagne glass. The slices
are horizontal. The area of a slice is mx? not ny?. When y= .\/; this area is my*.
Integrating from y =0 to ﬁ gives the champagne volume n(ﬁ)’{S.

revolution around the y axis: volume = jm‘z dy.

EXAMPLE 9 The headlight has a hole down the center (Figure 8.5b). Volume =?

The hole has radius 1. All of the \/J_C solid is removed, up to the point where \/;
reaches 1. After that, from x =1 to x = 2, each cross-section is a disk with a hole.
The disk has radius f= \/)_c and the hole has radius g = 1. The slice is a flat ring or
a “washer.” Its area is the full disk minus the area of the hole:

area of washer = nf> — ng® = n{v-’r;}z —n(1)? =nx—m.
This is the area A(x) in the method of washers. Its integral is the volume:

[1 Adx=[} (x—m)dx= [{;mc2 = nx]f =i

Please notice: The washer area is not n(f—g)*. Itis A=nf?— ng?

Fig.8.5 y= .\/J_C revolved; y = 1 revolved inside it; circle revolved to give torus.

EXAMPLE 10 (Doughnut sliced into washers) Rotate a circle of radius a around the
x axis. The center of the circle stays out at a distance b> a. Show that the volume
of the doughnut (or torus) is 2n2a>b.

315
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The outside half of the circle rotates to give the outside of the doughnut. The inside
half gives the hole. The biggest slice (through the center plane) has outer radius b+ a
and inper radius h — a.

Shifting over by x, the outer radius is f=5+ /e’ — x* and the inner radius is
g=h— Ja*— x?. Figure 8.5¢ shows a slice (a washer) with area rnf? — ng?.

area A=n(h+ Ja® —x}) —ailh— JSa&® — X7V = dnb/a® — X7
Now integrate over the washers to find the volume of the doughnut:

{1, Atx)dx=4nb [° |\ /a> — x* dx = (dnb)(3ma®) = 2n% 4 b,
That integral tma® is the area of a semicircle. When we set x = g sin ¢ the area is
| @ cos® 0 df. Not for the last time do we meet cos” 6.

The hardest part is visualizing the washers, because a doughnut usually breaks the
other way. A better description is a kagel, sliced the long way to be buttered.

VOLUMES BY CYLINDRICAL SHELLS

Finally we look at a different way of cutting up 4 solid of revolution. So far it was
cut into slices. The slices were perpendicular to the axis of revolution. Now the cuts
arc parallel to the axis, and each piece is a thin cylindrical shell. The new formula
gives the same volume, but the integral to be computed might be easier.

Figure 8.6a shows a solid cone. A shell is inside it. The inner radius 1s x and the
outer radius is x + dx. The shell is an outer cylinder minus an inner cylinder:

shell volume m(x + dx)*h — ax*h = nx?h+ 2rx{dx)h + nidxY’ h— nx’h. (3)

The term that matters is 2nx(dx)h. The shell volume is essentially 2mx (the distance
around} times dx (the thickness} times h {thc height). The volume of the solid comes
from putting together the thin shells:

sofid vedume = integral of shell volumes = J. 2axh dx. {4)

This is the central formula of the shell method. The rest 15 examples.

Remark on this volume formula 1t is completely typical of integration that (dx)? and
(Ax)? disappear. The reason is this. The number of shells grows like 1/Ax. Terms of
order {Ax)* add up to a volume of order Ax {approaching zero). The linear term
involving Ax or dx is the one to get vight. Its limit gives the integral janh dx. The
key is to build the solid out of sheills—and to find the area or volume of each piece.

EXAMPLE 11 Find the volume of a cone (base area nr?, height 5) cut into shells.

A tall shell at the center has h near b. A short shell at the outside has k near zero. In
between the shell height h decreases linearly, reaching zero at x =r. The height in
Figure 8.6a is h=b — bx/r. Integrating over all shells gives the volume of the cone
{with the expected i)

r L3 i
21'|ch(!)—.*‘)f dx = n'xzb—z?m b =1nr2b‘
a ¥ 3r a 3




8.1 Areas and Volumes by Slices 317

hole radius a

o
h:--:::—u/:thll radius x
by

M=\
3

|

\

Vb2 - 22 (up)

sphere radius b

=

vV b2 - 2 (down)

(~

-

N

F———— =
»

—

Fig. 8.6 Shells of volume 2mxh dx inside cone, sphere with hole, and paraboloid.

EXAMPLE 12 Bore a hole of radius a through a sphere of radius b > a.

The hole removes all points out to x = a, where the shells begin. The height of the
shellis h = 2, /b* — x2. (The key is the right triangle in Figure 8.6b. The height upward
is \/b? — x*—this is half the height of the shell.) Therefore the sphere-with-hole has

volume = |0 2nxh dx = [ 4nx,/b* — x* dx.

With u = b? — x? we almost see du. Multiplying du = — 2x dx is an extra factor — 2
volume = —2x | \/L—t du= —2n(3u3"?).
We can find limits on u, or we can put back u=bh? — x2:
4 T4
volume = — ?ﬂ(i!;r2 —xz)“:| = ;

If a=b (the hole is as big as the sphere) this volume is zero. If a=0 (no hole) we
have 4nb?/3 for the complete sphere.

(bz — al }3,.’2_

Question What if the sphere-with-hole is cut into slices instead of shells?
Answer Horizontal slices are washers (Problem 66). Vertical slices are not good.
EXAMPLE 13  Rotate the parabola y = x* around the y axis to form a bowl.

We go out to x=ﬁ (and up to y=2). The shells in Figure 8.6c have height
h=2— x*. The bowl (or paraboloid) is the same as the headlight in Example 8, but
we have shells not slices:

5 ATYWE
J 2nx(2 — x2) dx = 2nx? — L ] = 2m.

0 4 0
TABLE area between curves: A =_|' (v(x) — w(x)) dx
OF ; ; W
AREAS  Solid volume cut into slices: V=[ A(x)dx or [ A(y)dy
AND solid of revolution: cross-section A=my*> or nx?
VOLUMES

solid with hole: washer area A = nf? — ng?

solid of revolution cut into shells: V = | 2nxh dx.
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Which to use, slices or shells? Start with a vertical line going up to y = cos x. Rotating
the line around the x axis produces a slice (a circular disk). The radius is cos x.
Rotating the line around the y axis produces a shell (the outside of a cylinder). The
height is cos x. See Figure 8.7 for the slice and the shell. For volumes we just integrate
n cos? x dx (the slice volume) or 2nx cos x dx (the shell volume).

This is the normal choice— slices through the x axis and shells around the y axis.
Then y = f(x} gives the disk radius and the shell height. The slice is a washer instead
of a disk if there is also an inner radius g{x). No problem—just integrate small
volumes.

What if you use slices for rotation around the y axis? The disks are in Figure 8.7b,
and their radius is x. This is x=cos~ !y in the example. It is x=f"1(y) in general.
You have to solve y=/(x) to find x in terms of y. Similarly for shells around the x
axis: The length of the shell is x = f ~1(y). Integrating may be difficult or impossibie.

When y = cos x is rotated around the x axis, here are the choices for volume:

(good by slices) | n cos*x dx  (bad by skells) | 2ry cos 'y dy.

T = 1(y) = cos”ly

y=f(x)=cosx Rx’dy

¥

— " .
Imxydx T\ myldx

\ ; 2myxdy & )

Fg.8.7 Slices through x axis and shells around y axis {good). The opposite way needs /™ *{y).

8.1 EXERCISES

Read-through questions

The area between y =x* and y = x* equals the integral of

a . If the region ends where the curves intersect, we find
the limits on x by solving _ b . Then the area equals _ ¢
When the area between y = \/5 and the y axis is sticed hori-
zontally, the integral to compute is _ d

In three dimensions the volume of a slice is its thickness dx
times its __ @ . If the cross-sections are squares of side 1 — x,
the volume comes from { _f . From x =0 to x =1, this
gives the volume _ g  of a square _ b If the cross-sec-

tions are circles of radius 1 —x, the volume comes from
f__1__. This gives the volume _ | of a circular __%

For a solid of revolution, the cross-sections are _ |
Rotating the graph of y =f(x) around the x axis gives a solid
volume { _m_ . Rotating around the y axis leads to [ _n
Rotating the area between y = f{x) and y = g(x) around the x
axis, the slices look like _ o . Their areasare _ p__ so the
volume is | _a

Another method is to cut the solid into thin cylindrical
1__. Revolving the area under y =f{x) around the y axis,
a sheil has height _ » _ and thickness dx and yolume _ t

The total volume is { _u

Find where the curves in 1-12 intersect, draw rough graphs,
and compate the area between them.

1 y=x*—3and y=1 2 y=x*—2and y=0
3 y?’=xand x=9 4 y=xand x=y+2
§ y—x*—2x*and y=2x? 6 x=y" and y=x*

7 y=x"and y=—x*+ 18x

8 y=1/xand y=1/x* and x =3
9 y=cosx and y =cos’x

10 y=sin rx and y =2x and x=0
1l y=¢*and y=¢**"'and x=0
12 y=e¢and y=¢"and y=¢*

13 Find the area tnside the three lines y =4 —x, y = 3x, and
y=x

14 Find the arca bounded by y=12—x, y=./x,and y= 1.

15 Does the parabola y=1-x? out to x =1 sit inside or
outside the unit circle x* + y2 = 17 Find the area of the “skin”
between them.
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16 Find the area of the largest triangle with base on the x
axis that fits (a) inside the unit circle (b) inside that parabola.

17 Rotate the ellipse x2/a* + y*/b> =1 around the x axis to
find the volume of a football. What is the volume around the
y axis? If a=2 and b = 1, locate a point (x, y, z) that is in one
football but not the other.

18 What is the volume of the loaf of bread which comes from
rotating y =sin x (0 < x < n) around the x axis?

19 What is the volume of the flying saucer that comes from
rotating y =sin x (0 < x < n) around the y axis?

20 What is the volume of the galaxy that comes from rotating
y=sin x (0 € x < r) around the x axis and then rotating the
whole thing around the y axis?

Draw the region bounded by the curves in 21-28. Find the
volume when the region is rotated (a) around the x axis (b)
around the y axis.

21 x+y=8,x=0,y=0

22 y—ef=l,x=1y=0,x=0

23 y=x*y=1,x=0

24 y=sinx, y=cosx, x=0

25 xy=1,x=2,y=3

26 x*—y*=9, x+ y=9 (rotate the region where y >0)
27 x2=)% x*=)?

28 (x=2*+(y—=1)?*=1

In 29-34 find the volume and draw a typical slice.

29 A cap of height h is cut off the top of a sphere of radius
R. Slice the sphere horizontally starting at y=R — h.

30 A pyramid P has height 6 and square base of side 2. Its
volume is 4(6)(2)* = 8.
(a) Find the volume up to height 3 by horizontal slices.
What is the length of a side at height y?
(b) Recompute by removing a smaller pyramid from P.

31 The base is a disk of radius a. Slices perpendicular to the
base are squares.

32 The base is the region under the parabola y=1— x>
Slices perpendicular to the x axis are squares.

33 The base is the region under the parabola y=1—x7
Slices perpendicular to the y axis are squares.

34 The base is the triangle with corners (0, 0), (1, 0), (0, 1).
Slices perpendicular to the x axis are semicircles.

35 Cavalieri’s principle for areas: If two regions have strips
of equal length, then the regions have the same area. Draw a
parallelogram and a curved region, both with the same strips
as the unit square. Why are the areas equal?
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36 Cavalieri's principle for volumes: If two solids have slices
of equal area, the solids have the same volume. Find the
volume of the tilted cylinder in the figure.

37 Draw another region with the same slice areas as the tilted
cylinder. When all areas A(x) are the same, the volumes
| are the same.

38 Find the volume common to two circular cylinders of
radius a. One eighth of the region is shown (axes are perpen-
dicular and horizontal slices are squares).

39 A wedge is cut out of a cylindrical tree (see figure). One
cut is along the ground to the x axis. The second cut is at
angle 0, also stopping at the x axis.

(a) The curve C is part of a (circle) (ellipse) (parabola).
(b) The height of point P in terms of x is

(c) The area A(x) of the triangular slice is

(d) The volume of the wedge is

40 The same wedge is sliced perpendicular to the y axis.
(a) The slices are now (triangles) (rectangles) (curved).
(b) The slice area is (slice height y tan 0).
(c) The volume of the wedge is the integral
(d) Change the radius from 1 to r. The volume is
multiplied by
41 A cylinder of radius r and height h is half full of water.
Tilt it so the water just covers the base.
(a) Find the volume of water by common sense.
(b) Slices perpendicular to the x axis are (rectangles) (trap-
ezoids) (curved). I had to tilt an actual glass.

*42 Find the area of a slice in Problem 41. (The tilt angle has
tan f = 2h/r.) Integrate to find the volume of water.
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The slices in 4346 are washers. Find the slice area and volume.

43 The rectangle with sides x =1, x = 3, y =2, y = Sis rofated
around the x axis.

44 The same rectangle is rotated around the y axis.
45 The same rectangle is rotated around the line y = L.

46 Draw the trangle with corners {1, 0}, (1, 1), {0, 1). After
rotation around the x axis, describe the solid and find its
volume,

47 Bore a hole of radius a down the axis of a cone and
through the base of radius b. If it is a 45° cone (height aiso
b), what volume is left? Check a=0and a=4.

48 Find the volume common to two spheres of radius r if
their centers are 2(r — h) apart. Use Problem 29 on spherical
caps.

49 (Shells vs. disks) Rotate y = 3 — x around the x axis from
x =010 x =2, Write down the volume integral by disks and
then by shelis.

50 (Shells vs. disks) Rotate y= x> around the y axis from
y=01to y=8, Write down the volume integral by shells and
disks and compute both ways.

S1 Yogurt comes in a solid of revolution. Rotate the line
y =mx around the y axis to find the volume between y=a
and y=»5.

52 Suppose y =f(x} decreases from f(0})=bto f(1)=0. The
curve is rotated around the y axis. Compare shells to disks:
§o 2mxf(x)y dx =1 =S ™" () dy.

Substitute y = f{x} in the second. Also substitute dy = f/*{x)dx.
Integrate by parts to reach the first.

53 If a roll of paper with inner radius 2 cm and outer radius
10 cm has about 10 thicknesses per centimeter, approximately
how long is the paper when unroiled?

54 Find the approximate volume of your brain. OK to
include everything above your eyes (skull too).

Use shells to find the volumes in 55-63. The rotated regions
lie between the curve and x axis.

55 y=1—x% 0 x <1 {around the y axis)

The graph of y = x>

8.2 Length of a Plane Curve

8 Applications of the infegral

5 y=1/x, 1< x< 100 {around the y axis)

57 y=./1—x% 0<x <1 (around either axis)
58 y=1/(I +x?), 0 € x< 3 (around the y axis}
59 y=sin(x?), 0 < x <./7 {around the  axis)
60 y= lf\/l——xz, 0 < x <1 (around the y axis)
61 y=x% 0<x<2 (around the x axis)

62 y=¢", 0<x< 1 {around the x axis)

63 y=Inx, 1< x<e(around the x axis)

64 The region between y=x? and y = x is revolved around
the y axis. (a) Find the volume by cutting into shells, (b) Find
the volume by slicing intc washers.

65 The region between y=f{x) and y =1+f{x) is rotated

around the y axis. The shells have height . The vol-

ume out to x=a is . Tt equals the volume of a
because the shells are the same.

66 A horizontal slice of the sphere-with-hole in Figure 8.6b
is a washer, Its area is mx? — na® = n(b? — y* — a?).

{a) Find the upper limit on y (the top of the hole}.

(b} Integrate the area to verify the volume in Example 2.

67 Ifthe hole in the sphere has length 2, show that the volume
is 4n/3 regardless of the radii a and &.

*68 An upright cylinder of radius » is sliced by two paralle!
planes at angle x. One is a height h above the other.

{a) Draw a picture 10 show that the volume between the
planes is nrih.

{b} Tilt the picture by x, so the base and top are flat. What
is the shape of the base? What is its area A? What is the
height H of the tilted cylinder?

69 True or false, with a reason.
fa) A cube can only be sticed into squares.
(b} A cube cannot be cut into cylindrical shells.
(¢) The washer with radii r and R has area (R —r)2,

(d) The plane w =1} slices a 3-dimensional sphere out of
a 4-dimensional sphere x>+ y? + 22 + wi=1.

is a curve in the x-y plane. How long is that curve? A definite

integral needs endpoints, and we specify x = 0 and x = 4. The first problem is to know

what “length function” to integrate.

The distance along a curve is the arc length. To set up an integral, we break the
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problem into small pieces. Roughly speaking, small pieces of @ smooth curve are nearly
straight. We know the exact length As of a straight piece, and Figure 8.8 shows how
it comes close to a curved piece.

8 8
y=x¥
(As)? = (Ax)* + (Ap)?
2
Asflay (ds)? = (dx) + (ﬂ) (dx)?
dx
i ds =/ 1+ (dy/dx)? dx
J X L
0 a 0 4

Hg. 8.8 Length As of short straight segment. Length ds of very short curved segment.

Here is the unofficial reasoning that pives the length of the curve. A straight piece
has (As)? =(Ax)* + (Ay)®>. Within that right triangle, the height Ay is the slope
(Ay/Ax) times Ax, This secant slope is close to the slope of the curve. Thus Ay is
approximately (dy/dx) Ax.

As = J(Ax)? + (dy/dx?(Ax) = /1 + (dy/dx)® Ax. ()

Now add these pieces and make them smaller. The infinitesimal triangle has (ds)* =
(dx)? + (dy)®. Think of ds as /1 + {(dy/dx)? dx and integrate:

length of curve = J‘ds = J‘ 1+ (dy/dx)? dx. (2)

EXAMPLE 1 Keep y = x*? and dy/dx = 3x!/2. Watch out for $ and §:
length = [¢ /1+ 3% dx = ()L + 3x)*2 Jo = £10°2 ~ 1°2), )

This answer is just above 9. A straight line from (0, 0) to (4, 8) has exact length
+/ 80. Note 4 + 82 = 80. Since /80 is just below 9, the curve is surprisingly straight.

You may not approve of those numbers (or the reasoning behind them). We can
fix the reasoning, but nothing can be done about the numbers. This example y = x3/
had to be chosen carefully to make the integration possible at all. The length integral
is difficult because of the square root. In most cases we integrate numerically.

EXAMPLE 2 The straight line y = 2x from x =0 to x =4 has dy/dx =2:
length = _[; J1tddx= 4\/3 =./ 80 as before (just checking).

We return briefly to the reasoning. The curve is the graph of y = f{x). Each piece
contains at least one point where secant slope equals tangent slope: Ay/Ax=f"(c).
The Mean Value Theorem applies when the slope is continuous—this is required
for a smooth curve. The straight length As is exactly | /(Ax)* + (f'{c) Ax)*. Adding
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the n pieces gives the length of the broken line (close to the curve):

Ax

Ay =f'(c-)Ax 21; As; =le 1+ 1)) Ax..

¢

As n— o0 and Ax,,, — 0 this approaches the integral that gives arc length.

8A The length of the curve y=f(x) from x =a to x =5 is
s=[ds=["/1+[f ()] dx=[" /1+(dy/dx} dx. (@)

EXAMPLE 3 Find the length of the first quarter of the circle y=./1 — x%
Here dy/dx = —x/,/1 — x*. From Figure 8.9a, the integral goes from x =0to x=1:

1

length = ‘[

0

5 1 xZ 1 dx
1+ (dy/dx) dx=‘[ 1+—~—dx=J~ ——
Y 0 1 - x? 0o J1—x?
The antiderivative is sin~ ' x. It equals n/2 at x = 1. This length /2 is a quarter of

the full circumference 2.

EXAMPLE 4 Compute the distance around a quarter of the ellipse y2 + 2x% = 2.
The equation is y=.,/2— 2x* and the slope is dy/dx = —2x/\/2—2x% So [ds is

1 4x? U fa42x? o1+ x?
fl+ —— dx= ——dx= f .
L : 2-2x? dx L V2- 27 dx L 1—x? dx )

That integral can’t be done in closed form. The length of an ellipse can only be
computed numerically. The denominator is zero at x = 1, so a blind application of the
trapezoidal rule or Simpson’s rule would give length = oo. The midpoint rule gives
length = 1.91 with thousands of intervals.

y=‘\J2—-2x3
dx:\] b+ (y)2dx

yY=cosf,y =2 sint

s =f sin2t + 2 cos?t dt

N vy i
ds =4 | +(y)2dx

¥ =Ccos{, ¥y =sing

ds = sin?t + cos?r dt
dx

start at 1 = 0~ dx startat 7 =0~

X .=\

Fig. 8.9 Circle and ellipse, directly by y = f(x) or parametrically by x{t) and y{(r).

LENGTH OF A CURVE FROM PARAMETRIC EQUATIONS: x(f} AND y(/)

We have met the unit circle in two forms. One is xZ + y? = 1. The other is x = cos ,
y =sin t. Since cos® t + sin? t = 1, this point goes around the correct circle. One advan-
tage of the “parameter” t is to give extra information—it teils where the point is and
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also when. In Chapter 1, the parameter was the time and also the angle—because
we moved around the circle with speed 1.

Using t is a natural way to give the position of a particle or a spacecraft. We can
recover the velocity if we know x and y at every time ¢. An equation y = f(x) tells the
shape of the path, not the speed along it.

Chapter 12 deals with parametric equations for curves. Here we concentrate on
the path length—which allows you to see the idea of a parameter ¢ without too much
detail. We give x as a function of ¢t and y as a function of ¢t. The curve is still
approximated by straight pieces, and each piece has (As)? = (Ax)> + (Ay)*. But instead
of using Ay = (dy/dx) Ax, we approximate Ax and Ay separately:

Ax~{dx/dt) A,  Ayx(dy/d) A, Asw . J(dxjde) + (dyjdr) At

8B The length of a parametric curve is an imegral'with respect to t:
§ ds= | (ds/dryde = | J/(dx/dt)* + (dy/dr)z dt. (6)

EXAMPLES Find the length of the quarter-circle using x =cos t and y=sint:

w2

xf2 nf2
j Jdxjdt)? +(dyjdt)? de = I sin’ ¢ + cos? ¢ dt = I dt= g

0 a 0
The integral is simpler than 1/,/1 — x?, and there is one new advantage. We can
integrate around a whole circle with no trouble. Parametric equations allow a path to
close up or even cross itself. The time ¢ keeps going and the point (x(t), y{t)) keeps
moving. In contrast, curves y = f{x) are limited to one y for each x,

EXAMPLES Find the length of the quarter-ellipse: x=cost and y=ﬁsin t:

On this path y?+2x? is 2sin’z+ 2cos?t=2 (same ellipse). The mon-parametric
equation y =,/ 2 — 2x? comes from eliminating r. We keep t:

w2 ni2
length = j J@dxide)? + (dyfdr)? de = j sin?¢ + 2 cos?t dt. )]
4 0

This integral (7) must equal (5). If one cannot be done, neither can the other. They
are related by x = cos ¢, but {7) does not blow up at the endpoints. The trapezoidal
rule gives 1.9101 with less than 100 intervals. Section 5.8 mentioned that calculators
automatically do a substitution that makes (3) more like (7).

EXAMPLE 7 The path x =%, y =13 goes from (0, 0) to (4, 8). Stop at t = 2.

To find this path without the parameter ¢, first solve for t = x'/2. Then substitute
into the equation for y: y = t> = x32. The non-parametric form (with ¢t ctiminated) is
the same curve y = x> as in Example 1.

The length from the t-integral equals the length from the x-integral. This is
Problem 22.

EXAMPLE 8 Special choice of parameter: t is x. The curve becomes x = ¢, y = t32,

If x = ¢ then dx/dt = 1. The square root in (6) is the same as the square root in (4).
Thus the non-parametric form y = f{x) is a special case of the parametric form—just
take = x.

Compare x = ¢, y= t*? with x = t2, y = 17, Same curve, same length, different speed.

323
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EXAMPLE® Define “speed” by

short distance _ ds
short time dt’

. dx\?  [dyV
It1s (E) + (d_t) )

When a bail is thrown straight upward, dx/dt is zero. But the speed is not dy/d:.
It is |dy/dt]. The speed is positive downward as well as upward.

8.2 EXERCISES

Read-through questions

The length of a straight segment {Ax across, Ay up) is
As=_4d _, Between two points of the graph of y(x), Ay is

approximately dy/dx times _ ® . The length of that piece
is approximately ./(Ax)®>+ _< . An infinitesimal piece of

the curve has length ds=_ d . Then the arc length integral
isf_e

For y=4-—x from x=0 to x=3 the arc length is
j t =_9 . Fory=x’thearclength integral is __h

The curve x =cos t, y =sin ¢ is the samc as __t . The
length of a curve given by x(¢), y{t) is _[ W 1 dt Forexam-
ple x=cost, y=sint from t=n/3 to r—n,".! has length

k . The speed is ds/dt=_ U . For the special case
x =1, y=f{t) the length formula goes back to [ /_m __dx.

Find the lengths of the curves in Problems 1-8.
1 y=x¥from (0, Q) to {1, 1)

2 y=x23 from (0, 0} to {1, 1) (compare with Problem 1 or
put u =% + x*? in the length integral)

3 p=102+ 2 fromx=0to x=1

4 p=3x>*—22 fromx=2to x=4

3

1
5 y=£3—+4—xfrom x=1ltox=3

4

1
6y=4 82fr‘a:rmx—lto::c—Z

1."2

T p=3x¥i— fromx=1to x=4

8 y=x?from (0, 0)to (L, 1)
9 The curve given by x =cos?t, y=sint is an astroid {2

hypocycloid). Its non-parametric form is x*3 + > =1,
Sketch the curve from ¢ =0 to t =#/2 and find its length.

10 Find the length from ¢ =0 to 1 = 7 of the curve given by
X=cost+sint, y=ocost—sint Show that the curve is a
circle (of what radius?).

11 Find the length from ¢ =0 to t = n/2 of the curve given by
X=g0§t y=t—sint,

12 What integral gives the length of Archimedes’ spiral
x=tcost, y=1Isint?

~Show by substituting x =

13 Find the distance traveled in the first second (to t =1) if
x=41% y=4(2t + 12

14 x=(1—4cos2)cost and y=
4“ _ x2 . y2]3
to n/4.

(1+%cos 2)sint lead to
= 2%x? — y*)2. Find the arc length from ¢ =0

Find the arc lengths in 15-18 by numerical integration.
15 One arch of y=sin x, from x=0to x=m,

16 y=¢" fromx=0tox=1,

17 y=lnxfromx=1tox=e.

18 x=cost, y=3sint, 0<x<2n

19 Draw a rough picture of y = x'®. Without computing the
length of y =x” from {0, 0) to (1, ), find the limit as r - .

20 Which is longer between (1, 1) and (2, 4), the hyperbola
y=l/x or the praph of x4+ 2y=W?

21 Find the speed ds/dt on the circle x = 2 cos 3t, y = 2 sin 3t
22 Examples 1 and 7 were y = x*2 and x =12, y = ¢*:
fength = & /1 +3x dx, length = 2 . /4¢2 +9¢* dt.
that these integrals agree.
23 Tnstead of y =f{x) a curve can be given as x = g(y). Then
ds = \/(dx)? + (dyy* = /(dx/dy)* + 1 dy.
Draw x =5y from y=0to y=1 and find its length.

24 The length of x=y** from (0,0} to (1,1} is

[ds=[./%y+ 1 dy. Compare with Problem 1: Same length?
Same curve?

25 Find the length of x =4{e* + e %} from y=—110 y=1
and draw the curve.

26 The length of x = g(y) is a special case of equation (6) with
y=t and x =g{t). The length integral becomes .

27 Plot the point x=3cost, y=4sint at the five times
t=0, /2, n, 3x/2, 2n. The equation of the curve is
{x/3)* +(y/4)* =1, not a circle but an . This curve
cannot be wntten as y =f(x) because

28 (a) Find the length of x =cos?t, y=sin®{, 0<ys
(b) Why does this path stay on the line x + y=1?
(c) Why isn’t the path length equal to \/5?
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29 (important) The line v = x is close to a staircase of pieces
that go straight across or straight up. With 100 pieces of length
Ax=1/100 or Ay=1/100, find the length of carpet on the
staircase. (The length of the 45° line is ﬁ The staircase can
be close when its length is not close.)

30 The area of an ellipse is mab. The area of a sirip around
it (width A)is m{a + A)(b + A) — mab = n{a + b)A. The distance
around the ellipse seems to be n(a + b). But this distance is
impossible to find—what is wrong?

31 The point x = cos ¢, y =sin {, = ¢ INOVES ON 4 Space curve.
(a) In three-dimensional space (ds)* equals (dx)® +
. In equation (6), ds is now dt.

8.3 Area of a Surface of Revolution

(b) This particular curve has ds= . Find its
length from t=0to t = 2n.

(¢} Describe the curve and its shadow in the xy plane,

32 Explain in 50 words the difference between a non-para-
metric equation y=f{x) and two parametric equations
x=x(t), y = ylt).

33 Write down the integral for the length L of y=x? from
{0, 0) 1o {1, 1). Show that y =4 x2 from (0, 0) to (2, 2) is exactly
twice as long. If possible give a reason using the graphs.

3 (for professors) Compare the lengths of the parabola
y=x? and the line y=bx from (0, 0) to (b, b?). Does the
difference approach a limit as b — «o?

This section starts by constructing surfaces. 4 curve y = f(x} is revolved around an
axis. That produces a “surface of revolution,”” which is symmetric around the axis. If
we revolve a sloping line, the result is a cone. When the line is parallel to the axis we
get a cylinder (a pipe). By revolving a curve we might get a lamp or a lamp shade

(or even the light bulb).

Section 8.1 computed the volume inside that surface. This section computes the
surface area. Previously we cut the solid into slices or shells. Now we need a good

way to cut up the surface.

The key idea is to revolve short straight line segments. Their slope is Ay/Ax. They
can be the same pieces of length As that were used to find length—now we compute
area. When revolved, a straight piece produces a ““thin band’ (Figure 8.10). The curved
surface, from revolving v = f(x), is close to the bands. The first step is to compute the

surface qrea of a band.

A small comment: Curved surfaces can also be cut into tiny patches. Each patch
is nearly flat, like a little square. The sum of those patches leads to a double integral
(with ¢x dy). Here the integral stays one-dimensional (dx or dy or dt). Surfaces of
revolution are special —we approximate them by bands that go all the way around.
A band is just a belt with a slope, and its slope has an effect on its area.

middle radius x

e

area AS = 2nrAs

area AS = 2t xAs

side As

arca AS = 2myAs

Fig. 8.40 Revolving a straight piece and a curve around the y axis and x axis.
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Revolve a small straight piece (length As not Ax). The center of the piece goes
around a circle of radius ». The band is a slice of a cone. When we flatten it out
(Problems 11-13) we discover its area. The area is the side length As times the middle
circumference 2nr:

The surface area of a band is 2nrAs = 2nr. /1 + (Ay/Ax)* Ax.

For revolution around the y axis, the radius is r = x, For revelution around the x
axis, the radius is the height: r = y = f(x). Figure 8.10 shows both bands—the problem
tells us which to use. The sum of band areas 2nr As is close to the area S of the curved
surface. In the limit we integrate 2nr ds:

8C The surface area generated by revolving the curve y=f(x) between x=a
and x="bis

S= {2 2ny./1+ (dy/dx)* dx around the x axis (r=y) (1)
S =j, 2mx\/1+(dyjdx)* dx around the y axis {r=x). @

EXAMPLE 1 Revolve a complete semicircle y =./R? — x? around the x axis.

The surface of revolution is a sphere. Its area (known!) is 47R?. The limits on x are
—R and R. The slope of y=,/R?*— x* is dyfdx = —x{./R? — x%

R 2 R
areaS=J 2n./R?*— x? {l+ﬁdx=‘j. 2nR dx = 4nR2.
-R - -R

EXAMPLE 2 Revolve a piece of the straight line y = 2x around the x axis.

The surface is a come with (dy/dx)* =4. The band from x=0 to x=1 has area
2n\/§:

S={2nyds= [} 2n(2x) /1 + 4 dx=2n/5.

This answer must agree with the formula 2zr As (which it came from). The line from
(0, 0) to (1, 2) has length As = \/3 Its midpoint is (1, 1). Around the x axis, the middle
radius is r =1 and the area is 2-.1\/3.

EXAMPLE 3 Revolve the same straight line segment around the y axis. Now the
radius is x instead of y = 2x. The area in Example 2 is cut in half:

S=[2nxds={} 2nx./1+4 dx=n/5

For surfaces as for arc length, only a few examples have convenient answers.
Watermelons and basketballs and light bulbs are in the exercises. Rather than stretch-
ing out this section, we give a final area formula and show how to use it.

The formula applies when there is a parameter . Instead of (x, f(x)) the points on
the curve are (x(¢), y(t)). As t varies, we move along the curve. The length formula
(ds)? = (dx)* + (dy)* is expressed in terms of t.

For the surface of revolution around the x axis, the area becomes a t-integral:

8D The surface area is | 2ny ds = | 2ny(t)/(dx/dtY + (dy/dt)® dt. 3)
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EXAMPLE 4 The point x =cos ¢, y = 5 + sin ¢ travels on a circle with center at (0, 5).
Revolving that circle around the x axis produces a doughnut. Find its surface area.

Solution  (dx/dty? + (dy/dt)* = sin? ¢ + cos? t = 1. The circle is complete at £ = 2x;

§ 2ny ds = [2 22(S + sin 1) dt = | 22(5t— cos 1) [" = 2007,

8.3 EXERCISES

Read-through questions

A surface of revolution comes from revolvinga __a__ around

b . This section computes the _¢__ . When the curve is
a short straight picce (length As), the surfaccisa _d | lis
area is AS=_ e _ In that formula {(Problem 13) r is the
radius of _ f _ . Theline from (0, Byto (1, 1) haslength _9

and revolving it produces arga _ h

When the curve y =f{x) revolves around the x axis, the
surface area is the integral _ ) . For y = x? the integral to
computeis _ | . When y = x? is revolved around the y axis,
the area is S=_ k. For the curve given by x =21, y =2,
change dsto _ | 4t

Find the surface area when curves 1-6 revolve around the x
axis.

1y=J% 2€<x<6

2y=x 0gxxl

3 y=7¢, —1£x<1(watch sign)
4 y=J4-x%, 0<gx<2

S y=J4—x, —l1<xg1

=

y=coshx, 0gxgl.

In 7-10 find the area of the surface of revolution around the v
axis.

7y=x> 0<xx?2
Py=x+1, 0€£x£3

11 A cone with base radius R and slant height s is laid out
flat, Explain why the angle {in radians) is f = 2nR:s. Then the
surface area is a fraction of a circle;

12 A band with slant height As =5 — s and radii R and R’ is
laid out flat. Explain in one line why its surface area is
nRs — R’y

1
:':T(R+R') AS=2nrAs
- area TRy

13 By similar triangles Rjs = R'/s’ or Rs’=R's. The middle
radius r is $(R 4+ R’). Substitutc for » and As in the proposed
area formula 2nr As, to show that this gives the correct area
TRs—nR’s".

14 Slices of a basketball all have the samec area of cover,
il they have the same thickness.
{a) Rotate _1==\;’m around the x axis. Show that
ds =2 dx.
(b} The area between x =g and x=a+ his
ic) 1 of the Earth’s area is above latitude

15 Change the circle in Example 4 to x=a cost and y=
b+ asin t. Its radius is and its center is .
Find the surface arca of a torus by revolving this circle around
the x axis,

16 What part of the circle x=Rcost, y=Rsint should
rotate around the y axis to produce the top half of a sphere?
Choose limits on f and vernify the area.

17 The base of a lamp is constructed by revolving the quar-
ter-circle y=,/2x—x* [x=1 to x=2) around the y axis.
Draw the quarter-circle, (ind the area integral, and compute
the area.

I8 The light bulb is a sphere of radius 1;2 with its bottom
sliced off to At onto a cylinder of radius 1;4 and length [;/3
Draw the light bulb and find its surface area (ends of the
cylinder not included).

19 The lamp shade is constructed by rotating y = 1/x around
the v axis, and keeping the part from y=1 to v = 2. Set up
the definite integral that gives its surface area.

20 Compute the area of that lamp shade.
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21 Explain why the surface area is infinite when y=1/x is
rotated around the x axis (I £ x < oz). But the volume of
“Gabriel's horn™ is . It can’t hold enough paint to
paint its surface.

22 A disk of radius 17 can bc covered by four strips of tape
{width §”). If the strips are not parallel, prove that they can't

cover the disk. Hint: Change to a unit sphere sliced by plines
4" apart. Problem 14 gives surface area n for each slice.

23 A watermelon (maybe aiootball} is the result of rotating
half of the cliipse x=./2cost, y=sint (which means
x? 4+ 2y* =2). Find the surface area, parametrically or not.

24 Estimate the surface area of an epg,

8.4 Probability and Calculus

Discrete probability usually involves careful counting. Not many samples are taken
and not many experiments are made. There is a list of possible outcomes, and a
known probability for each cutcome. But probabilities go far beyond red cards and
black cards. The real questions are much more practical:

1. How often will too many passengers arrive for a flight?
2. How many random errors do you make on a quiz?
3. What is the chance of exactly one winner in 4 big lottery?

Those are important questions and we will set up models to answer them.

There is another point. Discrete models do not involve calculus. The number of
errors or bumped passengers or lottery winners 1s a small whole number. Calenius
enters for continuous probability. Instcad of results that exactly equal [ or 2 or 3,
calculus deals with results that fall in a range of numbers. Centinuous prebability
comes up in at least two ways:

(A) An experiment is repeated many times and we takce averages.
(B) The outcome lies anywhere in an interval of numbers.

In the continuous case, the probability p, of hitting a particular value x = n becomes
zero. Instead we have a probability density p(x}—which is a key idea. The chance that
a random X falls between a and b is found by integrating the density p(x):

Probia € X <h = |° p(x) dx. ()

Roughly speaking, p(x}dx is the chance of falling between x and x + dx. Certainly
plx) 2 0. If aand b are the extreme limits — oc and ¢, including all possible cutcomes,
the probability is necessarily one:

Prob:— 7z <X <+ vi=[", plx)de=1. (2)

This is a case where infinite limits of integration are natural and unavoidabie. In
studying probability they create no difficulty—areas out to infinity are often easier.
Here are typical questions involving continuous probability and calculus:

4. How conclusive is a 53%-47% poll of 2500 voters?
5. Are 16 random football players safe on an elevator with capacity 3600 pounds?
6. How long before your car is in an accident?

It is not so traditional for a calculus course to study these questions. They need extra
thought, beyond computing integrals {so this section is harder than average). But
probability is more important than some traditional topics, and also more interesting.
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Drug testing and gene identification and market research are major applications.
Comparing (Questions 1-3 with 4—6 brings out the relation of discrete to continuous—
the differences between them, and the parallels.

It would be impossible to give here a full treatment of probability theory. I believe
you will sze the point (and the use of calculus) from our examples. Frank Morgan’s
lectures have been a valuahle guide.

DISCRETE RANDOM VARIABLES

A discrete random variable X has a list of possible values. For two dice the outcomes
are X =2,3,..., 12, For coin tosses (see below), the list is infinite: X =1,2,3,....
A continuoas variable lies in an interval a< X < b.

EXAMPLE 1 Toss a fair coin until heads come up. The outcome X is the aumber of
tosses. The value of X is 1 or 2 or 3 or ..., and the probability is 4 that X = 1 (heads
on the first toss). The probability of tails then heads is p, = ;. The probability that
X =nis p, = (§)"—this is the chance of n — 1 tails followed by heads. The sum of all
probabilities is necessarily 1

R Sk A At

EXAMPLE2 Suppose a student (not you) makes an average of 2 unforced errors per
hour exam. The number of actual errors on the next examis X =0orlor2or....
A reasonable model for the probability of n errors—when they are random and
independent—is the Poisson model (pronounced Pwason):

L]

2
p, = probability of n errors = e -2

The probabilities of no errors, one error, and two errors are pg, p,, and p,:
20 -2 = 1 -2 21 -2 22 -2
Po—ﬁe =1 a.135 pl_-l_!_e .27 T ~.27.

The probability of more than two errors is 1 —.135— .27 — 27 = 325,
This Poisson model can be derived theoretically or tested experimentally. The total
probability is again 1, from the infinite series (Section 6.6) for e?:

20 21 22
P0+P1+P2+---=(E+ﬁl-‘-+—+---)e'2=eze_2=1. 3

EXAMPLE3 Suppose on average 3 out of 100 passengers with reservations don’t
show up for a flight. If the plane holds 98 passengers, what is the probability that
someone will be bumped!

If the passengers come independently to the airport, use the Poisson model with 2
changed to 3. X is the number of no-shows, and X = n happens with probability p,:

o o _ at _
p,,=;Ie3 Po= 5 3=gd Pi=Tre 3=3¢73,
There are 98 seats and 100 reservations. Someone is bumped if X =0 or X =1
chance of bumping = py + p; =~ 3 + 3¢~ > = 4/20.

We will soon define the average or expected valwe or mean of X —this model has g = 3.
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CONTINUOUS RANDOM VARIABLES

If X is the lifetime of a VCR, all numbers X = 0 are possible. If X is a score on the
SAT, then 200 € X < 800. If X is the fraction of computer owners in a poll of 600
people, X is between 0 and 1. You may object that the SAT score is a whole number
and the fraction of computer owners must be 0 or 1/600 or 2/600 or .... But it is
completely impractical to work with 601 discrete possibilities. Instead we take X to
be a continuous random variable, falling anywhere in the range X =0 or [200, 800] or
0 < X 1. Of course the various values of X are not equally probable.

EXAMPLE 4 The average lifetime of a VCR is 4 years. A reasonable model for break-
down time is an exponential random variable. Its probability density is
p(x)=31e "* for 0 x<oo.
The probability that the VCR will eventually break is 1:
Pledx=] —e T =0-(-1=1. (4)
The probability of breakdown within 12 years (X from 0 to 12) is .95:
f2de ¥ dx=] e =3+ 1595 )

An exponential distribution has p(x)=ae™“*. Its integral from 0 to x is F(x)=
1 — e~ % Figure 8.11 is the graph for a = 1. It shows the area up to x=1.
To repeat: The probability that a < X < b is the integral of p(x) from a to b.

23931 I ’ 45¢7" T ’ 1
2” ,3 _3 3”
2 I = £ I 3e -
IVe Pn= ie? - Pa= 1
" " X
0 1 2 3 0 i 2 3

Fig. 8.41 Probabilities add to X p, = 1. Continuous density integrates to | p(x) dx=1.

EXAMPLES We now define the most important density function. Suppose the
average SAT score is 500, and the standard deviation {(defined below—it measures the
spread around the average) is 200. Then the normal distribution of grades has

1
= ¢
)= 00T

This is the normal {or Gaussian) distribution with mean 50 and standard deviation
200. The graph of p(x) is the famous bell-skaped curve in Figure 8.12.

A new objection is possible. The actual scores are between 200 and 800, while the
density p(x) extends all the way from — oo to co. I think the Educational Testing
Service counts ali scores over 800 as 800. The fraction of such scores is pretty smail-—
in fact the normal distribution gives

x I
Prob {X = 800} = J.

800 200\/% ¢

— - 2; 2
{x- 500424200 fOl'

- < x <@,

X S00%2200% gy = 0013. (6)
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Fig. 8.42 The normal distribution (bell-shaped curve) and its cumulative density F(x).

Regrettably, e™*' has no elementary antiderivative. We need numerical integration.
But there is nothing the matter with thai! The integral is called the “error function,”
and special tables give its value to great accuracy. The integral of e~**2 from — co
to ao is exactly \/27:1 Then division by \/ﬂ keeps | p(x) dx = 1.

Notice that the normal distribution involves two parameters. They are the mean
value (in this case u = 500) and the standard deviation (in this case ¢ = 200). Those
numbers mu and sigma are often given the “normalized” values g =0 and o =1:

—x?2

= ! —ix—u)* 202 = 1
p(x) /o e becomes p(x) o p
The beli-shaped graph of p is symmetric around the middle point x = u. The width
of the graph is governed by the second parameter ¢—which stretches the x axis and
shrinks the y axis (leaving total area equal to 1). The axes are labeled to show the
standard case 4 =0, ¢ =1 and also the graph for any other 4 and o.

We now give a name to the integral of p(x). The limits will be — oo and x, so the
integral F(x} measures the probability that a random sample is below x:

Prob{X < x}=[* _ pl(x) dx = cumulative density function F(x). (7

F(x) accumulates the probabilities given by p(x), so dF/dx= p(x). The total prob-
ability is F(oo) = 1. This integral from — oo to. o0 covers all outcomes.

Figure 8.12b shows the integral of the bell-shaped normal distribution. The middle
point x = g has F = 3. By symmetry there is a 50-50 chance of an outcome below the
mean. The cumulative density F(x) is near .16 at g — o and near .84 at p+ o. The
chance of falling in between is .84 — .16 = .68. Thus 68% of the outcomes are less
than one deviation o away from the center u.

Moving out to u— 20 and p+ 20, 95% of the area is in between. With 95%
confidence X is less than two deviations from the mean. Only one sample in 20 is
further out (less than one in 40 on each side).

Note that ¢ = 200 is not the precise value for the SAT!

MEAN, VARIANCE, AND STANDARD PEVIATION

In Example 1, X was the number of coin tosses until the appearance of heads. The
probabilities were p, =3, p, =43, p1=4, .... What is the average number of tosses?
We now find the “mean” u of any distribution p(x)—not only the normal distribution,
where symmetry puarantees that the built-in number x is the mean.

To find u, multiply outcomes by probabilities and add

p=mean=73 np, = 1{p,}+2(p;) + 3(ps) + . (8

331
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The average number of tosses is 1(3)+ 2{3)+ 3(§)+ ---. This series adds up (in
Section 10.1) to u= 2. Please do the experiment 10 times. I am almost certain that
the average will be near 2.

When the average is A= 2 quiz errors or 4= 3 no-shows, the Poisson probabilities
are p, = A"¢~*/n! Check that the formula g = X np, does give 4 as the mean:

AR e il AL A iz gt
I:IE+ZE+3§-!-+---:|e —J.I:1+ﬁ+ﬁ+---:|e =lete =4

For continuous probability, the sum u=T np, changes to x={ xp(x)dx. We
multiply outcome x by probability p(x} and integrate. In the YCR model, integration
by parts gives a mean breakdown time of u = 4 years:

| x p(x) dx =3 x(}e **) dx= [~xe""4 ~ 4e"‘*"‘];° =4 9

Together with the mean we introduce the variance. It is always written o, and in
the normal distribution that measured the “width” of the curve. When a? was 2007,
SAT scores spread out pretty far. If the testing service changed to o = 12, the scores
would be a disaster. 95% of them would be within + 2 of the mean. When a teacher
announces an average grade of 72, the variance should also be announced—if it is
big then those with 60 can relax. At least they have company.

8E The mean g is the expected value of X. The variance ¢ is the expected
value of (X — mean)? = (X — u)%. Multiply outcome times probability and add:

g=>y np, o2=Y (n—u’p, (discrete)

p=[2, xpx)dx  o*=[%_ {x—w?p(x)dx (continuous)

The standard deviation (written o) is the square root of g2
EXAMPLE 4 (Yes-no poll, one person asked) The probabilities are p and 1 —p.

A fraction p =1 of the population thinks yes, the remaining fraction | — p = % thinks
no. Suppose we only ask one person. If X =1 for yes and X = 0 for no, the expected
value of X is g = p=+4. The variance is 6 =p(1 — p)=$§:

o)ei()5 o303

The standard dewviation is ¢ = \/2_,’9 When the fraction p is near one or near zero,
the spread is smailer—and one person is more likely to pive the right answer for
everybody. The maximum of ¢ = p(1 — p} is at p= %, where o = 1.

The table shows y and a? for important probability distributions.

Model Mean Variance Application
Pir=p,po=1-p p p(1—-p) yes-no
Poisson p, = i"e " */n! A i random occurrence
Exponential p(x)= ae~** tja 1/a* waiting time
Normal p(x) _ l e_(x_#}ljzaz ‘[ az dlSll’lblltiOl‘l

Ving

around mean
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THE LAW OF AVERAGES AND THE CENTRAL LIMIT THEOREM

We come to the center of probability theory (without intending to give proofs). The
key idea is to repeat an experiment many times—poll many voters, or toss many
dice, or play considerable poker. Each independent experiment produces an outcome
X, and the average from N experiments is X . It is called “X bar™:

X1+Xz+ A +XN

x:
N

= average outcome,

All we know about p(x) is its mean g and variance ¢7. It is amazing how much
information that gives about the average X:

8F Law of Averages: X is almost sure to approach y as N —» co.
Central Limit Theorem: The probability density py(x) for X approaches
a normal distribution with the same mean u and with variance o?/N.

No matter what the probabilities for X , the probabilities for X move toward the normal
bell-shaped curve. The standard deviation is close to a/ﬁ when the experiment is
repeated N times. In the Law of Averages, “almost sure” means that the chance of
X not approaching u is zero. It can happen, but it won’t.

Remark 1 The Boston Globe doesn’t understand the Law of Averages. I quote from
September 1988; “What would happen if a giant Red Sox slump arrived? What would
happen if the fabled Law of Averages came into play, reversing all those can’t miss
decisions during the winning streak?” They think the Law of Averages evens every-
thing up, favoring heads after a series of tails. See Problem 20.

EXAMPLE 7 Yes-no poll of N = 2500 voters. Is a 53%—47% outcome conclusive?

The fraction p of “yes™ voters in the whole population is no¢ known. That is the reason
for the poil. The deviation o =./p(1 — p) is also not known, but for one voter this is
never more than § (when p = §). Therefore cr,:‘ﬁ for 2500 voters is no larger than
$/./2500, which is 1%.

The result of the poll was X = 53%. With 95% confidence, this sample is within
two standard deviations {here 2%) of its mean. Therefore with 95% confidence, the
unknown mean u = p of the whole population is between 51% anrd 55%. This poll is
conclusive,

If the true mean had been p = 50%, the poll would have had only a .0013 chance
of reaching 53%. The error margin on each side of a poll is amazingly simple; it is
always 1/,/N.

Remark2 The New York Times has better mathematicians than the Globe. Two
days after Bush defeated Dukakis, their poll of N = 11,645 voters was printed with
the following explanation. “In theory, in 19 cases out of 20 [there is 95%] the results
should differ by no more than one percentage point [there is 1 ;’\/ﬁ ] from what
would have been obtained by seeking out all voters in the United States.”

EXAMPLES Football players at Caitech (if any) have average weight g = 210 pounds
and standard deviation g = 30 pounds. Are N = 16 players safe on an elevator with
capacity 3600 pounds? 16 times 210 is 3360.
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The average weight X is approximately a normal random variable with & = 210 and
o= 30{ﬁ= 30/4. There is only a 2% chance that X is above i+ 25 = 225 (see
Figure 8.12b—weights below the mean are no problem on an elevator). Since 16
times 225 is 3600, a statistician would have 98% confidence that the elevator is safe.
This is an example where 98% is not good enough—I wouldn’t get on.

EXAMPLE ¢ (The famous Weldon Dice) Weldon threw 12 dice 26,306 times and
counted the 5's and 6’s. They came up in 33.77% of the 315,672 separate rolls. Thus
X =.3377 instead of the expected fraction p =% of 5’s and 6’s. Were the dice fair?

The variance in_each roll is 62 = p(1 — p)=2/9. The standard deviation of X is
&= a/ﬁ= MI,/BISGTZ 2 ,00084. For fair dice, there is a 95% chance that X
will differ from % by less than 2. (For Poisson probabilities that is false. Here X is
normal.) But .3377 differs from .3333 by more than 56. The chance of falling 5 standard
deviations away from the mean is only about 1 in 10,000.1

8o the dice were unfair. The faces with 5 or 6 indentations were lighter than the
others, and a little more likely to come up. Modern dice are made to compensate for
that, but Weldon never tried again.

8.4 EXERCISES

Read-through questions

Discrete probability uses counting, _a __ probability uses
calculus. The function p(x) is the probability _ b . The
chance that a random variable fails between zand bis __c
The total probability is j‘fm pix)dx=_d . In the dis-
crete case Zp,=_ o . The mean (or expected valug)
is ,u:_[ f__ in the continuous case and pg=ZInp, in
the g .

The Poisson distribution with mean A has p,=__h __ The
sum X p, = I comes from the __t __ series, The exponential
distribution has p{x)=e ¥ or 2¢"?* or __J . The standard
Gaussian {or __k ) distribution has \/:.’_n‘p{x]——-e_’z”. Its
graph is the well-known _ | curve. The chance that the

variabte falls below xis F(x)=_m . Fisthe _ n__ density

function, The diflerence F(x + dx)— F(x) is about _ o
which is the chance that X is between x and x + dx.

The variance, which measures the spread around g, is
o*={__p _ in the continuous cas¢ and 6 =Z _q inthe
discrete case. Its square root ¢ is the __r . The normal
distributionbhas p(x)=_s . If Xisthe 1t of N samples
from any population with mean p and variance ¢?, the Law
of Averages says that X will approach __w__ The Central

Limit Theorem says that the distribution for X approaches
v__. Itsmeanis __w and its varance is _ x

In a ves-no poll when the voters are 50-50, the mean for
one voter is u=03+13)=_y . The vardance is
(0~ 1)?po+(l—pfp,=__2z .Forapoll with N =100, 7 is

A, There is a 95% chance that X {the fraction saying yes)
will be between _ B and _C

1 Ifp, =4, p;=4%, p» =4, ..., what is the probability of an
outcome X < 4? What are the probabilities of X =4 and
X>q

2 With the same p, = ()", what is the probability that X is
odd? Why is p,=(4)" an impossible set of probabilities?
What multiple ¢(4)" is possible?

3 Why is p(x)= e~ ** not an acceptable probability density
for x = 0? Why is p(x) = 4e~** — e~ " not acceptable?

*4 If p, = (4)", show that the probability P that X is a prime
number satisfies 6/16 < P £ 7/16.

§ If p(x) = e~ * for x = 0, find the probabiiity that X >2 and
the approximate probability that 1 £ X < 1.01.

6 If p(x) = C/x* is a probability density for x = 1, find the
constant C and the probability that X < 2.

7 If you choose x completely at random between 0 and n,
what is the density p(x) and the cumulative density F{x)?

tJoe DiMaggio’s 56-game hitting streak was much more improbable—T think it is statistically

the most exceptional record in major sports.
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In 8123 find the me=n value i = X np, or p = [ xp(x) dx.
8pm=1/2,p=14,p,=1/4
9p=1Tp=1T, ..., p2 =17

10 p,=1/nte (po=1/e, py=1/e, p=1{2e, ...)

11 p(x)=2/a(l +x%), x20

12 p(x) =e"* (integrate by paris)

13 p(x)=ae™"* (integrate by parts)

14 Show by substitution that

o e dx= [2a {® e du= [J2no.

15 Find the cumulative probability F (the integral of p) in
Problems 11, 12, 13, In terms of F, what is the chance that a
randomn sample lies between a and &?

16 Can-De Airlines books 100 passengers when their plane
only holds 98. If the average number of no-shows is 2, what
is the Poisson probability that someone will be bumped?

17 The waiting time for a bus has probability density
(1/10)e™*'°, with g = 10 minutes. What is the probability of
waiting longer than 10 minutes?

18 You make a 3-minute telephone call. If the waiting time
for the next incoming call has p(x)=e™*, what is the prob-
ability that your phone will be busy?

19 Supernovas are expected about every 100 years. What is
the probability that you will be alive for the next one? Use a
Poisson model with 4 = .0t and estimate your lifetime. (Supet-
novas actually occurred in 1054 (Crab Nebula), 1572, 1604,
and 1987. But the future distribution doesn’t depend on the
date of the last one.)

20 {a} A fair coin comes up heads 10 times in a row, Will
heads or tails be more likely on the next toss?

(b) The fraction of heads after N tosses is x. The expected
fraction afer 2V tosses is .

2] Show that the area between u and u+ ¢ under the bell-
shaped curve is a fixed number (near 1/3), by substituting
y=_____

1

J‘nﬂr 1 -2t g -I‘ 1
X =
# o/ 2r o J2n

What is the area between g — o and u? The area outside
(H—o,p+a)

e~V dy.

22 For a yes-no poll of two voters, explain why
po=(1—p), pr=2p—2p°, py=p~.

Find u and &2. N voters give the “binomial distribution,”

23 Explain the last step in this reorganization of the formula
for o?:

0% = [ (x— p? p(x) dx = | (x% — 2xp + p?)p(x) dx
= x?plxy dx —2p | xp(x) dx + g [ p{x} dx
= x?p(x) dx — p*.
24 Use § (x — p)?p(x) dx and also | x?p(x) dx — u* to find o
for the wniform distribution: p{x)=1for 0 L x5 1.

25 Find o2 if p, = 1/3, p, = 1/3, p, = 1/3. Use E (n — p)*p, and

also I n?p, — u2.

26 Use Problem 23 and integration by parts (equation 7.1.10)
to find o2 for the exponential distribution p(x)=2e™>* for
x 2 0, which has mean .

27 The waiting time to your next car accident has probability
density p(x) =4e~*2. What is y? What is the probability of
no accident in the next four years?

28 With p=14, 1, 4, ..., find the average number u of coin
tosses by writing p, +2p;+3ps+ -+ as (pr+pa+pst+ )+
(P2+P3+pat -+ (Pa+patpst o)+ o

29 In a poll of 900 Americans, 30 are in favor of war. What
range can you give with 95% confidence for the percentage
of peaceful Americans?

30 Sketch rough graphs of p(x) for the fraction x of heads in
4 tosses of a fair coin, and in 16 tosses. The mean value is 4.

31 A judge tosses a coin 2500 times. How many heads does
it take to prove with 95% confidence that the coin is unfair?

32 Long-life bulbs shine an average of 2000 hours with stan-
dard deviation 150 hours. You can have 95% confidence that
your bulb will fail between and hours.

33 Grades have a normal distribution with mean 70 and stan-
dard deviation 10. If 300 students take the test and passing is
55, how many are expected to fMail? (Estimate from
Figure 8.12b.) What passing grade will fail 1/10 of the class?

34 The averape weight of luggage is 4 = 30 pounds with devi-
ation o = 8 pounds. What is the probability that the luggage
for 64 passengers exceeds 2000 pounds? How does the answer
change for 256 passengers and 8000 pounds?

35 A thousand people try independently to guess a number
between | and 1000. This is like a lottery.

(a) What is the chance that the first person fajis?
(b) What is the chance P, that they all fail?
{c) Explain why P, is approximately 1/e.
36 (a) In Problem 35, what is the chance that the first person
is right and all others are wrong?

(b} Show that the probability P, of exactly one winner is
also close to 1/e.

(¢) Guess the probability P, of n winners (fishy question),
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I 3.5 Masses and Moments TN

This chapter concludes with two sections related to engineering and physics. Each
application starts with a finite number of masses or forces. Their sum is the total
mass or total force. Then comes the *‘continuous case,” in which the mass is spread
out instead of lumped. Its distribution is given by a density function p (Greek rho),
and the sum changes to an integral.

The first step {hardest step?) is to get the physical quantities straight. Thc sccond
step 1s to move from sums to integrals (discrete to continuous, lumped to distributed).
By now we hardly stop to think about it—although this is the key idea of integral
calculus. The third step is to evaiuate the integrals. For that we can use substitution
or integration by parts or tables or a computer.

Figure 8.13 shows the one-dimensional case: masses along the x axis. The total
mass is the sum of the masses. The new idea is that of moments—when the mass or
force is multiplied by a distance:

moment of mass arcund the y axis = mx = (mass) times (distance to axis).

mass | M E AR +m,=M j'(,mc] B+ F, + F; =
[
: E
moment |, X H sy = My torguc Foog+Fan, b =FY

Fig. 8.13 The center of mass ts at ¥ = (total moment)/{total mass) = average distance.

The figure has masses 1. 3, 2. The total mass is 6. The “‘lever arms™ or “moment
arms” are the distances x =1, 3, 7. The masscs have moments 1 and 9 and 14 (since
mx is 2 times 7). The total moment is | + 9 + 14 = 24. Then the balance point is at
x=M_/M=24/6=4.

The total mass is the sum of the m’s. The total moment is the sum of m, times x,
{ncgative ¢n the other side of x =0). If the masses are children on a seesaw. the
balance point is the center of gravity x—aiso called the center of mass:

DEFINITION _ ¥ m,~, _ total moment
i Z m, total mass

(1

If all masses are moved to X, the total moment (6 times 4 is still 24. The moment
equals the mass X m, times X. The masses act like a single mass at x.

Also: If we move the axis to %. and leave the children where they are. the seesaw
balances. The masses on the left of x =4 wiil offset the mass on the right. Reason:
The distances to the new axis are x,, — . The moments add to zero by equation (I):

moment around new axis = Y m,{x,— )= m,x,— ) m,x=0.

Turn now to the continuous case. when mass is spread out along the line. Each
piece of length Ax has an average density p, = (mass of piece)/(length of picce) =
Am;Ax. As the pieces get shorter, this approaches dm;dx—the density at the point.
The Iimit of (small mass); (small length) is the density p(x).

Integrating that derivative p = dmidx, we recover the total mass:  p, Ax becomes

total mass M = | plx) dx. (2)

When the mass is spread evenly, p is constant. Then M = pL = density times length.
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The moment formula is similar. For each piece, the moment is mass p,Ax
multiplied by distance x—and we add. In the continuous limit, p(x) dx is multiplied
by x and we integrate:

total moment around y axis =M, = | xp(x) dx. (3)

Moment is mass times distance. Dividing by the total mass M gives “average
distance™

X ————— = T = 4
center of mass X — M [ plx) dx 4

Remark If you studied Section 8.4 on probability, you will notice how the formulas
match up. The mass | p(x) dx is like the total probability | p(x) dx. The moment
§ xp(x) dx is like the mean | xp(x) dx. The moment of inertia [ (x — x)?p(x) dx is the
variance. Mathematics keeps hammering away at the same basic ideas! The only
difference is that the total probability is always 1. The mean really corresponds to
the center of mass %, but in probability we didn’t notice the division by | p(x) dx = 1.

EXAMPLE 1 With constant density p from O to L, the mass is M = pL. The moment
is

L
M,=[¢ xp dx= 5px2:|0 =3pl*
The center of mass is x = M, /M = L/2. It is halfway along.

EXAMPLE2 With density e~ the mass is 1, the moment is 1, and % is 1:

s +]

{6 e ™= dx=|i-e_‘:|:=l and fo xe = dx=[—xe"‘—e_x]o =1,
MASSES AND MOMENTS IN TWO DIMENSIONS

Instead of placing masses along the x axis, suppose m, is at the point {x,, y,) in the
plane. Similarly m,_ is at (x,, y,). Now there are two moments to consider. Around the
y axis M, =Z m_x, and around the x axis M, = I m,y,. Please notice that the x's go
into the moment M,—because the x coordinate gives the distance from the y axis!

Around the x axis, the distance is y and the moment is M. The center of mass is
the point (x, 7) at which everything balances:

M, _ Y m,x,
M’ Z m,

In the continuous case these sums become two-dimensional integrals. The total
mass is [| p(x, y) dx dy, when the density is p = mass per unit area. These ‘“double
integrals™ are for the future (Section 14.1), Here we consider the most important case:
o = constant. Think of a thin plate, made of material with constant density (say
p = 1). To compute its mass and moments, the plate is cut into strips (Figure 8.14):

Ezm;!y,. . 6)

M
X = and f:ﬁ:

mass M = area of plate (6)
moment M, = ( (distance x} {length of vertical strip} dx W)
moment M, = [ (height y) (length of horizontal strip) dy. {8)
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4 4

centroid y=4-2x _ =Afr2_y2 =afr2_ 2
'f=2;3‘§,=4;3.> dy \\x=4—22 x==\fre-y =Nre-y
T centroid @ y

¥ {¥=4r/3n
de 2 2 -r 0 r

Fg.8.14 Plates cut into strips to compute masses and moments and centroids.

The mass equals the area because p = 1. For moments, ail points in a vertical strip
are the same distance from the y axis. That distance is x. The moment is x times area,
or x times length times dx—and the integral accounts for all strips.

Similarly the x-moment of a horizontal strip is y times strip length times dy.

EXAMPLE 3 A plate has sides x=0and y=0and y=4— 2x. Find M, M,, M,.
mass M =area = {} y dx={i (4—2x) dx = [4x—x2]3= 4.

The vertical strips go up to y = 4 — 2x, and the horizontal strips go out to x = 3(4 — y):

2 2 2 8
moment M, = x4-2x)dx=|2x"-=x*| ==

4] 3 q 3

4 1 l 4
moment Mx=J‘O y5@4-ydy= [yz—gy’}:?.

The “center of mass™ has X = M,/M =2/3 and jy = M,/M = 4/3. This is the centroid
of the triangle (and also the “‘center of gravity””), With p = 1 these terms all refer to
the same balance point (%, ¥). The plate will not tip over, if it rests on that point.
EXAMPLE4 Find M, and M, for the half-circle below x* + y* =72,

M, = 0 because the region is symmetric— Figure 8.14 balances on the y axis. In the
x-moment we integrate y times the length of a horizontal strip (notice the factor 2):

Mo=0, -2/ =y dy= - 307 - P2 [ =47
Divide by the mass (the area $rr?) to find the height of the centroid: j= M,/M =
4r{3n. This is less than 4r because the bottom of the semicircle is wider than the top.
MOMENT OF INERTIA
The moment of irertia comes from multiplying each mass by the square of its
distance from the axis. Around the y axis, the distance is x. Around the origin, tt is r:
I,=Xxm, and I,=Zylm, and I,=Zrim,.

Notice that I, + I, = I, because x} + y? =r}. In the continuous case we integrate,

The moment of inertia around the y axis is I, = || x*p(x, y) dx dy. With a constant
density p = 1, we again keep together the points on a strip. On a vertical strip they
share the same x. On a horizontal strip they share y:

I, = (x*) (vertical strip length) dx and I, = | (y?) (horizontal strip length) dy.
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In engineering and physics, it is rotation that leads to the moment of inertia. Look

at the energy of a mass m going around a circle of radius r. It has I, = mr?.

kinetic energy = $mp? = Im(rw)? = 11,0°. %

The angular velocity is w (radians per second). The speed is 4 = ro (meters per second).

An ice skater reduces [, by putting her arms up instead of out, She stays close to
the axis of rotation {r is small). Since her rotational energy +/,w? does not change,
« increases as I, decreases. Then she spins faster.

Another example: It takes force to turn a revolving door. More correctly, it takes
torgue. The force is multiplied by distance from the turning axis; T= Fx, so a push
further out 1s more effective.

To see the physics, replace Newton’s law F = ma = m dv/dt by its rotational form:
T=1dw/dt. Where F makes the mass move, the torque T makes it turn. Where m
measures unwillingness to change speed, ! measures unwillingness to change rotation,

EXAMPLE S Find the moment of inertia of a rod about (a) its end and (b) its center.

The distance x from the end of the rod goes from 0 fo L. The distance from the center
goes from — L/2 to L/2. Around the center, turning is easier because [ is smaller:

Ipa=fogx* dx=30% Lo =["2, x? dx=75L% (10)

dlf =y dm

):H:.\':chn

Pl

—
D

Fig. 8.15 Moment of inertia for rod and propeller. Rolling balls beat cylinders.

=_|:)_\ Zdx

— p_\':'f'(.\')d_r

MOMENT OF INERTIA EXPERIMENT

Experiment:  Roll a solid cylinder (a coin), a hollow cylinder (a ring}, a solid ball (a
marble). and a hollow ball (rot 2 pingpong ball) down a slope. Galileo dropped things
from the Leaning Tower—-this experiment requires a Leaning Table. Objects that fall
together from the tower don't roll together down the table.

Question 1 What is the order of finish? Record your prediction first!
Question 2 Does size make a difference if shape and density are the same?
Question 3 Does density make a difference if size and shape are the same?

Question 4 Find formulas for the velocity » and the finish time T.

To compute v, the key is that potential energy plus kinetic energy is practically
constant. Energy loss from roliing friction is very small, If the mass is m and the
vertical drop is , the energy at the top (all potential) is mgh. The energy at the bottom
{all kinetic) has two parts: jmu? from movement along the plane plus 1fw? from
turning. Important fact: v = wr for a rolling cylinder or bali of radius r.
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Equate energies and set w = v/r:

1 1 1 I
mgh=jmvz+§1w2=imv2(l+w) (11
The ratio 1/mr? is critical. Call it J and solve (11) for v*:
2gh
= " f 7 (smaller J means larger velocity). [ PA]

The order of J's, for different shapes and sizes, should decide the race. Apparently
the density doesn’t matter, because it is a factor in both  and m—so it cancels in

J=1I/mr". A hollow cylinder has J = 1, which is the largest possible

all its mass is

at the full distance r from the axis. So the holiow cylindcr should theoretically come
in last. This experiment was developed by Daniel Drucker.

Problems 35--37 find the other three J's. Problem 40 finds the time T by integration.
Your experiment will show how close this comes to the measured time.

8.5 EXERCISES

Read-through questions

If masscs m, are at distances x,,, the total massis M = _ @
The total moment around x =0is M, = _b  The center of
mass is at X = __ ¢ In the continuous case, the mass distri-
bution is given by the _ d  g{x). The total mass is M =

e and the center of mass ts at x=_ ! . With p=x,
the inteprals from 0 to L give M=_ 9  and jxp{_\-} dx =

" and ¥=_ 1 . The total moment is the same if the
whole mass M is placed at __ |

In a plane, with masses m, at the points (x,. 1,} the moment
around the y axis is __k . The center of mass has ¥ = __|
and f=__m__ For a plate with density p = [, the mass M
equals the __n . [f the plate is divided into vertical strips of
height y(x), then M =| p{x)dx and M,=[_© dx. Fora

square plate 0=y, y £ L, the mass is M=_ 0  and the
moment around the y axisis M, =_ a . The center of mass
lsat(%. f)=_r . This point is the _ 5 | where the plate
balances.

A mass m at a distance x from the axis has moment of
inertia T=_t . Arodwithp=1{tomx=atox=>~has
f,=_4 _ Fora plate with p =1 and strips of height jix),
this becomes !_‘_=j v . The torque T is _ ¥ _ times

X

Compute the mass M along the x axis, the moment M around
x =0, and the center of mass X = M ;M.

I m=2atx, =1, m=4at x,=2
2m=3atx=0,1,2,6
Yp=Ifor —1€x<3

4 p=x2 for 0= x5 1.

Sp=1for0gx<l,p=2forIlgxg?2

6 p=sinxforlgx<n

Find the mass M. the moments A, and A, . and the center of
mass (X, ¥).

7 Unit masses at (x. )= (1,0}, (0, 1), and {1, 1)
8m=lat(l,, my=4ati0 1)
9 p=T7inthesquare0sxg [, 0yl

10 p = 3 in the triangle with vertices (0, O, (a, O}, and (0, b).

Find the area M and the centroid (%, ¥} inside curves 1i-16.
1 oy= V-"{I——,\'E. =0, x =0 (quarter-circle)

12 y=x.v=2 x,y=0 (triangle)

13 y=¢" 2% y =0, x=0 (infinite dagger)

14 y=x? y=x (lens)

15 2+ vi= 1, 53+ P =4 (ring)

16 x2+ 12 =1, x*+y'=4, y=0 (hall-ring}.

Yerify these engineering formulas for [, with p = [:

17 Reclangle bounded by x=0. x=a, y=0, v=#h
{,=a%hi3
18 Square bounded by x=—4a, x=1a, y=—1ta, v=1ia
I, =a*12

19 Triangle bounded by x=0. y=0, x+y=a [, =4a%12

20 Disk of radius « centered at x =y =0 [, = na*/4.
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21 The moment of inertia around the point x =1t of a rod
with density p(x) is I = [ (x — t)?p(x) dx. Expand (x —t)* and
I into three terms. Show that dI/dt =0 when t=x. The
moment of inertia is smallest around the center of mass.

22 A region has x=0 if M,= [ x(height of strip)dx=0.
The moment of inertia about any other axis x=c¢ is
I={(x—c)*(height of strip)dx. Show that I=1I,+
(area)(c?). This is the parallel axis theorem: I is smallest
around the balancing axis ¢ = 0.

23 (With thanks to Trivial Pursuit) In what state is the center
of gravity of the United States—the “‘geographical center” or
centroid?

24 Pappus (an ancient Greek) noticed that the volume is
V= _f 2my(strip width) dy = 2nM, = 2ayM

when a region of area M is revolved around the x axis. In the
first step the solid was cut into

e

]
1
!

-

Eir_\_-\
-

. volume 2ty M

25 Use this theorem of Pappus to find the volume of a torus.
Revolve a disk of radius a whose center is at height j=b > a.

26 Rotate the triangle of Example 3 around the x axis and
find the volume of the resulting cone—first from V = 2nyM,
second from 4nr?h,

27 Find M, and M, for a thin wire along the semicircle
y=./1—x* Take p=1so M =length = .

28 A second theorem of Pappus gives A = 2nyL as the surface
area when a wire of length L is rotated around the x axis.
Verify his formula for a horizontal wire along y=3 (x=0
to x = L) and a vertical wire (y=1to y=L+ 1).

length L

ren rdr) !

29 The surface area of a sphereis A =4n whenr=1.5S0 4 =

2nyL leads to y= for the semicircular wire in
Problem 27.

30 Rotating y=mx around the x axis between x=0 and
x =1 produces the surface area 4 =

31 Put a mass m at the point (x,0). Around the origin the
torque from gravity is the force mg times the distance x. This
equals g times the mx.

32 If ten equal forces F are alternately down and up at
x=1,2,...,10, what is their torque?

33 The solar system has nine masses m, at distances r, with
angular velocities w,. What is the moment of inertia around
the sun? What is the rotational energy? What is the torque
provided by the sun?

34 The disk x* + y* <a® has I = [ r*2ar dr =4na*. Why is
this different from [, in Problem 20? Find the radius of

gyration ¥=./Iy/M. (The rotational energy }l,w* equals
4 Mr?w?—when the whole mass is turning at radius 7.)

Questions 35-42 come from the moment of inertia experiment.

35 A solid cylinder of radius r is assembled from hollow cylin-
ders of length [, radius x, and volume (2nx)(/)(dx). The solid
cylinder has

mass M = [ 2nxlp dx and = [, x*2nxlp dx.
With p=7 find M and I and J = I/ Mr2.
36 Problem 14.4.40 finds J =2/5 for a solid ball. It is less

than J for a solid cylinder because the mass of the ball is
more concentrated near

37 Problem 14.4.39 finds J =14 (7 sin® ¢ dop = fora
hollow ball. The four rolling objects finish in the order

38 By varying the density of the ball how could you make it
roll faster than any of these shapes?

39 Answer Question 2 about the experiment.

40 For a vertical drop of y, equation (12) gives the velocity
along the plane: v?=2gy/(1+J). Thus v=cy"? for ¢=
. The vertical velocity is dy/dt = v sin a:
dy/dt=cy'?sina and [y "2dy={csin« dt.
Integrate to find y(tr). Show that the bottom is reached
(y=h) at time T= 2ﬁjc sin o,
41 What is the theoretical ratio of the four finishing times?

42 True or false:
(a) Basketballs roll downhill faster than baseballs.
(b) The center of mass is always at the centroid.
(c) By putting your arms up you reduce I, and I,.

(d) The center of mass of a high jumper goes over the bar
(on successful jumps).
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I 5.6 Force, Work, and Energy TN

Chapter 1 introduced derivatives df /dt and df /dx. The independent variable could be
t or x. For velocity it was natural to use the letter t. This section is about two
important physical quantities—force and werk—for which x is the right choice.

The basic formula is W= Fx. Work equals force times distance moved (distance in
the direction of F). With a force of 100 pounds on a car that moves 20 feet, the work
is 2000 foot-pounds. If the car is roiling forward and you are pushing backward, the
work is —2000 foot-pounds. If your foree is only 80 pounds and the car doesn’t
move, the work is zero. In these examples the force is constant.

W = Fx is completely parallel to f=vt. When v is constant, we only need multi-
plication. It is a changing velocity that requires calculus. The integral | o(¢) dr adds
up small multiplications over short times. For a changing force, we add up small
pieces of work F dx over short distances:

W=Fx (constant force) W= I F(x) dx (changing force).

In the first case we lift a suitcase weighing F = 30 pounds up x = 20 feet of stairs.
The work is W = 600 foot-pounds. The suitcase doesn't get heavier as we go up—it
only seems that way. Actually it gets lighter (we study gravity below).

In the second case we stretch a spring, which needs more force as x increases.
Hooke's law says that F(x) = kx. The force is proportional to the stretching distance x.
Starting from x =0, the work increases with the sguare of x:

F=kx  and W= 3 kx dx=3kx?. (n

In metric units the force is measured in Newtons and the distance in meters. The unit
of work is a Newton-meter (a joule). The 600 foot-pounds for an American suitcase
wouid have been about 800 joules in France,

EXAMPLE 1 Suppose a force of F = 20 pounds stretches a spring 1 foot.
{(a) Find k. The elastic constant is k = F/x = 20 pounds per foot.
{b) Find W. The work is $kx? =}-20+ 12 = 10 foot-pounds.
(c) Find x when F = —10 pounds. This is compression not stretching: x = — § foot.

Compressing the same spring through the same distance requires the same work. For
compression x and F are negative. But the work W= 1kx? is still positive. Please
note that W does not equal kx times x! That is the whole point of variable force
(change Fx to | F(x)dx).

May [ add another important quantity from physics? It comes from looking at the
situation from the viewpoint of the spring. In its natural position, the spring rests
comfortably. It feels no strain and has no energy. Tension or compression gives it
potential energy. More stretching or more compression means more energy. The
change in energy equals the work. The potential energy of the suitcase increases by
600 foot-pounds, when it is lifted 20 feet.

Write V(x) for the potential energy. Here x is the height of the suitcase or the
extension of the spring. In moving from x = a to x = b, work = increase in potential.

W=, F(x) dx = V(b)~ V{a). 2

This is absolutely beautiful. The work W is the definite integral. The potential V is
the indefinite imtegral. If we carry the suitcase up the stairs and back down, our total
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work is zero. We may feel tired, but the trip down should have given back our energy.
(It was in the suitcase.) Starting with a spring that is compressed one foot, and ending
with the spring extended one foot, again we have donc no work. V = 3kx? is the same
for x=—1 and x = 1. But an extension from x =1 to x =3 requires work:

W = change in V = 1k(3)* — 1k(1)*.

Indefinite integrals ike ¥ come with a property that we know well. They include
an arbitrary constant C. The corrcct potential is not simply $kx?, it is 1kx?+ C. To
compute a change in potential, we don’t need C. The constant cancels. But to deter-
mine V itself, we have to choose C. By fixing V=0 at one point, the potential
is determined at all other points. A common choice is ¥ ={ at x= 0. Sometimes
V=0 at x = o« {for gravity). Electric fields can be “grounded™ at any point.

There is another connection between the potential V and the force F. According
10 (2), V is the indefinite integral of F. Therefore F(x) is the derivative of V{x). The
fundamental theorem of calculus is also fundamental to physics:

force exerted on spring: F=  dV/dx (3a)
force exerted by spring: F = — dV/dx (3b)

Those lines say the same thing. One is our force pulling on the spring, the other 1s
the “restoring force” pulling back. (3a) and (3b) are a warning that the sign of F
depends on the point of view. Electrical engineers and physicists use the minus sign.
In mechanics the plus sign is more common. 1t is one of the ironies of fate that
F =V, while distance and velocity have those letters reversed: v = f*. Note the change
to capital letters and the change to x.

] . OMm O
E " T X /
—_ F=ly Ty I% : Motion
¥ =k * N omx"=-fx

— (M ¥
éW=%k.\'2 | F= "2'” S -

Fg. 8.16 Stretched spring; suitcase 20 feet up; moon of mass m; oscillating spring.

EXAMPLE 2  Newton’s law of gravitation {inverse square law);
force to overcome gravity = GMm/x? force exerted by gravity = — GMm/x>

An engine pushes a rocket forward. Gravity pulls 1t back. The gravitational constant
is G and the Earth’s mass is M. The mass of the rocket or satellite or suitcase is m,
and the potential is the indefinite integral:

Vix)= [ F(x) dx= - GMm{x + C. (4)

Usually C = 0, which makes the potential zero at x = .

Remark When carrying the suitcase upstairs, x changed by 20 feet. The weight was
regarded as constant—which it nearly is. But an exact calculation of work uses the
integral of F(x), not just the muitiplication 30 times 20. The serious difference comes
when the suitcase is carried to x = oc. With constant force that requires infinite work.
With the correct (decreasing) force, the work cquals V at infinity (which is zero) minus
V at the pickup point x,. The change in V is W= GMm/x,.

343



344

8 Applications of the integral

KINETIC ENERGY

This optional paragraph carries the physics one step further. Suppose you releasc the
spring or drop the suitcase. The external foree changes to F = 0. But the internal
force still acts on the spring, and gravity still acts on the suitcase. They both start
moving. The potential energy of the suitcase is converted to kinetic energy, until it
hits the bottom of the stairs.

Time enters the problem, either through Newton’s law or Einstein’s:

(Newton) F=ma=m d—l (Einstein) ['= i (mer). (3)
dt dt
Here we stay with Newton, and pretend the mass is constant. Exercise 21 follows
Einstein; the mass increases with velocity. There m =my/./1 — v/c* goes to infinity
as v approaches ¢, the speed of hght. That correction comes from the theory of
relativity, and is not needed for suitcascs.
What happens as the suitcase falls? From x = a at the top of the stairs to x=b at
the bottom, potential energy is lost. But kinetic energy mw? is gained, as we see from
integrating Newton’s law:

force Fm=mif o g dodx_ dv
R ™

b Pode 1, 1,
work Fdx= mvd— dx = Emv (b — Emv (). (6)

a X

k]

This same force F is given by —dV/dx. So the work 1s also the change in V:

b ™h
work j F dx=J (— %) dx = - Vib) + V{a). (7)

Since (6) = (7), the total energy $mv® + V (kinetic plus potential) is constant:
smed(h) + Viby = dmria)+ Via). (8)

This is the law of conservation of energy. The total cnergy is conscrved.

EXAMPLE 3 Attach a mass m to the end of a stretched spring and let go. The spring’s
energy V = 1kx? is gradually converted to kinetic energy of the mass. At x =0 the
change to kinetic encrgy is complete: the original $kx* has become $me?. Beyond
x = 0 the potential energy increases, the force reverses sign and pulls back, and kinctic
energy 1s lost. Eventually all energy is potential —when the mass reaches the other
extreme. [t is simple harmonic motion, exactly as in Chapter ! {where the mass was
the shadow of a circling ball). The equation of motion 15 the staterment that the rare
of change of energy is zero (and we cancel v = dx/dt):

S U i dx 1% x

(% (E met k.\") = rm‘% + kx o 0 or m :,t"g' +kx =0 9)
That is F = mua in disguise. For a spring, the solution x = cos ./ k/m1 will be found
in this book. For more complicated structures, engineers spend a billion dotlars a
year computing the solution.
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PRESSURE AND HYDROSTATIC FORCE

Our forces have been concentrated at a single points. That is not the case for pressure.
A fluid exerts a force all over the base and sides of its container. Suppose a water
tank or swimming pool has constant depth h (in meters or feet). The water has weight-
density w ~ 9800 N/m?® ~ 62 1b/ft*. On the base, the pressure is w times h. The force
is wh times the base area A:

F = whA (pounds or Newtons)  p= F/A = wh (Ib/ft?> or N/m?). (10)

Thus pressure is force per unit area. Here p and F are computed by multiplication,
because the depth h is constant. Pressure is proportional to depth (as divers know).
Down the side wall, h varies and we need calculus.

The pressure on the side is still wh—the same in all directions. We divide the side
into horizontal strips of thickness Ah. Geometry gives the length I(h) at depth h
(Figure 8.17). The area of a strip is I(h) Ah. The pressure wh is nearly constant on the
strip—the depth only changes by Ah. The force on the strip is AF = whiAh. Adding
those forces, and narrowing the strips so that Ah — 0, the total force approaches an
integral:

total force F = | whi(h) dh (11)

=60

h=0
\ 1(h) /
éh\ /
y/ length [=2nr h=20

area A =2 [=50
pressure p =wh

Fig. 8.17 Water tank and dam: length of side strip = [, area of layer = A.

EXAMPLE 4 Find the total force on the trapezoidal dam in Figure 8.17.

The side length is [ = 60 when h= 0. The depth h increases from 0 to 20. The main
problem is to find [ at an in-between depth h. With straight sides the relation is
linear: [= 60+ ch. We choose ¢ to give |=50 when h=20. Then 50 = 60 + ¢(20)
yields ¢ = — 1.

The total force is the integral of whi. So substitute [ = 60 — %h:

F = [2° wh(60 — 3h) dh= [ 30wh? — Swh® |3° = 12000w — 4(8000w).

With distance in feet and w= 62 Ib/ft, F is in pounds. With distance in meters and
w = 9800 N/m?, the force is in Newtons.

Note that (weight-density w)= (mass-density p) times (g) = (1000)(9.8). These SI
units were chosen to make the density of water at 0°C exactly p = 1000 kg/m?>.

EXAMPLE 5 Find the work to pump water out of a tank. The area at depth h is A(h).

Imagine lifting out one layer of water at a time. The layer weighs wA(h) Ah. The
work to lift it to the top is its weight times the distance h, or whA(h) Ah. The work
to empty the whole tank is the integral:

W= ', whA(h) dh. (12)
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Suppose the tank is the bottom half of a sphere of radius R. The cross-sectional area
at depth his A =n(R? ~ k). Then the work is the integral (12) from O to R. [t equals

W= nwR*/4.

Units: w = force/(distance)® times R* = (distance)* gives work W = (force}(distance).

8.6 EXERCISES

Read-through questions

Work equals __a  times _ b . For a spring the force is
F=__c__,proporiional to the extension x (thisis __d__law),

With this variable force, the work in stretching from 0 to x is

W={_e =_t . Thisequals the increase in the _g
energy V. Thus Wis a _ h_ integral and V is the corre-
sponding __ 1 integral, which includes an arbitrary _ j .

The derivative dV/dx equals __k . The force of gravity is
F=_1 andthe potentialis V=__m

In falling, V is converted to __n

energy K=_o . The

total energy KX + V is __p  (this is the law of _q  when
there is no external force).

Pressure is force per unit __r . Water of density w in
a pool of depth h and area A exerts a downward force
F=_ on the base. The pressurc is p=__1 . On the
sides the _u__ is still wh at depth k, so the total force is
§ whi dk, where [is __v . In a cubic pool of side s, the force
on the base is F=__w _, the length around the sides is
f=_ x_, and the total force on the four sidesis F= _y .
The werk te pump the water out of the pool is

W= [whddh=_1

1 (a) Find the work W when a constant force F = 12 pounds
moves an object from x = .9 feet to x = 1.1 feet.

(t) Compute W by integration when the force F = 12/x?
varies with x.

2 A 12-inch spring is stretched to 15 inches by a force of 75
pounds.
{(a) What is the spring constant k in pounds per foot?
{b) Find the work done in stretching the spring.
{c) Find the work to stretch it 3 more inches.

3 A shock-absorber is compressed ! inch by a weight of 1
ton. Find its spring constant & in pounds per foot. What
potential energy is stored in the shock-absorber?

4 A force F = 20x — x? stretches a nonlinear spring by x.
(a} What work is required to siretch it from x =0 to
x =27
{b) What is its potential energy V at x =2, if ¥{0) =357
(c) What is k= dF/dx for a small additional stretch at
x=27

§ (a) A 120-1b person makes a scale go down x inches. How
much work is done?

{b) If the same person goes x inches down the stairs, how
much potential energy is lost?

6 A rocket burns its 100 kg of fuel at a steady rate to reach
a height of 25 km.

(a} Find the weight of fuel left at height h.
(b} How much work is done lifting fuel?

7 Integrate to find the work in winding up a hanging cable
of length 100 feet and weight density 5 Ib/ft. How much addi-
tional work is caused by a 200-pound weight hanging at the
end of the cable?

§ The great pyramid (height 500'—you can see it from
Cairo) has a square base 800° by B00'. Find the area A4 at
height k. If the rock weighs w == 100 Ib/ft*, approximately how
much work did it take to lift all the rock?

9 The force of gravity on a mass m is F = — GMm/x2. With
G==6+10"'" and Earth mass M =6-10%* and rocket mass
m = 1000, compute the work to lift the rocket lrom x = 6400
to x = 6500. (The units are kgs and kms and Newtons, giving
work in Newton-kms.)

10 The approximate work to lift a 30-pound suitcase 20 feet
is 600 foot-pounds, The exact work is the change in the poten-
tial ¥ =—GmM/x. Show that AV is 600 times a correction
factor R%/(R? — 10%), when x changes from R — 10 to R + 10.
(This factor is practically 1, when R = radius of the Earth.)

11 Find the work to lift the rocket in Problem 9 from
x=6400 out 1o x=oo. If this work equals the original
kinetic energy 3mu?, what was the orginal v (the escape
velocity)?

12 The kinetic energy +my® of a rocket is converted into
potential energy — GMm/x. Starting from the Earth’s radius
x = R, what x docs the rocket reach? If it reaches x = oo show
that v =,/2GM/R. This escape velocity is 25,000 miles per
hour.

13 It takes 20 foot-pounds of work to stretch a spring 2 feet.
How much work to stretch it one more foot?

' 14 A barrel full of beer is 4 feet high with a | foot radius and

an opening at the bottom. How much potential energy is lost
by the beer as it comes out of the barrel?
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15 A rectangular dam is 40 feet high and 60 feet wide. Com-
pute the total side force F on the dam when  (a) the water is
at the top (b) the water level is halfway up.

16 A triangular dam has an 80-meter base at a depth of 30
meters. If water covers the triangle, find

{a) the pressure at depth k
(b} the length ! of the dam at depth &
{c} the total force on the dam.

17 A cylinder of depth H and cross-sectional area A stands
full of water (density w). (a} Compute the work W = | wAh dh
to lift all the water to the top. (b) Check the units of W.
(c) What is the work W if the cylinder is only half full?

18 In Problem 17, compute W in both cases if H =20 feet,
w = 62 Ib/ft3, and the base is a circle of radius r = 5 feet.

19 How much work is required to pump out a swimming
pool, if the area of the base is 800 square feet, the water is 4
feet deep, and the top is one foot above the water level?

20 For a cone-shaped tank the cross-sectional area increases
with depth: A =mr?h*/ H2. Show that the work to empty it is
half the work for a cylinder with the same height and base.
What is the ratio of volumes of water?

21 In relativity the mass is m = mqy/./ 1 — v2/c%. Find the cor-
rection factor in Newton’s equation F = mga to give Einstein’s
equation F = d(mv}/dt = (d(mv)/dv){dv/dt) = mpa.

22 Estimate the depth of the Titanic, the pressure at that
depth, and the force on a cabin door. Why doesn’t every door
collapse at the bottom of the Auantic Qcean?

23 A swimming pool is 4 meters wide, 10 meters long, and 2
meters deep, Find the weight of the water and the total force
on the bottom.

24 Tl the pool in Problem 23 has a shallow end only one
meter deep, what fraction of the water is saved? Draw a cross-
section (a trapezoid} and show the direction of force on the
sides and the sloping bottom.

25 In what ways is work like a definite integral and energy
like an indefinite integral? Their derivative is the
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CHAPTER ¢

Polar Coordinates and Complex
Numbers

N 5.1 Polar Coordinates NS

Up to now, points have been located by their x and y coordinates. But if you were
a flight controller, and a plane appeared on the screen, you would not give its
position that way. Instead of x and y, you would read off the direction of the plane
and its distance. The direction is given by an angle §. The distance is given by a
positive number r. Those are the polar coordinates of the point, where x and y are
the rectangular coordinates.

The angle 8 is measured from the horizontal. Suppose the distance is 2 and the
direction is 30° or n/6 (degrees preferred by flight controllers, radians by mathemati-
cians). A pilot looking along the x axis would give the plane’s direction as **i1
o’clock.” This totally destroys our system of units, by measuring direction in hours.
But the angle and the distance locate the plane.

How far to a landing strip at r = 1 and 8 = — =/2? For that question polar coordi-
nates are not good. They are perfect for distance from the origin {which equals r),
but for most other distances I would switch to x and y. It is extremely simple to
determine x and y from r and 8, and we will do it constantly. The most used formulas
in this chapter come from Figure 9.1—where the right triangle has angle # and
hypotenuse r. The sides of that triangle are x and y:

x=rcosf and y=rsin 8. (1}

The point at r=2, 8=n=n/6 has x=2cos(n/6) and y= 2sin(x/6). The cosine of
n/6 is ﬂ/Z and the sine is 4. So x= ﬁ and y=1. Polar coordinates convert
easily to xy coordinates—now we go the other way.

Always x>+ y*=r%. In this example (,/3)*+ (1) =(2)>. Pythagoras produces
r from x and y. The direction 8 is also available, but the formula is not so beautiful:

r=Jx*+y’ and tan9=§ and (almost) 8=tan“‘£. @)

348 Our point has y/x = I/ﬁ. One angle with this tangent is § = tan ™! (l{'ﬁ) = n/6.
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r r=2 S

y=rsinB y=1 e 435°
A n/’6\ ", \ )

x=rcosf x=vy3 8=-45°=—n/4

Lr=¥2MB=(1,-1)

Ag. 9.4 Polar coordinates r, # and rectangular coordinetes x=rcos 8, y=rsinf,

EXAMPLE 1 Point B in Figure 9.1c is at a negative angle 8 = —=/4. The x coordinate
rcos(—n/4) is the same as rcos m/4 (the cosine is even). But the y coordinate
r sin(— x/4) is negative. Computing r and & from x=1 and y=1, the distance is
r=/1+1andtan8is —1/1.

Warning To any angle 8 we can add or subtract 2z—which goes a full 360° circle
and keeps the same direction. Thus — /4 or —45° is the same angle as 7n/4 or 315°.
So is 15%/4 or 675°,

If we add or subtract 180°, the tangent doesn’t change. The point (1, —1) is on the
—45° line at r = \/5. The point (—1, 1) is on the 135° line also with r= \/5. Both
have tan 8 = — 1. We had to write “almost” in equation (2), because a point has many
#’s and two points have the same r and tan 6.

Even worse, we could say that B= (1, —1) is on the 135° line but at a negative
distance r = — \/5. A negative r carries the point backward along the 135° line, which
is forward to B. In giving the position of B, I would always keep r > 0. But in drawing
the graph of a polar equation, r < 0 is allowed. We move now to those graphs.

THE CIRCLE r=cos 8

The basis for Chapters 1-8 was y = f(x). The key to this chapter is r = F(8). That is
a relation between the polar coordinates, and the points satisfying an equation like
r= cos 8 produce a polar graph.

It is not obvious why r=cos # gives a circle. The equations r=cos 28 and
r=cos’@ and r= 1 + cos 8 produce entirely different graphs—not circles. The direct
approach is to take 8 = 0°, 30°, 60°, ... and go out the distance r = cos & on each ray.
The points are marked in Figure 9.2a, and connected into a curve. It seems to be a
circie of radius 4, with its center at the point (, 0). We have to be able to show
mathematically that r = cos @ represents a shifted circle.

One point must be mentioned. The angles from O to = give the whole circle. The
number r = cos & becomes negative after n/2, and we go backwards along each ray.

¥=cos 8 £
£y
(:0501=l A ;: i%smr
_I -
cost=-1 o % %905; r=sin@
r=20 2]

FAg. 9.2 The circle » =cos § and the switch to x and y. The circle r = sin 8.

349
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At 8= (to the legft of the origin) the cosine is —1. Going backwards brings us to
the same point as #=0 and r = + 1—which completes the circle.

When & continues from n to 2x we go around again. The polar equation gives the
circle twice. {Or more times, when 8 continues past 2n.) If you don’t like negative r's
and multiple circles, restrict 8 to the range from —n/2 to #/2. We still have to see
why the graph of r=cos 8 is a circle.

Method1 Muitiply by r and convert to rectangular coordinates x and y:
r=cosf = ri=rcosf = x*+y*=x. )

This is a circle because of x* + 2. From rewriting as (x — 4)* + y? = (})* we recognize
its center and radius. Center at x =% and y = 0; radius }. Done.

Methad2 Write x and y separately as functions of 8. Then @ is a “parameter™:
x=rcosf0=cos’@ and y=rsin8=sin0dcosé. (4

These are not polar equations but parametric equations. The parameter 8 is the angle,
but it could be the time—the curve would be the same. Chapter 12 studies parametric
equations in detail—here we stay with the circle.

To find the circle, square x and y and add. This produces x? + y* = x in Problem 26.
But here we do something new: Start with the circle and find equation (4). In case you
don’t reach Chapter 12, the idea is this. Add the vectors OC to the center and CP
out the radius:

The point P in Figure 9.2 has (x, yy=0C+ CP=({},0)+ (4 cos ¢, § sin ¢).

The parameter ¢ is the angle at the center of the circle. The equations are
x=%3+4cost and y=1%sint. A trigonometric person sees a double angle and sets
t = 28. The result is equation {4) for the circle:

x=3+4cos20=cos?0) and y=1sin 20 =sin 8 cos 6. (5)

This step rediscovers a basic theorem of geometry: The angle t at the center is twice
the angle 8 at the circumference. End of quick introduction to parameters,

A second circle is r=sin 8, drawn in Figure 9.2¢. A third circle is r = cos # + sin 4,
not drawn. Problem 27 asks you to find its xy equation and its radius. All calculations
g0 back to x=rcos 8 and y = r sin §—the basic facts of polar coordinates! The last
exercise shows a parametric equation with beautiful graphs, because it may be pos-
sible to draw them now. Then the next section concentrates on r = F(#)—and goes
far beyond circles.

9.1 EXERCISES

Read-throngh questions

Polar coordinates r and 8 correspondto x=_a and y=
_b

. The points with > 0 and 0 =x are located _ ¢
The points with r=1 and 0 < # € are located _g . Re-
versing the sign of # moves the point (x, y) to __e

top point is at #=_ n__, which gives r=

Given x and y, the polar distanceisr=__t . The tangent t 0
of@#is_g . Thepoint {5, 8 hasr=_n__andd=_1

Another point with the same 0 is __] . Another point with
the same r is

18 i

k. Another point with the same r and tan #

The polar equation r = cos & produces a shifted

goes from O to 2m, we go __p  times around the graph.
Rewriting as > = r cos 0 leads to the xp equation _ g . Sub-
stituting r = cos 0 into x = r cos 8 yields x =

larty p=__= . In this form x and y are functions of the

Find the polar coordinates r 2 0 and 0 < ¢ < 2x of these points,

1 {x, y}=1(0, 1} 2 (x, ))=(—4,0)
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4 (5, 3)=(-1,3
6 (x. »)=0,4)

3 {I, }'} = ('\/5’ '\/i)

S§xy=L -1

Find rectangular coordinates (x, y) from polar coordinates.
7 0)=(2 /2 8 (r, 8)=(1, 3n/2)

9 9}=(\/ﬁ, n/4) 10 {r, &)= (3=, 3m)

11 {r, 0)=(2, —n{6) 12 {r, B)=(2, 5=/6)

13 What is the distance from (x, y} = (ﬁ, N to(l, —ﬂ)?
14 How far is the point r =3, 8 = /2 from r=4, § =«?

15 How far is (x, y) =(r cos 0, r sin 8} from (X, Y) =(R cos ¢,
R sin ¢)? Simplify (x — X)? +(y — ¥)? by using cos{(f — ¢)=
cos 0 cos ¢ + sin § sin ¢.
16 Find a second set of polar coordinates (a different r or 8)
for the points
(r! 6) = (_ Is Efz)s (_ ls 3”;4}r (1’ _KIZ}; (0’ 0)‘

17 Using polar coordinates describe (a) the half-plane x> 0;
(b) the half-plane y <0; {c) the ring with x? + y? between 4
and 5; (d) the wedge x 2 |y|.
18 True or false, with a reason or an example;

{a) Changing to —r and —# produces the same point.

(b} Each point has only one r and 8, when r <0 is not
allowed.

(c) The graph of r = 1/sin @ is a straight line.
19 From x and 6 find y and r.

20 Which other point has the same r and tan § as x = /3,
y=1in Figure 9.1b?

21 Convert from rectangular to polar equations:
@y=x (Bx+p=1 (@x?+y*=x+y

22 Show that the triangle with vertices at {0, 0), (r,, £,), and
{rz,0;) has area A=14r;r,sin(f, —0,). Find the base and
height assuming 0 <8, <6, <n.

Problems 2328 are about polar equations that give circles.
23 Convert r=sin 0 into an xy equation. Multiply first by r.

9.2 Polar Equations and Graphs

24 Graphr =sin8at=0° 30°, 60°, ..., 360°. These thirleen
values of 0 give diflerent points on the graph. What
range of &'s goes once around the cirele?

25 Substitute r =sin 8 into x = r cos # and y = r sin # to find
x and y in terms of the parameter 0. Then compute x2 + y?
to reach the xy equation,

26 From the parametric equations x=cos’f and y=
sinfcos # in (4), recover the xy equation. Square, add,
eliminate 6.

27 (a} Multiply r =cos 8 + sin # by r to convert into an xy
equation, {b) Rewrite the equation as (x —4)? +(y —4)? = R?
to find the radius R. (c) Draw the graph.

28 Find the radius of r = g cos & + b sin 8. (Multiply by r.)

29 Convert x+y=1 inte an rf equation and solve for r.
Then substitute this r into x=rcos 8 and y =r sin # to find
parametric equations for the line,

3 The equations x =cos®# and y—sin*@ also lead to
x+y=1—but they are diflerent from the answer to
Problem 29. Explanation: § is no longer the polar angle and
we should have written ¢. Find a point x = cos?8, y =sin*@
that is not at the angle 8,

31 Convert r =cos’d into an xy equation (of sixth degree?)

32 If you have a graphics package for parametric curves,
graph some hypocycloids. The ecquations are x=
(1 —B)cos t + b cos(1 — bt/h, y = (1 — blsin £ — b sin(1 — bje/b.
The figure shows b = and pari of b = 31831,

The most important equation in polar coordinates, by far, is » = 1. The angle 0 does
not even appear. The equation looks too easy, but that is the point! The graph is a
circle around the origin (the unit circle). Compare with the line x = 1. More important,

compare the simplicity of » = 1 with the complexity of y= +

/1 — x2. Circles are so

common in applications that they created the need for polar coordinates.
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This section studies polar curves r = F(f). The cardioid is a sentimental favorite—
maybe parabolas are more practical. The cardioid is r =1+ cos 6, the parabola is
r=1/1+ cos 8}. Section 12.2 adds cycloids and astroids. A graphics package can
draw them and so can we.

Together with the circles r = constant go the straight lines # = constant. The equa-
tion € = n/4 is a ray out from the origin, at that fixed angle, If we allow r <0, as we
do in drawing graphs, the one-directional ray changes to a full line. Important: The
circles are perpendicular to the rays. We have “orthogonal coordinates” —more inter-
esting than the x — p grid of perpendicular lines. In principle x could be mixed with
0 (non-orthogonal), but in practice that never happens.

Other curves are attractive in polar coordinates—we look first at five examples.
Sometimes we switch back to x =rcos # and y = rsin f, to recognize the graph.

EXAMPLE 4 The graph of r = 1/cos 8 is the straight line x = 1 (because r cos # = 1).

EXAMPLE 2 The graph of r= cos 28 is the four-petal flower in Figure 9.3.

The points at # = 30° and — 30° and 150° and —150° are marked on the flower. They
all have r=cos 20 = 4. There are three important symmetries—across the x axis,
across the y axis, and through the origin. This four-petal curve has them ail. So does
the vertical flower r = sin 20— but surprisingly, the tests it passes are different.

(Across the x axis: y to —y) There are two ways to cross. First, change 8 to — 8.
The equation r = cos 20 stays the same. Second, change 8 to = — 8 and also r to —r.
The equation r = sin 28 stays the same. Both fowers have x axis symmetry.

{Across the y axis: x to —x) There are two ways to cross. First, change 8 to n — 8.
The equation r = cos 2f stays the same. Second, change # to — & and r to —r. Now
r = sin 28 stays the same (the sine is odd). Both curves have y axis symmetry.

(Through the origin) Now we change r to —r or 0 to 8 + n. The flower equations
pass the second test only: cos 2(@ + n)=cos 26 and sin 2(8 + n) = sin 20. Every
equation r? = F(f) passes the first test, since (—r)> = r%.

The circle r=cos 8 has x axis symmetry, but not y or r. The spiral r =8> has
y axis symmetry, because —r = (— §)* is the same equation,

Question What happens if you change r to —r and also change 8 to 8 + xn?
Answer Nothing—because (r, #) and (—r, @ + 7} are always the same point.

Smf2

Ag. 9.3 The four-petal flower r =cos 28 and the spiral =8 (r > 0 in red).
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EXAMPLE 3 The graph of r = 8 is a spiral of Archimedes—or maybe two spirals.

The spiral adds new points as 6 increases past 2n. Qur other examples are
“peniodic” -~ = 2r gives the same point as # = 0. A periodic curve repeats itself. The
spiral moves out by 2x each time it comes around. If we allow negative angles and
negative r = {}, a second spiral appcars.

EXAMPLE 4 The graph of r =1+ cos # is a cardioid. It is drawn in Figure 9.4c.

The cardioid has no simple xy equation. Still the curve is very attractive. It has a
cusp at the origin and it is heart-shaped {hence its name). To draw it, plot r = 1 + cos {
at 30° intervals and connect the points. For this curve r is never negative, since cos {
never goes below —1.

It is a curious fact that the electrical vector in your heart almost traces out a
cardioid. See Section 11.1 about electrocardiograms. If it is a perfect cardioid you are
in a little trouble.

2 3
r:l+%co_~;9 r=1+-=-cos B r=1+cos @ r=l+-—cosl

no dimple dimple cardivid inner loop

Fig. 9.4 Limagons ¥ =1 + b cos , including a cardioid and Mars seen from Earih.

EXAMPLE S The graph of ¥ =1 + bcos 0 is a Mimagoen {2 cardioid when b =1).

Limagon (soft ¢} is a French word for snail—not so well known as escargot but just
as incdible. (I am only referring to the shell. Excusez-moil) Figure 9.4 shows how a
dimple appears as b increases. Then an inner loop appears beyond b = 1 (the cardioid
at =1 is giving birth to a loop). For large b the curve looks more like two circles.
The limiting case is a doubic circle, when the inner loop is the same as the outer
loep. Remember that r = cos 0 goes around the circle twice.

We could magnify the limagon by a factor ¢, changing to r=c(l + b cos i}, We
could rotate 180 to r = 1 — h cos 6. But the real interest is whether these figures arise
in applications, and Donald Saari showed me a nice example.

Mars seca from Earth  Thc Earth gocs around the Sun and so docs Mars. Roughly
speaking Mars is 13 times as far out, and completes its orbit in two Earth years.

We take the orbits as circles: r = 2 for Earth and r = 3 for Mars. Those equations
tell where but not when. With time as a parameter, the coordinates of Earth and Mars
are given at every instant f:

X, =2 cos 2nt, yg =2 sin 2nt and Xy =3 cos nr, vy = 3 sin nt.
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At t = | year, the Earth compietes a circle (angle = 27) and Mars is halfway.
Now the key step. Subtract to find the position of Mars relative to Earth:

Xu_g= 3 cos mt — 2 cos 2nt and Yum—g= dsin mt - 2 sin 2x1,
Repiacing cos 2at by 2 cos?nt — 1 and sin 2rt by 2 sin nt cos e, this is
xy_g=(3—4cosatlcosnt+2  and Ym-g=(3— 4 cos nt)sin xt.

Seen from the Earth, Mars does a loop in the sky! There are two t's for which
3 — 4 cos it = 0 (or cos =t = 3). At both times, Mars is two units from Earth (xy_g =
2 and y-g = 0). When we move the origin to that point, the 2 is subtracted away—
the M — E coordinates become x = r cos nit and y = r sin xt with » = 3 — 4 cos nt, That
is a limagon with a loop, like Figure 9.4d.

Note added in proof 1didn’t realize that a 3-to-2 ratio is also responsible for heating
up two spots on opposite sides of Mercury. From the newspaper of June 13, 1990:

“Astronomers today reported the first observations showing that Mercury
has two extremely hot spots. That is becanse Mercury, the planet closest to the
Sun, turns on its axis once every 59.6 days, which is a day on Mercury. It goes
around the sun every 88 days, a Mercurian year. With this 3-to-2 ratio between
spin and revolution, the Sur appears to stop in the sky and move backward,
describing a loop over each of the hot spots.”

CONIC SECTIONS IN POLAR COQORDINATES

The exercises include other polar curves, like lemniscates and 200-petal flowers. But
get serious. The most important curves are the ellipse and parabola and kyperbola.
In Section 3.5 their equations involved 1, x, y, x?, xy, y*. With one focus at the origin,
their polar equations are even better.

9A The graph of r=A/(1+ecos B is a conic section with “eccentricity” e:
circle f e=0 ellipse f0<e<1 parabolaife=1 hyperbolaife>1.

EXAMPLES (e=1) The graph of r=1/(1 + cos 0) is a parabola. This equation is
r+rcos@=1orr=1-x. Squaring both sides gives x* + y* = 1 — 2x + x2. Cancel-
ing x? leaves y? = 1 — 2x, the parabola in Figure 9.5b.

The amplifying factor 4 blows up all curves, with no change in shape.

EXAMPLE 7 (e =2) The same steps lead from r{t + 2cos 8) =1 to r= 1 — 2x. Squar-
ing gives x2+ y?=1—4x + 4x? and the x? terms do not cancel. Instead we have
¥ —3x? =1 — 4x. This is the hyperbola in Figure 9.5c, with a focus at (0, 0).

The hyperbola y? — 3x? = 1 (without the —4x) has its center at (0, 0).

EXAMPLE 8 (e =1%) The same steps lead from A1 + 4 cos §)= 1 to r = 1 — §x. Squar-
ing gives the ellipse x? + y* =1 — x + 3x%, Polar equations look at conics in a new
way, which happens to match the sun and planets perfectly. The sun at (0, 0) is rot
the center of the system, but a focus.

Finally e = 0 gives the circle r = 1. Center of circle = both foci = (0, 0).
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FAg.9.5 r=1/(I+ecos#f)is an ellipse for e=4, a parabola for ¢ =1, a hyperbola for e = 2.

The directrix  The figure shows the line d (the “directrix™) for each curve. All points
P on the curve satisfy r = |PF| = ¢|Pd|. The distance to the focus is ¢ times the distance
to the directrix. (e is still the eccentricity, nothing to do with exponentials.} A geometer
would start from this property r = e|Pd| and construct the curve. We derive the
property from the equation:
A
Fr=—————— "=
1+ecosd

The directrix is the line at x = A/e. That last equation is exactly |PF| = ¢|Pd).

rtex=4 = r=e(ﬂ—x). (1

€

Notice how two numbers determine these curves. Here the numbers are 4 and e.
In Section 3.5 they were a and b. (The ellipse was x%/a® + y*/b* = 1.) Using A and ¢
we go smoothly from ellipses through parabolas (at e= 1) and on to hyperbolas.
With three more numbers we can move the focus to any point and rotate the curve
through any angle. Conics are determined by five numbers,
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9.2 EXERCISES

Read-through questions

The circle of radius 3 around the origin has polar equation
a . The 45° line has polar equation __ b __. Those graphs

meet at an angle of __e . Multiplying » = 4 cos @ by r yields
the xy equation _ d . Its graph is a __e  with center at

t . The graph of r=4/cos 0 is the line x=__ g . The
equation r? = cos 26 is not changed when § » — 8 (symmetric
across _h )and whenf - nm+0(orr— __i ) Thegraph

ofr=1+¢cosfisa | .

The graph of r=A/{_ k) is a conic section with one
focusat _| . Itis anellipse if _m and a hyperbola if

n__. Theequationr = 1/(1 + cos ) leads tor + x = 1 which
gives a _ o . Then r = distance from origin equals | —x =
distance from _p . The equations » =31 —x} and r=
{1 ~x)representsa __q and an _ r . Including a shift
and rotation, conics are determined by __ s _ numbers.

Convert to xy coordinates to draw and identify these curves.
2 Hcos @ —sin ) =2
4r=—2sind

1rsinf=1
3r=2cosf

5r=1/{2+cos0) 6r=1/{1+2cos B)

In 7-14 sketch the curve and check for x, y, and » symmetry.

7 rP=4cos 20 (lemniscate)
g r2=4sin 20 (lemniscate)
9 r=cos 3p {three petals)

10 P =10+ 6cos 40

11 r=¢° {logarithmic spiral)
12 r=1/p (hyperbolic spiral)
13 r=tan @

14 r=1—25sin 36 (rose inside rose)

15 Convert r =6 sin  + 8 cos @ to the xy equation of a circle
(what radius, what center?),

*16 Squaring and adding in the Mars—Earth equation gives
X4 g+ y4_g=13—12cosmt, The graph of r*=13—
12 cos 8 is not at afl like Figure 9.4d. What went wrong?

In 17-23 find the points where the two curves meet.

17 r=2cosf and r=1+cos

Warning: You might set 2cos@=1+cos 0 to find cos § = 1.
But the graphs have another meeting point—they reach it at
different @’s. Draw graphs to find all meeting points.
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18 r? =5in 20 and r* = cos 20

19 r=1+cosBandr=1-—sind
Wr=1+cos@andr=1—cos@

21 r=2and r=4s5in 20

22 r*=4cosfand r=1—cosé

23 rsinf =1 and rcos (8—nf4]=ﬁ[straight lines)

24 When is there a dimple in r=1+bcos 8 From x=
(1 + b cos O)cos & find dx/d@ and d%x/d0* at 8 = . When that
second derivative is negative the limagon has a dimple,

25 How many petals for » = cos 56? For r =cos f there was
one, for r = cos 20 there were four.

26 Explain why r = cos 100 8 has 200 petals but r =cos 1014
only has 101, The other 101 petals are . What about
r =cos N

27 Find an xy equation for the cardioid » =1 + cos 0.

28 {a) The flower r =cos 26 is symmetric across the x and y
axes. Does that make it symmetric about the origin? (Do
two symmetries imply the third, so —r = cos 28 produces
the same curve?)

(byHow can r=1, &8 =nr/2 lie on the curve but fail to
satisfy the equation?
29 Find an xy equation for the flower r = cos 26.

30 Find equations for curves with these properties:
(a) Symmetric about the origin but not the x axis

{b) Symmetric across the 45° line but not symmetric in x
oryore

(c) Symmetric in x and y and r (like the flower} but
changed when x + y (not symmetric across the 45° ling).

Problems 31-37 are about conic sections—especially ellipses.

31 Find the top point of the ellipse in Figure 9,5a, by maxi-
mizing y = r sin 0 =sin #/(1 + % cos 0).

9.3 Slope, Length, and Area for Polar Curves

32 (a) Show that all conics r=1/(1 +ecos ) go through
x=0,y=1.
(b) Find the second focus of the ellipse and hyperbola, For
the parabola (e = 1} where is the second {ocus?

33 The point @ in Figure 9.5¢ has y = 1. By symmetry find x
and then r (negative!). Check that x? + y*=¢? and |QF| =
2104,

34 The equations r=A/(1 +ecos 8) and r=1/(C + D cos )
are the same if C= and D= . For the
mirror image across the y axis replace 9 by . This
gives r=1/{(C—Dcos#) as in Figure 12.10 for a planet
around the sun.

35 The ellipse r = A/(1 + e cos 0) has length 24 on the x axis,
Add rat 8=0to r at 0 = n to prove that e = A/{1 —¢%). The
Earth’s orbit has ¢ =92,600,000 miles =one astronomical
unit (AU).

36 The maximum height b occurs when y =rsin 0 = A sin §/
(1 +ecos 6} has dy/d6 = 0. Show that b= y,,, = A/./1 — .
37 Combine a and b from Problems 35-36 to find ¢ =
Va2 — b2 = Aef{1 — e?). Then the eccentricity e is ¢/a. Halley’s

comet is an ellipse with a=18.1 AU and b=4.6 AU so
e= .

Comets have large eccentricity, planets have much smaller ¢:
Mercury .21, Venus .01, Earth .02, Mars .09, Jupiter .05, Sat-
urn .08, Uranus .05, Neptune .01, Pluto .25, Kohoutek 9999

38 If you have a computer with software to do polar graphs,

start with these:

1. Flowers r=A+cosnl forn=14,3,7,8 4=0,1,2

2. Petals r=(cos mf@ +4 cos nf)/cos 8, (m,n)=(5, 3), (3, 5),

9, 1,(2.3

3. Logarithmic spiral r = ¢

4. Nephroid r =1 + 2 sin §0 from the bottom of a teacup

S. Dr. Fay's butterfly r = "% — 2 cos 40 + sin¥{0/12)
Then create and name your own curve.

LirL 4

The previous sections introduced polar coordinates and polar equations and polar
graphs. There was no calculus! We now tackle the problems of area (integral calculus)
and stope (differential calculus), when the equation is r = F(f). The use of F instead
of f is a reminder that the slope is not dF/d8 and the area is not [ F(6)d8.

Start with area. The region is always divided into small pieces-—what is their
shape? Look between the angles # and # + AP in Figure 9.6a. Inside the curve is a
narrow wedge—almost a triangle, with A@ as its small angle. If the radius is constant



B —

drea

4

r=A6 A\AB

9.3 Slope, Length, and Area for Polar Curves

r=cos@

area area
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Fig. 9.6 Area of a wedge and a circle and an intersection of circles.

the wedge is a sector of a circle. It is a piece of pie cut at the extremely narrow angle
AQ. The area of that piece is a fraction (the angle Af divided by the whole angle 2r)
of the whole area nr? of the circle:
area of wedge = @m.z = erAG = 1[F{F))]z:ﬁlﬁ? 1

I 2 B ‘ ()
We admit that the exact shape is not circular. The true radius F(f) varies with 60—
but in a narrow angle that variation is small. When we add up the wedges and let
Af approach zero, the area becomes an integral.

9B The area inside the polar curve r = F(0) is the limit of Y 4r?A0 = ¥ }F2A0:

drda J 370 = J. %_[-F{G)]” 6. @

EXAMPLE 1 Find the area inside the circle r = cos 6 of radius 4 (Figure 9.6).

2n z 2n
1 4 cos 0 sin 6+ 0 2n
—4 —_ 0 dU = ¥ — p—
area L 3 cos 73 :L 4

That is wrong! The correct area of a circle of radius § is n/4. The mistake is that we
went twice around the circle as ¢ increased to 2zn. Integrating from 0 to n gives n/4.

EXAMPLE 2 Find the area between the circles r = cos 6 and r = 4.

The circles cross at the points where r = cos 0 agrees with r = 3. Figure 9.6 shows these
points at +60°, or # = +x/3. Those are the limits of integration, where cos 8 = 1. The
integral adds up the difference between two wedges, one out to r = cos 6 and a smaller

one with r=1:
" g 0)* LY do 3
area = j_ i, 5 [(cos ) — (5) :I . (3)

Note that chopped wedges have area 5(F? — F2)A0 and not 3(F, — F,)*Af.
EXAMPLE 3 Find the area between the cardioid r = 1 + cos 6 and the circle r= 1.

n/2
area = j 1[{I + cos 0)* — 1%]d0 (Iimits 0=+

+ —where 1 +cos 0= l)
_ﬂ'l'lz 2

SR ]

l((:t)s.zﬁ—(%)h)tﬁ\ﬁ
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SLOPE OF A POLAR CURVE

Where is the highest point on the cardioid r = 1 + cos 87 What is the siope at 8=
n/4? Those are not the most important questions in calculus, but still we should
know how to answer them. I will describe the method quickly, hy switching to
rectangular coordinates:

x=rcos 8=(1 +cos f)cos 8 and y=rsin 8 =(1+ cos B)sin 0.
For the highest point, maximize y by setting its derivative to zero:
dy{df = (1 + cos B){cos ) + (—sin 8)(sin )= Q. (3)
Thus cos 8 + cos 26 = 0, which happens at 60°. The height is y=(1 + &)(ﬁﬂ).
For the slope, use the chain rule dy/df = (dy/dx)(dx/d0):

dy _ dy/dd . (d+cos &(cos 8) + (—sin f)(sin §)
dx dx/d8 (1+cos 8)(—sin §)+ (—sin §) cos §

Equations (3) and (4) avoid the awkward (or impossible) step of eliminating 8. Instead
of trying to find y as a function of x, we keep x and y as functions of 0. At 8 =n/4,
the ratio in equation (4) yields dy/dx= — 1/(1+ ﬁ).

Problem 18 finds a general formula for the slope, using dy/dx = (dy/d0)/(dx/d8).
Problem 20 finds a more elegant formula, by looking at the question differently.

)

LENGTH OF A POLAR CURVE
The length integral always starts with ds=_/(dx)* +(dy)>. A polar curve has x =
rcos 8 = F(8) cos 8 and y = F(f) sin 8. Now take derivatives by the product rule:
dx = (F'{f)cos # — F(f)sin 6)do and dy = (F'(8)sin 8 + F{f)cos 9)db.
Squaring and adding (note cos?§ + sin%8) gives the element of length ds:
ds= /[F(0))* + [F(8))* d6. (5)

The figure shows (ds)* = (dr)? + (rdf)?, the same formula with different letters. The
total arc length is | ds.

The area of a surface of revolution is §2xy ds (around the x axis) or j2nxds
(around the y axis). Hrite x, y, and ds in terms of 0 and 4. Then integrate.

EXAMPLE 4 The circle r =cos & has ds= \ﬂdﬂ. So its length is 7 {not 2=x"'—don’t
go around twice). Revolved around the y axis the circle yields a doughnut with no
hole. Since x = r cos § = cos*§, the surface area of the doughnut is

jan ds= j 21 cos?@ 46 = .

o

EXAMPLE 5 The length of r =1+ cos # is, by symmetry, double the integral from
Gtonm:

length of cardioid = 2-[ J(—sin 8)% + (1 + cos 8)? df
q

n = 9
=2-[ ,/2+2c059d9=4-[ cosidﬂ=8.
4] Q

. rd@
%

r=F(0)

(dsy =1dr? + (rd8)?
Ag. 9.7
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We substituted 4 cos? 10 for 2+ 2 cos @ in the square root. It is possible to skip
symmetry and integrate from 0 to 2z—but that needs the absolute value |cos 38| to

maintain a positive square root.

EXAMPLE 6 The logarithmic spiral r =¢7° has ds= /e 2% + ¢~ 2% 6. It spirals to
zero as # goes to infinity, and the total length is fnite:

fas =z it o=~ f3e | = /2

Revolve this spiral for a mathematical seashell with area [ (2me ® cos 8),/2¢ a8,

9.3 EXERCISES

Read-through exercises

A circular wedge with angle Af is a fraction _a__ of a whole
circle. If the radius is r, the wedge area is __ b . Then the
arca inside ¥ = F(8)ts | __¢_ . The arca inside r = 6 from 0
tomis _d . That spiral meets thecircler=1at8=_ e

The area inside the circle and outside the spiratis _ 1. A
chopped wedge of angle Af) betweenr, and rohasarea __ g .

Thecurver=F{Mthasx=rcosf=_h andy=__i .
The slope dy/dx is dy/dd divided by __| . For length {ds)’> =
(dx}* +(dv)* = __k . The length of the spiral r=810 =2
is j I_ (not to compute integrals). The surface area when
r =B is revolved around the x axis is [2zyds=[_m . The
volume of that solid is [xy?dx={_n .

In 1-6 draw the curve and find the area inside.

1 r=1+4cos @

2 r=sinf+cosfiromOtor

3r=2+cosl

4 r=1+2cos 0 (inner loop only)

5 r=rcos 20 {onc petal only)

6 r=cos 30 (one petal only)
Find the area between the curves in 7-12 after locating their
intersections (draw them first).

7 circle r=cos 6 and circle r =sin 0

8 spiral r =@ and y axis {first arch)

9 outside cardioid + = 1 + cos § inside circle r = 3 cos 0
10 lemniscate #* = 4 cos 20 outside r = \/'E

11 circlc r =8 cos & beyond line r cos § = 4

12 circle =10 beyond line rcos =6

13 Locate the mistake and find the correct area of the lemnis-
cater? =cos 20: area = [ 4r? dff = {5 fc0s 20 d6 = 0.

14 Find the area between the two circles in Example 2,

15 Compute the area between the cardioid and circle in
Example 3.

16 Find the complete area (carefully) between the spiral r =
e~ ?{f) 2 0) and the origin.

17 At what &s does the cardioid r =1 + cos @ have infinite
siope? Which points are furthest to the left (minimum x)?

18 Apply the chain rule dy/dx =(dy/dB){dx/df) to x=
Fi#) cos 8, y = F(B) sin 4. Simplify to reach

dy  F+tan dFjdf
dx —F tan 0 + dF/do’

19 The groove in a record is nearly a spiral » = ¢@:

length = [ /r? + (dr/d0) 40 = [,* ./r* + 2 dr/c.

Take ¢ =.002 to give 636 turns between the outer radius
14 ¢m and the inner radius 6 em (14 — 6 equals .002(636)2n).

(a) Omit ¢? and just integrate r dr/c.
{b} Compute the length integral. Tables and calculators
allowed. You will never trust integrals apain.
20 Show that the angle ¢ between the ray from the origin
and the tangent line has tan = Fj{dF/d0).

Hint: If the tangent line is at an angle ¢ with the horizontal,
then tan ¢ is the slope dy/dx in Problem 18, Therefore

tan ¢ —tan 6

t =1 — =
an y = tan(¢ —6) 1 +tan ¢ tan 8
Substitute for tan ¢ and simplify like mad.

21 The circle r=F(#)=4sin8 has yy=0. Draw a figure
including &, ¢, ¥ and check tan .

22 Draw the cardioid r = 1 —cos 8, noticing the minus sign.
Include the angles 8, ¢, ¢ and show that 4 = 8/2.

23 The first limagon in Figure 9.4 looks like a circle centered
at (4, 0). Prove that it isn't.

24 Find the equation of the tangent line to the circle r = cos 8
at #=n/6.
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In 25-28 compute the length of the curve,
25 r=0(fl from Q1o 2n)

26 r=secll {0 from O to n/4)

27 r=sin%0/3) (0 from C 10 3n)

28 r=02 {6 from 0 to m)

29 The narrow wedge in Figure 9.6 is almost a triangle. It
was treated s a circular sector but triangles are more familiar.
Why is the area approximately 1r2A0?

30 In Example 4 revolve the circle around the x axis and find
the surface areu. We really only revolve a semicircle.

31 Compute the seashell area 27/2 [ ¢™* cos 0 di using
two integrations by parts.

32 Find the surface arex when the cardioid r=1+cos{
is revolved around the x axis.

33 Find the surface area when the lemniscate r? =cos 20 is
revolved around the x axis. What is ¢ after one petal?

9.4 Complex Numbers

M When y =/f{(x)is revolved around the x axis, the volume
is [ my?dx. When the circle r = cos § is revolved, switch 1o a
O-integral from 0 to /2 and check the volume of a sphere.

35 Find the volume when the cardioid r = | + cos # is rotated
around the x axis.

36 Find the snrface area and volume when the graph of r =
l/cos ) is rotated around the y axis (0 <0 € 7/4).

37 Show that the spirals r =8 and r = 1/0 are perpendicular
when they meet at f# = 1.

38 Draw three circles of radius 1 that touch each other and
find the area of the curved triangle between them.

39 Draw the unitsquarc 0 x < 1,0 € v £ 1. In polar coordi-
nates its right side ts r = . Find the area from | 4r2d).

40 (Unravel the paradox) The areu of the ellipse x =4 cos f},
y=73sinftis n-4+3 = 12n. But the integral of 4240 is

2w 1 1
= {16 cos?( = 9 sin’ M df = 12-n.
o 2 2

Real numbers are sufficient for most of calculus. Starting from x* + 4, its integral
1x3+ 4x + C is also real. If we are given x> — 1, its derivative 3x* is real. But the
roots (or zeros) of those polynomials are complex numbers:

i +4=0 gnd

X' = 1=0 have complex solutions.

We expect two square roots of — 4. There are three cube roots of 1. Complex numbers
are unavoidable, in order to find n roots for each polynomial of degree n.

This section explains how to work with complex numbers. You will see their
relation to polar coordinates. At the end, we use them to solve differential equations.

Start with the imaginary number i. Everybody knows that x*= —1 has no reai
solution, When you square a real number. the result is never negative. So the world
has agreed on a solution called i. (Except that electrical engineers call it j.) Imaginary
numbers follow the normal rules of addition, subtraction, multiplication. and division.
with one difference: Whenever i appears it is replaced by — 1. In particular —1i times
—igives +i*= — 1, In other words, —iis also a square root of —1. There are two
solutions (i and — i) to the equation x*+ 1= 0.

Finding cube roots of 1 will stretch us further. We need complex numbers—real

plus imaginary.

it=—1:
Addition:
Multiplication:

9B A complex number (say 1+ 3i) is the sum of a real number (1) and a pure
imaginary number {3i). Addition keeps those parts separate; multiplication uses

(1+3y+(1+3d)=1+1+i{3+3)=2+06i
+3D1+30=1+3i+3i+9*=-8+6i




9.4 Complex Numbers

Adding 1+ 3i to 5— i is easy (6 + 2i). Multiplying is longer, but you see the rules:
(1+3)5—i)=5+15i—i—3i’ =8+ 14i.

The point is this: We don’t have to imagine any more new numbers. After accepting
i, the rest is straightforward. A real number is just a complex number with no
imaginary part! When 1 + 3i combines with its “complex conjugate” 1 — 3i—adding
or multiplying—the answer is real:
(1+3)+{1-3)=2 (real) W
(1+3)1-3)=1-3i+3i—-9*=10. (real)

The complex conjugate offers a way to do division, by making the denominator real:

1 1 1-3% 1-% 1 1 x—iy x-—iy
-= - -= and " = - = = z 2'
1+3 1+3i1—3 10 x+iy x+iyx—iy x“+y

9C The complex number x -+ iy has real part x and imaginary part y. Its
complex conjugate is x ~ iy. The product (x + iy){x — iy) equals x* + y* = r2.
The absolute value {or modulus) is r = {x + iy} =  /x* + p*.

THE COMPLEX PLANE

Complex numbers correspond to points in a plane. The number | + 3i corresponds to
the point (1, 3). Similarly x + iy is paired with {x, y)—which is x units along the “real
axis” and y units up the “imaginary axis.” The ordinary plane turns into the complex
plane. The absolute value r is the same as the polar coordinate r {Figure 9.8a).

The figure shows two more copies of the complex plane. The one in the middle is
for addition and subtraction. It uses rectangular coordinates. The one on the right is
for multiplication and division and squaring. It uses polar coordinates. In squaring
a complex number, r is squared and 8 is doubled—as the right figure and equation
(3) both show.

Surm e 2 + 24
- .
34 J‘2=2

(1+i2

-1+

. . e 3
imaginary axis conjugate rB—=>r220

Ag. 9.8 The complex plane shows x, y, r, 8. Add with x and y, multiply with r and 8.

Adding complex numbers is like adding vectors {Chapter 11). The real parts give
3-1 and the imaginary parts give 1+ 1, The vector sum (2, 2) corresponds to the
complex sum 2 + 2i. The complex conjugate 3 — i is the mirror image across the real
axis {i reversed to —i). The connection to r and 6 is the same as before (you see it in
the triangle):

x=rcos® and y=rsin8 sothat x+iy=r(cos @+ isin 6). (2)

In_the third figure, 1 + i has r= \/5 and 6 =n/4. The polar form is \/5 cos nf4 +
\/Z_Zi sin 7/4. When this number is squared, its 45° angle becomes 90°. The square is
(142 =1+ 2i— 1= 2i. Its polar form is 2 cos n/2 + 2i sin 7/2.

361
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9D Multiplication adds angles, division subtracts angles, and squaring doubles
angles. The absolute values are multiplied, divided, and squared:

(r cos 8+ ir sin 8)> =r? cos 28+ ir? sin 26. (3

For nth powers we reach r" and nf. For square roots, r goes to \ﬂ and & goes to
30. The number —1 is at 180°, so its square root i is at 90°.
To see why. 8 is doubled in equation (3), factor out r? and multiply as usual:

(cos 8+ i sin H)(cos 0 + i sin §) = cos?8 — sin?0 + 2i sin 8 cos 0.

The right side is cos 26 + isin 20. The double-angle formulas from trigonometry
match the squaring of complex numbers. The cube would be cos 3¢ + § sin 38 (because
20 and 0 add to 360, and r is still 1). The nth power is in de Moivre's formula:

{cos 8+ i sin 0" =cos nfl + i sin nb. 4
With n= —1 we get cos(~6)+isin(— 8)—which is cos#—isin§, the compiex
conjugate;
1 _ 1 cos@—isind _cos@—isinf
cos P+isin @ cos@+isin® cos@—isinf 1

(5)
We are almost touching Ewler’s formula, the key to all numbers on the unit circle:

Ealer's formula.  cos §+isin0=¢" (6)

Squaring both sides gives (¢®)(¢®®) = 2. That is equation (3). The —1 power is 1/e*® =
¢~ % That is equation (5). Multiplying any e by e produces "%, The special case
¢ = 0 gives the square, and the special case ¢ = — 0 gives e%e =1,

Euler’s formula appeared in Section 6.7, by changing x to 8 in the series for ¢*:

x? X o A
e l+x+2+6+ becomes e°=1+if 3 :6+
A highlight of Chapter 10 is to recognize two new series on the right. The real terms
1—36%+ -+ add up to cos §. The imaginary part & —¢6° + - adds up to sin 6.
Therefore €' equals cos @ + isin 6. It is fantastic that the most important periodic
functions in all of mathematics come together in this graceful way.

We learn from Euler (pronounced oiler) that £2® = 1. The cosine of 2z is 1, the sine
is zero. If you substitute x = 2xi into the infinite series, somehow everything cancels
except the 1—this is almost a miracle. From the viewpoint of angles, ¢ = 2x carries
us around a full circle and back to e*™ =1,

Muitiplying Euler’s formula by r, we have a third way to write a complex number:

Every complex number is  x+iy=r cos 8 +ir sin 8 = re“. 7
EXAMPLE 1 26 times 3¢ equals 6¢2®. For 8= n/2, 2i times 3i is —6.

EXAMPLE2 Find w* and w* and w® and w?® when w = ¢,
Solution €™ is lfﬁ + f/ﬁ. Note that r2 =1 + 4 = 1. Now watch angles:
w2=el'm’2=l‘ w4=eiz= -1 W8= 1 w25= W8W8W8w=w_

Figure 9.9 shows the eight powers of w. They are the eighth roots of 1.
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Fig. 9.9 The eight powers of w and the cube roots of 1.

EXAMPLE 3 (x? + 4 = 0) The square roots of —4 are 2i and — 2i. Instead of (OG) =
— 1 we have (2i){(2i) = — 4. If Euler insists, we write 2i and — 2i as 2¢™/% and 2¢"3%2,

EXAMPLE4 (The cube roots of 1) In rectangular coordinates we have to solve
{x +iy)® = 1, which is not easy. In polar coordinates this same equation is r3e3¥=1.
Immediately r = 1. The angle & can be 2xr/3 or 4x/3 or 6n/3—the cube roots in the
figure are evenly spaced.

(elxi,.f.‘i)?: _ elui =1 (84::3!3]3 — e4m’ =1 (eﬁni,B)S = e(mi =1.
You see why the angle 8n/3 gives nothing new. It completes a full circle back to 2n/3.

The nth roots of 1 are e*™", e*™* . 1. There are n of them.
They lie at angles 2nin, 4n/n, ... 27 around the unit civcle.

SOLUTION OF DIFFERENTIAL EQUATIONS

The algebra of complex numbers is now applied to the calculus of complex functions.
The complex number is ¢, the complex function is ¢”. It will solve the equations
y'= ~4y and y” = y, by connecting them to ¢ = — 4 and ¢3 = 1. Chapter 16 does
the same for all linear differential equations with constant coefficients—this is an
optional previcw.

Please memorize the one key idea: Substitute y= & into the differential equation

and solve for ¢c. Each derivative brings a factor ¢, so y' = ce® and y" = c?e™:
d?yidr? = — 4y leads to ¢2¢ = — 4¢%, which gives ¢2 = — 4. (8)
For this differential equation, ¢ must be a square root of —4. We know the candidates
{c=2iand ¢ = — 2i). The equation has two *‘pure exponential solutions” e":
y=eX and y=e )

Their combinations y = 4e*' + Be ~*¥ give all solutions. In Chapter 16 we will choose
the two nhumbers 4 and B to match two initial conditions at ¢ = 0.

The solution y = €2 = cos 2t + i sin 2¢ is complex. The differential equation is real.
For real y's, take the real and imaginary parts of the complex solutions:

Vrea1 = COS 2 and Yimaginary = Si0 2¢. (10)

These are the “pure oscillatory solutions.”” When y = ¢2” travels around the unit
circle, its imaginary part sin 2¢t moves up and down. (It is like the ball and its shadow
in Section 1.4, but twice as fast because of 2t.) The real part cos 2t goes backward
and forward. By the chain rule, the second derivative of cos 2t is —4 cos 2t. Thus
d*yidt® = — 4y and we have real solutions.
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EXAMPLE 5 Find three solutions and then three real solutions to d*y/dt® = y.

Key step: Substitute y = &*. The result is ¢3¢ = ¢'. Thus ¢* = 1 and ¢ is 2 cube root
of 1. The candidate ¢ =1 gives y = ¢' {our first solution). The next ¢ is complex:

C=62nii3=_l+i\/§

5 T yiefds y= =¢

—t/2 ei;ir,!z_ (1 l]

The real part of the exponent leads to the absolute value |y| = e "?. 1t decreases as ¢
pets larger, so y moves toward zero. At the same time, the factor €2 goes around
the umit circle. Therefore y spirals in to zero {(Figure 9.10). So does its complex
conjugate, which is the third exponential. Changing i to —iin (11) gives the third
cube root of 1 and the third solution e~ 4%~ #3112,

The first real solution is y = ¢'. The others are the two parts of the spiral:

Viewn = €~ 7% cos \/itﬂ and  Pimaginary = € 7 sin \/EI/Z. (12)

That is r cos 8 and r sin 6. It is the ultimate use (until Chapter 16) of polar coordinates
and complex numbers. We might have discovered cos 2t and sin 2¢ without help, for
y" = —4y. I don’t think these solutions to y” = y would have been found.

EXAMPLE 6 Find four solutions to d*y/dt* = y by substituting y = .

Four derivatives lead to ¢* = 1. Therefore cis i or —1 or —i or 1. The solutions are
y=¢" e ', e " and ¢'. If we want real solutions, ¢ and ¢ ™" combine into cos t and

ran

sin ¢. In all cases y"" = y.

-

Peene u'..
-T2

e
Fig. 9.40 Solutions move in the complex plane: y" = —4yand y" = yand y"" =y.
9.4 EXERCISES
Read-through questions To solve d®yjdr® =y, look for a solution of the form y =
o a S . .
The complex number 3 + 4/ has real part _ 2 _ and imagi- —9.__ Substituting and cancc!mg ¢ leads to the ch!atlop
. . t . There are __s choices for ¢, one of which is
nary part . Its absolute valueisr=_ ¢ and its com- [_—l n i)’\/i With that choice =
plex conjugate is __d . Tts position in the complex plane is solutioris ar;: Ree"— u andImefe= v
at (_@ _ ). ks polar form is rcos @ +irsinf=__t ¢° Its T T
square is_ @ +i_h_  TItsmth poweris ) ™"
The sum of 1 +éiand 1 —iis _ 1 . The product of 1 +i In 1-6 plot each number in the complex plane.
L — i g |
and 1 1 s ) I_n polal.' form this is ﬁe . tmes ___. 1 2 +i and its complex conjugate 2 —i and their sum and
The quotient (1 +i}{l —i) equals the imaginary number roduct
m__ . The number (1 +{)® equals _n__. Aneighth root of p
1isw= . The other eighth roots are _ P 2 | +iand its square {1 + /* and its reciprocal 1/(1 4 i)
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3 2¢/%/ and its reciprocal 4™ and their squares
4 The sixth roots of 1 (six of them)

5 cos 3xf4 + i sin 3n/4 and its square and cube

6 4¢™? and its square roots

7 For complex numbers ¢=x +iy=re® and their con-
jugates é=x—iy=re” %, find all possible locations in the
complex plane of {l}c+é (Qec—¢ (3ed (W) cj

8 Find x and y for the complex numbers x + iy at angles
f=45° 90°, 135° on the unit circle. Verify directly that the
square of the first js the second and the cube of the first is the
third.

9 Ife=2+iand d=4 + 3i find cd and c/d. Verify that the
absolute value |cd| equals l¢] times [d|, and |c/2] equals |¢|
divided by |[d|.

10 Find a solution x to ¢*=i and a solution to &= 1/e.
Then find a second solution.

Find the sum and product of the pumbers in 11-14.

11 £ and ™%, also 22 and £**/3

12 ¢® and €%, also €* and e~ *'"*

13 The sixth roots of 1 (add and multiply all six)

14 The two roots of c>—4c +5=0

15 If c =re® is not zero, what are ¢* and ¢! and ¢~4?

16 Muitiply out (cos 8 + i sin 8)° = ¢, to find the real part
¢os 30 and the imaginary part sin 38 in terms of cos # and
sm 6.

17 Plot the three cube roots of a typical number re®®. Show
why they add to zero. One cube root is r1/2g®2,

18 Prove that the four fourth roots of r¢® multiply to give

—re®,

In 19-22, find all solutions of the form y =¢”.
19 y"+y=0
21 yiil-yf=0

20 y!"+y=0

22 v +6)+5y=0

Construct two real solutions from the real and imaginary parts
of ¢ (first find c):

2y +49y =0 24y -2y +2y=0

Sketch the path of y = ¢ a8 ¢ increases from zero, and mark
y=e"
25 c=1—i 26 c=—1+41i 27 c=rif4

28 What is the solution of dy/dt =iy starting from y, =1?
For this solution, matching real paris and imaginary parts of
dy/dt = iy gives and .

29 In Figure 9.10b, at what time ¢ does the spiral cross the
real axis at the far IeRt? What does y equal at that time?

30 Show that cos & = He? + ¢~} and find a simitar formula
for sin 8.
A True or false, with an example to show why:
{a) If ¢ + c; is real, the ¢’s are complex conjugates.
(b) ¥ |c;] =2 and |c,| = 4 then ¢,c; has absolute value 8,
(€ I lc; =1 and ic,| =1 then fe; + ¢, i3 (at least 1) {at
most 2} (equal to 2.
{d) If ¢ approaches zero as ¢t — oo, then {¢ is negative) (the
real part of ¢ is negative) (Ic} ts less than 1).

32 The polar form of re” times Re® is . The rectan-
gular form is Circle the terms that give
rR cos(8 + o).

33 The complex number 1/{r*®) has polar form and
rectangular form and square roots

34 Show that cos ix =cosh x and sin ix =i sinh x, What is
the cosine of i?
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CHAPTER 10

Infinite Series

Infinite series can be a pleasure {sometimes). They throw a beautiful light on sin x
and cos x. They give famous numbers like = and e. Usually they produce totally
unknown functions—which might be good. But on the painful side is the fact that
ap infinite series has infinitely many terms.

It is not easy to know the sum of those terms. More than that, it is not certain
that there is a sum. We need tests, to decide if the series converges. We also need
ideas, to discover what the series converges to. Here are examples of convergence,
divergence, and oscillation:

(+3+3+=2 I1+1+1+-=0 1=1+1-1"="?

The first series converges. Its next term is 1/8, after that is 1/16—and every step
brings us halfway to 2. The second series (the sum of 1's) obviously diverges to infinity.
The oscillating example (with 1's and —1%s) also fails to converge.

All those and more are special cases of one infinite series which is absolutely the
most important of ail:

1
1-—x

The geometric seriesis 1 +x+ x>+ x* + - =

This is a series of functions. It is a “‘power series.” When we substitute numbers for
x, the series on the left may converge to the sum on the right. We need to know when
it doesn’t. Choose x=3and x=1and x=— 1

. . .1
1+ %+ #)?*+ - is the convergent series, Its sum is =3~ 2
—%

N |
1+ 1+ 1+ --is divergent. Its sum is —— =

1-1.0 %©

O -

1 1

-1 2

1+ (—1)+(—1)* + - is the oscillating series. Its sum should be

The last sum bounces between one and zero, so at least its average is 4. At x=2
there is no way that 1 +2+ 4+ 8 + --- agrees with 1/1 — 2).
366 This behavior is typical of a power seriess—to converge in an interval of x's and
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to diverge when x is large. The geometric series is safe for x between —1 and 1.
Outside that range it diverges.
The next example shows a repeating decimal 1.111. ..

_1Th . ..1+l+12+13+
Set x = 1o The geometric series is In (ﬁ) (E)
The decimal 1.111... is also the fraction 1/(1 —1y), which is 10/9. Every
Sraction leads to a repeating decimnal, Every repeating decimal adds up (through the
geometric series) to a fraction.

To get 3.333..., just multiply by 3. This is 10/3. To get 1.0101..., set x = 1/100.
This is the fraction 1/(1 — 1§5), which is 100/99.

Here is an unusual decimal (which eventually repeats). I doh’t really understand it:

1
23 = 004 115226 337 448 ...
Most numbers are not fractions (or repeating decimals). A good example is n:
S SR S, N TV

i0 100 1000 10000

Thisis 3.1415..., a series that certainly converges. We happen to know the first billion
terms (the billionth is given below). Nobody knows the 2 billionth term. Compare
that series with this one, which also equals

=4d—-+-—=+-
T3S T
That alternating series is really remarkable. It is typical of this chapter, because its
pattern is clear. We know the 2 billionth term (it has a minus sign), This is not a
geometric series, but in Section 10.1 it comes from a geometric series.

@Question Does this series actually converge? What if all signs are +?
Answer The alternating series converges to = (Section 10.3). The positive series
diverges to infinity (Section 10.2). The terms go to zero, but their sum is infinite,

This example begins to show what the chapter is about. Part of the subject deals
with special series, adding to 10/9 or x or £°. The other part is about series in general,
adding to numbers or functions that nobody has heard of. The situation was the
same for integrals—they give famous answers like In x or unknown answers like
J x* dx. The sum of 1 + 1/8 + 1/27 + --- is also unknown—although a lot of mathema-
ticians have tried.

The chapter is not long, but it is full. The last half studies power series. We begin
with a linear approximation like 1+ x. Next is a quadratic approximation like
1+ x+ x%. In the end we maich all the derivatives of f{x). This is the * Taylor series,”
a new way to create functions—not by formulas or integrals but by infinite series,

No example can be better than 1/(1 — x), which dominates Section 10.1. Then we
define convergence and test for it, (Most tests are really comparisons with a geometric
series.) The second most important series in mathematics is the exponential series
e =1+x+3x*+Lx*+ - It includes the series for sin x and cos x, because of the
formula € = cos x + i sin x. Finally a whole range of new and old functions will
come from Taylor series.

In the end, atl the key functions of calculus appear as “infinite polynomials™ {except
the step function). This is the ultimate voyage from the linear function y = mx + b.

367
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We begin by looking at both sides of the geometric series;

1
1-x

1+x+x2+x3+= N

How does the series on the left produce the function on the right? How does /{1 — x)
produce the series? Add up two terms of the series, then three terms, then n terms:

I —_ 3 1 —x"
ol S TN S bt G S i ko
- X 1—-x l-x

l+x=

(2)

For the first, 1 + x times 1 — x equals 1 — x? by ordinary algebra. The second begins
to make the point: 1+ x + x7 times 1 — x gives 1 — x+ x — x% 4+ x? — x*. Between
1 at the start and — x* at the end, everything cancels. The same happens in all cases:
1+ -+ x""! times t —x leaves 1 at the start and —x" at the end. This proves
equation {2)—the sum of n terms of the series.

For the whole series we will push n towards infinity. On a graph you can see what
is happening. Figure 10.1 shows n=1and =2 and n=3 and n= w0,

Rg. 104 Two terms, then three
terms, then full series:

I+x+x?+ - = :
l—x
T4+ x+x* 4
1—-x./1
l—x
X
x—x?
xl
x?—x?

The infinite sum gives a finite
answer, provided x is between
—1 and 1. Then x" goes to zero:

1 —x" |

1—x 1-x’

-1 172 0 17223

Now start with the function 1/(1 — x). How does it produce the series? One way is
elementary but brutal, to do “long division™ of | — x into | (next to the figure).
Another way is to look up the binomial formula for (1 — x) !, That is cheating—we
want to discover the series, not just memorize it. The successful approach uses cal-
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culus. Compute the derivatives of f(x)= 1/{1 — x):
fl=(1_-x}_2 f”=2(1—x)_3 f”":ﬁ(]—x]_“' (3}

At x = Othese denivatives are 1, 2, 6, 24, ... Notice how —1 from the chain rule keeps
them positive. The nth derivative at x = 0 is n fuctorial;

fO=1 fO=1 [fO=2 [@=6 - [O0=n
Now comes the idea. To match the series with 1/(1 — x), match all those derivatives at
x = (. Each power x" gets onc derivative right. Its derivatives at x = 0 are z¢ro, except
the rth derivative, which is n! By adding all powers we get every derivative right—
so the geometric series matches the function:

1+ x+x2+ x>+ - has the same derivatives at x=0 as 1/(1 — x).

The linear approximation is | + x. Then comes % /"(0)x? = x?. The third derivative
is supposed to be 6, and x? is just what we need. Through its derivatives, the function
produces the series.

With that example, you have seen a part of this subject. The geometric series
diverges if |x| 2 1. Otherwise it adds up to the function it comes from (when
—1 < x=<1). To get familiar with other series, we now apply algebra or calculus—to
reach the square of 1/(1 — x) or its derivative or its integral. The point is that these
operations arc applicd to the series.

The best I know is to show you eight operations that produce something useful.
At the end we discover series for In 2 and 7.

1. Multiply the geometric series by a or ax:

ax
ax+ax?+axd+ o= =5 )
1 —x l—x

ataxtax’+ =

The first series fits the decimal 3.333.... In that case a = 3. The geometric series or
x =4 gave 1.111 ... = 10/9, and this series is just three times larger. Its sum is 10/3.

The second series fits other decimals that arc fractions in disguise. To get 12/99,
choose = 12 and x = 1/100;

12 12 12 12/100 12
=t 4= =_.

100 100%  100° 1—1/100 99
Problem 13 asks about .8787... and .123123.... It is usual in precalculus to writc
a+ar+ar?+ = aj(l —r). But we use x instead of r to emphasize that this is a

Jfunction—which we can now diflerentiate.

d21212..

2. The derivative of the geometric series 1 + x+ x2 + - is 1/(1 — x)%

d ] 1
I+ 2x+3x2 +4x3 + o = — = .
rox A dx(l—x) (1—x)7 ()
At x = {5 the Icft side starts with 1.23456789. The right side is 1/(1 — #5)° = 1/(9/10)?,
which is 100;81. If you have a calculator, divide 100 by 81.
The answer should also be near (1.11111111)2, which is 1.2345678987654321.

3. Subtract t + x+ x>+ - from | + 2x + 3x? + - as you subtract functions:

1 1 x
x+ 2P+ 34 = - = . 6
e TR =x? (I-x) (I-x) ©
Curiously, the same series comes from muitiplying (5) by x. [t answers a question left
open in Section 8.4—the average number of coin tosses until the result is heads. This
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is the sum 1(p,} + 2(p,;) + --- from probability, with x = 4:

I+ 20+ 30+ = A =2 7
The probability of waiting until tbe nth toss is p, = (3)". The expected value is two
tosses. | suggested experiments, but now tbis mean value is exact.

4. Multiply series: the geometric series times itself is 1/(1 — x) squared:
(I+x+x?+ )l +x+x3+)=1+2x+3x*+ -, (8)

The series on the right is not new! In equation (5) it was the derivative of y = 1/{(1 — x).
Now it is the square of the same y. The geometric series satisfies dy/dx = y?, so the
function does too. We have stumbled onto a differential equation.

Notice how the series was squared. A typical term in equation (8) is 3x%, coming
from 1 times x? and x times x and x? times 1 on the left side. It is a lot quicker to
square 1/(1 — x)—but other series can be multiplied when we don’t know what func-
tions they add up to.

5. Solve dyjdx = y® from any starting value—a new application of series:

Suppose the starting value is y = 1 at x = 0. The equation y’ = y? gives 1? for the
derivative. Now a key step: The derivative of the equation gives y" = 2yy’. At x=0
that is 2+ 1+ 1. Continuing upwards, the derivative of 2yy’ is 2yy" + 2(y')%. At x=0
thatis y" =4+2=6,

All derivatives are factorials: 1, 2, 6, 24, .... We are matching the derivatives of the
geometric series 1+ x + x2 + x>+ .... Term by term, we rediscover the solution to
y = y*. The solution starting from ¥0)=1is y= 141 — x).

A different starting value is —1. Then y’ = (—1)2 = 1 as before. The chain rule gives
y"=2yy'= — 2 and then y"” = 6. With alternating signs to match these derivatives, the
solution starting from —1 is

y=—1l+x—x2+x>=—1/1+x). 9

It is a small challenge to recognize the function on the right from the series on the
left. The series has — x in place of x; then multiply by —1. The sum y= — 1/(1 + x)
also satisfies ¥ = y*. We can solve differential equations from all starting values by
infinite series. Essentially we substitute an unknown series into the equation, and
calculate one term at a time.

6. The integrals of 1+ x+ x>+~ and 1—x+x*— - are logarithms:
1 1 *d
x+5I2+5I3+---='[Jljx————lﬂ(l_x) {103)
1 , .1, * dx
I — —_—e = — =+ 1+ 10
X=X +3x Ll+x In(1+x) {10b)

The derivative of {10a) brings back the geometric senies. For logarithms we find 1/n
not 1/n! The first term x and second term §x? give linear and quadratic approxi-
mations. Now we have the whole series. I cannot fail to substitute 1 and $, to find
In{1 — 1) and In{1 + 1) and In(1 — %)

x=1: 1+4+5+i+=—-ln0=+c (11a)
x=1 1—-3+4—}+= In2=.693 (11b)
x=% t+i+4h+&+-=—-Ini=In2 (12)
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The first series diverges to infinity. This harmonic series 1 + % + 4+ - came into the
earliest discussion of limits (Section 2.6). The second series has alternating signs and
converges to In 2. The third has plus signs and also converges to In 2. These will be
examples for a major topic in infinite series—tests for convergence.

For the first time in this book we ar¢ able to compute a logarithm! Something
remarkable is involved. The sums of numbers in {11) and (12) were discovered from the
sums of functions in (10). You might think it would be easier to deal only with numbers,
to compute In 2. But then we would never have integrated the series for 1/(1 — x} and
detected (10). It is better to work with x, and substitute special values like 7 at the
end.

There are two practical problems with these series. For in 2 they converge slowly.
For In e they blow up. The correct answer is in e = 1, but the series can’t find it. Both
problems are solved by adding (10a) to (10b), which cancels the even powers:

+ x

X 1
1-x

x3 5
Z(x-l— ?+ ?+ ---)=ln(1 +x)—In{l - x)=1In
At x =4, the right side is In $ — in § = In 2. Powers of } are much smaller than powers
of 1 or 4, s0 In 2 is quickly computed. All logarithms can be found from the improved
series (13).

. (13)

7. Change variables in the geometric series (replace x by x* or — x?):
L+ x2+ x*+ x84 = 1j(1 — x?) (14)
l—x2+x*—x%+ - =1/1+x2). (15)

This produces new functions (always our goal). They involve even powers of x. The
second series will soon be used to calculate z. Other changes are valuable:

X x  [x\? 1 2

=i fx t+Z+{3)+-= =

5 in place of x 5 (2) =02 I-x (16)
1 1 1 X

—in pl fx 1+-+ < +---= = )

xmpaoeo X - =) x—1 {17)

Equation (17) is a series of negative powers x ™", It converges when |x| is greater than
1. Convergence in (17) is for large x. Convergence in (16) is for |x| < 2.

8. The integral of | — x* + x* — x® =+ --- yields the inverse tangent of x:

I 1 1
x—oxP+oxP- x4 e = dxz
I+x

— -1
3 5 2 tan™ " x, (18)
We integrated (15) and got odd powers. The magical formula for n (discovered by
Leibniz} comes when x = 1. The angle with tangent 1 is n/4:

ORI P o

3 5 7 4’ {19

The first three terms give m = 3.47 (not very close). The 3000th term is still of size
0001, so the fourth decimal is still not settled. By changing to x = lj\/i, the astrono-
mer Halley and his assistant found 71 correct digits of =/6 (while waiting for the
comet). That is one step in the long and amazing story of calculating . The Chudnoy-
sky brothers recently took the latest step with a supercomputer—they have found
more than one billion decimal places of m {see Science, June 1989). The digits look
completely random, as everyone expected. But so far we have no proof that all ten
digits occur 7% of the time.
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372 10 Infinite Series

Historical note Archimedes located = above 3.14 and below 3% Variations of his
method (polygons in circles) reached as far as 34 digits—but not for 1800 years. Then
Hailey found 71 digits of #/6 with equation (18). For faster convergence that series
was replaced by other inverse tangents, using smailer values of x:
iSRS S e
2 tan 2+t‘:m 3 4 tan 5 tan 339" 20
A prodigy named Dase, who could muttiply 100-digit numbers in his head in 8 hours.
finally passed 200 digits of #. The climax of hand calculation came when Shanks
published 607 digits. [ am sorry to say that only 527 were correct. (With years of
calcuiation he went on to 707 digits. but still only 527 were correct.) The mistake was
not noticed unitl 1945! Then Ferguson reached 808 digits with a desk calculator.
Now comes the computer. Three days on an ENIAC (1949) gave 2000 digits. A
hundred minutes on an IBM 704 (1958) gave 10,000 digits. Shanks (no relation)
reached 100,000 digits. Finally a million digits were found in a day in 1973, with a
CDC 7600. All these caiculations used variations of equation (20).

The record after that went between Cray and Hitachi and now IBM. But the
mcthod changed. The calculations rely on an incredibly accurate algorithm, based
on the “‘arithmetic-geometric mean iteration™ of Gauss. It is also incredibly simple,
all things considered:

au 1 bn / ":. “ h)
Bni1 = 3 b1 = by n,=2a; 4, (1 RZO 2May — hf;‘)

The number of correct digits more than doubles at every step. By n=9 we are far
beyond Shanks {the hand calculator). No end is in sight. Almost anyone can go past
a billion digits, since with the Chudnovsky method we don’t have to start over again.

It is time to stop. You may think (or hope) that nothing more could possibiy be
done with geometric series. We have gone a long way from 1/{1 — x), but some
functions can never be reached. One 15 ¥ (and its relatives sin x, cos x, sinh x, ¢cosh x).
Anotheris /1 — x (and its relatives 1/ /1 — x* sin " 'x, sec ™ 'x, ...). The exponentials
arc in 10.4, with serics that converge for all x. The square-roots are in 10.5, closer to
geometric series and converging for [x| < 1. Before that we have to say what con-
vergence means.

The series came fast, but | hope you see what can be done (subtract. multiply,
differentiate, integrate). Addition is easy, division is harder, all are legal. Some un-
expected numbers are the sums of infinite series.

Added in proof By e-mail [ just learned that the record for « is back in Japan:
2*° digits which is more than 1.07 billion. The elapsed time was 100 hours (75 hours
of CPU time on an NEC machine). The billionth digit after the decimal point 13 9.

10.1_ EXERCISES

Read-through questions equals the fraction _g . The decimal .666... multiplics this
by _h . The decimal 999... is the same as __|

The geometric series 1 + x + x>+ -~ adds to _a . It con- The derivative of the geometric series is _ | = .
verges provided |x|< _& . The sum of n terms is _¢__, This also comes from squaring the __ | series. By choosing
The derivatives of the series match the derivatives of 1/{{ — x) x =.01, the dectmal 1.02030405 is close to _m_ . The
at the point x=_4d | where the nth dertvative is _e . differential equation dyidx = 3* is solved by the geometric

The decimal 1.111... 15 the geometric series al x=__ t  und series, going term by term starting from y{0)= _ n
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The integral of the geometric sertes is _© = _p__ . At
x =1 this becomes the __ @ series, which diverges. At x=
t__wefindln2=_8 .Thechangefrom xte —x produ-

ces the series 1/(t +x)=_t andIn(l+x}=_u

In the geometric series, changing to x* or —x? gives

Yl —x=_v and 1f{1+4 x¥)=_w . Integrating the
last one yields x -4x®+4x5-- =_ x . The angle whose
tangent is x=1istan"! 1=__y , Then substituting x =1
gives the series = _ 2

1 The geometric series is | + x + x* + - = G. Another way

to discover G is to multiply by x. Then x +x? 4+ x3 + - =
x(G, and this can be subtracted from the original series, What
does that Jeave, and what is G?

2 A basketball is dropped 10 feet and bounces back 6 feet,
After every fall it recovers ¥ of its height, What fotal distance
does the ball travel, bouncing forever?

3 Find the sums of $ +¢+9% + - and 1 -4+ ¢~ and
10—1+.1—.01...and 3.040404. ...

4 Replace x by 1 —x in the geometric series fo find a series
for 1/x. Integrate to find a series for ln x. These are power
series “around the point x = 1.” What is their sum at x = (?

5§ What is the second derivative of the geometric series, and
what is its sum at x =4?

6 Multiply the series (1+x+x?+-)1—x+x*—-7} and
find the product by comparing with equation (14).

7 Start with the fraction 4. Divide 7 into 1.000... (by long
division or calculator) until the numbers start repeating.
Which is the first number to repeat? How do you know that
the next digits will be the same as the first?

Note about the fractions 1/gq, 10/g, 100/g, ... All remainders are
less than ¢ so eventually two remainders are the same, By
subtraction, ¢ goes evenly into a power 10¥ minus a smaller
power 10¥ " Thus ge = 10¥ — 107" for some ¢ and 1/g has
a repeating decimal:

1 c c 1

q WF_10"" 10°1_10"

.__C_ l+_£_. _1_...+
T G T R

Conclusion: Every fraction equals a repeating decimal.

B Find the repeating decimal for ¢y and read off c. What is
the number n of digits before it repeats?

9 From the fact that every g goes evenly into a power 10¥
minus a smaller power, show that all primes except 2 or 5 go
evenly into 9 or 99 or 999 or ---.

10 Explain why .010010001... cannot be a fraction (the
number of zeros increases}). :

11 Show that ,123456789101112... is not a fraction.

12 From the geometric series, the repeating decimal
1.065065... equals what fraction? Explain why every repeating
decimal equals a fraction.

13 Write ,878787... and .123123... as fractions and as geo-
metric series.

14 Find the square of 1.111... as an infinite series.

Find the functions which equal the sums 15-24.

15 x+x3+x% 4 - 16 1 —2x44x2 — o

17 2+ x®+x°% 4 18 dx —dx% +4x3— -

19 In x+(n x)* +(n x>+ 20 x—2x3 4 3x>— -
1 1 1 X

21 ;+P+F+m 22 x+_l+x+{__l+x)2+

23 tan x—4tan®x+dtan’x— - &+ e + 3 4 -

23 Multiply the series for I/{1 —x) and 1/{1 + x) to find the
coefficients of x, x2, x> and x".

26 Compare the integral of 1 + x? + x* 4 * t0 equation (13)
and find fdx/(1 - x?).

27 What fractions are close to .2468 and .9876543217
28 Find the first three terms in the series for 1/t —x)*.

Add up the series 29-34. Problem 34 comes from (18).

2 2 2

Wittt 30 .1+ .02+.003 +

31 .1+ H.01) 4+ H.001) + - 32 .1 —4(01) + §(.001) — -
11

33 144(001)+ 00000+ 34 Lok —

35 Compute the nth derivative of 1 + 2x + 3x* + -~ at x=0.
Compute also the nth derivative of (1 —x)™2,

36 The differential equation dy/dx = y? starts from y{0) = b.
From the equation and its derivatives find y, ", y" at x =0,
and construct the start of a series that matches those deriva-
tives. Can you recognize y{x)?

37 The equation dy/dx = y* has the differential form dy/y* =
dx. Integrate both sides and choose the integration constant
so that y=b at x=0, Solve for ¥x) and compare with
Problern 36.

38 In a bridge game, what is the average number u of deals
until you get the best hand? The probability on the first deal
is p, =4%. Then p, =(#(4) = (probability of missing on the
first) times (probability of winning on the second). Generally
Pa=(3""4). The mean value g is p, +2p; +3p; + =

39 Show that (Za,)(Zb,) = Za,b, is ridiculous.

40 Find a series for In 4 by choosing x in (10b). Find a series
for In 3 by choosing x in (13}, How is In 4 related to In 3, and
which series converges faster?
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41 Compute In 3 to its second decimal place without a calcu-
lator (OK to check).

42 To four decimal places, find the angle whose tangent is

x = v.

43 Two tennis players move to the net as they volley the ball,
Starting together they each go forward 39 feet at 13 feet per
second. The ball travels back and forth at 26 feet per second.
How far does it travel before the collision at the net? (Look
for an easy way and also an infinite series.)

44 How many terms of the seres 1 —4 4444+ are
nceded before the first decimal place doesn’t change? Which
power of £ equals the 100th power of ¥? Which power 1/a"
equals 1721907

10.2 Convergence Tests: Positive Series

45 If tan y=4 and tanz =14, then the tangent of y+z is
(tan y+tan z)/(1 —tany tan z)=1. If tan y=1 and tanz=

, again tan{y + z)=1. Why is this not as good as
equation {20), to find n/4?

46 Find one decimal of n beyond 3.14 from the series for
4tan~' $ and 4 tan~ ! §. How many terms are needed in each
series?

47 (Calculator) In the same way find one decimal of =
beyond 3.14159. How many terms did you take?

48 From equation ({0a} what is Ze*/n?

49 Zeno’s Paradox is that if you go half way, and then half
way, and then half way..., you will never get there. In your
opinion, does 4+ 4+ &+ -+ add to 1 or not?

This is the third time we have stopped the calculations to deal with the definitions.
Chapter 2 said what a derivative is. Chapter 5 said what an integral is. Now we say
what the sum of a series is—if it exists. In all three cases a fimit is involved. That is
the formal, careful, cautious part of mathematics, which decides if the active and
progressive parts make sense.

The series 4 + § + 4 + -~ converges to 1. The series 1 + ¥ + §+ - diverges to infin-
ity. The series 1 —~ £+ 1 — -~ converges to In 2, When we speak about convergence or
divergence of a series, we are really speaking about convergence or divergence of its
“partialsums.”

DEFINITION 14 The partial surm s, of the series a, +a, + a5 + -+~ stops at a,;
S, = sum of the first n terms=a, ta, + - +a,.

Thus s, is part of the total sum. The example $ + 4 + 4 + - has partial sums

3 7 1

s;=1 S3 =< s,,=l—§.

1
=3
Those add up larger and larger parts of the series—what is the sum of the whole
series? The answer is: The series 3+ § + ... converges to | because its partial sums s,
converge to 1. The series a, +a, + a5 + ... converges to s when its partial sums—
going further and further out—approach this limit s. Add the a’s, rot the s's.

DEFINITION 2 The sum of a series is the limit of its partial sums s,.

We repeat: if the limit exists. The numbers s, may have no limit. When the partial
sums jump around, the whole series has no sum. Then the series does not converge.
When the partial sums approach s, the distant terms a, are approaching zero. More
than that, the sum of distant terms is approaching zero.

The new idea (L a, = s) has been converted to the old idea (s, — s).

EXAMPLE 1 The geometric series 15 + 1§ + tooo + '+ converges to s=4.

The partial sums s, , 5, 53, 54 are .1, .11, .111, .1111, They are approaching s=4.
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Note again the difference between the series of a's and the sequence of s’s. The series
1+ 141+ - diverges because the sequence of s’s is 1, 2, 3, .... A sharper example is
the harmonic series: 1 + % + § + -+ diverges because its partial sums 1, 14, ... eventu-
ally go past every number s. We saw that in 2.6 and will see it again here.

Do not confuse a, — 0 with s, — 5. You cannot be sure that a series converges, just
on the basis that a, — 0. The harmonic series is the best example: a,= 1/n— 0 but
still 5, = o, This makes infinite series into a delicate game, which mathematicians
enjoy. The line between divergence and convergence is hard to find and easy to cross.
A slight push will speed up a, — 0 and make the s, converge. Even though a, —» 0
does not by itself guarantee convergence, it is the first requirement:

10A  If a series converges (s, — s) then its terms must approach zero (@, — 0).

Proof Suppose s, approaches s (as required by convergence). Then also s,.,
approaches s, and the difference s, — s,_, approaches zero. That difference is a,. So
a,— 0.

EXAMPLE 1 (continued) For the geometric series 1 + x + x* + ---, the test g, >0 is
the same as x" — 0. The test is failed if |x| = 1, because the powers of x don’t go to
zero. Automaticaily the series diverges. The test is passed if —1 < x < 1. But to prove
convergence, we cannot rely on a, — 0. It is the partial sums that must converge:

1—x" 1
= x and 5, — .
l—x

For other series, first check that a, — 0 {otherwise there is no chance of con-
vergence). The a, will not have the special form x"—s0 we need sharper tests.

The geometric series stays in cur mind for this reason. Many convergence tests are
comparisons with that series. The right comparison gives enough information:

This is s.

5,=1+ x4+ x"! .

If |a;] <% and |a,] < % and ..., then a, + a, + ... converges faster than 4+ 4+ ...

More generally, the terms in a,+a;+ay;+ .. may be smaller than

ax +ax? +ax® + .... Provided x < 1, the second series converges. Then Y a, also

converges. We move now to convergence by comparison or divergence by comparison.
Throughout the rest of this section, all numbers a, are assured positive.

COMPARISON TEST AND INTEGRAL TEST

In practice it is rare to compute the partial sums s, = a, + - + a,. Usually a simple
formula can’t be found. We may never know the exact limit s. But it is still possible
to decide convergence—whether there is a sum—by comparison with another series
that is known to converge.

10B (Comparison test) Suppose that 0 <a,<b, and ) b, converges. Then
Y. a, converges.

The smaller terms a, add 1o a smaller sum: Y. q, is below }_ b, and must converge.
On the other hand suppose a, 2 ¢, and }_ ¢, = cc. This comparison forces E a, = a0.
A series diverges if it is above another divergent series.

Note that a series of positive terms can only diverge “to infinity.” It cannot oscillate,
because each term moves it forward. Either the s, creep up on s, passing every number
below it, or they pass ali numbers and diverge. If an increasing sequence s, is bounded
above, it must converge. The line of real numbers is complete, and has no hoies.
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The harmonic series 1 +4+ 31+ 1+ ... diverges to infinity.

A comparison series is 1+1i+i+i+L1+L+L+L14+ ... The harmonic series is
larger. But this comparison series is really 1 + ++ 3+ 4+ ..., because § =2 =%

The comparison series diverges. The harmonic series, above it, must also diverge.

To apply the comparison test, we need something to compare with. In Example 2,
we thought of another series. It was convenient because of those +'s. But 4 different
series will need a different comparison, and where will it come from? There 1s an
automatic way to think of a comparison series. It comes from the integral test.

Allow me to apply the integral test to the same example. To understand the integral
test, look at the areas in Figure 10,2, The test comparces rectangles with curved areas.
v = 4 vy = 4 o=

dx < oo

X

|
nf'

imegral -[—d',“ — oo SUNT — =0 50
x .
integral — e

sosumE%——)oo

F

Fig. 10.2 Inmtegral test: Sums and integrals both diverge {p = |} and both converge (p > 1).

EXAMPLE 2 (again) Compare | + 1+ %+ ... with the area under the curve y = 1ix.

Every term a, = I/n is the area of a rectangle. We are comparing it with a curved
area ¢,. Both areas are between x =n and x=r+ |, and the rectangle is above the
curve. 80 a, > ¢,
1 mldx
rectangular area a, = . eaceeds curved area ¢, = J‘ 5
Here is the point. Those ¢,;’s look complicated, but we can add them up. The sum
e+ ... t ¢, is the whole area, from I to n+ 1. It equals In{n + 1)—we know the
integral of 1/x. We also know that the logarithm goes to infinity.
The rectangular area 1 + 1/2+ ... + 1/n is above the curved area. By comparison
of areas, the harmonic series diverges to infinity—a little faster than in{r + 1).

Remark The integral of 1/x has another advantage over the series with {'s. First.
the integral test was automatic. From 1/n in the serics, we went to 1/x in the intcgral.
Second, the comparison 1s closer. Instead of adding cnly + when the number of terms
is doubled, the true partial sums grow like In n. To prove that, put rectangles under
the curve.

Rectangles below the curve give an area below the integral. Figure 10.2b omits the
first rectangle, to get under the curve. Then we have the opposite to the first
comparison - -the sum i1s now smaller than the integral:

11 1 frdx

~t-t+t+t-<| —=Inn

2 3 ] J1 b
Adding ! to both sides, &, is below 1+ Inn. From the previous test, s, is above
Inin + 1). That is a narrow space-—-we have an excellent estimate of s,. The sum of 1/n
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and the integral of 1/x diverge together. Problem 43 will show that the difference
between s, and In n approaches “Euler’s constant,” which is y = .577 ....

Main point: Rectangular area is s,. Curved area is close. We are using integrals to
help with sums (it used to be the opposite).

Question If a computer adds a million terms every second for a million years, how
large is the partial sum of the harmonic series?

Answer The number of terms is n= 60724 +365-10'2 < 3.2+ 10'°. Therefore In n
is less than In 3.2+ 19 In 10 < 45. By the integral test s, < 1 + In n, the partial sum
after a million years has not reached 46.

For other series, 1/x changes to a different function y(x). At x = n this function
must equal a,. Also y(x) must be decreasing. Then a rectangle of height a, is above
the graph to the right of x = n, and below the graph to the left of x = n. The series
and the integral box each other in: left sum > integral > right sum. The reasoning is
the same as it was for a,= 1/n and y(x) = 1/x: There is finite area in the rectangles
when there is finite area under the curve.

When we can’t add the a's, we integrate y(x) and compare areas:

10C  (Integral test) If y(x) is decreasing and y(n) agrees with a,, then

a, +a,+ay+-+ and j ¥(x) dx both converge or both diverge.
1

- e I I . 1
EXAMPLE 3 The “*p-series F — + —+ - converges if p> |. Integrate y= —::

2P 3 4P X
1 " dx = @ 1 * dx
—< —_ so by addition —_< —
HP n—-1 Xp n=2 ﬂp 1 xp

In Figure 10.2¢, the area is finite if p > 1. The integral equals [x' ~?/(1 — p)]{’, which
is 1/(p — 1). Finite area means convergent series. If 1/17 is the first term, add 1 to the

curved area:
1 1 1 1 p

p g tat« <o =273

The borderline case p=1 is the harmonic series (divergent). By the comparison
test, every p < 1 also produces divergence. Thus Elf\/; diverges by comparison with
j'dxj\/; (and also by comparison with X1/n). Section 7.5 on improper integrals runs
parallel to this section on “improper sums™ (infinite series).

Notice the special cases p= 2 and p= 3. The series 1 + § + & + -*- converges. Euler
found 7?/6 as its sum. The series 1 + § + 45 + - also converges. That is proved by
comparing X1/n® with £1/n? or with [ dx/x*. But the sum for p=3 is unkaown.

Extra credit problem The sum of the p-series leads to the most important problem
in pure mathematics. The “zeta function™ is Z(p) = Z1/n”, so Z(2) = n?/6 and Z(3) is
unknown. Riemann studied the complex numbers p where Z(p)= 0 (there are infi-
nitely many). He conjectured that the real part of those p is always 4. That has been
tested for the first billion zeros, but never proved.

COMPARISON WITH THE GEOMETRIC SERIES

We can compare any new series a, +a, + *-+ with 1+ x + -, Remember that the
first million terms have nothing to do with convergence. It is further out, as n — oo,
that the comparison stands or falls. We still assume that a, > 0.
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10D (Ratio test) Y a, . ,/a, approaches a limit L < 1, the series converges.

10E (Root test} If the nth root (a,)'™ approaches L < 1, the series converges.

Roughly speaking, these tests make a, comparable with [’'—thercfore convergent.
The tests also establish divergence if L > 1. They give no decision when L = 1. Unfor-
tunately L = | is the most important and the hardest case.

On the other hand, you will now see that the ratio test is fairly easy.

EXAMPLE 4 The geometric series x + x% + -~ has ratio exactly x. The nth root is
also exactly x. So L = x. There is convergenee if x < 1 (known) and divergence if x > 1
(also known). The divergence of 1 +1+ -+ is too delicate () for the ratio test and
root test, because L= 1,

EXAMPLE 5 The p-series has a, = 1/n” and a,, ,/a, = nF{{n + 1)*. The limit as n =
is L =1, for every p. The ratio test does not feel the difference between p = 2 (conver-
gence} and p= | (divergence) or even p= — I (extreme divergence). Neither does the
root test. So the integral test is sharper.

EXAMPLE 6 A eombination of p-series and geometric series can now be decided:

2 n i+l v
x x x Y X n )
— 4+ — + -+ — + --- has ratio = — approaching L = x.
17 2° n® a, (n+ 1) x" PP g

it is |x] <1 that decides convergence, not p. The powers x" are stronger than any n°.
The factorials ! will now prove stronger than any x".

EXAMPLE 7 The exponential series o= 1+ x+ §x° + }x? — - converges for ail x.
The terms of this series are x"/n! The ratio between neighboring terms is

X"+ 1)
x*/n! n+1

, which approaches L=0as n— oc.

With x = 1, this ratio test gives convergence of ) 1/n! The sum is e. With x =4, the
larger series )_4"/n! also converges. We know this sum too—it is *. Also the sum
of x"n?/n! converges for any x and p. Again L = 0—the ratio test is not even close.
The factorials take over, and give convergence.

Here is the proof of concergence when the ratios approach L < 1. Choose x halfway
from L to 1. Then x < 1. Eventually the ratios go below x and stay below:

Qn s foy <X Ans2{0ns1 <X Ay +3ifyeg <X
Muitiply the first two inequalities. Then multiply all three:
Ay sy fy < X ay s 2fay < x° an 3ty < x?
Therefore ay., +ay+: +ay. 3+ - i less than ax(x + x*+ x*+ -}, Since x < 1,

comparison with the geometric series gives convergence.

EXAMPLE 8 The series ) 1/n" is ideal for the root test. The nth root is 1/n. Its
limit is L =10. Convergence is even faster than for e=3 1/n! The root test is easily
explained, since (a,)'" < x yields a, < x” and x is close to L < 1. So we compare with
the geometric series.
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SUMMARY FOR POSITIVE SERIES

The convergence of geometric series and p-series and exponential series is settled. I
will put these a,’s in a line, going from most divergent to most convergent. The
crossover to convergence is after 1/n:

. 11 1 n 1 4 1 1
S I, — = = = = = =
Al (=) n" n n? (p>1) 2" 2" nl nl A"
10A 10B and 10C 10D and 10E
(a,+0) (comparison and integral) (ratio and root)

You should know that this crossover is not as sharp as it looks. On the convergent
side, 1/n(In n)* comes before all those p-series. On the divergent side, 1/n(In n) and
1/n(In n)(In In n) belong after 1/n. For any divergent (or convergent) series, there is
another that diverges (or converges) more slowly.

Thus there is no hope of an ultimate all-purpose comparison test. But comparison
is the best method available. Every series in that line can be compared with its
neighbors, and other series can be placed in between. It is a topic that is understood
best by examples.

L .. | e .
EXAMPLE 9 ¥ v diverges because Z; diverges. The comparison uses In n <n.

1 dx 1 dx
EXAMPLE 10 ~ ~ =
M ) n(ln n)? J.x(ln x)? 8 n(ln n) J.x{ln X) ®

The indefinite integrals are —1/In x and In(In x). The first goes to zero as x — oo; the
integral and series both converge. The second integral In(In x) goes to infinity—very
slowly but it gets there. So the second series diverges. These examples squeeze new
series into the line, closer to the crossover.

1 1 T (T G A |
E1d —<— Sk Siop oo g Sle s gk 1
EXAMPL =1 < 3 SO 5 + 5 + T + < St + 5 (convergence)

The constant 1 in this denominator has no effect—and again in the next example.

1 >_1- S0 l+1+1+...>£+1+1+...
2n—1 2n 1 3° 5 2 4 6 ’

EXAMPLE 12

Y 1/2n is 1/2 times Y 1/n, so both series diverge. Two series behave in the same
way if the ratios a,/b, approach L> 0. Examples 11-12 have n?/(n*+ 1) —> 1 and
2n/(2n = 1) - 1. That leads to our final test:

A0F (Limit comparison test) If the ratio a,/b, approaches a positive limit L,
then Y a, and Y b, either both diverge or both converge.

Reason: a, is smaller than 2Lb, and larger than 3Lb, , at least when n is large. So the
two series behave in the same way. For example ) sin (7/n”) converges for p> 1,
not for p< 1. It behaves like ) 1/n” (here L= 7). The tail end of a series (large n)
controls convergence. The front end (small n) controls most of the sum.

There are many more series to be investigated by comparison.
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10.2 EXERCISES

Read-¢through questions

The convergence of a, + a, + **- is decided by the partial sums

s,=_1a _Ifthes, approach s, then Za,=_ b __. For the
¢ series 1+ x + --- the partial sums are s,=_d . In

that case s, — 1/(1 — x) if and only if __® . In all cases the

limit 5, — s requires that @, = __1__, But the harmonic series

a,= 1/nshows that wecanhaveqa, — __@ and still the series
h

The comparison test says that f 0 < a, < b, then _ 1 __ . In
case a decreasing y(x) agrees with a, at x=n, we can apply
the _ ]  test. The sum Ea, converges if and only if _ k
By this test the p-series Z1/n* converges if and only if p is

I__. For the harmonic series (p=1), s,=1+ "+ 1/nis
close to the integral f{mj=_m

The __n__ test applies when a,,,/a, - L. There is con-
vergence if __o , divergence if _ p__, and no decision if

q . Thesame is true for the __ ¢ test, when (a,})!" — L.
For a geometric-p-series combination a,=x"/n?, the ratio
dy+1fa,equals _ 8 . Itslimitis L=_t__ so there is con-
vergence if __u . For the exponential £* = Ex"/n! the limit-
ing ratio d,,,/a, is L=_¥ . This series always __ w
because n! grows faster than any x” or a”.

There is no sharp line between _ x and _y . Butif
b, converges and a,/b, — L, it follows from the _ 2z  test
that La, also converges.

1 Here is a quick proof that a finite sum 1 +4+4+ -~ =s
is impossible. Division by 2 would give ¥+ +§+ - =1s
Subtraction would leave 1 4+ 5+ + - = 4s. Those last two
series cannot both add to s because

2 Behind every decimal s= .abc... 15 a convergent series
a/10+ b/100 + + . By a comparison test prove
COonvergence.

3 From these partial sums s,, find a, and also s=X"a,

{b) s,=4dn

{a) s,.=1—£ (c) s,=In

n+ 1
4 Find the partial sums s,=a, +a; + - +a,:

@ a,=1/3"1  (b) au=1n;—'}l (€} ay=n

5 Suppose O<a,«<b, and La, converges. What can be
deduced about Lb,? Give examples.

6 (a) Suppose b, + ¢, < a, (all positive) and La, converges.
What can you say about b, and Z¢,?
{b) Suppose a,<b,+ ¢, (all positive} and Zaq, diverges.
What can you say about Ib, and Ec,?

Decide convergence or divergence in 7-10 {and give a reason),

T+ dv+sds+ Brho+ros+rio+

Y dr+dr+rdyt 10 dr+rbp+ohr+

Establish convergence or divergence in 11-20 by a comparison
test.

1
1 ZH2+ i0

1
12 Y ————
E.m2+10

! V/n
B Zn+\/; " Zﬂ2+4

15 Z—na-— 16 Zicos 1
n?+nt n? n

18 3 sin® G)

1 1
19 23"_2,, 20

1
17 22_"—1

e"—nt

For 21-28 find the limit L in the ratio test or root test.

3 1
21 Z; 22 ZF
n22r n—1Yy
B Z n! U Z( n )
i n!
25 EF 26 Z;“—,
277 n— 1Y 28 Zf—i
7] n"

293 —4H+ 4 -9+ & -1 is “telescoping” because 7 and 4
cancel —4 and — 4. Add the infinite telescoping series

) (%—erl):)i(n{ni 1))‘

30 Compute the sum s lor other “'telescoping series™
(U AR\ N B\
@{173) 273 *\375
b)iny+nd+ind+ -

31 In the integral test, what sum is larger than {} y{(x} dx and
what surn is smaller? Draw a figure to illustrate.

32 Comparing sums with integrals, find numbers larger and
smaller than

I
3 2n—1 g8 n

33 Which integral test shows that ) " 1/e" converges? What
is the sum?

i 1 1
Sp= 1424t and s, =1+ 2+ + .

34 Which intcgral test shows that 3 | nfe” converges? What
is the sum?
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Decide for or against convergence in 35-42, based on | y(x) dx.

1 1
s an +1 ¥y In+5

n Inn

e — s e l?
ny e By — (15 decreasing? )
= t
39 Y 4 e
Lnfn Ezl n{ln n)(In In n)

@ Y e 42 Y nfe”

1
43 (a) Explain why D, = (1 + % + -+ ;) —In n is positive

by using rectangles as in Figure 10.2.
(b) Show that D,,, is less than D, by proving that

1 Jn-l—l dx
- —_.
n+1 . X

{c) (Calculator) The decreasing D,’s must approach a limit,
Compute them until they go below .6 and below .58
(when?), The limit of the D, is Euler's constant y = .577....

44 In the harmonic series, use s, 2,577 +1n # to show that
I
=14 -4
§ 2] +
How many terms for s, > 10?
1 1 - 1 1 + X + 1 b
T3 T Tl )

. 1 1 1 .

adding 2(2 + - 3 + et o ) to both sides.

(b) Why is the right side close to In 2n—In r? Deduce that
1-4+41—4+ - approaches In 2.

46 Every second a computer adds a million terms of
Y 1/(nln n). By comparison with { dx/(xIn x), estimate the
partial sum after a million years (see Question in text).

1
+ — needs more than 600 terms to reach s, > 7,
H

45 (a) Show that 1 —

NI’—‘

1900 4

47 Estimate 5 by companison with an integral.

100 R

48 If Z a, converges (all a, > 0) show that T a? converges.

10.3 Convergence Tests: All Series
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49 If T a, converges {all a, > 0) show that I sin a, converges.

How could X sin a, converge when X g, diverges?

S0 The nth prime number p, satisfies p./n ln n — 1. Prove that
t 1 1

i 1 1
Z;;:=E+§ §+7+ﬁ+ - diverges.

Construct a series I a, that converges faster than I b, but
slower than ¥ ¢, (meaning a,/b, — 0, a,/c, - ).

51 b, = 1/n%, ¢, = 1/ 52 by=nfd)", c,=(3)"
53 b, =1/n, c,=1/n" Mp, =1/nfc, =1}
In Problem 53 use Stirling’s formula . /2xn n"fe"n! — 1.

55 For the series }+3+4+4+4+4+ - show that the
ratio test fails. The roots {a,}'"” do approach a limit L. Find
L from the even terms a,, = 1/2*. Does the series converge?

56 (For instructors) If the ratios a, ., /a, approach a positive
limit L show that the roots (a,)'"" also approach L.

Decide convergence in 57-66 and name your test.

1 1
Ly 82
59 ZL mz#
107 In (107)
n+2 e
61 Zln 1 62 Y n
63}:—1— (test alt p) 6421"— test all
In P est all p = (test all p}
65y _ 66 Y " (test all
F_ e testalle g

67 Suppose a,/b, — 0 in the limit comparison test. Prove that
Z a, converges if L b, converges.

68 Can you invent a series whose convergence you and your
instructor cannot decide?

This section finaily allows the numbers a, to be negative. The geometric series 1 —

b

=1 is certainly allowed. So is the series n=4—§+$—-5+ -

If we

change all signs to +, the geometric series would still converge (to the larger sum 2).
This is the first test, to bring back a positive series by taking the agbsolute value |a,|

of every term.

DEFINITION The series I a, is ‘‘absolutely convergent” if L |a,| is convergent.
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Changing a negative number from g, to |a,| increases the sum. Main point: The
smaller series X a, is sure to converge if Z |a,| converges.

10G If Z|a,| converges then X a, converges (absolutely). But X a, might con-
verge, as in the series for =z, even if X |a,| diverges to infinity.

EXAMPLE 1  Start with the positive series 3 + 4+ § + *--. Change any signs to minus.
Then the new series converges (absolutely). The right choice of signs will make it
converge to any number between —1 and 1.

EXAMPLE 2 Start with the alternating series 1 —4 +4 — 4+ --- which converges to
In 2. Change to plus signs. The new series 1 + 3+ 5+ - diverges to infinity. The
original alternating series was not absolutely convergent. It was only “conditionally
convergent.”” A series can converge (conditionally) by a careful choice of signs—even
if Z|a,| = co.

If £ |a,| converges then ¥ a, converges. Here is a quick proof. The numbers a, + |a,|
are either zero (if a, is negative) or 2|a,|. By comparison with X 2|a,|, which converges,
Z (a, + |a,|) must converge. Now subtract the convergent series Z |a,|. The difference
¥ a, also converges, completing the proof. All tests for positive series (integral, ratio,
comparison, ...) apply immediately to absolute convergence, because we switch to

||

EXAMPLE 3 Start with the geometric series 3 + 3 + 35 + - which converges to 3.
Change any of those signs to minus. Then the new series must converge (absolutely).
But the sign changes cannot achieve all sums between — 4 and 4. This time the sums
belong to the famous (and very thin) Cantor set of Section 3.7.

EXAMPLE 4 (looking ahead) Suppose Z a,x" converges for a particular number x.
Then for every x nearer to zero, it converges absolutely. This will be proved and used
in Section 10.6 on power series, where it is the most important step in the theory.

EXAMPLE 5 Since X 1/n? converges, so does I (cos n)/n?. That second series has
irregular signs, but it converges absolutely by comparison with the first series (since
|cos n| < 1). Probably X (tan n)/n* does not converge, because the tangent does not
stay bounded like the cosine.

ALTERNATING SERIES

The series 1 —4+ 4 —4 + --- converges to In 2. That was stated without proof. This
is an example of an alternating series, in which the signs alternate between plus and
minus. There is the additional property that the absolute values 1, 4, §, 4, ... decrease
to zero. Those two facts—decrease to zero with alternating signs—guarantee
convergence.

10H An alternating series a, — a, + a; — a, ' converges (at least condition-
ally, maybe not absolutely) if every a,+, <a, and a, — 0.

The best proof is in Figure 10.3. Look at a, — a, + a5. It is below a,, because a; (with
plus sign) is smaller than a, (with minus sign). The sum of five terms is less than the
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T 1
9 1
i § -+ ;
! I B A
l | > 1 I
: , td I i
) ' = * 1 !
) 1 ' =gy !
) | —— | !
| L , Has 1 | 1

) . | |

0 55 54 s 5 D 5

FAg. 40.3 An alternating series converges when the absolute values decrease to zero.

sum of three terms, because 4, is smaller than a,. These partial sums s,, s3, s, ...
with an odd number of terms are decreasing.

Now lock at two terms a, ~ a,, then four terms, then six terms. Adding on a, — a,
increases the sum (because a; > a,). Similarly s¢ is greater than s, (hecause it includes
as — ag which is positive). So the sums s,, 54, Sg, ... 4I¢ increasing.

The difference between s, _, and s, is the single number +a4,. It is required by 10H
to approach zero. Therefore the decreasing sequence s,, 55, ... approaches the same
limit 5 as the increasing sequence s,, Sq, -... The series converges to s, which always
lies between s,_; and s,.

This plus-minus pattern is special but important. The positive series Za, may not
converge. The alternating series is Z(—1)"*a,

EXAMPLE & The alternating series 4 — %+ 3% — 3+ is conditionally convergent (to
7). The absolute values decrease to zero. Is this series absolutely convergent? No.
With plus signs, 41 +4 + 4 + --) diverges like the harmonic series.

EXAMPLE 7 The alternating series 1 — 1+ 1 — 1 + -~ is not convergent at all. Which
requirement in 10H is not met? The partial sums s, 55,55, ... all equal 1 and
$3, 54, 8¢, --- all equal 0—but they don’t approach the same limit s.

MULTIPLYING AND REARRANGING SERIES

In Section 10.} we added and subtracted and multiplied series. Certainly addition
and subtraction are safe. If one series has partial sums s, — s and the other has partial
sums ¢, — ¢, then addition gives partial sums s, +t, - s+ ¢. But multiplication is
more dangerous, because the order of the multiplication can make a difference. More
exactly, the order of terms is important when the series are conditionally convergent.
For absolutely convergent series, the order makes no difference. We can rearrange
their terms and multiply them in any order, and the sum and product comes out
right:

!Ol Suppose Eg,; qonvorgx abaolutciy it Al, Ag, v i any reordenng of the
at thdn!;! =I‘.a,, Inihcneworder 21 alsdwonvengr.s absnlutely. : :

........
L

W supmse $a‘=a ;ad Eb = .._g_onvga'ge abs@lmety The" thc mﬂmwly
mmﬂ;@mMp«ma&i@nwmﬂeﬁtost\ o

.....

Rather than proving 10I and 10J, we show what happens when there is only condi-
tional convergence. Our favorite is 1 —§+¢— %+ -, converging conditionally to
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In 2. By rearranging, it will converge conditionally to anything! Suppose the desired
sumn is 1000. Take positive terms 1 + % + - until they pass 1000. Then add negative
terms —4—%— - until the subtotal drops below 1000. Then new positive terms
bring it above 1000, and so on. All terms are eventually used, since at least one new
term is needed at each step. The limit is s = 1000.

We also get strange products, when series fail to converge absolutely:

! 1 1 1 - 1 1 I 1 1
(1 ﬁ+ﬁ)(1 ﬁ+ﬁ) 1 (ﬁ+ﬁ)+(ﬁ+ﬁ+ﬁ).
On the left the series converge (conditionally). The alternating terms go to zero. On
the right the series diverges. Its terms in parentheses don't even approach zero, and
the product is completely wrong.

I close by emphasizing that it is absolute convergence that matters. The most
important series are power series La,x". Like the geometric series (with all @¢,=1)
there is absolute convergence over an interval of x’s. They give functions of x, which
is what calculus needs and wants.

We po next to the series for e*, which is absolutely convergent everywhere, From
the viewpoint of convergence tests it is too easy—the danger is gone. But from the
viewpoint of calculus and its applications, * is unconditionally the best.

10.3 EXERCISES

Read-through questions

The series La, is absolutely convergent if the series __a s
convergent. Then the original series Xa, is also _ b__. But
the series Za, can converge without converging absolutely.
That is called __ ¢  convergence, and the series __d  isan
example.

to the
sign of a,. With the extra conditions that _ f and _@ ,
the series converges {at least conditionally). The partial sums
51,83, ... are __h__and the partial sums 5,,5;,...are __1 .
The difference between s, and s,_, is _ I . Therefore the
two series converge to the same number 5. An alternating
sertes that converges absolutely [condittonally] (not at all) is
k [_1 J{_m ) With absolute [conditional] con-
vergence a reordering {can or cannot?} change the sum.

For alternating series, the sign of each g, ,,i5s__#®

Da the series 1-12 converge absolutely or conditionally?

1y (1t "3 Y1 nt 3

+

I [

n+ 3”
43 (-1 IE

6% (—1)"*'sin’n

3 Z(—l)"+l

]

5 Y (13 /nfn + 1)

(o2

7 Z[___I)ﬂ-ﬂ.ln(l) 8 Z[_l)n+lm
n n

9 Y (1 P nP L+ n% 10y (-1

11 E(_l]n+lnla’n 12 Z[_l}n+l(1 _nl.u’nj

13 Suppose Ea, converges absolutely. Explain why keeping
the positive a’s gives another convergent series.

14 Can Ea, converge absolutely if all a, are negative?

15 Show that the alternating series | — 3 +4—4+31—% + -
does not converge, by computing the partial sums s;, 54, ....
Which requirement of 10H is not met?

16 Show that ¢ —3+¢— 3+ - does not converge. Which
requirement of 10H is not met?

17 (a) For an alternating series with terms decreasing to zero,
why does the sum s always lie between s,_; and s,?

{b} Is s — s, positive or negative if s, stops at a positive a,?
18 Use Problem 17 to give a bound on the difference between
ss=1—4++%—1+4 and the sum s=In2 of the infinite

series.
19 Find th 1 LI Th i

ind the sum BT +§ ] +---=s. The partial sum s,
is {above s){below s) by less than

2§ Give a bound on the difference between s,p0=

1 H 1 I
T3 + 5 —Wand S=Z{—l)"”;’n2.
1 2

32
. 1 1 n . .
21 Startling from 't + 7 + 3 + o= i with plus signs,
show that the alternating series in Problem 20 has s = n?/12.

21 Does the alternating series in 20 or the positive series in
21 give n? more quickly? Compare 1/101% — 1/102% + --- with
11012 + 171022 + ---,
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23 If Za, does not converge show that Z)a,| does not
converge.

24 Find conditions which guarantec that a; +a,—as+
a4+ as —dg + -+ will converge (negative term follows two
positive terms).

28 Ifthe terms of In 2= 1 — 3+ § — 3} + - are rearranged into
1—-4—3+4—4—75+ -, show that this series now adds to
41n 2. (Combine each positive term with the following nega-
tive term.)

26 Show that the series 1 +§5—4+4+¥—3 +
totln2

27 What is thesumof 1 +4 —4+4—-3+3 -4+

converges

28 Combine l+"'+£—1nn—»}' and 1—§+4—--—in2

toprove t +3+4—4—3 -3+ =2
29 (a) Prove that this alternating series converges:
2dx 1 dx ‘dx
I—] —+z—| — 47— — 4+
L X2 2 x 3 3 X
(b} Show that its sum is Euler's constant 7.

30 Prove that this series converges. Its sum is /2.

sin J.' Sll'l x sin x
e J e

31 The cosine of =1 radian is 1 — 2— 4' -. Compute
cos | to five correct decimals (how many terms?).

7
32 The sine of & == radians is n — 3 + 5o Compute

sin & to eight correct decimals {how many terms?).

33 If £a? and Eb? are convergent show that La,b, is abso-
lutely convergent.

Hint: (a + b)? = 0 yields 2Jab| < a® + 5%
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M Verify the Schwarz inequality (Ea.b,) <{(Za2}Zb?) if
g, =" and b, = )"

35 Under what condition does Z(a,,ﬁ —a,) converge and
what is its sum?

36 For a conditiopally convergent series, explain how the
terms could be rearranged so that the sum is + oo. All terms
must eventually be included, even negative terms.

37 Describe the terms in the product (1 + 4+ 4+ -}l + 1 +
$+ - and find their sum.

38 True or false:

(a) Every alternating series converges.

(b} L a, converges conditionally if Z|a,| diverges.

(c} A convergent series with positive terms is absolutely
convergent.

(d) If Za, and L5, both converge, so does X(a, + b,).

39 Every number x between 0 and 2 equals ! +3+%+ -
with suitable terms deleted. Why?

40 Every number s between —1 and 1 equals +4+4+4+ -
with a suitable choice of signs. (Add 1 =4 +3+3 + - 1o get
Problem 39.} Which signs give s= —1 and s =0 and 5= 4?

41 Show that no choice of signs will make + ¥+ 4+ 4+ -
equal to zero.

42 The sums in Problem 41 form a Cantor set centered at
zero. What is the smallest positive number in the set? Choose
signs to show that } is in the set,

*43 Show that the tangent of & =%(n — 1) is sin 11 —cos 1).
This is the imaginary part of s= —In{l —¢'). From
s =L e"/n deduce the remarkable sum I {sin n)fn = }{r — 1}.

44 Suppose Ea, converges and |x|< 1. Show that Za,x"
converges absolutely.

10.4 The Taylor Series for e*, sin x, and cos x TINEGNTNEGENGE

This section goes back from numbers to functions. Instead of Za, = s it deals with
Za,x" = f(x). The sum is a function of x. The geometric series has ail a, = 1 {including

a,, the constant term) and its sum is f{x) =

1/(1 — x). The derivatives of 1 + x + x> + -

match the derivatives of f. Now we choose the a, differently, to match a different

function,

The new function is ¢*. All its derivatives are ¢*. At x =0, this function and its
derivatives equal 1. To match these 1’s, we move factorials into the denominators.
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Term by term the series is

x x* x?

=1+ -+ =+
o203 M
x"/n! has the correct nth derivative (= 1), From rhe derivatives at x =0, we have built
back the function! At x =1 the right sideis 1 + 1+ 4+ 4+ -~ and the left side is e =
2.71828.... At x= — 1 the series gives 1 — 1 +4 — 4+ -, whichise™ 1.
The same term-by-term idea works for differential equations, as follows.

EXAMPLE 1 Solve dy/dx = — y starting from y=1 at x=0.

Solution The zeroth derivative at x = 0 is the function itself: y = 1. Then the equation
y=-y gives y=-1 and »"=—y=+1 The alternating derivatives
1, —1, 1, —1, ... are matched by the alternating series for e™*:

=1l-x+gx?—}x>+- ~* {the correct solution to y = — y).

EXAMPLE2 Solve d2y/dx? = — y starting from y = 1 and y’' = 0 (the answer is cos x).

Solution The equation gives " = — 1 (again at x = 0). The derivative of the equation
gives y” = — y'=0. Then y"" = — y" = + 1. The even derivatives are alternately +1
and —1, the odd derivatives are zero. This is matched by a series of even powers,
which constructs cos x:

T D S
—1—2—1x+ Rl + - =cos x.
The first terms 1 — 4x? came earlier in the book. Now we have the whole alternating
series. It converges absolutely for all x, by comparison with the series for ¢* (odd
powers are dropped). The partial sums in Figure 10.4 reach further and further before

they lose touch with cos x.

1—[ 2+~|—.r4 (13) (x'z)

'I cove / /%

- da?) () ~(x1%)
Ag. 10.4 The partial sums 1 — x*/2 + x*/24 — --- of the cosine series.

If we wanted plus signs instead of plus-minus, we could average " and e *. The
differential equation for cosh x is d*y/dx? = + y, to give plus signs:

t e 1 1 1 L
5(e‘+e )—l+-2—lx +4—’x +§x + -+ (which is cosh x).

TAYLOR SERIES
The idea of matching derivatives by powers is becoming central to this chapter. The

derivatives are given at a basepoint (say x = 0). They are numbers f(0), f'(0), .... The
derivative f“(0) will be the nth derivative of a,x", if we choose a, to be f*(0)/n!
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Then the series a,x" has the same derivatives at the basepoint as f(x):

10K The Taylor series that matches f(x) and all its derivatives at x =0 is

Z ﬂ"’(O)

JO)+ O+ 3 f/Op2 + (O + -

The first terms give the linear and quadratic approximations that we know well. The
x? term was mentioned earlier (but not used). Now we have all the terms—an “infinite
approximation” that is intended to equal f(x).

Two things are needed. First, the series must converge. Second, the function must
do what the series predicts, away from x = 0. Those are true for ¢* and cos x and
sin x; the series equals the function. We proceed on that basis.

The Taylor series with special basepoint x = 0 is also called the “Maclaurin series.”

EXAMPLE 3 Find the Taylor series for f(x)= sin x around x = 0.

Solution The numbers f™(0) are the values of f=sinx, f'=cos x, "= —sinx, ...
at x=0. Those values are 0, 1,0, —1,0, 1, .... All even derivatives are zero. To find
the coefficients in the Taylor series, divide by the factorials:

sin x=x— x>+ dgx’— 2)

EXAMPLE 4 Find the Taylor series for f(x) = (1 + x)* around x=0.

Solution This function starts at f(0) = 1. Its derivative is 5(1 + x)*, so f’(0) = 5. The
second derivative is 5-4-(1 + x)*, so f"(0)=5-4. The next three derivatives are
5:4-3,5:4-3-2,5-4-3-2-1. After that all derivatives are zero. Therefore the Taylor
series stops after the x° term:

1+5x+524 24

5-4-3){3 i 5'4°3°2x4 4 5:4-3:2-1
3! 4! 5!
You may recognize 1, 5, 10, 10, 5, 1. They are the binomial coefficients, which appear

in Pascal’s triangle (Section 2.2). By matching derivatives, we see why 0!, 1!, 2!, ... are
needed in the denominators.

X (3)

There is no doubt that x =0 is the nicest basepoint. But Taylor series can be con-
structed around other points x = a. The principle is the same—match derivatives by
powers—but now the powers to use are (x — a)". The derivatives /"(a) are computed
at the new basepoint x = a.

The Taylor series begins with f(a) + f'(a)(x — a). This is the tangent approximation
at x = a. The whole “infinite approximation” is centered at a—at that point it has
the same derivatives as f(x).

10L The Taylor series for f(x) around the basepoint x = a is

1
Jix)=fla) +f(@)(x—a) + 5 (a)(x— a)* + — xal @

EXAMPLE 5 Find the Taylor series for f(x)= (1 + x)° around x=a= 1.

Solution At x=1, the function is (1+ 1)*=32. Its first derivative 5(1 + x)* is
5+16 = 80. We compute the nth derivative, divide by n!, and multiply by (x — 1)":

32+ 80(x — 1)+ 80(x — 1) + 40(x — 1)> + 10(x — 1)* + (x — 1)*. (5

387
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That Tayior series (which stops at n = 5) should agree with (1 + x)°. It does. We could
rewrite 1 + x as 2 + (x — 1), and take its filth power directly. Then 32, 16, 8,4, 2, 1 will
multiply the usual coefficients 1,5,10, 10,5,1 to give our Taylor coefficients
32, 80, 80, 40, 10, 1. The series stops as it will stop for any polynomial—because the
high derivatives are zero.

EXAMPLE 6 Find the Taylor series for f(x) = ¢* around the basepoint x = 1.

Solution At x=1 the function and all its derivatives equal e. Therefore the
Taylor series has that constant factor (note the powers of x — 1, not x):

¢ € 34
e“=e+e(x—1)+£(x—l)z+i(x-l)+ : (6)

DEFINING THE FUNCTION BY ITS SERIES

Usually, we define sin x and cos x from the sides of a {riangle. But we could start
instead with the series. Define sin x by equation (2). The logic goes backward, but it
is still correct:

First, prove that the series converges.
Second, prove properties like (sin x)' = cos x.
Third, connect the definitions by series to the sides of a triangle.

We don’t plan to do all this. The usual definition was good enough. But note first:
There is no problem with convergence. The series for sin x and cos x and &* all have
terms + x"/n!. The factorials make the series converge for all x. The general rule for
e* times ¢ can be based on the series. Equation (6) is typical: e is multiplied by
powers of {x — 1). Those powers add to e*~'. So the series proves that ¢* = ee* 1,
That is just one example of the multiplication (e*){e”) = e***:

2 2 2 2
x Y x ¥

l+x+=+ . [1+y+=+ L )=l+x+y+=+xy+=+... (7

( 3 )( y+3 ) yro txy+3 )

Term by term, muitiplication gives the series for e* Y. Term by term, diflerentiating
the series for e gives e*. Term by term, the derivative of sin x is cos x:

d x* x® xr ox?
Sl (O A 8 AR
dx(x 3 s ) 21 4 ®)

We don’t need the famous limit (sin x)/x — 1, by which geometry gave us the deriva-
tive. The identities of trigonometry become identities of infinite series. We could even
define = as the first positive x at which x —3x®+ ‘- equals zero. But it is certainly
not obvious that this sine series returns to zero—much less that the point of return
is near 3.14,

The function that will be defined by infinite series is ™. This is the exponential of
the imaginary number if (a multiple of i = \/—_1 ). The result ¢ is a complex number,
and our goal is to identify it. (We will be confirming Section 9.4.) The technique is to
treat if like all other numbers, real or complex, and simply put it into the series:

DEFINITION ¢ is the sum of 1 + (i) + 51;(1'9)2 + %(1’8)3 + (9)

Now use i2= — 1. The even powers are i*=+1, i®=—1, i*=+1,.... We are
just multiplying —1 by —1to get 1. The odd powersare i*= — i, i* = +1i, .... There-



10.4 The Taylor Serles for &°, sin x, and cos x
fore ¢*® splits into a real part (with no i’s) and an imagingry part (multiplying i):

1 1 1 i
i — — s g .. ilg— —g3 4+ —g5 — ..
e —(1 2!8 +4!B"’ )+1(6‘ 3!8 +5!8 ) (10)
You recognize those sgries. They are cos 8 and sin 8. Therefore:

Euler’s formula is ¢® = cos 0+ i sin 0. Note that ¢*™ =1,

ye-mrj:oz 847 sin 6 The real part is'x = cos # and the imaginary part is y = sin #. Those coordinates pick
. out the point ¢® in the “complex plane.” Its distance from the origin (0, 0) is r= 1,
R because (cos £) + (sin 8)° = 1. Its angle is 6, as shown in Figure 10.5. The number
1,i8 "b‘f‘m —1 is e at the distance r=1 and the angie =. It is on the real axis to the left of
2 zero. If £ is multiplied by r = 2 or ¥ = % or any r > 0, the result is a complex number
9\ . i ata distance r from the origin:
x=reos@ | Complex rumbers: re'® = ricos 8+ i sin 6)=r cos 0+ ir sin 8 = x + iy.

Ag. 105 With ¢° a negative number has a logarithm. The logarithm of —1 is imaginary
(it is im, since ¥ = — 1). A negative number also has fractional powers. The fourth
root of —1 is (—1)}* = ¢™* More important for calculus: The derivative of x> is
#x1%, That sounds old and familiar, but at x = — 1 it was never allowed.

Complex numbers tie up the loose ends left by the limitations of real numbers.

The formula ¢ = cos & + i sin 8 has been called “one of the greatest mysteries of
undergraduate mathematics.” Writers have used desperate methods to avoid infinite
series. That proof in (10) may be the clearest (I remember sending it to a prisoner
studying calculus) but here is a way to start from d/dx(e’”) = ie'.

A different proof of Euler's formula Any complex number is ¢ = Fcos 8 + i sin 8)
for some r and 8. Take the x derivative of both sides, and substitute for ie*:

{cos 8+ i sin O)dr/dx + H{—sin 8 + i cos A)d@/dx = ir{cos #+ i sin 0).

Comparing the real parts and also the imaginary parts, we need dr/dx=0 and
d@/dx = 1. The starting values r = 1 and 6 =0 are known from ¢'® = 1. Therefore r is
always | and # is x. Substituting into the first sentence of the proof, we have Euler’s
formula € = 1{cos 8 + i sin 8).
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10.4 EXERCISES

Read-through questions

The __©  serigs is chosen to match f{x) and all its _ b

at the basepoint. Around x=0 the series begins with

SO +_ ¢ x+_d  x* Thecoefficient of x"is __® . For

f(x) =e* this sertes is __t . For f{x)=rcos x the series is
@ . For f{x)==sin x the series is __h__. If the signs were

all positive in those series, the functions would be cosh x and
| . Addition gives cosh x +sinhx = __|

In the Taylor series for f(x) around x = a, the coefficient of
(x—aFish,=_ k . Then b {x—a)" has the same _ |  as
fat the basepoint. In the example f{x} = x?, the Taylor coeffi-
cients are bo=_mM hy=_Nn__ b,=_ o . The series
bo+ b (x —a)+ by{x —a)® agrees with the original _ p
The series for ¢® around x=a has b,=_a . Then the
Taylor series reproduces the identity ¢*={__ * }__ & ).

We define ¢, sin x, cos x, and also ¢ by their series. The
derivative dfdx(l + x+}x?+-)=1+x+ - translates to

t . The derivative of 1 —4x? 4+ --is _u , Using i’=
— 1 the series | +i6 + 4(i#)* + --- splits into *=__ v . Tts
square gives ¢*®=_ w  Its reciprocal is e ®=_ x
Multiplying by rgivesre® = _ v +i_ t  whichconnects
the polar and rectangular forms of a __A__ number. The

logarithm of ¢® is __ 8

1 Write down the series for ¢?* and compute all derivatives
at x = (, Give a series of numbers that adds to 2.

2 Write down the series for sin 2x and check the third
derivative at x=0. Give a series of numbers that adds to
sin 2r =10,
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In 3-8 find the derivacives of f{x) at x =0 and the Taylor series
(powers of x) with those derivatives.

I f(x)=e" 4fix)=1f{1+x)
5 fix)=1/(1 —2x) 6 f{x)=cosh x
Tfix)=In{l—x) 8 fix)=In(+x)

Problems 9-14 solve differential equations by series.

9 From the equation dy/dx =y~ 2 find all the derivatives
of y at x=0 starting from y0)= 1. Construct the infinite
series for y, identify it as a known function, and verify that
the function satisfies y' = y—2.

10 Differentiate the equation y' =cy + s (¢ and s constant)
to find all derivatives of y at x =0. If the starting value is
yo =0, construct the Taylor series for y and identify it with
the solution of ¥y =cy + s in Section §.3.

11 Find the infinite series that solves y* = — y starting from
y=0and y=1at x=0.

12 Find the infinite series that solves y = y staning from y =
i at x=3 {use powers of x— 3). Identify y as a known
function.

13 Find the infinite series {powers of x) that solves y" =
2y' — y starting from y=0and y=1at x=0.

14 Solve " =y by a series with y=1 and y =0 at x=0and
identify y as a known function.

15 Find the Taylor series for f{x}=(l + x)* around x=a =
0 and around x =a =1 (powers of x —1). Check that both
series add to (I + x)%.

16 Find all derivatives of f(x} = x* at x = 4 and write out the
Taylor series around that point, Verify that it adds to x°,

17 What is the series for (1 — x)* with basepoint e =17

18 Write down the Taylor series for f=cos x around x = 2=
and also for /= cos (x — 2n) around x =0,

In 1924 compute the derivatives of / and its Taylor series
around x =1,

19 f(x) = 1/x 20 f(x) = 1j(2 — x}
21 f(x)=In x 22 f(x)=x*
23 f(x)=¢"" 24 f(x} =¥

In 25-33 write down the first three nonzero terms of the Taylor
series around x = 0, from the series for £%, cos x, and sin x.

25 xe?* 26 cos \/; 27 (1 —cos x}x?
qg SILX 29 J‘ == dx 30 sin x?

x o X
3~ 32 pr = b 3 ¢ cos x

*34 ¥For x < 0 the derivative of x" is still nx"~1:

d n ___i iRy m=1 i'nzdlxl
dx{x}-_dx[lxie )_HIII e dx.
What is d|x|/dx? Rewrite this answer as nx" 1,

35 Why doesn’t fix) = \/; have a Taylor series around x =
0? Find the first two terms around x = 1.

36 Find the Taylor series for 2* around x = 0.

In 37—44 find the first three terms of the Taylor series around
x=0

37 fix)=tan"!x
¥ f(x)=tan x
41 f(x)= e
43 fix} = cos’x

38 f(x) =sin"!x
40 f{x)=In{cos x)
42 f(x) = tanh~'x
4 f(x}=sec’x
45 From e®=cos@ +isiné and e~ =cos § —isin 8, add
and subtract to find cos 0 and sin 8.
46 Does (¢'*)? equal cos?d + § 5in?@ or cos #% + i sin 07
47 Find the real and imaginary parts and the 9%th power of
ei:’ ei:jZ’ ein,M’ ﬂ.l'ld e—ix}ﬁ‘
48 The three cube roots of 1 are 1, ™3, ¢**i3,
{a) Find the reai and imaginary parts of ¢2"#2,
(b) Explain why (e**¥)* =1,
{c} Check this statement in rectangular coordinates.

49 The cube roots of —1=¢" are ¢™* and and
. Find their sum and their product,

50 Find the squares of 2¢™3=1+./3i and 4e™—
2./2+ iz\/f in both polar and rectangular coordinates.

51 Multiply ¢"=coss+isins times e"=cost+isint to
find formulas for cos(s + ¢) and sin(s + ).

52 Multiply ¢* times e~ " to find formulas for cos{s — ) and
sin(s — t}.

53 Find the logarithm of i. Then find another logarithm of i.
{What can you add to the exponent of ¢ without changing
the result?)

54 (Proof that e is irrational) If e = p/q then

1 t o1 !
=pl] - — —_—— —_— e b —
N P‘[e (1 TR I p!):\

would be an integer. (Why?) The number in brackets—the
distance from the alternating series to its sum !/e—is less
than the last term which is I/p! Deduce that [N| < 1 and reach
a contradiction, which proves that ¢ cannot equal p/q.

55 Solve dy/dx = y by infinite series staning from y =2 at
x=0.
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This section studies the properties of a power series. When the basepoint is zero, the
powers are x". The series is £a,x". When the basepoint is x = a, the powers are
(x — a)". We want to know when and where (and how quickly) the series converges
to the underlying function. For ¢* and cos x and sin x there is convergence for all
x—but that is certainly not true for 1/(1 — x). The convergence is best when the
function is smooth.

First I emphasize that power series are not the only series. For many applications
they are not the best choice. An alternative is a sum of sines, f(x) = Zb, sin nx. That
is a “Fourier sine series”, which treats all x’s equally instead of picking on a basepoint.
A Fourier series allows jumps and corners in the graph—it takes the rough with the
smooth. By contrast a power series is terrific near its basepoint, and gets worse as
you move away. The Taylor coefficients a, are totally determined at the base-
point—where all derivatives are computed. Remember the rule for Taylor series:

a, = (nth derivative at the basepoint)/n! = "(a)/n! (1)

A remarkable fact is the convergence in a symmetric interval around x = a.

10M A power series Za,x" either converges for all x, or it converges only at
the basepoint x =0, or else it has a radius of convergence r:

Za,x" converges absolutely if |x| < r and diverges if |x| > r.

The series Zx"/n! converges for all x (the sum is ¢*). The series Zn!x" converges for
no x (except x =0). The geometric series Zx" converges absolutely for |x| <1 and
diverges for |x| > 1. Its radius of convergence is r = 1. Note that its sum 1/(1 — x) is
perfectly good for |x| > 1—the function is all right but the series has given up. If
something goes wrong at the distance r, a power series can’t get past that point.

When the basepoint is x = a, the interval of convergence shifts over to |x —a| <r.
The series converges for x between a — r and a + r (symmetric around a). We cannot
say in advance whether the endpoints a + r give divergence or convergence (absolute
or conditional). Inside the interval, an easy comparison test will now prove con-
vergence.

PROOF OF 10M Suppose Za, X" converges at a particular point X. The proof will

show that £a,x" converges when |x| is less than the number |X|. Thus convergence

at X gives convergence at all closer points x (I mean closer to the basepoint 0). Proof:

Since X a, X" converges, its terms approach zero. Eventually |a, X"| <1 and then
la,x"| = |a, X"| |x/X|" < |x/X|".

Our series Za,x" is absolutely convergent by comparison with the geometric series
for |x/X|, which converges since |x/X| < 1.

EXAMPLE 1 The series Znx"/4" has radius of convergence r = 4.

The ratio test and root test are best for power series. The ratios between terms
approach x/4 (and so does the nth root of nx"/4"):
(n+ )x"*! [nx"  xn+1
T e

The ratio test gives convergence if L <1, which means |x| <4.

approaches L =

FN
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EXAMPLE 2 The sine series x — 3 + 5 has r = oo (it converges everywhere).

The ratio of x"*2/(n+ 2)! to x"/n! is x*/(n + 2)(n+ 1). This approaches L = 0.

EXAMPLE 3 The series (x — 5)"/n* has radius r = 1 around its basepoint a = 5.

The ratios between terms approach L = x — 5. (The fractions n?/(n + 1)* go toward
1.) There is absolute convergence if |[x — 5| < 1. This is the interval 4 < x < 6, symmet-
ric around the basepoint. This series happens to converge at the endpoints 4 and 6,
because of the factor 1/n%. That factor decides the delicate question—convergence at
the endpoints—but all powers of n give the same interval of convergence 4 < x < 6.

CONVERGENCE TO THE FUNCTION: REMAINDER TERM AND RADIUS r

Remember that a Taylor series starts with a function f(x). The derivatives at the
basepoint produce the series. Suppose the series converges: Does it converge to
the function? This is a question about the remainder R,(x) = f(x) — s,(x), which is the
difference between f and the partial sum s, = ag + - + a,(x — a)". The remainder R,
is the error if we stop the series, ending with the nth derivative term a,(x — a)".

10N  Suppose f has an (n + 1)st derivative from the basepoint a out to x. Then
for some point ¢ in between (position not known) the remainder at x equals

R, (x) = f(x) = 5,(x) = f"* e} (x — a)" **/(n + 1)! (2)

The error in stopping at the nth derivative is controlled by the (n + 1)st derivative.

You will guess, correctly, that the unknown point ¢ comes from the Mean Value
Theorem. For n= 1 the proof is at the end of Section 3.8. That was the error e(x) in
linear approximation:

R, (x)=f(x) — fla) — f'(a)(x — a) = 3f"(c)(x — a)*.
For every n, the proof compares R, with (x —a)"**. Their (n+ 1)st derivatives are
f"* Y and (n+ 1)! The generalized Mean Value Theorem says that the ratio of R, to
(x —a)"" ! equals the ratio of those derivatives, at the right point ¢. That is equation
(2). The details can stay in Section 3.8 and Problem 23, because the main point is

what we want. The error is exactly like the next term a, . ,(x — a)"*?, except that the
(n + 1)st derivative is at ¢ instead of the basepoint a.

EXAMPLE 4 When fis e*, the (n + 1)st derivative is e*. Therefore the error is

X" X"+1
=" — + x4 e+ — ]| =g )
R,=e (1 x n!) e[n+])! (3)
At x=1 and n=2, the error is e — (1 + 1 + 3) ~.218. The right side is /6. The
unknown point is ¢ = In (.218 - 6) = .27. Thus ¢ lies between the basepoint a =0 and
the error point x = 1, as required. The series converges to the function, because
R,— 0.

In practice, n is the number of derivatives to be calculated. We may aim for an
error |R,| below 10™°. Unfortunately, the high derivative in formula (2) is awkward
to estimate (except for e*). And high derivatives in formula (1) are difficult to compute.
Most real calculations use only a few terms of a Taylor series. For more accuracy we
move the basepoint closer, or switch to another series.
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There is a direct connection between the function and the convergence radius r,
A hint came for f{x)= 1/(1 — x). The function blows up at x=1—which also ends
the convergence interval for the series. Another hint comes for f= 1/x, if we expand
around x=g=1:

1 1
e =1+ (I —x)+ (1 — X+ -, 4
P g (t—x}+(1-x) (4)
This geometric series converges for |[I — x| < 1. Convergence stops at the end point
x= 0—exactly where 1/x blows up. The failure of the function stops the convergence
of the series. But note that 1/{1 + x?2), which never seems to fail, also has convergence
radius r=1;

/{1 +x*=1—-x?+x*—x%+ - converges only for |x| < 1.

When you see the reason, you will know why r is a “radius.” There is a circle, and
the function fails at the edge of the circle. The circle contains complex numbers as
well as real numbers. The imaginary points ;i and —i are at the edge of the circle,
The function fails at those points because 1/(1 +i%)= w,

Complex numbers are pulling the strings, out of sight. The circle of convergence
reaches out to the nearest “singularity” of f(x), real or imaginary or complex. For
1/(1 + x?2), the singularities at i and —i make r = 1. If we expand around a =3, the
distance to i and —i is r=\/ﬁ. If we change to In (1 + x), which blows up at
x= — 1, the radius of convergence of x —§x? +§x?— - isr=1.

Vi +iY) =0

In0and 0”7 atx =-1

a=0

In{1 + x) angd {1 + )"

1/1 + x2y = oo alsoat —i

Ag. 10.6 Convergence radius r is distance from basepoint a to nearest singularity.

THE BINOMIAL SERIES

We close this chapter with one more series. It is the Taylor series for (1 + x)?, around
the basepoint x = 0. A typical power is p =%, where we want the terms in

ST+ x=1+4x+a,x?+ -

The slow way is to square both sides, which gives 1+ x + (2a, + 3)x? on the right.
Since 1 + x is on the left, a, = —} is needed to remove the x? term. Eventually a,
can be found. The fast way is to match the derivatives of f= (1 + x)!/%:

L=l f=@Ehl 0T = - HE D+ 07
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At x = 0 those derivatives are 4, — }, 3. Dividing by 11, 2!, 3! gives

HTS BT BT T a\/\2 2 T

These are the binomial coefficients when the power is p=1.

Notice the difference from the binomials in Chapter 2. For those, the power p was
a positive integer. The series (1 + x)> = 1 + 2x + x? stopped at x2. The coefficients for
p=2were1,2,1,0,0,0, .... For fractional p or negative p those later coefficients are
not zero, and we find them from the derivatives of (1 + x)*:

(1+xF pll+xy ' pp—D1+xF~2 [fO=pp—1)(p—n+1)1+xP"
Dividing by 0!, 11, 2!, ..., n! at x =0, the binomial coeflicients are

Mp=1) [0 _sp=D(p-n+])

! 2 n! n ©)

For p = n that last binomial coefficient is nl/n! = 1. It gives the final x" at the end of
(1 + x)". For other values of p, the binomial series never stops. It converges for |x| < 1:

A=Yyl @ MR DGont Y,

1+ xfP=1+px+——x>+ -
( x} px 2 x =0 ﬂ!

(6)

When p= 1,2, 3, ... the binomial coefficient p!{n!(n— p)! counts the number of ways
to select a group of n friends out of a group of p friends. I you have 20 friends, you
can choose 2 of them in (20)(19)/2 = 190 ways.

Suppose p is not a positive integer. What goes wrong with (1 + x)*, to stop the
convergence at |x| = 17 The failure is at x= —1. If p is negative, (1 + x)* blows up.
If p is positive, as in /1 + x, the higher derivatives blow up. Only for a positive
integer p = n does the convergence radius move out fo r = oo, In that case the series
for (1 + x)" stops at x", and S never fails.

A power series is a function in a new form. It is not a simple form, but sometimes
it is the only form. To compute f we have to sum the series. To square f we have to
multiply series. But the operations of calculus—derivative and integral —are easier.
That explains why power series help to solve differential equations, which are a rich
source of new functions. (Numerically the series are not always so good,) I should
have said that the derivative and integral are easy for each separate term a,x"—and
fortunately the convergence radius of the whole series is not changed.

If [(x)=Za,x" has convergence radius v, so do its derivative and its integral:
dffdx=Xna,x"~* and ff{x)dx =YXa,x"*f{n+ 1) also converge for |x| <r.

EXAMPLES The series for 1/(1 —x) and its derivative 1/(1 — x)* and its integral
— In{l — x) all have r=1 (because they all have trouble at x = 1}. The series are L x"
and Zrx""!and Ix""n+ 1)

EXAMPLE & We can inteprate ¢* (previously impossible) by integrating every term
in its series:

1 x* 1 (x*\ 1 fx7
Ty 2 e =t — =)+ ==
je“ dx-—J‘(1+x +ix + )dx—x+ 3 +2!(5)+3!(? +

This always converges (r = o). The derivative of ¢*° was never a problem.
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Read-through questions

If |x| <|X} and £a,X " converges, then the series La,x" also
a . There is convergence in a __b_ interval around the
¢ . For Z(2x)" the convergence radius isr=_d__. For

Ex"/n! the radius is r=_4e . For Z{x — 3)" there is con-
vergence for [x —3]<_ 1, Then x is between _g  and
h

Starting with f{x), its Taylor series £a,x" has a,=__1
With basepoint a, the coefficient of (x—a)"is _J The
error after the x" term is called the _ kR (x}. Itis equal to

! where the unknown point ¢ ts between _m___ Thus
the error is controlled by the _n__ derivative.

The circle of convergence reaches out to the first point
where f(x) fails. For f=4/(2 — x), that point is x=_0o
Around the basepoint a = 5, the convergence radius would be
r=_p . Forsin x and cos x the radius is r=__a

The series for ./t +x is the _ r  series with p=4. Its
coeflicients are a,=__ s . Its convergence radius is _ 1
Its square is the very short series I + x.

In 1-6 find the Taylor series for /{x) around x = 0 and its radius
of convergence r. At what point does f(x) blow up?

1 fix)=1/(1 —4x) 2 f{x)= (1 —4x?)

3 fix)=e'"" 4 f(x)=tan x (through x?)
5 fix)=Inle + x) 6 fix)=1/1 +4x?%)

Find the interval of convergence and the function in 7-10,
7ﬂn=f(x;j" 8 /() =3 nx—ay

T 5
j— 2 ]' n+ 1
9 f(ﬂ—% x—a
A3

10 fix}=(x—2qm)— w— +

3

11 Write down the Taylor series for (¢ — 1)/x, based cn the
series for e*. At x =0 the function is 0/0. Evaluate the series
at x=0. Check by I'Hdpital’s Rule on {e* — 1)/x.

12 Writec down the Taylor series for xe* around x =0. Inte-
grate and substitute x =1 to find the sum of 1/nKn + 2).

13 If f(x) is an even function, so f(—x) = f(x), what can you
say about its Taylor coefficients in f= Za,x"?

14 Puzzle out the sums of the following series:
(@x+x?—x*+x*+x*—x+ -

(Ch(x—1)—$x— 1P +¥Hx— 10—

15 From the series for {1 —cos x)/x? find the limit as x =0
faster than I'Hépital’s rule.

16 Construct a power series that converges for 0 < x < 2,

17-24 are about remainders and 2536 are about binomials.

17 If the cosine series stops before x8/8! show from (2) that
the remainder R, is less than x%/8! Does this also follow
because the series is alternating?

18 If the sine series around x = 2x stops after the terms in
prablem 10, estimate the remainder from equation (2).

19 Estimate by (2) the remainder R,=x"*! + x"*2 4 --- in
the peometric series. Then compute R, exactly and find the
unknown point ¢ for n =2 and x =1%.

20 For —In{l1 — x) = x + $x2 4+ 4x* + R,, use equation (2) to
show that Ry <} at x=4.

2t Find R, in Problem 20 and show that the series converges
to the function at x = § (prove that R, — 0).

22 By estimating R, prove that the Taylor series for ¢* around
x =1 converges to ¢ as n — oo,

23 (Proof of the remainder formula when n = 2)

(a) At x=a find R;, R3, R3, RY".

(b) At x = aevaluate glx) ={x —m*and ¢’ g", &
Ry(x) = Rya) _ Rifcy),
gx)—gla) g}
Ryfe,) = Rfa) _ Rcs)
gle)—gla  g'c)
Rilez) = Rila) _ Ryle)
gle)—g@ g
{e) Combine {a-b-¢-d) into the remainder formnla (2).

(c) What rule gives

(d) In

where are ¢, and ¢, and ¢?

24 All derivatives of f{x) = ¢~ !'*’ are zero at x =0, including
Ji0)=0. What is f(.1}? What is the Taylor series around
x =07 What is the radius of convergence? Where does the
series converge to f(x)? For x=1 and n=1 what is the
remainder estimate in (2)?

25 (a) Find the first three terms in the binomial series for
1)1 —x2
{b) Integrate to find the first three terms in the Taylor

series for sin”'x.

26 Show that the binomial coefficients in 1/,/1 — x = Zag,x"
are a,=1+3+5-(2n— 1){2"n!

27 Forp= —1 and p= — 2 find nice formulas for the bino-
mial coefficients.

28 Change the dummy variable and add lower limits to make
I=px""'=ZI% (n+ 1)x",
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29 In (1 —x} '=Zx" the coefficient of x" is the number of
groups of n [riends that can be formed from | friend (not
binomial - repetition is allowed!) The coefficient is 1 and
there is only one group—the same friend » times.
{a) Describe all groups of n friends that can be formed
from 2 friends. (There are n + | groups.)

{b) How many groups of 5 friends can be formed from 3
friends?
30 fa) What is the coefficient of x* when 1 +x+x*+
multiplies 1 + x + x* + -7 Write the first three terms.
{b} What is the coefficient of x* in (Ex4*?
31 Show that thc binomial series for /1 + 4x has integer
coefficients. {Note that x" changes to (4x)". These coefficients
are important in counting trees, paths, parentheses...)

32 In the series for 1),/ 1 — 4x, show that the coefficient of x"
is (2n)! divided by (a2

Use the binomial series to compute 33-36 with error less than
1/1000.

A5
35 (1.1)!

M (1001347
3 111000

37 From sec x = 1/[1 — (1 —cos x)] find the Taylor series of
sec x up to x® What is the radius of convergence r (distance
to blowup point)?

38 From sec’x = I/[| —sin®x] find the Taylor series up to
x?. Check hy squaring the secant series in Problem 37. Check
by differentiating the tangent scries in Problem 39,

39 {Division of series) Find tan x by long division of sin x/
COS X

SRSV U SUNE S VRPN SO S
et ) T2 Tt T T s

40 (Composition of series) If f=ay+ a;x +azx* + - and
g=hx+bx?+ -~ find the 1, x, x? cocfficients of f{g{x)).
Test on /= 1/{1 + x), g=x/{1 ~ x), with f{g{x)=1—x

41 {Multiplication of series} From the sertes for sin x and
1/(1 — x) find the first four terms for /= sin x/{1 — x).

42 (Inversion of series) If f=a,x + a,x* + - find coefficients
b, by in g=b x+b,x? + - s0 that f{g(x)) = x. Compute
bibyforf=e*—1,g=f "=In{l + x).

43} From the multiplication {sin x)(sin x) or the derivatives of
fix) =sin®x find the first three terms of the series, Find the
first four terms for cos?x by an easy trick.

44 Somehow find the first six nonzero terms for f=(1 — x)/
(1 —x?

45 Find four terms of the series for 1/,/1 —x. Then square
the series to reach a geometric series.

46 Compute Ll, e % dx to 3 decimals by integrating the
pOWer series.

47 Compute {, sin’t dt to 4 decimals by power series.

48 Show that Zx"/n converges at x= —1, even though its
derivative Zx""! diverges. How can they have the same
convergence radius?

49 Compute lin‘(l) {sin x —tan x)/x? from the series.
xX

50 If the nth root of g, approaches L > 0, explain why Za, x”
has convergence radius r=1/L.

51 Find the convergence radius r around basepoints a =0
and a =1 from the blowup points of (1 + tan x){(? + x?).
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CHAPTER 11

Vectors and Matrices

This chapter opens up a new part of calculus. It is multidimensional calculus, because
the subject moves into more dimensions. In the first ten chapters, all functions
depended on time t or position x—but not both. We had f(f) or y{x). The graphs
were curves in a plane. There was one independent variable (x or ) and one dependent
variable (y or f). Now we meet functions f(x, ¢ that depend on both x and ¢. Their
graphs are surfaces instead of curves. This brings us to the caleulus of several variables.

Start with the surface that represents the function f(x, £) or f(x, ¥) or f(x, y,). I
emphasize functions, because that is what calculus is about,

EXAMPLE 1 f(x, t)=cos (x — ) is a {raveling wave (cosine curve in motion).

At 1=0 the curve is f=cos x. At a later time, the curve moves to the right
{Figure 11.1). At each t we get a cross-section of the whole x-t surface. For a wave
traveling along a string, the height depends on position as well as time.

A similar function gives a wave going around a stadium. Each person stands up
and sits down. Somehow the wave travels.

EXAMPLE2 f(x, y)=3x+ y+ 1 is a sloping roof (fixed in time}.

The surface is two-dimensional-—you can walk around on it. It is flat because
3x+y+1is a linear function. In the y direction the surface goes up at 45°. If
increases by 1, so does f. That slope is 1. In the x direction the roof is steeper (slope 3).
There is a direction in betwcen where the roof is steepest (slope \/E).

EXAMPLE 3 f(x, y, t)=cos{x — y — t) is an ocean surlace with traveling waves.

This surface moves. At each time t we have a new x-y surface. There are three
variables, x and y for position and ¢ for time. I can’t draw the function, it needs four
dimensions! The base coordinates are x, y, t and the height is f. The alternative is a
movie that shows the x-y surface changing with 1.

At time ¢ =0 the ocean surface is given by cos {x — y). The waves are in straight
lines. The line x — y = 0 follows a crest because cos 0 = 1. The top of the next wave
is on the parallel line x — y = 2n, because cos 2r = 1. Figure 11.1 shows the ocean
surface at a fixed time,

The line x — y = ¢ gives the crest at time ¢, The water goes up and down (like people
in a stadium). The wave goes to shore, but the water stays in the ocean.
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398 11 Vectors and Matrices

Fig. 1.1 Moving cosine with u small optical illusion—the darker Fig. 14.2 Linear functions give planes,
bunds seem to go from top to bottom as you turn.

Of course multidimensional calculus is not only for waves. In business, demand is
a function of price and date. In engineering, the velocity and temperature depend on
position x and time ¢. Biology deals with many variables at once (and statistics is
always looking for linear relations like z = x + 2y). A serious job lies ahead, to carry
derivatives and integrais into more dimensions.

I 11.1 Veciors and Dot Products 1

In a plane, every point is described by two numbers. We measure across by x and
up by y. Starting from the origin we reach the point with coordinates (x, y). I want
to describe this movement by a vector—the straight line that starts at (0, 0) and cnds
at (x, y). This vector v has a direction, which goes from (0, 0) to {x, ¥) and not the
other way.

In a picture, the vector 1s shown by an arrow. In algebra, v is given by its two
components. For a column vector, write x above y:

X
V= {x and y are the components of v). (1)

Note that v is printed in boldface; its components x and y are in lightface.t The
vector —v in the opposite direction changes signs. Adding v to —v gives the zere
vector {different from the zero number and also in boldface):

—X X—x 0

—y= and Y—v= = = 0. {2)
-y yo¥ 0

Notice how vector addition or subtraction is done separately on the x’s and y's:
3 —1 2

v+w= + =| _| 3
1 2 3 .

tAnother way to indicate a vector is . You will recognize vectors without needing arrows.
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Ag. 14.3 Parallelogram for v + w, stretching for 2v, signs reversed for —v.

The vector v has components v, =3 and o, = 1. {I write v, for the first component
and v, for the second component. I also write x and vy, which is fine for two com-
ponents,) The vector w has w, = — 1 and w, = 2. To add the vectors, add the com-
ponents. Te draw this addition, place the start of w at the end of v. Figure 11.3 shows
how w starts where ¥ ends.

VECTORS WITHOUT COORDINATES

In that head-to-tail addition of v + w, we did something new. The vector w was moved
away from the origin, Its length and direction were not changed! The new arrow is
paralle] to the old arrow—only the starting point 1s different. The vector is the same
as before.

A vector can be defined without an origin and without x and y axes. The purpose
of axes is to give the components—the separate distances x and y. Those numbers
are necessary for calculations. But x and y coordinates are not necessary for head-
to-tail addition ¥+ w, or for stretching to 2v, or for linear combinations 2v + 3w,
Some applications depend on coordinates, others don’t.

Generally speaking, physics works without axes—it is “"coordinate-free.” A velocity
has direction and magnitude, but it is not tied to a peint. A force also has direction
and magnitude, but it can act anywhere—not oniy at the origin. In contrast, a vector
that gives the prices of five stocks is not floating in space. Each component has a
meaning—there are five axes, and we know when prices are zero. After examples
from geometry and physics (no axes), we return to vectors with coordinates.

EXAMPLE 1 (Geometry) Take any four-sided figure in spacc. Connect the midpoints
of the four straight sides. Remarkable fact: Those four midpoints lie in the same plane.
More than that, they form a parallelogram.

Frankly, this is amazing. Figure 11.4a cannot do justice to the probiem, because it
is printed on a flat page. Imagine the vectors A and D coming upward. B and C go
down at different angles. Notice how easily we indicate the four sides as vectors, not
caring about axes Or origin.

I will prove that ¥ = W. That shows that the midpoints form a parallelogram.

What is ¥? It starts halfway along A and ends halfway along B. The small triangle
at the bottom shows ¥V = A + 1B. This is vector addition—the tail of 3B is at the
head of $ A. Together they equal the shortcut V. For the same reason W =1C + 1D.
The heart of the proof is to see these relationships.

One step is left. Why is A + 1B equal to £C + 1D7? In other words, why is A+ B
equal to C+ D? (I multiplied by 2.) When the right question is asked, the answer
jumps out. A head-to-tail addition A + B brings us to the point R. Alse C + D brings
us to R. The proof comes down to one line:

A+B=PR=C+D. Then V=1%A+}Bequals W=1C +1D.
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Fig. 11.4 Four midpoints form a parallelogram (¥ = W), Three medians mect at P.

EXAMPLE 2 (Also geometry) In any triangie. draw lines from the corners to the
midpoints of the opposite sides. To prove by vectors: Thaose three lines meet at a point.
Problem 38 finds the meeting point in Figure 11.4c. Problem 37 says that the three
vectors add to zero.

EXAMPLE 3 (Mcdicine) An electrocardiogram shows the sum of many small vectors,
the voltages in the wall of the heart. What happens to this sum—the heart vector
V—in two cases that a cardiclogist is watching for?

Case 1. Part of the heart is dead (infarction).
Case 2. Part of the heart is abnormally thick (Appertrophy).

A hcart attack kills part of the muscie. A defective valve, or hypertension, overworks
it. In case 1 the cells die from the cutofl of blood (loss of oxygen). In case 2 the heart
wall can triple in size, from excess pressure. The causes can be chemtcal or mechanical.
The eflect we see is electrical.

The machine is adding small vectors arnd “projecting” them in twelve directions. The
leads on the arms, teft leg, and chest give twelve directions in the body. Each graph
shows the component of V¥ in one of those directions. Three of the projections
two in the vertical plane, plus lead 2 for front-back —produce the “*mean QRS vector™
in Figure 11.5. That is the sum V when the ventricles start to contract. The left
ventricle is larger, so the heart vector normally points down and to the left.

Pacemy
SA

Fig. 41.5 ¥ is a sum of small voltage vectors, at the moment of depolarization.
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Enlarged
Lcft
Ventricle

Fig. 14.6 Changes in ¥ show dcad muscle and overworked muscle.

We ¢ome soon to projections, but here the question is about V itself. How does
the ECG identify the problem?

Case 1. Heart artack The dead cells make no contribution to the electri-
cal potential. Some small vectors are missing. Therefore the sum V
turns away from the infarcted part.

Case 2. Hypertrophy The overwork increases the contribution to the
potential. Some vectors are larger than normal. Therefore V turns
toward the thickened part.

When V points in an abnormal direction, the ECG graphs lecate the problem. The
P, @, R, 5, T waves on separate graphs can all indicate hypertrephy, in different
regions of the heart. Infarctions generally occur in the left ventricle, which needs the
greatest blood supply. When the supply of oxygen is cut back, that ventricle feels it
first. The resuit can be a heart attack (= myocardial infarction = coronary occlusion).
Section 11.2 shows how the projections on the ECG point to the location.

First come the basic facts about vectors—components, lengths, and dot products.

COORDINAIE VECTORS AND LENGTH
To compute with vectors we need axes and coordinates. The picture of the heart is

“coordinate-free.” but calculations rcquire numbers. A vector is known by its compo-
nents. The unit vectors along the axes are i and j in the plane and i, j, k in space:

] 0 0

[ 0
in2h: i= o j= , in3D: i=(0|.j=|![.k=|0
0 0 1

Notice how easily we moved into three dimensions! The only change is that vectors
have three components. The combinations of i and j (or i. j, k) produce all vectors ¥
in the plane (and all vectors V¥ in space):

1

3
v=3i+j=[l} V=i+2j—2k=| 2
-2
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Those vectors are also writtenv = (3, 1)andV = (1, 2, — 2). The components of the vector
are also the coordinates of a point. (The vector goes from the origin to the point.) This
relation between point and vector is so close that we allow them the same notation:
P=(x,y,z)andv=(x, y, z) = xi + yj + zk.

The sum v+ V is totally meaningless. Those vectors live in different dimensions.

From the components we find the length. The length of (3, 1) is \/3*+ 12 = m
This comes directly from a right triangle. In three dimensions, V has a third com-
ponent to be squared and added. The length of V = (x, y, 2) is |[V| = /x* + y* + 2%

Vertical bars indicate length, which takes the place of absolute value. The length
of v=3i +j is the distance from the point (0, 0) to the point (3, 1):

M=vi+v3=/10 |V|=/1?+22+ (-2 =3

A unit vector is a vector of length one. Dividing v and V by their lengths produces
unit vectors in the same directions:

1/3
3//10 \'
X _ / and = 2/3 are unit vectors.
M |1./10 VI 23

11A  Each nonzero vector has a positive length |v|. The direction of v is given
by a unit vector u= v/|v|. Then length times direction equals v.

A unit vector in the plane is determined by its angle 6 with the x axis:

cos
u= [ :9:| = (cos )i + (sin 0)j is a unit vector: |u|* = cos?f + sin*d = 1.

In 3-space the components of a unit vector are its “direction cosines’:
U= (cos a)i + (cos f)j + (cos y)k: a, f, y=angles with x, y, z axes.

Then cos?ax + cos?f + cos?y = 1. We are doing algebra with numbers while we are
doing geometry with vectors. It was the great contribution of Descartes to see how
to study algebra and geometry at the same time.

Fig. 14.7 Coordinate vectors i, j, k. Perpendicular vectors v+ w = (6)(1) +(—2)(3) = 0.

THE DOT PRODUCT OF TWO VECTORS

There are two basic operations on vectors. First, vectors are added (v + w). Second,
a vector is multiplied by a scalar (7v or —2w). That leaves a natural question—how
do you multiply two vectors? The main part of the answer is—you don’t. But there
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is an extremely important operation that begins with two vectors and produces a
number. It is usually indicated by a dot between the vectors, as in v+ w, so it is called
the dot product.

DEFINITION 1 The dot product multiplies the lengths |v| times |w| times a cosine:

v-w=|v||w| cos 8, 0=angle between v and w.
3 2
EXAMPLE 5 has length 3, 5 has length \/§, the angle is 45°.

The dot product is |v||w| cos 9={3){\/§}{1/\/§), which simplifies to 6. The square
roots in the lengths are ““canceled” by square roots in the cosine. For computing v * w,
a second and much simpler way involves no square roots in the first place.

DEFINITION 2 The dot product v - w multiplies component by component and adds:

3 2
VW =0,w, +U,W, |:0:| L [_}:| =(3)(2) + (0)(2) = 6.

The first form |v| |w| cos @ is coordinate-free. The second form v, w, + v,w, computes
with coordinates. Remark 4 explains why these two forms are equal.

11B The dot product or scalar product or inner product of three-dimensional
vectors is

V-W=|V|[|W|cos 0=V, W, + V. W, + V3 W,. 4)
If the vectors are perpendicular then = 90° and cos #=0and V- W=0.

1 4 2 |
2 5 | =32 (not perpendicular) 2 |- 2 [=0(perpendicular).
3 6 = 2

These dot products 32 and 0 equal |V||W]|cos 6. In the second one, cos 6 must be
zero. The angle is n/2 or —n/2—in either case a right angle. Fortunately the cosine
is the same for € and — 0, so we need not decide the sign of 6.

Remark 1 When V=W the angle is zero but not the cosine! In this case cos 6 =1
and V-V =|V|%. The dot product of V with itself is the length squared:

V-V=(W, Vy, V3)(Vy, Va, Va)=Vi+ Vi+Vi=|VA (5)

Remark 2 The dot product of i= (1,0, 0) with j=(0,1,0) is i*j=0. The axes are
perpendicular. Similarly i*k=0 and j-k=0. Those are unit vectors: i*i=j*j=
k-k=1.

Remark 3 The dot product has three properties that keep the algebra simple:
. V-W=W-V 2. (cV)*"W=¢(V'W) 3.(U+V) W=U-W+V-W

When V is doubled (c = 2) the dot product is doubled. When V is split into i, j, k
components, the dot product splits in three pieces. The same applies to W, since
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(vl_wl)
w v +v/)2 V|2 +| w2
2, , -2|¥||W|cos B

/ v / v

Fig. 11.8 Length squared =(V — W)+ (V — W), from coordinates and the cosine law.

Y+ W =W:V. The nine dot products of i, j, k are zeros and ones, and a giant splitting
of both ¥ and W gives back the correct V- W:

Y W= Vli' W1i+ sz' W2j+ Vak' W3k+5ix Zeros = V1W1+ Vsz"‘ VaWa.

Remark 4 The two forms of the dot product are equal. This comes from computing
|V — W|? by coordinates and also by the *“law of cosines™:

with coordinates: |V — W|2 = (V, — W))2 + (V, — W) +(V; — W,
from cosine law: [V — W|2 = |V|2 + |W]? — 2|]V||W]| cos 6.

Compare those two lines. Line 1 contains ¥% and V3 and V3. Their sum matches

|V|? in the cosine law. Also W + W2 + W2 matches |[W|2. Therefore the terms contain-

ing — 2 are the same (you can mentally cancel the —2). The definitions agree:
=V W, + V,W, + V3 W,) equals —2|V||W| cos 0 equals — 2V -W.

The cosine law is coordinate-free. It applies to all triangles (even in n dimensions).
Its vector form in Figure 11.8 is [V — W|? = |[V|2 — 2V - W + |W|%, This application to
Y - W is its brief moment of glory.

Remark 5 The dot product is the best way to compute the cosine of §:

Y-W

cos = ———. 6
VITW] ©

Here are examples of ¥ and W with a range of angles from 0 to =

i and 3i have the same direction cos =1 8=0
i*(i+j=11s positive cos 6= Uﬁ 8=nrj4
i and j are perpendicular; i-j=10 cos =10 f=mx/2
i-(—i+j)= — 1 is negative cos 0= —1//2 6=>3n/4
i and — 3i have opposite directions cos = —1 f=n

Remark 6 The Cauchy-Schwarz inequality |V - W| < |V||W| comes from |cos 0] < 1.

The left side is |V||W]||cos 8]. It never exceeds the right side |VI[W|. This is a key
inequality in mathematics, from which soc many others follow:

Geometric mean ./ xy < arithmetic mean 3(x+ y) (true for any x20 and y=0).
Triangle inequality |V + W| < | V| + |W| (|¥|, |W|, ¥ + W] are lengths of sides).

These and other examples are in Problems 39 to 44. The Schwarz inequality
|V - W| < |V||W| becomes an equality when |cos 8] = 1 and the vectors are
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11.4__EXERCISES

Read-through questions

A vector has length and _a . If v has components 6 and
—8, its length is |[Yj=_ b  and its direction vector is u=

¢ _ . The product of [v| with uis _d . This vector goes
from (0, Djto the point x=_e ,y=_1 . Acombination
of the coordinate vectors i=_ g and j=__ h  produces

v=_1 i+_1 j

To add vectors we add their__k . The sumn of (6, —8) and
(1,0is _1__. To see v +i geometrically, put the _m__ of i
at the _n__ of v. The vectors form a _ o with diagonal
¥+ 1 (The other diagonalis _p ) The vectors 2v and —v
are _a _and _r . Theirlengthsare _3 and _t

In a space without axes and coordinates, the tail of ¥ can
be placed _ w . Two vectors with the same_ v__ are the
same. If a triangle starts with V and continues with W, the
third side is _ % . The vector connecting the midpoint of ¥
to the midpoint of Wis _x . That vectoris _ ¥ the third

side. In this coordinate-free form the dot product is ¥V - W =
x

Using components, V-W=_A4A and (1,2, 1)-
(2, —3, )=__8 . The vectors are perpendicufar if _ € |
The vectors are parallel if _ D . ¥~V isthesameas E
The dot product of U+ V with W equals _ F . The angle
between ¥ and W hascos @ =_ & . When ¥ ~W is negative
then 0ts _H . The angle between i+jandi+kis _ |
The Cauchy-Schwarz inequality is _J , and for ¥ =i+j

and W=i+kit becomes 1 £ __K

la [-4 compute V + W and 2V — 3W and |V} and ¥V -W and
cos 0.

1¥V=(L1L1),W=(-1, -1, -1)
2 V=i+j, W=j—-k
IV=i-2j+k W=i+j—2k
4 V=(L1L1,1)W=(12234
5 (a} Find a vector that is perpendicular to (v,, v,).
(b} Find two vectors that are perpendicular to (v,, v;, v;).

6 Find two vectors that are perpendicular to (1, 1, 0) and to
each other.

T What vector is perpendicular to all 2-dimensional vectors?
What vector is parallel to all 3-dimensional vectors?

8 In Problems 1-4 construct unit vectors in the same direc-
tion as V.

9 If v and w are unit vectors, what is the geometrical mean-
ing of v - w? What is the geometrical meaning of (v - wiv? Draw
a figure with v =i and w = (3/5)i + {4/5)j.

10 Write down all unit vectors that make an angle # with the
vector {1, 0). Write down all vectors at that angle,

11 True or false in three dimensions;
1. If both U and V make a 30° angle with W, so does
U+YV.
2. If they make a 90° angle with W, sodoes U+ V.
3. If they make a 90° angle with W they are perpendicular:
U-¥=0

12 From W =(l, 2, 3} subtract a multiple of ¥ ={1, 1, 1} so
that W — ¢V is perpendicular to ¥. Draw V¥V and W and
W — ¢V,

13 (a) What is the sum V of the twelve vectors from the center
of a clock to the hours?

(b) If the 4 o’clock vector is removed, find ¥ for the other
eleven vectors.

(c) If the vectors to 1, 2, 3 are cut in half, find V for the
twelve vectors.

14 {a) By removing one or more of the twelve clock vectors,
make the length |¥] as large as possible.

(b) Suppose the vectors starl from the top instead of the
center (the origin is moved to 12 o’clock, so v, 3 = 0). What
is the new sum V*?

15 Find the angle POQ by vector methods if P=(l, 1, 0},
0=(0,0,0,0=(12 -2

16 (a) Draw the unit vectors w, =(cos 8, sinf) and u; =
(cos ¢, sin ¢). By dot products find the formula for
cos (8 — ¢).

{b) Draw the unit vector uy from a 90° rotation of uy. By
dot products find the formula for sin (8 + ¢i.

17 Describe all points (x, y) such that v = xi + yj satisfies
(@) jvj=2 (bylv—il=2
) vei=2 (dyv-i=]¥|
18 (Important) If A and B are non-paratlel vectors from the
origin, describe
(a) the endpoints of ¢B for all numbers ¢
(b) the endpoints of A + 1B for all ¢
(c) the endpoints of sA + (B for all s and ¢
{d) the vectors v that satisfy v A = v~B

19 (a) If v+ 2w=iand 2v+ 3w=j find v and w,
(byIf v=i+j and w=3i+4j then i= v+
w,

20 If P=(0,0) and R =(0, 1) choose @ so the angle PQR is
90°. All possible (I’s lie in a .

21 (a) Choose d so that A=2i+3j is perpendicular to
B =9 +dj.
(b) Find a vector C perpendicular to A=i+j+k and
B=i—k
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22 If a boat has velocity ¥V with respect to the water and the
water has velocity W with respect to the land, then
The speed of the boat is not |V] + |[W) hut

23 Find the angle between the diagonal of cube and (a) an
edge (b) the diagonal of a face (c} another diagonal of the
cube. Choose lines that meet.

24 Draw the triangle PQR in Example 1 (the four-sided figure
in space). By geometry not vectors, show that PR is twice as
long as V. Similarly |PR|=2|W|. Also V is parallel to W
because both are parallel 1o . S0 ¥ =W as before.

25 (a) If A and B are unit vectors, show that they make equal
angles with A + B.
(b)If A, B, C are unit vectors with A+ B+ C =0, they
form a triangle and the angle between any two
is

26 (a) Find perpendicular unit vectors I and J in the plane
that are different from i and j.
{b) Find perpendicular unit vectors L, J, K diffetent from
ijk

27 If 1 and J are perpendicular, take their dot products with
A=al +bJ to find 2 and b,

28 Suppose I =(i+j)/1/2 and J = (i —j)//2. Check 1-J =0
and write A = 2i + 3j as a combination aI + bJ. {Best method;
use @ and b from Problem 27. Alternative: Find i and j from
I and J and substitute into A.)

29 (a) Find the position vector OP and the velocity vector
P@Q when the point P moves around the unit circle (see figure)
with speed 1. (b} Change to speed 2.

30 The sum (A-i)* + (A-j)® + (A -k)? equals

31 In the semicircle find € and D in terms of A and B. Prove
that C- D =0 (they meet at right angles).

35 The vector from the earth's center to Seattle is ai + bj + ck.
(a) Along the circle at the latitude of Seattle, what two
functions of a, b, ¢ stay constant? k goes to the North Pole,
(b)On the circle at the longitude of Seattle—the
meridian—what two functions of 4, b, ¢ stay constant?
(c) Extra credit: Estimale a, b, ¢ in your present position.
The 0° meridian through Greenwich has b =0.

36 If|A +B|>=]A? + [B}?, prove that A is perpendicular to B.

37 In Figure 11.4, the medians go from the corners to the
midpoints of the opposite sides. Express M;, M,, M; in terms
of A, B, C. Prove that M, + M, + M, =0. What relation
holds between A, B, C?

38 The point £ of the way along is the same for all three
medians. This means that A +4M; =§M, = . Prove
that those three vectors are equal.

3% (a) Yerily the Schwarz inequality [V - W| < V| |W|for ¥ =
i+2j+2kand W=2i+2j+k
(b) What does the inequality become when ¥V = (\/;, \/;)
and W =(/y, /x)?

40 By choosing the right vector W in the Schwarz inequality,
show that (¥, + V, + V5)2 < (V7 + V2 + V3). What is W?

41 The Schwarz inequality for ai+ bj and ci + dj says that
(@ + b3(c? + d?) = (ac + bd). Multiply out to show that the
difference is 0.

41 The vectors A, B, C form a triangle if A + B+ C=0. The

triangle inequality |A + B} < |A} + |B| says that any one side

length is [ess than . The proof comes from Schwarz:
[A+B?=A-A+2A-B+B-B

< AP+ +[B]> = (JA] + B)*.

32 The diagonal PR has |PR?=(A+B)-(A+B)=A'A+
A*B+B-A+B-B Add |0S}? from the other diagonal to
prove the parallelogram law: |PR|* +|QS)? = sum of squares
of the four side lengths.

33 1f(1, 2,3),(3,4,7), and (2, 1, 2) are corners of a parallelo-
gram, find all possible fourth corners.

M The diagonals of the parallelogram are A+ B and
. If they have the same length, prove that A-B=0
and the region is a .

43 True or lalse, with reason or example:
(a) [V + W]? is never larger than |V|* + [W}?
(b} In a real triangle {¥ + W| never equals |¥]| + |W|
{c) V- Wequals WV
(d) The vectors perpendicular to i+ j + k lie along a line.

44 If Y=i+2k choose W so that V- W=[V||W| and
[V + W[ =|¥| +|W.
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45 A methane molecule has a carbon atom at (0, 0, 0} and 46 (2) Find a vector ¥ at a 45° angle with i and j.
hydregen atoms at (i, 1, 1) (I, -1, 1), (=1, L,1), and (b) Find W that makes a 60° angle with i and j.
(-1, —1, —1). Find {c) Explain why no vector makes a 30" angle with i and j.
{a) the distance between hydrogen atoms
{b) the angle between vectors going out from the carbon
atom to the hydrogen atoms.

B 11.2 Planes and Projections HNNGNGGEGGGEGEGEE

The most impoertant *‘curves’ are straight lines. The most important functions are
linear. Those sentences take us back to the beginning of the book —the graph of
mx + b is a line. The goal now is to move into three dimensions, where graphs are
sarfaces. Eventually the surfaces will be curved. But calculus starts with the flat
surfaces that correspond to straight lines:

What are the most important surfaces? Planes.
What are the most important functions? Stilf linear.

The geometrical idea of a plane is turned into algebra, by finding the equation of a
plane. Not just a general formula, but the particular equation of a particular plane.

A line is determined by one point (xg, y¢) and the slope m. The point-siope equation
is y — yo = m{x — xp). That is a linear equation, it is satisfied when y = y, and x = x4,
and dy/dx is m. For a plane, we start again with a particular peint—which is now
(xg, Yo, Zg)- But the slope of a plane is not so simple. Many planes climb at a 45°
angle—with “slope 1" —and more information is needed.

The direction of a plane is described by a vector N, The vector is not in the plane,
but perpendicular to the plane. In the plane, there are many directions. Perpendicular
to the plane, there is only one direction. A vector in that perpendicular direction is
a normal vector.

The normal vector N can point “up™ or “down”. The length of N is not crucial (we
often make it a unit vector and call it n). Knowing N and the point P, = (x4, ¥g. Zg ),
we know the plane (Figure 11.9). For its equation we switch to algebra and use the
dot product—which is the key to perpendicularity.

N is described by its components {a, b, ¢). In other words N is ai + bj + ck. This
vector s perpendicular to every direction in the plane. A typical direction goes from

N=(1,-1,3)

N=agi+hj+ck r-y+3:=7

normal vector

N=(1,1,1)

3x-3v+9-=-15

Fig. 14.9 The normal vector to a plane. Parallel planes have the same N.
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Py to another point P = (x, y, z) in the plane. The vector from Pg to P has components
(x — xy, ¥ — ¥o, £ — 2g). This vector lies in the plane, so its dot product with N is zero:

141C  The plane through P, perpendicular to N = {(a, b, ¢) has the equation
(a,b,f«']'(x_xmy_yo:Z_Zo)=0 or
a{x = xo) + By~ yo} + ¢z = 20) = 0. (1)

The point P lies on the plane when its coordinates x, y, z satisfy this equation.

EXAMPLE 1 The plane through Py =(1, 2, 3) perpendicular to N = (1, 1, 1} has the
equation (x — 1} + (y — 2) +(z — 3) = 0. That can be rewritten as x + y+z = 6.

Notice three things. First, P, lies on the plane because 1 + 2 + 3 = 6. Second, N =
(1, 1, 1) can be recognized from the x, y, z coefficients in x + y + z = 6. Third, we could
change N to (2, 2, 2) and we could change P, to (8, 2, — 4)—bccause N 1s still perpen-
dicular and P, is still in the plane: 8 +2—4=6.

The new normal vector N =(2, 2, 2) produces 2(x ~ 1)+ 2{y — 2)+ 2{z— 3)=0.
That can be rewritten as 2x + 2y + 2z = 12. Same normal direction, same plane.

The new point P,=(8,2, —4) produces {x - 8)+(y~2)+(z+4)=0. That is
another form of x + y + z= 6. All we require is a perpendicular N and a point P, in
the plane.

EXAMPLE 2 The plane through (1, 2, 4) with the same N ={1, 1, 1) has a different
equation: {x — 1)+ (y—2)+(z—4)=0. This is x+ y+z=7 {instead of 6). These
planes with T and 6 are parallel.

Starting from a(x — xq) + By — yo) + ¢lz — 2o} = 0, we often move axy + byg + czq
to the right hand side—and call this constant d:

11D With the P, terms on the right side, the equation of the planeis NP = d:
ax+hy+cz=axg+ by, +cezg=d. (2)

A different d gives a parallel plane; d = O gives a plane through the origin.

EXAMPLE 3 The plane x — y + 3z = 0 goes through the onigin (0, 0, 0). The normal
vector is read directly from the cquation: N = (!, — 1, 3). The equation is satisfied hy
P,=1(1,1,0) and P=(1,4, 1). Subtraction gives a vector V =(0, 3, 1) that is in the
planc, and NV =0.

The parallel planes x — y + 3z = d have the same N but different d’s. These planes
miss the origin because d is not zero (x =0, y =0, z =0 on the left side needs d=0
on the right side). Note that 3x — 3y + 9z= — 15 is parallel to both planes. N is
changed to 3N in Figure 11.9, but its direction is not changed.

EXAMPLE 4 The angle between two planes is the angle between their normal vectors.

The planes x— y+ 3z=0 and 3y +:z=10 are perpendicuiar, because {1, —1,3)-
(0,3,1)=0. The planes z=0 and y =10 are also perpendicular, becausc (0,0, 1)+
{0, 1,0)=0. {Those are the xy plane and the xz plane.) The planes x+ y= 0 and
x + z =0 make a 60" angle, because cos 60" =(1, 1, 0)- (1, 0, 1};\/5\/5_ =1

The cosine of the angie between two planes is [Ny « N[/IN,[IIN;|. See Figure 11.10,



11.2 Planes and Projections

normal

direction parallel
direction
(=m, 1)

(L, m)
line / |

y=mx+b

E=1n
V=2i-j-k
0=(3.0,0)

Fig. 11.10 Angle between planes = angle between normals. Parallel and perpendicular to a
line. A line in space through P, and Q.

Remark 1 We gave the “point-slope” equation of a line (using m), and the “point-
normal” equation of a plane (using N). What is the normal vector N to a line?

The vector V = (1, m) is parallel to the line y = mx + b. The line goes across by 1
and up by m. The perpendicular vector is N=(—m, 1). The dot product N-V is
—m+ m=0. Then the point-normal equation matches the point-slope equation:

—m(x — xo) + 1(y — yo) = 0 is the same as y — yo = m(x — xg). (3)

Remark 2 What is the point-slope equation for a plane? The difficulty is that a
plane has different slopes in the x and y directions. The function f(x,y)=
m(x — xo) + M(y — yo) has tweo derivatives m and M.

This remark has to stop. In Chapter 13, *‘slopes’ become “partial derivatives.”

A LINE IN SPACE

In three dimensions, a line is not as simple as a plane. A line in space needs two
equations. Each equation gives a plane, and the line is the intersection of two planes.

The equations x + v+ z= 23 and 2x + 3y + z = 6 determine a line.

Two points on that line are P, = (1, 1, 1)and Q = (3, 0, 0). They satisfy both equations
so they lie on both planes. Therefore they are on the line of intersection. The direction
of that line, subtracting coordinates of P, from Q, is along the vector V=2i—j—k.

The line goes through Py = (1. 1, 1) in the direction of V= 2i — j— k.

Starting from (x,, yo,20)=(1, 1, 1), add on any multiple tV. Then x= 1+ 2t and
y=1—t and z=1—1t Those are the components of the vector equation
P = P, + tV—which produces the line.

Here is the problem. The line needs two equations—or a vector equation with a
parameter t. Neither form is as simple as ax + by + ¢z =d. Some books push ahead
anyway, to give full details about both forms. After trying this approach, I believe
that those details should wait. Equations with parameters are the subject of
Chapter 12, and a line in space is the first example. Vectors and planes give plenty
to do here—especially when a vector is projected onto another vector or a plane.

PROJECTION OF A VECTOR
What is the projection of a vector B onto another vector A? One part of B goes along

A—that is the projection. The other part of B is perpendicular to A. We now compute
these two parts, which are P and B—P.

409
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In geometry, projections involve cos . In algebra, we use the dot product (which
is closely tied to cos 6). In applications, the vector B might be a velocity V or a force
F:

An airplane flies northeast, and a 100-mile per hour wind blows due
east. What is the projection of V = (100, 0) in the flight direction A?

Gravity makes a ball roll down the surface 2x + 2y + z=0. What are
the projections of F = (0,0, —mg) in the plane and perpendicular to
the plane?

The component of V along A is the push from the wind (tail wind). The other
component of V pushes sideways (crosswind). Similarly the force parallel to the
surface makes the ball move. Adding the two components brings back V or F.

N=2i+2j+k

downhill force:

tailwind = p;Oi!‘CCliDn
i =
pl'OJEC[lOl'I o p]ane
of Von A
V=100i
, |B|cos 6= A8
S |Al force of gravity

F =-mgk

Fig. 14.11 Projections along A of wind velocity V and force F and vector B.

We now compute the projection of B onto A. Call this projection P. Since its
direction is known—P is along A—we can describe P in two ways:

1) Give the length of P along A
2) Give the vector P as a multiple of A.

Figure 11.11b shows the projection P and its length. The hypotenuse is |B|. The
length is |P| = |B| cos 6. The perpendicular component B — P has length |B| sin 6. The
cosine is positive for angles less than 90°. The cosine (and P!) are zero when A and
B are perpendicular. |B| cos 6 is negative for angles greater than 90°, and the pro-
jection points along — A (the length is |B| |cos 6]). Unless the angle is 0° or 30° or 45°
or 60° or 90°, we don’t want to compute cosines—and we don’t have to. The dot
product does it automatically:

A-B
|A||B| cos 0 = A + B so the length of P along A is |B| cos 00 = W 4)

Notice that the length of A cancels out at the end of (4). If A is doubled, P is
unchanged. But if B is doubled, the projection is doubled.
What is the vector P? Its length along A is A-B/|A|. If A is a unit vector, then

|A| =1 and the projection is A - B times A. Generally A is not a unit vector, until we
divide by |A|. Here is the projection P of B along A:

‘A-B\/A\ A-B
P = (length of P)(unit vector) = (— )(—) = ——A. (5
|Al J\IA]| |A}* )
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EXAMPLES For the wind velocity V = (100, 0) and flying direction A = (1, 1), find P.
Here V points east, A points northeast. The projection of V onto A is P:

AV 100 A-Y
length |P|= —— = — vector P= —
gth |P| NG T

= A=—-(1,1)=(50, 50).

EXAMPLE 6 Project F = (0, 0, —mg) onto the plane with normal N = (2, 2, 1).
The projection of F along N is not the answer. But compute that first:

F-N__mg ,_FN

IN| 3 TN

N=-— %’(2, 2, 1),

P is the component of F perpendicular to the plane. It does not move the ball. The
in-plane component is the difference F — P. Any vector B has two projections, along
A and perpendicular:

A-B
The projection P = ——- A is perpendicular to the remaining component B — P.

|A]

EXAMPLE 7 Express B=i—j as the sum of a vector P parallel to A=3i+j and a
vector B — P perpendicular to A. Note A-B=2.

AB, 2, 6. 2. 4, 12,
WA-—EA—EI E] Then B P—EI IO]
Check: P-+(B—P)=(%%)15) — (%)(}3) =0. These projections of B are perpendicular.
Pythagoras: |P|* + |B—P|? equals |B|%. Check that too: 0.4 + 1.6 = 2.0.

Question When is P=0? Answer When A and B are perpendicular.

Solution P=

EXAMPLE 8 Find the nearest point to the origin on the plane x + 2y + 2z = 5.

The shortest distance from the origin is along the normal vector N. The vector P to
the nearest point (Figure 11.12) is ¢ times N, for some unknown number t. We find ¢
by requiring P = tN to lie on the plane.

The plane x+ 2y + 2z=15 has normal vector N=(l, 2, 2). Therefore P=tN=
(t, 2t, 2t). To lie on the plane, this must satisfy x + 2y + 2z=5:

t+220)+220)=5 or 9=5 or t=3. (6)

Then P=3N=(3, %, %P). That locates the nearest point. The distance is §|N|=3.
This example is important enough to memorize, with letters not numbers:

14E  On the plane ax + by + cz = d, the nearest point to (0, 0, 0) is

_ (da, db, dc) i g d|
e T The distance is Jim (7

The steps are the same. N has components a, b, ¢. The nearest point on the plane is
a multiple (ta, tb, tc). It lies on the plane if a(ta) + b(th) + ¢(tc) = d.

Thus t = df(a® + b* + ¢?). The point (ta, th, tc) = tN is in equation (7). The distance
to the plane is [tN] = |d|/|N].

411



412

41 Vectors and Matrices

N=i+2j+2k
«

Q=i+3j+2k

P=N|P|= —2_=3

planex+2y+2z=5 P=Q+N

Fig. 11.12 Vector to the nearest point P is a multiple tN. The distance is in (7) and (9).

Question How far is the plane from an arbitrary point Q = (x,, y;,2,)?
Answer The vector from Q to P is our multiple tN. In vector form P = Q + ¢tN. This
reaches the plane if P+ N =d, and again we find

(Q+(N)'N=d yields t=(d—Q-N)/IN]%. (8)
This new term Q -+ N enters the distance from Q to the plane:
distance = |tN| = |d — Q *N|/IN| = |d — ax, — by, — ¢z,|/\/a® + P>+ % (9)

When the point is on the plane, that distance is zero—because ax, + by, + ¢z, =d.
When Q is i + 3j + 2k, the figure shows Q+N = 11 and distance = 2.

PROJECTIONS OF THE HEART VECTOR

An electrocardiogram has leads to your right arm—left arm—left leg. You produce the
voltage. The machine amplifies and records the readings. There are also six chest
leads, to add a front-back dimension that is monitored across the heart. We will
concentrate on the big “Einthoven triangle,” named after the inventor of the ECG.

The graphs show voltage variations plotted against time. The first graph plots the
voltage difference between the arms. Lead II connects the left leg to the right arm.
Lead III completes the triangle, which has roughly equal sides (especially if you are
a little lopsided). So the projections are based on 60° and 120° angles.

The heart vector V is the sum of many small vectors—all moved to the same
origin. V is the net effect of action potentials from the cells—small dipoles adding to
a single dipole. The pacemaker (S—A4 node) starts the impulse. The atria depolarize
to give the P wave on the graphs. This is actually a P loop of the heart vector—the

LEAD I LEAD aVp LEAD 1l

Fig. A The graphs show the component of the moving heart vector along each lead. These
figures are reproduced with permission from the CIBA Collection of Medical Illus-
trations by Frank H. Netter, M.D. Copyright 1978 CIBA-GEIGY, all rights reserved.
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graphs only show its projections. The impulse reaches the AV node, pauses, and
moves quickly through the ventricles. This produces the QRS complex—the large
sharp movement on the graph.

The total QRS interval should rot exceed 1/10 second (24 spaces on the printout).
V points first toward the right shoulder. This direction is opposite to the leads, so
the tracings go slightly down. That is the Q wave, small and negative. Then the heart
vector sweeps toward the left leg. In positions 3 and 4, its projection on lead I
{between the arms) is strongly positive, The R wave is this first upward deflection in
each lead. Closing the loop, the § wave is negative (best seen in leads I and aVR).

Question 4 How many graphs from the arms and leg are really independent?
Answer Only two! In a plane, the heart vector V has two components. If we know
two projections, we can compute the others, (The ECG does that for us.) Different
vectors show better in diflerent projections. A mathematician would use 90° angles,
with an electrode at your throat.

Question 2 How are the voltages related? What is the aVR lead?
Answer Project the heart vector ¥ onto the sides of the triangle:

The lead vectors have Ly — Ly + Ly, = 0—they form a triangle.
The projections have ¥ — ¥, + ¥, =¥ L1 - ¥-L,+V-L; =0

The aVR lead is — $L; — $L;;. It is pure algebra (no wire). By vector addition it points

toward the electrode on the right arm. Its length is \/g if the other lengths are 2.
Including aVL and aVF to the left arm and foot, there are six leads intersecting at

equal angles. Visualize them going out from a single point (the origin in the chest).

aVR

413

aVL

aVF

m aVF

LL
Fg.B Heart vector goes around the QRS loop. Projections are spikes on the ECG.

Question 3  If the heart vector is V = 2i — j, what voltage differences are recorded?
Answer The leads around the triangle have length 2. The machine projects ¥:

Lead I is the horizontal vector 2. So ¥ -L, = 4.
Lead IT is the —60° vector i — \/3j. So V-Ly=2+.,/3.
Lead III is the —120° vector —i— ﬁj. SoV-Ly=-2+ \/3

The first and third add to the second. The largest R waves are in leads [ and II. In
aVR the projection of ¥ will be negative (Problem 46), and will be labeled an S wave.

I
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Question 4 What about the potential (not just its differences). Is it zero at the center?
Answer It is zero if we say so. The potential contains an arbitrary constant C. (It is
like an indefinite integral. Its differences are like definite integrais.) Cardiologists
define a “central terminal” where the potential is zero.

The average of V over a loop is the mean heart vector H. This average requires
[ ¥dt, by Chapter S. With no time to integrate, the doctor looks for a lead where the
area under the QRS complex is zero. Then the direction of H (the axis) is perpendicu-
lar to that lead. There is so much to say about calculus in medicine.

11.2 EXERCISES

Read-through questions

A plane in space is determined by a point Py = (x4, yo. Zo)
and a __a _ vector N with components (g, b, ¢). The point
P =(x, y, z}is on the plane if the dot product of N with __ b

is zero. (That answer was not P!} The equation of this plane
isa(_e )+b_9d )+e__e }=0 Theequation is also
written as ax + by + cz =4, where d equals __ ! __ A parallel
plane has the same _ 8 and a different __h . A plane

through the origin has d = _ |

The equation of the plane through P, =(2, 1, 0) perpendic-
ular to N=(3,4,5)is __| . A second point in the plane is
P=(0,0,_ k) The vector from P,to Pis _ 1 __,anditis
m__to N. (Check by dot product.) The plane through P, =

and equa-

(2, 1, 0) perpendicular to the z axishas N=__n

tion ©

The component of B in the direction of Ais __ P, where
# is the angle between the vectors. This is A« B divided by

a_ . The projeclion vector P is |B|cos @ times a _ ¢
vector in the direction of A. Then P =( |B| cos 8){A/|A[) sim-
plifics to __# . When Bis doubled, Pis _t . When A is

doubled, Pis _ v . If B reverses directionthen P _ v If

A teverses direction then P__ w

When B is a velocity vector, P represents the __x . When

B is a force vector, Pis __¥ . The component of B perpen-
dicular to A equals _ 2 . The shortest distance from {0, 0, 0)
to the plane ax + by + cz =4 is along the _ A vector. The
distance is _ 8  and the closest point on the plane is P=

€ . The distance from Q =(x,, y;,Z;) to the plane is

Find two points P and P, on the planes 1-6 and a normal
vector N. Verily that N«(P — P,) =0,

1 x+2y+32=0 2 x+2y+3:z=6 3 the yz plane
4 the plane through (0, 0, 0) perpendicular toi+j—k
S the plane through (1, I, 1) perpendicular toi+j—k

6 the plane through (0, 0, 0) and (1, 0, 0) and (0, 1, 1).

Find an x — y — 7 equation for plapes 7-10.

7 The plane through P, =(1, 2, —1) perpendicular to N=
i+]

8 The plane through P, =(1, 2, —!) perpendicular to N =
i+2j—k

9 The plane through (1, 0, 1) parallel to x + 2y +2=0
10 The plane through (x4, yg, 2o) parallel to x+ p+z=1.

11 When is a plane with normal vector N paraliel to the
vector ¥? When is it perpendicular to ¥?

12 (a) If two planes are perpendicular (front wall and side
wall), is every line in one plane perpendicular to every line
in the other?

(b} If a third plane is perpendicular to the first, it might
be (parallel) (perpendicular) (at a 45° angle) to the second.

13 Explain why a plane cannot
(a) contain (1, 2, 3) and (2, 3, 4 and be perpendicular to
N=i+]j
(b) be perpendicular to N =i+ j and parallel to ¥ =i+ k
(c} contain (1, 0, 0}, (0, 1, 0), (0, 0, 1}, and (1, 1, 1)
(d) contain (1, 1, —1} if it has N =i+ j— k (maybe it can)
(e} go through the orgin and have the equation
ax+ by +cz=1.

14 The equation 3x + 4y + 7z —t =0 yields a hyperplane in
four dimensions. Find its normal vector N and two points P,
@ on the hyperplane. Check (P— 0} N =0,

15 The plane through (x, y, z) perpendicular to ai + bj + ck

goes through (0, 0, 0) if . The plane goes through

(xOs Ya, Zo) if .

16 A curve in three dimensions is the intersection of

surfaces. A line in four dimensions is the intersection of
hyperplanes,

17 (angle between planes} Find the cosine of the angle

between x+2y+2z=0 and (8} x+2z=0 (b) x+2z=5
{c)x=0.
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18 N is perpendicular to a plane and ¥ is along a line. Draw
the angle § between the plane and the line, and explain why
¥ +N/|V¥||N| is sin # not cos 8. Find the angle between the xy
plane and ¥ =i+j+\/§k.

In 19-26 find the projection P of B along A. Also find [P|.
19 A=(4,24),B=(l, —1,0)

20 A=(1,-1,0,B=(4,2,4)

21 B = unit vector at 60° angle with A

22 B = vector of length 2 at 60° angle with A
23B=—-4A 4 A=i+jB=i+k

25 A is perpendicularto x —y+z=0,B=i+}

26 A is perpendicular to x—y+z=5B=i+j+ 5k

27 The force F = 3i — 4k acts at the point {1, 2, 2). How much
foree pulls toward the origin? How much force pulls vertically
down? Which direction does a mass move under the force F?

28 The projection of Balong Ais P= . The projec-
tion of B perpendicular to A is . Check the dot
product of the two projections.

29 P=(x,y,z) is on the plane ax+by+cz=5if P*N=
|P{{N| cos & = 5. Since the largest value of cos 8 is 1, the small-
est value of |P| is . This is the distance between

30 If the air speed of a jet is 500 and the wind speed is 50,
what information do you need to compute the jet’s speed over
land? What is that speed?

31 How far is the plane x + y—z=1 from (0, 0, 0) and also
from (1, 1, —1)? Find the nearest points.

32 Describe all points at a distance 1 from the plane
x+2y+2:=3

33 The shortest distance from @ =(2,1,1) to the plane
x+y+z=0 is along the vector . The point P =
Q+itN=(2+t 1+t 1+1)liesonthe planeife= .
Then P= and the shortest distance is

(This distance is not [P|.)

3 The plane through (1,1,1) perpendicular to N=
i+2j+ 2k is a distance from (0, 0, 0).

A5 (Distance between planes) 2x—2y+z=1 is parallel
to 2x —2y + z =3 because . Choose a vector Q¥ on
the first plane and find ¢ so that Q + tN lies on the second
plane. The distance is fN| =

36 The distance between the planes x+y+5z2=7 and
3x +2y+z=1is zero because

In Problems 37-41 all points and vectors are in the xy plane.

37 The line 3x + 4y = 10 is perpendicular to the vector N =
. On the line, the closest point to the origin is P =
tN. Find ¢ and P and |P|.

38 Draw the line x + 2y =4 and the vector N =i+2j. The
closest point to 0 =(3, 3)is P=0 + tN. Find ¢. Find P.

39 A new way to find P in Problem 37: minimize x2 + y% =
x? + (4 —3x)?. By calculus find the best x and .

40 To catch a drug runner going from (0, 0) to (4,0} at 8
meters per second, you must travel from (0, 3) to (4,0) at

meters per second. The projection of your velocity
vector onto his velocity vector will have length

41 Show by vectors that the distance from (x4, y,) to the line
ax+by=dis |d—ax, —by,l{/a® + b2

42 Tt takes three points to determine a plane. So why does
ax + by + cz = d contain four numberz a, b, ¢, 47 When does
ex +fy + gz = | represent the same plane?

43 (prajections by calculus) The dot product of B —tA with
itself is |B|® — 2tA-B + (A%, (a) This has 2 minimum at
t= . (b) Then tA is the projection of LA
figure showing B, ¢A, and B — tA is worth 1000 words,

44 From their equations, how can you tell if two planes are
(a) parallel (b) perpendicular (c) at a 45° angle?

Problems 45-48 are about the ECG and heart vector.

45 The aVR lead is — 4L, —4Ly. Find the aVL and aVF
leads toward the left arm and foot. Show that
aVR +a¥L + a¥F =0, They go out from the center at 120°
angles.

46 Find the projection on the aVR lead of V=2i-j in
Question 3.

47 If the potentials are g, =1 (right arm) and ¢, =2 and
¢ L = —3, find the heart vector V. The differences in potential
are the projections of V.

48 If V is perpendicular to a lead L, the reading on that lead
is . If [ ¥(t)dt is perpendicular to lead L, why is the
area under the reading zero?
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B $11.3 Cross Products and Determinants TN

After saying that vectors are not multiplied, we offered the dot product. Now we
contradict ourselves further, by defining the cross product. Where A - B was a number,
the cross product A x B is a vector. It has length and direction:

The length is |A||B| sin 0|. The direction is perpendicular to A ard B.

The cross product (also called vector product) is defined in three dimensions only.
A and B lie on a plane through the origin. A x B is along the normal vector N,
perpendicuiar to that plane. We still have to say whether it points “‘up” or “down”
along N,

The length of A x B depends on sin 8, where A - B involved cos 8. The dot product
rewards vectors for being parallel (cos 0 = 1). The cross product is largest when A is
perpendicular to B (sin n/2 = 1). At every angle

|A-BJ?+ |A x B|> = |A]?|B|* cos®8 + |A|*|B|* sin?8 = |A|*BJ>. (n

That will be a bridge from geometry to algebra. This section goes from definition to
Sformula to volume to determinant. Equations (6) and (14) are the key formulas for
A x B.

Notice that A x A =0. (This is the zero vector, not the zero number.) When B is
parallel to A, the angle is zero and the sine is zero. Paraliel vectors have A x B=0.
Perpendicular vectors have sin 8 =1 and |A x B| = |A||B| = area of rectangle with
sides A and B.

Here are four examples that lead to the cross product A x B.

EXAMPLE 1 (From geometry) Find the area of a parallelogram and a triangle.

Vectors A and B, going out from the origin, form two sides of a triangle. They produce
‘the parallelogram in Figure 11.13, which is twice as large as the triangle.

The area of a parallelogram is base times height (perpendicular height not sloping
height). The base is |Al. The height is |B||sin 8]. We take absolute values because
height and area are not negative. Then the area is the length of the cross product:

area of parallelogram = |A| |B||sin 8} = |A x B|. (2)

turning Faxis

height
|B]}sin 8

[
|
|
|
)
[

base | A |
area |A[[Bllsin8]|=]| AxB] moment |R|[F|sin @

Rg. 11.13 Areca |A x B| and moment |R x F|, Cross products are perpendicular to the page.

EXAMPLE 2 (From physics) The torque vector T =R x F produces rotation.

The force F acts at the point (x, y, z). When F is parallel to the position vector R =
xi+ yj + zk, the force pushes ontward {no turning). When F is perpendicular to R,
the force creates rotation. For in-between angles there is an outward force |F| cos 8
and a turning force |F| sin 8. The turning force times the distance |R| is the moment
IR| {F] sin 6.
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The moment gives the magnitude and sign of the torque vector T=R x F. The
direction of T is along the axis of rotation, at right angles to R and F.

EXAMPLE 3 Does the cross product go up or down? Use the right-hand rule.

Forces and torques are probably just fine for physicists. Those who are not natural
physicists want to see something turn.t We can visualize a record or compact disc
rotating around its axis—which comes up through the center.

At a point on the disc, you give a push. When the push is outward (hard to do),
nothing turns. Rotation comes from force “around” the axis. The disc can turn either
way—depending on the angle between force and position. A sign convention is
necessary, and it is the right-hand rule:

A x B points along your right thumb when the fingers curl from A toward B.

This rule is simplest for the vectors i, j, k in Figure 11.14—which is all we need.

Suppose the fingers curl from i to j. The thumb points along k. The x-y-z axes
Sform a “‘right-handed triple.” Since |i| = 1 and [j| = 1 and sin n/2 = 1, the length of i x j
is 1. The cross product is i x j=k. The disc turns counterclockwise—its angular
velocity is up—when the force acts at i in the direction j.

Figure 11.14b reverses i and j. The force acts at j and its direction is i. The disc
turns clockwise (the way records and compact discs actually turn). When the fingers
curl from j to i, the thumb points down. Thus j x i = — k. This is a special case of an
amazing rule:

The cross product is anticommutative: B x A = — (A x B). (3)

That is quite remarkable. Its discovery by Hamilton produced an intellectual revolu-
tion in 19th century algebra, which had been totally accustomed to AB= BA. This
commutative law is old and boring for numbers (it is new and boring for dot pro-
ducts). Here we see its opposite for vector products A x B. Neither law holds for
matrix products.

ixj=k

screw going in screw coming out

Fig. 14.14 ixj=k=—(jxi) ixk=—j=—(kxi) ixk=i=—(k xj).

EXAMPLE 4 A screw goes into a wall or out, following the right-hand rule.

The disc was in the xy plane. So was the force. (We are not breaking records here.)
The axis was up and down. To see the cross product more completely we need to
turn a screw into a wall.

Figure 11.14b shows the xz plane as the wall. The screw is in the y direction. By
turning from x toward z we drive the screw into the wall—which is the negative y
direction. In other words i x k equals minus j. We turn the screw clockwise to make
it go in. To take out the screw, twist from k toward i. Then k x i equals plus j.

TEverybody is a natural mathematician, That is the axiom behind this book.
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To summarize: k x i=j and j x k =i have plus signs because kij and jki are in the
same “‘cyclic order” as ijk. (Anticyclic is minus.) The z—x—y and y—z—x axes form right-
handed triples like x—y-z.

THE FORMULA FOR THE CROSS PRODUCT

We begin the algebra of A x B. It is essential for computation, and it comes out
beautifully. The square roots in |A||B| |sin 6] will disappear in formula (6) for A x B.
(The square roots also disappeared in A - B, which is |A||B| cos 6. But |A||B| tan @
would be terrible.) Since A x B is a vector we need to find three components.

Start with the two-dimensional case. The vectors a,i+ a,jand b,i+ b,j are in the
xy plane. Their cross product must go in the z direction. Therefore Ax B=_17 k
and there is only one nonzero component. It must be |A||B| sin # (with the correct
sign), but we want a better formula. There are two clean ways to compute A x B,
either by algebra (a) or by a bridge (b) to the dot product and geometry:

(@) (a,i+ayj) x (byi+bhyj)=abyixi+tabyixj+abjxitab,jxj (4
On the right are 0. a,b,k. —a,b,k, and 0. The cross product is (a,b, — a,b, k.

(b) Rotate B=b,i+ b,j clockwise through 90° into B* = b,i— b,j. Its length is
unchanged (and B-B* = 0). Then |A||B| sin 8 equals |A| [B*| cos 8, which is A - B*:

a b
|A|iB|sin8=A-B*=[ '}[ 2i|=a,b2—a;b1. (5)
az —bi

14F In the xy plane, A x B equals (a, b, — a,b,)k. The parallelogram with
sides A and B has area |a, b, — a,b,|. The triangle OAB has area $|a, b, — a, b, |.

EXAMPLES For A =i+ 2jand B = 4i + 5] the cross productis (1-5—2-4)k = — 3k.
Area of parallelogram = 3, area of triangle = 3/2. The minus sign in A x B= — 3k is
absent in the areas.

Note Splitting A x B into four separate cross products is correct, but it does not
follow easily from |A||B| sin #. Method (a) is not justified until Remark 1 below. An
algebraist would change the definition of A x B to start with the distributive law
(splitting rule) and the anticommutative law:

AxB+C)=(AxB)+(AxC) and A xB=—(BxA).
THE CROSS PRODUCT FORMULA (3 COMPONENTS)

We move to three dimensions. The goal is to compute all three components of A x B
(not just the length). Method (a) splits each vector into its i, j, k components, making
nine separate cross products:

(a,i+a,j+ ask) x (byi+ byj+ bsk)=a,;b,(i x i)+ a,b,(i x j) + seven more terms.

Rememberi xi=j x j=k x k=0. Those three terms disappear. The other six terms
come in pairs, and please notice the cyclic pattern:

FORMULA A x B=(a,b;s — azb,)i+ (ash, — a,bs)j+ (a,b, — asb, k. (6)

The k component is the 2 x 2 answer, when a; = b; = 0. The i component involves
indices 2 and 3, j involves 3 and 1, k involves 1 and 2. The cross product formula is
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written as a ““determinant” in equation (14) below—many people use that form to
compute A x B.

EXAMPLE 6 (i+2j+3k) x (4i+5j+6k)=(2:6—3-5)i+(3:4—1:6)j+(1-5—2-4)k.
The i, j, k components give A x B= — 3i + 6j — 3k. Never add the —3, 6, and —3.
Remark 1 The three-dimensional formula (6) is still to be matched with A x B from
geometry. One way is to rotate B into B* as before, staying in the plane of A and B.
Fortunately there is an easier test. The vector in equation (6) satisfies all four geo-
metric requirements on A x B: perpendicular to A, perpendicular to B, correct length,
right-hand rule. The length is checked in Problem 16—here is the zero dot product
with A:

A (A x B)=ay(a b3 — a3b,) + ay(azb, — a,bs) + asz(a, b, — ayb,) = 0. (M

Remark 2 (Optional) There is a wonderful extension of the Pythagoras formula
a* + b? = ¢2. Instead of sides of a triangle, we go to areas of projections on the yz, xz,
and xy planes. 32 + 62 + 32 is the square of the parallelogram area in Example 6.
For triangles these areas are cut in half. Figure 11.15a shows three projected trian-
gles of area 4. Its Pythagoras formula is (3)* + (3)> + (3)*> = (area of PQR)?.
EXAMPLE7 P=(1,0,0),Q0=(0,1,0), R=1(0,0, 1) lie in a plane. Find its equation.
Idea for any P, Q, R: Find vectors A and B in the plane. Compute the normal N= A x B.

Solution The vector from P to Q has components —1, 1, 0. It is A =j— i (subtract
to go from P to Q). Similarly the vector from P to R is B=k —i. Since A and B are
in the plane of Figure 11.15, N = A x B is perpendicular:

(j—)xk—-i)=((xk—(ixk)—(jxi)+(ixi)=i+j+k (8)
The normal vector is N =1+ j+ k. The equation of the plane is 1x+ 1y + 1z=d.

With the right choice d = 1, this plane contains P, Q, R. The equationisx+ y+z=1.

EXAMPLE 8 What is the area of this same triangle PQR?
Solution The area is half of the cross-product length |A x B|=[i+j+ k| = \/5

R=1(0,0,1) planex+y+z=1
normal N=i+j+Kk

B=k-i Q=(0,1,0) |A|cos

A=j—i
P=(1,0,0)

B
Fig. 11.15 Area of PQR is \/5;'2. N is PQ x PR. Volume of box is |A - (B x C)|.

DETERMINANTS AND VOLUMES

We are close to good algebra. The two plane vectors a,i+ a,j and b,i + b,j are the
sides of a parallelogram. Its area is a,b, — a,b,, possibly with a sign change. There
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is a special way to write these four numbers—in a “‘square matrix.” There is also a
name for the combination that leads to area. It is the “determinant of the matrix’:

[ (5
, its determinant is
b, b,

ay as

The matrix is [:

=a,b, — a,b,.
hi h:’.

This is a 2 by 2 matrix (notice brackets) and a 2 by 2 determinant (notice vertical
bars). The matrix is an array of four numbers and the determinant is one number:

2 1

1 0
0 1

1
Examples of determinants: 3 =6—4=2, = =1.

The second has no area because A = B. The third is a unit square (A =i, B =j).

Now move to three dimensions, where determinants are most useful. The parallelo-
gram becomes a parallelepiped. The word “box™ is much shorter, and we will use it,
but remember that the box is squashed. (Like a rectangle squashed to a parallelogram,
the angles are generally not 90°.) The three edges from the origin are A = (a,, a,, d;).
B=(b,, b,, bs), C=(c;, 3, ¢c3). Those edges are at right angles only when A:B=
A-C=B-C=0.

Question: What is the volume of the box? The right-angle case is easy—it is length
times width times height. The volume is |A| times |B| times |C|, when the angles are
90°. For a squashed box (Figure 11.15) we need the perpendicular height, not the
sloping height.

There is a beautiful formula for volume. B and C give a parallelogram in the base,
and |B x C| is the base area. This cross product points straight up. The third vector
A points up at an angle—its perpendicular height is |A| cos . Thus the volume is
area |B x C| times |A| times cos 0. The volume is the dot product of A with B x C,

11G The triple scalar product is A + (B x C). Volume of box = |A + (B x C)|.

Important: A - (B x C) is a number, not a vector. This volume is zero when A is in
the same plane as B and C (the box is totally flattened). Then B x C is perpendicular
to A and their dot product is zero.

Useful facts: A (BxC)=(AxB)-C=C-(AxB)=B-(C x A).

All those come from the same box, with different sides chosen as base—but no change
in volume. Figure 11.15 has B and C in the base but it can be A and B or A and C.
The triple product A - (C x B) has opposite sign, since C x B= — (B x C). This order
ACB is not cyclic like ABC and CAB and BCA.

To compute this triple product A - (B x C), we take B x C from equation (6):
A« (B x C)=a,(byc3 — bycy) + as(bscy — byes) + as(byea — biyey). (9)

The numbers a,, a,, a; multiply 2 by 2 determinants to give a 3 by 3 determinant!
There are three terms with plus signs (like a,b,c5). The other three have minus signs
(like —aybsc,). The plus terms have indices 123, 231, 312 in cyclic order. The minus
terms have anticyclic indices 132, 213, 321. Again there is a special way to write the
nine components of A, B, C—as a 3 by 3 matrix.” The combination in (9), which
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gives volume, is a *“3 by J determinant:”

2y @ a3 4, dy 4,
matrix=|b; b, by |, determinant=A-Bx C)= (b, b, b,l.

€ €2 € €y €2 €3

A single number is produced out of nine numbers, by formula (9). The nine numbers
are multiplied three at a time, as in a,b;c,—except this product is not allowed. Eack
row and column must be represenated once. This gives the six terms in the determinant;

d; dy dj
albzc:i + a2b3cl + a3b1C3
by by ba| = (10)
b ﬂlb:;Cz - aszC:; - a3b2C1
€1 €2 €3

The trick is in the + signs. Products down to the right are “plus™:

2 1
2:2-241-1-1+1-1-1 8+1+1
1 2 1)= = =4,
—-2:1+1-1+12-1-2-1 —-2-2-2
1 1 2

With practice the six products like 2-2 -2 are done in your head. Write down only
8+ 1+4+1—2—2—2=4 This is the determinant and the volume.
Note the special case when the vectors are i, j, k. The box is a unit cube:

1 00
1+0+0
volume of cube={0 1 0Qf= =1.
-0-0-0
0 01

If A, B, C lie in the same plane, the volume is zero. A zero determinant is the test
to see whether three vectors lie in a plane. Here row A = row B — row C;

0 1 -1

0-1:1+1:0-(=D+{(~1D+(=1)-0
“bros 0-0-0 1(—5 1)—:—1) (1 )1=’ (1
o ) ) 1+(=1)

Zeros in the matrix simplify the calculation. All three products with plus signs—
down to the right—are zero. The only two nonzero products cancel each other.

If the three —1's are changed to +1’s, the determinant is — 2. The determinant can
be negative when all nine entries are positive! A negative determinant only means
that the rows A, B, C form a “left-handed triple.” This extra information from the
sign—right-handed vs. left-handed—is free and useful, but the volume is the absolute
value,

The determinant yields the volume also in higher dimensions. In physics, four
dimensions give space-time. Ten dimensions give superstrings. Mathematics uses all
dimensions. The 64 numbers in an 8 by 8 matrix give the volume of an eight-
dimensional box—with 8! = 40,320 terms instead of 3! = 6. Under pressure from my
class T omit the formula.
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Question  When is the point {x, y, z) on the plane through the origin containing B
and C? For the vector A= xi+ yj+ zk to lie in that plane, the volume A (B x C)
must be zero. The equation of the plane is determinant = zero.

Follow this example for B=j — i and C = k — j to find the pilane parallel to Band C:

x y z
x-1-1+p-0-(-1)+2z-0-(-1)

-tro= e 1(1)=0‘ (12)
—x+0-0myele(-1)mz-1-(=

-1 0 1

This equation is x + y + z = 0. The normal vector N = B x C has components 1, 1, 1.
THE CROSS PRODUCT AS A DETERMINANT

There is a connection between 3 by 3 and 2 by 2 determinants that you have to see.
The numbers in the top row multiply determinants from the other rows:

51. az 03
by by by by by b,

bl E !_,3. =a_ =4y sy . (13)
€2 € € €3 € €

€1 &2 &

The highlighted product a,(b;c; — bac,) gives two of the six terms. AN six products
contain an a and b and ¢ from different columns. There are 3! = 6 different orderings
of columns 1, 2, 3. Note how a; multiplies a determinant from columns 1 and 2.

Equation (13) is identical with equations (9) and (10). We are meeting the same six
terms in different ways. The new feature is the minus sign in front of a,—and the
common mistake 1s to forget that sign. In a 4 by 4 determinant, a,, —a;, a5, —4a,
would muitiply 3 by 3 determinants.

Now comes a key step. We write A x B as a determinant. The vectors i, j, k go in
the top row, the components of A and B go in the other rows. The “determinant” is
exactly A x B:

i j ok
a; ay a, 4 a, a
AxB=|a a a3(=i =] +k : (19
bZ b3 bl bg bl b2
by by by -

This time we highlighted the j component with its minus sign. There is no great
mathematics in formula (14)—it is probably illegal to mix i, j, k with six numbers but
it works. This is the good way to remember and compute A x B. In the example
{j — i) x (k — i) from equation (8), those two vectors go into the last two rows:

ik
1 0 -1 0 -1
-1 1 0}=i —j +k —i+j+k
- - 01 ~1 11 7[-1 0 -
101 — -

The k component is highlighted, to see g.b; — a,b, again. Note the change from
equation (11), which had 0, 1, —1 in the top row. That triple product was a number
(zero). This cross product is a vectori+j+ k.
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Review question 1 With the i, j, k row changed to 3, 4, 5, what is the determinant?
Answer 3:1+4-1+5+1=12 That triple product is the volume of a box.

Review question2 When is A x B=0 and when is A-(B x C) =07 Zero vector,

Zero number.

Answer When A and B are on the same line. When A, B, C are in the same plane.

Roview question 3 Docs the paraliclogram area |A x Bl equal a 2 by 2 determinant?
Answer If A and B lie in the xy plane, yes. Generally no,

Roview question 4 What are the wvector triple products (A xB)xC and

Ax(BxO

Answer Not computed yet. These are two new vectors in Problem 47,

Review question 5 Find the plane through the origin containing A =i + j + 2k and
B =i+ k. Find the cross product of those same vectors A and B.
Answer The position vector P = xi + yj + zk is perpendicular to N=A x B:

X

¥ z
P-AxB)=|1 1 2|=x+y-z=0.
0

i j k
AxB=[1 1 2i=i+j-k
1 0 1

11.3 EXERCISES

Read-through questions

The cross product AxBisa_ o whoselengthis _ b
Its directionis __ ¢ to A and B. That length is the arca of

a__d , whose baseis |A] and whose heightis __ @ . When

A=aji+ajand B=>b i+ b,j, theareais _f . Thisequals

a2by2_ g . Ingeneral |A-B2+|AxBZ=_h

The rules for cross products are AxA=__1 and
AxB=—(_1 ) and Ax(B+C)=AxB+_k . In
particular A x B needs the __! -hand rule to decide its

direction. If the fingers curl from A towards B (not more than
180°), then __m _ points _ n__. By this rule ixj=_ o _
andixk=_p andjxk=_1q

The vectors agi + a,j + ask and byi + b;j + b,k have cross
product t i+_ s §j+__t k The vectors A=
i+j+kand B=i+jhave AxB=_ v . (This is also the
3 by 3 determinant __¥__.) Perpendicular to the plane con-
taining (0,0, 0), (1, 1, 1), (1, 1, 0) is the normal veclor N=

w . The area of the triangle with those three vertices is

%, which is half the area of the parallelogram with fourth
vertex at ¥y

Vectors A, B, C from the origin determinea __z . Its vol-
ume [A-{_ A ) comesfroma Iby3 __ 8 . There are six
terms, _ € withaplussignand _ D with minus. In every
term each row and _ € is represented once. The rows
(1,0,0),(0, 0, 1}, and {0, 1, D) have determinant = __F___ That
boxisa _ & , butits stdes forma _ H -handed triple in
the order given.

If A, B, C lic in the same plane then A-(BxC)is _ | .
For A = xi + yj+ zk the first row contains the letters __J
So the plane containing B and C has the equation __ K =
0. When B=i+jand C=k thatequationis __ L . BxCis

M

A 3 by 3 determinant splits into __N__ 2 by 2 determinants.
They come from rows 2 and 3, and are multiplied by the
entries in row 1. With i, j, k in row 1, this determinant equals
the _ © product. Its j component is _ P__, including the

Q  sign which is easy to forget.

Compuie the cross preducts 1-8 from formula (6) or the deter-
minant (14). Do one example both ways.

1ixjixk
3@+ % (i+K)

52 +3%+K) x(i—j—k
T i+ 2 + 3k) x (4i — %)
8 (i cos 0 +jsin @) x (i sin 0 —j cos 8)

9 When are A x B| = A!|B| and |A - (B x C)| = [A|[B]|C[?

10 True or lalse:
(a) A x B never equals A+B.
(B)IfAxB=02and A-B=0, then cither A=00or B=10.
) IfAxB=AxCand A+#0, then B=C.

2(ixjxi
42i+3J+k)x2i+3-k
6li+j—kix(i—j+k
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In 11-16 find |A x B| by equation (1} and then by computing
A » B and its length.

1M A=i+j+k B=i
13A=-B

12 A=i+j,B=i-]j
4 A=i+j,B=j+k
I5 A=ai+asj B=>5i+b,j

16 A={a,, ds, a1}, B=(b,, b2, b;)

In Problem 16 (the general case), equation (1) proves that the

length from equation (6} is correct.

17 True or false, by testingon A=i,B=j, C=k:
@Ax(AxB)=0 (b}A-(Bx C)=(A xB)-C
© A-(BxC)=C-(B x A)

(d){A —B)x{A +B)=2(A x B).
18 (a) From A x B= — (B x A) deduce that A x A=0.

{b) Split (A + B} x {A + B) into four terms, to deduce that
{AxB)=—(Bx A).

What are the normal vectors to the planes 19-22?

19 (2, 1,0)-(x, ., 2)=4 20 Ix+4z=5
X ¥y =z X y 2z
|11 0=2 20 1 1]=0
0 1 1 r 1 2

Find N and the equation of the plane described in 23-29.
23 Contains the points (2, t, 1} (1, 2, 1), (1, 1, 2)

24 Contains the peoints (0. 1, 23, (L, 2, 3),{2, 3, 4)

25 Through (0, 0, 0}, (1, 1, 1), {a. b, ¢) [What if a = b = ¢?]
26 Paralleltoi+jand k

27 N makes a 45° angle with i and j

28 N makes a 60° angle with i and j

29 N makes a 90” angle with i and j

30 The triangle with sides i and j is as large as the
parallelogram with those sides. The tetrahedron with edpes
i, i, k is as larpe as the box with those edges. Extra
credit: Tn four dimensions the “simplex” with edges i,j k, |
has volume =

31 If the points (x, y, 2}, {1, 1, 0), and {1, 2, 1) lie on a plane
through the origin, what determinant is zero? What equation
does this give for the plane?

32 Giveanexample of a right-hand triple and left-hand triple.
Use vectors other than just i, j, k.

33 When B = 3i +j is rotated 90° clockwise in the xy plane
it becomes B* = . When rotated 90° counterclock-
wise it is . When rotated 1807 it is

34 From formuia {6) verify that B-{A < B)=10.
35 Compute
1 2 3|21 0|t 0 2
2 3 4,1 2 11,10 3 ©f
4 6/ |01 212 0 !
36 Which of the following are equal to A x B?

(A+Byx B, (~Byx(—A}), |A|IB|[sindl, (A+C)x(B—-0C),
HA —B) < (A +B).

37 Compare the six terms on both sides to prove that
a b 0 a, d; da,
ay; bs ¢ =|by by bij.
a; by 3 ¢y ¢z €3
The matrix is “transposed” —same determinant.
38 Compare the six terms to prove that
t, dy d

bl bZ b.\ = _'_bl

dy dj ay dz 4; 4

+h; —by

£y €3 O O3 (ST

€ €z G
This is an “expansion on row 2.”” Note minus signs.
39 Choose the signs and 2 by 2 determinants in

a; dz d;

by by byl=4ey

d; dj

b, b,

T Ty

¢y 3 &3

40 Show that (A x By + (B x C)+{C x A) is perpendicular to
B—Aand C—Band A—C.

Problems 41-44 compute the areas of triangles.

41 The triangle PQR in Example 7 has squared area
{\/3,4'2]2 ={$? +(H* + #)°, from the 3D version of Pythagoras
in Remark 2. Find the area of PQR when P =(4,0,0}, 0 =
(0, h, 0}, and R =0, 0, ¢). Check with }|A x B|.

42 A triangle in the xy plane has corners at (a,, b, ), (23, b3)
and (a3, b3). [ts area 4 is half 1he area of a parallelogram.
Find two sides of the parallelogram and explain why

A=4la; —a )by —by) —lag —a; )by — by}l

43 By Problem 42 find the area A of the triangle with corners
{2, 1)and (4, 2) and (1, 2). Where is a {ourth corner to make a
parailelogram?
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44 Lifting the triangle of Problem 42 up to the plane z=1
gives comers (a,, b,, 1), {a;, b5, 1), (a3, by, 1). The area of the
triangle times 4 is the volume of the upside-down pyramid
from (0, 0, 0) o these corners. This pyramid volume is 4 the
box volume, so 4 {area of triangle) = § (volume of box):

a b 1
areq of triangle = % a, by, 1},
a; by |1
Find the area A4 in Problem 43 from this determinant.

45 (1) The projections of A=a,i+a,j+ak and B=
b.i + b;J + b;k onto the xy plane are
{2} The parallelogram with sides A and B prolccts to a
parallelogram with area
(3) General fact: The projection onto the plane normal te
the unit vector n has area (A x B}+n. Verily for n=k.

46 (a} ForA=i+j—4kand B= —i +j, compute (A x B)+i
and (A x B}-j and (A x B)-k. By Problem 45 those are
the areas of projections onto the yz and xz and xy pianes.
{b} Square and add those areas to find |A x B|%. This is
the Pythagoras formula in space {Remark 2).
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47 {a) The triple cross product (A x B) x C is in the plane of
A and B, because it is perpendicular to the cross product

(b) Compute (A x B} x C when A =a,i+a,j+a:k, B=
bii+ byj+b3k. C=i

{c) Compute (A+ C)B—(B- C)A when C =i. The answers
in {b) and (c) should agree. This is also trueif C=jor C=
k or C=c,i+c;j+ c3k. That proves the tricky formula

AxBxC=A"OB—(B-OA ()
48 Take the dot product of equation (») with D to prove
(A xB}-(CxD)=(A-C)(B-D}—(B-C)(A D)

49 The plane containing P=(0,1,1) and ¢ =(1,0, 1) and
R=(1,1,0) is perpendicular to the cross product N=

. Find the equation of the plane and the area of
triangle PQR.

80 Let P=(1,0, —1), @=(1, 1, 1), R=(2, 2, 1). Choose § s0
that PORS is a parallelogram and compute its area. Choose
T, U, V so that OPQRSTUV is a box (parallelepiped) and
compute its volume.

We are moving from geometry to algebra. Eventually we get back to calculus, where
functions are nonlinear—but linear equations come first. In Chapter 1, y=mx+ b
produced a line. Two equations produce two lines. If they cross, the intersection point
solves both equations—and we want to find it.

Three equations in three variabies x, y,z produce three planes. Again they go
through one point (usually). Again the problem is to find that intersection point

—which solves the three equations.

The ultimate problem is o solve n equations in n unknowns. There are n hyper-
planes in n-dimensional space, which meet at the solution. We need a test to be sure
they meet. We also want the solution. These are the objectives of kinear algebra, which
joins with calculus at the center of pure and applied mathematics.t

Like every subject, linear algebra requires a good notation. To state the equations
and solve them, we introduce a “matrix.” The problem will be Au=d. The solution

will be u= A

~1d. It remains to understand where the equations come from, where
the answer comes from, and what the matrices 4 and 4~

! stand for.

TWO EQUATIONS IN TWO UNKNOWNS

Linear algebra has no reason to choose one variable as special. The equation y — y, =
m{x — xg) separates y from x. A better equation for a line is ax + by = d. (A vertical

tLinear algebra dominates some app]icat'ions while calculus governs others. Both are essential.
A fuller treatment is presented in the author’s book Linear Aigebra and Its Applications
(Harcourt Brace Jovanovich, 3rd edition 1988}, and in many other texts.
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line like x =5 appears when b= 0. The first form did not allow slope m = .} This
section studies two lines:

a,x+by=d

(1)

ayx +byy=d,,
By solving both equations at once, we are asking (x, y) to lie on both lines. The
practical question is: Where do the lines cross? The mathematician’s question is: Does
a solution exist and is it unique?

To understand everything is not possible. There are parts of life where you never
know what is going on {until too late). But two equations in two unknowns can have
no mysteries. There are three ways to write the system—by rows, by columns, and
by matrices. Please look at ail three, since setting up a problem is generally harder
and more important than solving it. After that comes the concession to the real world:
we compute x and y.

EXAMPLE1 How do you invest 35000 to earn $400 a year interest, if a money market
account pays 5% and a deposit account pays 10%?

Set up equations by rows: With x dollars at 5% the interest is .05x. With y dollars at
10% the interest is .10y. One row for principal, another row for interest:

X+ y=5000

(2)
05x+ .10y = 400.

Same equations by columns: The left side of (2) contains x times one vector plus y
times another vector. The right side is a third vector. The equation by columns is

o] L))
X +y = . (3)
05 10 400

Same equations by matrices: Look again at the left side. There are two unknowns x
and y, which go into a vector u. They are multiplied by the four numbers 1, .05, 1,
and .10, which go into a two by two matrix A. The left side becomes e matrix times

a vector:
[ 11 }[\} [5000}
An= = . 4
05 10|y 400

Now you see where the *rows” and “columns™ came from. They are the rows and
columns of a matrix. The rows entered the separate equations (2). The columns
entered the vector equation (3). The matrix-vector multiplication Au is defined so
that all these equations are the same:

a, by |[x] a;x+by (cach row is
Au by rows: = ‘
ay by || y| [a@2x+byy a dot product)

ay by |[x S b, {combination of
Au by columns: o bl _x[ﬂz]”![bj column vectors]

A is the coefficient matrix. The unknown vector is u. The known vector on the right
side, with components 5000 and 400, is d. The matrix equation is Au = d.
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¥4
N
N ] 5000
3000]b =[3288} w d=[ 400}
3000 - T L0 s
Ty [2000
x 2000”‘[ 1001
VRN LA S~ ——————t
200 pyy=s 05x + .10y = 400 vat+yb=d

Fig. 11.16 Each row of Au=4d gives a line. Each column gives a vector.

This notation Au = d continues to apply when there are more equations and more
unknowns. The matrix 4 has a row for each egquation (usually m rows). It has a column
for each unknown (usually n columns). For 2 equations in 3 unknowns it is a 2 by 3
matrix (therefore rectangular). For 6 equations in 6 unknowns the matrix is 6 by 6
(therefore square). The best way to get familiar with matrices is to work with them.
Note also the pronunciation: *matrisees” and never “matrixes.”

Answer to the practical question The solution is x = 2000, y= 3000. That is the
intersection point in the row picture (Figure 11.16). It is also the correct combination
in the column picture. The matrix equation checks both at once, because matrices
are multiplied by rows or by columns. The product either way is d:

11 || 2000 2000 + 3000 5000 d
.05 .10 ([ 3000 (.05)2000 + {.10)3000 400
Singular case In the row picture, the lines cross at the solution. But there is a case

that gives trouble. When the lines are parallel, they never cross and there is #o solution.
When the lines are the same, there is an infinity of solutions:

2x+y=0 2x+ y=0
paraliel lines same line (5}
x+y=1 dx+2y=0

This trouble also appears in the column picture. The columns are vectors a and b,
The equation 4Au = d is the same as xa + yb =d. We are asked to find the combination
of a and b (with coefficients x and y) that produces d. In the singular case a and b lie
along the same line (Figure 11.17). No combination can produce d, unless it happens
to lie on this line.

parallel lines cross ar solution a]_[1
lines a=[§:| x=1, =1 a |7 4
=| 0 t : |
d"[l} b=[1]
xa+vyb
2y + y= (4] 2r+ y= | misses d

Fig. 11.17 Row and column pictures: singulgr (no solution) and nonsingular (x =y =1}.
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The investment problem is nonsingular, and 2000 a + 3000 b equals d. We also drew
Example 2: The matrix A multiplies u= (1, 1) to solve x+2y=3 and x—y=0:

s VLR )L

The crossing point is (1, 1) in the row picture. The solution is x=1, y=1 in the
column picture (Figure 11.17b). Then 1 times a plus 1 times b equals the right side d.

SOLUTION BY DETERMINANTS
Up to now we just wrote down the answer. The real problem is to find x and y when
they are unknown. We solve two equations with letters not numbers:
ax+bh,y=d,
a,x+b,y=d,.

The key is to eliminate x. Multiply the first equation by a, and the second equation
by a,. Subtract the first from the second and the x’s disappear:

(ayby —ayby)y =(ayd; — ayd,). (6)
To eliminate y, subtract b, times the second equation from b, times the first:
(byay = byay)x=(byd, — by d,). (7

What you see in those parentheses are 2 by 2 determinants! Remember from

Section 11.3:

a, b, ‘u[ b,
=a;b,—a,b,.

The determinant of [ :| is the number

a, b, la; by
This number appears on the left side of (6) and (7). The right side of (7) is also a
determinant—but it has d’s in place of a’s. The right side of (6) has d’s in place of
b’s. So x and y are ratios of determinants, given by Cramer’s Rule:

dy b, a, d,
11H Cramer’s Rule The solution is x = AT

al bl ﬂ, bl

ﬂz bZ [£5] bz

The investment example is solved by three determinants from the three columns:
1 1 5000 1 5000
05 .10 400 .10 .05 400

= 150.

Cramer’s Rule has x = 100/.05= 2000 and y = 150/.05= 3000. This is the solution.
The singular case is when the determinant of A is zero—and we can’t divide by it.

111 Cramer’s Rule breaks down when det 4 = 0—which is the singular case.
Then the lines in the row picture are parallel, and one column is a multiple of
the other column.
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EXAMPLE 3 The lines 2x + y=0, 2x + y=1 are parallel. The determinant is zero:

2 1| x 0 21
= has det 4 = =0
2 1|y 1

21

The lines in Figure 11.172 don't meet. Notice the columns: [2] is a multiple of [1].

One final comment on 2 by 2 systems. They arc small enough so that all solution
mcthods apply. Cramer’s Rule uses determinmants. Larger systems use elimination
(3 by 3 matrices are on the borderline). A third solution {the same solution!) comes
from the inverse matrix A~ !, to be described next. But the inverse is more a symbol
for the answer than a new way of computing it, because to find 4~ we still use
determinants or elimination,

THE INVERSE OF A MATRIX

The symbol 4~ ! is pronounced “A inverse.” Tt stands for a matrix—the one that
solves Au=d. I think of 4 as a matrix that takes u to d. Then 4~ ' is a matrix that
takes d back to u. If Au=d then u= A~ 'd (provided the inverse exists). This is exactly
like functions and inversc functions: g{x) =y and x = g~ (y). Our goal is to find 4!
when we know A.

The first approach will be very direct. Cramer’s Rule gave formulas for x and y,
the components of u. From that ruie we can read off 4™, assuming that D=
a b, — ayby is not zero. D is det A and we divide by it;

b,d,—b,d b, —b||d
Cramer: u=l U Thisis A_1d=i : T ®)
D _azdl+ald2 D _ﬂz ﬂl dz

The matrix on the right (including 1/D in all four entries) is 4~ !. Notice the sign
pattern and the subscript pattern. The inverse exists if I is not zero—this is impor-
tant. Then the solution comes from a matrix-vector multiplication, 477 times d. We
repeat the rules for that multiplication:

DEFINMION A matrix M times a vector v equalis a vector of dot products:

[row li||: i| |:(r0w 1)'vi|
Mvyv= v([= . (9)
row 2 (row 2)-y

Equation (8) follows this rule with M = A~ and v=d. Look at Example 1:

11 [0 -1 2 —20
A= L det A=05, A'=— = :
05 .10 05 —05 1 -1 2

There stands the inverse matrix. It multiplies d to give the solution u;
P [ 2 - 20} [5000} _ [ (2)(5000) — (20)(400)} _ [2000}.
-1 20 || 400 (— 1)(5000) + {20)(400) 3000
The formulas work perfectly, but you have to see a direct way to reach A ~'d. Multiply

both sides of Au=d by A~ '. The multiplication “cancels” 4 on the left side, and
leaves w= A~ 'd. This approach comes next.
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MATRIX MULTIPLICATION

To understand the power of matrices, we must multiply them. The product of 4!
with Au is a matrix times a vector. But that multiplication can be done another way.
First A~ multiplies A, a matrix times a matrix. The product 4~ ' A4 is another matrix
(a very special matrix). Then this new matrix multiplies u.

The matrix-matrix rule comes directly from the matrix-vector rule. Effectively, a
vector v is a matrix ¥ with only one column. When there are more columns, M times
V splits into separate matrix-vector multiplications, side by side:

DEFINITION A matrix M times a matrix V equals a matrix of dot products:

row 1 (row 1)*v; (row 1)-v,
MV = Vi V2 |=| _ : (10)
row 2 (row 2)+v; (row 2)+v,
1 2|5 6 1-5+2+7 1-6+2-8 19 22
EXAMPLE 4 = = ;
3 4117 8 3:5+4-7 3:6+4-8 43 50

1 0
EXAMPLES5 Multiplying 4 ' times 4 produces the “identity matrix” |:0 l:|:

A A=

D D

b2 _bl albz‘_azbl 0 }
—a; ay||la, b, 0 —axb, +ab, 1 0
- =, (|

a, b,

This identity matrix is denoted by I. It has 1’s on the diagonal and 0’s off the diagonal.
It acts like the number 1. Every vector satisfies Iu= u.

14J  (Inverse matrix and identity matrix) AA"'=1and A"'A=1and lu=u:

) ] LMY -

Note the placement of a, b, ¢, d. With these letters D is ad — be.

The next section moves to three equations. The algebra gets more complicated (and
4 by 4 is worse). It is not easy to write out 4~ '. So we stay longer with the 2 by 2
formulas, where each step can be checked. Multiplying Au=d by the inverse matrix
gives A 'Au= A~ 'd—and the left side is Ju=u.

=5

]
| —
—_—0
[

ata=[sn ]

cos 0

.*gj i

Fig. 11.18 Rotate v forward into Av. Rotate d backward into 4~ 'd.
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cos —sin8

EXAMPLES A =|: } rotates every v to Av, through the angle 0.

sinfi cos@

1
Question 1 Where is the vector v = [O:I rotated to?
Question? What is A™'7

0
Question 3 Which vector u is rotated intod = |:1:|?

i cosf —sin@]l1 cos §
Solution | v rotates into Av= = )
sin @ cos 0 _0 sin &

cos® sin @]
Solution? det A=1s0A47'= _ = rotation through —6.
—sinf cosd |

cos@ sinf |0 sin @
Solution3 If Au=d thenu=4"1d= = .
—sind cos@ || 1 cos B

Historical note | was amazed to learn that it was Leibniz (again!) who proposed the
notation we use for matrices. The entry in row i and column | is a;;. The identity
matnx hasa,, = ¢;; = l and 4,, = ¢,, = 0. Thisis in a linear algebra book by Charles
Dodgson—better known to the world as Lewis Carroll, the author of Alice in
Wonderland. 1 regret to say that he preferred his own notation iff instead of g;;.
“Y have turned the symbol toward the left, to avoid ali chance of confusion with {.”
It drove his typesetter mad.

PROJECTION ONTO A PLANE = LEAST SQUARES FITTING BY A LINE

We close with a genuine application. It starts with three-dimensional vectors a, b, d

and leads 1o a 2 by 2 system. One good feature: a, b, d can be n-dimensional with no

change in the algebra. In practice that happens. Second good feature: There is a

calculus problem in the background. The example is to fit points by a straight line.
There are three ways to state the problem, and they look different:

1. Solve xa+ yb=4d as well as possible (three equations, two unknowns x and y).
2. Project the vector d onto the plane of the vectors a and b.
3. Find the closest straight line (““least squares’) to three given points.

Figure 11.19 shows a three-dimensional vector d above the plane of a and b. Its
projection onto the plane is p= xa + yb. The numbers x and y are unknown, and
our goal is to find them. The calculation will use the dot product, which is always
the key to right angles.

The difference d — pis the ““error.” There has to be an error, because no combination
of a and b can produce d exactly. (Otherwise d is in the plane.) The projection p is
the closest point to d, and it is governed by one fundamental law: The error is
perpendicular to the plane. That makes the error perpendicular to both vectors a
and b:

a-(xa+yb—d)=0 and b:{(xa+ yb—d)=0. (13)

431
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Rewrite those as two equations for the two unknown numbers x and y:
(a-a)x +{a-byy=a-d
(14)
(b-a)x + (b~h)y=b-d.

These are the famous rormal eguations in statistics, to compute x and y and p.

EXAMPLE 7 Fora={l, I, I)and b=(1, 2, 3) and d = (0, 5, 4), solve equation (14):

Ix+ 6y= 9 x=-1
6x -+ 1y = 22 gives e so p= —a-+2b=(1, 3, 5)= projection.
Notice the three equations that we are not solving {we can’ty xa+yb=d is
x+ y=0 11
x+2y=5 withthe 3by 2matrix A=;1 2 (15)
x+3y=4 13

For d = (0, 5, 4) there is no solution; d is not in the plane of a and b. For p=(1, 3, 5)
there is a solution, x= — 1 and y=2. The vector p is in the plane. The error d — p
is (—1, 2, —1). This error is perpendicular to the columns (1, 1, {) and (1, 2, 3), so it is
perpendicular to their plane.

SAME EXAMPLE (written as a line-fitting problem) Fit the points (1, 0) and (2, 5) and
(3, 4) as closely as possible (“least squares™) by a straight line.

Two points determine a line. The example asks the line /= x + yt to go through three
points. That gives the three equations in (15), which can’t be solved with two un-
knowns. We have to settle for the closest line, drawn in Figure 11.19b. This line is
computed again below, by calculus.

Notice that the closest line has heights 1, 3, 5 where the data points have heights
0, 5, 4. Those are the numbers in p and d! The heights 1, 3, 5 fit onto a line; the heights
0, 5, 4 do not. In the first figure, p=(1, 3, 5) is in the plane and d = {0, 5, 4) is not.
Vectors in the plane lead to heights that lie on a line.

Notice another coincidence. The coefficients x = — 1 and y = 2 give the projection
—a + 2b. They also give the closest line f= — 1 +2t. All numbers appear in both
figures.

ptojection 1
p=-a+lb= {3]

S

Fig. 11.49%  Projection onto plane is (1, 3, 5) with coefficients —1, 2. Closest line has heights
1, 3, 5 with coefficients —1, 2, Error in both picturesis —1, 2, —1.
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Remark Finding the closest line is a calculus problem: Minimize a sum of squares.
The numbers x and y that minimize E give the least squares solution:

E(x,y)=(x+y—0)*+(x+2y— 572+ (x+3y—4)>~ (16)

Those are the three errors in equation (15), squared and added. They are also the
three errors in the straight line fit, between the line and the data points. The projection
minimizes the error (by geometry), the normal equations (14) minimize the error (by
algebra), and now calculus minimizes the error by setting the derivatives of E to zero.

The new feature is this: E depends on two variables x and y. Therefore E has two
derivatives. They both have to be zero at the minimum. That gives two equations for
x and y:

x derivative of E is zero: 2(x + y)+2(x+2y—5) +2(x+3y—4) =0

y derivative of E is zero: 2(x + y) + 2(x + 2y — 5)(2) + 2(x + 3y — 4)(3) = 0.

When we divide by 2, those are the normal equations 3x + 6y=9 and 6x + 14y =
22. The minimizing x and y from calculus are the same numbers —1 and 2.

The x derivative treats y as a constant. The y derivative treats x as a constant.
These are partial derivatives. This calculus approach to least squares is in Chapter 13,
as an important application of partial derivatives.

We now summarize the least squares problem—to find the closest line to n data
points. In practice n may be 1000 instead of 3. The points have horizontal coordinates
b,.b,, ..., b,. The vertical coordinates are d,,d,,...,d,. These vectors b and d,
together with a=(1, 1, ..., 1), determine a projection—the combination p= xa + yb
that is closest to d. This problem is the same in n dimensions—the error d — p is
perpendicular to a and b. That is still tested by dot products, pra=d-aand p-b=
d - b, which give the normal equations for x and y:

(ara)x+(a*byy=a-d
(b-a)x+(b-b)y=b-d

(n) x+ (Xb;)y = Zd

(17)
(Zh;)x + (Zb?)y = Zbyd,.

14K The least squares problem projects d onto the plane of a and b. The
projection is p= xa + yb, in n dimensions. The closest line is f= x + yt, in two
dimensions. The normal equations (17) give the best x and y.
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Read-through questions

The equations 3x + y = 8 and x + y = 6 combine into the vec-
tor equation x__a +y_b "= ¢ =d. The left side is
Au, with coefficient matrix A =__d _ and unknown vector
u=__e . The determinant of Ais __t , so this problem
isnot __g . The row picture shows two intersecting __h
The column picture shows xa + yb=d, wherea=__1 _and
b=__ 1 . Theinverse matrixis A '=__k . The solution
isu=A"'d=_|

A matrix-vector multiplication produces a vector of dot

m__ from the rows, and also a combination of the _ n

ol L) L oL C L

If the entries are a, b, c, d, the determinantis D=_o . 4~!

is [__p 7] divided by D. Cramer’s Rule shows components

of u= A"'d as ratios of determinants: x=__a_ /D and y=
r_/D.
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A matrix-matrix multiplication MV yields a matrix of dot
products, from the rows of __8 _ and the columns of __t

eE ] LA
It A

The last line contains the _ v matrix, denoted by /. It has

the property that J4=AJ=__v for every matrix 4, and

In=__w for every vector u, The inverse matrix satisfies
A 'A=_x_ . Then Au=d is solved by multiplying both
sidesby ¥ ,togiveu=__z . Thereis noinverse matrix
when _ A

The combination xa + yb is the projection of d when the
error _ B__ is perpendicular to _ € _and _D . Ifa=
(1,1, 1), b=(1, 2, 3), and d = (0, 8, 4), the equations for x and
yare __E . Solving them also gives the closest __F __to the
data points (1, 0), _ € , and (3, 4). The solutionisx=0,y=
2, which means the best line is _H . The projection is
Oa+2b=__1 . The three error components are _ J .
Check perpendicularity: __ K _=0and _L _=0. Applying

calculus to this problem, x and y minimize the sum of squares
E = M

In 1-8 find the point (x, y) where the two lines intersect (if they
do). Also show how the right side is a combination of the
columns on the left side (if it is). Also find the determinant D.

1 x4y=7 T 2x+yp=11
x—y=3 x+y=6
33x— p=8 4 x42y=3
x—3y=0 2x+dy=7
5§2x—4y=0 6 10x+y=1
x—2y=0 x+y=1
T ax+ by=0 8ax+by=1
2ax +2by=2 ex+dy=1

9 Solve Problem 3 by Cramer’s Rule,
10 Try to solve Problem 4 by Cramer’s Rule.
11 What are the ratios for Cramer’s Rule in Problem 5?
12 If A=1I show how Cramer's Rule sotves Au=d.
13 Draw the row picture and column picture for Problem 1.
14 Draw the row and column pictures for Problem 6.
15 Find A~ in Problem 1.
16 Find A~! in Problem 8 if ad — bc = 1.

17 A 2 by 2 system is singular when the two lines in the row

picture . This system fis still solvable if one equation
isa of the other equation. In that case the two lines
are and the number of solutions is

18 Try Cramer’s Rule when there is no solution or infinitely
many;

x+ y=0 Ix+ y=1

or

6x+2y=2 6x+2y=2

19 Au=d is singular when the columns of 4 are .
A solution exists if the right side d is . In this solvable
case the number of solutions is

20 The equations x — y =d, and 9x — 9y = d, can be solved
if .

21 Suppose x =1 billion people live in the U.S. and y=35
billion live outside. If 4 per cent of those inside move cut and
2 per cent of those outside move in, find the populations d,
inside and d, outside after the move. Express this as a matrix
multiplication Au=4d (and find the matrix).

22 In Problem 21 what is special about g, + a; and b, + b,
{the sums down the columns of A)? Explain why d, + d; equ-
als x + y.

23 With the same percentages moving, suppose d; =0.58 bil-
lion are inside and d, = 4.92 billion are outside at the end. Set
up and solve two equations for the original populations x
and y.

24 What is the determinant of A in Probiems 21-237 What
ts A7'? Check that 474 =1.

25 The equations ax +y =0, x + ay=0 have the solution
x =y =0. For which two values of a are there other solutions
{and what are the other solutions)?

26 The equations ax + by =0, ¢x + 4y = 0 have the solution
x=y=0. There are other solutions if the two lines are
. This happens if a, b, ¢, d satisfy

27 Find the determinant and inverse of 4=[2 ¥]. Do the
same for 24, A™', — A, and [.

28 Show that the determinant of 4~ is 1/det 4:
. dilad —bey  —bj{ad — be)
| —ciad—be)  ajiad —bo)

29 Compute AB and BA and also BC and CB;

S

Verify the associative law;  AB times C equals A times BC.

30 (a) Find the determinants of A, B, AR, and BA above.
(b) Propose a law for the determinant of BC and test it.

a b e
3 For A= and B=
| g

factor its determinant into (ad — be)(ek —f%). Therefore
det(AB) = (det A)(det B).

s
write out AB and
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32 Usually det(A + B) does not equal det A +det B. Find
examples of inequality and equality.

33 Find the inverses, and check A7 !4 =Iand BB =1, for

1 4 22
A= and B= .
0 2 0 1

M In Problem 33 compute AB and the inverse of 4B. Check
that this inverse equals B~ ' times A",

35 The mattix product ABB ™14~ equals the mat-
rix, Therefore the inverse of AB is - Important; The
associative law in Problem 29 allows you to multiply BB~
first.

36 The matrix multiplication C~'B~'47*ABC vields the
matrix. Therefore the inverse of ABC is )

37 The equations x + 2y + 3z and 4x+ 5y +cz=0 always
have a nonzero solution. The veclor u={x, y, z) is required
to be tov=(1,2,3)and w=(4, 5, ¢). So choose u=

38 Find the combination p=xa + yb of the vectors a=
(1,1,1) and b={(—1, 0, 1) that comes closest to d =(2, 6, 4).
{a) Solve the normal equations (14) for x and y. (b} Check that
the error d — p is perpendicular to a and b.

11.5 Linear Algebra

39 Plot the three data points (-1, 2), (0, 6), (1, 4) in a plane,
Draw the straight line x + yt with the same x and y as in
Problem 38. Locate the three errors up or down from the data
points and compare with Problem 38.

40 Solve equation (14) to find the combination xa + yb of
a=([,1,1 and b=(-1, 1, 2) that is closest to d=(1, 1, 3).
Draw the corresponding straight line for the data points
(—1, 1), (1, 1), and (2, 3). What is the vector of three errors and
what is it perpendicular to?

41 Under what condition on 4,,d,, d; do the three points
{0, d,), (1, d3), (2, d4) lic on a line?

42 Find the matrices that reverse x and y and project:
x ¥y x x
M = and P = .
¥ x ¥ 0

S5 5
43 Multiplying by P =|: 5 5i| projects n onto the 45° line.

(a) Find the projection Pu of u=[}].
{b) Why does P times P equal P?
{c) Docs P~ exist? What veclors give Pu=1(?

44 Suppose n is not the zero vector but Au=9, Then 4™’
can't exist: it would multiply and produce u,

This section moves from two to three dimensions. There are three unknowns x, y, z
and also three equations. This is at the crossover point between formulas and
algorithms—it is real linear algebra. The formulas give a direct solution using det-
erminants. The algorithms use elimination and the numbers x, y, z appear at the
end. In practice that end result comes quickly. Computers solve linear equations by

elimination.

The situation for a nonlinear equation is similar. Quadratic equations
ax? + bx + ¢ = 0 are solved by a formula. Cubic equations are solved by Newton’s
method (even though a formula exists). For equations involving x * or x*°, algorithms

take over completely.

Since we are at the crossover point, we look both ways. This section has a lot to
do, in mixing geometry, determinants, and 3 by 3 matrices:

1. The row picture: three planes intersect at the solution
2. The column picture: 2 vector equation combines the columns
3. The formulas; determinants and Cramer’s Rule

4. Matrix multiplication and 47!

5. The algorithm: Gaussian elimination.

Part of our goal is three-dimensional calculus. Another part is n-dimensional algebra,
And a third possibility is that you may not take mathematics next year. If that
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happens, I hope you will use mathematics. Linear equations are so basic and impor-
tant, in such a variety of applications, that the effort in this section is worth making.

An example is needed. It is convenient and realistic if the matrix contains zeros.
Most equations in practice are fairly simple-—a thousand equations each with 990
zeros would be very reasonable. Here are three equations in three unknowns:

X+ y = 1
X +2z= 0 (1)
—2y+2z2= -4

In matrix-vector form, the unknown u has components x, y, z. The right sides 1, 0, —4
go into d. The nine coefficients, including three zeros, enter the matrix A:

1 1 0f]x 1
1 0 2(|y|= 0 or Au=d. (2)
0-2 21|z —4

The goal is to understand that system geometrically, and then solve it.
THE ROW PICTURE: INTERSECTING PLANES

Start with the first equation x + y = 1. In the xy plane that produces a line. In three
dimensions it is a plane. It has the usual form ax + by + ¢z = d, except that ¢ happens
to be zero. The plane is easy to visualize (Figure 11.20a), because it cuts straight down
through the line. The equation x + y =1 allows z to have any value, so the graph
includes all points above and below the line.

The second equation x +2z=0 gives a second plane, which goes through the
origin. When the right side is zero, the point (0, 0, 0) satisfies the equation. This time y
is absent from the equation, so the plane contains the whole y axis. All points (0, y, 0)
meet the requirement x + 2z = 0. The normal vector to the plane is N =i+ 2k. The
plane cuts across, rather than down, in 11.20b.

Before the third equation we combine the first two. The intersection of two planes
is a line. In three-dimensional space, two equations (not one) describe a line. The
points on the line have to satisfy x + y =1 and also x + 2z =0. A convenient point
is P=(0, 1, 0). Another point is Q = (=1, 2, §). The line through P and Q extends out
in both directions.

The solution is on that line. The third plane decides where.

-

x=-2,y=3,z=1

intersection solution

line of first
two planes

e ’

third plane -2y + 2z =—4

—

Fig. 14.20 First plane, second plane, intersection line meets third plane at solution.
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The third equation —2y + 2z = — 4 gives the third plane—which misses the origin
because the right side is not zero. What is important is the point where the three
planes meet. The intersection line of the first two planes crosses the third plane.
We used determinants (but elimination is better) to find x= —2, y=3, z= 1. This
solution satisfies the three equations and lies on the three planes.

A brief comment on 4 by 4 systems. The first equation might be x + y+z —t=0.
It represents a three-dimensional “hyperplane” in four-dimensional space. {In physics
this is space-time.) The second equation gives a second hyperplane, and its intersection
with the first one is two-dimensional. The third equation (third hyperplane) reduces
the intersection to a line. The fourth hyperplane meets that line at a point, which is
the solution. It satisfies the four equations and lies on the four hyperpianes. In this
course three dimensions are enough.

COLUMN PICTURE: COMBINATION OF COLUMN VECTORS

There is an extremely important way to rewrite our three equations. In (1) they were
separate, in (2) they went into a matrix. Now they become a vector equation:

1 1 0 1
x|t]+y]| ol|+z]|2|=| o] 3)
0 -2 2 —4

The columns of the matrix are multiplied by x, y, 2. That is a special way to see matrix-
vector muitiplication: Au is a combination of the columns of A. We are looking for
the numbers x, y, z so that the combination produces the right side d.

The column vectors a, b, ¢ are shown in Figure 11.21a. The vector equation is
xa + yb + zc = d. The combination that solves this equation must again be x= — 2,
y=23, z=1. That agrees with the intersection point of the three planes in the row
picture.

1 :,‘ 3, b,cin
new C", same plane
4 ¥ o d not in that plane:
+ ' nosolution

v O=lc+2b-2a

Ag. 14.249 Columns combine to give d. Columns combine to give zero (singular case).

THE DETERMINANT AND THE INVERSE MATRIX

For a 3 by 3 determinant, the section on cross products gave two formulas. One was
the triple product a -+ (b x ¢). The other wrote out the six terms:

det A=a '(b X C)= ﬂl(bzl‘:3 - bng) + ﬂz(baf.'l - bICS} + aa{bICZ - bzcl).
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Geometrically this is the volume of a box. The columns a, b, ¢ are the edges going out
from the origin. In our example the determinant and volume are 2:

iy b-l £y 1

(1O — 1= 2(@) + (1= 20)
= (12 + O)(1)(2) - O)NO)O)

25 bg Cyl = 1 0
03 b3 C3 0 _2 2

A slight dishonesty is present in that calculation, and wiil be admitted now. In
Section 11.3 the vectors A, B, C were rows. In this section a, b, ¢ are columns. It doesn’t
matter, because the determinant is the same either way. Any matrix can be
“transposed”—exchanging rows for columns—without altering the determinant. The
six terms (a,b,c, is the first) may come in a different order, but they are the same six
terms. Here four of those terms are zero, because of the zeros in the matrix. The sum
of all six terms is D =det A =2,

Since D is not zero, the equations can be solved. The three planes meet at a point.
The column vectors a, b, ¢ produce a genuine box, and are not flattened into the same
plane (with zero volume), The solution involves dividing by D—which is only possible
if D =det A is not zero.

44L When the determinant D is not zero, 4 has an inverse: A4~ 1= A"14=
I. Then the equations Au=d have one and only one solution u= 4~ 'd.

The 3 by 3 identity matrix I is at the end of equation (5). Always In=u.
We now compute A~ ', first with letters and then with numbers. The neatest
formula uses cross products of the columns of A—it is special for 3 by 3 matrices.

bxe

Every entry is divided by D: The inverse matrix is A~ ' = cxa [ (4

1

D
axh

To test this formula, multiply by A. Matrix multiplication produces a matrix of dot

products—from the rows of the first matrix and the columns of the second, 4 'A=1I

bxe a'(bxe) brbxc) c:(bxc) 1 00
D cxa a b ¢ =% a‘(cxa) b(cxa) ccxa)|=|0 1 0. (5
axh a(axh) b(axb) c-{axbh 0 01

On the right side, six of the triple products are zero. They are the off-diagonals like
b-(b x c), which contain the same vector twice. Since b x ¢ is perpendicular to b, this
triple product is zero. The same is true of the others, like a-(a x b)=0. That is the
volume of a box with two identical sides. The six off-diagonal zeros are the volumes
of completely flattened boxes.

On the main diagonal the triple products equal D. The order of vectors can be abe
or bea or cab, and the volume of the box stays the same. Dividing by this number D,
which is placed outside for that purpose, gives the 1's in the identity matrix I.

Now we change to numbers. The goal is to find 4~ and to test it.

1 1 0 4 -2 2
EXAMPLEA Theinverseof A =|1 0 2|isA'==]|-2 2 -2
0-2 2 -2 2 -1

b3 —
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That comes from the formula, and it absolutely has to be checked. Do not fail to
multiply 4% times A (or A times A~?). Matrix multiplication is much easier than
the formula for A~*. We highlight row 3 times column 1, with dot product zero:

4 -2 27t 1 o 4-2 4-4 -4+4 100
% -2 2 -20|1 o0 2 =% —-2+2 -2+4 4-4|=|0 10
-2 2 -14|l0-2 2 ~2+2 -2+2 4-2| |0 0 1

Remark on A~* Inverting a matrix requires D # 0. We divide by D =det 4. The
cross products bx ¢ and ¢ x a and a x b give A™* in a neat form, but errors are
easy. We prefer to avoid writing i, j, k. There are nine 2 by 2 determinants to be
calculated, and here is A ™! in full —containing the nine “cofactors” divided by D:

bycs —bic;, bscy—bies bicy; — by

-1
A = Caly — C34; C3@) — 183 Oy — Cady |. (6}

1

D
ﬂzba_ﬂgbz 3351_3153 albz_azbl

Important: The first row of 4~ ! does not use the first column of A4, except in 1/D.

In other words, b x ¢ does not involve a. Here are the 2 by 2 determinants that
produce 4, — 2, 2—which is divided by D= 2 in the top row of 4™

1 &t ot 1t Offt 1 O + - +
1o 2|t o 211 0O 2 - + - | (7
0-2 2(l0-2 2]|0 -2 2 + - +

The second highlighted determinant looks like +2 not — 2. But the sigr matrix on
the right assigns a minus to that position in 4 ~*. We reverse the sign of b3 — by,
to find the cofactor bye; — b,c5 in the top row of (6).

To repeat: For arow of A~ ', cross out the corresponding column of A. Find the three
2 by 2 determinants, use the sign matrix, and divide by D.

1 11 1 -1 0
EXAMPLE2 B=|0 1 t {hasD=1land B~ '=|0 I -1} (8)
00 1 0 0 1

The multiplication BB~ ! = J checks the arithmetic. Notice how } | in B leads to a
zero in the top row of B~!. To find row 1, column 3 of B~! we ignore column { and
row 3 of B. (Also: the inverse of a triangular matrix is triangular,) The minus signs
come from the sign matrix.

THE SOLUTION u=A"'d

The purpose of 4! is to solve the equation Au=d. Multiplying by 4~ ' produces
Iu= A"'d. The matrix becomes the identity, fu equals », and the solution is
immediate;
bxc d*(bxc)

1
cxa d =3 d-(cxa) | 9)

axbh d-{axh)

t=A"4d=

i
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By writing those components X, y, z as ratios of determinants, we have Cramer's Rule:

11M (Cramer’s Rule)

dbe  jadc Z_labdl
labe * jabe “Jabel

The solution is x = 1o

The right side d replaces, in turn, columns a and b and ¢. All denominators are D=
a* (b x c). The numerator of x is the determinant d - (b x ¢) in (9). The second numera-
tor agrees with the second component d - (¢ x a), because the cyclic order is correct.
The third determinant with cotlumns abd equals the tripie product d-{a x b}in 4™ 'u.
Thus (10} is the same as (9).

EXAMPLE A:  Multiply by 47" to find the known solution x= -2, y=3,z=1;

4 -2 2 l 4—8 -2
1 |
= g _| = — =—| — 2+ =
u=4A4"'4d 2 2 2 2 0 3 2+38 3
-2 2 -1 -4 —2+4 1

EXAMPLE B:  Multiply by B™! to solve Bu=d when d is the column (6, 5, 4);

1 -1 01|16 1 111 1 6
u=RB"1d=|0 1 -1 5i=|1|. CheckBu=|0 1 1 1]=|5
0 0 11]4 4 0 0 1|4 4

EXAMPLEC: Putd=(6, 5, 4)in each column of B. Cramer’s Rule gives u= (1, 1, 4):
6 1 1 1
51 11=1
4 0 1

6 1 1 1 6 | S
5 1{=1 |0 1| 5/=4 alidividedby D=|0 1 1|=1.
4

0
0 1 0 0 4 001

This rule fills the page with determinants. Those are good ones to check by eye,
without writing down the six terms (three + and three —).

The formulas for 4 ! are honored chiefly in their absence. They are not used by
the computer, even though the aigebra is in some ways beautiful. In big calculations,
the computer never finds 4~ '—just the solution.

We now ook at the singular case P = 0. Geometry-algebra-algorithm must all
break down. After that is the algorithm: Gaussian elimination.

THE SINGULAR CASE

Changing one entry of a matrix can make the determinant zero. The triple product
a (b x ¢), which is also the volume, becomes D =0. The box is flattened and the
matrix is singular. That happens in our example when the lower right entry is changed
from 2 to 4:

S=|1 0 2t has determinant D=20.
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This does more than change the inverse. It destroys the inverse. We can no longer
divide by D. There is no § ',

What happens to the row picture and column picture? For 2 by 2 systems, the
singular case had two parallel lines. Now the row picture has three planes, which
need not be parailel. Here the planes are not parallel. Their normal vectors are the
rows of §, which go in different directions. But somehow the planes fail to go through
a common point.

What happens is more subtle. The intersection line from two planes misses the
third plane. The line is parallel to the plane and stays above it (Figure 11.22a), When
all three planes are drawn, they form an open tunnel. The picture tells more than the
numbers, about how three planes can fail to meet. The third figure shows an end
view, where the planes go directly into the page. Each pair meets in a line, but those
lines don’t meet in a point.

X
7 lane

p
é&\ 3 '%0 Y -
tunnel between Q <
planes end view

Ag. 14.22 The row picture in the singular case: no intersection point, no solution.

When two planes are parallei, the determinant is again zero. One row of the matrix
is a multipie of another row. The extreme case has all three planes parallel—as in a
matrix with nine 1’s.

The column picture must also break down. In the 2 by 2 failure {previous section),
the columns were on the same line. Now the three columns are in the same plane. The
combinations of those columns produce d only if it happens to lie in that particular
plane. Most vectors d will be outside the plane, so most singular systems have no
solution.

When the determinant is tero, Av = d kas no solution or infinitely many.
THE ELIMINATION ALGORITHM

(o back to the 3 by 3 example Au =d. If you were given those equations, you would
never think of determinants. You would—quite correctiy—start with the first equa-
tion. It gives x = 1 — y, which goes into the next equation to eliminate x:

x+ y = 1
x  o+2= 0 21TV o - g
—2y+2z=-4 —2y+2z=—4.

Stop there for 2 minute. On the right is a 2 by 2 system for y and z. The first equation
and first unknown are eliminated—exactly what we want. But that step was not
organized in the best way, because a ““1” ended up on the left side. Constants shouid
stay on the right side—the pattern should be preserved. It is better to take the same
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step by wubtracting the first equation from the second.

x+ y = 1
X +2z= 0 - y+2z=-1 (11)
—2yt2z=-4 —2y+2z=-4

Same equations, better organization. Now look at the corner term — y. Its coefficient
—1 is the second pivor. (The first pivot was + 1, the coefficient of x in the first corner.)
We are ready for the next elimination step:

Pian: Subtract a multiple of the “pivot equation” from the equation below it.
Goal: To produce a zero below the pivot, so y is eliminated.
Method: Subtract 2 times the pivot equation to cancel —2y.

~ y+2z= -1

- (12)
—2p+2z=—4 —2z2= -2

The answer comes by hack substitution. Equation (12) gives z = 1. Then equation (11}
gives y= 3. Then the first equation gives x = — 2. This is much quicker than determi-
nants. You may ask: Why use Cramer’s Rule? Good question.

With numbers elimination is better. It is faster and also safer. (To check against
error, substitute —2, 3,1 into the original equations.) The algorithm reaches the
answer without the determinant and without the inverse. Calculations with letters use
det A and 4%,

Here are the steps in a definite order (fop to bottom):

Subtract a multiple of equation 1 to produce Ox in equation 2
Subtract a multiple of equation 1 to produce Ox in equation 3
Subtract a multiple of equation 2 (new) to produce Oy in equation 3.

EXAMPLE {notice the zeros appearing under the pivots):
x+ y+ z= 1 xt+ y+ z=1 x+ y+z=1
x+5y+3z= 7 > Iy+ z=5 > IJp+z=5
4x+7y+6z=11 Iy+2z2=7 z=2

Elimination leads to a triangular system. The coefficients below the diagonal are zero.
First z =2, then y = 1, then x = — 2. Back substitution solves triangular systems (fast).

As a final example, try the singular case Su = d when the corner entry is changed
from 2 to 4. With D =0, there is no inverse matrix § ~!. Elimination also fails, by
reaching an impossible equation 0 = — 2

x+ y = 1 x+ y = 1 x+y = 1
X +22= 05 — y+2z=-1 4 —y+2z=-1
—2y+dz=—4 —2y+4z=—4 0=-2

The three planes do not meet at a point—a fact that was not obvious at the start.
Algebra discovers this fact from D = 0. Elimination discovers it from 0= - 2. The
chapter is ending at the point where my linear algebra book begins.
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One final comment. In actual computing, you will use a code written by profession-
als. The steps will be the same as above. A multiple of equation 1 is subtracted from
each equation below it, to eliminate the first unknown x. With one fewer unknown
and equation, elimination starts again. (A parallel computer executes many steps at
once.) Extra instructions are included to reduce roundoff error. You only see the
result! But it 15 more satisfying to know what thc computer is doing.

In the end, solving linear equations is the key step in solving nonlinear equations.
The central idea of differential calculus is to linearize near a point.

14.5 EXERCISES

Read-through questions

Three equations in three unknowns can be written as Au=
d. The _a wuhascomponentsx,y,zand disa_b _ The
row picture has a _ ¢ for each equation. The first two
planes intersect ina _ d |, and all three planes intersect in
a_e , whichis _! . The column picture starts with
vectors a, b, ¢ from the columns of _ ¢ and combines them

to produce _h . The vector equationis _ 1 =d.

The determinant of A is the triple product __J . This is
the volume of a box, whose edges from the origin are _ &
ifdet A=_ 1  then the system is _m . Otherwise there
isan_n_ matrixsuchthat A"'4=_o (the _p mat-

rix). In this case the solution to Au=disn=_1q

The rows of A~ ! are the cross products bxe, _ 1 |
s, divided by D. The entries of 4~ ! are 2 by 2 _t

divided by D. The upper left entry equals _ v _ The 2 by 2
determinants needed for a tow of A~ ! do not use the corre-

sponding _ v of 4.

The solution is u= 4 "'d. Its first component x is a ratio
of determinants, |[dbe| divided by _w . Cramer’s Rule
breaks down when det 4 = __x__ . Then the columns a, b, ¢
lie in the same __ ¥ . There is no solution to xa + yb+ z¢ =
d, if d is not on that __2 . In a singular row picture, the
intersection of planes 1 and 2is _ A to the third plane.

In practice u is computed by __B . The algorithm starts
by subtracting a multiple of row 1 to eliminate x from _ € .
If the first two equations are x — y=1 and 3x +z =7, this
elimination step leaves _B__. Similarly x is eliminated from
the third equation, and then __ € __ is eliminated. The equ-
ations are solved by back __F__. When the system has no
solution, we reach an impossible equation like _ & . The
example x — y = 1, 3x + z = 7 has no solution if the third equ-
ationis _H

Rewrite 1-4 as matrix equations Au = d (do not solve).

1 d=(0, 0, 8)isacombinationofa =(1,2, 0