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C H A P T E R  1 

Introduction to Calculus 


1.4 Velocity and Distance 

The right way to begin a calculus book is with calculus. This chapter will jump 
directly into the two problems that the subject was invented to solve. You will see 
what the questions are, and you will see an important part of the answer. There are 
plenty of good things left for the other chapters, so why not get started? 

The book begins with an example that is familiar to everybody who drives a car. 
It is calculus in action-the driver sees it happening. The example is the relation 
between the speedometer and the odometer. One measures the speed (or velocity); 
the other measures the distance traveled. We will write v for the velocity, and f for 
how far the car has gone. The two instruments sit together on the dashboard: 

Fig. 1.1 Velocity v and total distance f (at one instant of time). 

Notice that the units of measurement are different for v and f.The distance f is 
measured in kilometers or miles (it is easier to say miles). The velocity v is measured 
in km/hr or miles per hour. A unit of time enters the velocity but not the distance. 
Every formula to compute v from f will have f divided by time. 

The central question of calculus is the relation between v and f. 



--- 
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Can you find v if you know f ,  and vice versa, and how? If we know the velocity over 
the whole history of the car, we should be able to compute the total distance traveled. 
In other words, if the speedometer record is complete but the odometer is missing, 
its information could be recovered. One way to do it (without calculus) is to put in 
a new odometer and drive the car all over again at the right speeds. That seems like 
a hard way; calculus may be easier. But the point is that the information is there. 
If we know everything about v,  there must be a method to find f .  

What happens in the opposite direction, when f is known? If you have a complete 
record of distance, could you recover the complete velocity? In principle you could drive 
the car, repeat the history, and read off the speed. Again there must be a better way. 

The whole subject of calculus is built on the relation between u and f .  The question 
we are raising here is not some kind of joke, after which the book will get serious 
and the mathematics will get started. On the contrary, I am serious now-and the 
mathematics has already started. We need to know how to find the velocity from a 
record of the distance. (That is called &@erentiation, and it is the central idea of 
dflerential calculus.) We also want to compute the distance from a history of the 
velocity. (That is integration, and it is the goal of integral calculus.) 

Differentiation goes from f to v; integration goes from v to f .  We look first 
at examples in which these pairs can be computed and understood. 

CONSTANT VELOCITY 

Suppose the velocity is fixed at v = 60 (miles per hour). Then f increases at this 
constant rate. After two hours the distance is f = 120 (miles). After four hours 
f = 240 and after t hours f = 60t. We say that f increases linearly with time-its 
graph is a straight line. 

4 velocity v ( t )  4 distancef ( t )  

v 2 4 0 ~ ~ s 1 ~ = " = 6 04 
Area 240 : I 

time t time t 

Fig. 1.2 Constant velocity v =60 and linearly increasing distance f=60t. 

Notice that this example starts the car at full velocity. No time is spent picking up 
speed. (The velocity is a "step function.") Notice also that the distance starts at zero; 
the car is new. Those decisions make the graphs of v and f as neat as possible. One 
is the horizontal line v = 60. The other is the sloping line f = 60t. This v, f ,  t relation 
needs algebra but not calculus: 

if v is constant and f starts at zero then f = vt. 

The opposite is also true. When f increases linearly, v is constant. The division by 
time gives the slope. The distance is fl = 120 miles when the time is t 1  = 2 hours. 
Later f' =240 at t ,  = 4. At both points, the ratio f / t  is 60 miles/hour. Geometrically, 
the velocity is the slope of the distance graph: 

change in distance - vt
slope = - v.

change in time t 
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Fig. 1.3 Straight lines f = 20 + 60t (slope 60) and f = -30t (slope -30). 

The slope of the f-graph gives the v-graph. Figure 1.3 shows two more possibilities: 

1. The distance starts at 20 instead of 0. The distance formula changes from 60t 
to 20 + 60t. The number 20 cancels when we compute change in distance-so 
the slope is still 60. 

2. When v is negative, the graph off  goes downward. The car goes backward and 
the slope of f  = -30t is v = -30. 

I don't think speedometers go below zero. But driving backwards, it's not that safe 
to watch. If you go fast enough, Toyota says they measure "absolute valuesw-the 
speedometer reads + 30 when the velocity is - 30. For the odometer, as far as I know 
it just stops. It should go backward.? 

VELOCITY vs. DISTANCE: SLOPE vs. AREA 

How do you compute f' from v? The point of the question is to see f = ut on the 
graphs. We want to start with the graph of v and discover the graph off.  Amazingly, 
the opposite of slope is area. 

The distance f is the area under the v-graph. When v is constant, the region under 
the graph is a rectangle. Its height is v, its width is t ,  and its area is v times t .  This is 
integration, to go from v to f by computing the area. We are glimpsing two of the 
central facts of calculus. 

1A The slope of the f-graph gives the velocity v. The area under the v-graph 
gives the distance f. 

That is certainly not obvious, and I hesitated a long time before I wrote it down in 
this first section. The best way to understand it is to look first at more examples. The 
whole point of calculus is to deal with velocities that are not constant, and from now 
on v has several values. 

EXAMPLE (Forward and back) There is a motion that you will understand right away. 
The car goes forward with velocity V, and comes back at the same speed. To say it 
more correctly, the velocity in the second part is - V. If the forward part lasts until 
t = 3, and the backward part continues to t = 6,  the car will come back where it started. 
The total distance after both parts will be f = 0. 

+This actually happened in Ferris Bueller's Day 08,when the hero borrowed his father's sports 
car and ran up the mileage. At home he raised the car and drove in reverse. I forget if it 
worked. 
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1u(r) = slope of f ( t )  

Fig. 1.4 Velocities + V and -V give motion forward and back, ending at f(6)=0. 

The v-graph shows velocities + V and -V. The distance starts up with slope + V 
and reaches f = 3V. Then the car starts backward. The distance goes down with slope 
-V and returns to f = 0 at t = 6 .  

Notice what that means. The total area "under" the v-graph is zero! A negative 
velocity makes the distance graph go downward (negative slope). The car is moving 
backward. Area below the axis in the v-graph is counted as negative. 

FUNCTIONS 

This forward-back example gives practice with a crucially important idea-the con-
cept of a "jiunction." We seize this golden opportunity to explain functions: 

The number v(t) is the value of the function t. at the time t. 

The time t is the input to the function. The velocity v(t) at that time is the output. 
Most people say "v oft" when they read v(t). The number "v of 2" is the velocity 
when t = 2. The forward-back example has v(2) = + V and v(4) = - V. The function 
contains the whole history, like a memory bank that has a record of v at each t. 

It is simple to convert forward-back motion into a formula. Here is v(t): 

The ,right side contains the instructions for finding v(t). The input t is converted into 
the output + V or - V. The velocity v(t) depends on t. In this case the function is 
"di~continuo~s,~ 'because the needle jumps at t = 3. The velocity is not dejined at that 
instant. There is no v(3). (You might argue that v is zero at the jump, but that leads 
to trouble.) The graph off' has a corner, and we can't give its slope. 

The problem also involves a second function, namely the distance. The principle 
behind f(t) is the same: f (t) is the distance at time t. It is the net distance forward, 
and again the instructions change at t = 3. In the forward motion, f(t) equals Vt as 
before. In the backward half, a calculation is built into the formula for f(t): 

At the switching time the right side gives two instructions (one on each line). This 
would be bad except that they agree: f (3)= 3 V . v h e  distance function is "con- 

?A function is only allowed one ~:alue,f'(r)  at each time ror ~ ( t )  
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tinuous." There is no jump in f, even when there is a jump in v. After t = 3 the distance 
decreases because of -Vt. At t = 6 the second instruction correctly gives f (6) = 0. 

Notice something more. The functions were given by graphs before they were given 
by formulas. The graphs tell you f and v at every time t-sometimes more clearly 
than the formulas. The values f (t) and v(t) can also be given by tables or equations 
or a set of instructions. (In some way all functions are instructions-the function 
tells how to find f at time t.) Part of knowing f is knowing all its inputs and 
outputs-its domain and range: 

The domain of a function is the set of inputs. The range is the set of outputs. 

The domain of f consists of all times 0 < t < 6. The range consists of all distances 
0 <f(t) < 3V. (The range of v contains only the two velocities + V and -V.) 
We mention now, and repeat later, that every "linear" function has a formula 
f (t) = vt + C. Its graph is a line and v is the slope. The constant C moves the line up 
and down. It adjusts the line to go through any desired starting point. 

SUMMARY: MORE ABOUT FUNCTIONS 

May I collect together the ideas brought out by this example? We had two functions 
v and f.  One was velocity, the other was distance. Each function had a domain, 
and a range, and most important a graph. For the f-graph we studied the slope 
(which agreed with v). For the v-graph we studied the area (which agreed with f). 
Calculus produces functions in pairs, and the best thing a book can do early is to 
show you more of them. 

input t + function f -, output f (t) " { input 2 + function u + output v(2) 1 the 
domain input 7 + f (t) = 2t + 6 + f (7)= 20 rangein 

Note about the definition of a function. The idea behind the symbol f (t) is absolutely 
crucial to mathematics. Words don't do it justice! By definition, a function is a "rule" 
that assigns one member of the range to each member of the domain. Or, a function 
is a set of pairs (t, f (t)) with no t appearing twice. (These are "ordered pairs" because 
we write t before f (t).) Both of those definitions are correct-but somehow they are 
too passive. 

In practice what matters is the active part. The number f (t) is produced from the 
number t. We read a graph, plug into a formula, solve an equation, run a computer 
program. The input t is "mapped" to the output f(t), which changes as t changes. 
Calculus is about the rate of change. This rate is our other function v. 

Fig. 1.5 Subtracting 2 from f affects the range. Subtracting 2 from t affects the domain. 
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It is quite hard at the beginning, and not automatic, to see the difference between 
f (t) - 2 and f (t - 2). Those are both new functions, created out of the original f (t). 
In f (t)- 2, we subtract 2 from all the distances. That moves the whole graph down. 
In f ( t  - 2), we subtract 2 from the time. That moves the graph over to the right. 
Figure 1.5 shows both movements, starting from f (t) = 2t + 1. The formula to find 
f (t - 2) is 2(t - 2) + 1, which is 2t - 3. 

A graphing calculator also moves the graph, when you change the viewing window. 
You can pick any rectangle A < t < B, C <f(t)  < D. The screen shows that part of 
the graph. But on the calculator, the function f ( t )remains the same. It is the axes that 
get renumbered. In our figures the axes stay the same and the function is changed. 

There are two more basic ways to change a function. (We are always creating new 
functions-that is what mathematics is all about.) Instead of subtracting or adding, 
we can multiply the distance by 2. Figure 1.6 shows 2f (t). And instead of shifting the 
time, we can speed it up. The function becomes f(2t). Everything happens twice as 
fast (and takes half as long). On the calculator those changes correspond to a 
"zoom"-on the f axis or the t axis. We soon come back to zooms. 

0 I t 0 I t 0 
domain 1 1 112 

Fig. 1.6 Doubling the distance or speeding up the time doubles the slope. 

1.1 EXERCISES 

Each section of the book contains read-through questions. They 
allow you to outline the section yourself-more actively than 
reading a summary. This is probably the best way to remember 
the important ideas. 

Starting from f(0)  = 0 at constant velocity v ,  the distance 
function is f ( t)= a . When f ( t )  = 55t the velocity is 
v = b . When f(t) = 55t + 1000 the velocity is still c 
and the starting value is f (0)= d . In each case v is the 

e of the graph off .  When f is negative, the graph 
of s goes downward. In that case area in the t.-graph 
counts as h . 

Forward motion from f (0)= 0 to f (2)= 10 has v = i . 
Then backward motion to f (4)= 0 has v = i . The dis- 
tance function is f (t)= 5t for 0 < t < 2 and then f (t)= k 

(not -5t). The slopes are I and m . The distance 
f(3) = n . The area under the v-graph up to time 1.5 is 

o . The domain o f f  is the time interval P , and the 
range is the distance interval q . The range of v(t) is only 
-1 . 

The value off (t) = 3t + 1 at t = 2 is f (2) = s . The value 
19 equals f ( t ). The difference f (4)-f (1) = u . That 
is the change in distance, when 4 - 1 is the change in v . 
The ratio of those changes equals w , which is the x 

of the graph. The formula for f (t) + 2 is 3t + 3 whereas 
f (t + 2) equals Y . Those functions have the same z 

as f :  the graph of f (t)+ 2 is shifted A and f (t + 2) is 
shifted B . The formula for f (5t) is C . The formula 
for 5f ( t )is D . The slope has jumped from 3 to E . 
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The set of inputs to a function is its F . The set of 
outputs is its G . The functions f (t) = 7 + 3(t -2) and 
f(t) = vt + C are t~ . Their graphs are I with slopes 
equal to J and K . They are the same function, if 
v =  L a n d C =  M . 

Draw the velocity graph that goes with each distance graph. 

1 If I f 

3 Write down three-part formulas for the velocities u(t) in 
Problem 2, starting from v(t) = 2 for 0 < t < 10. 

4 The distance in l b  starts with f (t) = 10- lot for 0 < t < 1. 
Give a formula for the second part. 

5 In the middle of graph 2a find f (15) and f (12) and f (t). 

6 In graph 2b find f(1.4T). If T= 3 what is f(4)? 

7 Find the average speed between t = 0 and t = 5 in graph 
la. What is the speed at t = 5? 

8 What is the average speed between t = 0 and t = 2 in graph 
1 b? The average speed is zero between t = 3and t = . 
9 (recommended) A car goes at speed u = 20 into a brick 

wall at distance f -4. Give two-part formulas for v(t) and 
f (t) (before and after), and draw the graphs. 

10 Draw any reasonable graphs of v(t) and f(t) when 
(a) the driver backs up, stops to shift gear, then goes fast; 
(b) the driver slows to 55 for a police car; 
(c) in a rough gear change, the car accelerates in jumps; 
(d) the driver waits for a light that turns green. 

11 Your bank account earns simple interest on the opening 
balance f (0). What are the interest rates per year? 

12 The earth's population is growing at v = 100 million a 
year, starting from f = 5.2 billion in 1990. Graph f (t) and find 
f (2000). 

Draw the distance graph that goes with each velocity graph. 
Start from f = 0 at t = 0 and mark the distance. 

13a 13b 

15 Write down formulas for v(t) in Problem 14, starting with 
v = -40 for 0 < t < 1. Find the average velocities to t = 2.5 
and t = 3T. 

16 Give 3-part formulas for the areas f (t) under v(t) in 13. 

17 The distance in 14a starts with f (t)= -40t for 0 < t < 1. 
Find f (t) in the other part, which passes through f = 0at t = 2. 

18 Draw the velocity and distance graphs if v(t) = 8 for 
O < t < 2 ,  f ( t ) = 2 0 + t  for 2 < t < 3 .  

19 Draw rough graphs of y = and y = ,/=and 
y = f i -4. They are "half-parabolas" with infinite slope at 
the start. 

20 What is the break-even point if x yearbooks cost 
$1200 + 30x to produce and the income is 40x? The slope of 
the cost line is (cost per additional book). If it goes 
above you can't break even. 

21 What are the domains and ranges of the distance functions 
in 14a and 14b-all values of t and f (t) if f (0)= O? 

22 What is the range of u(t) in 14b? Why is t = 1 not in the 
domain of v(t) in 14a? 

Problems 23-28 involve linear functions f (t)= vt + C. Find the 
constants v and C. 

23 What linear function has f (0)= 3 and f (2) = -1  l? 

24 Find two linear functions whose domain is 0 < t d 2 and 
whose range is 1 df (t)< 9. 

25 Find the linear function with f(1) = 4 and slope 6. 

26 What functions have f (t + 1)=f (t)+ 2? 

27 Find the linear function with f (t + 2) =f (t) + 6 and 
f (1)= lo. 

28 Find the only f = vt that has f (2t) = 4f (t). Show that every 
f = +at2 has this property. To go times as far in 
twice the time, you must accelerate. 
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29 Sketch the graph of f(t) = 15 -2tl (absolute value) for 
It(< 2 and find its slopes and range. 

30 Sketch the graph off (t) = 4 - t -14 - t( for 2 < t 6 5 and 
find its slope and range. 

31 Suppose v = 8 up to time T, and after that v = -2. Starting 
from zero, when does f return to zero? Give formulas for v(t) 
and f (t). 

32 Suppose v = 3 up to time T= 4. What new velocity will 
lead to f (7) = 30 if f (0) = O? Give formulas for u(t) and f (t). 

33 What function F(C) converts Celsius temperature C to 
Fahrenheit temperature F? The slope is , whish is 
the number of Fahrenheit degrees equivalent to 1°C. 

34 What function C(F) converts Fahrenheit to Celsius (or 
Centigrade), and what is its slope? 

35 What function converts the weight w in grams to the 
weight f (w) in kilograms? Interpret the slope of f (w). 

36 (Newspaper of March 1989) Ten hours after the accident 
the alcohol reading was .061. Blood alcohol is eliminated at 
.015 per hour. What was the reading at the time of the acci- 
dent? How much later would it drop to .04 (the maximum set 
by the Coast Guard)? The usual limit on drivers is .10 percent. 

Which points between t = 0 and t = 5 can be in the domain of 
f (t)? With this domain find the range in 37-42. 

37 f(t) = ,/= 38 f (t) = I/-

39 f (t) = ( t-41 (absolute value) 40 f (t) = l/(t -4).? 

43 (a) Draw the graph off (t) = i t  + 3 with domain 0 Q t d 2. 
Then give a formula and graph for 

(b) f ( t )  + 1 (c) f ( t  + 1) 
(dl 4f (0  (e) f (40. 

44 (a) Draw the graph of U(t) = step function = (0 for t < 0, 
1 for t > 0). Then draw 

(b) U(t) + 2 ( 4  U(t + 2) 
( 4  3UW (e) U(3t). 

45 (a) Draw the graph of f (t) = t + 1 for -1 Q t 6 1. Find 
the domain, range, slope, and formula for 

(b) 2f (0  ( 4  f (t -3) (d) -f (0 (el f k t ) .  

46 If f (t) = t - 1 what are 2f (3t) and f (1 -t) and f (t - I)? 

47 In the forward-back example find f (* T )and f(3T). Verify 
that those agree with the areas "under" the v-graph in 
Figure 1.4. 

48 Find formulas for the outputs fl(t) and fi(t) which come 
from the input t: 

(1) inside = input * 3 (2) inside + input + 6 
output = inside + 3 output t inside* 3 

Note BASIC and FORTRAN (and calculus itself) use = 
instead of t.But the symbol t or := is in some ways better. 
The instruction t + t + 6 produces a new t equal to the old t 
plus six. The equation t = t + 6 is not intended. 

49 Your computer can add and multiply. Starting with the 
number 1 and the input called t, give a list of instructions to 
lead to these outputs: 

f1 ( t )= t2+ t  f2(t)=fdfdt))  f3(t)=f1(t+l)-

50 In fifty words or less explain what a function is. 

The last questions are challenging but possible. 

51 If f (t) = 3t - 1 for 0 6 t Q 2 give formulas (with domain) 
and find the slopes of these six functions: 

(a) f (t + 2) (b) f ( t )  + 2 ( 4  2f ( 0  
( 4  f (2t) (e) f (- t) (f) f ( f  (t)). 

52 For f (t) = ut + C find the formulas and slopes of 

(a) 3f (0 + 1 (b) f(3t + 1) (c) 2f(4t) 
(dl f (- t) (el f (0  -f (0) (f) f ( f  (t)). 

53 (hardest) The forward-back function is f (t) = 2t for 
O<t  ~ 3 ,  f ( t )=  12-2t for 3 6 t d 6 .  Graph f(f(t)) and find 
its four-part formula. First try t = 1.5 and 3. 

54 (a) Why is the letter X not the graph of a function? 
(b) Which capital letters are the graphs of functions? 
(c) Draw graphs of their slopes. 

1.2 Calculus Without Limits 

The next page is going to reveal one of the key ideas behind calculus. The discussion 
is just about numbers-functions and slopes can wait. The numbers are not even 
special, they can be any numbers. The crucial point is to look at their differences: 

Suppose the numbers are f =  0 2 6 7 4 9 
Their differences are v = 2 4 1 - 3 5  

The differences are printed in between, to show 2 -0 = 2 and 6 -2 = 4 and 7 -6 = 1. 
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Notice how 4 - 7 gives a negative answer -3. The numbers in f can go up or down,
the differences in v can be positive or negative. The idea behind calculus comes when
you add up those differences:

2+4+1-3+5=9

The sum of differences is 9. This is the last number on the top line (in f). Is this an
accident, or is this always true? If we stop earlier, after 2 + 4 + 1, we get the 7 in f.
Test any prediction on a second example:

Suppose the numbers are f= 1 3 7 8 5 10
Their differences are v = 2 4 1 -3 5

The f's are increased by 1. The differences are exactly the same-no change. The
sum of differences is still 9. But the last f is now 10. That prediction is not right, we
don't always get the last f.

The first f is now 1. The answer 9 (the sum of differences) is 10 - 1, the last f
minus the first f. What happens when we change the f's in the middle?

Suppose the numbers are f= 1 5 12 7 10
Their differences are v = 4 7 -5 3

The differences add to 4 + 7 - 5 + 3 = 9. This is still 10 - 1. No matter what f's we
choose or how many, the sum of differences is controlled by the first f and last f.
If this is always true, there must be a clear reason why the middle f's cancel out.

The sum of differences is (5 - 1) + (12 - 5) + (7 - 12) + (10 - 7) = 10 - 1.

The 5's cancel, the 12's cancel, and the 7's cancel. It is only 10 - 1 that doesn't cancel.
This is the key to calculus!

EXAMPLE 1 The numbers grow linearly: f= 2 3 4 5 6 7
Their differences are constant: v = 1 1 1 1 1

The sum of differences is certainly 5. This agrees with 7 - 2 =fast -ffirst. The numbers
in v remind us of constant velocity. The numbers in f remind us of a straight line
f= vt + C. This example has v = 1 and the f's start at 2. The straight line would
come from f= t + 2.

EXAMPLE 2 The numbers are squares: f= 0 1 4 9 16
Their differences grow linearly: v = 1 3 5 7

1 + 3 + 5 + 7 agrees with 42 = 16. It is a beautiful fact that the first j odd numbers
always add up to j2. The v's are the odd numbers, the f's are perfect squares.

Note The letter j is sometimes useful to tell which number in f we are looking at.
For this example the zeroth number is fo = 0 and the jth number is fj =j2. This is a
part of algebra, to give a formula for the f's instead of a list of numbers. We can also
use j to tell which difference we are looking at. The first v is the first odd number
v, = 1. The jth difference is the jth odd number vj = 2j- 1. (Thus v4 is 8 - I = 7.) It
is better to start the differences with j = 1, since there is no zeroth odd number vo.

With this notation the jth difference is vj =fj -f -1. Sooner or later you will get
comfortable with subscripts like j and j - 1, but it can be later. The important point
is that the sum of the v's equals flast -first. We now connect the v's to slopes and the
f's to areas.
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4= 7
v4

v3 = 5

v2 = 3

1 =I

f4= 1

f 3 =9

f2=4

t f, = 1
t

1 2 3 4 1 2 3 4

Fig. 1.7 Linear increase in v = 1, 3, 5, 7. Squares in the distances f= 0, 1, 4, 9, 16.

Figure 1.7 shows a natural way to graph Example 2, with the odd numbers in v and
the squares in f. Notice an important difference between the v-graph and the f-graph.
The graph of f is "piecewise linear." We plotted the numbers in f and connected
them by straight lines. The graph of v is "piecewise constant." We plotted the differ-
ences as constant over each piece. This reminds us of the distance-velocity graphs,
when the distance f(t) is a straight line and the velocity v(t) is a horizontal line.

Now make the connection to slopes:

distance up change in f
The slope of the f-graph is distance change in

distance across change in t

Over each piece, the change in t (across) is 1. The change in f (upward) is the difference
that we are calling v. The ratio is the slope v/1l or just v. The slope makes a sudden
change at the breakpoints t = 1, 2, 3, .... At those special points the slope of the
f-graph is not defined-we connected the v's by vertical lines but this is very
debatable. The main idea is that between the breakpoints, the slope of f(t) is v(t).

Now make the connection to areas:

The total area under the v-graph is flast -ffirst

This area, underneath the staircase in Figure 1.7, is composed of rectangles. The base
of every rectangle is 1. The heights of the rectangles are the v's. So the areas also
equal the v's, and the total area is the sum of the v's. This area is flast -first.

Even more is true. We could start at any time and end at any later time
-not necessarily at the special times t = 0, 1, 2, 3, 4. Suppose we stop at t = 3.5.
Only half of the last rectangular area (under v = 7) will be counted. The total area is
1 + 3 + 5 + 2(7) = 12.5. This still agrees with flast -first = 12.5 - 0. At this new ending
time t = 3.5, we are only halfway up the last step in the f-graph. Halfway between
9 and 16 is 12.5.

This is nothing less than the Fundamental Theorem of Calculus. But we have only
used algebra (no curved graphs and no calculations involving limits). For now the
Theorem is restricted to piecewise linear f(t) and piecewise constant v(t). In Chapter 5
that restriction will be overcome.

Notice that a proof of 1 + 3 + 5 + 7 = 42 is suggested by Figure 1.7a. The triangle
under the dotted line has the same area as the four rectangles under the staircase.
The area of the triangle is ½. base . height = -4 8, which is the perfect 9quare 42
When there are j rectangles instead of 4, we get .j. 2j =j2 for the area.

0~~~~~~~ 1 nrdcin oCluu
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The next examples show other patterns, where f and v increase exponentially or 
oscillate around zero. I hope you like them but I don't think you have to learn them. 
They are like the special functions 2' and sin t and cos t-except they go in steps. 
You get a first look at the important functions of calculus, but you only need algebra. 
Calculus is needed for a steadily changing velocity, when the graph off is curved. 

The last example will be income tax-which really does go. in steps. Then Sec- 
tion 1.3 will introduce the slope of a curve. The crucial step for curves is working 
with limits. That will take us from algebra to calculus. 

EXPONENTIAL VELOCITY AND DISTANCE 

Start with the numbers f = 1,2,4,8, 16. These are "powers of 2." They start with the 
zeroth power, which is 2' = 1. The exponential starts at 1 and not 0. After j steps there 
are j factors of 2, and & equals 2j. Please recognize the diflerence between 2j and j2  
and 2j. The numbers 2j grow linearly, the numbers j2grow quadratically, the numbers 
2' grow exponentially. At j = 10 these are 20 and 100 and 1024. The exponential 2' 
quickly becomes much larger than the others. 

The differences off = 1,2,4,8, 16 are exactly v = 1,2,4,8.. We get the same beauti- 
ful numbers. When the f's are powers of 2, so are the v's. The formula vj  = 2"-' is 
slightly different from & = 2j, because the first v is numbered v,. (Then v, = 2' = 1. 
The zeroth power of every number is 1, except that 0' is meaningless.) The two graphs 
in Figure 1.8 use the same numbers but they look different, because f is piecewise 
linear and v is piecewise constant. 

1 2 3 4 1 2 3 4 
Fig. 1.8 The velocity and distance grow exponentially (powers of 2). 

Where will calculus come in? It works with the smooth curve f (t)= 2'. This expo- 
nential growth is critically important for population and money in a bank and the 
national debt. You can spot it by the following test: v(t) is proportional to f (t). 

Remark The function 2' is trickier than t2. For f = t2 the slope is v = 2t. It is 
proportional to t and not t2. For f = 2' the slope is v = c2', and we won't find the 
constant c = .693 ... until Chapter 6. (The number c is the natural logarithm of 2.) 
Problem 37 estimates c with a calculator-the important thing is that it's constant. 

OSCILLATING VELOCITY AND DISTANCE 

We have seen a forward-back motion, velocity V followed by -V. That is oscillation 
of the simplest kind. The graph off  goes linearly up and linearly down. Figure 1.9 
shows another oscillation that returns to zero, but the path is more interesting. 

The numbers in f are now 0, 1, 1,0, -1, -l,O. Since f6 = 0 the motion brings us 
back to the start. The whole oscillation can be repeated. 
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The differences in v are 1,0, -1, -1,0, 1. They add up to zero, which agrees with 
Jast -Airst. It is the same oscillation as in f (and also repeatable), but shifted in time. 

The f-graph resembles (roughly) a sine curve. The v-graph resembles (even more 
roughly) a cosine curve. The waveforms in nature are smooth curves, while these are 
"digitized"-the way a digital watch goes forward in jumps. You recognize that the 
change from analog to digital brought the computer revolution. The same revolution 
is coming in CD players. Digital signals (off or on, 0 or 1 )  seem to win every time. 

The piecewise v and f start again at t = 6. The ordinary sine and cosine repeat at 
t =2n. A repeating motion is periodic-here the "period" is 6 or 2n. (With t in degrees 
the period is 360-a full circle. The period becomes 2n when angles are measured in 
radians. We virtually always use radians-which are degrees times 2n/360.) A watch 
has a period of 12 hours. If the dial shows AM and PM, the period is . 

Fig. 1.9 Piecewise constant "cosine" and piecewise linear "sine." They both repeat. 

A SHORT BURST O F  SPEED 

The next example is a car that is driven fast for a short time. The speed is V until 
the distance reaches f = 1, when the car suddenly stops. The graph of f goes up 
linearly with slope V ,  and then across with slope zero: 

V upto  t = T  Vt up to t = T 
v(t) = f (0= 

0 after t = T 1 after t = T 

This is another example of "function notation." Notice the general time t and the 
particular stopping time T. The distance is f (t). The domain off (the inputs) includes 
all times t 3 0. The range of f (the outputs) includes all distances 0 ff < 1. 

Figure 1.10 allows us to compare three cars-a Jeep and a Corvette and a Maserati. 
They have different speeds but they all reach f = 1. So the areas under the v-graphs 
are all 1. The rectangles have height V and base T = 1/ V. 

v~ EQUAL AREAS EQUAL DISTANCES I I  

Maserati delta II function 
I I 

II steD 
vc - - - - - 7  1 

I Corvette 
v~ I 

I Jeep 
I 

T~ T~ 

Fig. 1.10 Bursts of speed with V, TM= Vc Tc = 'V, T,= 1. Step function has infinite slope. 

Optional remark It is natural to think about faster and faster speeds, which means 
steeper slopes. The f-graph reaches 1 in shorter times. The extreme case is a step 
function, when the graph of f goes straight up. This is the unit step U(t) ,which is 
zero up to t =0 and jumps immediately to U = 1 for t >0. 
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What is the slope of the step function? It is zero except at the jump. At that moment,
which is t = 0, the slope is infinite. We don't have an ordinary velocity v(t)-instead
we have an impulse that makes the car jump. The graph is a spike over the single
point t = 0, and it is often denoted by 6-so the slope of the step function is called
a "delta function." The area under the infinite spike is 1.

You are absolutely not responsible for the theory of delta functions! Calculus is
about curves, not jumps.

Our last example is a real-world application of slopes ands rates-to explain "how
taxes work." Note especially the difference between tax rates and tax brackets and
total tax. The rates are v, the brackets are on x, the total tax is f.

EXAMPLE 3 Income tax is piecewise linear. The slopes are the tax rates .15,.28,.31.

Suppose you are single with taxable income of x dollars (Form 1040, line 37-after
all deductions). These are the 1991 instructions from the Internal Revenue Service:

If x is not over $20,350, the tax is 15% of x.

If $20,350 < x < $49,300, the tax is $3052.50 + 28% of the amount over $20,350.

If x is over $49,300, the tax is $11,158.50 + 31% of the amount over $49,300.

The first bracket is 0 < x < $20,350. (The IRS never uses this symbol <, but I think
it is OK here. We know what it means.) The second bracket is $20,350 < x < $49,300.
The top bracket x > $49,300 pays tax at the top rate of 31%. But only the income in
that bracket is taxed at that rate.

Figure 1.11 shows the rates and the brackets and the tax due. Those are not average
rates, they are marginal rates. Total tax divided by total income would be the average
rate. The marginal rate of.28 or .31 gives the tax on each additional dollar of income-
it is the slope at the point x. Tax is like area or distance-it adds up. Tax rate is like
slope or velocity-it depends where you are. This is often unclear in the news media.

A• 1 on -'.U IO

sup 180 =slope60 11,158-across 3

f(2)= 40
S• slpe 20 3,052-

k tax to pay f(x)
31%tax rate =

slope .28

15% taxable income
I I Y

2 5 2 5 20,350 49,300

Fig. 1.11 The tax rate is v, the total tax is f. Tax brackets end at breakpoints.

Question What is the equation for the straight line in the top bracket?
Answer The bracket begins at x = $49,300 when the tax is f(x) = $11,158.50. The
slope of the line is the tax rate .31. When we know a point on the line and the slope,
we know the equation. This is important enough to be highlighted.

Section 2.3 presents this "point-slope equation" for any straight line. Here you see it
for one specific example. Where does the number $11,158.50 come from? It is the tax
at the end of the middle bracket, so it is the tax at the start of the top bracket.

v2 = 60

ov = 20
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Figure 1.11 also shows a distance-velocity example. The distance at t = 2 is 
f (2)= 40 miles. After that time the velocity is 60 miles per hour. So the line with 
slope 60 on the f-graph has the equation 

f (t) = starting distance + extra distance =40 + 60(t -2). 

The starting point is (2'40). The new speed 60 multiplies the extra time t -2. The 
point-slope equation makes sense. We now review this section, with comments. 

Central idea Start with any numbers in f. Their differences go in v. Then the sum 
of those differences is ha,,-ffirst. 

Subscript notation The numbers are f,, fl ,  ... and the first difference is v, =fl-f,. 
A typical number is fi and the jth difference is v j  =fi -fi- . When those differences 
are added, all f's in the middle (like f,) cancel out: 

Examples fi =j or j2or 2'. Then vj = 1 (constant) or 2j - 1 (odd numbers) or 2'- '. 

Functions Connect the f's to be piecewise linear. Then the slope v is piecewise 
constant. The area under the v-graph from any t,,,,, to any ten, equals f (ten,)-f (t,,,,,). 

Units Distance in miles and velocity in miles per hour. Tax in dollars and tax rate 
in (dollars paid)/(dollars earned). Tax rate is a percentage like .28, with no units. 

1.2 EXERCISES 

Read-through questions 

Start with the numbers f = 1,6,2,5. Their differences are 
v = a .The sum of those differences is b .This is equal 
to f,,,, minus c . The numbers 6 and 2 have no effect on 
this answer, because in (6 - 1)+ (2 -6) + (5 -2) the numbers 
6 and 2 d . The slope of the line between f(0) = 1 and 
f (1) = 6 is e . The equation of that line is f (t) = f . 

With distances 1, 5, 25 at unit times, the velocities are 
g . These are the h of the f-graph. The slope of the 

tax graph is the tax i . If f(t) is the postage cost for t 
ounces or t grams, the slope is the i per k . For 
distances 0, 1,4,9 the velocities are I . The sum of the 
first j odd numbers is fi = m . Then flo is n and the 
velocity ulo is 0 . 

The piecewise linear sine has slopes P . Those form a 
piecewise q cosine. Both functions have r equal to 
6, which means that f (t + 6) = s for every t. The veloci- 
ties v = 1,2,4,8, ... have vj = t . In that case fo = 1 and 
jj.= u . The sum of 1,2,4,8, 16 is v . The difference 
2J -2'- ' equals w . After a burst of speed V to time T, 
the distance is x . If f(T) = 1 and V increases, the burst 
lasts only to T = Y . When V approaches infinity, f (t) 
approaches a function. The velocities approach a 

A function, which is concentrated at t = 0 but has area 
B under its graph. The slope of a step function is c . 

Problems 1-4 are about numbers f and differences v. 

1 From the numbers f = 0,2,7,10 find the differences u and 
the sum of the three v's. Write down another f that leads 
to the same v's. For f =  0,3,12,10 the sum of the u's is 
still . 
2 Starting from f = 1,3,2,4 draw the f-graph (linear pieces) 

and the v-graph. What are the areas "under" the u-graph that 
add to 4 - l? If the next number in f is 11, what is the area 
under the next v? 

3 From v = 1,2, 1'0, -1 find the f's starting at fo = 3. 
Graph v and f. The maximum value of f occurs when 
v =  . Where is the maximum f when u = 1,2,1, -l?  

4 For f = 1, b, c, 7 find the differences vl  ,u2, v, and add 
them up. Do the same for f = a, b, c, 7. Do the same for 
f =a, b, c, d. 

Problems 5-11 are about linear functions and constant slopes. 

5 Write down the slopes of these linear functions: 
(a) f ( t )=  1.lt (b) f ( t )=  1 -2t (c) f ( t )=4+  5(t -6). 

Compute f (6) and f (7) for each function and confirm that 
f (7) -f (6) equals the slope. 

6 If f (t) = 5 + 3(t - 1) and g(t) = 1.5 + 2S(t - 1) what is 
h(t) =f (t) -g(t)? Find the slopes of f, g, and h. 
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=Suppose ~ ( t )  2 for t < 5 and v(t) =3 for t > 5. 
(a) If f (0)=0 find a two-part formula for f (t). 
(b) Check that f (10) equals the area under the graph of 
v(t) (two rectangles) up to t = 10. 

Suppose u(t) = 10 for t < 1/10, v(t) =0 for t > 1/10. Start- 
ing from f (0)= 1 find f (t) in two pieces. 

9 Suppose g(t) =2t + 1 and f (t)=4t. Find g(3) and f (g(3)) 
and f(g(t)). How is the slope of f(g(t)) related to the slopes 
of f and g? 

10 For the same functions, what are f (3) and g(f (3)) and 
g(f (t))? When t is changed to 4t, distance increases 
times as fast and the velocity is' multiplied by . 
11 Compute f (6) and f (8) for the functions in Problem 5. 
Confirm that the slopes v agree with 

f (8)-f (6) -
-

change in f
slope = 

8 -6 change in t ' 

Problems 12-18 are based on Example 3 about income taxes. 

12 What are the income taxes on x=$10,000 and 
x =$30,000 and x =$50,000? 

13 What is the equation for income tax f(x) in the second 
bracket $20,350 <x <$49,300? How is the number 1 1,158.50 
connected with the other numbers in the tax instructions? 

14 Write the tax function F(x) for a married couple if the IRS 
treats them as two single taxpayers each with taxable income 
x/2. (This is not done.) 

15 In the 15% bracket, with 5% state tax as a deduction, the 
combined rate is not 20% but . Think about the tax 
on an extra $100. 

16 A piecewise linear function is continuous when f (t) at the 
end of each interval equals f (t) at the start of the following 
interval. If f (t)= 5t up to t = 1 and v(t) =2 for t > 1, define 
f beyond t = 1 so it is (a) continuous (b) discontinuous. 
(c) Define a tax function f(x) with rates .15 and .28 so you 
would lose by earning an extra dollar beyond the breakpoint. 

17 The difference between a tax credit and a deduction from 
income is the difference between f (x)-c and f (x -d). Which 
is more desirable, a credit of c = $1000 or a deduction of 
d =$1000, and why? Sketch the tax graphs when f (x)= .15x. 

18 The average tax rate on the taxable income x is a(x) = 
f (x)/x. This is the slope between (0,O) and the point (x, f (x)). 
Draw a rough graph of a(x). The average rate a is below the 
marginal rate v because . 

Problems 19-30 involve numbers fo, f,,f2, ...and their differ- 
ences vj =& -&-, .They give practice with subscripts 0, . . .,j. 
19 Find the velocities v,, v2, v3 and formulas for vj and &: 
(a) f= l ,3 ,5 ,7  ... (b) f=0,1,0,1, ... (c) f=O,$,$,i ,... 

20 Find f,, f2, f3 and a formula for fi with fo =0: 
(a) v=l ,2 ,4 ,8,... (b) u = - l , l , - l , l ,  ... 

21 The areas of these nested squares are 12, 22, 32, . . . . What 
are the areas of the L-shaped bands (the differences between 
squares)? How does the figure show that I + 3 + 5 +7 =42? 

22 From the area under the staircase (by rectangles and then 
by triangles) show that the first j whole numbers 1 to j add 
up to G2+&. Find 1 +2 + .-.+ 100. 

23 If v=1,3,5 ,... then&=j2.  If v =  I, 1, 1 ,... then &= 
. Add those to find the sum of 2,4,6, ...,2j. Divide 

by 2 to find the sum of 1,2,3, ...,j. (Compare Problem 22.) 

24 True (with reason) or false (with example). 
(a) When the f's are increasing so are the 0's. 
(b) When the v's are increasing so are the f's. 
(c) When the f's are periodic so are the 0's. 
(d) When the v's are periodic so are the f 's. 

25 If f(t)= t2, compute f (99) and f (101). Between those 
times, what is the increase in f divided by the increase in t? 

26 If f (t)= t2 + t, compute f (99) and f (101). Between those 
times, what is the increase in f divided by the increase in t? 

27 If & =j2+j + 1 find a formula for vj. 

28 Suppose the 0's increase by 4 at every step. Show by 
example and then by algebra that the "second difference" 
&+ -2& +&- ,equals 4. 

29 Suppose fo =0 and the v's are 1, 3, 4, $, 4, 4, 4, .... For 
which j does & = 5? 

30 Show that aj =&+,-2fj +fj- ,always equals vj+ ,-vj. If 
v is velocity then a stands for . 

Problems 31-34 involve periodic f's and v's (like sin t and 
cos t). 

31 For the discrete sine f=O, 1, 1,0, -1, -1,O find the 
second differences al =f2 -2f1 +.fo and a2 =f, -2f2 +fland 
a3. Compare aj with &. 
32 If the sequence v,, v2, ... has period 6 and wl, w2, ... has 
period 10, what is the period of v, + w,, v2 + w2, ...? 

33 Draw the graph of f(t) starting from fo =0 when v = 1, 
-1, -1, 1. If v has period 4 find f(12), f(l3), f(lOO.l). 
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34 Graph f(t) from f o = O  to f 4 = 4  when v =  1,2, l,O. If v 44 Graph the square wave U(t) -U(t - 1). If this is the veloc- 
has period 4, find f (1 2) and f (1 4) and f (1 6). Why doesn't f ity v(t), graph the distance f(t). If this is the distance f (t), 
have period 4? graph the velocity. 

Problems 35-42 are about exponential v's and f 's. 45 Two bursts of speed lead to the same distance f = 10: 

35 Find the v's for f = 1,3,9,27. Predict v, and vj. Algebra v =  tot=.001 v = v t o t =  . 
gives 3j - 3j- = (3 - 1)3j- '. As V+ co the limit of the f (t)'s is 
36 Find 1 + 2 + 4 +  +32 and also 1 + j + d +  +&.- a -

46 Draw the staircase function U(t) + U(t - 1)+ U(t -2). Its 
37 Estimate the slope of f (t)=2' at t =0. Use a calculator slope is a sum of three functions. 
to compute (increase in f )/(increase in t) when t is small: 

f (t) -f (0) 2 - 1 2.l - 1 2.O' - 1 2.0°1 - 1 47 Which capital letters like L are the graphs of functions 
- and -and -and - when steps are allowed? The slope of L is minus a delta func- 

t 1 .I .o1 .001 . tion. Graph the slopes of the others. 

38 Suppose fo = I and vj  = 2fi - ,. Find f,. 
48 Write a subroutine FINDV whose input is a sequence 

39 (a) From f = 1, j , b ,  find v,, v,, v ,  and predict vj. fo, f,, ...,f, and whose output is v,, v,, ...,v,. Include 
(b) Check f3 -fo = v, + v2 + v3 and fi-A- = vj. graphical output if possible. Test on fi = 2j and j2 and 2j. 

40 Suppose vj  = rj. Show that fi = (rj' '- l)/(r- 1) starts 49 Write a subroutine FINDF whose input is v,, ...,v, and 
from fo = 1 and has fj-fi-, = uj. (Then this is the correct fo, and whose output is fo, f,,  ...,f,. The default value of fo
fi = 1 + r + + r j  = sum of a geometric series.) is zero. Include graphical output if possible. Test vj =j. 

41 From fi =(- 1)' compute vj. What is v,  + v2 + + vj? 
50 If FINDV is applied to the output of FINDF, what 

42 Estimate the slope of f (t) = et at t = 0. Use a calculator sequence is returned? If FINDF is applied to the output of 
that knows e (or else take e = 2.78) to compute FINDV, what sequence is returned? Watch fo. 

f(t)-f(0) 
-

e - 1 e.' - 1 e-O1- 1 51 Arrange 2j and j2and 2' and 4in increasing order and -and -
t 1 . I  .01 - (a) when j is large: j =9 (b) when j is small: j =&. 

Problems 43-47 are about U(t) = step from 0 to 1 at t =0. 52 The average age of your family since 1970 is a piecewise 
43 Graph the four functions U(t - 1) and U(t) -2 and U(3t) linear function A(t). Is it continuous or does it jump? What 
and 4U(t). Then graph f (t) =4U(3t - 1)-2. is its slope? Graph it the best you can. 

1.3 The Velocity at an Instant 

We have arrived at the central problems that calculus was invented to solve. There 
are two questions, in opposite directions, and I hope you could see them coming. 

1. If the velocity is changing, how can you compute the distance traveled? 
2. If the graph of f(t) is not a straight line, what is its slope? 

Find the distance from the velocity, find the velocity from the distance. Our goal is 
to do both-but not in one section. Calculus may be a good course, but it is not 
magic. The first step is to let the velocity change in the steadiest possible way. 

Question 1 Suppose the velocity at each time t is v(t) = 2t. Find f (t). 

With zr= 2t, a physicist would say that the acceleration is constant (it equals 2). The 
driver steps on the gas, the car accelerates, and the speedometer goes steadily up. 
The distance goes up too-faster and faster. If we measure t in seconds and v in feet 
per second, the distance f comes out in feet. After 10 seconds the speed is 20 feet 
per second. After 44 seconds the speed is 88 feetlsecond (which is 60 miles/hour). 
The acceleration is clear, but how far has the car gone? 
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Question 2 The distance traveled by time t is f ( t )= t2 .  Find the velocity v(t). 

The graph off ( t )= t2  is on the right of Figure 1.12. It is a parabola. The curve starts 
at zero, when the car is new. At t = 5 the distance is f = 25. By t = 10, f reaches 100. 

Velocity is distance divided by time, but what happens when the speed is changing? 
Dividing f =  100 by t = 10 gives v = 10-the average veEocity over the first ten 
seconds. Dividing f = 121 by t = 11 gives the average speed over 11 seconds. But how 
do we find the instantaneous velocity-the reading on the speedometer at the exact 
instant when t = lo? 

change in 
distance 
( t  + h)2 -

time t t t + h  t 

Fig. 1.12 The velocity v =2t is linear. The distance f= t2 is quadratic. 

I hope you see the problem. As the car goes faster, the graph of t 2  gets steeper- 
because more distance is covered in each second. The average velocity between t = 10 
and t = 11 is a good approximation-but only an approximation-to the speed at 
the moment t = 10. Averages are easy to find: 

average velocity is f (1 1) -f (10) -- 121 - 100 
= 21.

11- 10 1 

The car covered 21 feet in that 1 second. Its average speed was 21 feetlsecond. Since 
it was gaining speed, the velocity at the beginning of that second was below 21. 

Geometrically, what is the average? It is a slope, but not the slope of the curve. 
The average velocity is the slope of a straight line. The line goes between two points 
on the curve in Figure 1.12. When we compute an average, we pretend the velocity 
is constant-so we go back to the easiest case. It only requires a division of distance 
by time: 

change in f
average velocity = 

change in t ' 

Calculus and the Law You enter a highway at 1 :00. If you exit 150 miles away at 
3 :00, your average speed is 75 miles per hour. I'm not sure if the police can give you 
a ticket. You could say to the judge, "When was I doing 75?" The police would have 
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to admit that they have no idea-but they would have a definite feeling that you 
must have been doing 75 sometime.? 

We return to the central problem-computing v(10) at the instant t = 10. The 
average velocity over the next second is 21. We can also find the average over the 
half-second between t = 10.0 and t = 10.5. Divide the change in distance by the change 
in time: 

f (10.5) -f (10.0) - (10.5)2- (10.0)2- 110.25 - 100 
= 20.5. 

10.5 - 10.0 .5 .5 

That average of 20.5 is closer to the speed at t = 10. It is still not exact. 
The way to find v(10) is to keep reducing the time interval. This is the basis for 

Chapter 2, and the key to differential calculus. Find the slope between points that are 
closer and closer on the curve. The "limit" is the slope at a single point. 

Algebra gives the average velocity between t = 10 and any later time t = 10 + h. 
The distance increases from lo2 to (10 + h)l. The change in time is h. So divide: 

This formula fits our previous calculations. The interval from t = 10 to t = 11 had 
h = 1, and the average was 20 + h = 21. When the time step was h =i,the average 
was 20 + 4= 20.5. Over a millionth of a second the average will be 20 plus 
1/1,000,000-which is very near 20. 

Conclusion: The velocity at t = 10 is v = 20. That is the slope of the curve. It agrees 
with the v-graph on the left side of Figure 1.12, which also has v(10) = 20. 

We now show that the two graphs match at all times. If f (t) = t 2  then v(t) = 2t. 
You are seeing the key computation of calculus, and we can put it into words before 
equations. Compute the distance at time t + h, subtract the distance at time t, and 
divide by h. That gives the average velocity: 

This fits the previous calculation, where t was 10. The average was 20 + h. Now the 
average is 2t + h. It depends on the time step h, because the velocity is changing. But 
we can see what happens as h approaches zero. The average is closer and closer to 
the speedometer reading of 2t, at the exact moment when the clock shows time t: 

I 1E As h approaches zero, the average velooity 2t + h approaches v(t )  = 2t. I 
Note The computation (3) shows how calculus needs algebra. If we want the whole 
v-graph, we have to let time be a "variable." It is represented by the letter t. Numbers 
are enough at the specific time t = 10 and the specific step h = 1-but algebra gets 
beyond that. The average between any t and any t + h is 2t + h. Please don't hesitate 
to put back numbers for the letters-that checks the algebra. 

+This is our first encounter with the much despised "Mean Value Theorem." If the judge can 
prove the theorem, you are dead. A few u-graphs and f-graphs will confuse the situation 
(possibly also a delta function). 
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There is also a step beyond algebra! Calculus requires the limit of the average. As 
h shrinks to zero, the points on the graph come closer. "Average over an interval" 
becomes "velocity at an instant.'' The general theory of limits is not particularly 
simple, but here we don't need it. (It isn't particularly hard either.) In this example 
the limiting value is easy to identify. The average 2t + h approaches 2t, as h -, 0. 

What remains to do in this section? We answered Question 2-to find velocity 
from distance. We have not answered Question 1. If v(t) = 2t increases linearly with 
time, what is the distance? This goes in the opposite direction (it is integration). 

The Fundamental Theorem of Calculus says that no new work is necessary. Zfthe 
slope o f f  (t) leads to v(t), then the area under that v-graph leads back to the f-graph. 
The odometer readings f = t2 produced speedometer readings v = 2t. By the Funda- 
mental Theorem, the area under 2t should be t2. But we have certainly not proved 
any fundamental theorems, so it is better to be safe-by actually computing the area. 

Fortunately, it is the area of a triangle. The base of the triangle is t and the height 
is v = 2t. The area agrees with f (t): 

area = i(base)(height)= f(t)(2t)= t2. (4) 

EXAMPLE 1 The graphs are shifted in time. The car doesn't start until t = 1. Therefore 
v =  0 and f = O  up to that time. After the car starts we have v =  2(t - 1) and 
f = (t - You see how the time delay of 1 enters the formulas. Figure 1.13 shows 
how it affects the graphs. 

Fig. 1.13 Delayed velocity and distance. The pairs v = at + b and f= $at2+ bt. 

EXAMPLE 2 The acceleration changes from 2 to another constant a. The velocity 
changes from v = 2t to v = at. The acceleration is the slope ofthe velocity curve! The 
distance is also proportional to a, but notice the factor 3: 

acceleration a 9 velocity v = at 9 distance f = fat2. 

If a equals 1, then v = t and f = f t2. That is one of the most famous pairs in calculus. 
If a equals the gravitational constant g, then v = gt is the velocity of a falling body. 
The speed doesn't depend on the mass (tested by Galileo at the Leaning Tower of 
Pisa). Maybe he saw the distance f = &gt2more easily than the speed v = gt. Anyway, 
this is the most famous pair in physics. 
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EXAMPLE 3 Suppose f (t) = 3t + t2. The average velocity from t to t + h is 

f (t + h) -f (t) - 3(t + h) + (t + h)2 - 3t - t2 -
Vave = h h 

The change in distance has an extra 3h (coming from 3(t + h) minus 3t). The velocity 
contains an additional 3 (coming from 3h divided by h). When 3t is added to the 
distance, 3 is added to the velocity. If Galileo had thrown a weight instead of dropping 
it, the starting velocity vo would have added vot to the distance. 

FUNCTIONS ACROSS TIME 

The idea of slope is not difficult-for one straight line. Divide the change in f by 
the change in t. In Chapter 2, divide the change in y by the change in x. Experience 
shows that the hard part is to see what happens to the slope as the line moves. 

Figure 1.l4a shows the line between points A and B on the curve. This is a "secant 
line." Its slope is an average velocity. What calculus does is to bring that point B 
down the curve toward A. 

1 speed 

Fig. 1.14 Slope of line, slope of curve. Two velocity graphs. Which is which? 

. Question I What happens to the "change in f "-the height of B above A? 
Answer The change in f decreases to zero. So does the change in t. 

Question 2 As B approaches A, does the slope of the line increase or decrease? 
Answer I am not going to answer that question. It is too important. Draw another 
secant line with B closer to A. Compare the slopes. 

This question was created by Steve Monk at the University of Washington-where 
57% of the class gave the right answer. Probably 97% would have found the right 
slope from a formula. Figure 1.14b shows the opposite problem. We know the veloc- 
ity, not the distance. But calculus answers questions about both functions. 

Question 3 Which car is going faster at time t = 3/4? 
Answer Car C has higher speed. Car D has greater acceleration. 

Question 4 If the cars start together, is D catching up to C at the end? Between 
t = $  and t = 1, do the cars get closer or further apart? 
Answer This time more than half the class got it wrong. You won't but you can see 
why they did. You have to look at the speed graph and imagine the distance graph. 
When car C is going faster, the distance between them . 
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To repeat: The cars start together, but they don't finish together. They reach the 
same speed at t = 1, not the same distance. Car C went faster. You really should draw 
their distance graphs, to see how they bend. 

These problems help to emphasize one more point. Finding the speed (or slope) is 
entirely different from finding the distance (or area): 

1. To find the slope of the f-graph at a'particular time t, you don't have to know 
the whole history. 

2. To find the area under the v-graph up to a particular time t, you do have to 
know the whole history. 

A short record of distance is enough to recover v(t). Point B moves toward point A. 
The problem of slope is local-the speed is completely decided by f (t) near point A. 

In contrast, a short record of speed is not enough to recover the total distance. We 
have to know what the mileage was earlier. Otherwise we can only know the increase 
in mileage, not the total. 

1.3 EXERCISES 

Read-through questions 

Between the distances f (2) = 100 and f (6)= 200, the average 
velocity is a . If f(t) = i t 2  then f (6)= b and 
f(8) = c . The average velocity in between is d . The 
instantaneous velocities at t = 6 and t = 8 are e and 

f . 

The average velocity is computed from f (t) and f (t + h) by 
uave= g . If f ( t ) = t 2  then o,,,= h . From t = l  to 
t = 1.1 the average is 1 . The instantaneous velocity 
is the I of u,,,. If the distance is f (t)= +at2 then the 
velocity is u(t) = k and the acceleration is 1 . 

On the graph of f(t), the average velocity between A and 
B is the slope of m . The velocity at A is found by n . 
The velocity at B is found by 0 . When the velocity is 
positive, the distance is P . When the velocity is increas- 
ing, the car is q . 

1 Compute the average velocity between t = 5 and t = 8: 

(a) f (0= 6t (b) f (t)= 6t + 2 
(c) f(t) =+at2 (d) f(t)=' t- t2 

( 4  f ( t )  = 6 (f) u(t) = 2t 

2 For the same functions compute [ f(t + h) -f (t)]/h. This 
depends on t and h. Find the limit as h -,0. 

3 If the odometer reads f (t) = t2 + t (f in miles or kilo- 
meters, t in hours), find the average speed between 

(a) t = l  and t = 2  
(b) t = 1 and t = 1.1 
(c) t = l  a n d t = l + h  
(d) t = 1 and t = .9 (note h = - .l) 

4 For the same f (t) = t2 + t, find the average speed between 
(a) t = O a n d l  (b) t = O a n d +  (c) t=Oandh.  

5 In the answer to 3(c), find the limit as h + 0. What does 
that limit tell us? 

6 Set h = 0 in your answer to 4(c). Draw the graph of 
f(t)= t2 + t and show its slope at t = 0. 

7 Draw the graph of v(t) = 1 + 2t. From geometry find 
the area under it from 0 to t. Find the slope of that area 
function f (t). 

8 Draw the graphs of v(t) = 3 -2t and the area f(t). 

9 True or false 
(a) If the distance f (t) is positive, so is v(t). 
(b) If the distance f (t) is increasing, so is u(t). 
(c) If f (t) is positive, v(t) is increasing. 
(d) If v(t) is positive, f (t) is increasing. 

10 If f(t) = 6t2 find the slope of the f-graph and also the 
v-graph. The slope of the u-graph is the 

11 Iff (t) = t 2  what is the average velocity between t = .9 and 
t = 1.1? What is the average between t -h and t + h? 

12 (a) Show that for f (t) = *at2 the average velocity between 
t -h and t +'h is exactly the velocity at t. 
(b) The area under v(t) = at from t -h to t + h is exactly 
the base 2h times 

13 Find f (t) from u(t) = 20t iff (0) = 12. Also if f (1) = 12. 

14 True or false, for any distance curves. 
(a) The slope of the line from A to B is the average velocity 
between those points. 
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(b) Secant lines have smaller slopes than the curve. Find the area under u(t) between t =0 and t = 1,2,3,4,5,6. 
(c) If f (t) and F(t) start together and finish together, the Plot those points f (1),. . . ,f (6) and draw the complete piece- 
average velocities are equal. wise parabola f (t). 

(d) If v(t) and V(t) start together and finish together, the 21 Draw the graph of f (t) = (1- t2( for 0 < t <2. Find a 
increases in distance are equal. three-part formula for u(t). 

15 When you jump up and fall back your height is y =2t - t2 22 Draw the graphs of f (t) for these velocities (to t =2): 
in the right units. (a) v(t) = 1 - t 

(a) Graph this parabola and its slope. (b) ~ ( t )  = 11 - tl 
(b) Find the time in the air and maximum height. (c) ~ ( t )  =(1 - t) + 1 1 - t 1. 
(c) Prove: Half the time you are above y =2. 

23 When does f (t) = t2 -3t reach lo? Find the average 
Basketball players "hang" in the air partly because of (c). velocity up to that time and the instantaneous velocity at that 
16 Graph f (t) = t2 and g(t) =f (t) -2 and h(t) =f (2t), all time. 
from t =0 to t = 1. Find the velocities. 24 If f (t) =*at2 + bt + c, what is v(t)? What is the slope of 

17 (Recommended) An up and down velocity is v(t) =2t for v(t)? When does f (t) equal 41, if a =b =c = I? 

t < 3, v(t) = 12 -2t for t 2 3. Draw the piecewise parabola 25 If f (t) = t2 then v(t) =2t. Does the speeded-up function 
f(t). Check that f (6)=area under the graph of u(t). f(4t) have velocity v(4t) or 4u(t) or 4v(4t)? 

18 Suppose v(t) = t for t <2 and v(t) = 2 for t 2 2. Draw the 26 If f (t) = t - t2 find v(t) and f (3t). Does the slope of f (3t) 
graph off (t) out to t = 3. equal v(3t) or 3v(t) or 3v(3t)? 

19 Draw f (t) up to t =4 when u(t) increases linearly from 27 For f (t) = tZ  find vaVe(t) between 0 and t. Graph vave(t) 
(a) 0 to 2 (b) - I t 0 1  (c) -2 to 0. and v(t). 

how can you find 20 (Recommended) Suppose v(t) is the piecewise linear sine 28 If you know the average velocity uaVe(t), 
function of Section 1.2. (In Figure 1.8 it was the distance.) the distance f (t)? Start from f (0)=0. 

1.4 Circular Motion 

This section introduces completely new distances and velocities-the sines and cosines 
from trigonometry. As I write that last word, I ask myself how much trigonometry it 
is essential to know. There will be the basic picture of a right triangle, with sides cos t 
and sin t and 1. There will also be the crucial equation (cos t )2+ (sin t )2= 1, which 
is Pythagoras' law a' + b2 = c2. The squares of two sides add to the square of the 
hypotenuse (and the 1 is really 12). Nothing else is needed immediately. If you don't 
know trigonometry, don't stop-an important part can be learned now. 

You will recognize the wavy graphs of the sine and cosine. W e  intend to Jind the 
slopes of those graphs. That can be done without using the formulas for sin(x + y) 
and cos (x + y)-which later give the same slopes in a more algebraic way. Here it is 
only basic things that are needed.? And anyway, how complicated can a triangle be? 

Remark You might think trigonometry is only for surveyors and navigators (people 
with triangles). Not at all! By far the biggest applications are to rotation and vibration 
and oscillation. It is fantastic that sines and cosines are so perfect for "repeating 
motionw-around a circle or up and down. 

?Sines and cosines are so important that I added a review of trigonometry in Section 1.5. But 
the concepts in this section can be more valuable than formulas. 
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1 

f = sin t 

1

sin t 

- 1 
COS t 

Fig. 1.15 As the angle t changes, the graphs show the sides of the right triangle. 

Our underlying goal is to offer one more example in which the velocity can be 
computed by common sense. Calculus is mainly an extension of common sense, but 
here that extension is not needed. We will find the slope of the sine curve. The straight 
line f = v t  was easy and the parabola f = +at2 was harder. The new example also 
involves realistic motion, seen every day. We start with circular motion, in which the 
position is given and the velocity will be found. 

A ball goes around a circle of radius one. The center is at x = 0, y = 0 (the origin). 
The x and y coordinates satisfy x 2  + y2 = 12, to keep the ball on the circle. We specify 
its position in Figure 1.16a by giving its angle with the horizontal. And we make the 
ball travel with constant speed, by requiring that the angle is equal to the time t. The 
ball goes counterclockwise. At time 1 it reaches the point where the angle equals 1. 
The angle is measured in radians rather than degrees, so a full circle is completed at 
t = 271 instead of t = 360. 

The ball starts on the x axis, where the angle is zero. Now find it at time t: 

The ball is at the point where x= cos t and y = sin t. 

This is where trigonometry is useful. The cosine oscillates between 1 and -1, as the 
ball goes from far right to far left and back again. The sine also oscillates between 1 
and - 1, starting from sin 0 = 0. At time 7112 the sine (the height) increases to one. 
The cosine is zero and the ball reaches the top point x = 0, y = 1. At time 71 the cosine 
is -1 and the sine is back to zero-the coordinates are (- 1,O). At t = 271 the circle 
is complete (the angle is also 271), and x = cos 27~ = 1, y = sin 271 = 0. 

vertical 
velocity 

vertical 
distance 

Fig. 1.16 Circular motion with speed 1, angle t, height sin t, upward velocity cos t .  
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Important point: The distance around the circle (its circumference) is 2nr = 2n, 
because the radius is 1. The ball travels a distance 2n in a time 2n. The speed equals 
1. It remains to find the velocity, which involves not only speed but direction. 

Degrees vs. radians A full circle is 360 degrees and 271 radians. Therefore 

1 radian = 36012~ degrees = 57.3 degrees 

1 degree = 2711360 radians = .01745 radians 

Radians were invented to avoid those numbers! The speed is exactly 1, reaching t 
radians at time t. The speed would be .01745, if the ball only reached t degrees. The 
ball would complete the circle at time T = 360. We cannot accept the division of the 
circle into 360 pieces (by whom?), which produces these numbers. 

To check degree mode vs. radian mode, verify that sin lo  z .017 and sin 1 = 34. 

VELOCITY OF THE BALL 

At time t, which direction is the ball going? Calculus watches the motion between t 
and t + h. For a ball on a string, we don't need calculus-just let go. The direction 
of motion is tangent to the circle. With no force to keep it on the circle, the ball goes 
oflon a tangent. If the ball is the moon, the force is gravity. If it is a hammer swinging 
around on a chain, the force is from the center. When the thrower lets go, the hammer 
takes off-and it is an art to pick the right moment. (I once saw a friend hit by a 
hammer at MIT. He survived, but the thrower quit track.) Calculus will find that 
same tangent direction, when the points at t and t + h come close. 

The "velocity triangle" is in Figure 1.16b. It is the same as the position triangle, 
but rotated through 90". The hypotenuse is tangent to the circle, in the direction the 
ball is moving. Its length equals 1 (the speed). The angle t still appears, but now it is 
the angle with the vertical. The upward component of velocity is cos t, when the upward 
component of position is sin t. That is our common sense calculation, based on a 
figure rather than a formula. The rest of this section depends on it-and we check 
v = cos t at special points. 

At the starting time t = 0, the movement is all upward. The height is sin 0 = 0 and 
the upward velocity is cos 0 = 1. At time ~ 1 2 ,  the ball reaches the top. The height is 
sin 4 2  = 1 and the upward velocity is cos n/2 = 0. At that instant the ball is not 
moving up or down. 

The horizontal velocity contains a minus sign. At first the ball travels to the left. 
The value of x is cos t, but the speed in the x direction is -sin t. Half of trigonometry 
is in that figure (the good half), and you see how sin2 t + cos2 t = 1 is so basic. 
That equation applies to position and velocity, at every time. 

Application of plane geometry: The right triangles in Figure 1.16 are the same size 
and shape. They look congruent and they are-the angle t above the ball equals the 
angle t at the center. That is because the three angles at the ball add to 180". 

OSCILLATION: UP AND DOWN MOTION 

We now use circular motion to study straight-line motion. That line will be the y axis. 
Instead of a ball going around a circle, a mass will move up and down. It oscillates 
between y = 1 and y = - 1. The mass is the "shadow of the ball," as we explain in a 
moment. 
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There is a jumpy oscillation that we do not want, with v = 1 and v = -1. That 
"bang-bang" velocity is like a billiard ball, bouncing between two walls without 
slowing down. If the distance between the walls is 2, then at t = 4 the ball is back to 
the start. The distance graph is a zigzag (or sawtooth) from Section 1.2. 

We prefer a smoother motion. Instead of velocities that jump between +1 and -1, 
a real oscillation slows down to zero and gradually builds up speed again. The mass 
is on a spring, which pulls it back. The velocity drops to zero as the spring is fully 
stretched. Then v is negative, as the mass goes the same distance in the opposite 
direction. Simple harmonic motion is the most important back and forth motion, 
while f = vt and f = fat2 are the most important one-way motions. 

) 
turn 

( . p = m s t ; / / / J  
U P  


fup = sin t 
down 

turn 

Fig. 1.17 Circular motion of the ball and harmonic motion of the mass (its shadow). 

How do we describe this oscillation? The best way is to match it with the ball on 
the circle. The height of the ball will be the height of the mass. The "shadow of the 
ball" goes up and down, level with the ball. As the ball passes the top of the 
circle, the mass stops at the top and starts down. As the ball goes around the bottom, 
the mass stops and turns back up the y axis. Halfway up (or down), the speed is 1. 

Figure 1.17a shows the mass at a typical time t. The height is y =f (t)= sin t, level 
with the ball. This height oscillates between f = 1 and f = -1. But the mass does not 
move with constant speed. The speed of the mass is changing although the speed of 
the ball is always 1 .  The time for a full cycle is still 2n, but within that cycle the mass 
speeds up and slows down. The problem is to find the changing velocity u. Since the 
distance is f = sin t, the velocity will be the slope of the sine curve. 

THE SLOPE OF THE SINE CURVE 

At the top and bottom (t = n/2 and t = 3~12) the ball changes direction and v = 0. 
The slope at the top and bottom of the sine curve is zero.? At time zero, when the ball 
is going straight up, the slope of the sine curve is v = 1. At t = n,when the ball and 
mass and f-graph are going down, the velocity is v = -1. The mass goes fastest at 
the center. The mass goes slowest (in fact it stops) when the height reaches a maximum 
or minimum. The velocity triangle yields v at every time t. 

To find the upward velocity of the mass, look at the upward velocity of the ball. 
Those velocities are the same! The mass and ball stay level, and we know v from 
circular motion: The upward velocity is v = cos t. 

?That looks easy but you will see later that it is extremely important. At a maximum or 
minimum the slope is zero. The curve levels off. 
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Figure 1.18 shows the result we want. On the right, f = sin t gives the height. On 
the left is the velocity v = cos t. That velocity is the slope of the f-curve. The height 
and velocity (red lines) are oscillating together, but they are out of phase-just as 
the position triangle and velocity triangle were at right angles. This is absolutely 
fantastic, that in calculus the two most famous functions of trigonometry form a pair: 
The slope of the sine curve is given by the cosine curve. 

When the distance is f (t) = sin t, the velocity is v(t)= cos t .  

Admission of guilt: The slope of sin t was not computed in the standard way. 
Previously we compared (t + h)' with t2,and divided that distance by h. This average 
velocity approached the slope 2t as h became small. For sin t we could have done the 
same: 

change in sin t sin (t + h) - sin t 
average velocity = 

change in t 
--

h (1) 

This is where we need the formula for sin (t + h), coming soon. Somehow the ratio in 
(1) should approach cosmtas h -,0. (It d,oes.)The sine and cosine fit the same pattern 
as t2 and 2 t o u r  shortcut was to watch the shadow of motion around a circle. 

Fig. 1.I 8 v = cos t when f = sin t (red); v = -sin t when f = cos t (black). 

Question 1 What if the ball goes twice as fast, to reach angle 2t at time t? 

Answer The speed is now 2. The time for a full circle is only n. The ball's position 
is x = cos 2t and y = sin 2t. The velocity is still tangent to the circle-but the tangent 
is at angle 2t where the ball is. Therefore cos 2t enters the upward velocity and 
-sin 2t enters the horizontal velocity. The difference is that the velocity triangle is 
twice as big. The upward velocity is not cos 2t but 2 cos 2t. The horizontal velocity 
is -2 sin 2t. Notice these 2's! 

Question 2 What is the area under the cosine curve from t = 0 to t = n/2? 

You can answer that, if you accept the Fundamental Theorem of Calculus-
computing areas is the opposite of computing slopes. The slope of sin t is cos t, so the 
area under cos t is the increase in sin t. No reason to believe that yet, but we use it 
anyway. 

From sin 0 = 0 to sin n/2 = 1, the increase is 1. Please realize the power of calculus. 
No other method could compute the area under a cosine curve so fast. 
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THE SLOPE OF THE COSINE,CURVE 

I cannot resist uncovering another distance and velocity (another f-v pair) with no 
extra work. This time f is the cosine. The time clock starts at the top of the circle. 
The old time t = n/2is now t = 0.The dotted lines in Figure 1.18 show the new start. 
But the shadow has exactly the same motion-the ball keeps going around the circle, 
and the mass follows it up and down. The f-graph and v-graph are still correct, both 
with a time shift of 4 2 .  

The new f-graph is the cosine. The new v-graph is minus the sine. The slope of the 
cosine curve follows the negative of the sine curve. That is another famous pair, twins 
of the first: 

When the distance is f (t)= cos t, the velocity is v(t) = - sin t. 

You could see that coming, by watching the ball go left and right (instead of up and 
down). Its distance across is f = cos t. Its velocity across is v = -sin t. That twjn pair 
completes the calculus in Chapter 1 (trigonometry to come). We review the ideas: 

v is the velocity 
the slope of the distance curve 
the limit of average velocity over a short time 
the derivative of f. 

f is the distance 
the area under the velocity curve 
the limit of total distance over many short times 
the integral of v. 

Differential calculus: Compute v from f . Integral calculus: Compute f from v. 

With constant velocity, f equals vt. With constant acceleration, v = at and f = t a t  2. 

In harmonic motion, v = cos t and f = sin t .  One part of our goal is to extend that 
list-for which we need the tools of calculus. Another and more important part is 
to put these ideas to use. 

Before the chapter ends, may I add a note about the book and the course? The 
book is more personal than usual, and I hope readers will approve. What I write is 
very close to what I would say, if you were in this room. The sentences are spoken 
before they are written.? Calculus is alive and moving forward-it needs to be taught 
that way. 

One new part of the subject has come with the computer. It works with a finite 
step h, not an "infinitesimal" limit. What it can do, it does quickly-even if it cannot 
find exact slopes or areas. The result is an overwhelming growth in the range of 
problems that can be solved. We landed on the moon because f and v were so 
accurate. (The moon's orbit has sines and cosines, the spacecraft starts with v = at 
and f = )at2. Only the computer can account for the atmosphere and the sun's gravity 
and the changing mass of the spacecraft.) Modern mathematics is a combination of 
exact formulas and approximate computations. Neither part can be ignored, and I 
hope you will see numerically what we derive algebraically. The exercises are to help 
you master both parts. 

t o n  television you know immediately when the words are live. The same with writing. 
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The course has made a quick start-not with an abstract discussion of sets or 
functions or limits, but with the concrete questions that led to those ideas. You have 
seen a distance function f and a limit v of average velocities. We will meet more 
functions and more limits (and their definitions!) but it is crucial to study important 
examples early. There is a lot to do, but the course has definitely begun. 

1.4 EXERCISES 
Read-through questions 

A ball at angle t on the unit circle has coordinates x = a 
and y = b . It completes a full circle at t = c . Its speed 
is d . Its velocity points in the direction of the e , 
which is f to the radius coming out from the center. The 
upward velocity is g and the horizontal velocity is h . 

A mass going up and down level with the ball has height ' 

f(t)= i . This is called simple i motion. The velocity 
is u(t) = k . When t = n/2 the height is f = I and the 
velocity is v = m . If a speeded-up mass reaches f= sin 2t 
at time t, its velocity is v = n . A shadow traveling under 
the ball has f= cos t and v = o . When f is distance = 
area = integral, v is P = q = r . 

1 For a ball going around a unit circle with speed 1, 
(a) how long does it take for 5 revolutions? 
(b) at time t = 3n/2 where is the ball? 
(c) at t = 22 where is the ball (approximately)? 

2 For the same motion find the exact x and y coordinates 
at t = 2x13. At what time would the ball hit the x axis, if it 
goes off on the tangent at t = 2n/3? 

3 A ball goes around a circle of radius 4. At time t (when it 
reaches angle t) find 

(a) its x and y coordinates 
(b) the speed and the distance traveled 
(c) the vertical and horizontal velocity. 

4 On a circle of radius R find the x and y coordinates at 
time t (and angle t). Draw the velocity triangle and find the 
x and y velocities. 

5 A ball travels around a unit circle (raalus 1) with speed 3, 
starting from angle zero. At time t, 

(a) what angle does it reach? 
(b) what are its x and y coordinates? 
(c) what are its x and y velocities? This part is harder. 

6 If another ball stays n/2 radians ahead of the ball with 
speed 3, find its angle, its x and y coordinates, and its vertical 
velocity at time t. 

7 A mass moves on the x axis under or over the original 
ball (on the unit circle with speed 1). What is the position 
x =f (t)? Find x and v at t = 4 4 .  Plot x and v up to t = n. 

8 Does the new mass (under or over the ball) meet the old 
mass (level with the ball)? What is the distance between 
the masses at time t? 

9 Draw graphs of f(t) = cos 3t and cos 2nt and 271 cos t, 
marking the time axes. How long until each f repeats? 

10 Draw graphs of f = sin(t + n) and v = cos (t + n). This 
oscillation stays level with what ball? 

11 Draw graphs of f= sin ( 4 2  - t) and v = -cos (n/2 - t). 
This oscillation stays level with a ball going which way start- 
ing where? 

12 Draw a graph of f(t) = sin t + cos t. Estimate its greatest 
height (maximum f )  and the time it reaches that height. By 
computing f check your estimate. 

13 How fast should you run across the circle to meet the ball 
again? It travels at speed 1. 

14 A mass falls from the top of the unit circle when the ball 
of speed 1 passes by. What acceleration a is necessary to meet 
the ball at the bottom? 

Find the area under v = cos t from the change in f= sin t: 

15 from t = O  to t = n  j6 from t = 0 to t = n/6 

17 from t = O  to t = 2 n  18 from t = n/2 to t = 3x12. 

19 The distance curve f= sin 4t yields the velocity curve 
v = 4 cos 4t. Explain both 4's. 

20 The distance curve f = 2 cos 3t yields the velocity curve 
v = -6 sin 3t. Explain the -6. 

21 The velocity curve v = cos 4t yields the distance curve 
f = $ sin 4t. Explain the i. 
22 The velocity v = 5 sin 5t yields what distance? 



23 Find the slope of the sine curve at t = 4 3  from v = cos t. The oscillation x = 0, y = sin t goes (1)up and down (2)between 
Then find an average slope by dividing sin n/2 -sin 4 3  by -1 and 1 (3) starting from x = 0, y = 0 (4) at velocity 
the time difference 4 2  -43.  v = cos t. Find (1)(2)(3)(4) for the oscillations 31-36. 

24 The slope of f = sin t at t = 0 is cos 0 = 1. Compute 31 x=cost,  y=O 32 x = 0, y = sin 5t 
average slopes (sin t)/t for t = 1, .l, .01, .001. 

33 x=O, y=2sin(t+O) 34 x=cost,  y=cost  

The ball at x = cos t, y = sin t circles (1) counterclockwise 35 x=O, y=-2cos i t  36 x=cos2t, y=sin2t 
(2)with radius 1 (3)starting from x = 1, y = 0 (4)at speed 1. 
Find (1)(2)(3)(4) for the motions 25-30. 37 If the ball on the unit circle reaches t degrees at time t, 

find its position and speed and upward velocity. 
25 x=cos3t, y=-sin3t 

38 Choose the number k so that x = cos kt, y = sin kt com- 
26 x = 3 cos 4t, y = 3 sin 4t pletes a rotation at t = 1. Find the speed and upward velocity. 
27 x = 5 sin 2t, y = 5 cos 2t 39 If a pitcher doesn't pause before starting to throw, a balk 

is called. The American League decided mathematically that 
there is always a stop between backward and forward motion, 
even if the time is too short to see it. (Therefore no balk.) Is 

30 x =cos (- t), y = sin (- t) that true? 

1.5 A Review of Trigonometry 

Trigonometry begins with a right triangle. The size of the triangle is not as important 
as the angles. We focus on one particular angle-call it 8-and on the ratios between 
the three sides x, y, r. The ratios don't change if the triangle is scaled to another 
size. Three sides give six ratios, which are the basic functions of trigonometry: 

n r 1 
cos 8 = -

x 
= 

near side set 8 =  - =  -
r hypo tenuse x cos 8 

sin 8 = -
y 

= 
opposite side csc 8 = -r = -1 

r hypotenuse y sin 8R 
X 

I y  
y opposite side x 1 

tan 8 = - = cot g = - = -
Fig. 1.19 x near side y tan 8 

Of course those six ratios are not independent. The three on the right come directly 
from the three on the left. And the tangent is the sine divided by the cosine: 

Note that "tangent of an angle" and "tangent to a circle" and "tangent line to a 
graph" are different uses of the same word. As the cosine of 8 goes to zero, the tangent 
of 8 goes to infinity. The side x becomes zero, 8 approaches 90", and the triangle is 
infinitely steep. The sine of 90" is y/r = 1. 

Triangles have a serious limitation. They are excellent for angles up to 90°, and 
they are OK up to 180", but after that they fail. We cannot put a 240" angle into a 
triangle. Therefore we change now to a circle. 
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Fig. 1.20 Trigonometry on a circle. Compare 2 sin 8 with sin 28 and tan 8 (periods 2n, n, n). 

Angles are measured from the positive x axis (counterclockwise). Thus 90" is 
straight up, 180" is to the left, and 360" is in the same direction as 0". (Then 450" is 
the same as 90°.) Each angle yields a point on the circle of radius r. The coordinates 
x and y of that point can be negative (but never r). As the point goes around the 
circle, the six ratios cos 8, sin 9, tan 8, .. . trace out six graphs. The cosine waveform 
is the same as the sine waveform-just shifted by 90". 

One more change comes with the move to a circle. Degrees are out. Radians are 
in. The distance around the whole circle is 2nr. The distance around to other points 
is Or. We measure the angle by that multiple 8. For a half-circle the distance is m, 
so the angle is n radians-which is 180". A quarter-circle is 4 2  radians or 90". 
The distance around to angle 8 is r times 8. 

When r = 1 this is the ultimate in simplicity: The distance is 8. A 45" angle is Q of 
a circle and 27118 radians-and the length of the circular arc is 27~18.Similarly for 1": 

360" = 2n radians 1" = 27~1360radians 1 radian = 3601271 degrees. 

An angle going clockwise is negative. The angle -n /3  is -60" and takes us 4of the 
wrong way around the circle. What is the effect on the six functions? 

Certainly the radius r is not changed when we go to -8. Also x is not changed 
(see Figure 1.20a). But y reverses sign, because -8 is below the axis when +8 is 
above. This change in y affects y/r and y / x  but not xlr: 

The cosine is even (no change). The sine and tangent are odd (change sign). 
The same point is 2 of the right way around. Therefore 2 of 2n radians (or 300") 

gives the same direction as -n /3  radians or -60". A diflerence of 2n makes no 
di$erence to x ,  y, r.  Thus sin 8 and cos 8 and the other four functions have period 27~. 
We can go five times or a hundred times around the circle, adding 10n or 200n to 
the angle, and the six functions repeat themselves. 

EXAMPLE Evaluate the six trigonometric functions at 8 = 2n/3 (or 8 = -4 4 3 ) .  

This angle is shown in Figure 1.20a (where r = 1). The ratios are 

cos 8 = x/r  = -1/2 sin 8 = y/r = &/2 tan 8 = y /x  = -& 
sec e = - 2 csc e = 2/& cot e =  -i/d 

Those numbers illustrate basic facts about the sizes of four functions: 

The tangent and cotangent can fall anywhere, as long as cot 8 = l/tan 8. 
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The numbers reveal more. The tangent -3 is the ratio of sine to cosine. The 
secant -2 is l/cos 8. Their squares are 3 and 4 (differing by 1). That may not seem 
remarkable, but it is. There are three relationships in the squares of those six numbers, 
and they are the key identities of trigonometry: 

Everything flows fvom the Pythagoras formula x2 + y2 = r2. Dividing by r2 gives 
( ~ / r ) ~+ (y/r)2= 1. That is cos2 8+ sin28= 1. Dividing by x2 gives the second identity, 
which is 1 + ( y / ~ ) ~  Dividing by y2 gives the third. All three will be needed = ( r / ~ ) ~ .  
throughout the book-and the first one has to be unforgettable. 

DISTANCES AND ADDITION FORMULAS 

To compute the distance between points we stay with Pythagoras. The points are in 
Figure 1.21a. They are known by their x and y coordinates, and d is the distance 
between them. The third point completes a right triangle. 

For the x distance along the bottom we don't need help. It is x, - xl (or Ix2 - x1I 
since distances can't be negative). The distance up the side is ly2 -y, 1. Pythagoras 
immediately gives the distance d: 

distance between points = d = J(x2 - x , ) ~+ (y2- y1)'. (1) 

x=coss  
y = sin s 

Fig. 1.21 Distance between points and equal distances in two circles. 

By applying this distance formula in two identical circles, we discover the cosine 
of s - t. (Subtracting angles is important.) In Figure 1.2 1 b, the distance squared is 

d2= (change in x ) ~  + (change in y)* 

= (COSs - cos t)* + (sin s - sin t)2. (2) 
Figure 1 . 2 1 ~  shows the same circle and triangle (but rotated). The same distance 
squared is 

d2= (cos(s - t) - + (sin (s - t))2. (3) 
Now multiply out the squares in equations (2) and (3). Whenever (co~ine)~ + (sine)2 
appears, replace it by 1. The distances are the same, so (2) = (3): 

(2) = 1 + 1 - 2 cos s cos t - 2 sin s sin t 
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After canceling 1 + 1 and then -2, we have the "addition formula" for cos (s - t): 

The cosine of s - t equals cos s cos t + sin s sin t. (4) 

The cosine of s + t equals cos s cos t - sin s sin t. (5) 

The easiest is t = 0. Then cos t = 1 and sin t = 0. The equations reduce to cos s = cos s. 
To go from (4) to (5) in all cases, replace t by - t. No change in cos t, but a "minus" 

appears with the sine. In the special case s =  t, we have cos(t + t )=  
(COS t)(cos t) - (sin t)(sin t). This is a much-used formula for cos 2t: 

Double angle: cos 2t = cos2 t - sin2 t = 2 cos2 t - 1 = 1 - 2 sin2 t. (6) 

I am constantly using cos2 t + sin2 t = 1, to switch between sines and cosines. 
We also need addition formulas and double-angle formulas for the sine of s - t 

and s + t and 2t. For that we connect sine to cosine, rather than (sine)2 to (co~ine)~.  
The connection goes back to the ratio y/r in our original triangle. This is the sine of 
the angle 0 and also the cosine of the complementary angle 7112 - 0: 

sin 0 = cos (7112 - 0) and cos 0 = sin (7112 - 0). (7) 

The complementary angle is 7112 - 0 because the two angles add to 7112 (a right angle). 
By making this connection in Problem 19, formulas (4-5-6) move from cosines to 
sines: 

sin (s - t) =sin s cos t - cos s sin t (8) 

sin(s + t) = sin s cos t + cos s sin t (9) 

sin 2t = sin(t + t) = 2 sin t cos t (10) 

I want to stop with these ten formulas, even if more are possible. Trigonometry is 
full of identities that connect its six functions-basically because all those functions 
come from a single right triangle. The x, y, r ratios and the equation x2 + y2 = r2 can 
be rewritten in many ways. But you have now seen the formulas that are needed by 
ca1culus.t They give derivatives in Chapter 2 and integrals in Chapter 5. And it is 
typical of our subject to add something of its own-a limit in which an angle 
approaches zero. The essence of calculus is in that limit. 

Review of the ten formulas Figure 1.22 shows d2 = (0 - $)2+ (1 - -12)~. 

71 71 71 71 71 71 71 71 71 
cos - = cos - cos - + sin -

71 
sin - (s - t) sin -= sin - cos - - cos - sin -

6 2 3 2 3 6 2 3 2 3 

571 71 71 71 71 571 71 71 71 
cos -= cos - cos - - sin - sin - (s + t) sin -= sin - cos - + cos -

71 
sin -

6 2 3 2 3 6 2 3 2 3 

71 71 71 
(2t) sin 2 - = 2 sin - cos -

3 3 3 

71 71sin - = cos -71 = 112cos 2 = sin - = -12 (4-0)6 3 6 3 

tcalculus turns (6) around to cos2 t =i(1 + cos 2t) and sin2 t =i(1 -cos 2t). 
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Fig. 1.22 

1.5 EXERCISES 
Read-through questions 

Starting with a a triangle, the six basic functions are the 
b of the sides. Two ratios (the cosine x/r and the c ) 

are below 1. Two ratios (the secant r/x and the d ) are 
above 1. Two ratios (the e and the f ) can take any 
value. The six functions are defined for all angles 8, by chang- 
ing from a triangle to a g . 

The angle 8 is measured in h . A full circle is 8 = i , 
when the distance around is 2nr. The distance to angle 8 is 

I . All six functions have period k . Going clockwise 
changes the sign of 8 and I and m . Since cos (- 9) = 
cos 8, the cosine is n . 

Coming from x2+ y2= r2 are the three identities 
sin2 8 + cos2 8 = 1 and 0 and P . (Divide by r2 and 

q and r .) The distance from (2, 5) to (3, 4) is 
d = s . The distance from (1, 0) to (cos (s -t), sin (s -t)) 
leads to the addition formula cos (s - t) = t . Changing 
the sign of t gives cos (s + t) = u . Choosing s = t gives 
cos 2t = v or w . Therefore i ( l +  cos 2t) = x , 
a formula needed in calculus. 

1 In a 60-60-60 triangle show why sin 30" =3. 
2 Convert x, 371, -7114 to degrees and 60°, 90°, 270" to 

radians. What angles between 0 and 2n correspond to 
8 = 480" and 8 = -I0? 

3 Draw graphs of tan 8and cot 8 from 0to 2n. What is their 
(shortest) period? 

4 Show that cos 28 and cos2 8 have period n and draw them 
on the same graph. 

5 At 8= 3n/2 compute the six basic functions and check 
cos2 8 + sin2 8, sec2 0 - tan2 8, csc2 8 -cot2 8. 

6 Prepare a table showing the values of the six basic func- 
tions at 8 = 0, 7114, n/3, ~ / 2 ,  n. 

7 The area of a circle is nr2. What is the area of the sector 
that has angle 8? It is a fraction of the whole area. 

8 Find the distance from (1, 0) to (0, 1)along (a) a straight 
line (b) a quarter-circle (c) a semicircle centered at (3,i). 

9 Find the distance d from (1,O) to (4, &/2) and show on 
a circle why 6d is less than 2n. 

10 In Figure 1.22 compute d2 and (with calculator) 12d. Why 
is 12d close to and below 2n? 

11 Decide whether these equations are true or false: 

sin 8 1 +cos 8 
(a) ------= ----

1 -cos 8 sin 8 

sec 8 + csc 8 
= sin 8 + cos 8 

(b) tan e +cot e 
(c) cos 8 -sec 8 = sin 0 tan 8 
(d) sin (2n -8) = sin 8 

12 Simplify sin (n -O), cos (n-8), sin (n/2 + 8), cos (n/2 + 8). 

13 From the formula for cos(2t + t) find cos 3t in terms of 
cos t. 

14 From the formula for sin (2t + t) find sin 3t in terms of 
sin t. 

15 By averaging cos (s - t) and cos (s + t) in (4-5) find a for- 
mula for cos s cos t. Find a similar formula for sin s sin t. 

16 Show that (cos t + i sin t)2 = cos 2t + i sin 2t, if i2 = -1. 

17 Draw cos 8 and sec 8 on the same graph. Find all points 
where cos B = sec 8. 

18 Find all angles s and t between 0 and 2n where sin (s + t) = 
sin s + sin t. 

19 Complementary angles have sin 8 = cos (n/2 -8). Write 
sin@+ t) as cos(n/2 -s - t) and apply formula (4) 
with n/2 -s instead of s. In this way derive the addition 
formula (9). 

20 If formula (9) is true, how do you prove (8)? 

21 Check the addition formulas (4-5) and (8-9) for 
s = t = n/4. 

22 Use (5) and (9) to find a formula for tan (s + t). 
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In 23-28 find every 8 that satisfies the equation. (1) show that the side PQ has length 

23 sin 8 =  -1 24 sec 8 = -2 d2=a2+b2-2ab cos 8 (law of cosines). 

25 sin 8 =cos 8 26 sin 8 =8 32 Extend the same!riangle to a parallelogram with its fourth 

27 sec2 8 +csc2 8 = 1 28 tan 8 = 0  corner at R =(a +b cos 0, b sin 8). Find the length squared of 

29 Rewrite cos 8 +sin 0 as f i sin(8+4) by choosing the 
the other diagonal OR. 

correct "phase angle" 4. (Make the equation correct at Draw graphs for equations 33-36, and mark three points. 
8 =0. Square both sides to check.) 

33 y =sin 2x 34 y = 2  sin xx 
30 Match a sin x +b cos x with A sin (x +4). From equation 35 y =3 cos 2xx 
(9) show that a =A cos 4 and b =A sin 4. Square and add to 36 y=sin x+cos x 

find A = .Divide to find tan 4 =bla. 37 Which of the six trigonometric functions are infinite at 

31 Draw the base of a triangle from the origin 0 = (0'0) to what angles? 

P =(a, 0). The third corner is at Q =(b cos 8, b sin 8). What 38 Draw rough graphs or computer graphs of t sin t and 
are the side lengths OP and OQ? From the distance formula sin 4t sin t from 0 to 2n. 

1.6 1-Thousand Points of Light A 


The graphs on the back cover of the book show y = sin n. This is very different 
from y = sin x. The graph of sin x is one continuous curve. By the time it reaches 
x = 10,000, the curve has gone up and down 10,000/27r times. Those 1591 oscillations 
would be so crowded that you couldn't see anything. The graph of sin n has picked 
10,000 points from the curve-and for some reason those points seem to lie on more 
than 40 separate sine curves. 

The second graph shows the first 1000 points. They don't seem to lie on sine curves. 
Most people see hexagons. But they are the same thousand points! It is hard to believe 
that the graphs are the same, but I have learned what to do. Tilt the second graph 
and look from the side at a narrow angle. Now the first graph appears. You see 
"diamonds." The narrow angle compresses the x axis-back to the scale of the first 
graph. 

1-


The effect of scale is something we don't think of. We understand it for maps. 
Computers can zoom in or zoom out-those are changes of scale. What our eyes see 
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depends on what is "close." We think we see sine curves in the 10,000 point graph, 
and they raise several questions: 

1. Which points are near (0, O)? 
2. How many sine curves are there? 
3. Where does the middle curve, going upward from (0, 0), come back to zero? 

A point near (0,O) really means that sin n is close to zero. That is certainly not true 
of sin 1 (1 is one radian!). In fact sin 1 is up the axis at .84, at the start of the seventh 
sine curve. Similarly sin 2 is .91 and sin 3 is .14. (The numbers 3 and .14 make us 
think of n. The sine of 3 equals the sine of n - 3. Then sin . l4  is near .14.) Similarly 
sin 4, sin 5, . . . , sin 21 are not especially close to zero. 

The first point to come close is sin 22. This is because 2217 is near n. Then 22 is 
close to 771, whose sine is zero: 

sin 22 = sin (7n - 22) z sin (- .01) z - .01. 

That is the first point to the right of (0,O) and slightly below. You can see it on 
graph 1, and more clearly on graph 2. It begins a curve downward. 

The next point to come close is sin 44. This is because 44 is just past 14n. 

44 z 14n + .02 so sin 44 z sin .02 z .02. 

This point (44, sin 44) starts the middle sine curve. Next is (88, sin 88). 
Now we know something. There are 44 curves. They begin near the heights sin 0, 

sin 1, . . . , sin 43. Of these 44 curves, 22 start upward and 22 start downward. I was 
confused at first, because I could only find 42 curves. The reason is that sin 11 equals 
- 0.99999 and sin 33 equals .9999. Those are so close to the bottom and top that you 
can't see their curves. The sine of 11 is near - 1 because sin 22 is near zero. It is 
almost impossible to follow a single curve past the top-coming back down it is not 
the curve you think it is. 

The points on the middle curve are at n = 0 and 44 and 88 and every number 44N. 
Where does that curve come back to zero? In other words, when does 44N come 
very close to a multiple of n? We know that 44 is 14n + .02. More exactly 44 is 
14n + .0177. So we multiply .0177 until we reach n: 

if N=n/.0177 then 44N=(14n+.0177)N3 14nN+n.  

This gives N = 177.5. At that point 44N = 7810. This is half the period of the sine 
curve. The sine of 7810 is very near zero. 

If you follow the middle sine curve, you will see it come back to zero above 7810. 
The actual points on that curve have n = 44 177 and n = 44 178, with sines just 
above and below zero. Halfway between is n = 7810. The equation for the middle sine 
curve is y = sin (nx/78lO). Its period is 15,620-beyond our graph. 

Question The fourth point on that middle curve looks the same as the fourth point 
coming down from sin 3. What is this "double point?" 
Answer 4 times 44 is 176. On the curve going up, the point is (176, sin 176). On the 
curve coming down it is (1 79, sin 179). The sines of 176 and 179 difler only by .00003. 

The second graph spreads out this double point. Look above 176 and 179, at the 
center of a hexagon. You can follow the sine curve all the way across graph 2. 

Only a little question remains. Why does graph 2 have hexagons? I don't know. 
The problem is with your eyes. To understand the hexagons, Doug Hardin plotted 
points on straight lines as well as sine curves. Graph 3 shows y = fractional part of 
n/2x. Then he made a second copy, turned it over, and placed it on top. That 
produced graph 4-with hexagons. Graphs 3 and 4 are on the next page. 
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This is called a Moivt pattevn. If you can get a transparent copy of graph 3, and 
turn it slowly over the original, you will see fantastic hexagons. They come from 
interference between periodic patterns-in our case 4417 and 2514 and 1913 are near 
271. This interference is an enemy of printers, when color screens don't line up. It can 
cause vertical lines on a TV. Also in making cloth, operators get dizzy from seeing 
Moire patterns move. There are good applications in engineering and optics-but 
we have to get back to calculus. 

1.7 Computing in Calculus 

Software is available for calculus courses-a lot of it. The packages keep getting 
better. Which program to use (if any) depends on cost and convenience and purpose. 
How to use it is a much harder question. These pages identify some of the goals, and 
also particular packages and calculators. Then we make a beginning (this is still 
Chapter 1) on the connection of computing to calculus. 

The discussion will be informal. It makes no sense to copy the manual. Our aim 
is to support, with examples and information, the effort to use computing to help 
learning. 

For calculus, the gveatest advantage of the computev is to o$er graphics. You see 
the function, not just the formula. As you watch, f ( x )  reaches a maximum or a 
minimum or zero. A separate graph shows its derivative. Those statements are not 
100% true, as everybody learns right away-as soon as a few functions are typed in. 
But the power to see this subject is enormous, because it is adjustable. If we don't 
like the picture we change to a new viewing window. 

This is computer-based graphics. It combines numerical computation with 
gvaphical computation. You get pictures as well as numbers-a powerful combination. 
The computer offers the experience of actually working with a function. The domain 
and range are not just abstract ideas. You choose them. May I give a few examples. 

EXAMPLE I Certainly x3 equals 3" when x = 3. Do those graphs ever meet again'? 
At this point we don't know the full meaning of 3", except when x is a nice number. 
(Neither does the computer.) Checking at x = 2 and 4, the function x3 is smaller 
both times: 23 is below 3* and 43 = 64 is below 34 = 81. If x3 is always less than 3" 
we ought to know-these are among the basic functions of mathematics. 
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The computer will answer numerically or graphically. At our command, it solves 
x3 = 3X. At another command, it plots both functions-this shows more. The screen 
proves a point of logic (or mathematics) that escaped us. If the graphs cross once, 
they must cross again-because 3" is higher at 2 and 4. A crossing point near 2.5 is 
seen by zooming in. I am less interested in the exact number than its position-it 
comes before x = 3 rather than after. 

A few conclusions from such a basic example: 

1. A supercomputer is not necessary. 
2. High-level programming is not necessary. 
3. We can do mathematics without completely understanding it. 

The third point doesn't sound so good. Write it differently: We can learn mathematics 
while doing it. The hardest part of teaching calculus is to turn it from a spectator 
sport into a workout. The computer makes that possible. 

EXAMPLE 2 (mental computer) Compare x2 with 2X. The functions meet at x = 2. 
Where do they meet again? Is it before or after 2? 

That is mental computing because the answer happens to be a whole number (4). 
Now we are on a different track. Does an accident like Z4 = 42 ever happen again? 
Can the machine tell us about integers? Perhaps it can plot the solutions of xb = bx. 
I asked Mathernatica for a formula, hoping to discover x as a function of b-but the 
program just gave back the equation. For once the machine typed HELP icstead of 
the user. 

Well, mathematics is not helpless. I am proud of calculus. There is a new exercise 
at the end of Section 6.4, to show that we never see whole numbers again. 

EXAMPLE 3 Find the number b for which xb = bx has only one solution(at x = b). 

When b is 3, the second solution is below 3. When b is 2, the second solution (4) is 
above 2. If we move b from 2 to 3, there must be a special "double point"-where 
the graphs barely touch but don't cross. For that particular b-and only for that 
one value-the curve xb never goes above bx. 

This special point b can be found with computer-based graphics. In many ways it 
is the "center point of calculus." Since the curves touch but don't cross, they are 
tangent. They have the same slope at the double point. Calculus was created to work 
with slopes, and we already know the slope of x2. Soon comes xb. Eventually we 
discover the slope of bx, and identify the most important number in calculus. 

The point is that this number can be discovered first by experiment. 

EXAMPLE 4 Graph y(x) = ex- xe. Locate its minimum. 

The next example was proposed by Don Small. Solve x4 - 1 l x 3  + 5x - 2 = 0.The 
first tool is algebra-try to factor the polynomial. That succeeds for quadratics, and 
then gets extremely hard. Even if the computer can do algebra better than we can, 
factoring is seldom the way to go. In reality we have two good choices: 

1. (Mathematics)Use the derivative. Solve by Newton's method. 
2. (Graphics)Plot the function and zoom in. 

Both will be done by the computer. Both have potential problems! Newton's method 
is fast, but that means it can fail fast. (It is usually terrific.) Plotting the graph is also 
fast-but solutions can be outside the viewing window. This particular function is 
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zero only once, in the standard window from -10 to 10. The graph seems to be 
leaving zero, but mathematics again predicts a second crossing point. So we zoom 
out before we zoom in. 

The use of the zoom is the best part of graphing. Not only do we choose the domain 
and range, we change them. The viewing window is controlled by four numbers. They 
can be the limits A <x <B and C d y d D. They can be the coordinates of two 
opposite corners: (A, C) and (B, D). They can be the center position (a, b) and the 
scale factors c and d. Clicking on opposite corners of the zoom box is the fastest way, 
unless the center is unchanged and we only need to give scale factors. (Even faster: 
Use the default factors.) Section 3.4 discusses the centering transform and zoom 
transform-a change of picture on the screen and a change of variable within the 
function. 

EXAMPLE 5 Find all real solutions to x4 - 1 lx3 + 5x - 2 =0. 

EXAMPLE 6 Zoom out and in on the graphs of y = cos 40x and y = x sin (llx). 
Describe what you see. 

U(AMpLE 7 What does y = (tan x - sin x)/x3 become at x = O? For small x the 
machine eventually can't separate tan x from sin x. It may give y = 0. Can you get 
close enough to see the limit of y? 

For these examples, and for most computer exercises in this book, a menu-driven 
system is entirely adequate. There is a list of commands to choose from. The user 
provides a formula for y(x), and many functions are built in. A calculus supplement 
can be very useful-MicroCalc or True BASIC or Exploring Calculus or MPP (in 
the public domain). Specific to graphics are Surface Plotter and Master Grapher and 
Gyrographics (animated). The best software for linear algebra is MATLAB. 

Powerful packages are increasing in convenience and decreasing in cost. They are 
capable of symbolic computation-which opens up a third avenue of computing in 
calculus. 

SYMBOLIC COMPUTATION 

In symbolic computation, answers can be formulas as well as numbers and graphs. 
The derivative of y = x2 is seen as "2x." The derivative of sin t is "cos t." The slope 
of bx is known to the program. The computer does more than substitute numbers 
into formulas-it operates directly on the formulas. We need to think where this fits 
with learning calculus. 

In a way, symbolic computing is close to what we ourselves do. Maybe too close- 
there is some danger that symbolic manipulation is all we do. With a higher-level 
language and enough power, a computer can print the derivative of sin(x2). So why 
learn the chain rule? Because mathematics goes deeper than "algebra with formulas." 
We deal with ideas. 

I want to say clearly: Mathematics is not formulas, or computations, or even proofs, 
but ideas. The symbols and pictures are the language. The book and the professor 
and the computer can join in teaching it. The computer should be non-threatening 
(like this book and your professor)-you can work at your own pace. Your part is 
to learn by doing. 

EXAMPLE 8 A computer algebra system quickly finds 100 factorial. This is loo! = 
(100)(99)(98)... (1). The number has 158 digits (not written out here). The last 24 
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digits are zeros. For lo! = 3628800 there are seven digits and two zeros. Between 10 
and 100, and beyond, are simple questions that need ideas: 

1. How many digits (approximately) are in the number N!? 
2. How many zeros (exactly) are at the end of N!? 

For Question 1,the computer shows more than N digits when N = 100. It will never 
show more than N2 digits, because none of the N terms can have more than N digits. 
A much tighter bound would be 2N, but is it true? Does N! always have fewer than 
2N digits? 

For Question 2, the zeros in lo! can be explained. One comes from 10, the other 
from 5 times 2. (10 is also 5 times 2.) Can you explain the 24 zeros in loo!? An idea 
from the card game blackjack applies here too: Count the$ves. 

Hard question: How many zeros at the end of 200!? 

The outstanding package for full-scale symbolic computation is Mathematica. It 
was used to draw graphs for this book, including y = sin n on the back cover. The 
complete command was List Plot [Table [Sin [n], (n, 10000)]]. This system has rewards 
and also drawbacks, including the price. Its original purpose, like MathCAD and 
MACSYMA and REDUCE, was not to teach calculus-but it can. The computer 
algebra system MAPLE is good. 

As  I write in 1990, DERIVE is becoming well established for the PC. For the 
Macintosh, Calculus TIL is a "sleeper" that deserves to be widely known. It builds 
on MAPLE and is much more accessible for calculus. An important alternative is 
Theorist. These are menu-driven (therefore easier at the start) and not expensive. 

I strongly recommend that students share terminals and work together. Two at a 
terminal and 3-5 in a working group seems to be optimal. Mathematics can be 
learned by talking and writing-it is a human activity. Our goal is not to test but to 
teach and learn. 

Writing in Calculus May I emphasize the importance of writing? We totally miss it, 
when the answer is just a number. A one-page report is harder on instructors as well 
as students-but much more valuable. A word processor keeps it neat. You can't 
write sentences without being forced to organize ideas-and part of yourself goes 
into it. 

I will propose a writing exercise with options. If you have computer-based graph- 
ing, follow through on Examples 1-4 above and report. Without a computer, pick a 
paragraph from this book that should be clearer and make it clearer. Rewrite it with 
examples. Identify the key idea at the start, explain it, and come back to express it 
differently at the end. Ideas are like surfaces-they can be seen many ways. 

Every reader will understand that in software there is no last word. New packages 
keep coming (Analyzer and EPIC among them). The biggest challenges at this 
moment are three-dimensional graphics and calculus workbooks. In 30, the problem 
is the position of the eye-since the screen is only 20. In workbooks, the problem is 
to get past symbol manipulation and reach ideas. Every teacher, including this one, 
knows how hard that is and hopes to help. 

GRAPHING CALCULATORS 

The most valuable feature for calculus-computer-based graphing-is available on 
hand calculators. With trace and zoom their graphs are quite readable. By creating 
the graphs you subconsciously learn about functions. These are genuinely personal 
computers, and the following pages aim to support and encourage their use. 
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Programs for a hand-held machine tend to be simple and short. We don't count 
the zeros in 100 factorial (probably we could). A calculator finds crossing points and 
maximum points to good accuracy. Most of all it allows you to explore calculus by 
yourself. You set the viewing window and define the function. Then you see it. 

There is a choice of calculators-which one to buy? For this book there was also 
a choice-which one to describe? To provide you with listings for useful programs, 
we had to choose. Fortunately the logic is so clear that you can translate the instruc- 
tions into any language-for a computer as well as a calculator. The programs given 
here are the "greatest common denominator" of computing in calculus. 

The range of choices starts with the Casio fx 7000G-the first and simplest, with 
very limited memory but a good screen. The Casio 7500,8000, and 8500 have increas- 
ing memory and extra features. The Sharp EL-5200 (or 9000 in Canada and Europe) 
is comparable to the Casio 8000. These machines have algebraic entry-the normal 
order as in y = x + 3. They are inexpensive and good. More expensive and much 
more powerful are the Hewlett-Packard calculators-the HP-28s and HP-48SX. 
They have large memories and extensive menus (and symbolic algebra). They use 
reverse Polish notation-numbers first in the stack, then commands. They require 
extra time and effort, and other books do justice to their amazing capabilities. It is 
estimated that those calculators could get 95 on a typical calculus exam. 

While this book was being written, Texas Instruments produced a new graphing 
calculator: the TI-81. It is closer to the Casio and Sharp (emphasis on graphing, easy 
to learn, no symbolic algebra, moderate price). With earlier machines as a starting 
point, many improvements were added. There is some risk in a choice that is available 
only At before this textbook is published, and we hope that the experts we asked are 
right. Anyway, our programs are Jbr the TI-81. It is impressive. 

These few pages are no substitute for the manual that comes with a calculator. A 
valuable supplement is a guide directed especially at calculus-my absolute favorites 
are Calculus Activities for Graphic Calculators by Dennis Pence (PWS-Kent, 1990 for 
the Casio and Sharp and HP-28S, 1991 for the TI-81). A series of Calculator Enhance- 
ments, using HP's, is being published by Harcourt Brace Jovanovich. What follows 
is an introduction to one part of a calculus laboratory. Later in the book, we supply 
TI-81 programs close to the mathematics and the exercises that they are prepared 
for. 

A few words to start: To select from a menu, press the item number and E N T E R .  
Edit a command line using D E L(ete) and I N S(ert). Every line ends with 
E N T E R .  For calculus select radians on the M 0 D E screen. For powers use * . For 
special powers choose x2, x- l ,  &.Multiplication has priority, so (-)3 + 2 x 2 
produces 1. Use keys for S I N ,  I F , I S, .. . When you press letters, I multiplies S . 

If a program says 3 + C ,  type 3 S T 0 C E N T E R .  Storage locations are A to Z 
or Greek 8. 

Functions A graphing calculator helps you (forces you?) to understand the concept 
of a function. It also helps you to understand specific functions-especially when 
changing the viewing window. 

To evaluate y = x2 - 2x just once, use the home screen. To define y(x) for repeated 
use, move to the function edit screen: Press M 0 D E, choose F u n c t io n, and press 
Y =. Then type in the formula. Important tip: for X on the TI-81, the key X I T is faster 
than two steps A L p h a X.  The Y = edit screen is the same place where the formula 
is needed for graphing. 
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Example Y I = X ~ - ~ XENTERontheY=screen. 4 ST0  X ENTERonthehome 
screen. Y 1 E N T E R on the Y-VARS screen. The screen shows 8, which is Y(4). The 
formula remains when the calculator is off. 

Graphing You specify the X range and Y range. (We should say X domain but we 
don't.) The screen is a grid of 96 x 64 little rectangles called "pixels." The first column 
of pixels represents X m i n and the last column is X m a x . Press R A N G E to reset. 
With X r e s = 1 the function is evaluated 96 times as it is graphed. X s c L and Y s c L 
give the spaces between ticks on the axes. 

The Z 0 0 M menu is a fast way to set ranges. Z 0 0 M S t a n d a r d gives the default 
-1O<x<10, -10<y<10. Z O O M  T r i g  gives - 2 n < x < h ,  - 3 < y < 3 .  

The keystroke G R A P H shows the graphing screen with the current functions. 

Example Set the ranges (-)2 < X < 3 and (-) 150 < Y 6 50. Press Y = and store 
Y1 = X  (in ~ A T H ) ~ - 2 8 X ~ + l 5 ~ + 3 6  E N T E R .  Press GRAPH. You won't see 
much of the graph! Press R A N G E and reset (-)I 0 < X < 30, (-)4000 < Y < 2300. 
Press G R A P H.  See a cubic polynomial. 

"Smart Graph" recalls the graph instantly without redrawing it, if no settings have 
changed. The D R A W  menu is for points, lines, and shaded regions. This is perfect for 
our piecewise linear functions-just connect the breakpoints with lines. In Section 3.6 
the lines show an iteration by its "cobweb." 

Programming This book contains programs that you can type in once and save. 
We chose Autoscaling, Newton's Method, Secant Method, Cobweb Iteration, and 
Numerical Integration. You will create others-to do calculations or to add features 
that are not available as single keystrokes. The calculator is like a computer, with a 
fairly small set of instructions. One digerence: Memory is too precious to store com- 
ments with the code. You have to see the logic by rereading the program. 

To enter the world of programming, press P R G M. Each P R G M submenu lists all 
programs by name-a digit, a letter, or 6 (37 names). The program title has up to 
eight characters. Select the E D I T submenu and press G for the edit screen. Type the 
title G R A P H S and press E N T E R .  Practice on this one: 

: " x ~ + x "  ST0 (Y-VARS) Y1 ENTER 
:"X-1" ST0 (Y-VARS) Y2 ENTER 
: ( P R G M ) ( I / O l  D i s p G r a p h  

The menus to call are in parentheses. Leave the edit screen with Q U  I T (not 
C L E A R -that erases the line with the cursor). Set the default window by Z 0 0 M 
S t a n d a r d .  

To execute, press P R G M ( E X E C G E N T E R .  The program draws the graphs. It 
leaves Y 1 and Y 2 on the Y = screen. To erase the program from the home screen, 
press (PRGM)(ERASE)G.  Practice again by creating P r gw 2 :F U N C . Type:TXST0 Y and : (PRGM) ( I / O ) D i  s p  Y. Movetothehomescreen,store 
X by 4 ST0 X ENTER, and execute by (PRGM) (EXEC12 ENTER. Also try 
X = - 1. When it fails to imagine i, select 1 :G o t  o E r r o r .  

Piecewise functions and Input (to a running program). The definition of a piecewise 
function includes the domain of each piece. Logical tests like " I F X 2 7 " determine 
which domain the input value X falls into. An I F statement only affects the following 
line-which is executed when T E S T = 1 (meaning true) and skipped when T E S T =0 
(meaning false). I F commands are in the P R G M ( C T L submenu; T E S T calls the 
menu of inequalities. 
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An input value X = 4 need not be stored in advance. Program P stops while 
running to request input. Execute with P E  N  T  E  R  after selecting the P R G M ( E X E  C  > 
menu. Answer ? with 4 and E N T  E  R. After completion, rerun by pressing E  N  T E R 
again. The function is y = 14 - x if x < 7, y = x if x > 7. 

P r g m P :  P I E C E S  
:Di s p  " x = "  P G R M  (I1 0 )  Ask for input 
: I n p u t  X PGRM ( 1 1 0 )  Screen ? E N T E R  X 
: 1 4 - X - + Y  First formula for all X 
: I f  7 < X  PRGM ( C T L )  T E S T  
: X + Y  Overwrite if T E S T = 1 
:D i s p  Y Display Y(X) 

Overwriting is faster than checking both ends A <X <B for each piece. Even faster: 
a whole formula (14 -X)(X < 7) + (X)(7 <X) can go on a single line using 1 and 0 
from the tests. Compute-store-display Y(X) as above, or define Y 1 on the edit screen. 

Exercise Define a third piece Y = 8 + X if X < 3. Rewrite P using Y 1 = . A product 
of tests ( 3 < X > ( X < 7 1 evaluates to 1 if all true and to 0 if any false. 

TRACE and ZOOM The best feature is graphing. But a whole graph can be like a 
whole book-too much at once. You want to focus on one part. A computer or 
calculator will trace along the graph, stop at a point, and zoom in. 

There is also Z 0  0  M 0 U T, to widen the ranges and see more. Our eyes work the 
same way-they put together information on different scales. Looking around the 
room uses an amazingly large part of the human brain. With a big enough computer 
we can try to imitate the eyes-this is a key problem in artificial intelligence. With 
a small computer and a zoom feature, we can use our eyes to understand functions. 

Press T R A C E to locate a point on the graph. A blinking cursor appears. Move 
left or right-the cursor stays on the graph. Its coordinates appear at the bottom of 
the screen. When x changes by a pixel, the calculator evaluates y(x). To solve y(x) = 0, 
read off x at the point when y is nearest to zero. To minimize or maximize y(x), read 
off the smallest and largest y. In all these problems, zoom in for more accuracy. 

To blow up a figure we can choose new ranges. The fast way is to use a Z 0  0  M 
command. Forapresetrange,use Z O O M  S t a n d a r d  or Z O O M  T r  ig.Toshrink 
or stretch by X F a c t or Y F a c t (default values 4), use Z 0  0  M In or Z 0  0  M 0  u  t . 
Choose the center point and press E N T E  R. The new graph appears. Change those 
scaling factors with Z 0  0  M S e t F a c t o r s . Best of all, create your own viewing 
window. Press Z 0 0 M Bo x . 

To draw the box, move the cursor to one corner. Press E N T E R and this point is 
a small square. The same keys move a second (blinking) square to the opposite 
corner-the box grows as you move. Press E  N  T  E  R, and the box is the new viewing 
window. The graphs show the same function with a change of scale. Section 3.4 will 
discuss the mathematics-here we concentrate on the graphics. 

EXAMPLE9 Place : Y l = X  s i n  ( 1 / X I  intheY=editscreen.PressZOOM T r i g  
for a first graph. Set X F a c t = 1 and Y F a c t = 2.5. Press Z 0  0  M In with center at 
(O,O).Toseealargerpicture,use X F a c t  = 10and Y F a c t  = 1.Then Zoom Out 
again. As X gets large, the function X sin ( l /X) approaches . 

Now return to Z 0  0  M T r i g . Z o o m In with the factors set to 4 (default). Zoom 
again by pressing E  N  T E R. With the center and the factors fixed, this is faster than 
drawing a zoom box. 
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EXAMPLE 10 Repeat for the more erratic function Y = sin (l/X). After Z0  0  M Tr ig , 
create a box to see this function near X = .01. The Y range is now 

Scaling is crucial. For a new function it can be tedious. A formula for y(x) does 
not easily reveal the range of y's, when A <x <B is given. The following program is 
often more convenient than zooms. It samples the function L= 19 times across the 
x-range (every 5 pixels). The inputs Xmin, Xmax, Y, are previously stored on other 
screens. After sampling, the program sets the y-range from C = Ymin to D = Ymax 
and draws the graph. 

Notice the loop with counter K. The loop ends with the command I S > ( K,L , 
which increases K by 1 and skips a line if the new K exceeds L. Otherwise the 
command G o t o 1 restarts the loop. The screen shows the short form on the left. 

Example: Y l  =x3+10x2-7x+42 with range Xrnin=-12 and Xrnax=lO. 
Set tick spacing X s c l = 4  and Yscl=250.  Execute with PRGM (EXEC) A 
E NTE R. For this program we also list menu locations and comments. 

PrgmA :AUTOSCL Menu (Submenu) Comment 
: A l l - O f f  Y -V A R S ( 0 F F Turn off functions 
:Xm in+A  V A R S  (RNG) Store X m i  n using ST0 
: 1 9 + L  Store number of evaluations (19) 
: (Xmax-A) / L +  H Spacing between evaluations 
: A + X  Start at x = A 
:Y1 + C  Y -V A R S ( Y ) Evaluate the function 
: C + D  Start C and D with this value 
:I+K Initialize counter K = 1 
: L b l  I PR G M ( C TL ) Mark loop start 
:AtKH + X Calculate next x 
:Y1 + Y  Evaluate function at x 
: I F  Y < C  PGRM (CTL) New minimum? 
: Y + C  Update C 
: I F  D c Y  PRGM (CTL) New maximum? 
: Y + D  Update D 
: I S >  (K,L) PRGM (CTL) Add 1 to K, skip G o t o  if > L  
: G o t o  1  PRGM (CTL) Loop return to L b l  1  
:YI-On Y - V A R S  ( O N )  Turnon Y1 
:C+Ymin  ST0 V A R S  ( R N G )  Set Y m i n = C  
:D+Ymax ST0 V A R S  (RNG) Set Ymax=D 
: D i s p G r a p h  PR G M ( I/ 0 1 Generate graph 
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C H A P T E R  2 

Derivatives 


2.1 The Derivative of a Function 

This chapter begins with the definition of the derivative. Two examples were in 
Chapter 1. When the distance is t 2 ,  the velocity is 2t. When f ( t )  = sin t we found 
v(t)= cos t. The velocity is now called the derivative o f f  (t). As we move to a more 
formal definition and new examples, we use new symbols f '  and dfldt for the 
derivative. 

2A At time t ,  the derivativef' ( t )or df /dt or v( t )  is 

f' ( t )= lim fCt -t At) -f (0 
( 1 )

At+O At 

The ratio on the right is the average velocity over a short time At. The derivative, on 
the left side, is its limit as the step At (delta t )  approaches zero. 

Go slowly and look at each piece. The distance at time t + At is f (t  + At). The 
distance at time t is f ( t ) .  Subtraction gives the change in distance, between those 
times. We often write A f for this difference: A f =f (t  + At) -f (t) .  The average velocity 
is the ratio AflAt-change in distance divided by change in time. 

The limit of the average velocity is the derivative, if this limit exists: 

df - lim -.Af 
dt A t - 0  At 

This is the neat notation that Leibniz invented: Af/At  approaches df /dt. Behind the 
innocent word "limit" is a process that this course will help you understand. 

Note that Af is not A times f !  It is the change in f .  Similarly At is not A times t. 
It is the time step, positive or negative and eventually small. To have a one-letter 
symbol we replace At by h. 

The right sides of (1) and (2)contain average speeds. On the graph of f ( t ) ,  the 
distance up is divided by the distance across. That gives the average slope Af /At. 

The left sides of ( 1 )  and (2)are instantaneous speeds dfldt. They give the slope at 
the instant t. This is the derivative dfldt (when At and Af shrink to zero). Look again 
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at the calculation for f(t) = t2: 

--- f( t+At)-f( t)  - t2+2tAt+(At) ' - t2Af - =2t + At. 
At At At 

Important point: Those steps are taken before At goes to zero. If we set At =0 too 
soon, we learn nothing. The ratio Af/At becomes 010 (which is meaningless). The 
numbers Af and At must approach zero together, not separately. Here their ratio is 
2t +At, the average speed. 

To repeat: Success came by writing out (t + At)2 and subtracting t2 and dividing 
by At. Then and only then can we approach At =0. The limit is the derivative 2t. 

There are several new things in formulas (1) and (2). Some are easy but important, 
others are more profound. The idea of a function we will come back to, and the 
definition of a limit. But the notations can be discussed right away. They are used 
constantly and you also need to know how to read them aloud: 

f (t) ="f of t" = the value of the function f at time t 

At = "delta t" = the time step forward or backward from t 

f (t + At) = "f of t plus delta t" = the value off  at time t + At 

Af = "delta f" = the change f (t + At) -f (t) 

Af/At = "delta f over delta t" = the average velocity 

ff(t)="f prime of t" = the value of the derivative at time t 

df /dt = "d f d t" = the same as f '  (the instantaneous velocity) 

lim = "limit as delta t goes to zero" = the process that starts with 
At+O numbers Af /At and produces the number df /dt. 

From those last words you see what lies behind the notation dfldt. The symbol At 
indicates a nonzero (usually short) length of time. The symbol dt indicates an 
infinitesimal (even shorter) length of time. Some mathematicians work separately 
with df and dt, and df/dt is their ratio. For us dfldt is a single notation (don't 
cancel d and don't cancel A). The derivative dfldt is the limit of AflAt. When that 
notation dfldt is awkward, use f '  or v. 

Remark The notation hides one thing we should mention. The time step can be 
negative just as easily as positive. We can compute the average Af/At over a time 
interval before the time t, instead of after. This ratio also approaches dfldt. 

The notation also hides another thing: The derivative might not exist. The averages 
AflAt might not approach a limit (it has to be the same limit going forward and 
backward from time t). In that case ft(t) is not defined. At that instant there is no 
clear reading on the speedometer. This will happen in Example 2. 

EXAMPLE 1 (Constant velocity V = 2) The distance f is V times t. The distance at 
time t + At is V times t + At. The diference Af is V times At: 

Af - VAt df- V so the limit is -= V.
At At dt 

The derivative of Vt is V. The derivative of 2t is 2. The averages AflAt are always 
V = 2, in this exceptional case of a constant velocity. 
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EXAMPLE 2 Constant velocity 2 up to time t = 3, then stop. 

For small times we still have f  ( t )  = 2t. But after the stopping time, the distance is 
fixed at f  ( t )  = 6 .  The graph is flat beyond time 3. Then f  ( t  + At) =f  ( t )  and Af = 0 
and the derivative of a constant function is zero: 

0 
t > 3: f  ' ( t )  = lim f ( t  + At) - f  (0

= lim -= 0. 
A ~ + O  At a t - o  At 

In this example the derivative is not defined at the instant when t = 3. The velocity 
falls suddenly from 2 to zero. The ratio Af /A t  depends, at that special moment, on 
whether At is positive or negative. The average velocity after time t = 3 is zero. The 
average velocity before that time is 2. When the graph off  has a corner, the graph 
of v has a jump. It is a step function. 

One new part of that example is the notation (dfldt or f' instead of v). Please look 
also at the third figure. It shows how the function takes t (on the left) to f  ( t ) .  Especially 
it shows At and Af .  At the start, Af /A t  is 2. After the stop at t = 3, all t's go to the 
same f  ( t )  = 6.  So Af = 0 and df /dt  = 0. 

time distance 

u = d f / d t = f '  

slope undefined 
f'(3) not defined slope 2 

t 
3 3 

Fig. 2.1 The derivative is 2 then 0. It does not exist at t = 3. 

THE DERIVATIVE OF 111 

Here is a completely different slope, for the "demand function" f  ( t )  = lit.The demand 
is l / t  when the price is t .  A high price t means a low demand l l t .  Increasing the price 
reduces the demand. The calculus question is: How quickly does l / t  change when t 
changes? The "marginal demand" is the slope of the demand curve. 

The big thing is to find the derivative of l / t  once and for all. It is - l / t 2 .  

1 1 1 t - ( t  + At) - -At -EXAMPLE3 f ( t ) = - h a s A f = - - - . This equals 
t ( t  + At)t t + A t  t t(t + At) ' 

Af - - 1  df - - 1Divide by At and let At -,0: ---approaches ---
At t( t  + At) dt t 2  ' 

Line 1 is algebra, line 2 is calculus. The first step in line 1 subtracts f ( t )  from 
f ( t  + At). The difference is l / ( t+ At) minus l / t .  The common denominator is t times 
t + At-this makes the algebra possible. We can't set At = 0 in line 2, until we have 
divided by At. 

The average is Af /A t  = - l / t ( t+ At). Now set At = 0. The derivative is - l / t 2 .  
Section 2.4 will discuss the first of many cases when substituting At = 0 is not possible, 
and the idea of a limit has to be made clearer. 



2.1 The Derhrathre of a Function 

Fig. 2.2 Average slope is -&,true slope is -4. Increase in t produces decrease in f. 

Check the algebra at t = 2 and t + At = 3. The demand l l t  drops from 112 to 113. 
The difference is Af = - 116, which agrees with -1/(2)(3) in line 1. As the steps Af 
and At get smaller, their ratio approaches -1/(2)(2)= -114. 

This derivative is negative. The function llt is decreasing, and Af is below zero. The 
graph is going downward in Figure 2.2, and its slope is negative: 

An increasing f (t) has positive slope. A decreasing f (t) has negative slope. 

The slope - l/t2 is very negative for small t. A price increase severely cuts demand. 
The next figure makes a small but important point. There is nothing sacred about t. 

Other letters can be used-especially x. A quantity can depend on position instead 
of time. The height changes as we go west. The area of a square changes as the side 
changes. Those are not affected by the passage of time, and there is no reason to use 
t. You will often see y =f (x), with x across and y up-connected by a function f .  

Similarly, f is not the only possibility. Not every function is named f! That letter 
is useful because it stands for the word function-but we are perfectly entitled to 
write y(x) or y(t) instead off (x) or f (t). The distance up is a function of the distance 
across. This relationship "y of x" is all-important to mathematics. 

The slope is also a function. Calculus is about two functions, y(x) and dyldx. 

Question If we add 1 to y(x), what happens to the slope? Answer Nothing. 

Question If we add 1 to the slope, what happens to the height? Answer 

The symbols t and x represent independent variables-they take any value they 
want to (in the domain). Once they are set, f (t) and y(x) are determined. Thus f and 
y represent dependent variables-they depend on t and x. A change At produces a 

1 2 

Fig. 2.3 The derivative of l/t is -l/t2. The slope of l/x is -1/x2. 
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change Af.  A change Ax produces Ay. The independent variable goes inside the 
parentheses in f ( t )and y(x). It is not the letter that matters, it is the idea: 

independent variable t or x 

dependent variable f or g or y or z or u 

derivative dfldt or dfldx or dyldx or --• 

The derivative dyldx comes from [change in y] divided by [change in x] .  The time 
step becomes a space step, forward or backward. The slope is the rate at which y 
changes with x. The derivative of a function is its "rate of change." 

I mention that physics books use x(t) for distance. Darn it. 
To emphasize the definition of a derivative, here it is again with y and x:  

Ay - y(x + Ax)- y(x)- distance up 
d y  = lim -= yl(x).-- - - AY 

Ax Ax distance across dx AxA X + O  

The notation yl(x)pins down the point x where the slope is computed. In dyldx that 
extra precision is omitted. This book will try for a reasonable compromise between 
logical perfection and ordinary simplicity. The notation dy/dx(x)is not good; yl(x)is 
better; when x is understood it need not be written in parentheses. 

You are allowed to say that the function is y = x2 and the derivative is y' = 2x-
even if the strict notation requires y(x)= x2 and yl(x)= 2x. You can even say that 
the function is x2 and its derivative is 2x and its second derivative is 2-provided 
everybody knows what you mean. 

Here is an example. It is a little early and optional but terrific. You get excellent 
practice with letters and symbols, and out come new derivatives. 

EXAMPLE 4 If u(x)has slope duldx, what is the slope off ( x )= ( ~ ( x ) ) ~ ?  

From the derivative of x2 this will give the derivative of x4. In that case u = x2 and 
f = x4. First point: The derivative of u2 is not ( d ~ l d x ) ~ .We do not square the derivative 
2x. To find the "square rule" we start as we have to-with Af =f ( x  + Ax)-f (x): 

=Af = ( U ( X  + AX))^ - ( u ( x ) ) ~[u(x+ AX)+ u(x)][ U ( X  + AX)- ~ ( x ) ] .  

This algebra puts Af in a convenient form. We factored a' - b2 into [a + b] times 
[a - b].Notice that we don't have (AM)"We have Af ,  the change in u2.Now divide 
by Ax and take the limit: 

du --- [u(x+ Ax) + u(x)][ X + k~- U ( X )Iapproaches 2u(x)-.Af ( 5 )Ax dx 

This is the square rule: The derivative of (u(x))' is 2u(x) times duldx. From the 
derivatives of x2 and l / x  and sin x (all known) the examples give new derivatives. 

EXAMPLE 5 (u= x 2 )The derivative of x4 is 2u duldx = 2(x2)(2x)= 4x3. 

EXAMPLE 6 (u= l / x )The derivative of 1/x2is 2u duldx = (2/x)(- 1 /x2)  = -2/x3. 

EXAMPLE 7 (u= sin x, duldx = cos x)  The derivative of u2= sin2x is 2 sin x cos x. 

Mathematics is really about ideas. The notation is created to express those ideas. 
Newton and Leibniz invented calculus independently, and Newton's friends spent a 
lot of time proving that he was first. He was, but it was Leibniz who thought of 
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writing dyldx-which caught on. It is the perfect way to suggest the limit of AylAx. 
Newton was one of the great scientists of all time, and calculus was one of the great 
inventions of all time-but the notation must help. You now can write and speak 
about the derivative. What is needed is a longer list of functions and derivatives. 

Read-through questions 

The derivative is the a of Af /At as At approaches b . 
Here Af equals c . The step At can be positive or d . 
The derivative is written v or e or 1 . Iff (x) = 2x + 3 
and Ax=4  then Af= g . If Ax=-1  then Af= h . 
If Ax = 0 then Af= 1 . The slope is not 010 but 
dfldx = j . 

The derivative does not exist where f(t) has a k and 
v(t) has a I . For f (t) = l / t  the derivative is m . The 
slope of y = 4/x is dyldx = n . A decreasing function has 
a o derivative. The P variable is t or x and the 

q variable is f or y. The slope of y2 (is) (is not) ( d ~ / d x ) ~ .  
The slope of ( ~ ( x ) ) ~  r by the square rule. The slope of is 
(2x + 3)2 is s . 

1 Which of the following numbers (as is) gives df /dt at time 
t? If in doubt test on f (t) = t2. 

f (t + 2h) -f (t)(b) )m 
-+ 0 2 h 

(c) lim f (t -At) -f (t) (d) lim f (t + At) -f (t) 
at-o -At t-10 At 

2 Suppose f (x) = x2. Compute each ratio and set h = 0: 

3 For f (x) = 3x and g(x) = 1 + 3x, find f (4 + h) and g(4 + h) 
and f1(4) and g1(4). Sketch the graphs of f and g-why do 
they have the same slope? 

4 Find three functions with the same slope as f (x)= x2. 

5 For f (x) = l/x, sketch the graphs off (x) + 1 and f (x + 1). 
Which one has the derivative -1/x2? 

6 Choose c so that the line y = x is tangent to the parabola 
y = x2 + C. They have the same slope where they touch. 

7 Sketch the curve y(x) = 1 -x2 and compute its slope at 
x = 3 .  

8 Iff (t) = l/t, what is the average velocity between t = 3 and 
t = 2? What is the average between t = 3  and t = l? What 
is the average (to one decimal place) between t = 3 and 
t = 101/200? 

;. =and t 3 

9 Find Ay/Ax for y(x) = x + x2. Then find dyldx. 

10 Find Ay/Ax and dy/dx for y(x) = 1 + 2x + 3x2. 

11 When f (t) = 4/t, simplify the difference f (t + At) -f (t), 
divide by At, and set At = 0. The result is f '(t). 

12 Find the derivative of 1/t2 from A f (t) = l/(t + At)2- 1 /t2. 
Write Af as a fraction with the denominator t2(t + At)2. 
Divide the numerator by At to find Af/At. Set At = 0. 

13 Suppose f (t) = 7t to t = 1. Afterwards f (t) = 7 + 9(t - 1). 
(a) Find df /dt at t = 

(b) Why doesn't f (t) have a derivative at t = l? 

14 Find the derivative of the derivative (the second derivative) 
of y = 3x2. What is the third derivative? 

15 Find numbers A and B so that the straight line y = x fits 
smoothly with the curve Y = A + Bx + x2 at x = 1. Smoothly 
means that y = Y and dyldx = dY/dx at x = 1. 

16 Find numbers A and B so that the horizontal line y = 4 
fits smoothly with the curve y = A + Bx + x2 at the point 
x = 2. 

17 True (with reason) or false (with example): 
(a) If f(t) < 0 then df /dt < 0. 
(b) The derivative of (f (t))2 is 2 df /dt. 
(c) The derivative of 2f (t) is 2 df /dt. 
(d) The derivative is the limit of Af divided by the limit 
of At. 

18 For f (x) = l /x the centered diflerence f (x + h) -f (x -h) is 
l/(x + h) - l/(x -h). Subtract by using the common denomi- 
nator (x + h)(x - h). Then divide by 2h and set h = 0. Why 
divide by 2h to obtain the correct derivative? 

19 Suppose y = mx + b for negative x and y = Mx + B for 
x 3 0. The graphs meet if . The two slopes are 

. The slope at x = 0 is (what is possible?). 

20 The slope of y = l /x  at x = 114 is y' = -1/x2 = -16. At 
h = 1/12, which of these ratios is closest to -16? 

~ ( x + h ) - y ( x )  y(x)-y(x-h) y(x+h)-y(x-h) 
h h 2 h 

21 Find the average slope of y = x2 between x = x, and 
x = x2. What does this average approach as x2 approaches x,? 

22 Redraw Figure 2.1 when f(t) = 3 - 2t for t < 2 and 
f (t) = -1 for t > 2. Include df /dt. 
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23 Redraw Figure 2.3 for the function y(x)= 1 - ( l / x ) .  
Include dyldx. 

24 The limit of O/At as At -+ 0 is not 010. Explain. 

25 Guess the limits by an informal working rule. Set At = 0.1 
and -0.1 and imagine At becoming smaller: 

*26 Suppose f ( x ) / x  -+ 7 as x -+ 0. Deduce that f (0) = 0 and 
f '(0) = 7. Give an example other than f ( x )  = 7x. 

27 What is lim (3  + X ,  - f  ( 3 )  if it exists? What if x -+ l? 
x-0 

Problems 28-31 use the square rule: d(u2)/dx= 2 u (duldx). 

28 Take u = x and find the derivative of x2 (a new way). 

29 Take u = x 4  and find the derivative of x8 (using 
du/dx = 4x3). 

30 If u = 1 then u2= 1. Then d l /dx  is 2 times d lldx. How is 
this possible? 

31 Take u = &.The derivative of u2= x is 1 = 2u(du/dx).So 
what is duldx, the derivative of &? 

32 The left figure shows f ( t )  = t2.Indicate distances f ( t  + At) 
and At and Af. Draw lines that have slope Af /At and f '(t).  

33 The right figure shows f ( x )  and Ax. Find Af /Ax and f '(2). 

34 Draw f ( x )  and Ax so that Af /Ax = 0 but f ' ( x )  # 0. 

35 If f = u2 then df/dx = 2u duldx. If g =f then 
dg/dx = 2f df /dx. Together those give g = u4 and dgldx = 

36 True or false, assuming f (0) = 0: 

(a) If f ( x )  6 x for all x, then df /dx 6 1. 
(b) If df /dx 6 1 for all x, then f ( x )  6 x. 

37 The graphs show Af and Af /h for f ( x )  = x2.Why is 2x + h 
the equation for Aflh? If h is cut in half, draw in the new 
graphs. 

38 Draw the corresponding graphs for f ( x )  = jx. 

39 Draw l lx  and l / ( x+ h) and Aflh-either by hand with 
h = 5 or by computer to show h -+ 0. 

40 For y = ex, show on computer graphs that dyldx = y. 

41 Explain the derivative in your own words. 

2.2 Powers and Polynomials -
This section has two main goals. One is to find the derivatives of f (x)= x3 and x4 
and x5 (and more generally f (x)= xn). The power or exponent n is at first a positive 
integer. Later we allow x" and x2s2 and every xn. 

The other goal is different. While computing these derivatives, we look ahead to 
their applications. In using calculus, we meet equations with derivatives in them- 
"diflerential equations." It is too early to solve those equations. But it is not too early 
to see the purpose of what we are doing. Our examples come from economics and 
biology. 
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With n = 2, the derivative of x2 is 2x. With n = - 1, the slope of x- '  is - 1xp2. 
Those are two pieces in a beautiful pattern, which it will be a pleasure to discover. 
We begin with x3 and its derivative 3x2, before jumping to xn. 

EXAMPLE 1 If f (x) = x3 then Af = (x + h)3 - x3 = (x3 + 3x2 h + 3xh2 + h3) - x3. 

Step 1: Cancel x3. Step 2: Divide by h. Step 3: h goes to zero. 

Af df - = 3x2 + 3xh + h2 approaches - = 3x2. 
h dx 

That is straightforward, and you see the crucial step. The power (x + h)3 yields four 
separate terms x3 + 3x2h + 3xh2 + h3. (Notice 1, 3, 3, 1.) After x3 is subtracted, we 
can divide by h. At the limit (h = 0) we have 3x2. 

For f(x) = xn the plan is the same. A step of size h leads to f(x + h) = (x + h)". 
One reason for algebra is to calculate powers like (x + h)", and if you have forgotten 
the binomial formula we can recapture its main point. Start with n = 4: 

Multiplying the four x's gives x4. Multiplying the four h's gives h4. These are the easy 
terms, but not the crucial ones. The subtraction (x + h)4 - x4 will remove x4, and the 
limiting step h -, 0 will wipe out h4 (even after division by h). The products that matter 
are those with exactly one h. In Example 1 with (x + h)3, this key term was 3x2 h. 
Division by h left 3x2. 

With only one h, there are n places it can come from. Equation (1) has four h's in 
parentheses, and four ways to produce x3 h. Therefore the key term is 4x3 h. (Division 
by h leaves 4x3.) In general there are n parentheses and n ways to produce xn- ' h, so 
the binomial formula contains nxn - ' h: 

Subtract xn from (2). Divide by h. The key term is nxn-'. The rest disappears as h + 0: 

Af - (X + h)" - xn nxn-' h + ..- + hn 
-- - - df 

h h 
SO -=nxn- l .  

Ax dx 

The terms replaced by the dots involve h2 and h3 and higher powers. After dividing 
by h, they still have at least one factor h. All those terms vanish as h approaches zero. 

EXAMPLE 2 (x + h)4 = x4 + 4x3 h + 6x2 h2 + 4xh3 + h4. This is n = 4 in detail. 

Subtract x4, divide by h, let h + 0. The derivative is 4x3. The coefficients 1,4, 6, 4, 1 
are in Pascal's triangle below. For (x + h)5 the next row is 1, 5, 10, 2. 

Remark The missing terms in the binomial formula (replaced by the dots) contain 
all the products xn-jhj. An x or an h comes from each parenthesis. The binomial 
coefficient "n choose j" is the number of ways to choose j h's out of n parentheses. It 
involves n factorial, which is n(n - 1) ... (1). Thus 5! = 5 4 3 2 1 = 120. 
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These are numbers that gamblers know and love: 

1 Pascal's 

n! 1 1 triangle 
bLn c/zoose j*' = (;) = - 

j!(n - j)! 
1 2 1  

1 3  3 1 n = 3  
1 4 6 4 1  n = 4  

In the last row, the coefficient of x3h is 4 ! / 1 ! 3 ! = 4 * 3 * 2 * 1 / 1 * 3 * 2 - 1 = 4 .  For 
the x2 h2 term, with j = 2, there are 4 3 2 112 1 2 1 = 6 ways to choose two h's. 
Notice that 1 + 4 + 6 + 4 + 1 equals 16, which is z4. Each row of Pascal's triangle 
adds to a power of 2. 

Choosing 6 numbers out of 49 in a lottery, the odds are 49 48 47 46 45 44/6! 
to 1. That number is N = "49 choose 6" = 13,983,816. It is the coefficient of ~~~h~ 
in (x + h)49. If i times N tickets are bought, the expected number of winners is A. The 
chance of no winner is e-'. The chance of one winner is Ae-'. See Section 8.4. 

Florida's lottery in September 1990 (these rules) had six winners out of 109,163,978 
tickets. 

DERIVATIVES OF POLYNOMIALS 

Now we have an infinite list of functions and their derivatives: 

x x2 x3 x4 x5 . . -  1 2.x 3x2 4x3 5x4 ... 

The derivative of xn is n times the next lower power xn-l .  That rule extends beyond 
these integers 1, 2, 3, 4, 5 to all powers: 

f = 1 /x has f '  = - 1 /x2 : Example 3 of Section 2.1 (n = - 1) 

f = l /x2 has f '  = - 2/x3: Example 6 of Section 2.1 (n = - 2) 

f = & has f '  = + x L i 2 :  true but not yet checked (n = i) 
Remember that - Y - ~  means l /x2 and x-112 means l/&. Negative powers lead to 
decreasing functions, approaching zero as x gets large. Their slopes have minus signs. 

Question What are the derivatives of x10 and x ~ . ~  and .-Ii2? 
Answer lox9 and 2 . 2 ~ ' . ~  and - i xP3 l2 .  Maybe (x + h)2.2 is a little unusual. 
Pascal's triangle can't deal with this fractional power, but the formula stays firm: 
Afier .u2.2 comes 2 . 2 ~ ' . ~ h .  The complete binomial formula is in Section 10.5. 

That list is a good start, but plenty of functions are left. What comes next is really 
simple. A tremendous number of new functions are "linear combinations" like 

What are their derivatives? The answers are known for x3 and x2, and we want to 
multiply by 6 or divide by 2 or add or subtract. Do the same to the derivatices: 

2C The derivative of c times f (x) is c times f '(x). 

20 The derivative of f (x) + g(x) is f '(x) + gf(x). 

The number c can be any constant. We can add (or subtract) any functions. The rules 
allow any combination of f and g :  The derivative of 9f (x) - 7g(x) is 9f '(x) - 7g1(x). 
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The reasoning is direct. When f (x) is multiplied by c, so is f (x + h). The difference 
Af is also multiplied by c. All averages Af /h contain c, so their limit is cf '. The only 
incomplete step is the last one (the limit). We still have to say what "limit" means. 

Rule 2D is similar. Adding f + g means adding Af + Ag. Now divide by h. In the 
limit as h +0 we reach f '  + g'-because a limit of sums is a sum of limits. Any 
example is easy and so is the proof-it is the definition of limit that needs care 
(Section 2.6). 

You can now find the derivative of every polynomial. A "polynomial" is a combina- 
tion of 1, x, x2, . . . ,xn-for example 9 + 2x - x5. That particular polynomial has slope 
2 - 5x4. Note that the derivative of 9 is zero! A constant just raises or lowers the 
graph, without changing its slope. It alters the mileage before starting the car. 

The disappearance of constants is one of the nice things in differential calculus. 
The reappearance of those constants is one of the headaches in integral calculus. 
When you find v from f ,  the starting mileage doesn't matter. The constant in f has 
no effect on v.  (Af is measured by a trip meter; At comes from a stopwatch.) To find 
distance from velocity, you need to know the mileage at the start. 

A LOOK AT DIFFERENTIAL EQUATIONS (FIND y FROM dyldx) 

We know that y = x3 has the derivative dyldx = 3x2. Starting with the function, we 
found its slope. Now reverse that process. Start with the slope andfind the function. 
This is what science does all the time-and it seems only reasonable to say so. 

Begin with dyldx = 3x2. The slope is given, the function y is not given. 

Question Can you go backward to reach y = x3? 
Answer Almost but not quite. You are only entitled to say that y = x3 + C. The 
constant C is the starting value of y (when x = 0). Then the dzrerential equation 
dyldx = 3x2 is solved. 

Every time you find a derivative, you can go backward to solve a differential 
equation. The function y = x2 + x has the slope dyldx = 2x + 1. In reverse, the slope 
2x + 1 produces x2 + x-and all the other functions x2 + x + C, shifted up and down. 
After going from distance f to velocity v, we return to f + C. But there is a lot more 
to differential equations. Here are two crucial points: 

1. We reach dyldx by way of AylAx, but we have no system to go backward. With 
dyldx = (sin x)/x we are lost. What function has this derivative? 

2. Many equations have the same solution y = x3. Economics has dyldx = 3ylx. 
Geometry has dyldx = 3y213. These equations involve y as well as dyldx. Func- 
tion and slope are mixed together! This is typical of differential equations. 

To summarize: Chapters 2-4 compute and use derivatives. Chapter 5 goes in reverse. 
Integral calculus discovers the function from its slope. Given dyldx we find y(x). Then 
Chapter 6 solves the differential equation dyldt = y, function mixed with slope. 
Calculus moves from derivatives to integrals to diferential equations. 

This discussion of the purpose of calculus should mention a sp~cific example. 
Differential equations are applied to an epidemic (like AIDS). In most epi emics the 4:
number of cases grows exponentially. The peak is quickly reached by e ,  and the 
epidemic dies down. Amazingly, exponential growth is not happening witb AIDS- 
the best fit to the data through 1988 is a cubic polynomial (Los Alamos Sciehce, 1989): 

The number of cases fits a cubic within 2%: y = 174.6(t - 1981.2)3+ 340. 



2 Derivatives 

This is dramatically different from other epidemics. Instead of dyldt =y we have 
dyldt = 3y/t. Before this book is printed, we may know what has been preventing d 
(fortunately). Eventually the curve will turn away from a cubic-I hope that 
mathematical models will lead to knowledge that saves lives. 

Added in proofi In 1989 the curve for the U.S. dropped from t to t '. 

MARGINAL COST AND ELASTICITY IN ECONOMICS 

First point about economics: The marginal cost and marginal income are crucially 
important. The average cost of making automobiles may be $10,000. But it is the 
$8000 cost of the next car that decides whether Ford makes it. "The average describes 
the past, the marginal predicts the future." For bank deposits or work hours or wheat, 
which come in smaller units, the amounts are continuous variables. Then the word 
"marginal" says one thing: Take the derivative.? 

The average pay over all the hours we ever worked may be low. We wouldn't work 
another hour for that! This average is rising, but the pay for each additional hour 
rises faster-possibly it jumps. When $10/hour increases to $15/hour after a 40-hour 
week, a 50-hour week pays $550. The average income is $ll/hour. The marginal 
income is $15/hour-the overtime rate. 

Concentrate next on cost. Let y(x) be the cost of producing x tons of steel. The 
cost of x + Ax tons is y(x + Ax). The extra cost is the difference Ay. Divide by Ax, 
the number of extra tons. The ratio Ay/Ax is the average cost per extra ton. When 
Ax is an ounce instead of a ton, we are near the marginal cost dyldx. 

Example: When the cost is x2, the average cost is x2/x = x. The marginal cost is 
2x. Figure 2.4 has increasing slope-an example of "diminishing returns to scale." 

I 
I 

fixed supply 

any price 
- - I E = O 

any supply 
E = . .

fixed price I 
x quantity equilibrium price price 

Fig. 2.4 Marginal exceeds average. Constant elasticity E = +I. Perfectly elastic to perfectly 
inelastic (rcurve). 

This raises another point about economics. The units are arbitrary. In yen per 
kilogram the numbers look different. The way to correct for arbitrary units is to work 
with percentage change or relative change. An increase of Ax tons is a relative increase 
of Axlx. A cost increase Ay is a relative increase of Ayly. Those are dimensionless, the 
same in tons/tons or dollars/dollars or yen/yen. 

A third example is the demand y at price x. Now dyldx is negative. But again the 
units are arbitrary. The demand is in liters or gallons, the price is in dollars or pesos. 

?These paragraphs show how calculus applies to economics. You do not have to be an 
economist to understand them. Certainly the author is not, probably the instructor is not, 
possibly the student is not. We can all use dyldx. 
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Relative changes are better. When the price goes up by lo%, the demand may drop 
by 5%. If that ratio stays the same for small increases, the elasticity of demand is f. 

Actually this number should be -f.The price rose, the demand dropped. In our 
definition, the elasticity will be -4.In conversation between economists the minus 
sign is left out (I hope not forgotten). 

DEFINITION The elasticity of the demand function y(x) is 

AY/Y - dyldxE(x) = lim -- -. 
AX-o Axlx Y / X  

Elasticity is "marginal" divided by "average." E(x) is also relative change in y divided 
by relative change in x .  Sometimes E(x) is the same at all prices-this important case 
is discussed below. 

EXAMPLE 1 Suppose the demand is y = c / x  when the price is x.  The derivative 
dy/dx = -c/x2comes from calculus. The division y/x  = c /x2is only algebra. The ratio 
is E =  - 1 :  

For the demand y = c /x ,  the elasticity is (- c / x 2 ) / ( c / x 2 )= -1 .  

All demand curves are compared with this one. The demand is inelastic when 1 El < 1 .  
It is elastic when IEl > 1. The demand 20/& is inelastic (E  = - f), while x - ~is 
elastic (E = -3). The power y = cxn, whose derivative we know, is the function with 
constant elasticity n: 

if y = cxn then dyldx = cnxn-' and E = cnxn- l / (cxn/x)  = n. 

It is because y = cxnsets the standard that we could come so early to economics. 
In the special case when y = clx, consumers spend the same at all prices. Price x 

times quantity y remains constant at xy = c .  

EXAMPLE 2 The supply curve has E > 0-supply increases with price. Now the 
baseline case is y = cx.  The slope is c and the average is y /x  = c.  The elasticity is 
E = c / c =  1 .  

Compare E = 1 with E = 0 and E = CQ. A constant supply is "perfectly inelastic." 
The power n is zero and the slope is zero: y = c .  No more is available when the 
harvest is over. Whatever the price, the farmer cannot suddenly grow more wheat. 
Lack of elasticity makes farm economics difficult. 

The other extreme E = a~is "perfectly elastic." The supply is unlimited at a fixed 
price x.  Once this seemed true of water and timber. In reality the steep curve 
x = constant is leveling off to a flat curve y = constant. Fixed price is changing to 
fixed supply, E = CQ is becoming E = 0, and the supply of water follows a "gamma 
curve" shaped like T. 

EXAMPLE 3 Demand is an increasing function of income-more income, more 
demand. The income elasticity is E(I)= (dy /dI ) / ( y / I ) .A luxury has E > 1 (elastic). 
Doubling your income more than doubles the demand for caviar. A necessity has 
E < 1 (inelastic). The demand for bread does not double. Please recognize how the 
central ideas of calculus provide a language for the central ideas of economics. 

Important note on supply = demand This is the basic equation of microeconomics. 
Where the supply curve meets the demand curve, the economy finds the equilibrium 
price. Supply = demand assumes perfect competition. With many suppliers, no one can 
raise the price. If someone tries, the customers go elsewhere. 
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The opposite case is a monopoly-no competition. Instead of many small producers 
of wheat, there is one producer of electricity. An airport is a monopolist (and maybe 
the National Football League). If the price is raised, some demand remains. 

Price fixing occurs when several producers act like a monopoly-which antitrust 
laws try to prevent. The price is not set by supply = demand. The calculus problem 
is different-to maximize profit. Section 3.2 locates the maximum where the marginal 
profit (the slope!) is zero. 

Question on income elasticity From an income of $10,000 you save $500. The 
income elasticity of savings is E = 2. Out of the next dollar what fraction do you 
save? 
Answer The savings is y = cx2 because E = 2. The number c must give 500 = 

~(10,000)~,  so c is 5 Then the slope dyldx is 2cx = 10 lo4 = &. This is 
the marginal savings, ten cents on the dollar. Average savings is 5%, marginal savings 
is lo%, and E = 2. 

2.2 EXERCISES 

Read-through questions 

The derivative of f = x4 is f '  = a . That comes from 
expanding (x + h)4 into the five terms b . Subtracting x4 
and dividing by h leaves the four terms c . This is Af /h, 
and its limit is d . 

The derivative of f  = xn is f '  = e . Now (x + h)" comes 
from the f theorem. The terms to look for are xn- '  h, 
containing only one g . There are h of those terms, 
so (x + h)" = .un + i + . After subtracting i and 
dividing by h, the limit of Aflh is k . The coefficient of 
.un-JhJ, not needed here, is " n  choose j" = I , where n! 
means m . 

The derivative of x - ~  is n . The derivative of x1I2 is 
o . The derivative of 3.u + (llx) is P , which uses the 

following rules: The derivative of 3f (.u) is CI and the deriv- 
ative off (.u) + g(x) is r . Integral calculus recovers s 

from dy/d.u. If dy1d.u = .u4 then y(.u) = t . 

1 Starting with f = .u6, write down f '  and then f ". (This is 
"f double prime," the derivative off '.) After deriva- 
tives of x6 you reach a constant. What constant? 

2 Find a function that has .u6 as its derivative. 

Find the derivatives of the functions in 3-10. Even if n is nega- 
tive or a fraction, the derivative of xn is nxn- '. 

11 Name two functions with df/dx = 1/x2. 

12 Find the mistake: x2 is x + x + 0 . .  + x (with x terms). Its 
derivative is 1 + 1 + .-. + 1 (also x terms). So the derivative 
of x2 seems to be x. 

13 What are the derivatives of 3x'I3 and -3x-'I3 and 
(3x'I3)- ' ?  

14 The slope of .u + (11~)  is zero when x = . What 
does the graph do at that point? 

15 Draw a graph of y = x3 - x. Where is the slope zero? 

16 If df /dx is negative, is f (x) always negative? Is f (x) nega- 
tive for large x? If you think otherwise, give examples. 

17 A rock thrown upward with velocity 16ft/sec reaches 
height f = 16t - 16t2 at time t. 

(a) Find its average speed Af /At from t = 0 to t = $. 
(b) Find its average speed Af /At from t = 4 to t = 1. 

(c) What is df /dt at t = i? 
18 When f is in feet and t is in seconds, what are the units 
of f '  and its derivative f "? In f = 16t - 16t2, the first 16 is 
ft/sec but the second 16 is . 

19 Graph y = x3 + x2 - x from x = - 2 to x = 2 and estimate 
where it is decreasing. Check the transition points by solving 
dyldx = 0. 

20 At a point where dyldx = 0, what is special about the 
graph of y(x)? Test case: y = x2. 

21 Find the slope of y = & by algebra (then h - 0): 

A JFG-J; J T h - J ;  J z i + J ;  
- - - - - 
h h h Jzi+J;. 

22 Imitate Problem 21 to find the slope of y = I/&. 
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23 Complete Pascal's triangle for n = 5 and n = 6. Why do spent on the car? Compare dy/dx (marginal) with y/x 
the numbers across each row add to 2"? (average). 

24 Complete (x + h)5 = x5 + . What are the bino- 

mial coefficients (:) and (:) and (i)? 
25 Compute (x + h)3-(x -h)3, divide by 2h, and set h = 0. 
Why divide by 2h to Jind this slope? 

26 Solve the differential equation y" = x to find y(x). 

27 For f (x)= x2 + x3, write out f (x + Ax) and Af /Ax. What 
is the limit at Ax = 0 and what rule about sums is confirmed? 

28 The derivative of ( ~ ( x ) ) ~  from Section 2.1. Test is 
this rule on u = xn. 

29 What are the derivatives of x7 + 1 and (x + Shift the 
graph of x7. 

30 If df /dx is v(x), what functions have these derivatives? 

(a) 4+) (b) + 1 
(c) v(x + 1) (d) v(x) + v'(x). 

31 What function f(x) has fourth derivative equal to l? 

32 What function f (x) has nth derivative equal to l? 

33 Suppose df /dx = 1 + x + x2 + x3. Find f (x). 

34 Suppose df /dx = x- -x- 3. Find f (x). 

35 f (x) can be its own derivative. In the infinite polynomial 
f = 1 + x + 5x2 + &x3+ , what numbers multiply x4 
and x5 if df /dx equals f ?  

36 Write down a differential equation dy/dx = that 
is solved by y = x2. Make the right side involve y (not just 2x). 

37 True or false: (a) The derivative of x" is nx". 
(b) The derivative of axn/bxn is a/b. 

(c) If df /dx = x4 and dgldx = x4 then f (x)= g(x). 
(d) (f (x) -f (a))/(x-a) approaches f '(a) as x -+ a. 
(e) The slope of y = (x - is y' = 3(x -

Problems 38-44 are about calculus in economics. 

38 When the cost is y = yo + cx, find E(x) = (dy/dx)/(y/x). It 
approaches for large x. 

39 From an income of x = $10,000 you spend y = $1200 on 
your car. If E = 3,what fraction of your next dollar will be 

40 Name a product whose price elasticity is 

(a) high (b) low (c) negative (?) 

41 The demand y = c/x has dyldx = -y/x. Show that Ay/Ax 
is not -y/x. (Use numbers or algebra.) Finite steps miss the 
special feature of infinitesimal steps. 

42 The demand y = xn has E = . The revenue xy 
(price times demand) has elasticity E = . 

43 y = 2x + 3 grows with marginal cost 2 from the fixed cost 
3. Draw the graph of E(x). 

44 From an income I we save S(I). The marginal propensity 
to save is . Elasticity is not needed because S and I 
have the same . Applied to the whole economy this 
is (microeconomics) (macroeconomics). 

45 2' is doubled when t increases by . t3 is doubled 
when t increases to t. The doubling time for AIDS 
is proportional to t. 

46 Biology also leads to dyly = n dxlx, for the relative growth 
of the head (dyly) and the body (dxlx). Is n > 1 or n < 1 for a 
child? 

47 What functions have df/dx = x9 and df/dx = xn? Why 
does n = -1 give trouble? 

48 The slope of y = x3 comes from this identity: 

(x + h)3-x3 
=(x  + h)2 +(x  + h)x +x2.  

h 

(a) Check the algebra. Find dyldx as h -+ 0. 
(b) Write a similar identity for y = x4. 

49 (Computer graphing) Find all the points where y = 

x4 + 2x3 -7x2 + 3 = 0 and where dy/dx = 0. 

50 The graphs of y,(x) = x4 + x3 and y,(x) = 7x - 5 touch at 
the point where y3(x) = = 0. Plot y3(x) to see what is 
special. What does the graph of y(x) do at a point where 
y = y' = O? 

51 In the Massachusetts lottery you choose 6 numbers out 
of 36. What is your chance to win? 

52 In what circumstances would it pay to buy a lottery ticket 
for every possible combination, so one of the tickets would 
win? 
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Chapter 1 started with straight line graphs. The velocity was constant (at least piece- 
wise). The distance function was linear. Now we are facing polynomials like x3 - 2 
or x4 - x2 + 3, with other functions to come soon. Their graphs are definitely curved. 
Most functions are not close to linear-except if you focus all your attention near a 
single point. That is what we will do. 

Over a very short range a curve looks straight. Look through a microscope, or zoom 
in with a computer, and there is no doubt. The graph of distance versus time becomes 
nearly linear. Its slope is the velocity at that moment. We want to find the line that 
the graph stays closest to-the "tangent linew-before it curves away. 

The tangent line is easy to describe. We are at a particular point on the graph of 
y =f (x). At that point x equals a and y equals f (a) and the slope equals f '(a). 
The tangent line goes through that point x = a, y =f (a) with that slope m = fl(a). 
Figure 2.5 shows the line more clearly than any equation, but we have to turn the 
geometry into algebra. We need the equation of the line. 

EXAMPLE 1 Suppose y = x4 -x2+ 3. At the point x = a = 1, the height is y =f(a)= 3. 
The slope is dyldx = 4x3 - 2x. At x = 1 the slope is 4 - 2 = 2. That is fl(a): 

The numbers x = 1, y = 3, dyldx = 2 determine the tangent line. 
The equation of the tangent line is y - 3 = 2(x - l), and this section explains why. 

Fig. 2.5 The tangent line has the same slope 2 as the curve (especially after zoom). 

THE EQUATION OF A LINE 

A straight line is determined by two conditions. We know the line if we know two 
of its points. (We still have to write down the equation.) Also, if we know one point 
and the slope, the line is set. That is the situation for the tangent line, which has a 
known slope at a known point: 

1. The equation of a line has the form y = mx + b 
2. The number m is the slope of the line, because dyldx = m 
3. The number b adjusts the line to go through the required point. 

I will take those one at a time-first y = mx + b, then m, then b. 

1. The graph of y = mx + b is not curved. How do we know? For the specific example 
y = 2x + 1, take two points whose coordinates x, y satisfy the equation: 

x=O, y =  1 and x = 4 ,  y = 9  both satisfy y =  2x+ 1. 
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Those points (0, 1) and (4,9) lie on the graph. The point halfway between has x = 2 
and y = 5. That point also satisfies y = 2x + 1. The halfway point is on the graph. If 
we subdivide again, the midpoint between (0, 1) and (2, 5) is (1, 3). This also has 
y = 2x + 1. The graph contains all halfway points and must be straight. 

2. What is the correct slope m for the tangent line? In our example it is m =f '(a) = 2. 
The curve and its tangent line have the same slope at the crucial point: dyldx = 2. 

Allow me to say in another way why the line y = mx + b has slope m. At x = 0 its 
height is y = b. At x = 1 its height is y = m + b. The graph has gone one unit across 
(0 to 1)  and m units up (b to m + b). The whole idea is 

distance up m -slope = 
distance across 1 ' 

Each unit across means m units up, to 2m + b or 3m + b. A straight line keeps a 
constant slope, whereas the slope of y = x4 - x2 + 3 equals 2 only at x = 1. 

3. Finally we decide on b. The tangent line y = 2x + b must go through x = 1 ,  y = 3. 
Therefore b = 1. With letters instead of numbers, y = mx + b leads to f (a) = ma + b. 
So we know b: 

2E The equation of the tangent line has b =f (a)-ma: 

y = m x + f ( a ) - m a  or y - f ( a ) = m ( x - a ) .  (2)I 
That last form is the best. You see immediately what happens at x = a. The factor 
x - a is zero. Therefore y =f (a) as required. This is the point-slope form of the equa- 
tion, and we use it constantly: 

y - 3 - distance up 
y - 3 = 2 ( x - 1 )  or -- = sbpe 2. 

x - 1 distance across 

EXAMPLE 2 The curve y = x3 - 2 goes through y = 6 when x = 2. At that point 
dyldx = 3x2= 12. The point-slope equation of the tangent line uses 2 and 6 and 12: 

y - 6 =  12(x-2) ,  which is also y= 12x- 18. 

There is another important line. It is perpendicular to the tangent line and perpen-
dicular to the curve. This is the normal line in Figure 2.6. Its new feature is its slope. 
When the tangent line has slope m, the normal line has slope - llm. (Rule: Slopes of 

tangent line: 

distance 
A

track 

:a' + 4 
.*' your speed is V 

/ 

4 T 

1
Fig. 2.6 Tangent line y -yo = m(x -x,). Normal line y -yo = -- (x -x,). Leaving a roller- 

coaster and catching up to a car. m 
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perpendicular lines multiply to give -1.) Example 2 has m = 12, so the normal line 
has slope - 1/ 12: 

tangent line: y - 6 = 12(x- 2) normal line: y - 6 = -&(x  - 2). 

Light rays travel in the normal direction. So do brush fires-they move perpendicular 
to the fire line. Use the point-slope form! The tangent is y = 12x - 18, the normal is 
not y = -&x - 18. 

EXAMPLE 3 You are on a roller-coaster whose track follows y = x2  + 4. You see a 
friend at (0,O)and want to get there quickly. Where do you step off? 

Solution Your path will be the tangent line (at high speed). The problem is to choose 
x = a so the tangent line passes through x = 0,  y = 0. When you step off at x = a, 

the height is y = a2+ 4 and the slope is 2a 

the equation of the tangent line is y - (a2+ 4)= 2a(x - a) 

this line goes through (0,O)if - (a2+ 4)= - 2a2 or a = + 2. 

The same problem is solved by spacecraft controllers and baseball pitchers. Releasing 
a ball at the right time to hit a target 60 feet away is an amazing display of calculus. 
Quarterbacks with a moving target should read Chapter 4 on related rates. 

Here is a better example than a roller-coaster. Stopping at a red light wastes gas. 
It is smarter to slow down early, and then accelerate. When a car is waiting in front 
of you, the timing needs calculus: 

EXAMPLE 4 How much must you slow down when a red light is 72 meters away? 
In 4 seconds it will be green. The waiting car will accelerate at 3 meters/sec2. You 
cannot pass the car. 

Strategy Slow down immediately to the speed V at which you will just catch that 
car. (If you wait and brake later, your speed will have to go below V.)At the catch- 
up time T ,  the cars have the same speed and same distance. Two conditions, so the 
distance functions in Figure 2.6d are tangent. 

Solution At time T, the other car's speed is 3 ( T -  4). That shows the delay of 4 
seconds. Speeds are equal when 3(T- 4)= V or T = V + 4. Now require equal dis- 
tances. Your distance is V times T.  The other car's distance is 72 + $at2: 

7 2 + 5 3 ( ~ - 4 ) ~ = V Tbecomes 7 2 + f - f - v 2 = V ( 3 V + 4 ) .  

The solution is V = 12 meters/second. This is 43 km/hr or 27 miles per hour. 
Without the other car, you only slow down to V =  7214 = 18 meters/second. As 

the light turns green, you go through at 65 km/hr or 40 miles per hour. Try it. 

THE SECANT LINE CONNECTING TWO POINTS ON A CURVE 

Instead of the tangent line through one point, consider the secant line through two 
points. For the tangent line the points came together. Now spread them apart. The 
point-slope form of a linear equation is replaced by the two-point form. 

The equation of the curve is still y =f (x). The first point remains at x = a, y =f (a) .  
The other point is at x = c, y =f (c). The secant line goes between them. and we want 
its equation. This time we don't start with the slope-but rn is easy to find. 
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EXAMPLE 5 The curve y = x3 - 2 goes through x = 2, y = 6. It also goes through 
x = 3, y = 25. The slope between those points is 

change in y - 25 - 6 
m =  --- - 19.

change in x 3 - 2 

The point-slope form (at the first point) is y - 6 = 19(x- 2). This line automatically 
goes through the second point (3,25). Check: 25 - 6 equals 19(3-2). The secant 
has the right slope 19 to reach the second point. It is the average slope AylAx. 

A look ahead The second point is going to approach the first point. The secant 
slope AylAx will approach the tangent slope dyldx. We discover the derivative (in 
the limit). That is the main point now-but not forever. 

Soon you will be fast at derivatives. The exact dyldx will be much easier than 
AylAx. The situation is turned around as soon as you know that x9 has slope 
9x8. Near x = 1, the distance up is about 9 times the distance across. To find 
Ay = l.0019- 19,just multiply Ax = .001 by 9. The quick approximation is .009, the 
calculator gives Ay = .009036. It is easier to follow the tangent line than the curve. 

Come back to the secant line, and change numbers to letters. What line connects 
x = a, y =f (a) to x = c, y =f (c)? A mathematician puts formulas ahead of numbers, 
and reasoning ahead of formulas, and ideas ahead of reasoning: 

(1) The slope is m = 
distance up -- f (c)-f (a) 

distance across c - a 
(2) The height is y =f (a) at x = a 
(3) The height is y =f (c) at x = c (automatic with correct slope). 

The t f ~ v a ruses the slope between the 

f4d -f@ 
(3)c - a  

At x = a the right side is zero. So y =f (a) on the left side. At x = c the right side has 
two factors c - a. They cancel to leave y =f (c). With equation (2) for the tangent line 
and equation (3) for the secant line, we are ready for the moment of truth. 

THE SECANT LlNE APPROACHES THE TANGENT LlNE 

What comes now is pretty basic. It matches what we did with velocities: 

A distance -- f (t + At) -f (t)average velocity = 
A time At 

The limit is df /dt. We now do exactly the same thing with slopes. The secant tine 
turns into the tangent line as c approaches a: 

slope of secant line: A f  - f ( 4  -f@) 
Ax c - a  

df A fslope of tangent line: -= limit of -.
dx Ax 



There stands the fundamental idea of differential calculus! You have to imagine more 
secant lines than I can draw in Figure 2.7, as c comes close to a. Everybody recognizes 
c - a as Ax. Do you recognize f (c) -f (a) as f (x + Ax) -f (x)? It is Af, the change 
in height. All lines go through x = a, y =f (a). Their limit is the tangent line. 

secant secant y -f (a) = c - asecant 

tangent tangent y -  f(a)= f'(a)(x- a) 

a c c c  
Fig. 2.7 Secants approach tangent as their 

slopes Af /Ax approach df /dx. 

Intuitively, the limit is pretty clear. The two points come together, and the tangent 
line touches the curve at one point. (It could touch again at faraway points.) Mathe- 
matically this limit can be tricky-it takes us from algebra to calculus. Algebra stays 
away from 010, but calculus gets as close as it can. 

The new limit for df /dx looks different, but it is the same as before: 

f '(a) = lim f ( 4  -f (a) 
c+a C - 9 

EXAMPLE 6 Find the secant lines and tangent line for y =f (x) = sin x at x = 0. 

The starting point is x = 0, y = sin 0. This is the origin (0,O). The ratio of distance up 
to distance across is (sin c)/c: 

sin c
secant equation y = -x tangent equation y = lx. 

C 

As c approaches zero, the secant line becomes the tangent line. The limit of (sin c)/c 
is not 010, which is meaningless, but 1, which is dyldx. 

EXAMPLE 7 The gold you own will be worth & million dollars in t years. When 
does the rate of increase drop to 10% of the current value, so you should sell the 
gold and buy a bond? At t = 25, how far does that put you ahead of &= 5? 

Solution The rate of increase is the derivative of &,which is 1/2&. That is 10% 
of the current value &when 1/2& = &/lo. Therefore 2t = 10 or t = 5. At that time 
you sell the gold, leave the curve, and go onto the tangent line: 

y - f i = $ ( t - 5 )  becomes y - f i = 2 f i  at t=25.  

With straight interest on the bond, not compounded, you have reached 
y = 3 f i  = 6.7 million dollars. The gold is worth a measly five million. 

2.3 EXERCISES 

Read-through questions of the c . The point-slope form of the tangent equation 

A straight line is determined by a points, or one point isy-f(a)= d . 

and the b .The slope of the tangent line equals the slope The tangent line to y =x3 + x at x = 1 has slope . Its 
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2.3 The Slope and the Tangent Line 

fequation is . It crosses the y axis at g and the 
x axis at h . The normal line at this point (1, 2) has 
slope i . Its equation is y -2 = j . The secant line 
from (1, 2) to (2, k ) has slope I . Its equation is 
y - 2 =  m . 

The point (c, f (c)) is on the line y -f (a) =m(x -a) pro- 
vided m = n . As c approaches a, the slope m approaches 

. The secant line approaches the p line. 

1 (a) Find the slope of y = 12/x. 
(b) Find the equation of the tangent line at  (2, 6). 
(c) Find the equation of the normal line at (2, 6). 
(d) Find the equation of the secant line to (4, 3). 

2 For y =x2 +x find equations for 
(a) the tangent line and normal line at (1, 2); 

(b) the secant line to x = 1 + h, y = (1 + h)2+ (1 + h). 

3 A line goes through (1, -1) and (4, 8). Write its equation 
in point-slope form. Then write it as y = mx + b. 

4 The tangent line to y = x3 + 6x at the origin is 
Y=- . Does it cross the curve again? 

5 The tangent line to y =x3 -3x2 + x at the origin is 
Y=- . It is also the secant line to the point . 

6 Find the tangent line to x =y2 at x =4, y =2. 

7 For y =x2 the secant line from (a, a2)  to (c, c2) has the 
equation . Do the division by c -a to find the tan- 
gent line as c approaches a. 

8 Construct a function that has the same slope at x = 1 and 
x = 2. Then find two points where y =x4 -2x2 has the same 
tangent line (draw the graph). 

9 Find a curve that is tangent to y = 2x -3 at x = 5. Find 
the normal line to that curve at (5, 7). 

10 For y = llx the secant line from (a, lla) to (c, llc) has the 
equation . Simplify its slope and find the limit as c 
approaches a. 

11 What are the equations of the tangent line and normal 
line to y = sin x at x = n/2? 

12 If c and a both approach an in-between value x = b, then 
the secant slope (f(c)-f (a))/(c- a) approaches . 

13 At x = a on the graph of y = l/x, compute 
(a) the equation of the tangent line 
(b) the points where that line crosses the axes. 

The triangle between the tangent line and the axes always has 
area . 

14 Suppose g(x) =f (x)+ 7. The tangent lines to f and g at 
x =4 are . True orfalse: The distance between those 
lines is 7. 

15 Choose c so that y =4x is tangent to y =x2 + c. Match 
heights as well as slopes. 

16 Choose c so that y = 5x -7 is tangent to y =x2 + cx. 

17 For y =x3 + 4x2-3x + 1, find all points where the tan- 
gent is horizontal. 

18 y =4x can't be tangent to y =cx2. Try to match heights 
and slopes, or draw the curves. 

19 Determine c so that the straight line joining (0, 3) and 
(5, -2) is tangent to the curve y = c/(x + 1). 

20 Choose b, c, d so that the two parabolas y = x2+ bx + c 
and y =dx -x2 are tangent to each other at x = 1, y =0. 

21 The graph of f  (x) =x3 goes through (1, 1). 

(a) Another point is x =c = 1 + h, y =f (c)= . 
(b) The change in f is Af = . 
(c) The slope of the secant is m = 

(d) As h goes to zero, m approaches 

22 Construct a function y =f (x) whose tangent line at x = 1 
is the same as the secant that meets the curve again at x = 3. 

23 Draw two curves bending away from each other. Mark 
the points P and Q where the curves are closest. At those 
points, the tangent lines are and the normal lines 
are . 

'24 If the parabolas y =x2 + 1 and y = x -x2 come closest at 
(a, a2  + 1) and (c, c -c2), set up two equations for a and c. 

25 A light ray comes down the line x = a. It hits the parabolic 
reflector y = x2 at P = (a, a2). 

(a) Find the tangent line at P. Locate the point Q where 
that line crosses the y axis. 
(b) Check that P and Q are the same distance from the 
focus at F = (0, $). 

(c) Show from (b) that the figure has equal angles. 
(d) What law of physics makes every ray reflect off the 
parabola to the focus at F? 

vertical ray 

26 In a bad reflector y = 2/x, a ray down one special line 
x =a is reflected horizontally. What is a? 
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27 For the parabola 4py =x2, where is the slope equal to l? 
At that point a vertical ray will reflect horizontally. So the 
focus is at (0, 1. 

28 Why are these statements wrong? Make them right. 
(a) If y =2x is the tangent line at (1, 2) then y = - i x  is 
the normal line. 
(b) As c approaches a, the secant slope (f (c) -f (a))& -a) 
approaches (f (a) -f (a))/(a-a). 
(c) The line through (2, 3) with slope 4 is y -2 =4(x -3). 

29 A ball goes around a circle: x =cos t, y =sin t. At t = 3 4 4  
the ball flies off on the tangent line. Find the equation of that 
line and the point where the ball hits the ground (y =0). 

30 If the tangent line to y =f(x) at x =a is the same as the 
tangent line to y =g(x) at x = b, find two equations that must 
be satisfied by a and b. 

31 Draw a circle of radius 1 resting in the parabola y =x2. 
At the touching point (a, a2), the equation of the normal line 
is . That line has x = 0 when y = . The dis- 
tance to (a, a2) equals the radius 1 when a = . This 
locates the touching point. 

32 Follow Problem 31 for the flatter parabola y =3x2 and 
explain where the circle rests. 

33 You are applying for a $1000 scholarship and your time 
is worth $10 a hour. If the chance of success is 1 -(l/x) from 
x hours of writing, when should you stop? 

34 Suppose If (c)-f (a)l< Ic -a1 for every pair of points a 
and c. Prove that Idf /dxl< 1. 

35 From which point x =a does the tangent line to y = 1/x2 
hit the x axis at x = 3? 

36 If u(x)/v(x) = 7 find u'(x)/v'(x). Also find (u(x)/v(x))'. 

37 Find f(c) = l.OO110 in two ways-by calculator and by 
.f(c)-f(a) xf'(a)(c -a). Choose a = 1 and f(x) =xlO.- . . - . . - . . . - . ,  

38 At a distance Ax from x = 1, how far is the curve y = l /x 
above its tangent line? 

39 At a distance Ax from x = 2, how far is the curve y =x3 
above its tangent line? 

40 Based on Problem 38 or 39, the distance between curve 
and tangent line grows like what power (Ax)P? 

41 The tangent line to f (x) =x2 - 1 at x, =2 crosses the 
x axis at xl = . The tangent line at x, crosses the 
x axis at x2 = . Draw the curve and the two 
lines, which are the beginning of Newton's method to solve 
f(x) = 0. 

42 (Puzzle) The equation y =mx + b requires two numbers, 
the point-slope form y -f (a)=f '(a)(x -a) requires three, and 
the two-point form requires four: a, f (a), c, f (c). How can 
this be? 

43 Find the time T at the tangent point in Example 4, when 
you catch the car in front. 

44 If the waiting car only accelerates at 2 meters/sec2, what 
speed V must you slow down to? 

45 A thief 40 meters away runs toward you at 8 meters 
per second. What is the smallest acceleration so that v = at 
keeps you in front? 

46 With 8 meters to go in a relay race, you slow down badly 
(f= -8 + 6t -$t2). How fast should the next runner start 
(choose u in f = vt) so you can just pass the baton? 

This section does two things. One is to compute the derivatives of sin x and cos x. 
The other is to explain why these functions are so important. They describe oscillation, 
which will be expressed in words and equations. You will see a "di~erential equation." 
It involves the derivative of an unknown function y(x). 

The differential equation will say that the second derivative-the derivative of the 
derivative-is equal and opposite to y. In symbols this is y" = - y. Distance in one 
direction leads to acceleration in the other direction. That makes y and y' and y" all 
oscillate. The solutions to y" = - y are sin x and cos x and all their combinations. 

We begin with the slope. The derivative of y = sin x is y' = cos x. There is no reason 
for that to be a mystery, but I still find it beautiful. Chapter 1 followed a ball around 
a circle; the shadow went up and down. Its height was sin t and its velocity was cos t .  
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We now find that derivative by the standard method of limits, when y(x) = sin x: 

dy AY sin (x + h) - sin x -= limit of -= lim
dx Ax h + o  h 

The sine is harder to work with than x2 or x3. Where we had (x + h)2 or (x + h)3, we 
now have sin(x + h). This calls for one of the basic "addition formulas" from trigo- 
nometry, reviewed in Section 1.5: 

sin (x + h) = sin x cos h + cos x sin h (2) 

cos(x + h) = cos x cos h - sin x sin h. (3) 

Equation (2) puts Ay = sin (x + h) - sin x in a new form: 

Ay sin x cos h + cos x sin h - sin x sin h --- = sin x (cos h - 1)+ cos x (T).  (41
Ax h 

The ratio splits into two simpler pieces on the right. Algebra and trigonometry got 
us this far, and now comes the calculus problem. What happens as h +O? It is no 
longer easy to divide by h. (I will not even mention the unspeakable crime of writing 
(sin h)/h = sin.) There are two critically important limits-the first is zero and the 
second is one: 

cos h - 1 sin h 
lim =0 and lim --- 1. 
h - 0  h h - 0  h 

The careful reader will object that limits have not been defined! You may further 
object to computing these limits separately, before combining them into equation (4). 
Nevertheless-following the principle of ideas now, rigor later-I would like to pro- 
ceed. It is entirely true that the limit of (4) comes from the two limits in (5): 

dy--- (sin x)(first limit) + (cos x)(second limit) =0 + cos x. (6)dx 

The secant slope Ay/Ax has approached the tangent slope dyldx. 

We cannot pass over the crucial step-the two limits in (5). They contain the real 
ideas. Both ratios become 010 i f  we just substitute h =0. Remember that the cosine of 
a zero angle is 1, and the sine of a zero angle is 0. Figure 2.8a shows a small angle h 
(as near to zero as we could reasonably draw). The edge of length sin h is close to 

.995 zero, and the edge of length cos h is near 1. Figure 2.8b shows how the ratio of sin h 
to h (both headed for zero) gives the slope of the sine curve at the start. 

When two functions approach zero, their ratio might do anything. We might have 
-995 r cOs 

LhNo clue comes from 010. What matters is whether the top or bottom goes to zero 

.1 sin h more quickly. Roughly speaking, we want to show that (cos h - l)/h is like h2/h and 
(sin h)/h is like hlh. 

.loo.. . Time out The graph of sin x is in Figure 2.9 (in black). The graph of sin(x +Ax) 
Fig. 2.8 sits just beside it (in red). The height difference is Af when the shift distance is Ax. 



sin h 

sin (x + h) 

Fig. 2.9 sin (x+ h) with h = 10" = 11/18 radians. Af/Ax is close to cos x. 

Now divide by that small number Ax (or h). The second figure shows Af /Ax. It is 
close to cos x. (Look how it starts-it is not quite cos x.) Mathematics will prove 
that the limit is cos x exactly, when Ax -, 0. Curiously, the reasoning concentrates 
on only one point (x = 0). The slope at that point is cos 0= 1. 

We now prove this: sin Ax divided by Ax goes to 1. The sine curve starts with 
slope 1. By the addition formula for sin (x + h), this answer at one point will lead to 
the slope cos x at all points. 

Question Why does the graph of f (x + Ax) shift left from f (x) when Ax > O? 
Answer When x = 0, the shifted graph is already showing f (Ax). In Figure 2.9a, the 
red graph is shifted left from the black graph. The red graph shows sin h when the 
black graph shows sin 0. 

THE LIMIT OF (sin h) /h  IS 4 

There are several ways to find this limit. The direct approach is to let a computer 
draw a graph. Figure 2.10a is very convincing. The function (sin h)/h approaches 1at 
the key point h = 0. So does (tan h)/h. In practice, the only danger is that you might 
get a message like "undefined function" and no graph. (The machine may refuse to 
divide by zero at h = 0. Probably you can get around that.) Because of the importance 
of this limit, I want to give a mathematical proof that it equals 1. 

sin h 

-n/2 h = O  n/2 


Fig. 2.40 (sin h)/hsqueezed between cos x and 1; (tan h)/h decreases to 1. 

Figure 2.10b indicates, but still only graphically, that sin h stays below h. (The first 
graph shows that too; (sin h)/h is below 1.) We also see that tan h stays above h. 
Remember that the tangent is the ratio of sine to cosine. Dividing by the cosine is 
enough to push the tangent above h. The crucial inequalities (to be proved when h 
is small and positive) are 

s i n h < h  and t a n h > h .  (7) 
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Since tan h = (sin h)/(cos h), those are the same as 

sin h sin h 
< 1 and -> cos h.

h h 

What happens as h goes to zero? The ratio (sin h)/h is squeezed between cos h and 1. 
But cos h is approaching I! The squeeze as h + 0 leaves only one possibility for 
(sin h)/h, which is caught in between: The ratio (sin h)/h approaches 1. 

Figure 2.10 shows that "squeeze play." lf two functions approach the same limit, so 
does any function caught in between. This is proved at the end of Section 2.6. 

For negative values of h, which are absolutely allowed, the result is the same. To 
the left of zero, h reverses sign and sin h reverses sign. The ratio (sin h)/h is unchanged. 
(The sine is an odd function: sin (- h) = - sin h.) The ratio is an even function, sym- 
metric around zero and approaching 1 from both sides. 

The proof depends on sin h < h < tan h, which is displayed by the graph but not 
explained. We go back to right triangles. 

Fig. 2.11 Line shorter than arc: 2 sin h < 2h. Areas give h < tan h. 

Figure 2.11a shows why sin h < h. The straight line PQ has length 2 sin h. The 
circular arc must be longer, because the shortest distance between two points is a 
straight line.? The arc PQ has length 2h. (Important: When the radius is 1, the arc 
length equals the angle. The full circumference is 2n and the full angle is also 2n.) 
The straight distance 2 sin h is less than the circular distance 2h, so sin h < h. 

Figure 2.1 1b shows why h < tan h. This time we look at areas. The triangular area 
is f(base)(height)= i(l)(tan h). Inside that triangle is the shaded sector of the circle. 
Its area is h/2n times the area of the whole circle (because the angle is that fraction 
of the whole angle). The circle has area nr2 = n, so multiplication by h/2n gives fh 
for the area of the sector. Comparing with the triangle around it, f tan h > fh. 

The inequalities sin h < h < tan h are now proved. The squeeze in equation (8) 
produces (sin h)/h -, 1. Q.E.D. Problem 13 shows how to prove sin h < h from areas. 

Note All angles x and h are being measured in radians. In degrees, cos x is not the 
derivative of sin x. A degree is much less than a radian, and dyldx is reduced by the 
factor 2~1360. 

THE LIMIT OF (COS h - 1) /h IS 0 

This second limit is different. We will show that 1 - cos h shrinks to zero more quickly 
than h. Cosines are connected to sines by (sin h)2 + (cos h)2 = 1. We start from the 

+If we try to prove that, we will be here all night. Accept it as true. 
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known fact sin h < h and work it into a form involving cosines: 

(1 - cos h)(l + cos h) = 1 - (cos h)2 = (sin h)2 < h2. (9) 
Note that everything is positive. Divide through by h and also by 1 + cos h: 

1 - cos h h 
o <  < 

h 1 + cos h ' 

Our ratio is caught in the middle. The right side goes to zero because h +0. This is 
another "squeezew-there is no escape. Our ratio goes to zero. 

For cos h - 1 or for negative h, the signs change but minus zero is still zero. This 
confirms equation (6). The slope of sin x is cos x. 

Remark Equation (10) also shows that 1 - cos h is approximately ih2 .  The 2 comes 
from 1 + cos h. This is a basic purpose of calculus-to find simple approximations 
like $h2. A "tangent parabola" 1 - $h2 is close to the top of the cosine curve. 

THE DERIVATIVE OF THE COSINE 

This will be easy. The quick way to differentiate cos x is to shift the sine curve by 
xl2.That yields the cosine curve (solid line in Figure 2.12b).The derivative also shifts 
by 4 2  (dotted line). The derivative of cos x is - sin x. 

Notice how the dotted line (the slope) goes below zero when the solid line turns 
downward. The slope equals zero when the solid line is level. Increasing functions 
have positive slopes. Decreasing functions have negative slopes. That is important, and 
we return to it. 

There is more information in dyldx than "function rising" or "function falling." 
The slope tells how quickly the function goes up or down. It gives the rate of change. 
The slope of y = cos x can be computed in the normal way, as the limit of AylAx: 

Ay - cos(x + h)- cos x 
=cos .(cos h - 1 

Ax h ) - s i n x ( y )  

dy --- (COS x)(O)- (sin \-)(I) = - sin u. (11)d.u 

The first line came from formula (3) for cos(x + h). The second line took limits, 
reaching 0 and 1 as before. This confirms the graphical proof that the slope of cos x 
is - sin x. 

--.. / p>Y = sin .\- is increasing 
v =,sin r bends down 

v' = - sin .\- is negative 1 ' = cos t decrease; 

y" = - sin t is negative 

Fig. 2.12 y(s) increases where y' is positive. y(s) bends up where jl"is positive. 

THE SECOND DERIVATIVES OF THE SINE AND COSINE 

We now introduce the derivative of the derivative. That is the second derivative of the 
original function. It tells how fast the slope is changing, not how fast y itself is 
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changing. The second derivative is the "rate of change of the velocity." A straight line 
has constant slope (constant velocity), so its second derivative is zero: 

f (t) = 5t has df /dt = 5 and d2f /dt2 = 0. 

The parabola y = x2 has slope 2x (linear) which has slope 2 (constant). Similarly 

f ( t )=ra t2  has df/dt=at and d2f/dt2=a. 

There stands the notation d2f/dt2 (or d2y/dx2) for the second derivative. A short 
form is f "  or y". (This is pronounced f double prime or y double prime). Example: 
The second derivative of y = x3 is y" = 6x. 

In the distance-velocity problem, f "  is acceleration. It tells how fast v is changing, 
while v tells how fast f is changing. Where df/dt was distanceltime, the second 
derivative is di~tance/(time)~. The acceleration due to gravity is about 32 ft/sec2 or 
9.8 m/sec2, which means that v increases by 32 ftlsec in one second. It does not mean 
that the distance increases by 32 feet! 

The graph of y = sin t increases at the start. Its derivative cos t is positive. However 
the second derivative is -sin t. The curve is bending down while going up. The arch 
is "concave down" because y" = - sin t is negative. 

At t = n the curve reaches zero and goes negative. The second derivative becomes 
positive. Now the curve bends upward. The lower arch is "concave up." 

y" > 0 means that y' increases so y bends upward (concave up) 

y" < 0 means that y' decreases so y bends down (concave down). 

Chapter 3 studies these things properly-here we get an advance look for sin t. 
The remarkable fact about the sine and cosine is that y" = -y. That is unusual 

and special: acceleration = -distance. The greater the distance, the greater the force 
pulling back: 

y = sin t has dy/dt = + cos t and d2y/dt2= - sin t = - y. 

y = cos t has dy/dt = - sin t and d y/dt2 = - cos t = - y. 

Question Does d2y/dt2 < 0 mean that the distance y(t) is decreasing? 
Answer No. Absolutely not! It means that dy/dt is decreasing, not necessarily y. 
At the start of the sine curve, y is still increasing but y" < 0. 

Sines and cosines give simple harmonic motion-up and down, forward and back, 
out and in, tension and compression. Stretch a spring, and the restoring force pulls 
it back. Push a swing up, and gravity brings it down. These motions are controlled 
by a diyerential equation: 

All solutions are combinations of the sine and cosine: y = A sin t + B cos t. 
This is not a course on differential equations. But you have to see the purpose of 

calculus. It models events by equations. It models oscillation by equation (12). Your 
heart fills and empties. Balls bounce. Current alternates. The economy goes up and 
down: 

high prices -+ high production -,low prices -, -.. 

We can't live without oscillations (or differential equations). 
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2.4 EXERCISES 

Read-through questions 

The derivative of y = sin x is y' = a . The second deriva- 
tive (the b of the derivative) is y" = c . The fourth 
derivative is y"" = d . Thus y = sin x satisfies the 
differential equations y" = e and y"" = f . So does 
y = cos x, whose second derivative is g . 

All these derivatives come from one basic limit: (sin h)/h 
approaches h . The sine of .O1 radians is very close 
to i . So is the i of .01. The cosine of .O1 is 
not .99, because 1 -cos h is much k than h. The ratio 
(1 -cos h)/h2 approaches I . Therefore cos h is close to 
1- ih2 and cos .Ol x m . We can replace h by x. 

The differential equation y" = -y leads to n . When y 
is positive, y" is o . Therefore y' is P . Eventually y 
goes below zero and y" becomes q . Then y' is r . 
Examples of oscillation in real life are s and t . 

1 Which of these ratios approach 1 as h -,O? 

h sin2 h sin h sin (- h) 
(a) zi (b) zzi ( a  7 

2 (Calculator) Find (sin h)/h at h = 0.5 and 0.1 and .01. 
Where does (sin h)/h go above .99? 

3 Find the limits as h -,0 of 

sin2 h sin 5h sin 5h sin h 
(a) (b) (c) (dl 

4 Where does tan h = 1.01h? Where does tan h = h? 

5 y = sin x has period 211, which means that sin x = 
. The limit of (sin (211 + h) -sin 2z)lh is 1 because 
. This gives dyldx at x = 

6 Draw cos (x + Ax) next to cos x. Mark the height differ- 
ence Ay. Then draw AylAx as in Figure 2.9. 

7 The key to trigonometry is cos2 0 = 1-sin2 0. Set 
sin 0 x 0 to find cos20x 1-02. The square root is 
cos 0 x 1-30'. Reason: Squaring gives cos2 0 x 
and the correction term is very small near 0 = 0. 

8 (Calculator) Compare cos 0 with 1 -302 for 

(a) 0 = 0.1 (b) 0 = 0.5 (c) 0 = 30" (d) 0 = 3". 

9 Trigonometry gives cos 0 = 1-2 sin2 $0. The approxima- 
tion sin 30 x leads directly to cos 0 x 1-)02. 

10 Find the limits as h -,0: 

11 Find by calculator or calculus: 

sin 3h 1 -cos 2h 
lim2 a (b) r-+o 1-cos h ' 

12 Compute the slope at x = 0 directly from limits: 
(a) y =  tan x (b) y = sin (- x) 

13 The unmarked points in Figure 2.11 are P and S. Find the 
height PS and the area of triangle OPR. Prove by areas that 
sin h < h. 

14 The slopes of cos x and 1 -i x2  are -sin x and . 
The slopes of sin x and are cos x and 1-3x2. 

15 Chapter 10 gives an infinite series for sin x: 

From the derivative find the series for cos x. Then take its 
derivative to get back to -sin x. 

16 A centered diference for f (x)= sin x is 

f (x + h) -f (x -h) - sin (x + h) -sin (x -h)- = ?  
2 h 2 h 

Use the addition formula (2). Then let h -* 0. 

Repeat Problem 16 to find the slope of cos x. Use formula 
to simplify cos (x + h) -cos (x -h). 

Find the tangent line to y = sin x at 
(a) x = 0 (b) x = 11 (c) x = 1114 

Where does y = sin x + cos x have zero slope? 

Find the derivative of sin (x + 1) in two ways: 
(a) Expand to sin x cos 1 + cos x sin 1. Compute dyldx. 
(b) Divide Ay = sin (x + 1 + Ax) -sin (x + 1) by Ax. Write 
X instead of x + 1. Let Ax go to zero. 

Show that (tan h)/h is squeezed between 1 and l/cos h. As 
h -,0 the limit is . 

22 For y = sin 2x, the ratio Aylh is 

sin 2(x + h) -sin 2x sin 2x(cos 2h - 1)+ cos 2x sin 2h 

Explain why the limit dyldx is 2 cos 2x. 

23 Draw the graph of y = sin ix.  State its slope at x = 0, 1112, 
11, and 211. Does 3 sin x have the same slopes? 

24 Draw the graph of y = sin x + f i  cos x. Its maximum 
value is y = at x = . The slope at that point 
is . 
25 By combining sin x and cos x, find a combination that 
starts at x = 0 from y = 2 with slope 1. This combination also 
solves y" = . 
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26 True or false, with reason: 

(a) The derivative of sin2 x is cos2 x 
(b) The derivative of cos (- x) is sin x 
(c) A positive function has a negative second derivative. 
(d) If y' is increasing then y" is positive. 

27 Find solutions to dyldx = sin 3x and dyldx = cos 3x. 

28 If y = sin 5x then y' = 5 cos 5x and y" = -25 sin 5x. So 
this function satisfies the differential equation y" = 

29 If h is measured in degrees, find lim,,, (sin h)/h. You could 
set your calculator in degree mode. 

30 Write down a ratio that approaches dyldx at x = z. For 
y = sin x and Ax = .O1 compute that ratio. 

31 By the square rule, the derivative of ( ~ ( x ) ) ~  is 2u duldx. 
Take the derivative of each term in sin2 x + cos2x = 1. 

32 Give an example of oscillation that does not come from 
physics. Is it simple harmonic motion (one frequency only)? 

33 Explain the second derivative in your own words. 

What are the derivatives of x + sin x and x sin x and l/sin x and xlsin x and sinnx? 
Those are made up from the familiar pieces x and sin x, but we need new rules. 
Fortunately they are rules that apply to every function, so they can be established 
once and for all. If we know the separate derivatives of two functions u and v, then 
the derivatives of u + v and uu and llv and u/u and un are immediately available. 

This is a straightforward section, with those five rules to learn. It is also an impor- 
tant section, containing most of the working tools of differential calculus. But I am 
afraid that five rules and thirteen examples (which we need-the eyes glaze over with 
formulas alone) make a long list. At least the easiest rule comes first. When we add 
functions, we add their derivatives. 

Sum Rule 
du dv

The derivative of the sum u(x) + v(x) is -
d 

(u + v) = -+ -.
dx dx dx 

EXAMPLE 1 The derivative of x + sin x is 1 + cos x. That is tremendously simple, 
but it is fundamental. The interpretation for distances may be more confusing (and 
more interesting) than the rule itself: 

Suppose a train moves with velocity 1. The distance at time t is t. On the train 
a professor paces back and forth (in simple harmonic motion). His distance from 
his seat is sin t. Then the total distance from his starting point is t + sin t, and 
his velocity (train speed plus walking speed) is 1 + cos t. 

If you add distances, you add velocities. Actually that example is ridiculous, because 
the professor's maximum speed equals the train speed (= 1). He is running like mad, 
not pacing. Occasionally he is standing still with respect to the ground. 

The sum rule is a special case of a bigger rule called "linearity." It applies when 
we add or subtract functions and multiply them by constants-as in 3x -4 sin x. By 
linearity the derivative is 3 - 4 cos x. The rule works for all functions u(x) and v(x). 
A linear combination is y(x) = au(x) + bv(x), where a and b are any real numbers. 
Then AylAx is 



2 Derivatives 

The limit on the left is dyldx. The limit on the right is a duJdx + b dvldx. We are 
allowed to take limits separately and add. The result is what we hope for: 

Rule of Linearity 

du dv
The derivative of au(x) + bv(x) is -

d 
(au + bu) = a -+ b -.

dx dx dx 

The prorluct rule comes next. It can't be so simple-products are not linear. The 
sum rule is what you would have done anyway, but products give something new. 
The krivative of u times v is not duldx times dvldx. Example: The derivative of x5 
is 5x4. Don't multiply the derivatives of x3 and x2. (3x2 times 2x is not 5x4.) 
For a product of two functions, the derivative has two terms. 

Product Rule (the key to this section) 

d dv du
The derivative of u(x)v(x) is -(uu) = u -+ v -.

dx dx dx 

EXAMPLE 2 u = x3 times v = x2 is uv = x5. The product rule leads to 5x4: 

EXAMPLE 3 In the slope of x sin x, I don't write dxldx = 1 but it's there: 

d 
-(x sin x) = x cos x + sin x. 
dx 

EXAMPLE 4 If u = sin x and v = sin x then uv = sin2 x. We get two equal terms: 

d
sin x -(sin x) + sin x -

d 
(sin x) = 2 sin x cos x. 

dx dx 

This confirms the "square rule" 2u duldx, when u is the same as v. Similarly the slope 
of cos2 x is -2 cos x sin x (minus sign from the slope of the cosine). 

Question Those answers for sin2 x and cos2 x have opposite signs, so the derivative 
of sin2 x + cos2 x is zero (sum rule). How do you see that more quickly? 

EXAMPLE 5 The derivative of uvw is uvw' + uv'w + u'vw-one derivative at a time. 
The derivative of xxx is xx + xx + xx. 

Fig. 2.13 Change in length =Au +Av. Change in area =u Av + v Au +Au Av. 



2.5 The Product and Quotient and Power Rules 

After those examples we prove the product rule. Figure 2.13 explains it best. The 
area of the big rectangle is uv. The important changes in area are the two strips u Av 
and v Au. The corner area Au Av is much smaller. When we divide by Ax, the strips 
give u Av/Ax and v AulAx. The corner gives Au AvlAx, which approaches zero. 

Notice how the sum rule is in one dimension and the product rule is in two 
dimensions. The rule for uvw would be in three dimensions. 

The extra area comes from the whole top strip plus the side strip. By algebra, 

This increase is u(x + h)Av + v(x)Au-top plus side. Now divide by h (or Ax) and let 
h + 0. The left side of equation (4) becomes the derivative of u(x)v(x). The right side 
becomes u(x) times dvldx-we can multiply the two limits-plus v(x) times duldx. 
That proves the product rule-definitely useful. 

We could go immediately to the quotient rule for u(x)/v(x). But start with u = 1. 
The derivative of l /x is - 1/x2 (known). What is the derivative of l/v(x)? 

Reciprocal Rule 

1 - dvldx 
The derivative of ---- is --- 

44 u2 - 
The proof starts with (v)(l/v) = 1. The derivative of 1 is 0. Apply the product rule: 

d 1 1dv - dvldx 
( - ) + = O dx v v dx sothat "(A)=- dx v v2 ' 

It is worth checking the units-in the reciprocal rule and others. A test of dimen- 
sions is automatic in science and engineering, and a good idea in mathematics. The 
test ignores constants and plus or minus signs, but it prevents bad errors. If v is in 
dollars and x is in hours, dv/dx is in dollars per hour. Then dimensions agree: 

- dvldx dollars/hour 
and also - w 

hour v  dollar^)^ 

From this test, the derivative of l/v cannot be l/(dv/dx). A similar test shows that 
Einstein's formula e = mc2 is dimensionally possible. The theory of relativity might 
be correct! Both sides have the dimension of (mas~)(distance)~/(time)~, when mass 
is converted to energy.? 

EXAMPLE6 The derivatives ofx-' ,  x - ~ ,  x-" are -1xP2, - Z X - ~ ,  -nx-"-I. 

Those come from the reciprocal rule with v = x and x2 and any xn: 

The beautiful thing is that this answer -nx-"-' fits into the same pattern as xn. 
Multiply by the exponent and reduce it by one. 

For negative and positive exponents the derivative of xn is nxn- l. (7) 

+But only Einstein knew that the constant is 1. 



- - -  

1 1 -Av 

A1
Reciprocal ---= 

v(v + Av)v + Au v 

u+Au -u - vAu-uAv 
Quotient -- -

Av v + A v  v v(v+ Av) AD v 
Fig. 2.14 Reciprocal rule from (- Av)/v2.Quotient rule from (v Au -u Av)/v2. 

1 1 +sinx -cosx
EXAMPLE 7 The derivatives of -and -are -and -. 

cos x sin x cos2x sin2 x 

Those come directly from the reciprocal rule. In trigonometry, l/cos x is the secant 
of the angle x, and l/sin x is the cosecant of x. Now we have their derivatives: 

d sin x - 1 sin x -(set x)= ------ sec x tan x.
dx cos2x cos x cos x 

d cos x-(CSCX)=--=---=- 1 cos x csc x cot x. 
dx sin2 x sin x sin x 

Those formulas are often seen in calculus. If you have a good memory they are worth 
storing. Like most mathematicians, I have to check them every time before using 
them (maybe once a year). It is really the rules that are basic, not the formulas. 

The next rule applies to the quotient u(x)/v(x). That is u times llv. Combining the 
product rule and reciprocal rule gives something new and important: 

Quotient Rule 

u(x) 1 du dvldx - v duldx - u dvldx
The derivative of - is --- u --

u(x) vdx v2 v2 

You must memorize that last formula. The v2 is familiar. The rest is new, but not very 
new. If v = 1 the result is duldx (of course). For u = 1 we have the reciprocal 
rule. Figure 2.14b shows the difference (u + Au)/(v + Av) - (ulv). The denominator 
V(V+ Av) is responsible for v2. 

EXAMPLE 8 (only practice) If u/v = x5/x3 (which is x2) the quotient rule gives 2x: 

EXAMPLE 9 (important) For u = sin x and v = cos x, the quotient is sin xlcos x = 
tan x. The derivative of tan x is sec2 x. Use the quotient rule and cos2 x + sin2 x = 1: 

cos x(cos x) - sin x(- sin x) - 1--- - sec2 x. (11)c0s2X c0s2X 

Again to memorize: (tan x)' = sec2 x. At x =0, this slope is 1. The graphs of sin x 
and x and tan x all start with this slope (then they separate). At x = n/2 the sine 
curve is flat (cos x = 0) and the tangent curve is vertical (sec2 x = co). 

The slope generally blows up faster than the function. We divide by cos x, once 
for the tangent and twice for its slope. The slope of l/x is - l/x2. The slope is more 
sensitive than the function, because of the square in the denominator. 

d sin x x cos x - sin x 
EXAMPLE 10 

d x ( x ) - x2 
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That one I hesitate to touch at x = 0. Formally it becomes 010. In reality it is more 
like 03/02, and the true derivative is zero. Figure 2.10 showed graphically that (sin x)/x 
is flat at the center point. The function is even (symmetric across the y axis) so its 
derivative can only be zero. 

This section is full of rules, and I hope you will allow one more. It goes beyond xn 
to (u(x)r. A power of x changes to a power of u(x)-as in (sin x ) ~  or (tan x)' or 
(x2+ I)*. The derivative contains nun-' (copying nxn- '), but there is an extra factor 
duldx. Watch that factor in 6(sin x)' cos x and 7(tan x ) ~sec2 x and 8(x2 + l)'(2x): 

Power Rule 

du
The derivative of [u(x)In is n[~(x)]~-'  ;i; 

For n = 1 this reduces to du/dx = duldx. For n = 2 we get the square rule 2u duldx. 
Next comes u3. The best approach is to use mathematical induction, which goes from 
each n to the next power n + 1 by the product rule: 

That is exactly equation (12) for the power n + 1. We get all positive powers this way, 
going up from n = 1-then the negative powers come from the reciprocal rule. 

Figure 2.15 shows the power rule for n = 1,2,3. The cube makes the point 
best. The three thin slabs are u by u by Au. The change in volume is essentially 
3u2Au. From multiplying out ( ~ + A u ) ~ ,the exact change in volume is 
3u2 Au + ~ u ( A u ) ~+ (A~)~-which also accounts for three narrow boxes and a midget 
cube in the corner. This is the binomial formula in a picture. 

U(AU)* 

3 bricks 

u2 AU 
3 slabs 

u Au u Au u Au 

Fig. 2.15 Length change =Au; area change x 21.4Au; volume change x 3u2 Au. 

d
EXAMPLE 11 -(sin x)" = n(sin x)"- ' cos x. The extra factor cos x is duldx. 

dx 

Our last step finally escapes from a very undesirable restriction-that n must be 
a whole number. We want to allow fractional powers n = p/q, and keep the same 
formula. The derivative of xn is still nxn- ' 

To deal with square roots I can write (&)' = x. Its derivative is 2&(&)' = 1. 
Therefore (&)' is 1/2& which fits the formula when n = f.Now try n = p/q: 



--- 

2 Derivatives 

Fractional powers Write u =xPIq as uq =xP. Take derivatives, assuming they exist: 

du
qU4-1 -=pxp- ' (power rule on both sides) 

dx 

du - px-' (cancel xP with uq) 
dx qu-' 

du 
-= n x n - 1 (replace plq by n and u by xn) 
dx  

EXAMPLE 12 The slope of x'I3 is ~ x - ~ I ~ .The slope is infinite at x =0 and zero at 
x = a.But the curve in Figure 2.16 keeps climbing. It doesn't stay below an 
"asymptote." 

1;s 1 118 I 

Fig. 2.16 Infinite slope of xn versus zero slope: the difference between 0 < n < 1 and n > 1. 

EXAMPLE 13 The slope of x4I3 is 4x'I3. The slope is zero at x =0 and infinite at 
x = co.The graph climbs faster than a line and slower than a parabola (4 is between 
1 and 2). Its slope follows the cube root curve (times j ) .  

WE STOP NOW! I am sorry there were so many rules. A computer can memorize 
them all, but it doesn't know what they mean and you do. Together with the chain 
rule that dominates Chapter 4, they achieve virtually all the derivatives ever computed 
by mankind. We list them in one place for convenience. 

Rule of Linearity (au + bv)' =au' + bv' 

Product Rule (uv)' =ud + VU' 

Reciprocal Rule (Ilv)' = - v'/v2 

Quotient Rule (ulv)' = (vu' -uv')/v2 

Power Rule (un)'=nu''-'u' 

The power rule applies when n is negative, or a fraction, or any real number. The 
derivative of x" is zx"- ',according to Chapter 6. The derivative of (sin x)" is . 
And the derivatives of all six trigonometric functions are now established: 

(sin x)' = cos x (tan x)' = sec2x (sec x)' = sec x tan x 

(COSx)' = - sin x (cot x)' = - csc2x (csc x)' = - csc x cot x .  
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2.5 EXERCISES 

Read-through questions 

The derivatives of sin x cos x and l/cos x and sin x/cos x 
and tan3x come from the a rule, b rule, c rule, 
and d rule. The product of sin x times cos x has 
(uv)' =uv' + e = 1 . The derivative of l / v  is g , 
so the slope of sec x is h . The derivative of u/v is 1 , 
so the slope of tan x is I . The derivative of tan3 x is 

k . The slope of xn is I and the slope of (~(x))" is 
m . With n = -1 the derivative of (cos x)-' is n , 

which agrees with the rule for sec x. 

Even simpler is the rule of 0 , which applies to 
au(x) + bv(x). The derivative is P . The slope of 3 sin x + 
4 cos x is q . The derivative of (3 sin x +4 cos x ) ~  is 

r . The derivative of s is 4 sin3 x cos x. 

Find the derivatives of the functions in 1-26. 

(X- 1)(x-2)(x -3) 6 (X- 1 ) 2 ( ~-2)2 

x2 cos x + 2x sin x 8 x'I2(x +sin x) 

x3 + 1 
x + 1 

+ cos x 
sin x 

x 2 + 1
lo-+-

x2- 1 
sinx 
COS X 

x1I2 sin2 x + (sin x)'I2 12 x3I2 sin3 x + (sin x ) ~ / ~  

x4cos x +x C O S ~x 14 &(&+ l)(& + 2) 

3 x 2 s i n x - x c o s x + s i n x  16 ( ~ - 6 ) ' ~ + s i n ' ~ x  

sec2 x - tan2 x 18 csc2x -cot2 x 

sin x -cos x 
20 


sin x + cos x 

1 1--- 26 x sin x +cos x 
tan x cot x 

A growing box has length t, width 1/(1 + t), and height 
COS t. 

(a) What is the rate of change of the volume? 
(b) What is the rate of change of the surface area? 

28 With two applications of the product rule show that the 
derivative of uvw is uvw' + uv'w + u'uw. When a box with sides 
u, v, w grows by Au, Av, Aw, three slabs are added with volume 
uu Aw and and . 
29 Find the velocity if the distance is f (t)= 

5t2 for t < 10, 500 + loo,/= for t 2 10. 

312 t 
30 A cylinder has radius r = -

1 +t3I2 
and height h = -

1 + t '  
(a) What is the rate of change of its volume? 
(b) What is the rate of change of its surface area (including 
top and base)? 

31 The height of a model rocket is f (t) = t3/(l + t). 
(a) What is the velocity v(t)? 
(b) What is the acceleration duldt? 

32 Apply the product rule to u(x)u2(x) to find the power rule 
for u3(x). 

33 Find the second derivative of the product u(x)v(x). Find 
the third derivative. Test your formulas on u = u =x. 

34 Find functions y(x) whose derivatives are 
(a) x3 (b) l/x3 (c) (1 -x ) ~ ~ ~(d) cos2x sin x. 

35 Find the distances f (t), starting from f (0)=0, to match 
these velocities: 

(a) v(t) =cos t sin t (b) v(t) = tan t sec2 t 
(c) v(t)=Jl+t 

36 Apply the quotient rule to (~ (x ) )~ / (u (x ) )~  -u'/v2.and 
The latter gives the second derivative of - .  
37 Draw a figure like 2.13 to explain the square rule. 

38 Give an example where u(x)/u(x) is increasing but du/dx = 
dvldx = 1. 

39 True orfalse, with a good reason: 
(a) The derivative of x2" is 2nx2"-'. 
(b) By linearity the derivative of a(x)u(x) + b(x)u(x) is 
a(x) du/dx.+ b(x) dvldx. 
(c) The derivative of 1xI3 is 31xI2. 
(d) tan2 x and sec2 x have the same derivative. 
(e) (uv)' =u'u' is true when u(x) = 1. 

40 The cost of u shares of stock at v dollars per share is uv 
dollars. Check dimensions of d(uv)/dt and u dv/dt and v duldt. 

41 If u(x)/v(x) is a ratio of polynomials of degree n, what are 
the degrees for its derivative? 

42 For y = 5x + 3, is ( d y / d ~ ) ~  the same as d 2 y / d ~ 2 ?  

43 If you change from f (t) = t cos t to its tangent line at 
t =7112, find the two-part function df /dt. 

44 Explain in your own words why the derivative of u(x)v(x) 
has two terms. 

45 A plane starts its descent from height y =h at x = -L 
to land at (0,O). Choose a, b, c, d so its landing path 
y =ax3 + bx2 + cx + d is smooth. With dx/dt = V =constant, 
find dyldt and d2y/dt2 at x =0 and x = -L. (To keep 
d2y/dt2 small, a coast-to-coast plane starts down L > 100 
miles from the airport.) 



You have seen enough limits to be ready for a definition. It is true that we have 
survived this far without one, and we could continue. But this seems a reasonable 
time to define limits more carefully. The goal is to achieve rigor without rigor mortis. 

First you should know that limits of Ay/Ax are by no means the only limits in 
mathematics. Here are five completely different examples. They involve n + a,not 
Ax +0: 

1. a, = (n - 3)/(n + 3) (for large n, ignore the 3's and find a, + 1) 
2. a, = )a,-, + 4 (start with any a, and always a, +8) 
3. an=probability of living to year n (unfortunately an +0) 

4. a, = fraction of zeros among the first n digits of n (an+h?) 
5. a, = .4, a2 = .49, a, = .493, .... No matter what the remaining decimals are, the 

a's converge to a limit. Possibly a, + .493000 . . .,but not likely. 

The problem is to say what the limit symbol + really means. 
A good starting point is to ask about convergence to zero. When does a sequence 

of positive numbers approach zero? What does it mean to write an +O? The numbers 
a,, a,, a,, ..., must become "small," but that is too vague. We will propose four 
definitions of convergence to zero, and I hope the right one will be clear. 

1. All the numbers a, are below 10- lo. That may be enough for practical purposes, 
but it certainly doesn't make the a, approach zero. 

2. The sequence is getting closer to zero-each a,, is smaller than the preceding 
a,. This test is met by 1.1, 1.01, 1.001, ... which converges to 1 instead of 0. 

3. For any small number you think of, at least one of the an's is smaller. That pushes 
something toward zero, but not necessarily the whole sequence. The condition would 
be satisfied by 1, ),1, f, 1, i,. . . ,which does not approach zero. 

4. For any small number you think of, the an's eventually go below that number and 
stay below. This is the correct definition. 

I want to repeat that. To test for convergence to zero, start with a small number- 
say 10-lo. The an's must go below that number. They may come back up and go 
below again-the first million terms make absolutely no difference. Neither do the 
next billion, but eventually all terms must go below lo-''. After waiting longer 
(possibly a lot longer), all terms drop below The tail end of the sequence 
decides everything. 

Question 1 Doesthesequence lo-,, 1 0 - ~ , 1 0 - ~ ,  ...approacho? 
Answer Yes. These up and down numbers eventually stay below any E .  

a , < ~ i f n > 3  a,,< E if n > 6 non-convergence 

Fig. 2.17 Convergence means: Only a finite number of a's are outside any strip around L. 



2.6 Limits 

Question 2 Does lo-', lo-*, lo-',, 10-lo, ... approach zero? 
Answer No. This sequence goes below but does not stay below. 

There is a recognized symbol for "an arbitrarily small positive number." By 
worldwide agreement, it is the Greek letter E (epsilon). Convergence to zero means 
that the sequence eventually goes below E and stays there. The smaller the E, the tougher 
the test and the longer we wait. Think of E as the tolerance, and keep reducing it. 

To emphasize that E comes from outside, Socrates can choose it. Whatever E he 
proposes, the a's must eventually be smaller. After some a,, all the a's are below the 
tolerance E. Here is the exact statement: 

for any E there is an N such that a, < E if n > N. 

Once you see that idea, the rest is easy. Figure 2.17 has N = 3 and then N = 6. 

EXAMPLE I The sequence f, $, 8, . . . starts upward but goes to zero. Notice that 
1,4,9, . . . , 100, . . . are squares, and 2,4, 8, . . . , 1024, . . . are powers of 2. Eventually 2" 
grows faster than n2, as in alo = 100/1024. The ratio goes below any E. 

EXAMPLE 2 1, 0, f, 0, f, 0, . . . approaches zero. These a's do not decrease steadily 
(the mathematical word for steadily is monotonica ally") but still their limit is zero. 
The choice E = 1 / 1 0  produces the right response: Beyond azool all terms are below 
1/1000. So N = 2001 for that E. 

The sequence 1, f, f, 4,f, f, . . . is much slower-but it also converges to zero. 
Next we allow the numbers a, to be negative as well as positive. They can converge 

upward toward zero, or they can come in from both sides. The test still requires the 
a, to go inside any strip near zero (and stay there). But now the strip starts at -E. 

The distance from zero is the absolute value la,l. Therefore a, -,0 means lanl + 0. 
The previous test can be applied to lanl: 

for any E there is an N such that la,l < E if n > N. 

EXAMPLE 3 1, -f, f , -4,. . . converges to zero because 1, f,f,$, . . . converges to zero. 

It is a short step to limits other than zero. The limit is L if the numbers a, -L 
converge to Zero. Our final test applies to the absolute value la, -LI: 

for any E there is an N such that (a, -L(< E if n > N. 

This is the definition of convergence! Only a finite number of a's are outside any strip 
around L (Figure 2.18). We write a, -,L or lim -a,= L or limn,, a, = L. 

Fig. 2.18 a, -,0in Example 3;a, -* 1 in Example 4;a, -, rn in Example 5(buta,,, -a, -,0). 



EXAMPLE 4 The numbers 3, 2 ,  g, . . . converge to L = 1. After subtracting 1 the 
differences 3, f ,  k, . . . converge to zero. Those difference are la, - LI. 

The distance between terms is getting smaller. But those numbers a,, a,, a3, a,, . . . go 
past any proposed limit L. The second term is 15. The fourth term adds on 3 + 4, 
so a, goes past 2. The eighth term has four new fractions 4 + &+ f + $, totaling 
more than $ + $ + $ + & = 3. Therefore a, exceeds 23. Eight more terms will add more 
than 8 times &, so a,, is beyond 3. The lines in Figure 2 .18~ are infinitely long, not 
stopping at any L. 

In the language of Chapter 10, the harmonic series 1 + 3 + 3 + does not converge. 
The sum is infinite, because the "partial sums" a, go beyond every limit L (a,,,, is 
past L = 9). We will come back to infinite series, but this example makes a subtle 
point: The steps between the a, can go to zero while still a, -, a. 

Thus the condition a,+, - a, -, 0 is not suficient for convergence. However this 
condition is necessary. If we do have convergence, then a,,, - a, -, 0. That is a good 
exercise in the logic of convergence, emphasizing the difference between "sufficient" 
and "necessary." We discuss this logic below, after proving that [statement A] implies 
[statement B]: 

If [a, converges to L] then [a,+ , - a, converges to zero]. (1) 

Proof Because the a, converge, there is a number N beyond which (a, - L( < s and 
also la, + , - LI < E. Since a, +, - a, is the sum of a, +, - L and L - a,, its absolute 
value cannot exceed E + E = 2s. Therefore a,+ , - a, approaches zero. 

Objection by Socrates: We only got below 2s and he asked for s. Our reply: If he 
particularly wants la, + , - a, 1 < 1/ 10, we start with s = 1/20. Then 2s = 1/10. But this 
juggling is not necessary. To stay below 2s is just as convincing as to stay below s. 

THE LOGIC OF "IF" AND "ONLY IF" 

The following page is inserted to help with the language of mathematics. In ordinary 
language we might say "I will come if you call." Or we might say "I will come only 
if you call." That is different! A mathematician might even say "I will come if and 
only if you call." Our goal is to think through the logic, because it is important and 
not so fami1iar.t 

Statement A above implies statement B. Statement A is a, -, L; statement B is 
a,+, - a, -, 0. Mathematics has at least five ways of writing down A => B, and I 
though you might like to see them together. It seems excessive to have so many 
expressions for the same idea, but authors get desperate for a little variety. Here are 
the five ways that come to mind: 

A implies B 

if A then B 

A is a suflcient condition for B 

B is true if A is true 

?Logical thinking is much more important than E and 6. 



EXAMPLES If [positive numbers are decreasing] then [they converge to a limit]. 
If [sequences a, and b, converge] then [the sequence a, + b, converges]. 
If [ f (x) is the integral of v(x)] then [v(x) is the derivative of f (x)]. 

Those are all true, but not proved. A is the hypothesis, B is the conclusion. 
Now we go in the other direction. (It is called the "converse," not the inverse.) We 

exchange A and B. Of course stating the converse does not make it true! B might 
imply A, or it might not. In the first two examples the converse was false-the a, 
can converge without decreasing, and a, + b, can converge when the separate 
sequences do not. The converse of the third statement is true-and there are five 
more ways to state it: 

A* B 

A is implied by B 

i f  B then A 

A is a necessary condition for B 

B is true only i f  A is true 

Those words "necessary" and "sufficient" are not always easy to master. The same 
is true of the deceptively short phrase "if and only if." The two statements A* B and 
A e B are completely different and they both require proof. That means two separate 
proofs. But they can be stated together for convenience (when both are true): 

A - B  

A implies B and B implies A 

A is equivalent to B 

A is a necessary and suficient condition for B 

A is true if and only i f  B is true 

EXAMPLES [a, + L] - [2an -, 2L] - [a, + 1 + L + 11 - [a, - L+ 01. 

RULES FOR LIMITS 

Calculus needs a definition of limits, to define dyldx. That derivative contains two 
limits: Ax + 0 and AylAx + dyldx. Calculus also needs rules for limits, to prove the 
sum rule and product rule for derivatives. We started on the definition, and now we 
start on the rules. 

Given two convergent sequences, a, + L and b, + M, other sequences also converge: 

Addition: a, + b, + L + M Subtraction: a, - b, -, L - M 

Multiplication: a,b, -, LM Division: a,/b, + LIM (provided M # 0) 

We check the multiplication rule, which uses a convenient identity: 

a,b, - LM = (a, - L)(b, - M) + M(a, - L) + L(b, - M). (2) 
Suppose Jan - LJ < E beyond some point N, and 1 b, - MI < E beyond some other point 
N'. Then beyond the larger.of N and N', the right side of (2) is small. It is less than 
E E + ME + LE. This proves that (2) gives a,b, + LM. 

An important special case is can -, cL. (The sequence of b's is c, c, c, c, . . . .) Thus a 
constant can be brought "outside" the limit, to give lim can = c lim a,. 



THE LIMIT OF f ( x )  AS x -, a 

The final step is to replace sequences by functions. Instead of a,, a2, . . . there is a 
continuum of values f(x). The limit is taken as x approaches a specified point a 
(instead of n -, co). Example: As x approaches a = 0, the function f (x) = 4 - x2 
approaches L = 4. As x approaches a = 2, the function 5x approaches L = 10. Those 
statements are fairly obvious, but we have to say what they mean. Somehow it must 
be this: 

i f  x is close to a then f (x) is close to L. 

If x - a is small, then f (x) - L should be small. As before, the word small does not 
say everything. We really mean "arbitrarily small," or "below any E." The difference 
f(x) - L must become as small as anyone wants, when x gets near a. In that case 
lim,,, f (x) = L. Or we write f (x) -, L as x -, a. 

The statement is awkward because it involves two limits. The limit x + a is forcing 
f (x) + L. (Previously n + co forced a, + L.) But it is wrong to expect the same E in 
both limits. We do not and cannot require that Jx - a1 < E produces ) f (x) - LI < E. 

It may be necessary to push x extremely close to a (closer than E). We must guarantee 
that if x is close enough to a, then If (x) - LI < E. 

We have come to the "epsilon-delta definition" of limits. First, Socrates chooses E. 

He has to be shown that f (x) is within E of L, for every x near a. Then somebody 
else (maybe Plato) replies with a number 6. That gives the meaning of "near a." 
Plato's goal is to get f(x) within E of L, by keeping x within 6 of a: 

if 0 < lx - a1 < S then (f(x) - LI < E .  (3) 

The input tolerance is 6 (delta), the output tolerance is E. When Plato can find a 6 
for every E, Socrates concedes that the limit is L. 

EXAMPLE Prove that lim 5x = 10. In this case a = 2 and L = 10. 
x+2 

Socrates asks for 15x - 101 < E. Plato responds by requiring Ix - 21 < 6. What 6 should 
he choose? In this case 15x - 101 is exactly 5 times Jx - 21. So Plato picks 6 below ~ / 5  
(a smaller 6 is always OK). Whenever Jx  - 21 < 45, multiplication by 5 shows that 
15x - 101 < E. 

Remark 1 In Figure 2.19, Socrates chooses the height of the box. It extends above 
and below L, by the small number E. Second, Plato chooses the width. He must make 
the box narrow enough for the graph to go out the sides. Then If (x) - Ll< E. 

1 limit L is not f ( o )  f ( x )  = step function 
I 
I 

Fig. 2.19 S chooses height 2.5, then P chooses width 26. Graph must go out the sides. 



When f(x) has a jump, the box can't hold it. A step function has no limit as x 
approaches the jump, because the graph goes through the top or bottom-no matter 
how thin the box. 

Remark 2 The second figure has f (x) +L, because in taking limits we ignore the 
Jinalpoint x = a. The value f (a) can be anything, with no effect on L. The first figure 
has more: f (a) equals L. Then a special name applies- f is continuous.The left figure 
shows a continuous function, the other figures do not. 

We soon come back to continuous functions. 

Remark 3 In the example with f = 5x and 6 = 45, the number 5 was the slope. That 
choice barely kept the graph in the box-it goes out the corners. A little narrower, 
say 6 = ~110, and the graph goes safely out the sides. A reasonable choice is 
to divide E by 21 ff(a)l. (We double the slope for safety.) I want to say why this 6 
works-even if the E-6 test is seldom used in practice. 

The ratio off (x) -L to x -a is distance up over distance across. This is Af/Ax, 
close to the slope f'(a). When the distance across is 6, the distance up or down is 
near 61 ff(a)l. That equals ~ / 2  for our "reasonable choice" of 6-so we are safely 
below E. This choice solves most exercises. But Example 7 shows that a limit might 
exist even when the slope is infinite. 

EXAMPLE 7 lim ,/x - 1 = 0 (a one-sided limit). 
x+1+  

Notice the plus sign in the symbol x + 1+ . The number x approaches a = 1 only from 
above. An ordinary limit x + 1 requires us to accept x on both sides of 1 (the exact 
value x = 1 is not considered). Since negative numbers are not allowed by the square 
root, we have a one-sided limit. It is L = 0. 

Suppose E is 1/10. Then the response could be 6 = 1/100. A number below 1/100 
has a square root below 1/10. In this case the box must be made extremely 
narrow, 6 much smaller than E, because the square root starts with infinite slope. 

Those examples show the point of the 6-6 definition. (Given E, look for 6. This 
came from Cauchy in France, not Socrates in Greece.) We also see its bad feature: 
The test is not convenient. Mathematicians do not go around proposing 8's and 
replying with 8's. We may live a strange life, but not that strange. 

It is easier to establish once and for all that 5x approaches its obvious limit 5a. 
The same is true for other familiar functions: xn+an and sin x +sin a and 
(1 - x)-' -t (1 - a)- '-except at a = 1. The correct limit L comes by substituting 
x = a into the function. This is exactly the property of a "continuous function." Before 
the section on continuous functions, we prove the Squeeze Theorem using E and 6. 

Proof g(x) is squeezed between f (x) and h(x). After subtracting L, g(x) -L is between 
f(x) -L and h(x) -L. Therefore 

Ig(x) -LI < E if If(x) -L(< E  and Ih(x)- LJ < E .  

For any E, the last two inequalities hold in some region 0 < Jx- a1 < 6. So the first 
one also holds. This proves that g(x) +L. Values at x = a are not involved-until 
we get to continuous functions. 
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84 2 Derivatives 

2.6 EXERCISES 
Read-through questions 

The limit of a, = (sin n)/n is a . The limit of a, = n4/2" is 
b . The limit of a, = (- I)" is c . The meaning of a, -+ 0 

is: Only d of the numbers la,/ can be e . The meaning 
of a, -+ L is: For every f there is an g such that 

h i f n>  i .Thesequencel,l+$,l+$+~,...isnot 
i because eventually those sums go past k . 

The limit of f (x)  = sin x as x -+ a is I . The limit of 
f ( x ) = x / l x l a s x - + - 2 i s  m , b u t  the l imi tasx+Odoes  
not n . This function only has o -sided limits. The 
meaning of lirn,,, f (x)= L is: For every E there is a 6 such 
that I f  (x)-LI < E whenever P . 

Two rules for limits, when a, -+ L and b, -+ M, are 
u, + h, -+ q and a,b, -+ r . The corresponding rules 
for functions, when f(x) -+ L and g(x) -+ M as x -+a, are 

s and t . In all limits, la, -LI or I f  (x)-LI must 
eventually go below and u any positive v . 

A * B means that A is a w condition for B. Then B is 
true x A is true. A -B means that A is a Y condition 
for B. Then B is true z A is true. 

1 What is u, and what is the limit L? After which N is 
la, -LI < &?(Calculator allowed) 

(a)  -1, + f ,  - f ,  ... (b) 4,++$,$ + a + & ,  ... 

(c) i,$, i,... an=n/2"  (d) 1.1, 1.11, 1.111, ... 
r


(e) a,, (f) ~ , = , / ' ~ - n  ;/= n 

"5 If the sequence a, ,  a,, a,, . . . approaches zero, prove that 
we can put those numbers in any order and the new sequence 
still approaches zero. 

*6 Suppose f (x) -+ L and g(x) -,M as x -t a. Prove from the 
definitions that f (x)+ g(x)-,L + M as x -,a. 

Find the limits 7-24 if they exist. An E-6 test is not required. 

t + 3
7 lirn -

t + 2  t 2 -2  

9 lim f (X+ h) -f (4 
X - ~ O  h 

sin2 h cos2 h
11 lirn 

h+O h2 

1x113 lim+ - (one-sided) 

12 lirn 
X + O  

14 lirn 
x - 0 -

.01) 20 lim 
x 4 2  

2x tan x 
sin x 

I x I 
- (one-sided)
X 

J4 -x  

x + o  

15 lirn 
x - + l  

17 lirn 
x - + 5  

19 lim 
x + o  

x 

sin x 
-

x 

x2 + 25 
x - 5  

J I + x - 1  
(test x = 

Y 

21 lim [f(x)-f(a)](?) 
x-+a 

22 lim (sec x - tan x) 
x + 4 2  

(g) 1 + 1, (1  +4I2, (1  +f )3 ,  ... 

2 Show by example that these statements are false: 

(a) If a, -,L and h, -+ L then a,/b, -+ 1 

(b) u, -+ L if and only if a: -+ L~ 

(c) If u, < 0 and a, -+ L then L < 0 

(d) If infinitely many an's are inside every strip around 
zero then a, -+ 0. 

3 Which of these statements are equivalent to B = A? 

(a) If A is true so is B 

(b) A is true if and only if B is true 
(c) B is a sufficient condition for A 

(d) A is a necessary condition for B. 

4 Decide whether A B or B * A or neither or both: 

(a) A = [a, -+ 11 B = [-a, -+ - 11 

(b) A =[a, -+0] B = [a,-a,-, -01 

(c) A = [a, < n] B = [a, = n] 

(d) A = [a, -,O] B = [sin a, -+ 0) 

(e) A = [a, -+ 01 B = [lla, fails to converge] 
(f) A = [a, < n] B = [a,/n converges] 

sin x 24 lim sin (x - 1)23 lirn -
sin x/2 x - t l  x2-1X + O  

25 Choose 6 so that I f(.x)l <Aif 0 < x < 6. 

26 Which does the definition of a limit require? 

(1) I f (x - ) -L l<~  = O < I x - a ( < 6  
(2) I f ( x ) - L l < ~  = O r l x - a l < G  

(3) If(x)- LI < E  - 0 ~ I . x - a 1  < 6  

27 The definition of "f(x) -+ L as x -+ x" is this: For any 
E there is an X such that < E if x > X. Give an 
example in which f (x)3 4 as x -+ rrc . 

28 Give a correct definition of ''f(.x) -+ 0 as x -,-x'." 

29 The limit of f(x)  =(sin x)/x as x -+ x is . For 
E = .O1 find a point X beyond which I f(x)l < E. 

30 The limit of f (x)= 2x/(l + x) as x -+ rx is L = 2. For 
t: = .O1 find a point X beyond which I f (x)- 21 < E .  

31 The limit of , f ( s )  = sin s as s -+ r_ does not exist. Explain 
why not. 
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:r 38 If a, -+ L prove that there is a number N with this prop- 
32 (Calculator) Estimate the limit of (1+- as x +a. erty: If n >N and m >N then (a, -a,( <2 ~ .This is Cauchy's 

33 For the polynomial f(x) =2x -5x2+7x3 find 
test for convergence. 

f ( 4(c) lirn - (d) lirn -f ( 4  
x-im x3 x4-00 x3 

34 For f (x)=6x3 + l00Ox find 

f (x)(a) lirn -
x+m X 

f ( 4  f ( 4(c) lirn - (d) lirn -
x-rm x4 x4m x3 + 1 

Important rule As x + co the ratio of polynomials f(x)/g(x) 
has the same limit as the ratio of their leading terms. f (x)= 
x3-x +2 has leading term x3 and g(x) =5x6+x + 1 has 
leading term 5x6. Therefore f (x)/g(x) behaves like x3/5x6 +0, 
g(x)/f (x) behaves like 5x6/x3 +a,(f ( x ) ) ~ / ~ ( x )  behaves like 
x6/5x6 115. 

35 Find the limit as x + co if it exists: 

3x2 + 2 x +  1 x4 x2 + 1000 1
x sin -.

3 + 2 x + x 2  x3+x2  x3-1000 x 

36 If a particular 6 achieves If (x)-LI <e, why is it OK to 
choose a smaller 6? 

37 The sum of 1 + r + r2 + ..-+ r"-' is a, =(1 -r")/(l -r). 
What is the limit of a, as n -,co? For which r does the limit 
exist? 

39 No matter what decimals come later, a l  = .4, a2 = .49, 
a, = .493, ... approaches a limit L. How do we know (when 
we can't know L)? Cauchy's test is passed: the a's get closer 
to each other. 

(a) From a, onwards we have la, -aml< 
(b) After which a, is lam -a,l < 

40 Choose decimals in Problem 39 so the limit is L = .494. 
Choose decimals so that your professor can't find L. 

41 If every decimal in .abcde-.. is picked at random from 
0, 1, ...,9, what is the "average" limit L? 

42 If every decimal is 0 or 1(at random), what is the average 
limit L? 

43 Suppose a, =$an- +4 and start from al = 10. Find a2 
and a, and a connection between a, -8 and a,-, -8. Deduce 
that a, -,8. 

44 "For every 6 there is an E such that If (x)]<e if 1x1 <6." 
That test is twisted around. Find e when f (x)=cos x, which 
does not converge to zero. 

45 Prove the Squeeze Theorem for sequences, using e: If 
a n + L  and c,-+ L and a n 6 b n d c n  for n >  N, then b,+ L. 

46 Explain in 110 words the difference between "we will get 
there if you hurry" and "we will get there only if you hurry" 
and "we will get there if and only if you hurry." 

1-1Continuous Functions 
2.7 

This will be a brief section. It was originally included with limits, but the combination 
was too long. We are still concerned with the limit off (x) as x -,a, but a new number 
is involved. That number is f (a), the value off at x = a. For a "limit," x approached 
a but never reached it-so f(a) was ignored. For a "continuous function," this final 
number f (a) must be right. 

May I summarize the usual (good) situation as x approaches a? 

1. The number f (a) exists (f is defined at a) 
2. The limit of f (x) exists (it was called L) 
3. The limit L equals f (a) (f (a) is the right value) 

In such a case, f (x) is continuous at x = a. These requirements are often written in a 
single line: f (x) +f (a) as x -,a. By way of contrast, start with four functions that are 
not continuous at x = 0. 



Fig. 2.20 Four types of discontinuity (others are possible) at x =0. 

In Figure 2.20, the first function would be continuous if it had f (0)= 0. But it has 
f(0) = 1. After changing f (0) to the right value, the problem is gone. The discontinuity 
is removable. Examples 2, 3 ,  4 are more important and more serious. There is no 
"correct" value for f (0): 

2. f (x) = step function (jump from 0 to 1 at x = 0) 
3. f (x) = 1/x2 (infinite limit as x +0) 
4. f (x) = sin (1/x) (infinite oscillation as x +0). 

The graphs show how the limit fails to exist. The step function has a jump discontinu- 
ity. It has one-sided limits, from the left and right. It does not have an ordinary (two- 
sided) limit. The limit from the left (x +0-) is 0. The limit from the right (x +0') 
is 1. Another step function is x/lxl, which jumps from -1 to 1. 

In the graph of l/x2, the only reasonable limit is L= + co. I cannot go on record 
as saying that this limit exists. Officially, it doesn't-but we often write it anyway: 
l/x2+ m as x +0. This means that l/x2 goes (and stays) above every L as x +0. 

In the same unofficial way we write one-sided limits for f (x)= l/x: 

1 1
From the left, lim -= - co. From the right, lim -= + oo. (1)

x+o- x x+o+  X 

Remark l/x has a "pole" at x = 0. So has l/x2 (a double pole). The function 
l/(x2 -X) has poles at x = 0 and x = 1. In each case the denominator goes to zero 
and the function goes to + oo or -oo. Similarly llsin x has a pole at every multiple 
of n (where sin x is zero). Except for l/x2 these poles are "simplew-the functions are 
completely smooth at x = 0 when we multiply them by x: 

1 
and ( )(A)are continuous at x =0.(x)(!-) =1 and (x) 

l/x2 has a double pole, since it needs multiplication by x2 (not just x). A ratio of 
polynomials P(x)/Q(x) has poles where Q = 0, provided any common factors like 
(X + 1)/(x+ 1) are removed first. 

Jumps and poles are the most basic discontinuities, but others can occur. The 
fourth graph shows that sin(l/x) has no limit as x +0. This function does not blow 
up; the sine never exceeds 1. At x = 4 and $ and & it equals sin 3 and sin 4 and 
sin 1000. Those numbers are positive and negative and (?). As x gets small and l/x 
gets large, the sine oscillates faster and faster. Its graph won't stay in a small box of 
height E ,  no matter how narrow the box. 

CONTINUOUS FUNCTIONS 

DEFINITION f is "continuous at x = a" if f (a) is defined and f (x) 4f (a) as x -,a. 
Iff is continuous at every point where it is defined, it is a continuous function. 
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Objection The definition makes f(x)= 1/x a continuous function! It is not defined
at x = 0, so its continuity can't fail. The logic requires us to accept this, but we don't
have to like it. Certainly there is no f(0) that would make 1lx continuous at x = 0.

It is amazing but true that the definition of "continuous function" is still debated
(Mathematics Teacher, May 1989). You see the reason-we speak about a discontinu-
ity of l/x, and at the same time call it a continuous function. The definition misses
the difference between 1/x and (sin x)/x. The function f(x) = (sin x)/x can be made
continuousat all x. Just set f(0) = 1.

We call a function "continuable'iif its definition can be extended to all x in a way
that makes it continuous. Thus (sin x)/x and \/; are continuable. The functions l/x
and tan x are not continuable. This suggestion may not end the debate, but I hope
it is helpful.

EXAMPLE sin x and cos x and all polynomials P(x) are continuous functions.

EXAMPLE2 The absolute value Ixl is continuous. Its slope jumps (not continuable).

EXAMPLE3 Any rational function P(x)/Q(x) is continuous except where Q = 0.

EXAMPLE4 The function that jumps between 1 at fractions and 0 at non-fractions
is discontinuous everywhere. There is a fraction between every pair of non-fractions
and vice versa. (Somehow there are many more non-fractions.)

EXAMPLE5 The function 02 is zero for every x, except that 00 is not defined. So
define it as zero and this function is continuous. But see the next paragraph where
00 has to be 1.

We could fill the book with proofs of continuity, but usually the situation is clear.
"A function is continuous if you can draw its graph without lifting up your pen."
At a jump, or an infinite limit, or an infinite oscillation, there is no way across the
discontinuity except to start again on the other side. The function x" is continuous
for n > 0. It is not continuable for n < 0. The function x0 equals 1 for every x, except
that 00 is not defined. This time continuity requires 00 = 1.

The interesting examples are the close ones-we have seen two of them:

sin x 1 -cos x
EXAMPLE6 and are both continuable at x = 0.

x x

Those were crucial for the slope of sin x. The first approaches 1 and the second
approaches 0. Strictly speaking we must give these functions the correct values
(1 and 0) at the limiting point x = O-which of course we do.

It is important to know what happens when the denominators change to x2.

sin x 1 -cos x 1
EXAMPLE7 blows up but has the limit at x = 0.

X2 2

Since (sin x)/x approaches 1, dividing by another x gives a function like 1lx. There
is a simple pole. It is an example of 0/0, in which the zero from x2 is reached more
quickly than the zero from sin x. The "race to zero" produces almost all interesting
problems about limits.
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For 1 - cos x and x2 the race is almost even. Their ratio is 1 to 2: 

1 - cos x -- 1 - cos2x --.sin2x 1 1- -+- as x -+ 0. 
x2 x2(1+c0sx)  x2 ~ + C O S X  1 + 1  

This answer will be found again (more easily) by "1'HBpital's rule." Here I emphasize 
not the answer but the problem. A central question of differential calculus is to know 
how fast the limit is approached. The speed of approach is exactly the information in 
the derivative. 

These three examples are all continuous at x = 0. The race is controlled by the 
slope-because f (x) -f (0) is nearly f '(0) times x: 

derivative of sin x is 1 - sin x decreases like x 

derivative of sin2x is 0 - sin2x decreases faster than x 

derivative of xli3 is CQ - x1I3decreases more slowly than x. 

DIFFERENTIABLE FUNCTIONS 

The absolute value 1x1 is continuous at x = 0 but has no derivative. The same is true 
for x113. Asking for a derivative is more than asking for continuity. The reason is 
fundamental, and carries us back to the key definitions: 

Continuous at x: f (x + Ax) -f(x)  -+ 0 as Ax -+ 0 

f (x + A.u) -f ( x )
Derivative at x: -+f"(x) as Ax -+ 0.

Ax 

In the first case, Af goes to zero (maybe slowly). In the second case, Af goes to zero 
as fast as Ax (because AflAx has a limit). That requirement is stronger: 

21 At a point where f(x) has a derivative, the function must be continuous. 
But f (x) can be continuous with no derivative. 

Proof The limit of Af = (Ax)(Af/Ax) is (O)(df/dx) = 0. So f (x + Ax) -f (x) -+ 0. 

The continuous function x113has no derivative at x = 0, because +xw2I3blows up. 
The absolute value 1x1 has no derivative because its slope jumps. The remarkable 
function 4cos 3x + cos 9x + is continuous at all points and has a derivative at 
no points. You can draw its graph without lifting your pen (but not easily-it turns 
at every point). To most people, it belongs with space-filling curves and unmeasurable 
areas-in a box of curiosities. Fractals used to go into the same box! They are 
beautiful shapes, with boundaries that have no tangents. The theory of fractals is 
very alive, for good mathematical reasons, and we touch on it in Section 3.7. 

I hope you have a clear idea of these basic definitions of calculus: 

1 Limit ( n -+ ,xor s -+a)  2 Continuity (at x = a) 3 Derivative (at x = a). 

Those go back to E and 6, but it is seldom necessary to follow them so far. In the 
same way that economics describes many transactions, or history describes many 
events, a function comes from many values f (x). A few points may be special, like 
market crashes or wars or discontinuities. At other points dfldx is the best guide to 
the function. 



2.7 Continuous Functions 

This chapter ends with two essential facts about a continuous function on a closed 
interval. The interval is a 6 x < b, written simply as [a, b1.t At the endpoints a and 
b we require f (x) to approach f (a) and f(b). 

Extreme Value Property A continuous function on the finite interval [a, b] has a 
maximum value M and a minimum value m. There are points x,,, and x,, in [a, b] 
where it reaches those values: 

f(xmax)=M 3 f(x) 3 f(xmin)=m for all x in [a, b]. 

Intermediate Value Property If the number F is between f(a) and f(b), there is a 
point c between a and b where f (c) = F. Thus if F is between the minimum m and 
the maximum M, there is a point c between xmin and x,,, where f (c)= F. 

Examples show why we require closed intervals and continuous functions. For 
0 < x < 1 the function f (x) = x never reaches its minimum (zero). If we close the 
interval by defining f (0) = 3 (discontinuous) the minimum is still not reached. Because 
of the jump, the intermediate value F = 2 is also not reached. The idea of continuity 
was inescapable, after Cauchy defined the idea of a limit. 

2.7 EXERCISES 

Read-through questions 

Continuity requires the a of f (x) to exist as x -,a and 
to agree with b . The reason that x/lxl is not continuous 
at x = 0 is c . This function does have d limits. The 
reason that l/cos x is discontinuous at e is f . The 
reason that cos(l/x) is discontinuous at x = 0 is g . 
The function f(x) = h has a simple pole at x = 3, where 
f has a i pole. 

The power xn is continuous at all x provided n is i . It 
has no derivative at x = 0 when n is k . f (x)= sin (-x)/x 
approaches I as x -,0, so this is a m function pro- 
vided we define f (0)= n . A "continuous function" must 

9 f ( 4  = 
(sin x)/x2 x # 0 

lo f(x)= 
x + c  

1 

x d c  

x > c  
be continuous at all 0 . A ','continuable function" can be 
extended to every point x so that P . 

Iff has a derivative at x = a then f is necessarily q at 
11 f(x)= 

c 

112 

x # 4  

~ = 4  
12 f(x)= 

c 

sec x 

xQO 

x 2 0 
x = a. The derivative controls the speed at which f(x) 
approaches r . On a closed interval [a, b], a continuous 
f has the s value property and the t value property. 
It reaches its t~ M and its v m, and it takes on every 
value w . 

In Problems 1-20, find the numbers c that make f(x) into 
(A) a continuous function and (B) a differentiable function. (tan x)/x x # 0 x2 x d c  

15 f(x)= { 16 f(x)=In one case f (x) -,f(a) at every point, in the other case Af /Ax c x = o  2x x > c  
has a limit at every point. 

sin x x < 1 cos3x X # 7 r  
1 f (4 = i 2 f (x)= ic x 2 l  C x = n  

+The interval [a, b] is closed (endpoints included). The interval (a, b) is open (a and b left out). 
The infinite interval [0, ao) contains all x 3 0. 



(sin x -x)/xc x # 0 
19 f(x) = i 20 f(x)=Ix2+c21 

O x=O 

Construct your own f (x) with these discontinuities at x = 1. 

Removable discontinuity 

Infinite oscillation 

Limit for x -+ 1+,no limit for x + 1-

A double pole 

lirn f(x)= 4 + lim+ f(x) 
x+1- x+ 1 

lim f (x)= GO but lim (x - 1)f (x)= 0 
x+ 1 x-r 1 

lim (X - 1)f (x)= 5 
x-r 1 

The statement "3x + 7 as x -+ 1" is false. Choose an E for 
which no 6 can be found. The statement "3x -* 3 as x -,1" is 
true. For E = 4 choose a suitable 6.  

29 How many derivatives f ', f ", .. . are continuable 
functions? 

(a) f = x3I2 (b) f = x3I2 sin x (c) f = (sin x)'I2 

30 Find one-sided limits at points where there is no two- 
sided limit. Give a 3-part formula for function (c). 

(b) sin 1x1 

31 Let f(1)= 1 and f (- 1)= 1 and f (x) = (x2-x)/(x2- 1) 
otherwise. Decide whether f is continuous at 

(a) x = 1 (b) x = 0 (c) x=-1. 

'32 Let f(x)= x2 sin l/x for x # 0 and f (0)= 0. If the limits 
exist, find 

(a) f ( 4  (b) df /dx at x = 0 (c) X+Olim f '(x). 

33 If f(0) = 0 and f'(0) = 3, rank these functions from 
smallest to largest as x decreases to zero: 

34 Create a discontinuous function f(x) for which f 2(x) is 
continuous. 

35 True or false, with an example to illustrate: 
(a) If f(x) is continuous at all x, it has a maximum 
value M. 

(b) I f f  (x) < 7 for all x, then f reaches its maximum. 
(c) If f (1)= 1 and f (2)= -2, then somewhere f(x)= 0. 
(d) If f (1)= 1 and f (2) = -2 and f is continuous on 
[I, 21, then somewhere on that interval f(x) = 0. 

36 The functions cos x and 2x are continuous. Show from 
the property that cos x = 2x at some point between 
0 and 1. 

37 Show by example that these statements are false: 
(a) If a function reaches its maximum and minimum then 
the function is continuous. 
(b) If f(x) reaches its maximum and minimum and all 
values between f(0) and f(1), it is continuous at x = 0. 
(c) (mostly for instructors) If f(x) has the intermediate 
value property between all points a and b, it must be 
continuous. 

38 Explain with words and a graph why f(x) = x sin (llx) is 
continuous but has no derivative at x = 0. Set flO) = 0. 

39 Which of these functions are continuable, and why? 

sin x x c 0 sin llx x<O 
f l ( ~ )= f2(4 = 

cos x x > 1 cos l/x x >  1 

X 
f3(x)= -when sin x # 0 f4(x)= x0 + 0"'sin x 

40 Explain the difference between a continuous function and 
a continuable function. Are continuous functions always con- 
tinuable? 

"41 f(x) is any continuous function with f (0)=f (1). 
(a) Draw a typical f (x). Mark where f (x)=f (x + 4). 
(b) Explain why g(x) =f(x + 3)-f(x) has g(4) = -g(0). 
(c) Deduce from (b) that (a) is always possible: There must 
be a point where g(x) = 0 and f (x)=f(x + 4). 

42 Create an f (x) that is continuous only at x = 0. 

43 If f (x) is continuous and 0 <f(x)< 1 for all x, then there 
is a point where f (x*)= x*. Explain with a graph and prove 
with the intermediate value theorem. 

44 In the E-8 definition of a limit, change 0 c Ix -a1 c 6 to 
Ix -a1 c 6. Why is f (x) now continuous at x = a? 

45 A function has a at x = 0 if and only if 
( f  (x) -f (0))lx is at x = 0. 
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C H A P T E R  


Applications of the Derivative 


Chapter 2 concentrated on computing derivatives. This chapter concentrates on using 
them. Our computations produced dyldx for functions built from xn and sin x and 
cos x. Knowing the slope, and if necessary also the second derivative, we can answer 
the questions about y =f(x) that this subject was created for: 

1. How does y change when x changes? 
2. What is the maximum value of y? Or the minimum? 
3. How can you tell a maximum from a minimum, using derivatives? 

The information in dyldx is entirely local. It tells what is happening close to the point 
and nowhere else. In Chapter 2, Ax and Ay went to zero. Now we want to get them 
back. The local information explains the larger picture, because Ay is approximately 
dyldx times Ax. 

The problem is to connect the finite to the infinitesimal-the average slope to the 
instantaneous slope. Those slopes are close, and occasionally they are equal. Points 
of equality are assured by the Mean Value Theorem-which is the local-global 
connection at the center of differential calculus. But we cannot predict where dyldx 
equals AylAx. Therefore we now find other ways to recover a function from its 
derivatives-or to estimate distance from velocity and acceleration. 

It may seem surprising that we learn about y from dyldx. All our work has been 
going the other way! We struggled with y to squeeze out dyldx. Now we use dyldx 
to study y. That's life. Perhaps it really is life, to understand one generation from 
later generations. 

3.1 Linear Approximation 

The book started with a straight line f = vt .  The distance is linear when the velocity 
is constant. As soon as v begins to change, f = v t  falls apart. Which velocity do we 
choose, when v( t )  is not constant? The solution is to take very short time intervals, 91 



3 Applications of the Derivative 

in which v is nearly constant: 

f = vt is completely false 

Af = vAt is nearly true 

df = vdt is exactly true. 

For a brief moment the functionf(t) is linear-and stays near its tangent line. 
In Section 2.3 we found the tangent line to y =f(x). At x = a, the slope of the curve 

and the slope of the line are f'(a). For points on the line, start at y =f(a). Add the 
slope times the "increment" x - a: 

Y =f(a) +f '(a)(x - a). ( 1 )  

We write a capital Y for the line and a small y for the curve. The whole point of 
tangents is that they are close (provided we don't move too far from a): 

That is the all- urpose linear approximation. Figure 3.1 shows the square root 
function y = A n d  its tangent line at x = a = 100. At the point y = @=lo, 
the slope is 1/2& = 1/20. The table beside the figure compares y(x) with Y(x). 

Fig. 3.1 Y ( x )is the linear approximation to f i near x = a = 100. 

The accuracy gets worse as x departs from 100. The tangent line leaves the curve. 
The arrow points to a good approximation at 102, and at 101 it would be even better. 
In this example Y is larger than y-the straight line is above the curve. The slope of 
the line stays constant, and the slope of the curve is decreasing. Such a curve will 
soon be called "concave downward," and its tangent lines are above it. 

Look again at x = 102, where the approximation is good. In Chapter 2, when we 
were approaching dyldx, we started with Ay/Ax: 

JiE-m
slope z 

102- 100 ' 

Now that is turned around! The slope is 1/20. What we don't know i s  J102: 

JZ w J-5+ (slope)(102 - 100). (4) 

You work with what you have. Earlier we didn't know dyldx, so we used (3). Now 
we are experts at dyldx, and we use (4). After computing y' = 1/20 once and for 



3.1 Linear Approximation 

all, the tangent line stays near & for every number near 100. When that nearby 
number is 100 + Ax, notice the error as the approximation is squared: 

The desired answer is 100 + Ax, and we are off by the last term involving AX)^. The 
whole point of linear approximation is to ignore every term after Ax. 

There is nothing magic about x = 100, except that it has a nice square root. Other 
points and other functions allow y x Y I would like to express this same idea in 
different symbols. Instead of starting from a and going to x, we start from x and go a 
distance Ax to x + Ax. The letters are different but the mathematics is identical. 

1 3A At any point x, and for any smooth betion y =fo, 

slope at x x f& + h)-Ax). 
(5)

I Ax 

EXAMPLE 1 An important linear approximation: (1 + x)" x 1 + nx for x near zero. 

EXAMPLE 2 A second important approximation: 1 / ( 1  + x)" x 1 -nx for x near zero. 

Discussion Those are really the same. By changing n to -n in Example 1 ,  it becomes 
Example 2. These are linear approximations using the slopes n and -n at x =0: 

( 1  + x)" z 1 + (slope at zero) times ( x  - 0)= 1 + nx. 

Here is the same thing with f (x )  = xn. The basepoint in equation (6)is now 1 or x: 

(1 +Ax)" x 1 + nAx ( x  + Ax)" z xn+ nxn-'Ax. 

Better than that, here are numbers. For n = 3 and -1 and 100, take Ax = .01: 

Actually that last number is no good. The 100th power is too much. Linear approxi- 
mation gives 1 + 100Ax = 2, but a calculator gives (l.O1)'OO= 2.7. ... This is close to 
e, the all-important number in Chapter 6. The binomial formula shows why the 
approximation failed: 

Linear approximation forgets the AX)^ term. For Ax = 1/100 that error is nearly 3. 
It is too big to overlook. The exact error is f"(c), where the Mean Value 
Theorem in Section 3.8 places c between x and x + Ax. You already see the point: 

y - Y is of order AX)^. Linear approximation, quadratic error. 

DIFFERENTIALS 

There is one more notation for this linear approximation. It has to be presented, 
because it is often used. The notation is suggestive and confusing at the same time- 
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3 Applications of the Derivative 

it keeps the same symbols dx and dy that appear in the derivative. Earlier we took 
great pains to emphasize that dyldx is not an ordinary fraction.7 Until this paragraph, 
dx and dy have had no independent meaning. Now they become separate variables, 
like x and y but with their own names. These quantities dx and dy are called 
dzrerentials. 

The symbols dx and dy measure changes along the tangent line. They do for the 
approximation Y(x) exactly what Ax and Ay did for y(x). Thus dx and Ax both 
measure distance across. 

Figure 3.2 has Ax =dx. But the change in y does not equal the change in Y. One 
is Ay (exact for the function). The other is dy (exact for the tangent line). The 
differential dy is equal to AY, the change along the tangent line. Where Ay is the true 
change, dy is its linear approximation (dy/dx)dx. 

You often see dy written as f'(x)dx. 

Ay =change in y (along curve) 

Y 
dy =change in Y (along tangent) 

Ax- Fig. 3.2 The linear approximation to Ay is 

x = a  x + d x = x + A x  dy =f '(x) dx. 

EmMPLE 3 y = x2 has dyldx = 2x so dy = 2x dx. The table has basepoint x = 2. 
The prediction dy differs from the true Ay by exactly (Ax)2 = .0l and .04 and .09. 

The differential dy =f'(x)dx is consistent with the derivative dyldx =f'(x). We 
finally have dy = (dy/dx)dx, but this is not as obvious as it seems! It looks like 
cancellation-it is really a definition. Entirely new symbols could be used, but dx 
and dy have two advantages: They suggest small steps and they satisfy dy =f'(x)dx. 
Here are three examples and three rules: 

d(sin x) = cos x dx d(cf) = c df 

Science and engineering and virtually all applications of mathematics depend on 
linear approximation. The true function is "linearized,"using its slope v: 

Increasing the time by At increases the distance by x vAt 

Increasing the force by Af increases the deflection by x vAf 

Increasing the production by Ap increases its value by z vAp. 

+Fraction or not, it is absolutely forbidden to cancel the d's. 



3.1 Linear Approximation 

The goal of dynamics or statics or economics is to predict this multiplier v-the 
derivative that equals the slope of the tangent line. The multiplier gives a local 
prediction of the change in the function. The exact law is nonlinear-but Ohm's law 
and Hooke's law and Newton's law are linear approximations. 

ABSOLUTE CHANGE, RELATIVE CHANGE, PERCENTAGE CHANGE 

The change Ay or Af can be measured in three ways. So can Ax: 

Absolute change f!f Ax 

df
Relative change 
f(4 

Percentage change 

Relative change is often more realistic than absolute change. If we know the distance 
to the moon within three miles, that is more impressive than knowing our own height 
within one inch. Absolutely, one inch is closer than three miles. Relatively, three miles 
is much closer: 

3 miles 1 inch < or .001%< 1.4%. 
300,000 miles 70 inches 

EXAMPLE 4 The radius of the Earth is within 80 miles of r = 4000 miles. 
(a) Find the variation dV in the volume V = jnr3, using linear approximation. 
(b) Compute the relative variations dr/r and dV/V and AV/K 

Solution The job of calculus is to produce the derivative. After dV/dr = 4nr2, its 
work is done. The variation in volume is dV = 4n(4000)'(80) cubic miles. A 2% 
relative variation in r gives a 6% relative variation in V: 

Without calculus we need the exact volume at r = 4000 + 80 (also at r = 3920): 

One comment on dV = 4nr2dr. This is (area of sphere) times (change in radius). It is 
the volume of a thin shell around the sphere. The shell is added when the radius 
grows by dr. The exact AV/V is 3917312/640000%, but calculus just calls it 6%. 

3.4 EXERCISES 
Read-through questions In terms of x and Ax, linear approximation is 

f(x + Ax) x f (x )  + i . The error is of order (Ax)P or
On the graph, a linear approximation is given by the a ( x  -a)P with p = i . The differential d y  equals kline. At x = a, the equation for that line is Y =f(a) + b . times the differential r . Those movements are along the Near x = a = 10, the linear approximation to y = x3 is Y = 

-m line, where Ay is along the n .1000 + c . At x = 11 the exact value is ( 1  1)3= ' d . The 
approximation is Y = e . In this case Ay = f and Find the linear approximation Y to y =f (x)  near x = a: 
dy = g . If we know sin x, then to estimate sin(x + Ax) we 
add h . 1 f (x )  = x + x4, a = 0 2 A x )  = l / x ,  a = 2 
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3 f(x) = tan x, a = n/4 4 f(x) = sin x, a = n/2 

5 f(x) = x sin x, a = 2n 6 f(x) = sin2x, a = 0 

Compute 7-12 within .O1 by deciding on f(x), choosing the 
basepoint a, and evaluating f(a) + f'(a)(x - a). A calculator 
shows the error. 

7 (2.001)(j 8 sin(.02) 

9 cos(.O3) 10 ( 15.99)'14 

1 1  11.98 12 sin(3.14) 

Calculate the numerical error in these linear approximations 
and compare with +(Ax)2f"(x): 

13 (1.01)3z 1 + 3(.01) 14 cos(.Ol)z 1 + 0(.01) 

15 (sin .01)2 z 0 + 0(.01) 16 (1 .01)-~z 1 - 3(.Ol) 

Confirm the approximations 19-21 by computing f'(0): 

19 J K z  1 - f x  

20 I IJ= z I + +x2 (use f =  I 1JI-u. then put u = x2) 

21 J,."u'c+ ;$ (use f ( u ) = j = ,  then put u = r 2 )  

22 Write down the differentials d f  for f(x) = cos x and 
(x + l)/(x- 1) and (.x2 + I)'. 

In 23-27 find the linear change dV in the volume or d A  in the 
surface area. 

23 d V  if the sides of a cube change from 10 to 10.1 

24 d A  if the sides of a cube change from x to x + dx. 

25 d A  if the radius of a sphere changes by dr. 

26 d V  if a circular cylinder with r = 2 changes height from 3 
to 3.05 (recall V = nr2h). 

27 dV if a cylinder of height 3 changes from r = 2 to r = 1.9. 
Extra credit: What is d V  i f  r and h both change (dr  and dh)? 

28 In relativity the mass is m , / J w  at velocity u. By 
Problem 20 this is near mo + for small v. Show that 
the kinetic energy fmv2 and the change in mass satisfy 
Einstein's equation e = (Am)c2. 

29 Enter 1.1 on your calculator. Press the square root key 5 
times (slowly). What happens each time to the number after 
the decimal point? This is because JGz . 

30 In Problem 29 the numbers you see are less than 1.05, 
1 .025, . . . . The second derivative of Jlfris so the 
linear approximation is higher than the curve. 

31 Enter 0.9 on your calculator and press the square root 
key 4 times. Predict what will appear the fifth time and press 
again. You now have the root of 0.9. How many 
decimals agree with 1 -h ( 0 .I)? 

Our goal is to learn about f(x) from dfldx. We begin with two quick questions. 
If dfldx is positive, what does that say about f ?  If the slope is negative, how is that 
reflected in the function? Then the third question is the critical one: 

How do you identify a maximum or minimum? Normal answer: The slope is zero. 

This may be the most important application of calculus, to reach df1d.x = 0. 
Take the easy questions first. Suppose dfldx is positive for every x between a and b. 

All tangent lines slope upward. The function f(x) is increasing as  x goes from n to b. 

3B If dfldx > 0 then f(x) is increasing. If dfldx < 0 then f(x) is decreasing. 

To define increasing and decreasing, look at any two points x < X .  "Increasing" 
requires f(x) < f (X) .  "Decreasing" requires j(x)  > f (X) .  A positive slope does not mean 
a positive function. The function itself can be positive or negative. 

EXAMPLE 1 f(x) = x2 - 2x has slope 2x - 2. This slope is positive when x > 1 and 
negative when x < 1. The function increases after x = 1 and decreases before x = 1. 



3.2 Maximum and Minimum Problems 

Fig. 3.3 Slopes are - +. Slope is + - + - + so f is up-down-up-down-up. 

We say that without computing f ( x )  at any point! The parabola in Figure 3.3 goes 
down to its minimum at x = 1 and up again. 

EXAMPLE 2 x2 - 2x + 5 has the same slope. Its graph is shifted up by 5, a number 
that disappears in dfldx. All functions with slope 2x - 2 are parabolas x2  - 2x + C, 
shifted up or down according to C. Some parabolas cross the x axis (those crossings 
are solutions to f ( x )  = 0). Other parabolas stay above the axis. The solutions to 
x2 - 2x + 5 = 0 are complex numbers and we don't see them. The special parabola 
x2 - 2x + 1 = ( x  - 1)2grazes the axis at x = 1. It has a "double zero," where f (x )  = 

dfldx = 0. 

EXAMPLE 3 Suppose dfldx = (x- l ) ( x- 2)(x- 3)(x- 4). This slope is positive 
beyond x = 4 and up to x = 1 (dfldx = 24 at x = 0). And dfldx is positive again 
between 2 and 3. At x = 1, 2, 3,4,  this slope is zero and f ( x )  changes direction. 

Here f ( x )  is a fifth-degree polynomial, because f ' (x)is fourth-degree. The graph of 
f goes up-down-up-down-up. It might cross the x axis five times. I t  must cross 
at least once (like this one). When complex numbers are allowed, every fifth-degree 
polynomial has five roots. 

You may feel that "positive slope implies increasing function" is obvious-perhaps 
it is. But there is still something delicate. Starting from dfldx > 0 at every single point, 
we have to deduce f ( X )  >f ( x )  at pairs of points. That is a "local to global" question, 
to be handled by the Mean Value Theorem. It could also wait for the Fundamental 
Theorem of Calculus: The diflerence f ( X )  -f ( x )  equals the area under the graph of 
dfldx. That area is positive, so f ( X )  exceeds f (x) .  

MAXIMA AND MINIMA 

Which x makes f ( x )  as large as possible? Where is the smallest f(x)? Without calculus 
we are reduced to computing values of f ( x )  and comparing. With calculus, the infor- 
mation is in dfldx. 

Suppose the maximum or minimum is at a particular point x. It is possible that 
the graph has a corner-and no derivative. But ifdfldx exists, it must be zero. The 
tangent line is level. The parabolas in Figure 3.3 change from decreasing to increasing. 
The slope changes from negative to positive. At this crucial point the slope is zero. 
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3C Local Maximum or Minimum Suppose the maximum or minimum 
occurs at a point x inside an interval where f(x) and df[dx are defined. Then 
f '(x) = 0. 

The word "local" allows the possibility that in other intervals, f(x) goes higher or 
lower. We only look near x, and we use the definition of dfldx. 

Start with f(x + Ax) -f(x). If f(x) is the maximum, this difference is negative or 
zero. The step Ax can be forward or backward: 

if Ax > 0: 
f(x + AX)-f(x) - negative < 0 and in the limit -df 6 0.

Ax positive dx 

f(x+Ax)-f(x) negative df-if Ax < 0: -- 2 0 and in the limit -3 0.
Ax negative dx 

Both arguments apply. Both conclusions dfldx <0 and dfldx 2 0 are correct. Thus 
dfldx = 0. 

Maybe Richard Feynman said it best. He showed his friends a plastic curve that 
was made in a special way - "no matter how you turn it, the tangent at the lowest 
point is horizontal." They checked it out. It was true. 

Surely You're Joking, Mr. Feynman! is a good book (but rough on mathematicians). 

EXAMPLE 3 (continued) Look back at Figure 3.3b. The points that stand out 
are not the "ups" or "downs" but the "turns." Those are stationary points, where 
dfldx = 0. We see two maxima and two minima. None of them are absolute maxima 
or minima, because f(x) starts at - co and ends at + co. 

EXAMPLE 4 f(x) = 4x3 - 3x4 has slope 12x2 - 12x3. That derivative is zero when 
x2 equals x3, at the two points x = 0 and x = 1. To decide between minimum and 
maximum (local or absolute), the first step is to evaluate f(x) at these stationary points. 
We find f(0) = 0 and f(1) = 1. 

Now look at large x. The function goes down to - co in both directions. (You can 
mentally substitute x = 1000 and x = -1000). For large x, -3x4 dominates 4x3. 

Conclusion f = 1 is an absolute maximum. f = 0 is not a maximum or minimum 
(local or absolute). We have to recognize this exceptional possibility, that a curve (or 
a car) can pause for an instant (f '  = 0) and continue in the same direction. The reason 
is the "double zero" in 12x2 - 12x3, from its double factor x2. 

absolute max 

Y!h local max 

-
-3 rough point 

Fig. 3.4 The graphs of 4x3 - 3x4 and x + x-'. Check rough points and endpoints. 
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3.2 Maximum and Minimum Problems 

EXAMPLE 5 Define f(x) = x + x-I for x > 0. Its derivative 1 - 1/x2 is zero at x = 1. 
At that point f(1) = 2 is the minimum value. Every combination like f + 3 or 4 + 
is larger than fmin = 2. Figure 3.4 shows that the maximum of x + x- ' is + oo.? 
Important The maximum always occurs at a stationarypoint (where dfldx = 0) or a 
rough point (no derivative) or an endpoint of the domain. These are the three types 
of critical points. All maxima and minima occur at critical points! At every other 
point df/dx > 0 or df/dx < 0. Here is the procedure: 

1. Solve df/dx = 0 to find the stationary points f(x). 
2. Compute f(x) at every critical point-stationary point, rough point, endpoint. 
3. Take the maximum and minimum of those critical values of f(x). 

EXAMPLE 6 (Absolute value f(x) = 1x1) The minimum is zero at a rough point. The 
maximum is at an endpoint. There are no stationary points. 

The derivative of y = 1x1 is never zero. Figure 3.4 shows the maximum and mini- 
mum on the interval [- 3,2]. This is typical of piecewise linear functions. 

Question Could the minimum be zero when the function never reaches f(x) = O? 
Answer Yes, f(x) = 1/(1+ x ) ~  approaches but never reaches zero as x + oo. 

Remark 1 x + foo and f(x) -, + oo are avoided when f is continuous on a closed 
interval a < x < b. Then f(x) reaches its maximum and its minimum (Extreme Value 
Theorem). But x -, oo and f(x) + oo are too important to rule out. You test x + ca 
by considering large x. You recognize f(x) + oo by going above every finite value. 

Remark 2 Note the difference between critical points (specified by x) and critical 
values (specified by f(x)). The example x + x- had the minimum point x = 1 and the 
minimum value f(1) = 2. 

MAXIMUM AND MINIMUM IN APPLICATIONS 

To find a maximum or minimum, solve f'(x) = 0. The slope is zero at the top and 
bottom of the graph. The idea is clear-and then check rough points and endpoints. 
But to be honest, that is not where the problem starts. 

In a real 'application, the first step (often the hardest) is to choose the unknown 
and find the function. It is we ourselves who decide on x and f(x). The equation 
dfldx = 0 comes in the middle of the problem, not at the beginning. I will start on 
a new example, with a question instead of a function. 

EXAMPLE 7 Where should you get onto an expressway for minimum driving time, 
if the expressway speed is 60 mph and ordinary driving speed is 30 mph? 

I know this problem well-it comes up every morning. The Mass Pike goes to MIT 
and I have to join it somewhere. There is an entrance near Route 128 and another 
entrance further in. I used to take the second one, now I take the first. Mathematics 
should decide which is faster-some mornings I think they are maxima. 

Most models are simplified, to focus on the key idea. We will allow the expressway 
to be entered at any point x (Figure 3.5). Instead of two entrances (a discrete problem) 

?A good word is approach when f (x) + a.Infinity is not reached. But I still say "the maximum 
is XI." 



3 Applications of the Derivative 

we have a continuous choice (a calculus problem). The trip has two parts, at  speeds 
30 and 60: 

a distance ,/- up to the expressway, in 4 7 T 3 3 0  hours 

a distance b - x on the expressway, in (b - x)/60 hours 

1 1 
Problem Minimize f(x)= total time = -Jm-+ -(b - x) .

30 60 

We have the function f(x).  Now comes calculus. The first term uses the power rule: 
The derivative of u1I2 is ~ ~ ' ~ ~ d u / d x .a2+ x2 has duldx = 2x:Here u = 

1 1  
f ' ( x )= --(a2+ x2)- lI2(2x)--

1 
30 2 60 

To solve f '(x) = 0,  multiply by 60 and square both sides: 

(a2+ x2) -  'I2(2x) = 1 gives 2x = (a2+ x2)'I2 and 4x2= a2+ x2. (2) 

Thus 3x2= a2. This yields two candidates, x = a/& and x = - a/&. But a 
negative x would mean useless driving on the expressway. In fact f '  is not zero at 
x = - a/&. That false root entered when we squared 2x. 

driving timef (s) driving timef(.r) 

when h > u / f i  when h < u / f i  

h - .\-

t**(L - / f *** f * *  (\-/ 
f*** 

enter Pfreeway 

\-

* * y 
h h

'1/o 
Fig. 3.5 Join the freeway at x-minimize the driving time f (x). 

I notice something surprising. The stationary point x = a/& does not depend on 
b. The total time includes the constant b/60, which disappeared in dfldx. Somehow 
b must enter the answer, and this is a warning to go carefully. The minimum might 
occur at a rough point or an endpoint. Those are the other critical points off, and 
our drawing may not be realistic. Certainly we expect x 6 b, or we are entering the 
expressway beyond MIT. 

Con t i n~e  with calculus. Compute the driving time f(.u) for an entrance at 

The s uare root of 4a2/3 is 2a/&. We combined 2/30 - 1/60= 3/60 and divided 
by $. Is this stationary value f * a minimum? You must look also at endpoints: 

enter at s= 0 : travel time is ni30 + hi60 =f ' * *  

enter at x = h: travel time is J o L  + h2/30= f * * * .  



--- 

3.2 Maximum and Minimum Problems 

The comparison f * <f ** should be automatic. Entering at x = 0 was a candidate 
and calculus didn't choose it. The derivative is not zero at x = 0. It is not smart to 
go perpendicular to the expressway. 

The second comparison has x = b. We drive directly to MIT at speed 30. This 
option has to be taken seriously. In fact it is optimal when b is small or a is large. 

This choice x = b can arise mathematically in two ways. If all entrances are between 
0 and b, then b is an endpoint. If we can enter beyond MIT, then b is a rough point. 
The graph in Figure 3 . 5 ~  has a corner at x = b, where the derivative jumps. The 
reason is that distance on the expressway is the absolute value Ib -XI-never negative. 

Either way x = b is a critical point. The optimal x is the smaller of a/& and b. 

if a/& <b: stationary point wins, enter at x = a l f i ,  total time f * 
if a / f i  2 b: no stationary point, drive directly to MIT, time f *** 

The heart of this subject is in "word problems." All the calculus is in a few lines, 
computingf '  and solving f '(x) = 0. The formulation took longer. Step 1 usually does: 

1. Express the quantity to be minimized or maximized as a function f(x). 
The variable x has to be selected. 

2. Compute f '(x), solve f '(x) = 0, check critical points for fmin and fmax. 

A picture of the problem (and the graph of f(x)) makes all the difference. 

EXAMPLE 7 (continued) Choose x as an angle instead of a distance. Figure 3.6 
shows the triangle with angle x and side a. The driving distance to the expressway is 
a sec x. The distance on the expressway is b - a tan x. Dividing by the speeds 30 and 
60, the driving time has a nice form: 

a sec x + b - a tan x 
f(x) = total time = -

30 60 (3) 

The derivatives of sec x and tan x go into dfldx: 

a
df - a sec x tan x --sec2x.
dx 30 60 

Now set dfldx = 0, divide by a, and multiply by 30 cos2x: 

sin x = +. (5 )  

This answer is beautiful. The angle x is 30°! That optimal angle (n/6 radians) has 
sin x = i.The triangle with side a and hy otenuse a/& is a 30-60-90 right triangle. 

I don't know whether you prefer JT or trigonometry. The minimum is 
exactly as before-either at 30" or going directly to MIT. 

h - ci tan .t- b energyi 
energy -ntl 

Fig. 3.6 (a) Driving at angle x. (b) Energies of spring and mass. (c) Profit = income -cost. 



3 Applications of the Derivative 

EXAMPLE 8 In mechanics, nature chooses minimum energy. A spring is pulled down 
by a mass, the energy is f(x), and dfldx = 0 gives equilibrium. It is a philosophical 
question why so many laws of physics involve minimum energy or minimum time- 
which makes the mathematics easy. 

The energy has two terms-for the spring and the mass. The spring energy is 
+kx2-positive in stretching (x > 0 is downward) and also positive in compression 
(x < 0). The potential energy of the mass is taken as -mx-decreasing as the mass 
goes down. The balance is at the minimum of f(x) = 4 kx2 -mx. 

I apologize for giving you such a small problem, but it makes a crucial point. 
When f(x) is quadratic, the equilibrium equation dfldx = 0 is linear. 

Graphically, x = m/k is at the bottom of the parabola. Physically, kx = m is a balance 
of forces-the spring force against the weight. Hooke's law for the spring force is 
elastic constant k times displacement x. 

EXAMPLE 9 Derivative of cost = marginal cost (our first management example). 

The paper to print x copies of this book might cost C = 1000 + 3x dollars. The 
derivative is dCldx = 3. This is the marginal cost of paper for each additional book. 
If x increases by one book, the cost C increases by $3. The marginal cost is like the 
velocity and the total cost is like the distance. 

Marginal cost is in dollars per book. Total cost is in dollars. On the plus side, the 
income is I(x) and the marginal income is dlldx. To apply calculus, we overlook the 
restriction to whole numbers. 

Suppose the number of books increases by dx.? The cost goes up by (dCldx) dx. 
The income goes up by (dlldx) dx. If we skip all other costs, then profit P(x) = 

income I(x)- cost C(x). In most cases P increases to a maximum and falls back. 
At the high point on the profit curve, the marginal profit is zero: 

Profit is maximized when marginal income I '  equals marginal cost C' .  

This basic rule of economics comes directly from calculus, and we give an example: 

C(x)= cost of x advertisements = 900 + 400x - x2 

setup cost 900, print cost 400x, volume savings x2 

I(x)= income due to x advertisements = 600x - 6x2 
sales 600 per advertisement, subtract 6x2 for diminishing returns 

optimal decision dCldx = dI/dx or 400 - 2x = 600 - 12x or x = 20 

profit = income - cost = 9600 - 8500 = 1 100. 

The next section shows how to verify that this profit is a maximum not a minimum. 
The first exercises ask you to solve dfldx = 0. Later exercises also look for f(x). 

+Maybe dx is a differential calculus book. I apologize for that. 
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3.2 EXERCISES 

Read-through questions 

If dfldx >0 in an interval then f(x) is a . If a maximum 
or minimum occurs at x then fl(x) = b . Points where 
f '(x) =0 are called c points. The function flx) = 3x2-x 
has a (minimum)(maximum) at x = d .A stationary point 
that is not a maximum or minimum occurs forflx) = e . 

Extreme values can also occur where f is not defined 
or at the g of the domain. The minima of 1x1 and 5x for 
- 2 < x < ? a r e a t x =  h a n d x =  1 ,eventhough 
dfldx is not zero. x* is an absolute I whenflx*) aflx) 
for all x. A k minimum occurs when f(x*) <fix) for 
all x near x*. 

The minimum of +ax2 -bx is I at x = m . 

Find the stationary points and rough points and endpoints. 
Decide whether each point is a local or absolute minimum or 
maximum. 

1 f(x)=x2+4x+5, -m < x < m  

2 f(x)=x3-12x, - m < x < m  

3 f(x)=x2+3, - 1 < x < 4  

4 f(x) =x2+(2/x), 1 <x <4 

5 f ( x ) = ( x - ~ ~ ) ~ ,-1 < x <  1 

6 f(x) = l/(x -x2), 0 <x < 1 

7 f(x)=3x4+8x3-18x2, -m < x < m  

8 f(x)= {x2 -4x for O <  x < 1, x2 -4 for 1 < x  <2) 

9 f ( x ) = m + , / G ,  1 < x < 9  

10 f(x) =x +sin x, o <x <271 

11 f(x) =x71 - x ) ~ ,  -00 c x < m 

12 f(x)=x/(l +x), O<x < 100 

13 f(x) =distance from x 3 0 to nearest whole number 

14 f(x) =distance from x 3 0 to nearest prime number 

15 f(x)=Ix+lI+I~-11, - 3 < x < 2  

16 f(x)=xJm,O < X <  1 

17f(x)=x1I2-x3I2, O<x < 4  

18 f(x) =sin x +cos x, 0 <x <2n 

20 f(8) =cos28 sin 8, -7 <8 <71 

In applied problems, choose metric units if you prefer. 

23 The airlines accept a box if length +width +height = 
1+w +h < 62" or 158 cm. If h is fixed show that the maxi- 
mum volume (62-w-h)wh is V= h(31- ih)2. Choose h to 
maximize K The box with greatest volume is a 

24 If a patient's pulse measures 70, then 80, then 120, what 
least squares value minimizes (x -70)2+(x - + 
(x - 120)2? If the patient got nervous, assign 120 a lower 
weight and minimize (x -70)2+(x - +&c -120)~. 

25 At speed v, a truck uses av +(blu) gallons of fuel per mile. 
How many miles per gallon at speed v? Minimize .the fuel 
consumption. Maximize the number of miles per gallon. 

26 A limousine gets (120 -2v)/5 miles per gallon. The 
chauffeur costs $10/hour, the gas costs $l/gallon. 

(a) Find the cost per mile at speed v. 
(b) Find the cheapest driving speed. 

27 You should shoot a basketball at the angle 8 requiring 
minimum speed. Avoid line drives and rainbows. Shooting 
from (0,O) with the basket at (a, b), minimize A@)= 
l/(a sin 8 cos 8 -b cos2 8). 

(a) If b = O  you are level with the basket. Show that 
8 =45" is best (Jabbar sky hook). 
(b) Reduce df/d8 =0 to tan 28 = -a/b. Solve when a =b. 
(c) Estimate the best angle for a free throw. 

The same angle allows the largest margin of error (Sports 
Science by Peter Brancazio). Section 12.2 gives the flight path. 

28 On the longest and shortest days, in June and December, 
why does the length of day change the least? 

29 Find the shortest Y connecting P, Q, and B in the figure. 
Originally B was a birdfeeder. The length of Y is L(x) = 
(b -x) + 2 J Z i 7 .  

(a) Choose x to minimize L (not allowing x >b). 
(b)Show that the center of the Y has 120" angles. 
(c) The best Y becomes a V when a/b = 

h - s  

21 f(8) =4 sin 8 -3 cos 8, 0 <8 <271 30 If the distance function is f(t) =(1 + 3t)/(l + 3t2), when 
does the forward motion end? How far have you traveled? 

22 f(x)=(x2+1 for x<1 ,x2 -4x+5fo rx> l ) .  Extra credit: Graph At) and dfldt. 
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In 31-34, we make and sell x pizzas. The income is R(x) = 

ax + bx2 and the cost is C(x) = c + dx + ex2. 

31 The profit is n(x)  = . The average profit per 
pizza is = . The marginal profit per additional pizza 
is dnldx  = . We should maximize the 
(profit) (average profit) (marginal profit). 

32 We receive R(x) = ax + bx2 when the price per pizza is 
P(X)=-. In reverse: When the price is p we sell x = 

pizzas (a function of p). We expect b < 0 because 

33 Find x to maximize the profit n(x). At that x the marginal 
profit is d n/dx = 

34 Figure B shows R(x) = 3x -x2 and C,(x) = 1 + x2 and 
C2(x)= 2 + x2. With cost C , ,  which sales x makes a profit? 
Which x makes the most profit? With higher fixed cost in C2, 
the best plan is . 

The cookie box and popcorn box were created by Kay Dundas 
from a 12" x 12" square. A box with no top is a calculus classic. 

35 Choose x to find the maximum volume of the cookie box. 

36 Choose x to maximize the volume of the popcorn box. 

37 A high-class chocolate box adds a strip of width x down 
across the front of the cookie box. Find the new volume V(x) 
and the x that maximizes it. Extra credit: Show that Vma,is 
reduced by more than 20%. 

38 For a box with no top, cut four squares of side x from the 
corners of the 12" square. Fold up the sides so the height is 
x. Maximize the volume. 

Geometry provides many problems, more applied than they 
seem. 

39 A wire four feet long is cut in two pieces. One piece forms 
a circle of radius r, the other forms a square of side x. Choose 
r to minimize the sum of their areas. Then choose r to 
maximize. 

40 A fixed wall makes one side of a rectangle. We have 200 
feet of fence for the other three sides. Maximize the area A in 
4 steps: 

1 Draw a picture of the situation. 
2 Select one unknown quantity as x (but not A!). 
3 Find all other quantities in terms of x. 
4 Solve dA/dx =0 and check endpoints. 

41 With no fixed wall, the sides of the rectangle satisfy 
2x + 2y =200. Maximize the area. Compare with the area of 
a circle using the same fencing. 

42 Add 200 meters of fence to an existing straight 100-meter 
fence, to make a rectangle of maximum area (invented by 
Professor Klee). 

43 How large a rectangle fits into the triangle with sides 
x =0, y = 0, and x/4 + y/6 = I? Find the point on this third 
side that maximizes the area xy. 

44 The largest rectangle in Problem 43 may not sit straight 
up. Put one side along x/4 + y/6 = 1 and maximize the area. 

45 The distance around the rectangle in Problem 43 is 
P = 2x + 2y. Substitute for y to find P(x). Which rectangle 
has Pma,= 12? 

46 Find the right circular cylinder of largest volume that fits 
in a sphere of radius 1. 

47 How large a cylinder fits in a cone that has base radius R 
and height H? For the cylinder, choose r and h on the sloping 
surface r/R + h/H = 1 to maximize the volume V = nr2h. 

48 The cylinder in Problem 47 has side area A =2nrh. 
Maximize A instead of V. 

49 Including top and bottom, the cylinder has area 

Maximize A when H > R. Maximize A when R > H. 

*50 A wall 8 feet high is 1 foot from a house. Find the length 
L of the shortest ladder over the wall to the house. Draw a 
triangle with height y, base 1 + x, and hypotenuse L. 

51 Find the closed cylinder of volume V = nr2h = 16n that 
has the least surface area. 

52 Draw a kite that has a triangle with sides 1, 1, 2x next to 
a triangle with sides 2x, 2, 2. Find the area A and the x that 
maximizes it. Hint: In dA/dx simplify Jm-x 2 / , / m  

In 53-56, x and y are nonnegative numbers with x + y = 10. 
Maximize and minimize: 

53 xy 54 x2 + y2 55 y-(llx) 56 sin x sin y 

57 Find the total distance f(x) from A to X to C. Show that 
dfldx =0 leads to sin a = sin c. Light reflects at an equal angle 
to minimize travel time. 
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X x S - X  

reflection 

58 Fermat's principle says that light travels from A to B on 
the quickest path. Its velocity above the x axis is v and below 
the x axis is w. 

(a) Find the time T(x) from A to X to B. On AX, time = 
distancelvelocity = J ~ / v .  
(b) Find the equation for the minimizing x. 
(c) Deduce Jnell's law (sin a)/v =(sin b)/w. 

"Closest point problems" are models for many applications. 

59 Where is the parabola y =x2 closest to x =0, y =2? 

60 Where is the line y = 5 -2x closest to (0, O)? 

61 What point on y =  -x2 is closest to what point on 
y = 5 -2x? At the nearest points, the graphs have the same 
slope. Sketch $he graphs. 

62 Where is y =x2 closest to (0, f)? Minimizing 
x2+(y -f)2+ y +(y -$)2 gives y <0. What went wrong? 

63 Draw the l b  y =mx passing near (2, 3), (1, I), and (- 1, 1). 
For a least squares fit, minimize 

64 A triangle has corners (-1, l), (x, x2), and (3, 9) on the 
parabola y =x2. Find its maximum area for x between -1 
and 3. Hint: The distance from (X, Y) to the line y =mx + b 
is IY -mX -bl/JW. 
65 Submarines are located at (2,O) and (1, 1). Choose the 
slope m so the line y =mx goes between the submarines but 
stays as far as possible from the nearest one. 

Problems 66-72 go back to the theory. 

66 To find where the graph of fix) has greatest slope, solve 
. For y = 1/(1+x2) this point is . 

67 When the difference between f(x) and g(x) is smallest, their 
slopes are . Show this point on the graphs of 
f = 2 + x 2  andg=2x-x2. 

68 Suppose y is fixed. The minimum of x2 + xy -y2 (a func- 
tion of x) is m(y) = . Find the maximum of m(y). 

Now x is fixed. The maximum of x2 + xy -y2 (a function 
of y) is M(x) = . Find the minimum of M(x). 

69 For each m the minimum value of f(x) -mx occurs at x = 

m. What is f(x)? 

70 y =x + 2x2 sin(l/x) has slope 1 at x =0. But show that y 
is not increasing on an interval around x =0, by finding points 
where dyldx = 1-2 cos(l/x) + 4x sin(1lx) is negative. 

71 True orfalse, with a reason: Between two local minima of 
a smooth function f(x) there is a local maximum. 

72 Create a function y(x) that has its maximum at a rough 
point and its minimum at an endpoint. 

73 Draw a circular pool with a lifeguard on one side and 
a drowner on the opposite side. The lifeguard swims with 
velocity v and runs around the rest of the pool with velocity 
w = lOv. If the swim direction is at angle 8 with the direct 
line, choose 8 to minimize and maximize the arrival time. 

13.3 Second Derivatives: Bending and Acceleration 

When f '(x) is positive, f(x) is increasing. When dyldx is negative, y(x) is decreasing. 
That is clear, but what about the second derivative? From looking at the curve, 
can you decide the sign off "(x) or d2y/dx2? The answer is yes and the key is in the 
bending. 

A straight line doesn't bend. The slope of y = mx + b is m (a constant). The second 
derivative is zero. We have to go to curves, to see a changing slope. Changes in the 
herivative show up in fv(x): 

f = x2 has f'= 2x and f "  = 2 (this parabola bends up) 

y = sin x has dyldx = cos x and d 'y/dx2 = - sin x (the sine bends down) 
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The slope 2x gets larger even when the parabola is falling. The sign off or f '  is not 
revealed by f ". The second derivative tells about change in slope. 

A function with f "(x)> 0 is concave up. It bends upward as the slope increases. It 
is also called convex. A function with decreasing slope-this means f "(x)< 0-is 
concave down. Note how cos x and 1 + cos x and even 1+ $x + cos x change from 
concave down to concave up at x = 7~12. At that point f "  = - cos x changes from 
negative to positive. The extra 1 + $x tilts the graph but the bending is the same. 

tangent below 

Fig. 3.7 Increasing slope =concave up (f" >0). Concave down is f" <0. Inflection point f" = 0. 

Here is another way to see the sign off ". Watch the tangent lines. When the curve 
is concave up, the tangent stays below it. A linear approximation is too low. This 
section computes a quadratic approximation-which includes the term with f "  > 0. 
When the curve bends down (f" < O), the opposite happens-the tangent lines are 
above the curve. The linear approximation is too high, and f "  lowers it. 

In physical motion, f "(t) is the acceleration-in units of di~tance/(time)~. Accelera-
tion is rate of change of velocity. The oscillation sin 2t has v = 2 cos 2t (maximum 
speed 2) and a = - 4 sin 2t (maximum acceleration 4). 

An increasing population means f '  > 0. An increasing growth rate means f "  > 0. 
Those are different. The rate can slow down while the growth continues. 

MAXIMUM VS. MINIMUM 

Remember that f '(x) = 0 locates a stationary point. That may be a minimum or a 
maximum. The second derivative decides! Instead of computing f(x) at many points, 
we compute f "(x) at one point-the stationary point. It is a minimum iff "(x) > 0. 

3D When f '(x) = 0 and f "(x) > 0, there is a local minimum at x. 
When f '(x) = 0 and f"(x) < 0,there is a local maximrcm at x. 

To the left of a minimum, the curve is falling. After the minimum, the curve rises. The 
slope has changed from negative to positive. The graph bends upward and f "(x)> 0. 

At a maximum the slope drops from positive to negative. In the exceptional case, 
when f '(x) = 0 and also f "(x)= 0, anything can happen. An example is x3, which 
pauses at x = 0 and continues up (its slope is 3x2 2 0). However x4 pauses and goes 
down (with a very flat graph). 

We emphasize that the information from fr(x) and f "(x) is only "local ." To be 
certain of an absolute minimum or maximum, we need information over the whole 
domain. 



3.3 Second Derhmthres: Bending and Acceleration 

EXAMPLE I f(x) = x3 - x2 has f '(x) = 3x2- 2x and f "(x)= 6x - 2. 

To find the maximum and/or minimum, solve 3x2 - 2x = 0. The stationary points 
are x = 0 and x = f . At those points we need the second derivative. It is f "(0)= - 2 
(local maximum) and f "(4)= + 2 (local minimum). 

Between the maximum and minimum is the inflection point. That is where 
f "(x) = 0. The curve changes from concave down to concave up. This example has 
f "(x) = 6x - 2, so the inflection point is at x = 4. 

INFLECTION POINTS 

In mathematics it is a special event when a function passes through zero. When the 
function isf, its graph crosses the axis. When the function is f', the tangent line is 
horizontal. When f "  goes through zero, we have an injection point. 

The direction of bending changes at an inflection point. Your eye picks that out in 
a graph. For an instant the graph is straight (straight lines have f "  = 0). It is easy to 
see crossing points and stationary points and inflection points. Very few people can 
recognize where f "'= 0 or f '" = 0. I am not sure if those points have names. 

There is a genuine maximum or minimum when f '(x) changes sign. Similarly, there 
is a genuine inflection point when f "(x) changes sign. The graph is concave down on 
one side of an inflection point and concave up on the other side.? The tangents are 
above the curve on one side and below it on the other side. At an inflection point, 
the tangent line crosses the curve (Figure 3.7b). 

Notice that a parabola y = ax2+ bx + c has no inflection points: y" is constant. A 
cubic curve has one inflection point, because f "  is linear. A fourth-degree curve might 
or might not have inflection points-the quadratic fM(x) might or might not cross 
the axis. 

EXAMPLE 2 x4 - 2x2 is W-shaped, 4x3 -4x has two bumps, 12x2 - 4 is U-shaped. 
The table shows the signs at the important values of x: 

x -Jz -1  - l i d  o I / 1 f i  

Between zeros of f(x) come zeros off '(x) (stationary points). Between zeros off '(x) 
come zeros off "(x) (inflection points). In this example f(x) has a double zero at the 
origin, so a single zero off' is caught there. It is a local maximum, since f "(0) < 0. 

Inflection points are important-not just for mathematics. We know the world 
population will keep rising. We don't know if the rate of growth will slow down. 
Remember: The rate of growth stops growing at the inflection point. Here is the 1990 
report of the UN Population Fund. 

The next ten years will decide whether the world population trebles or merely 
doubles before it finally stops growing. This may decide the future of the earth as 
a habitation for humans. The population, now 5.3 billion, is increasing by a quarter 
of a million every day. Between 90 and 100 million people will be added every year 

?That rules out f (x) = x4, which has f"= 12x2 > 0 on both sides of zero. Its tangent line is 
the x axis. The line stays below the graph-so no inflection point. 
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during the 1990s; a billion people-a whole China-over the decade. The fastest 
growth will come in the poorest countries. 

A few years ago it seemed as if the rate of population growth was slowing? 
everywhere except in Africa and parts of South Asia. The world's population 
seemed set to stabilize around 10.2 billion towards the end of the next century. 

Today, the situation looks less promising. The world has overshot the marker 
points of the 1984 "most likely" medium projection. It is now on course for an 
eventual total that will be closer to 11 billion than to 10 billion. 

If fertility reductions continue to be slower than projected, the mark could be 
missed again. In that case the world could be headed towards a total of up to 14 
billion people. 

Starting with a census, the UN follows each age group in each country. They 
estimate the death rate and fertility rate-the medium estimates are published. This 
report is saying that we are not on track with the estimate. 

Section 6.5 will come back to population, with an equation that predicts 10 billion. 
It assumes we are now at the inflection point. But China's second census just started 
on July 1 ,  1990. When it's finished we will know if the inflection point is still ahead. 

You now understand the meaning off "(x).Its sign gives the direction of bending- 
the change in the slope. The rest of this section computes how much the curve bends- 
using the size off" and not just its sign. We find quadratic approximations based on 
f l ' (x). In some courses they are optional-the main points are highlighted. 

CENTERED DIFFERENCES AND SECOND DIFFERENCES 

Calculus begins with average velocities, computed on either side of x: 

We never mentioned it, but a better approximation to J"(x)comes from averaging 
those two averages. This produces a centered difference, which is based on x + Ax 
and x - Ax.  It divides by 2 Ax:  

1 .f(s+ A x )  -f ( x )  + Y ) -f - A )1 f(-Y+ A X )-f'(x - A x )  
'f f ( x )z -

2 [ . (2)
A x  Ax = 2 A x  

We claim this is better. The test is to try it on powers of x.  
For f ( x )  = x these ratios all give f '  = 1 (exactly). For f ( x )= x2 ,  only the centered 

difference correctly gives f '  = 2x.  The one-sided ratio gave 2.x + Ax (in Chapter 1 it 
was 2t + h). It is only "first-order accurate." But centering leaves no error. We are 
averaging 2x + Ax with 2x - Ax.  Thus the centered difference is "second-order 
accurate." 

I ask now: What ratio converges to the second derivative? One answer is to take 
differences of the first derivative. Certainly Af ' lAx approaches f ". But we want a 
ratio involving f itself. A natural idea is to take diflerences of diferences, which 
brings us to "second differences": 

f ( x + A x ) - f ( x )  - f ( 4 - f ( x - A x )  
A x  

Ax 
A x  --f(x + Ax) - 2j'(x) +.f(x - A.Y) . d 2f 

d s 2  
(3)  

tThe United Nations watches the second derivative! 
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On the top, the difference of the difference is A(Af)= A2f. It corresponds to d2f.
On the bottom, (Ax)2 corresponds to dx2 . This explains the way we place the 2's in
d 2f/dx 2. To say it differently: dx is squared, dfis not squared-as in distance/(time) 2.

Note that (Ax)2 becomes much smaller than Ax. If we divide Af by (Ax)2, the ratio
blows up. It is the extra cancellation in the second difference A2fthat allows the limit
to exist. That limit is f"(x).

Application The great majority of differential equations can't be solved exactly.
A typical case is f"(x) = - sinf(x) (the pendulum equation). To compute a solution,
I would replace f"(x) by the second difference in equation (3). Approximations at
points spaced by Ax are a very large part of scientific computing.

To test the accuracy of these differences, here is an experiment on f(x)=
sin x + cos x. The table shows the errors at x = 0 from formulas (1), (2), (3):

step length Ax one-sided errors centered errors second difference errors

1/4 .1347 .0104 - .0052
1/8 .0650 .0026 - .0013
1/16 .0319 .0007 - .0003
1/32 .0158 .0002 - .0001

The one-sided errors are cut in half when Ax is cut in half. The other columns
decrease like (Ax)2. Each reduction divides those errors by 4. The errors from one-
sided differences are O(Ax) and the errors from centered differences are O(Ax) 2.

The "big 0" notation When the errors are of order A x, we write E = O(Ax). This
means that E < CAx for some constant C. We don't compute C-in fact we don't
want to deal with it. The statement "one-sided errors are Oh of delta x" captures
what is important. The main point of the other columns is E = O(Ax) 2 .

LINEAR APPROXIMATION VS. QUADRATIC APPROXIMATION

The second derivative gives a tremendous improvement over linear approximation
f(a) +f'(a)(x - a). A tangent line starts out close to the curve, but the line has no
way to bend. After a while it overshoots or undershoots the true function (see
Figure 3.8). That is especially clear for the model f(x) = x2, when the tangent is the
x axis and the parabola curves upward.

You can almost guess the term with bending. It should involve f", and also (Ax) 2.
It might be exactly f"(x) times (Ax) 2 but it is not. The model function x2 hasf" = 2.
There must be a factor 1 to cancel that 2:

At the basepoint this is f(a) =f(a). The derivatives also agree at x = a. Furthermore
the second derivatives agree. On both sides of (4), the second derivative at x = a is
f"(a).

The quadratic approximation bends with the function. It is not the absolutely
final word, because there is a cubic term -f"'(a)(x - a)3 and a fourth-degree term
N f""(a)(x - a)4 and so on. The whole infinite sum is a "Taylor series." Equation (4)
carries that series through the quadratic term-which for practical purposes gives a
terrific approximation. You will see that in numerical experiments.
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Two things to mention. First, equation (4)shows why f" > 0 brings the curve above 
the tangent line. The linear part gives the line, while the quadratic part is positive 
and bends upward. Second, equation (4)  comes from (2)  and (3). Where one-sided 
differences give f (x  + A x )  x f (x)  +f '(x)Ax, centered differences give the quadratic: 

from (2): f(x + Ax)  a f(x -Ax)  + 2 f f ( x )  Ax 

from (3): f ( x + A x )  a 2f(x)-f(x-A~)+f"(x)(Ax)~. 

Add and divide by 2. The result is f(x + Ax)  xf(x)  + r ( x ) A x  +4f AX)^. This is 
correct through (Ax)2and misses by (Ax)', as examples show: 

EXAMPLE4 ( 1  + x)" x 1 + n x + f n ( n -  l )x2 .  

The first derivative at x = 0 is n. The second derivative is n(n- 1). The cubic term 
would be $n(n- l ) (n- 2)x3.We are just producing the binomial expansion! 1 +.Y 

can't 
bend 1 

EXAMPLE 5 -a 1 + x + x2 = start of a geometric series. 
1 - x  

I 
-.5 .5 1 / ( 1  - x)  has derivative 1 / ( 1  - x ) ~ .Its second derivative is 2/(1 - x)'. At x = 0 those 

I + -r+ x2 equal 1,1,2. The factor f cancels the 2, which leaves 1,1,1. This explains 1 + x + x2.  
1 The next terms are x3 and x4.  The whole series is 1 / ( 1  - x)  = 1 + x + x2 + x3 + .-..near -

I -.Y 

Numerical experiment i/Ji% a 1 - i x  + ax2 is tested for accuracy. Dividing xFig. 3.8 
by 2 almost divides the error by 8. If we only keep the linear part 1 - fx, the error 
is only divided by 4. Here are the errors at x = a, &, and A: 

linear approximation (error - - x 2  : .0194 .0053 .00143 

- 5

quadratic approximation error = K ~ 3 ) :-00401 - .OOOSS - .OOOO? 

3.3 EXERCISES 

Read-through questions 1 A graph that is concave upward is inaccurately said to 

The direction of bending is given by the sign of a . If the 
"hold water." Sketch a graph with f "(x)>0 that would not 
hold water. 

second derivative is b in an interval, the function is con- 
cave up (or convex). The graph bends c . The tangent 2 Find a function that is concave down for x <0 and con- 
lines are d the graph. Iff "(x) c 0 then the graph is con- cave up for 0 <x < 1 and concave down for x > 1. 
cave e ,and the slope is f . 3 Can a function be always concave down and never cross 

At a point where f '(x) =0 and f "(x)>0, the function has a zero? Can it be always concave down and positive? Explain. 
s .At a point where h ,the function has a maximum. 

4 Find a function with f"(2) =0 and no other inflection 
A point where f "(x) =0 is an i point, provided f "  

point.changes sign. The tangent line i the graph. 

The centered approximation to fl(x) is 6 k ]/2Ax. The True or false, when f(x) is a 9th degree polynomial with 
3-point approximation to f "(x) is 6 1 ]/(Ax)*. The second- f '(1) =0 and f '(3) =0. Give (or draw) a reason. 
order approximation to f(x + Ax) is f(x) +f '(x)Ax + m . 5 f(x) =0 somewhere between x = 1 and x = 3.
without that extra term this is just the n approximation. 
With that term the error is O( 0 ). 6 f "(x)=0 somewhere between x = 1 and x = 3. 
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7 There is no absolute maximum at x = 3. 

8 There are seven points of inflection. 

9 If Ax) has nine zeros, it has seven inflection points. 

10 If Ax) has seven inflection points, it has nine zeros. 

In 11-16 decide which stationary points are maxima or 
minima. 

11 f(x)=x2-6x 12 f(x)=x3 -6x2 

13 f(x) =x4 -6x3 14 f(x) =xl' -6xl0 

15 f(x) =sin x -cos x 16 Ax) =x + sin 2x 

Locate the inflection points and the regions where f(x) is con-
cave up or down. 

17 f(x)=x+x2-x3 18 f(x) =sin x + tan x 

19 f(x) =(X-2 )2 (~-4)2 20 f(x) =sin x + (sin x ) ~  

21 If f(x) is an even function, the centered difference 
[f(Ax) -f(-Ax)]l2Ax exactly equals f '(0) =0. Why? 

22 If f(x) is an odd function, the second difference 
AX) -2 f(0) +f(- Ax)~l(Ax)~ exactly equals f "(0)=0. Why? 

Write down the quadraticf(0) +f '(0)x +4f "(0)x2in 23-26. 

23 f(x) =cos x + sin x 24 f(x) = tan x 

25 f(x) =(sin x)/x 26 f(x) = 1+x + x2 

In 26, find f(1) +f '(l)(x - 1)+4f "(l)(x- 1)2 around a = 1. 

27 Find A and B in JG'x 1+ Ax +BX'. 

28 Find A and B in 1/(1- x ) ~  x 1+Ax + B X ~ .  

29 Substitute the quadratic approximation into 
[fix +Ax) -f(x)]/Ax, to estimate the error in this one-sided 
approximation to f '(x). 

30 What is the quadratic approximation at x =0 to f(-Ax)? 

31 Substitute for f(x +Ax) and f(x -Ax) in the centered 
approximation [f(x +Ax) -f(x -Ax)]/2Ax, to get 
f'(x) +error. Find the Ax and (Ax)2 terms in this error. Test 
on f(x)=x3 at x=0.  

32 Guess a third-order approximation f(Ax) x f(0) + 
+f '(0)Ax +4~"(O)(AX)~ . Test it on f(x) =x3. 

Construct a table as in the text, showing the actual errors at 
x =0 in one-sided differences, centered differences, second 
differences, and quadratic approximations. By hand take two 
values of Ax, by calculator take three, by computer take four. 

35 f(x) =x2+sin x 

36 Example 5 was 1/(1- x) x 1 +x +x2. What is the error 
at x =0.1? What is the error at x =2? 

37 Substitute x = .Ol and x = -0.1 in the geometric series 
1/(1- x) = 1+ x +x2+ - - - to find 11.99 and 111.1-first to 
four decimals and then to all decimals. 

38 Compute cos lo  by equation (4) with a =0. OK to check 
on a calculator. Also compute cos 1. Why so far off! 

39 Why is sin x =x not only a linear approximation but also 
a quadratic approximation? x =0 is an point. 

40 Ifflx) is an even function, find its quadratic approximation 
at x =0. What is the equation of the tangent line? 

41 For f(x) =x + x2+x3, what is the centered difference 
[f(3) -f(1)]/2, and what is the true slope f '(2)? 

42 For f(x) =x +x2 + x3, what is the second difference 
[f(3) -2 f(2) +f(1)]/12, and what is the exact f "(2)? 

43 The error in f(a) +f '(a)(x -a) is approximately
4f"(a)(x -a)2. This error is positive when the function is 

. Then the tangent line is the curve. 

44 Draw a piecewise linear y(x) that is concave up. Define 
"concave up" without using the test d 2y /d~2  2 0. If derivatives 
don't exist, a new definition is needed. 

45 What do these sentences say about f or f '  or f "  or f "'? 
1. The population is growing more slowly. 
2. The plane is landing smoothly. 
3. The economy is picking up speed. 
4. The tax rate is constant. 
5. A bike accelerates faster but a car goes faster. 
6. Stock prices have peaked. 
7. The rate of acceleration is slowing down. 
8. This course is going downhill. 

46 (Recommended) Draw a curve that goes up-down-up. 
Below it draw its derivative. Then draw its second derivative. 
Mark the same points on all curves-the maximum, minimum, 
and inflection points of the first curve. 

47 Repeat Problem 46 on a printout showing y(x)= 
x3-4x2+ x + 2 and dyldx and d2yldx2 on the same graph. 
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13.4 Graphs 1 
Reading a graph is like appreciating a painting. Everything is there, but you have to 
know what to look for. One way to learn is by sketching graphs yourself, and in the 
past that was almost the only way. Now it is obsolete to spend weeks drawing 
curves-a computer or graphing calculator does it faster and better. That doesn't 
remove the need to appreciate a graph (or a painting), since a curve displays a 
tremendous amount of information. 

This section combines two approaches. One is to study actual machine-produced 
graphs (especially electrocardiograms). The other is to understand the mathematics 
of graphs-slope, concavity, asymptotes, shifts, and scaling. We introduce the 
centering transform and zoom transform. These two approaches are like the rest of 
calculus, where special derivatives and integrals are done by hand and day-to-day 
applications are by computer. Both are essential-the machine can do experiments 
that we could never do. But without the mathematics our instructions miss the point. 
To create good graphs you have to know a few of them personally. 

READING AN ELECTROCARDIOGRAM (ECG or EKG)-
REFERENCE The graphs of an ECG show the electrical potential during a heartbeat. There are 

twelve graphs-six from leads attached to the chest, and six from leads to the arms 
500 - and left leg. (It doesn't hurt, but everybody is nervous. You have to lie still, because 
400-

contraction of other muscles will mask the reading from the heart.) The graphs record 300-
electrical impulses, as the cells depolarize and the heart contracts. 

200 - What can I explain in two pages? The graph shows the fundamental pattern of the - 175- ECG. Note the P wave, the Q R S  complex, and the T wave. Those patterns, seen 
v
8 150- differently in the twelve graphs, tell whether the heart is normal or out of rhythm- 140-

130- or suffering an infarction (a heart attack). 
ro 120-
N 

110-

Y 100-
$) 95-
a 90-
2 85-
if 00-

& 75-
a
3 70-

I s 65- First of all the graphs show the heart rate. The dark vertical lines are by convention 2 60-
f second apart. The light lines are & second apart. If the heart beats every f secondW 

y 55- (one dark line) the rate is 5 beats per second or 300 per minute. That is extreme 
W 
Lf tachycardia-not compatible with life. The normal rate is between three dark lines W 

k 50- per beat (2 second, or 100 beats per minute) and five dark lines (one second between a 

I beats, 60 per minute). A baby has a faster rate, over 100 per minute. In this figure 0 

E the rate is . A rate below 60 is bradycardia, not in itself dangerous. For a resting 
U- 45-
V)


9 athlete that is normal. 
Y Doctors memorize the six rates 300, 150, 100, 75, 60, 50. Those correspond to 1, 2,
0 

@ 40- 3, 4, 5, 6 dark lines between heartbeats. The distance is easiest to measure between 
W 

k spikes (the peaks of the R wave). Many doctors put a printed scale next to the chart. 
Lf One textbook emphasizes that "Where the next wave falls determines the rate. No 
l-a 


mathematical computation is necessary." But you see where those numbers come 4 = 35- from. 
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The next thing to look for is heart rhythm. The regular rhythm is set by the 
pacemaker, which produces the P wave. A constant distance between waves is good- 
and then each beat is examined. When there is a block in the pathway, it shows as 
a delay in the graph. Sometimes the pacemaker fires irregularly. Figure 3.10 shows 
sinus arrythmia (fairly normal). The time between peaks is changing. In disease or 
emergency, there are potential pacemakers in all parts of the heart. 

I should have pointed out the main parts. We have four chambers, an atrium- 
ventricle pair on the left and right. The SA node should be the pacemaker. The 
stimulus spreads from the atria to the ventricles- from the small chambers that 
"prime the pump" to the powerful chambers that drive blood through the body. The 
P wave comes with contraction of the atria. There is a pause of & second at the AV 
node. Then the big QRS wave starts contraction of the ventricles, and the T wave is 
when the ventricles relax. The cells switch back to negative charge and the heart cycle 
is complete. 

ectrodes 
D 

ground 

Fig. 3.9 Happy person with a heart and a normal electrocardiogram. 

The ECG shows when the pacemaker goes wrong. Other pacemakers take over- 
the AV node will pace at 60/minute. An early firing in the ventricle can give a wide 
spike in the QRS complex, followed by a long pause. The impulses travel by a slow 
path. Also the pacemaker can suddenly speed up (paroxysmal tachycardia is 
150-250/minute). But the most critical danger is fibrillation. 

Figure 3.10b shows a dying heart. The ECG indicates irregular contractions-no 
normal PQRST sequence at all. What kind of heart would generate such a rhythm? 
The muscles are quivering or "fibrillating" independently. The pumping action is 
nearly gone, which means emergency care. The patient needs immediate CPR- 
someone to do the pumping that the heart can't do. Cardio-pulmonary resuscitation 
is a combination of chest pressure and air pressure (hand and mouth) to restart the 
rhythm. CPR can be done on the street. A hospital applies a defibrillator, which 
shocks the heart back to life. It depolarizes all the heart cells, so the timing can be 
reset. Then the charge spreads normally from SA node to atria to AV node to 
ventricles. 

This discussion has not used all twelve graphs to locate the problem. That needs 
uectors. Look ahead at Section 11.1 for the heart vector, and especially at Section 1 1.2 
for its twelve projections. Those readings distinguish between atrium and ventricle, 
left and right, forward and back. This information is of vital importance in the event 
of a heart attack. A "heart attack" is a myocardial infarction (MI). 

An MI occurs when part of an artery to the heart is blocked (a coronary occlusion). 
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Infarction 

Rg. 3.10 Doubtful rhythm. Serious fibrillation. Signals of a heart attack. 

An area is without blood supply-therefore without oxygen or glucose. Often the 
attack is in the thick left ventricle, which needs the most blood. The cells are first 
ischemic, then injured, and finally infarcted (dead). The classical ECG signals involve 
those three 1's: 

Ischemia: Reduced blood supply, upside-down T wave in the chest leads. 
Injury: An elevated segment between S and T means a recent attack. 
Infarction: The Q wave, normally a tiny dip or absent, is as wide as a small 
square (& second). It may occupy a third of the entire QRS complex. 

The Q wave gives the diagnosis. You can find all three I's in Figure 3.10~. 
It is absolutely amazing how much a good graph can do. 

THE MECHANICS OF GRAPHS 

From the meaning of graphs we descend to the mechanics. A formula is now given 
for f(x). The problem is to create the graph. It would be too old-fashioned to evaluate 
Ax) by hand and draw a curve through a dozen points. A computer has a much 
better idea of a parabola than an artist (who tends to make it asymptotic to a straight 
line). There are some things a computer knows, and other things an artist knows, 
and still others that you and I know-because we understand derivatives. 

Our job is to apply calculus. We extract information from f '  and f "  as well asf. 
Small movements in the graph may go unnoticed, but the important properties come 
through. Here are the main tests: 

1. The sign off (x) (above or below axis: f = 0at crossing point) 
2. The sign of f(x) (increasing or decreasing: f '  = 0 at stationary point) 
3. The sign of f"(x) (concave up or down: f" = 0 at injection point) 
4. The behavior of f(x) as x + oo and x -, - oo 
5. The points at which f(x) + oo or f(x) -, - oo 
6. Even or odd? Periodic? Jumps in f o r  f '? Endpoints? f(O)? 

The sign of f(x) depends on 1 - x2. Thus f(x) > 0 in the inner interval where x2 < 1. 
The graph bends upwards (f"(x) > 0) in that same interval. There are no inflection 
points, since f "  is never zero. The stationary point where f' vanishes is x = 0. We 
have a local minimum at x = 0. 

The guidelines (or asymptotes)meet the graph at infinity. For large x the important 
terms are x2 and -x2. Their ratio is + x2/-x2 = - 1-which is the limit as x -, or, 
and x -, - oo. The horizontal asymptote is the line y = - 1. 

The other infinities, where f blows up, occur when 1 -x2 is zero. That happens at 
x =  1 and x = - 1. The vertical asymptotes are the lines x = 1 and x = -1. The graph 
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in Figure 3.1 l a  approaches those lines. 

if f(x) +b as x -,+ oo or -oo, the line y = b is a horizontal asymptote 
if f(x) + + GO or -GO as x -,a, the line x = a is a vertical asymptote 
ifflx) - (mx + b) +0 as x -+ + oo or - a ,  the line y = mx + b is a sloping asymptote. 

Finally comes the vital fact that this function is even: f(x) =f(- x)  because squaring 
x obliterates the sign. The graph is symmetric across the y axis. 

To summarize the eflect of dividing by 1 - x2: No effect near x = 0. Blowup at 1 
and -1 from zero in the denominator. The function approaches -1 as 1x1 -+ oo. 

x2 x2 - 2x
E U P L E  2 f(x) = ._, f ' (x)  = - f "(x) = -

2 
( x  - I)2 ( X  - 113 

This example divides by x - 1. Therefore x = 1 is a vertical asymptote, where f(x) 
becomes infinite. Vertical asymptotes come mostly from zero denominators. 

Look beyond x = 1. Both f(x) and f"(x) are positive for x > 1. The slope is zero at 
x = 2. That must be a local minimum. 

What happens as x -+ oo? Dividing x2 by x - 1, the leading term is x. The function 
becomes large. It grows linearly-we expect a sloping asymptote. To find it, do the 
division properly: 

The last term goes to zero. The function approaches y = x + 1 as the asymptote. 
This function is not odd or even. Its graph is in Figure 3.11b. With zoom out you 

see the asymptotes. Zoom in for f = 0 or f' = 0 or f" = 0. 

Fig. 3.11 The graphs of x2/(1 -x2) and x2/(x - 1) and sin x + 3 sin 3x. 

EXAMPLE 3 f(x) = sin x + sin 3x  has the slope f '(x) = cos x + cos 3x. 

Above all these functions are periodic. If x increases by 2n, nothing changes. The 
graphs from 2n to 47c are repetitions of the graphs from 0 to 271.Thusf(x + 2 4  =f (x)  
and the period is 2n. Any interval of length 27c will show a complete picture, and 
Figure 3.1 1c picks the interval from -n to n. 

The second outstanding property is that f is odd. The sine functions satisfy 
f(- x)  = -f(x). The graph is symmetric through the origin. By reflecting the right half 
through the origin, you get the left half. In contrast, the cosines in f f ( x )are even. 

To find the zeros of f(x) and f'(x) and f "(x),rewrite those functions as 

f(x) = 2 sin x - $ sin3x f'(x) = - 2 cos x + 4 cos3x f"(x) = - 10 sin x + 12 sin3x. 
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We changed sin 3x to 3 sin x - 4 sin3x. For the derivatives use sin2x = 1 - cos2x. 
Now find the zeros-the crossing points, stationary points, and inflection points: 

f = O  2 sin x = $  sin3x * sin x = O  or sin2x=$ * x=O, f n  

f " = O  5 sin x = 6  sin3x sin x = O  or s in2x=2 x=O, +66", +114", f n  

That is more than enough information to sketch the gra h. The stationary points 
n/4, n/2, 3 4 4  are evenly spaced. At those points f(x) is ,/!I3 (maximum), 213 (local 
minimum), d l 3  (maximum). Figure 3.1 1c shows the graph. 

I would like to mention a beautiful continuation of this same pattern: 

f(x) = sin x +3 sin 3x + :sin 5x + ..- f'(x) = cos x + cos 3x + cos 5x + -.. 
If we stop after ten terms, f(x) is extremely close to a step function. If we don't stop, 
the exact step function contains infinitely many sines. It jumps from -4 4  to +4 4  as 
x goes past zero. More precisely it is a "square wave," because the graph jumps back 
down at n and repeats. The slope cos x + cos 3x + ..-also has period 2n. Infinitely 
many cosines add up to a delta function! (The slope at the jump is an infinite spike.) 
These sums of sines and cosines are Fourier series. 

GRAPHS BY COMPUTERS AND CALCULATORS 

We have come to a topic of prime importance. If you have graphing software for a 
computer, or if you have a graphing calculator, you can bring calculus to life. A graph 
presents y(x) in a new way-different from the formula. Information that is buried 
in the formula is clear on the graph. But don't throw away y(x) and dyldx. The 
derivative is far from obsolete. 

These pages discuss how calculus and graphs go together. We work on a crucial 
problem of applied mathematics-to find where y(x) reaches its minimum. There is 
no need to tell you a hundred applications. Begin with the formula. How do you find 
the point x* where y(x) is smallest? 

First, draw the graph. That shows the main features. We should see (roughly) where 
x* lies. There may be several minima, or possibly none. But what we see depends on 
a decision that is ours to make-the range of x and y in the viewing window. 

If nothing is known about y(x), the range is hard to choose. We can accept a default 
range, and zoom in or out. We can use the autoscaling program in Section 1.7. 
Somehow x* can be observed on the screen. Then the problem is to compute it. 

I would like to work with a specific example. We solved it by calculus-to find 
the best point x* to enter an expressway. The speeds in Section 3.2 were 30 and 60. 
The length of the fast road will be b = 6. The range of reasonable values for the entering 
point is 0 < x <6. The distance to the road in Figure 3.12 is a = 3. We drive a distance 
,/=at speed 30 and the remaining distance 6 - x at speed 60: 

1
driving time y(x)= -

1 ,/- + -(6 - x). (2)30 60 

This is the function to be minimized. Its graph is extremely flat. 
It may seem unusual for the graph to be so level. On the contrary, it is common. 

AJat graph is the whole point of dyldx = 0. 
The graph near the minimum looks like y = cx2.  It is a parabola sitting on a 

horizontal tangent. At a distance of Ax = .01, we only go up by C(AX)~ = .0001 C. 
Unless C is a large number, this Ay can hardly be seen. 
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Fig. 3.12 Enter at x. The graph of driving time y(x). Zoom boxes locate x*. 

The solution is to change scale. Zoom in on x*. The tangent line stays flat, since 
dyldx is still zero. But the bending from C is increased. Figure 3.12 shows the zoom 
box blown up into a new graph of y(x). 

A calculator has one or more ways to find x*. With a TRACE mode, you direct a 
cursor along the graph. From the display of y values, read y,,, and x* to the 
nearest pixel. A zoom gives better accuracy, because it stretches the axes-each 
pixel represents a smaller Ax and Ay. The TI-81 stretches by 4 as default. Even 
better, let the whole process be graphical-draw the actual ZOOM BOX on the 
screen. Pick two opposite corners, press ENTER, and the box becomes the new 
viewing window (Figure 3.12). 

The first zoom narrows the search for x*. It lies between x = 1 and x = 3. We build 
a new ZOOM BOX and zoom in again. Now 1.5 < x* <2. Reasonable accuracy 
comes quickly. High accuracy does not come quickly. It takes time to create the box 
and execute the zoom. 

Question 1 What happens as we zoom in, if all boxes are square (equal scaling)? 
Answer The picture gets flatter and flatter. We are zooming in to the tangent line. 
Changing x to X/4 and y to Y/4, the parabola y =x2 flattens to Y =  X2/4. To see 
any bending, we must use a long thin zoom box. 

I want to change to a totally different approach. Suppose we have a formula for 
dyldx. That derivative was produced by an infinite zoom! The limit of Ay/Ax came by 
brainpower alone: 

-dy = X --I Call this f(x). 
dx 3 o J m  60' 

This function is zero at x*. The computing problem is completely changed: Solve 
Ax) =0. I t  is easier to find a root of f(x) than a minimum of y(x). The graph of f(x) 
crosses the x axis. The graph of y(x) goes flat-this is harder to pinpoint. 

Take the model function y =x2 for 1x1 c .01. The slope f =2x changes from -.02 
to +.02. The value of x2 moves only by .0001 -its minimum point is hard to see. 

To repeat: Minimization is easier with dyldx. The screen shows an order of magni- 
tude improvement, when we trace or zoom on f(x) =0. In calculus, we have been 
taking the derivative for granted. It is natural to get blask about dyldx =0. We forget 
how intelligent it is, to work with the slope instead of the function. 

zero slope Question 2 How do you get another order of magnitude improvement? 
at minimum Answer Use the next derivative! With a formula for dfldx, which is dZy/dx2, the 

Fig. 3.13 convergence is even faster. In two steps the error goes from .O1 to .0001 to .00000001. 
Another infinite zoom went into the formula for dfldx, and Newton's method takes 
account of it. Sections 3.6 and 3.7 study f(x) =0. 
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The expressway example allows perfect accuracy. We can solve dyjdx = 0 by alge- 
,/-. bra. The equation simplifies to 60x = 30 

4x2 = 32+ x2. Then 3x2 = 3'. 
Dividing by 30 and squaring yields 

The exact solution is x* = & = 1.73205.. . 
A model like this is a benchmark, to test competing methods. It also displays what 

we never appreciated-the extreme flatness of the graph. The difference in driving 
time between entering at x* = & and x = 2 is one second. 

THE CENTERING TRANSFORM AND ZOOM TRANSFORM 

For a photograph we do two things-point the right way and stand at the right 
distance. Then take the picture. Those steps are the same for a graph. First we pick 
the new center point. The graph is shifted, to move that point from (a,b) to (0,O). 
Then we decide how far the graph should reach. It fits in a rectangle, just like the 
photograph. Rescaling to x/c and y/d puts the desired section of the curve into the 
rectangle. 

A good photographer does more (like an artist). The subjects are placed and the 
camera is focused. For good graphs those are necessary too. But an everyday calcula- 
tor or computer or camera is built to operate without an artist-just aim and shoot. 
I want to explain how to aim at y = f(x). 

We are doing exactly what a calculator does, with one big difference. It doesn't 
change coordinates. We do. When x = 1, y = - 2 moves to the center of the viewing 
window, the calculator still shows that point as (1, -2). When the centering transform 
acts on y + 2 = m(x - I), those numbers disappear. This will be confusing unless x 
and y also change. The new coordinates are X = x - 1 and Y = y + 2. Then the new 
equation is Y = mX. 

The main point (for humans) is to make the algebra simpler. The computer has no 
preference for Y = mX over y - yo = m(x - x,). It accepts 2x2 -4x as easily as x2. 
But we do prefer Y = mX and y = x2, partly because their graphs go through (0,O). 
Ever since zero was invented, mathematicians have liked that number best. 

EXAMPLE 4 The parabola y = 2x2- 4x has its minimum when dyldx = 4x -4 = 0. 
Thus x = 1 and y = - 2. Move this bottom point to the center: y = 2x2- 44 is 

The new parabola Y = 2X2 has its bottom at (0,O). It is the same curve, shifted across 
and up. The only simpler parabola is y = x2. This final step is the job of the zoom. 

Next comes scaling. We may want more detail (zoom in to see the tangent line). 
We may want a big picture (zoom out to check asymptotes). We might stretch one 
axis more than the other, if the picture looks like a pancake or a skyscraper. 

36 A z m m  tram@rna scdes the X and Y axes by c and d :  

X =  EX and y =  HY change Y= F ( X )  to y =  dF(x/c). 

The new x and y are boldface letten, and the graph is re&. Often c = d. 
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EXAMPLE 5 Start with Y = 2X2. Apply a square zoom with c = d. In the new xy 
coordinates, the equation is y/c = ~ ( x / c ) ~ .The number 2 disappears if c = d = 2. With 
the right centering and the right zoom, every parabola that opens upward is y = x2. 

Question 3 What happens to the derivatives (slope and bending) after a zoom? 
Answer The slope (first derivative) is multiplied by d/c. Apply the chain rule to y = 
dF(x/c). A square zoom has d/c = 1-lines keep their slope. The second derivative is 
multiplied by d/c2, which changes the bending. A zoom out divides by small numbers 
c = d, so the big picture is more, curved. 

Combining the centering and zoom transforms, as we do in practice, gives y in 
terms of x: 

y =f(x) becomes Y=f(X+a)-b andthen y = d  f - + a  )-bl.[ (: 

Fig. 3.14 Change of coordinates by centering and zoom. Calculators still show (x, y). 

Question 4 Find x and y ranges after two transforms. Start between -1 and 1. 
Answer The window after centering is -1 <x - a < 1 and -1 <y - b < 1. The 
window after zoom is -1<c(x - a) < 1 and -1 <d(y - b) < 1. The point (1, 1) was 
originally in the corner. The point (c-' + a, d + b) is now in the corner. 

The numbers a, b, c, d are chosen to produce a simpler function (like y = x2). Or 
else-this is important in applied mathematics-they are chosen to make x and y 
"dimensionless." An example is y =f cos 8t. The frequency 8 has dimension l/time. 
The amplitude f is a distance. With d = 2 cm and c = 8 sec, the units are removed 
and y = cos t. 

May I mention one transform that does change the slope? It is a rotation. The 
whole plane is turned. A photographer might use it-but normally people are sup- 
posed to be upright. You use rotation when you turn a map or straighten a picture. 
In the next section, an unrecognizable hyperbola is turned into Y = 1/X. 

3.4 EXERCISES 

Read-through questions around the graph looks long and I .We m in to that 

The position, slope, and bending of y =f(x) are decided by box for another digit of x*. But solving dyldx =0 is more 
a b and c .IfIf(x)l+ooasx+a,thelinex= accurate, because its graph n the x axis. The slope of 

-9-

a is a vertical d . If f(x) +.b for large x, then y =b is a dyldx is 0 . Each derivative is like an p zoom. 
e . If f(x) -mx +b for large x, then y =mx + b is a To move (a, b) to (0, 0), shift the variables to X = 
f . The asymptotes of y =x2/(x2-4) are $I . This and Y = r . This s transform changes y =Ax) to 

function is even because y(-x) = h . The function sin kx Y= t . The original slope at (a, b) equals the new slope 
has period i . at u . To stretch the axes by c and d, set x =cX and 

v .The w transformchanges Y =F ( X )to y = x . 
Near a point where dy/dx =0, the graph is extremely Slopes are multiplied by Y . Second derivatives are 
I .For the model y = cx2, x =.1gives y = k .A box multiplied by . 
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1 Find the pulse rate when heartbeats are second or two 
dark lines or x seconds apart. 

2 Another way to compute the heart rate uses marks for 
6-second intervals. Doctors count the cycles in an interval. 

(a) How many dark lines in 6 seconds? 
(b) With 8 beats per interval, find the rate. 

(c) Rule: Heart rate =cycles per interval times . 

Which functions in 3-18 are even or odd or periodic? Find all 
asymptotes: y =b or x =a or y =mx + b. Draw roughly by 
hand or smoothly by computer. 

3 f(x) =x -(9/x) 4 f (x)=xn (any integer n) 

1 x 
5 f(x)= - 6 f(x)= -1 -x2 4 -x2 

9 f(x) =(sin x)(sin 2x) 10 f(x) =cos x +cos 3x +cos 5x 

x sin x X 
11 f(x)= - 12 f(x) = -

x2-  1 sin x 

sin x +cos x 
16 f(x)= 

sin x -cos x 

In 19-24 constructf(x) with exactly these asymptotes. 

19 x =  1 and y = 2  20 x = l , x = 2 , y = O  

21 y = x a n d x = 4  22 y = 2 x + 3  and x=O 

23 y = x ( x + m ) ,  y =  -x(x+ -a) 

24 x = l , x = 3 , y = x  

25 For P(x)/Q(x) to have y = 2 as asymptote, the polynomials 
P and Q must be 

26 For P(x)/Q(x) to have a sloping asymptote, the degrees of 
P and Q must be . 
27 For P(x)/Q(x) to have the asymptote y =0, the degrees of 
P and Q must . The graph of x4/(l + x2) has what 
asymptotes? 

28 Both l/(x - 1) and l/(x - have x = 1 and y =0 as 
asymptotes. The most obvious difference in the graphs is 

29 If f '(x) has asymptotes x = 1 and y = 3 then f (x) has 
asymptotes 

30 True (with reason) or false (with example). 
(a) Every ratio of polynomials has asymptotes 
(b) If f(x) is even so is f "(x) 
(c) Iff "(x) is even so is f(x) 
(d) Between vertical asymptotes, f '(x) touches zero. 

31 Construct an f(x) that is "even around x = 3." 

32 Construct g(x) to be "odd around x =n." 

Create graphs of 33-38 on a computer or calculator. 

35 y(x) = sin(x/3)+ sin(x/5) 

36 y(x)=(2-x)/(~+x),  - 3 ~ ~ 6 3  

37 y(x) =2x3 + 3x2- 12x + 5 on [-3, 31 and C2.9, 3.11 

38 100[sin(x + .l) -2 sin x + sin(x - .I)] 

In 39-40 show the asymptotes on large-scale computer graphs. 

x3+8x-15 x4 -6x3 + 1
39 (a) y = x2-2 (b) Y =  2X4+ X 2  

x2-2 x 2 - x + 2
40 (a) y = 

x3 + 8x- 15 (b) y = X2 -zx + 1 

41 Rescale y =sin x so X is in degrees, not radians, and Y 
changes from meters to centimeters. 

Problems 42-46 minimize the driving time y(x) in the text. 
Some questions may not fit your software. 

42 Trace along the graph of y(x) to estimate x*. Choose an 
xy range or use the default. 

43 Zoom in by c =d =4. How many zooms until you reach 
x* = 1.73205 or 1.7320508? 

44 Ask your program for the minimum of y(x) and the solu- 
tion of dyldx = 0. Same answer? 

45 What are the scaling factors c and d for the two zooms in 
Figure 3.12? They give the stretching of the x and y axes. 

46 Show that dy/dx = - 1/60 and d 2 y / d ~ 2  = 1/90 at x =0. 
Linear approximation gives dyldx z - 1/60+x/90. So the 
slope is zero near x = . This is Newton's method, 
using the next derivative. 

Change the function to y(x)=d l 5  + x2/30+ (10 -x)/60. 

47 Find x* using only the graph of y(x). 

48 Find x* using also the graph of dyldx. 

49 What are the xy and X Y and xy equations for the line in 
Figure 3.14? 
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50 Define f,(x) = sin x + 4 sin 3x + f sin 5x + (n terms). 
Graph f5 and f,, from - x  to 71. Zoom in and describe the 
Gibbs phenomenon at x = 0. 

On the graphs of 51-56, zoom in to all maxima and minima 
(3 significant digits). Estimate inflection points. 

51 y = 2x5- 16x4+ 5x3-37x2+ 21x + 683 

52 y = x 5 - ~ 4 -  J W - 2  

53 y = x(x - l)(x -2)(x -4) 

54 y = 7 sin 2x + 5 cos 3x 

55 y=(x3-2x+1)/(x4-3x2-15), -3 ,<x<5 

56 y = x sin (llx), 0.1 ,< x Q 1 

57 A 10-digit computer shows y = 0 and dy/dx = .O1 at x* = 1. 
This root should be correct to about (8 digits) (10 digits) 
(12 digits). Hint: Suppose y = .O1 (x - 1 + error). What errors 
don't show in 10 digits of y? 

58 Which is harder to compute accurately: Maximum point 
or inflection point? First derivative or second derivative? 

Here is a list of the most important curves in mathematics, so you can tell what is 
coming. It is not easy to rank the top four: 

1. straight lines 
2. sines and cosines (oscillation) 
3. exponentials (growth and decay) 
4. parabolas, ellipses, and hyperbolas (using 1, x, y, x2, xy, y2). 

The curves that I wrote last, the Greeks would have written first. It is so natural to 
go from linear equations to quadratic equations. Straight lines use 1,x, y. Second 
degree curves include x2, xy, y2. If we go on to x3 and y3, the mathematics gets 
complicated. We now study equations of second degree, and the curves they produce. 

It is quite important to see both the equations and the curves. This section connects 
two great parts of mathematics-analysis of the equation and geometry of the curve. 
Together they produce "analytic geometry." You already know about functions and 
graphs. Even more basic: Numbers correspond to points. We speak about "the point 
(5,2)." Euclid might not have understood. 

Where Euclid drew a 45" line through the origin, Descartes wrote down y = x. 
Analytic geometry has become central to mathematics-we now look at one part of it. 

Fig. 3.15 The cutting plane gets steeper: circle to ellipse to parabola to hyperbola. 
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CONIC SECTIONS 

The parabola and ellipse and hyperbola have absolutely remarkable properties. The 
Greeks discovered that all these curves come from slicing a cone by a plane. The 
curves are "conic sections." A level cut gives a circle, and a moderate angle produces 
an ellipse. A steep cut gives the two pieces of a hyperbola (Figure 3.15d). At the 
borderline, when the slicing angle matches the cone angle, the plane carves out a 
parabola. It has one branch like an ellipse, but it opens to infinity like a hyperbola. 

Throughout mathematics, parabolas are on the border between ellipses and 
hyperbolas. 

To repeat: We can slice through cones or we can look for equations. For a cone 
of light, we see an ellipse on the wall. (The wall cuts into the light cone.) For an 
equation AX^ + Bxy + Cy2+Dx + Ey + F = 0, we will work to make it simpler. The 
graph will be centered and rescaled (and rotated if necessary), aiming for an equation 
like y = x2. Eccentricity and polar coordinates are left for Chapter 9. 

THE PARABOLA y = m2+ bx + c 

You knew this function long before calculus. The graph crosses the x axis when 
y = 0. The quadratic formula solves y = 3x2- 4x + 1 = 0, and so does factoring into 
(x - 1)(3x- 1). The crossing points x = 1 and x =f come from algebra. 

The other important point is found by calculus. It is the minimum point, where 
dyldx = 6x - 4 = 0. The x coordinate is 8 = f ,  halfway between the crossing points. 
The height is ymin = -i.This is the vertex V in Figure 3.16a-at the bottom of the 
parabola. 

A parabola has no asymptotes. The slope 6x - 4 doesn't approach a constant. 

To center the vertex Shift left by 3 and up by f .  So introduce the new variables 
x = x - $  and Y = y + f .  hen x = f  and y =  - 3  correspond to X =  Y=O-which 
is the new vertex: 

y = 3x2-4x + 1 becomes Y = 3X 2. (1) 

Check the algebra. Y = 3X2 is the same as y +f = 3(x -3)2. That simplifies to the 
original equation y = 3x2-4x + 1. The second graph shows the centered parabola 
Y = 3X2, with the vertex moved to the origin. 

To zoom in on the vertex Rescale X and Y by the zoom factor a: 

Y = 3x2  becomes y/a = 3 ( ~ / a ) ~ .  

The final equation has x and y in boldface. With a = 3 we find y = x2-the graph is 
magnified by 3. In two steps we have reached the model parabola opening upward. 

I directrix at y = -

Fig. 3.16 Parabola with minimum at V. Rays reflect to focus. Centered in (b), rescaled in (c). 

4 



3.5 Parabolas, Ellipses, and Hyperbolas 

A parabola has another important point-the focus. Its distance from the vertex 
is called p. The special parabola y = x2 has p = 114, and other parabolas Y = a x 2  
have p = 1/4a. You magnify by a factor a to get y = x2. The beautiful property of a 
parabola is that every ray coming straight down is reflected to the focus. 

Problem 2.3.25 located the focus F-here we mention two applications. A solar 
collector and a TV dish are parabolic. They concentrate sun rays and TV signals 
onto a point-a heat cell or a receiver collects them at the focus. The 1982 UMAP 
Journal explains how radar and sonar use the same idea. Car headlights turn the 
idea around, and send the light outward. 

Here is a classical fact about parabolas. From each point on the curve, the distance 
to the focus equals the distance to the "directrix." The directrix is the line y = -p 
below the vertex (so the vertex is halfway between focus and directrix). With p = 4, 
the distance down from any (x, y) is y + 4. Match that with the distance to the focus 
at (0,a)- this is the square root below. Out comes the special parabola y = x2: 

y + 4 = - (square both sides) - y = x2. (2) 

The exercises give practice with all the steps we have taken-center the parabola to 
Y = ax2 ,  rescale it to y = x2, locate the vertex and focus and directrix. 

Summary for other parabolas y = ax2+ bx + c has its vertex where dy/dx is zero. 
Thus 2ax + b = 0 and x = -b/2a. Shifting across to that point is "completing the 
square": 

ax2+ bx + e equals a (x + - + C. 
: l ) i  

Here C = c - (b2/4a) is the height of the vertex. The centering transform X = x + (b/2a), 
Y = y -C produces Y = ax2.  It moves the vertex to (0, 0), where it belongs. 

For the ellipse and hyperbola, our plan of attack is the same: 

1. Center the curve to remove any linear terms Dx and Ey. 
2. Locate each focus and discover the reflection property. 
3. Rotate to remove Bxy if the equation contains it. 

x2 y2
ELLIPSES -+ -= 1 (CIRCLES HAVE a= b )

a2 b2 

This equation makes the ellipse symmetric about (0, 0)-the center. Changing x to 
-x or y to -y leaves the same equation. No extra centering or rotation is needed. 

The equation also shows that x2/a2 and y2/b2 cannot exceed one. (They add to 
one and can't be negative.) Therefore x2 < a2, and x stays between -a and a. Similarly 
y stays between b and -b. The ellipse is inside a rectangle. 

By solving for y we get a function (or two functions!) of x: 

The graphs are the top half (+) and bottom half (-) of the ellipse. To draw the ellipse, 
plot them together. They meet when y = 0, at x = a on the far right of Figure 3.17 
and at x = -a on the far left. The maximum y = b and minimum y = -b are at the 
top and bottom of the ellipse, where we bump into the enclosing rectangle. 

A circle is a special case of an ellipse, when a = b. The circle equation x2 + y2 = r2 
is the ellipse equation with a = b = r. This circle is centered at (0,O); other circles are 
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centered at x = h, y = k. The circle is determined by its radius r and its center (h, k): 

Equation of circle: (x - h)' + (y - k)2= r2. (4) 

In words, the distance from (x, y) on the circle to (h, k) at the center is r. The 
equation has linear terms -2hx and -2ky-they disappear when the center is (0,O). 

EXAMPLE 1 Find the circle that has a diameter from (1,7) to (5, 7). 

Solution The center is halfway at (3,7). So r = 2 and (x - 3)2+ (y - 7)2= 22. 

EXAMPLE2 Find the center and radius of the circle x2 - 6x + y2 - 14y = - 54. 

Solution Complete x2 - 6x to the square (x - 3)2 by adding 9. Complete y2 - 14y 
to (y - 7)2 by adding 49. Adding 9 and 49 to both sides of the equation leaves 
(x - 3)2+ (y - 7)2= 4-the same circle as in Example 1. 

Quicker Solution Match the given equation with (4). Then h = 3, k = 7, and r = 2: 

x2 - 6x + y2 - 14y = - 54 must agree with x2 - 2hx + h2 + y2 - 2ky + k2 = r2. 

The change to X = x - h and Y= y - k moves the center of the circle from (h, k) 
to (0,O). This is equally true for an ellipse: 

The ellipse -
( ~ - h ) ~(y-k)l x2+ --- 1 becomes -+-=y 2  

1. 
a b2 a2 b2 

When we rescale by x = Xja and y = Ylb, we get the unit circle x2 + y2 = 1. 
The unit circle has area n. The ellipse has area nab (proved later in the book). The 

distance around the circle is 2n. The distance around an ellipse does not rescale-it 
has no simple formula. 

Fig. 3.17 Uncentered circle. Centered ellipse ~ ~ + y 2 / 2 23= 1 .~ The distance from center to1 
far right is also a = 3.  All rays from F 2  reflect to F ,  . 

Now we leave circles and concentrate on ellipses. They have two foci (pronounced 
fo-sigh). For a parabola, the second focus is at infinity. For a circle, both foci are at 
the center. The foci of an ellipse are on its longer axis (its major axis), one focus on 
each side of the center: 

~ , i s a t x = e = J a ~ - b ~  and F 2 i s a t x = - c .  

The right triangle in Figure 3.17 has sides a, b, c. From the top of the ellipse, the 
distance to each focus is a. From the endpoint at x = a, the distances to the foci are 
a + c and a - c. Adding (a + c) + (a - c) gives 2a. As you go around the ellipse, the 
distance to F ,  plus the distance to F2 is constant (always 2a). 
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3H At all points on the ellipse, the sum of distances from the foci is 2a. This
is another equation for the ellipse:

from F1 and F2 to (X, y): (X- )2 +y 2 + /(x 2 = 2a. (5)

To draw an ellipse, tie a string of length 2a to the foci. Keep the string taut and your
moving pencil will create the ellipse. This description uses a and c-the other form
uses a and b (remember b2 + c2 = a2). Problem 24 asks you to simplify equation (5)
until you reach x 2/a2 + y 2/b 2 = 1.

The "whispering gallery" of the United States Senate is an ellipse. If you stand at
one focus and speak quietly, you can be heard at the other focus (and nowhere else).
Your voice is reflected off the walls to the other focus-following the path of the
string. For a parabola the rays come in to the focus from infinity-where the second
focus is.

A hospital uses this reflection property to split up kidney stones. The patient sits
inside an ellipse with the kidney stone at one focus. At the other focus a lithotripter
sends out hundreds of small shocks. You get a spinal anesthetic (I mean the patient)
and the stones break into tiny pieces.

The most important focus is the Sun. The ellipse is the orbit of the Earth. See
Section 12.4 for a terrible printing mistake by the Royal Mint, on England's last
pound note. They put the Sun at the center.

Question 1 Why do the whispers (and shock waves) arrive together at the second
focus?
Answer Whichever way they go, the distance is 2a. Exception: straight path is 2c.

Question 2 Locate the ellipse with equation 4x 2 + 9y 2 = 36.
Answer Divide by 36 to change the constant to 1. Now identify a and b:

2 2
-+ - 1 so a= and b-= /. Foci at 9-4 = + .
9 4

Question 3 Shift the center of that ellipse across and down to x = 1, y = - 5.
Answer Change x to x - 1. Change y to y + 5. The equation becomes
(x - 1)2/9 + (y + 5)2/4 = 1. In practice we start with this uncentered ellipse and go the
other way to center it.

y2 X2

HYPERBOLAS - = I1
a2 b 2

Notice the minus sign for a hyperbola. That makes all the difference. Unlike an ellipse,
x and y can both be large. The curve goes out to infinity. It is still symmetric, since
x can change to - x and y to - y.

The center is at (0, 0). Solving for y again yields two functions (+ and -):

a - = 1 gives =+ or y = 2 . (6)

The hyperbola has two branches that never meet. The upper branch, with a plus sign,
has y > a. The vertex V1 is at x = 0, y = a-the lowest point on the branch. Much
further out, when x is large, the hyperbola climbs up beside its sloping asymptotes:

x2  2
if - =1000 then - 1001. So - is close to or - .

b 2 a b b



3 Applications of the Derivative 

reach curve light 
fixed waves 
time apart reflect 7 to F2 

Fig. 3.18 The hyperbola iy2 - &x2 = 1 has a = 2, b = 3, c = ,/-. The distances to F 1  and 
F ,  differ by 2a = 4. 

The asymptotes are the lines yla = x/b and yla = - x/b. Their slopes are a/b and - a/b. 
You can't miss them in Figure 3.18. 

For a hyperbola, the foci are inside the two branches. Their distance from the 
center is still called c. But now c = ,/=, which is larger than a and b. The vertex 
is a distance c - a from one focus and c + a from the other. The diflerence (not the 
sum) is (c + a) - (c - a) = 2a. 

All points on the hyperbola have this property: The diflerence between distances to 
the foci is constantly 2a. A ray coming in to one focus is reflected toward the other. 
The reflection is on the outside of the hyperbola, and the inside of the ellipse. 

Here is an application to navigation. Radio signals leave two fixed transmitters at 
the same time. A ship receives the signals a millisecond apart. Where is the ship? 
Answer: It is on a hyperbola with foci at the transmitters. Radio signals travel 
186 miles in a millisecond, so 186 = 2a. This determines the curve. In Long Range 
Navigation (LORAN) a third transmitter gives another hyperbola. Then the ship 
is located exactly. 

Question 4 How do hyperbolas differ from parabolas, far from the center? 
Answer Hyperbolas have asymptotes. Parabolas don't. 

The hyperbola has a natural rescaling. The appearance of x/b is a signal to change 
to X.  Similarly yla becomes Y. Then Y =  1 at the vertex, and we have a standard 
hyperbola: 

y2/a2 - x2/b2 = 1 becomes Y 2  - X 2  = 1. 

A 90" turn gives X 2  - y2  = l-the hyperbola opens to the sides. A 45" turn produces 
2X Y = 1. We show below how to recognize x2 + x y  + y2 = 1 as an ellipse and 
x2 + 3xy + y2 = 1 as a hyperbola. (They are not circles because of the xy term.) When 
the xy coefficient increases past 2, x2 + y2 no longer indicates an ellipse. 

Question 5 Locate the hyperbola with equation 9y2 - 4x2 = 36. 
Answer Divide by 36. Then y2/4 - x2/9 = 1. Recognize a = & and b = fi. 
Question 6 Locate the uncentered hyperbola 9y2 - 18y - 4x2 - 4x = 28. 
Answer Complete 9~~ - 18y to 9(y - 1)2 by adding 9. Complete 4x2 + 4x to 
4(x + $)2 by  adding 4(3)2 = 1. The equation is rewritten as 9(y - - 4(x + $)2 = 
28 + 9 - 1. This is the hyperbola in Question 5 - except its center is (- $,I). 
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To summarize: Find the center by completing squares. Then read off a and b. 

THE GENERAL EQUATION Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 

This equation is of second degree, containing any and all of 1, x, y, x2, xy, y2. 
A plane is cutting through a cone. Is the curve a parabola or ellipse or hyperbola? 
Start with the most important case Ax2 + Bxy + Cy2 = 1. 

I I The equation Ax2 + Bxy + cyZ = 1 produces a hyperbola if B~ > 4AC and 
an ellipse if B2 < 4AC. A parabola has B2 = 4AC. I 

To recognize the curve, we remove Bxy by rotating the plane. This also changes A 
and C-but the combination B~ - 4AC is not changed (proof omitted). An example 
is 2xy = 1, with B~ = 4. It rotates to y2 - x2 = 1, with - 4AC = 4. That positive 
number 4 signals a hyperbola-since A = - 1 and C = 1 have opposite signs. 

Another example is x2 + y2 = 1. It is a circle (a special ellipse). However we rotate, 
the equation stays the same. The combination B~ - 4AC = 0 - 4 1 1 is negative, as 
predicted for ellipses. 

To rotate by an angle a, change x and y to new variables x' and y': 

x = X' cos a - y' sin a = x cos a + y sin a 
and 

y = x' sin a + y' cos a y' = - y sin a + x cos a. 
(7) 

Substituting for x and y changes  AX^ + Bxy + cy2  = 1 to A ' x ' ~  + B'xly' + Cryf2 = 1. 
The formulas for A', B', C' are painful so I go to the key point: 

B' is zero if the rotation angle a has tan 2a = B/(A - C). 

With B' = 0, the curve is easily recognized from A ' x ' ~  + C'yr2 = 1. It is a hyperbola 
if A' and C' have opposite signs. Then B ' ~  - 4A1C' is positive. The original B~ - 4AC 
was also positive, because this special combination stays constant during rotation. 

After the xy term is gone, we deal with x and y-by centering. To find the center, 
complete squares as in Questions 3 and 6. For total perfection, rescale to one of the 
model equations y = x2 or x2 + y2 = 1 or y2 - x2 = 1. 

The remaining question is about F = 0. What is the graph of AX? + Bxy + cy2 = O? 
The ellipse-hyperbola-parabola have disappeared. But if the Greeks were right, the 

cone is still cut by a plane. The degenerate case F = 0 occurs when the plane cuts 
right through the sharp point of the cone. 

A level cut hits only that one point (0,O). The equation shrinks to x2 + y2 = 0, a 
circle with radius zero. A steep cut gives two lines. The hyperbola becomes y2 -?. x2 = 0, 
leaving only its asymptotes y = + x. A cut at the exact angle of the cone gives only 
one line, as in x2 = 0. A single point, two lines, and one line are very extreme cases of 
an ellipse, hyperbola, and parabola. 

All these "conic sections" come from planes and cones. The beauty of the geometry, 
which Archimedes saw, is matched by the importance of the equations. Galileo dis- 
covered that projectiles go along parabolas (Chapter 12). Kepler discovered that the 
Earth travels on an ellipse (also Chapter 12). Finally Einstein discovered that light 
travels on hyperbolas. That is in four dimensions, and not in Chapter 12. 
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equation vertices foci 

P y = a x 2 + b x + c  
1 
-above vertex, also infinity 

H - - - - = Iy2 x2 
(0, a) and (0, -a) (0, c) and (0, -c): c  = ,/=

a2 b2 

3.5 EXERCISES 

Read-through questions 

The graph of y = x2 + 2x + 5 is a a . Its lowest point 
(the vertex) is (x, y) = ( b ). Centering by X = x + 1 and 
Y = c moves the vertex to (0,O). The equation becomes 
Y = d . The focus of this centered parabola is e . All 
rays coming straight down are f to the focus. 

The graph of x2 + 4~~= 16 is an a . Dividing by h 
leaves x2/a2 + y2/b2= 1 with a = i and b = i . The 
graph lies in the rectangle whose sides are k . The area is 
nab = I . The foci are at x = + c = m . The sum of 
distances from the foci to a point on this ellipse is always 

n . If we rescale to X = x/4 and Y = y/2 the equation 
becomes 0 and the graph becomes a p . 

The graph of y2 -x2 = 9 is a q . Dividing by 9 leaves 
y2/a2-x2/b2= 1 with a = r and b = s . On the 
upper branch y 3 t . The asymptotes are the lines . 
The foci are at y = + c = v . The w of distances from 
the foci to a point on this hyperbola is x . 

All these curves are conic sections-the intersection of a 
Y and a . A steep cutting angle yields a A . At 

the borderline angle we get a B . The general equation is 
AX^ + C + F = 0. If D = E = 0 the center of the graph is 
at D . The equation Ax2 + Bxy + Cy2= 1 gives an ellipse 
when E . The graph of 4x2 + 5xy + 6y2= 1 is a F . 

1 The vertex of y = ax2 + bx + c is at x y '-b/2a. What is 
special about this x? Show that it gives y = c - (b2/4a). 

Problems 15-20 are about parabolas, 21-34 are about ellipses, 
35-41 are about hyperbolas. 

15 Find the parabola y =  ax2 + hx + c that goes through 
(0,O) and (1, 1) and (2, 12). 

16 y = x2 -x has vertex at . To move the vertex to 
(0, 0) set X = and Y = . Then Y = X2. 

17 (a) In equation (2) change $ to p. Square and simplify. 
(b) Locate the focus and directrix of Y = 3x2. Which 
points are a distance 1 from the directrix and focus? 

18 The parabola y = 9 -x2 opens with vertex at 
. Centering by Y = y -9 yields Y = -x2. 

19 Find equations for all parabolas which 
(a) open to the right with vertex at (0,O) 
(b) open upwards with focus at (0,O) 
(c) open downwards and go through (0,O) and (1,O). 

20 A projectile is at x = t, y = t - t2 at time t. Find dxldt and 
dyldt at the start, the maximum height, and an xy equation 
for the path. 

21 Find the equation of the ellipse with extreme points at 
(+ 2,O) and (0, _+ 1). Then shift the center to (1, 1) and find the 
new equation. 

2 The parabola y = 3x2- 12x has xmin = . At this 22 On the
,/=. =c 

ellipse x2/a2 + y2/b2= 1, solve for y when 
This height above the focus will be valuable minimum, 3x2 is as large as 12x. Introducing x = 

X = x -2 and Y = y + 12 centers the equation to . in proving Kepler's third law. 

23 Find equations for the ellipses with these properties: 
(a) through (5, 0) with foci at (+4, 0) 
(b) with sum of distances to (1, 1) and (5, 1) equal to 12 
(c) with both foci at (0, 0) and sum of distances= 

2a = 10. 

24 Move a square root to the right side of equation (5) and 
square both sides. Then isolate the remaining square root and 
square again. Simplify to reach the equation of an ellipse. 

Draw the curves 3-14 by hand or calculator or computer. 
Locate the vertices and foci. 
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25 Decide between circle-ellipse-parabola-hyperbola, based 
on the XY equation with X =x - 1 and Y =y + 3. 

(a) x2 -2x + Y2 + 6y = 6 
(b) ~ ~ - 2 x - ~ ~ - 6 ~ = 6  
(c) ~ ~ - 2 x + 2 ~ ~ +12y=6 
(d) x2-2x -y = 6. 

26 A tilted cylinder has equation (x -2y -2 ~ ) ~+ 
(y - 2x -2 ~ ) ~= 1. Show that the water surface at z = 0 is an 
ellipse. What is its equation and what is B~ -4AC? 

27 (4, 915) is above the focus on the ellipse x2/25 +y2/9= 1. 
Find dyldx at that point and the equation of the tangent line. 

28 (a) Check that the line xxo + yy, = r2 is tangent to the 
circle x2 + Y2 = r2 at (x,, yo). 
(b) For the ellipse x2/a2 + y2/b2= 1show that the tangent 
equation is xxo/a2 + yyo/b2= 1. (Check the slope.) 

29 The slope of the normal line in Figure A is s = - l/(slope 
of tangent) = . The slope of the line from F2 is 
S = . By the reflection property, 

Test your numbers s and S against this equation. 

30 Figure B proves the reflecting property of an ellipse. 
R is the mirror image of F ,  in the tangent line; Q is any other 
point on the line. Deduce steps 2, 3, 4 from 1, 2, 3: 

1. PF,  + PF2 < QF1 + QF2 (left side = 2a, Q is outside) 
2. PR + PF2 < QR + QF2 
3. P is on the straight line from F2  to R 
4. a = ,8: the reflecting property is proved. 

31 The ellipse (x - 3)2!4 + (y - 1)2/4= 1 is really a 
with center at and radius . Choose X and 
Y to produce X 2  + Y2 = 1. 

32 Compute the area of a square that just fits inside the 
ellipse x2/a2 + y2/b2= 1. 

33 Rotate the axes of x2 + xy + y2 = 1 by using equation (7) 
with sin a = cos a = l / f i .  The x'y' equation should show an 
ellipse. 

34 What are a, b, c for the Earth's orbit around the sun? 

35 Find an equation for the hyperbola with 
(a) vertices (0, & I), foci (0, & 2) 
(b) vertices (0, & 3), asymptotes y = + 2x 
(c) (2, 3) on the curve, asymptotes y = + x 

36 Find the slope of y2 -x2  = 1 at (xO, yo). Show that 
yy, -xx, = 1 goes through this point with the right slope (it 
has to be the tangent line). 

37 If the distances from (x, y) to (8, 0) and (-8, 0) differ by 
10, what hyperbola contains (x, y)? 

38 If a cannon was heard by Napoleon and one second later 
by the Duke of Wellington, the cannon was somewhere on a 

with foci at . 

39 y2 -4y is part of (y -2)2= and 2x2 + 12x 
is part of 2(x + 3)2= . Therefore y2 -4y -
2x2- 12x = 0 gives the hyperbola (y -2)2-2(x + 3)2= 

. Its center is and it opens to the . 

40 Following Problem 39 turn y2 + 2y =x2 + lox into 
y 2  =x2+ C with X, Y, and C equal to .' 

41 Draw the hyperbola x2 -4y2= 1 and find its foci and 
asymptotes. 

Problems 42-46 are about second-degree curves (conics). 

42 For which A, C, F does AX^ + cy2+ F = 0 have no solu- 
tion (empty graph)? 

43 Show that x2 + 2xy + y2 + 2x + 2y + 1 =0 is the equation 
(squared) of a single line. 

44 Given any points in the plane, a second-degree 
curve AX^ + ... + F = 0 goes through those points. 

45 (a) When the plane z = ax +by + c meets the cone 
z2 = x2 + y2, eliminate z by squaring the plane equation. 
Rewrite in the form Ax2 + Bxy + Cy2+ Dx + Ey + F = 0. 
(b) Compute B2 -4AC in terms of a and b. 
(c) Show that the plane meets the cone in an ellipse if 
a2 + b2 < 1 and a hyperbola if a2  + b2 > 1 (steeper). 

46 The roots of ax2 + bx + c =0 also involve the special com- 
bination b2 -4ac. This quadratic equation has two real roots 
if and no real roots if . The roots come 
together when b2 = 4ac, which is the borderline case like a 
parabola. 
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3.6 Iterations Xn+ 1 = F(xn)  

Iteration means repeating the same function. Suppose the function is F(x) = cos x. 
Choose any starting value, say x, = 1. Take its cosine: x, = cos x, = .54. Then take 
the cosine of x, . That produces x2 = cos .54 = .86. The iteration is x, + , = cos x,. I 
am in radian mode on a calculator, pressing "cos" each time. The early numbers are 
not important, what is important is the output after 12 or 30 or 100 steps: 

EXAMPLE 1 x12 = .75, x13 = .73, x14 = .74, ..., x29 = .7391, ~ 3 ,  = .7391. 

The goal is to explain why the x's approach x* = .739085 ..... Every starting value 
x, leads to this same number x*. What is special about .7391? 

Note on iterations Do x1 = cos x, and x2 = cos x, mean that x, = cos2 x,? Abso- 
lutely not! Iteration creates a new and different function cos (cos x). It uses the cos 
button, not the squaring button. The third step creates F(F(F(x))). As soon as you 
can, iterate with x,+, = 4 cos x,. What limit do the x's approach? Is it 3(.7931)? 

Let me slow down to understand these questions. The central idea is expressed by 
the equation x,+, = F(x,). Substituting xo into F gives x,. This output x, is the input 
that leads to x,. In its turn, x2 is the input and out comes x, = F(x2). This is iteration, 
and it produces the sequence x,, x,, x2, .... 

The x's may approach a limit x*, depending on the function F. Sometimes x* also 
depends on the starting value x,. Sometimes there is no limit. Look at a second 
example, which does not need a calculator. 

EXAMPLE 2 x,+ , = F(x,) = ix ,  + 4. Starting from x, = 0 the sequence is 

x , = 4 * 0 + 4 = 4 ,  x 2 = i * 4 + 4 = 6 ,  x 3 = L . 6 + 4 = 7  2 9 4 2 x = 1 . 7 + 4 = 7 L  2, . . . .  

Those numbers 0, 4, 6, 7, 73, . . . seem to be approaching x* = 8. A computer would 
convince us. So will mathematics, when we see what is special about 8: 

When the x's approach x*, the limit of x, +, = ix ,  + 4 
is X* = I  ,x * + 4. This limiting equation yields x* = 8. 

8 is the "steady state" where input equals output: 8 = F(8). It is thefixedpoint. 
If we start at x, = 8, the sequence is 8, 8, 8, ... . When we start at x, = 12, the 

sequence goes back toward 8: 

Equation for limit: If the iterations x, + , = F(x,) converge to x*, then x* = F(x*). 

To repeat: 8 is special because it equals 4 8 + 4. The number .7391.. . is special because 
it equals cos .7391.. . . The graphs of y = x and y = F(x) intersect at x*. To explain why 
the x's converge (or why they don't) is the job of calculus. 

EXAMPLE 3 xn+ ,  = xi  has two fixed points: 0 = 0' and 1 = 12. Here F(x) = x2. 

Starting from x, = 3 the sequence a, A, &, . . . goes quickly to x* = 0. The only 
approaches to x* = 1 are from x, = 1 (of course) and from x, = - 1. Starting from 
x, = 2 we get 4, 16, 256, . . . and the sequence diverges to + m. 

Each limit x* has a "basin of attraction." The basin contains all starting points x, 
that lead to x*. For Examples 1 and 2, every x, led to .7391 and 8. The basins were 
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the whole line (that is still to be proved). Example 3 had three basins-the interval 
-1 < x, < 1, the two points xo = + 1, and all the rest. The outer basin Ixo( > 1 led 
to + co.I challenge you to find the limits and the basins of attraction (by calculator) 
for F(x) = x - tan x. 

In Example 3, x* = 0 is attracting. Points near x* move toward x*. The fixed point 
x* = 1 is repelling. Points near 1 move away. We now find the rule that decides 
whether x* is attracting or repelling. The key is the slope dF/dx at x*. 

3J Start from any x, near a fixed point x* = F(x*): 

x* is attracting if IdF/dxf is below 1 at x* 

x* is repelling if IdFldxl is above 1 at x* .  

First I will give a calculus proof. Then comes a picture of convergence, by "cobwebs." 
Both methods throw light on this crucial test for attraction: IdF/dxl< 1. 

First proof: Subtract x* = F(x*) from x,,, = F(x,). The difference x,,, - x* is 
the same as F(x,) - F(x*). This is AF. The basic idea of calculus is that AF is close 
to F'Ax: 

x,+ - x* = F(x,) - F(x*) z F1(x*)(xn- x*). (1) 

The "error" x, - x* is multiplied by the slope dF/dx. The next error x,+ ,- x* is 
smaller or larger, based on I F'I < 1 or I F'I > 1 at x*. Every step multiplies approxi- 
mately by F1(x*). Its size controls the speed of convergence. 

In Example 1, F(x) is cos x and F1(x) is -sin x. There is attraction to .7391 
because lsin x* I < 1. In Example 2, F is fx + 4 and F' is i.There is attraction to 8. 
In Example 3, F is x2 and F' is 2x. There is superattraction to x* = 0 (where F' = 0). 
There is repulsion from x* = 1 (where F' = 2). 

I admit one major difficulty. The approximation in equation (1) only holds near 
x*. If x, is far away, does the sequence still approach x*? When there are several 
attracting points, which x* do we reach? This section starts with good iterations, 
which solve the equation x* = F(x*) or f(x) = 0. At the end we discover Newton's 
method. The next section produces crazy but wonderful iterations, not converging 
and not blowing up. They lead to "fractals" and "Cantor sets" and "chaos." 

The mathematics of iterations is not finished. It may never be finished, but we are 
converging on the answers. Please choose a function and join in. 

THE GRAPH OF AN ITERATION: COBWEBS 

The iteration x,, ,= F(x,) involves two graphs at the same time. One is the graph 
of y = F(x). The other is the graph of y = x (the 45" line). The iteration jumps back 
and forth between these graphs. It is a very convenient way to see the whole process. 

Example 1 was x,,, = cos x,. Figure 3.19 shows the graph of cos x and the "cob-
web." Starting at (x,, x,) on the 45" line, the rule is based on x, = F(x,): 

From (x,, x,) go up or down to (x,, x,) on the curve. 

From (x,, x,) go across to (x,, x,) on the 45" line. 

These steps are repeated forever. From x, go up to the curve at F(x,). That height 
is x, . Now cross to the 45" line at (x,, x,). The iterations are aiming for (x*, x*) = 
(.7391, .7391). This is the crossing point of the two graphs y = F(x) and y = x. 
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Fig. 3-49 Cobwebs go from (xo, xo) to (xo, xl) to ( x l  ,xl)-line to curve to line. 

Example 2 was xn+, = f xn+ 4. Both graphs are straight lines. The cobweb is one- 
sided, from (0,O) to (0,4) to (4,4) to (4,6) to (6,6). Notice how y changes (vertical 
line) and then x changes (horizontal line). The slope of F(x) is 4,so the distance to 8 
is multiplied by f at every step. 

Example 3 was xn+, = xz. The graph of y = x2 crosses the 45" line at two fixed 
points: O2 = 0 and l 2  = 1. Figure 3.20a starts the iteration close to 1, but it quickly 
goes away. This fixed point is repelling because F'(1) = 2. Distance from x* = 1 is 
doubled (at the start). One path moves down to x* = 0-which is superattractive 
because F' = 0. The path from x, > 1 diverges to infinity. 

EXAMPLE 4 F(x) has two attracting points x* (a repelling x* is always between). 

Figure 3.20b shows two crossings with slope zero. The iterations and cobwebs con- 
verge quickly. In between, the graph of F(x) must cross the 45" line from below. That 
requires a slope greater than one. Cobwebs diverge from this unstable point, which 
separates the basins of attraction. The fixed point x = n: is in a basin by itself! 

Note 1 To draw cobwebs on a calculator, graph y = F(x) on top of y = x. On a 
Casio, one way is to plot (x,, x,) and give the command L I N E : P L 0T X ,Y 
followed by E X E.  Now move the cursor vertically to y = F(x) and press E X E.  Then 
move horizontally to y = x and press E X E.  Continue. Each step draws a line. 

.n 2.n 

Fig. 3.20 Converging and diverging cobwebs: F(x) = x2 and F(x) = x -sin x. 
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For the TI-81 (and also the Casio) a short program produces a cobweb. Store F(x) 
in the Y = function slot Y 1 . Set the range (square window or autoscaling). Run the 
program and answer the prompt with x,: 

Note 2 The x's approach x* from one side when 0 < dF/dx < 1. 

Note 3 A basin of attraction can include faraway x,'s (basins can come in infinitely 
many pieces). This makes the problem interesting. If no fixed points are attracting, 
see Section 3.7 for "cycles" and "chaos." 

THE ITERATION xn+,=X, - c~(x,,) 

At this point we offer the reader a choice. One possibility is to jump ahead to the 
next section on "Newton's Method." That method is an iteration to solve f (x) = 0. 
The function F(x) combines x, and f (x,) and f '(x,) into an optimal formula for x,+ ,. 
We will see how quickly Newton's method works (when it works). It is the outstanding 
algorithm to solve equations, and it is totally built on tangent approximations. 

The other possibility is to understand (through calculus) a whole family of itera- 
tions. This family depends on a number c, which is at our disposal. The best choice 
of c produces Newton's method. I emphasize that iteration is by no means a new 
and peculiar idea. I t  is a fundamental technique in scientiJic computing. 

We start by recognizing that there are many ways to reach f (x*) = 0. (I write x* 
for the solution.) A good algorithm may switch to Newton as it gets close. The 
iterations use f (x,) to decide on the next point x,,, : 

Notice how F(x) is constructed from f (x)-they are different! We move f to the right 
side and multiply by a "preconditioner" c. The choice of c (or c,, if it changes from 
step to step) is absolutely critical. The starting guess xo is also important-but its 
accuracy is not always under our control. 

Suppose the x, converge to x*. Then the limit of equation (2) is 

x* = x* - cf (x*). (3) 
That gives f (x*)= 0. If the x,'s have a limit, it solves the right equation. It is a fixed 
point of F (we can assume cn +c # 0 and f (x,) +f (x*)). There are two key questions, 
and both of them are answered by the slope Ft(x*): 

1. How quickly does x, approach x* (or do the x, diverge)? 
2. What is a good choice of c (or c,)? 

D W P L E  5 f (x)= ax - b is zero at x* = bla. The iteration xn+ , = xn- c(ax, - b) 
intends to find bla without actually dividing. (Early computers could not divide; they 
used iteration.) Subtracting x* from both sides leaves an equation for the error: 

x , + ~ - x * = x , - x * - c(ax, - b). 

Replace b by ax*. The right side is (1 - ca)(x, - x*). This "error equation" is 

(error),+ ,= (1 - ca)(error),. (4) 
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At every step the error is multiplied by ( 1  - ca), which is F'. The error goes to zero if 
IF' I is less than 1. The absolute value ( 1 - cal decides everything: 

x, converges to x* if and only if - 1 < 1 - ca < 1. ( 5 )  

The perfect choice (if we knew it) is c = l /a ,  which turns the multiplier 1 - ca into 
zero. Then one iteration gives the exact answer: x ,  = xo - (l/a)(axo- b)= bla. That 
is the horizontal line in Figure 3.21a, converging in one step. But look at the other 
lines. 

This example did not need calculus. Linear equations never do. The key idea is 
that close to x* the nonlinear equation f ( x )  = 0 is nearly linear. We apply the tangent 
approximation. You are seeing how calculus is used, in a problem that doesn't start 
by asking for a derivative. 

THE BEST CHOICE OF c 

The immediate goal is to study the errors x, - x*. They go quickly to zero, if 
the multiplier is small. To understand x,,, = x, - cf (x,), subtract the equation 
x* = x* - cf (x*): 

x,+ ,- x* = x, - x* - c( f (x,) -f (x*)).  (6) 

Now calculus enters. When you see a &Terence off's think of dfldx. Replace 
.f(x,) -f (x*)  by A(x, - x*), where A stands for the slope df /dx at x*: 

x,+ - x* z ( 1  - cA)(x,- x*). (7) 

This is the error equation. The new error at step n + 1 is approximately the old error 
multiplied by m = 1 - cA. This corresponds to m = 1 - ca in the linear example. We 
keep returning to the basic test Iml= I Ff(x*)l< 1: 

There is only one difficulty: We don't know x*. Therefore we don't know the perfect 
c. It depends on the slope A =f ' ( x*)  at the unknown solution. However we can come 
close, by using the slope at x,: 

Choose c, = l /  f '(x,). Then x,+ = x, -f ( x J  f '(x,) = F(x,) .  

This is Newton's method. The multiplier m = 1 - cA is as near to zero as we can make 
it. By building dfldx into F(x),Newton speeded up the convergence of the iteration. 

F ( x )  F ( x )  F ' (x*  ) 
.Y - c ( a s  - h )  : good 

1 x --(ax -b) :best 

2 
.Y - - ( a x  - h )  : fail 

xo 

Fig. 3.21 The error multiplier is m = 1 -cf '(x*). Newton has c = l /f '(x,) and m -+ 0. 
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EXAMPLE 6 Solve f (x) = 2x - cos x = 0 with different iterations (different c's). 

The line y = 2x crosses the cosine curve somewhere near x = f. The intersection 
point where 2x* = cos x* has no simple formula. We start from xo = f and iterate 
x,+ = X, - c(2xn - cos x,) with three diflerent choices of c. 

Take c = 1 or c = l/f '(x,) or update c by Newton's rule c, = l /  f '(x,): 

x0 = S O  c = 1 c = l /  f '(x,) c, = l/ f '(x,) 

X I  = .38 .45063 .45062669 

The column with c = 1 is diverging (repelled from x*). The second column shows 
convergence (attracted to x*). The third column (Newton's method) approaches x* 
so quickly that .4501836 and seven more digits are exact for x3. 

How does this convergence match the prediction? Note that f '(x) = 2 + sin x so 
A = 2.435. Look to see whether the actual errors x, - x*, going down each column, 
are multiplied by the predicted m below that column: 

c =  1 c = 1/(2 + sin 4) c, = 1/(2 + sin x,) 

x0 - x* = 0.05 4.98 10- 4.98 

multiplier m = -  1.4 m = .018 m + 0 (Newton) 

The first column shows a multiplier below - 1. The errors grow at every step. Because 
m is negative the errors change sign-the cobweb goes outward. 

The second column shows convergence with m = .018. It takes one genuine Newton 
step, then c is fixed. After n steps the error is closely proportional to mn = (.018)"- 
that is "linear convergence'' with a good multiplier. 

The third column shows the "quadratic convergence" of Newton's method. 
Multiplying the error by m is more attractive than ever, because m + 0. In fact m 
itself is proportional to the error, so at each step the error is squared. Problem 3.8.31 
will show that (error),. , <  error):. This squaring carries us from to to 
lo-' to "machine E" in three steps. The number of correct digits is doubled at every 
step as Newton converges. 

Note 1 The choice c = 1 produces x,+, = x, - f (x,). This is "successive substitu- 
tion." The equation f (x) = 0 is rewritten as x = x - f (x), and each x, is substituted 
back to produce x,, , . Iteration with c = 1 does not always fail! 

Note 2 Newton's method is successive substitution for f / f ', not f .  Then m x 0. 

Note 3 Edwards and Penney happened to choose the same example 2x = cos x. But 
they cleverly wrote it as x, + , = 4 cos x,, which has IF' I = 14 sin XI< 1. This iteration 
fits into our family with c = i ,  and it succeeds. We asked earlier if its limit is $(.7391). 
No, it is x* = .45O. .. . 
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Note 4 The choice c = l /f  ' ( xo )  is "modified Newton." After one step of Newton's 
method, c is fixed. The steps are quicker, because they don't require a new ff(x,). 
But we need more steps. Millions of dollars are spent on Newton's method, so speed 
is important. In all its forms, f  (x )  = 0 is the central problem of computing. 

3.6 EXERCISES 

Read-through questions 

x,+ , = X: describes, an a . After one step xl = b . 
After two steps x2 = F(xl)= c . If it happens that input = 

output, or x* = d , then x* is a e point. F = x3 has 
f fixed points, at x* = 9 . Starting near a fixed point, 

the x, will converge to it if h < 1. That is because 
x,+, -x* = F(x,) -F(x*) z I . The point is called 

. The x, are repelled if k . For F = x3 the fixed 
points have F '=  I . The cobweb goes from (x,, xo) to 
( , ) to ( , ) and converges to (x*, x*) = m . This 
is an intersection of y = x3 and y = n , and it is super- 
attracting because 0 . 
f (x)= 0 can be solved iteratively by x,+ = x, -cf (x,), in 

which case F'(x*) = P . Subtracting x* = x* -cf(x*), the 
error equation is x,+ , -x* x m( q ). The multiplier is 
m = r . The errors approach zero if s . The choice 
c, = t produces Newton's method. The choice c = 1 is 
"successive u "and c = v is modified Newton. Con- 
vergence to x* is w certain. 

We have three ways to study iterations x,+, = F(x,): 
(1) compute xl  , x2,.. . from different x, (2) find the fixed 
points x* and test IdF/dxl< 1 (3)draw cobwebs. 

In Problems 1-8 start from xo = .6 and xo = 2. Compute 
X, ,x, ,... to test convergence: 

1 X n + l  = x i  -3 2 x,+ 1 = 2xn(1-x,) 

3 & + I  =& 4 xn+l= l / f i  

5 x , + ~= 3xn(1 -x,) 6 x,+, =x;+x,-2 

7 x , + ~=4xn- 1 8 .%,+I = Ixnl 

9 Check dFldx at all fixed points in Problems 1-6. Are they 
attracting or repelling? 

10 From xo = - 1 compute the sequence x,+ = -x:. Draw 
the cobweb with its "cycle." Two steps produce x,,, = x:, 
which has the fixed points 

11 Draw the cobwebs for x,,, =;x,- 1 and x,,, = 1 -)x, 
starting from xo = 2. Rule: Cobwebs are two-sided when 
dF/dx is . 

12 Draw the cobweb for x,+ ,= x i  - 1 starting from the 
periodic point xo = 0. Another periodic point is . 
Start nearby at xo= . l  to see if the iterations are 
attracted too, -1,0, -1, . . . . 

Solve equations 13-16 within 1% by iteration. 

17 For which numbers a does x,, ,= a(x, -x:) converge to 
x* = O?-

18 For which numbers a does x,, ,= a(x, -xi)  converge to 
x* = (a - l)/a? 

19 Iterate x, + ,= 4(xn-xi  ) to see chaos. Why don't the x, 
approach x* =$? 

20 One fixed point of F(x) = x2 -3 is attracting, the other is 
repelling. By experiment or cobwebs, find the basin of xo's 
that go to the attractor. 

21 (important) Find the fixed point for F(x) = ax + s. When 
is it attracting? 

22 What happens in the linear case x,+ ,= ax, + 4 when 
a =  1 and when a = -  l? 

23 Starting with $1000, you spend half your money each year 
and a rich but foolish aunt gives you a new $1000. What is 
your steady state balance x*? What is x* if you start with a 
million dollars? 

24 The US national debt was once $1 trillion. Inflation 
reduces its real value by 5% each year (so multiply by 
a = .95), but overspending adds another $100 billion. What 
is the steady state debt x*? 

25 xn+ = b/xn has the fixed point x* = fi. Show that 
IdF/dx(= 1 at that point-what is the sequence starting 
from xo? 

26 Show that both fixed points of x,+, = xi  + x, -3 are 
repelling. What do the iterations do? 

27 A $5 calculator takes square roots but not cube roots. 
Explain why xn+ ,= converges to $. 
28 Start the cobwebs for x, + ,= sin x, and x, + ,= tan x,. In 
both cases dF/dx = 1 at x* = 0. (a) Do the iterations converge? 
(b) Propose a theory based on F" for cases when F' = 1. 

Solve f (x)= 0 in 29-32 by the iteration x, + ,= x, -cf (x,), to 
find a c that succeeds and a c that fails. 
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33 Newton's method computes a new c = l/f '(x,) at each 
step. Write out the iteration formulas for f (x)=x3-2 =0 
and f(x)=sinx-+=O. 

34 Apply Problem 33 to find the first six decimals of @ 
and n/6. 

35 By experiment find each x* and its basin of attraction, 
when Newton's method is applied to f (x)=x2-5x +4. 

36 Test Newton's method on x2 - 1 =0, starting far out at 
xo = lo6. At first the error is reduced by about m =3. Near 
x* = 1 the multiplier approaches m =0. 

37 Find the multiplier m at each fixed point of x , + ~= 
x, -C(X:-x,). Predict the convergence for different c (to 
which x*?). 

38 Make a table of iterations for c = 1 and c = l /f '(xo) and 
c = l/f'(x,), when f(x) =x2-4  and xo = 1. 

39 In the iteration for x2 -2 =0, find dF/dx at x*: 

(b) Newton's iteration has F(x) =x -f (x)/f '(x). Show 
that F' =0 when f (x)=0. The multiplier for Newton is 
m =0. 

40 What are the solutions of f (x)=x2+2 =0 and why is 
Newton's method sure to fail? But carry out the iteration to 
see whether x, + a. 

41 Computer project F(x) =x -tan x has fixed points where 
tan x* =0. So x* is any multiple of n. From xo =2.0 and 1.8 
and 1.9, which multiple do you reach? Test points in 
1.7 <xo < 1.9 to find basins of attraction to n, 2n, 37r, 4n. 

Between any two basins there are basins for every multiple 
of n. And more basins between these (afractal).Mark them 
on the line from 0 to n. Magnify the picture around xo = 1.9 
(in color?). 

42 Graph cos x and cos(cos x) and cos(cos(cos x)). Also 
( ~ 0 s ) ~ ~ .What are these graphs approaching? 

43 Graph sin x and sin(sin x) and (sin)%. What are these 
graphs approaching? Why so slow? 

3.7 Newton's Method (and Chaos) 

The equation to be solved is f (x) =0. Its solution x* is the point where the graph 
crosses the x axis. Figure 3.22 shows x* and a starting guess x,. Our goal is to come 
as close as possible to x*, based on the information f (x,) and f '(xo). 

Section 3.6 reached Newton's formula for x, (the next guess). We now do that directly. 
What do we see at x,? The graph has height f (xo) and slope ft(x0). We know 

where we are, and which direction the curve is going. We don't know if the curve 
bends (we don't have f "). The best plan is to follow the tangent line, which uses all 
the information we have. 

Newton replaces f (x) by its linear approximation (= tangent approximation): 

We want the left side to be zero. The best we can do is to make the right side zero! 
The tangent line crosses the axis at x,, while the curve crosses at x*. The new guess 
x, comes from f(x,) +f '(xo)(xl -x,) = 0.Dividing by f '(xo) and solving for x, ,this 
is step 1 of Newton's method: 

At this new point, compute f(x, ) and f'(x, )-the height and slope at x, . They 
give a new tangent line, which crosses at x2. At every step we want f (x, + ,) = 0 and 
we settle for f (x,) +f '(x,)(x,+ ,- x,) =0.After dividing by f '(x,), the formula for 
x, + ,is Newton's method. 
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-1.5 -. 5

tangent
line

=.5

.21

Fig. 3.22 Newton's method along tangent lines from xo to x, to x 2.

Linear approximation involves three numbers. They are Ax (across) and Af (up)
and the slope f'(x). If we know two of those numbers, we can estimate the third. It
is remarkable to realize that calculus has now used all three calculations--they are
the key to this subject:

1. Estimate the slope f'(x) from Af/Ax

2. Estimate the change Af from f'(x) Ax

3. Estimate the change Ax from Af/f'(x)

(Section 2.1)
(Section 3.1)
(Newton's method)

The desired Af is -f(x,). Formula (3) is exactly Ax = -f(x,)/f'(x,).

EXAMPLE 1 (Square roots) f(x)= x2 - b is zero at x* = b and also at - b.
Newton's method is a quick way to find square roots-probably built into your
calculator. The slope is f'(x,) = 2x,, and formula (3) for the new guess becomes

x2 -b 1 b
Xn + 1 = Xn -- - X, +-. (4)

2x, 2 2x,

This simplifies to x, +1 = ½(x, + b/x,). Guess the square root, divide into b, and average
the two numbers. The ancient Babylonians had this same idea, without knowing
functions or slopes. They iterated xn. = F(x,):

F(x) = x + -2 x
17and F'(x) = 1
2

The Babylonians did exactly the right thing. The slope F' is zero at the solution, when
x 2 = b. That makes Newton's method converge at high speed. The convergence test
is IF'(x*)I < 1. Newton achieves F'(x*)= 0-which is superconvergence.
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31. The tangent line from x, crosses the axis at xn+ 1 :

Newton's method xn+ x - (X.) (3)

Usually this iteration x,, = F(x,) converges quickly to x*.
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To find a,start the iteration xn+ ,= f(xn+ 4/xn) at xo = 1. Then x, = f(1 + 4): 

The wrong decimal is twice as far out at each step. The error is squared. Subtracting 
x* = 2 from both sides of x , + ~= F(xn) gives an error equation which displays that 
square: 

This is (error)., ,E $(error):. It explains the speed of Newton's method. 

Remark 1 You can't start this iteration at xo = 0. The first step computes 410 and 
blows up. Figure 3.22a shows why-the tangent line at zero is horizontal. It will 
never cross the axis. 

Remark 2 Starting at x, = - 1, Newton converges to -f i  instead of + f i  That 
is the other x*. Often it is difficult to predict which x* Newton's method will choose. 
Around every solution is a "basin of attraction," but other parts of the basin may be 
far away. Numerical experiments are needed, with many starts x,. Finding basins of 
attraction was one of the problems that led to fractals. 

1 1
EXAMPLE 2 Solve -- a = 0 to find x* = - without dividing by a. 

x a 

Here f (x)= (llx) - a. Newton uses f '(x) = - 1/x2. Surprisingly, we don't divide: 

Do these iterations converge? I will take a = 2 and aim for x* = f.Subtracting 4from 
both sides of (7) changes the iteration into the error equation: 

X ~ + ~ = ~ X . - ~ X ~becomes ~ ~ + , - i = - 2 ( x . - i ) ~ .  (8) 

At each step the error is squared. This is terrific if (and only if) you are close to 
x* = ). Otherwise squaring a large error and multiplying by -2 is not good: 

The algebra in Problem 18 confirrhs those experiments. There is fast convergence if 
0 < xo < 1. There is divergence if x, is negative or xo > 1. The tangent line goes to a 
negative x, . After that Figure 3.22 shows a long trip backwards. 

In the previous section we drew F(x). The iteration xn+, = F(xn) converged to the 
45" line, where x* = F(x*). In this section we are drawing f (x). Now x* is the point 
on the axis where f (x*) = 0. 

To repeat: It is f(x*) = 0 that we aim for. But it is the slope Ff(x*) that decides 
whether we get there. Example 2 has F(x) = 2x - 2x2. The fixed points are x* = f 
(our solution) and x* = 0 (not attractive). The slopes F' (x*) are zero (typical Newton) 
and 2 (typical repeller). The key to Newton's method is Ff= 0 at the solution: 

f '(x) 
"(x). Then Ff(x) = 0 when f (x)= 0.The slope of F(x)= x -- is 

(f'w2 
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The examples x2 = b and l/x = a show fast convergence or failure. In Chapter 13, 
and in reality, Newton's method solves much harder equations. Here I am going to 
choose a third example that came from pure curiosity about what might happen. The 
results are absolutely amazing. The equation is x2 = - 1. 

EXAMPLE 3 What happens to Newton's method ifyou ask it to solve f (x) = x2 + 1 = O? 

The only solutions are the imaginary numbers x* = i and x* = - i. There is no real 
square root of -1. Newton's method might as well give up. But it has no way to 
know that! The tangent line still crosses the axis at a new point x,,, , even if the 
curve y = x2 + 1 never crosses. Equation (5) still gives the iteration for b = - 1: 

The x's cannot approach i or - i (nothing is imaginary). So what do they do? 
The starting guess xo = 1 is interesting. It is followed by x, = 0. Then x2 divides 

by zero and blows up. I expected other sequences to go to infinity. But the experiments 
showed something different (and mystifying). When x, is large, x,,, is less than half 
as large. After x, = 10 comes x,, ,= i(10 -&)= 4.95. After much indecision and a 
long wait, a number near zero eventually appears. Then the next guess divides by 
that small number and goes far out again. This reminded me of "chaos." 

It is tempting to retreat to ordinary examples, where Newton's method is a big 
success. By trying exercises from the book or equations of your own, you will see 
that the fast convergence to $ is very typical. The function can be much more 
complicated than x2 - 4 (in practice it certainly is). The iteration for 2x = cos x was 
in the previous section, and the error was squared at every step. If Newton's method 
starts close to x*, its convergence is overwhelming. That has to be the main point of 
this section: Follow the tangent line. 

Instead of those good functions, may I stay with this strange example x2 + 1 = O? 
It is not so predictable, and maybe not so important, but somehow it is more interest- 
ing. There is no real solution x*, and Newton's method x,,, = +(x, - llx,) bounces 
around. We will now discover x,. 

A FORMULA FOR x, 

The key is an exercise from trigonometry books. Most of those problems just give 
practice with sines and cosines, but this one exactly fits +(x, - llx,): 

In the left equation, the common denominator is 2 sin 8 cos 8 (which is sin 28). The 
numerator is cos2 0 - sin2 8 (which is cos 28). Replace cosinelsine by cotangent, 
and the identity says this: 

If xo = cot 8 then x, = cot 28. Then x2 = cot 48. Then x, = cot 2" 8. 

This is the formula. Our points are on the cotangent curve. Figure 3.23 starts from 
xo = 2 = cot 8, and every iteration doubles the angle. 

Example A The sequence xo = 1, x, = 0, x2 = m matches the cotangents of ;n/4,;n/2, 
and n. This sequence blows up because x, has a division by xl = 0. 
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X 2  X ,  X 3  x 0 = 2  

Fig. 3.23 Newton's method for x2 + 1 =0.Iteration gives x, =cot 2"O. 

Example B The sequence I/&, -1/fi,I/& matches the cotangents of n/3,2n/3, 
and 4~13. This sequence cycles forever because xo = x2 = x, = . . . . 

Example C Start with a large xo (a small 8). Then x, is about half as large (at 20). 
Eventually one of the angles 4 8,8 8, ... hits on a large cotangent, and the x's go far 
out again. This is typical. Examples A and B were special, when 8/n was or 3. 

What we have here is chaos. The x's can't converge. They are strongly repelled by 
all points. They are also extremely sensitive to the value of 8.After ten steps 0 is 
multiplied by 2'' = 1024. The starting angles 60" and 61" look close, but now they 
are different by 1024". If that were a multiple of 18W, the cotangents would still be 
close. In fact the xlo's are 0.6 and 14. 

This chaos in mathematics is also seen in nature. The most familiar example is the 
weather, which is much more delicate than you might think. The headline "Fore- 
casting Pushed Too Far" appeared in Science (1989). The article said that the snow- 
balling of small errors destroys the forecast after six days. We can't follow the weather 
equations for a month-the flight of a plane can change everything. This is a revolu- 
tionary idea, that a simple rule can lead to answers that are too sensitive to compute. 

We are accustomed to complicated formulas (or no formulas). We are not 
accustomed to innocent-looking formulas like cot 2" 8, which are absolutely hopeless 
after 100 steps. 

CHAOS FROM A PARABOLA 

Now I get to tell you about new mathematics. First I will change the iteration x,+ ,= 
4(xn- llx,) into one that is even simpler. By switching from x to z = l/(l  + x2), each 
new z turns out to involve only the old z and z2: 

This is the most famous quadratic iteration in the world. There are books about it, 
and Problem 28 shows where it comes from. Our formula for x, leads to z,: 

1 - 1 
zn= -- 1 +(cot 2n8)2 

= (sin 2n0)2. (11)1 + x,2 
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The sine is just as unpredictable as the cotangent, when 2"8gets large. The new thing 
is to locate this quadratic as the last member (when a = 4) of the family 

Example 2 happened to be the middle member a = 2, converging to ). I would like 
to give a brief and very optional report on this iteration, for different a's. 

.The general principle is to start with a number zo between 0 and 1, and compute 
z, ,z2, z3, . .. . It is fascinating to watch the behavior change as a increases. You can 
see it on your own computer. Here we describe some things to look for. All numbers 
stay between 0 and 1 and they may approach a limit. That happens when a is small: 

for 0 < a < 1 the z, approach z* = 0 
for 1 < a < 3 the z, approach z* = (a - l)/a 

Those limit points are the solutions of z = F(z). They are the fixed points where 
z* = az* - a(z*)'. But remember the test for approaching a limit: The slope at z* 
cannot be larger than one. Here F = az - az2 has F' = a - 2az. It is easy to check 
IF'I < 1 at the limits predicted above. The hard problem-sometimes impossible-
is to predict what happens above a = 3. Our case is a = 4. 

The z's cannot approach a limit when IFt(z*)l> 1. Something has to happen, and 
there are at least three possibilities: 

The z,'s can cycle or Jill the whole interval (0,l) or approach a Cantor set. 

I start with a random number zo, take 100 steps, and write down steps 101 to 105: 

The first column is converging to a "2-cycle." It alternates between x = 342 and 
y = .452. Those satisfy y = F(x) and x = F(y) = F(F(x)). If we look at a double step 
when a = 3.4, x and y are fixed points of the double iteration z , + ~= F(F(z,)). When 
a increases past 3.45, this cycle becomes unstable. 

At that point the period doublesfrom 2 to 4. With a = 3.5 you see a "4-cycle" in 
the table-it repeats after four steps. The sequence bounces from 375 to .383 to 327 
to SO1 and back to 375. This cycle must be attractive or we would not see it. But it 
also becomes unstable as a increases. Next comes an 8-cycle, which is stable in a little 
window (you could compute it) around a = 3.55. The cycles are stable for shorter and 
shorter intervals of a's. Those stability windows are reduced by the Feigenbaum shrink- 
ing factor 4.6692.. .. Cycles of length 16 and 32 and 64 can be seen in physical 
experiments, but they are all unstable before a = 3.57. What happens then? 

The new and unexpected behavior is between 3.57 and 4. Down each line of 
Figure 3.24, the computer has plotted the values of zlool to z2000-omitting the first 
thousand points to let a stable period (or chaos) become established. No points 
appeared in the big white wedge. I don't know why. In the window for period 3, you 
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The ~eriod 2.4. .. . is the number of z's in a cycle. c 4 

Fig. 3.24 Period doubling and chaos from iterating F(z) (stolen by special permission from a = 4  
Introduction t,o Applied Mathematics by Gilbert Strang, Wellesley-Cambridge Press). 

see only three 2's. Period 3 is followed by 6, 12,24, ... . There is period doubling at the 
end of every window (including all the windows that are too small to see). You can 
reproduce this figure by iterating zn+ ,= azn- azz from any zo and plotting the results. 

CANTOR SETS AND FRACIALS 

I can't tell what happens at a = 3.8. There may be a stable cycle of some long period. 
The z's may come close to every point between 0 and 1. A third possibility is to 
approach a very thin limit set, which looks like the famous Cantor set: 

To construct the Cantor set, divide [O,l] into three pieces and remove the open 
interval (4,3). Then remove (&,5) and (&#) from what remains. At each step 
take out the middle thirds. The points that are left form the Cantor set. 

All the endpoints 3, f,6, 4, ... are in the set. So is $ (Problem 42). Nevertheless the 
lengths of the removed intervals add to 1 and the Cantor set has "measure zero." 
What is especially striking is its self-similarity: Between 0 and you see the same 
Cantor set three times smaller. From 0 to 6 the Cantor set is there again, scaled down 

.by 9. Every section, when blown up, copies the larger picture. 

Fractals That self-similarity is typical of a fractal. There is an infinite sequence of 
scales. A mathematical snowflake starts with a triangle and adds a bump in the 
middle of each side. At every step the bumps lengthen the sides by 413. The final 
boundary is self-similar, like an infinitely long coastline. 

The word "fractal" comes from fractional dimension. The snowflake boundary has 
dimension larger than 1 and smaller than 2. The Cantor set has dimension larger 
than 0 and smaller than 1. Covering an ordinary line segment with circles of radius 
r would take clr circles. For fractals it takes c/rD circles-and D is the dimension. 
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Fig. 3.25 Cantor set (middle thirds removed). Fractal snowflake (infinite boundary). 

Our iteration zn+ , = 42, - 42: has a = 4, at the end of Figure 3.24. The sequence 
z,, z , ,  ... goes everywhere and nowhere. Its behavior is chaotic, and statistical tests 
find no pattern. For all practical purposes the numbers are random. 

Think what this means in an experiment (or the stock market). If simple rules 
produce chaos, there is absolutely no way to predict the results. No measurement can 
ever be sufficiently accurate. The newspapers report that Pluto's orbit is chaotic- 
even though it obeys the law of gravity. The motion is totally unpredictable over 
long times. I don't know what that does for astronomy (or astrology). 

The most readable book on this subject is Gleick's best-seller Chaos: Making a 
New Science. The most dazzling books are The Beauty of Fractals and The Science 
of Fractal Images, in which Peitgen and Richter and Saupe show photographs that 
have been in art museums around the world. The most original books are Mandel- 
brot's Fractals and Fractal Geometry. Our cover has a fractal from Figure 13.1 1. 

We return to friendlier problems in which calculus is not helpless. 

NEWTON'S METHOD VS. SECANT METHOD: CALCULATOR PROGRAMS 

The hard part of Newton's method is to find df ldx. We need it for the slope of the 
tangent line. But calculus can approximate by AflAx-using the values of f(x) 
already computed at x, and x, - , . 

The secant method follows the secant line instead of the tangent line: 

Secant: x ,+ ,=x, -  f (x, where (G)fi- Af -f(xn)-f(xn-1) 
(Af /Ax)n xn-xn-1 

(13) 

The secant line connects the two latest points on the graph of f(x). Its equation is 
y - f (x,) = (Af /Ax)(x - x,). Set y = 0 to find equation (13) for the new x = xn + , , 
where the line crosses the axis. 

Prediction: Three secant steps are about as good as two Newton steps. Both should 
give four times as many correct decimals: (error) -, ( e r r ~ r ) ~ .  Probably the secant 
method is also chaotic for x2 + 1 = 0. 

These Newton and secant programs are for the TI-8 1. Place the formula for f (x) 
in slot Y 1 and the formula for f '(x) in slot Y 2 on the Y = function edit screen. 
Answer the prompt with the initial x, = X 8. The programs pause to display each 
approximation x,, the value f (x,), and the difference x, - x, - , . Press E N T E R to 
continue or press 0 N and select item 2 : Q u i t to break. If f (x,) = 0, the programs 
display R 0 0 T A T and the root x,. 
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PrgmN:NEWTON :D ispWENTER F O R M O R E "  
: D i s p  " x @ "  : D i s p  "ON2TOBREAK" 

PrgmS: SECANT 
: D i s p  " X @ "  

:Y+T 
: Y l + Y  

: I n p u t  X : D i s p  " "  : I n p u t  X : D i s p  "ENTER F O R M O R E "  
:X+S :D i  sp  " X N  F X N  XN-XNMI " :X + S  :D i  sp  " X N  F X N  XN-XNMI" 
: Y p Y  : D i s p  X : Y l + T  :D i s p  X 
:LbL 1  : D i s p  Y :D i  sp  " X I  = "  : D i s p  Y 
:X-Y/Y2+X : D i s p  D : I n p u t  X : D i s p  D 
: X - S + D  :Pause : Y q + Y  :Pause 
:X + S  : I f  Y # g ,  :LbL I : I f  Y # O  
: Y p Y  :Go to  1  : X - S + D  : G o t o  1  

: D i s p  "ROOT AT" :X+S : D i s p  "ROOT A T "  
: D i s p  X : X - Y D / ( Y - T ) + X  : D i s p  X 

3.7 EXERCISES 

Read-through questions 7 Solve x2 -6x +5 =0 by Newton's method with xo =2.5 

When f (x)=0 is linearized to f (x,) +f '(x,)(x -x,) =0, the 
and 3. Draw a graph to show which xo lead to which root. 

solution x = a is Newton's x,, ,. The b to the curve 8 If f (x) is increasing and concave up (f' >0 and f">0) 
crosses the axis at x,, ,,while the c crosses at x*. The show by a graph that Newton's method converges. From 
errors at x, and x,,, are normally related by which side? 
(error),, ,x A4 d . This is convergence. The 
number of correct decimals f at every step. Solve 9-17 to four decimal places by Newton's method with a 

For f (x) =x2 -b, Newton's iteration is x,, ,= g .The 
computer or calculator. Choose any xo except x*. 

x, converge to h if xo >0 and to i if xo <0. For 
f (x) =x2 + 1, the iteration becomes x,, ,= i . This can- 10 x4 - 100 =0 (faster or slower than Problem 9?)
not converge to k . Instead it leads to chaos. Changing 
to z = 1/(x2+ 1) yields the parabolic iteration z,,  = I . 11 x2 -x =0 (which xo to which root?) 

For a d 3, z,, ,= az, -az; converges to a single m . 12 x3 -x =0 (which xo to which root?) 
After a =3 the limit is a 2-cycle, which means n . Later 13 x +5 cos x =0 (this has three roots) 
the limit is a Cantor set, which is a one-dimensional example 
ofa  0 .Thecantorsetisself- P . 14 x + tan x =0 (find two roots) (are there more?) 

1 To solve f (x) =x3-b =0, what iteration comes from 
Newton's method? 

2 For f (x) =(x - l)/(x + 1) Newton's formula is x,, ,= 

F(xn)=-. Solve x* =F(x*) and find F1(x*). What 
limit do the x,'s approach? 18 (a) Show that x,, ,=2x, -2x; in Example 2 is the same 

as (1 -2x,+ ,) = (1 -2 ~ ~ ) ~ .
3 I believe that Newton only applied his method in public 

to one equation x3 -2x -5 =0. Raphson carried the idea (b) Prove divergence if 11-2xo1 > 1. Prove convergence 

forward but got partial credit at best. After two steps from if 11 -2xo(<  1 or O < x o <  1. 

xo =2, how many decimals in x* =2.09455148 are correct? 19 With a =3 in Example 2, experiment with the Newton 
iteration x, + ,=2x, -3x; to decide which xo lead to x* =5.4 Show that Newton's method for f(x) =x1I3 gives the 

strange formula x,,, = -2x,. Draw a graph to show the 20 Rewrite x,, ,=2xn-ax: as (1 -ax,, ,) = (1 -ax,)2. For 
iterations. which xo does the sequence 1 -ax, approach zero (so 

5 Find x, if (a) f (x,) =0; (b) f '(xo)=0. x, -+lla)? 

6 Graph f (x)=x3-3x - 1 and estimate its roots x*. Run 21 What is Newton's method to find the kth root of 7? 

Newton's method starting from 0, 1, -5, and 1.1. Experiment Calculate f i  to 7 places. 

to decide which xo converge to which root. 22 Find all solutions of x3 =4x - 1 (5 decimals). 
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Problems 23-29 are about x% 1 =0 and chaos. 

23 For 8 =n/16 when does x, =cot 2"0 blow up? For 
8 =4 7  when does cot 2"8 =cot 8? (The angles 2"8 and 0 
differ by a multiple of 7c.) 

24 For 8 =7c/9 follow the sequence until x, =xo. 

25 For 8 = 1, x, never returns to xo =cot 1. The angles 2, 
and 1 never differ by a multiple of n because 

26 If zo equals sin2 0, show that 2, =42, -42: equals sin2 28. 

27 If y = x 2  + 1, each new y is 

Show that this equals y,2/4(yn- 1). 

28 Turn Problem 27 upside down, l/y,+ ,=4(yn- l)/y:, to 
find the quadratic iteration (10)for z, = lly, = 1/(1+ xi) .  

29 If F(z)=42 -4z2 what is F(F(z))?How many solutions to 
z =F(F(z))?How many are not solutions to z =F(z)? 

30 Apply Newton's method to x3 - .64x - .36 =0 to find the 
basin of attraction for x* = 1. Also find a pair of points for 
which y =F(z) and z =F(y). In this example Newton does 
not always find a root. 

31 Newton's method solves x/ ( l  -x )  =0 by x,+ ,= 
. From which xo does it converge? The distance to 

x* =0 is exactly squared. 

Problems 33-41 are about competitors of Newton. 

32 At a double root, Newton only converges linearly. What 
is the iteration to solve x2 =O? 

33 To speed up Newton's method, find the step Ax from 
f (x,,) + Axf '(x,) + f "(x,) =0. Test on f ( x )  = x2 - 1 
from xo =0 and explain. 

34 Halley's method uses S, + Axf +*AX(-S,/ f A )  f: =0.For 
f (x)=x2 - 1 and x, = 1 + E, show that x l  = 1 + O(2)-
which is cubic convergence. 

35 Apply the secant method to f ( x )  =x2 -4 =0, starting 
from xo = 1 and x ,=2.5. Find A f /Ax and the next point x2 
by hand. Newton uses f ' ( x , )  = 5 to reach x2 =2.05. Which 
is closer to x* =2? 

36 Draw a graph of f ( x )  =x2 -4 to show the secant line in 
Problem 35 and the point x2 where it crosses the axis. 

Bisection method If f ( x )  changes sign between xo and x ,  ,find 
its sign at the midpoint x2 =$(xo+ x ,  ). Decide whether f ( x )  
changes sign between xo and x2 or x2 and x,. Repeat on that 
half-length (bisected) interval. Continue. Switch to a faster 
method when the interval is small enough. 

37 f (x )=x2 -4 is negative at x = 1, positive at x =2.5, and 
negative at the midpoint x = 1.75. So x* lies in what interval? 
Take a second step to cut the interval in half again. 

38 Write a code for the bisection method. At each step print 
out an interval that contains x*. The inputs are xo and x,; 
the code calls f(x). Stop if f (x0)  and f (x , )  have the same 
sign. 

39 Three bisection steps reduce the interval by what 
factor? Starting from xo =0 and x ,  = 8, take three steps for 
f (x)=x2 - 10. 

40 A direct method is to zoom in where the graph crosses the 
axis. Solve lox3- 8.3x2 + 2.295~- .21141 =0 by several 
zooms. 

41 If the zoom factor is 10, then the number of correct 
decimals for every zoom. Compare with Newton. 

42 The number 2 equals $(1 +4 +& + --.).Show that it is in 
the Cantor set. It survives when middle thirds are removed. 

43 The solution to f (x)= ( x- 1.9)/(x-2.0) =0 is x* = 1.9. 
Try Newton's method from x, = 1.5, 2.1, and 1.95. Extra 
credit: Which xo's give convergence? 

44 Apply the secant method to solve cos x =0 from 
x0 = .308. 

45 Try Newton's method on cos x =0 from xo = .308. If 
cot xo is exactly n, show that x ,  = xo + 7c (and x2 = x ,  + 71). 

From xo = .3O8 16907 1 does Newton's method ever stop? 

46 Use the Newton and secant programs to solve 
x3 - lox2+ 22x + 6 =0 from xo =2 and 1.39. 

47 Newton's method for sin x =0 is xn+,=x, -tan x,. 
Graph sin x and three iterations from xo = 2 and xo = 1.8. 
Predict the result for xo = 1.9 and test. This leads to the com-
puter project in Problem 3.6.41, which finds fractals. 

48 Graph Yl(x)= 3.q~-x2) and Y2(x)= Yl(Yl(x))in the 
square window (0,O)<(x,  y) <(1, 1). Then graph Y3(x)= 
Y2(Y1(x))and Y,, ..., Y,. The cycle is from 342 to .452. 

49 Repeat Problem 48 with 3.4 changed to 2 or 3.5 or 4. 

3.8 The Mean Value Theorem and IgH6pital's Rule 

Now comes one of the cornerstones of calculus: the Mean Value Theorem. It connects 
the local pictu.e (slope at a point) to the global picture (average slope across an 
interval). In other words it relates df / dx  to Af /Ax .  Calculus depends on this connec- 



3.8 The Mean Value Theorem and I'H8pital's Rule 147

13U

100

50

1JU -

100-

50-

f f(t),
75 7575vt7 ---- ave 

= 
75

I I I

1 t=2 c 1 t=2

Fig. 3.26 (a) v jumps over Vaverage. (b) v equals vaverage.

tion, which we saw first for velocities. If the average velocity is 75, is there a moment
when the instantaneous velocity is 75?

Without more information, the answer to that question is no. The velocity could
be 100 and then 50-averaging 75 but never equal to 75. If we allow a jump in
velocity, it can jump right over its average. At that moment the velocity does not
exist. (The distance function in Figure 3.26a has no derivative at x = 1.) We will take
away this cheap escape by requiring a derivative at all points inside the interval.

In Figure 3.26b the distance increases by 150 when t increases by 2. There is a
derivative df/dt at all interior points (but an infinite slope at t = 0). The average
velocity is

Af _ f(2) -f(0) 150
75.

At 2-0 2

The conclusion of the theorem is that df/dt = 75 at some point inside the interval.
There is at least one point where f'(c) = 75.

This is not a constructive theorem. The value of c is not known. We don't find c,
we just claim (with proof) that such a point exists.

The left side is the average slope Af/Ax. It equals df/dx at c. The notation for a
closed interval [with endpoints] is [a, b]. For an open interval (without endpoints)
we write (a, b). Thus f' is defined in (a, b), and f remains continuous at a and b. A
derivative is allowed at those endpoints too-but the theorem doesn't require it.

The proof is based on a special case-when f(a) = 0 and f(b) = 0. Suppose the
function starts at zero and returns to zero. The average slope or velocity is zero. We
have to prove that f'(c)= 0 at a point in between. This special case (keeping the
assumptions on f(x)) is called Rolle's theorem.

Geometrically, if f goes away from zero and comes back, then f' = 0 at the turn.

3N Rolle's theorem Suppose f(a) =f(b)= 0 (zero at the ends). Then f'(c) =0
at some point with a < c < b.

Proof At a point inside the interval where f(x) reaches its maximum or minimum,
df/dx must be zero. That is an acceptable point c. Figure 3.27a shows the difference
between f= 0 (assumed at a and b) and f' = 0 (proved at c).

3M Mean Value Theorem Suppose f(x) is continuous in the closed interval

a < x < b and has a derivative everywhere in the open interval a < x < b. Then
f:: ;f(b) -f(a) at- '(c) at some point a < c < b.(1)

I | |
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Small problem: The maximum could be reached at the ends a and b, iff (x) < 0 in 
between. At those endpoints dfldx might not be zero. But in that case the minimum 
is reached at an interior point c, which is equally acceptable. The key to our proof 
is that a continuous function on [a, b]  reaches its maximum and minimum. This is the 
Extreme Value Theorem.? 

It is ironic that Rolle himself did not believe the logic behind calculus. He may not 
have believed his own theorem! Probably he didn't know what it meant-the lan-
guage of "evanescent quantities" (Newton) and "infinitesimals" (Leibniz) was exciting 
but frustrating. Limits were close but never reached. Curves had infinitely many flat 
sides. Rolle didn't accept that reasoning, and what was really serious, he didn't accept 
the conclusions. The Acadkmie des Sciences had to stop his battles (he fought against 
ordinary mathematicians, not Newton and Leibniz). So he went back to number 
theory, but his special case when f (a) =f (b) = 0 leads directly to the big one. 

/

slope df/dx - ' Fmax 

f (c) = 0 

Fig. 3.27 Rolle's theorem is when f(a)=f(b) = 0 in the Mean Value Theorem. 

Proof of the Mean Value Theorem We are looking for a point where dfldx equals 
AflAx. The idea is to tilt the graph back to Rolle's special case (when Af was zero). 
In Figure 3.27b, the distance F(x) between the curve and the dotted secant line comes 
from subtraction: 

At a and b, this distance is F(a) = F(b) = 0. Rolle's theorem applies to F(x). There is 
an interior point where Ff(c) = 0. At that point take the derivative of equation (2): 
0 =f '(c) - (Af /Ax). The desired point c is found, proving the theorem. 

EXAMPLE 1 The function f (x) = 6goes from zero at x = 0 to ten at x = 100. Its 
average slope is Af/Ax = 10/100. The derivative ff(x)  = 1 / 2 6  exists in the open 
interval (0, loo), even though it blows up at the end x = 0. By the Mean Value 
Theorem there must be a point where 10/100 =f '(c) = 1/2& That point is c = 25. 

The truth is that nobody cares about the exact value of c. Its existence is what 
matters. Notice how it affects the linear approximation f (x)zf (a) + f '(a)(x - a), 
which was basic to this chapter. Close becomes exact ( z becomes = ) when f '  is 
computed at c instead of a: 

?If f ( x )  doesn't reach its maximum M, then 1/(M-f ( x ) )would be continuous but also 
approach infinity. Essential fact: A continuous function on [a, b] cannot approach infinity. 
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EXAMPLE 2 The function f(x)= sin x starts from f(0)= 0. The linear prediction
(tangent line) uses the slope cos 0 = 1. The exact prediction uses the slope cos c at an
unknown point between 0 and x:

(approximate) sin x e x (exact) sin x = (cos c)x. (4)

The approximation is useful, because everything is computed at x = a = 0. The exact
formula is interesting, because cos c < 1 proves again that sin x < x. The slope is
below 1, so the sine graph stays below the 450 line.

EXAMPLE 3 If f'(c) = 0 at all points in an interval then f(x) is constant.

Proof When f' is everywhere zero, the theorem gives Af= 0. Every pair of points
has f(b) =f(a). The graph is a horizontal line. That deceptively simple case is a key
to the Fundamental Theorem of Calculus.

Most applications of Af=f'(c)Ax do not end up with a number. They end up with
another theorem (like this one). The goal is to connect derivatives (local) to differences
(global). But the next application-l'HOpital's Rule-manages to produce a number
out of 0/0.

L'H6PITAL'S RULE

When f(x) and g(x) both approach zero, what happens to their ratio f(x)/g(x)?

f(x) x2  sin x x- sin x 0
-_ or or all become - at x = 0.

g(x) x x 1 - cos x 0
Since 0/0 is meaningless, we cannot work separately with f(x) and g(x). This is a
"race toward zero," in which two functions become small while their ratio might do
anything. The problem is to find the limit of f(x)/g(x).

One such limit is already studied. It is the derivative! Af/Ax automatically builds
in a race toward zero, whose limit is df/dx:

f(x) -f(a) 0 but lim f(-f(a)f'(a). (5)
x - a-- 0 x--a x-a

The idea of I'H6pital is to use f'/g' to handle f/g. The derivative is the special case
g(x) = x - a, with g' = 1. The Rule is followed by examples and proofs.

This is not the quotient rule! The derivatives of f(x) and g(x) are taken separately.
Geometrically, I'H6pital is saying that when functions go to zero their slopes control
their size. An easy case is f= 6(x - a) and g = 2(x - a). The ratio f/g is exactly 6/2,
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f (4 f (x)Fig. 3.28 (a) -is exactly fo= 3. (b) -approaches 7f'(4 = 3. 
g(x) g (4 g(x) s (4 

the ratio of their slopes. Figure 3.28 shows these straight lines dropping to zero, 
controlled by 6 and 2. 

The next figure shows the same limit 612, when the curves are tangent to the lines. 
That picture is the key to 1'Hdpital's rule. 

Generally the limit off /g can be a finite number L or + oo or - oo.(Also the limit 
point x = a can represent a finite number or + oo or -oo. We keep it finite.) The 
one absolute requirement is that f (x) and g(x) must separately approach zero-we 
insist on 010. Otherwise there is no reason why equation (6) should be true. With 
f (x) = x and g(x) = x - 1, don't use l'H6pital: 

Ordinary ratios approach lim f (x) divided by lim g(x). lYH6pital enters only for 010. 

1 - cos x sin x 
EXAMPLE 4 (an old friend) lim equals lim -. This equals zero. 

x-ro X x+O 1 

f tan x f '  - sec2x 1
EXAMPLE 5 -= - leads to 7--. At x = 0 the limit is -

g sin x g cos x 1 ' 

f '  - 1 - cos x 0
EXAMPLE 6 f = 

x - sin x . 
leads to -- . At x = 0 this is still -

g 1 - cos x g' sin x 0 '  

Solution Apply the Rule to f 'lg'. It has the same limit as f "lg": 

f f '  0 fW(x) - s inxif -+ -0 and -+ - then compute ---4-
0 = 0. 

g 0 g' 0 gM(x) cosx 1 

The reason behind l'H6pital's Rule is that the following fractions are the same: 

That is just algebra; the limit hasn't happened yet. The factors x - a cancel, and the 
numbers f (a) and g(a) are zero by assumption. Now take the limit on the right side 
of (7) as x approaches a. 

What normally happens is that one part approaches f '  at x = a. The other part 
approaches g'(a). We hope gl(a) is not zero. In this case we can divide one limit by 
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the other limit. That gives the "normal" answer

f(x) f'(a)lim (x) = limit of (7) - '(a) (8)
x-a g(x) g'(a)

This is also l'H6pital's answer. When f'(x) -+f'(a) and separately g'(x) - g'(a), his
overall limit is f'(a)/g'(a). He published this rule in the first textbook ever written on
differential calculus. (That was in 1696-the limit was actually discovered by his
teacher Bernoulli.) Three hundred years later we apply his name to other cases
permitted in (6), when f'/g' might approach a limit even if the separate parts do not.

To prove this more general form of l'H6pital's Rule, we need a more general Mean
Value Theorem. I regard the discussion below as optional in a calculus course
(but required in a calculus book). The important idea already came in equation (8).

Remark The basic "indeterminate" is oo - oo. If f(x) and g(x) approach infinity,
anything is possible for f(x) - g(x). We could have x2 - x or x - x2 or (x + 2) - x.
Their limits are oo and - 00 and 2.

At the next level are 0/0 and co/co and 0 oo. To find the limit in these cases, try
l'H6pital's Rule. See Problem 24 when f(x)/g(x) approaches oo/oo. When f(x) - 0
and g(x) -+ co, apply the 0/0 rule to f(x)/(1/g(x)).

The next level has 00 and 1" and oo. Those come from limits of f(x)9(x). If f(x)
approaches 0, 1, or cc while g(x) approaches 0, oo, or 0, we need more information.
A really curious example is x l/In , which shows all three possibilities 00 and 1" and
00o. This function is actually a constant! It equals e.

To go back down a level, take logarithms. Then g(x) In f(x) returns to 0/0 and
0 - cc and l'H6pital's Rule. But logarithms and e have to wait for Chapter 6.

THE GENERALIZED MEAN VALUE THEOREM

The MVT can be extended to two functions. The extension is due to Cauchy, who
cleared up the whole idea of limits. You will recognize the special case g = x as the
ordinary Mean Value Theorem.

3Q Generalized MVT If f(x) and g(x) are continuous on [a, b] and
differentiable on (a, b), there is a point a < c < b where

[f(b) -f(a)]g'(c) = [g(b) - g(a)Jf'(c). (9)

The proof comes by constructing a new function that has F(a)= F(b):

F(x) = [f(b) -f(a)]g(x) - [g(b) - g(a)]f(x).

The ordinary Mean Value Theorem leads to F'(c)= 0-which is equation (9).

Application 1 (Proof of l'H6pital's Rule) The rule deals with f(a)/g(a) = 0/0. Insert-
ing those zeros into equation (9) leaves f(b)g'(c) = g(b)f'(c). Therefore

f(b) f'(c)
- (10)g(b) g'(c)

As b approaches a, so does c. The point c is squeezed between a and b. The limit of
equation (10) as b -+ a and c -+ a is l'H6pital's Rule.
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Application 2 (Error in linear approximation) Section 3.2 stated that the distance 
between a curve and its tangent line grows like ( x- a)'. Now we can prove this, and 
find out more. Linear approximation is 

f ( x )  =f (a) +f '(a)(x- a)+ error e(x). ( 11) 

The pattern suggests an error involving f " ( x )  and ( x- a)'. The key example f= x2 
shows the need for a factor (to cancel f" = 2). The e m  in linear approximation i s  

e(x)=if"(c)(x-a) '  with a < c < x .  (12) 

Key idea Compare the error e(x) to ( x-a)2.Both are zero at x = a: 

e = f ( x ) - f ( a ) - f l ( a ) ( x - a )  e l= f l ( x ) - f t (a )  et l=f"(x)  

g = ( x- a)' g' = 2(x - a) gn = 2 

The Generalized Mean Value Theorem finds a point C between a and x where 
e(x)/g(x)= el(C)/g'(C).This is equation (10) with different letters. After checking 
el(a)=gl(a)= 0,  apply the same theorem to et(x)and gt(x). It produces a point c 
between a and C-certainly between a and x-where 

el(C)- eM(c) e(x)- et'(c)and therefore ---
gl(C) g"(4 g(x) gt'(c)' 

With g = ( x- a)' and g" = 2 and e" =f ", the equation on the right is e(x)= 
9f "(c)(x- a)'. The error formula is proved. A very good approximation is 
4f "(a)(x - a)'. 

EXAMPLE 7 f ( x )  = J;near a = 100: JE;E 2'.10 + (A)2 + 1(&) 
That last term predicts e = - .0005. The actual error is J102 - 10.1 = - .000496. 

3.8 EXERCISES 

Read-through questions Find all points 0 <c <2 where f  (2) -f  (0) =f  '(c)(2 -0). 

The Mean Value Theorem equates the average slope AflAx 1 f ( x ) = x 3  2 f  ( x )  =sin nx  
over an a [a,b] to the slope df ldx at an unknown b . 3 f  ( x )  = tan 2nx 4 f ( x )=  1  + x + x 2  
The statement is c . It requires f ( x )  to be d on the 

e interval [a, b], with a f on the open interval (a, b). 5 f ( x ) = ( x -  1)1° 6 f  ( x )  =( x- 1)' 
Rolle's theorem is the special case when f  (a) =f  (b) =0, and 
the point c satisfies g . The proof chooses c as the point In 7-10 show that no point c yields f (1) -f  (-1) =f  '(cX2). 
where f reaches its h . Explain why the Mean Value Theorem fails to apply. 

Consequences of the Mean Value Theorem include: 7 f(x)=Ix-$1 8 f  ( x )  = unit step function 
If f l ( x )=0 everywhere in an interval then f ( x )  = i . 
The prediction f ( x )  =f (a) + I ( x  -a)  is exact for 9 f  ( x )  = 1x1'I2 lo f ( x )=  1/x2 

some c between a and x. The quadratic prediction 11 Show that sec2 x and tanZ x have the same derivative, and 
f (x)=f (a)+f  '(a)@ -a)+ k ( x-a)2 is exact for another draw a conclusion about f  ( x )  =sec2x- tan2x. 
c. The error in f  (a) +f  '(a)(x -a) is less than $M(x  -

12 Show that csc2 x and cot2 x have the same derivative and where M is the maximum of I . 
find f  ( x )  =csc2x -cot2x. 

A chief consequence is I'Hdpital's Rule, which applies when 
. f(x) and g(x)-+ m as x +a. In that case the limit of Evaluate the limits in 13-22 by l'H6pital's Rule. 
f  (x) /g(x)  equals the limit of n ,provided this limit exists. 

2 - 9Normally this limit is f  '(a)/gl(a). If this is also 0/0, go on to 2 - 9
13 lim ---- 14 lim -

the limit of 0 . x+3 x - 3  x-3 x +  3 
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X - X  

3.8 The Mean W u e  Theorem and IgH8pital'sRule 

(1 + x)-2 - 1
15 lim 

x+O X 

17 lirn -
X+Z sln x 

(l+x)"-1
19 lirn 

x + o  x 

sin x -tan x 
21 lim 

x - 0  x 

16 lim JGi - i i  
x - r o  x 

x-1
18 lirn -

X-i  s ~ nx 

(l+x)"-1-nx
20 lim 

x - r o  x2 

22 lim JG-Jl-x 
x - r o  X 

23 For f =x2-4 and g =x + 2, the ratio f '/gl approaches 4 
as x +2. What is the limit off (x)/g(x)? What goes wrong in 
l'H6pital's Rule? 

24 l'H6pital's Rule still holds for f(x)/g(x)+ m/m: L is 

f ( 4  g1(~)/g2b)~2 lip g'(4 =lirn -=lim j-
llg(x) =lim 

g(x) l l l f  (x) f '(Wf ( 4  f ' (4  ' 

Then L equals lim [f '(x)/gl(x)] if this limit exists. Where did 
we use the rule for 0/0? What other limit rule was used? 

x2+ X  ' ('/')+25 Compute lim - 26 Compute lim -
x + o  1-(11~). x+co 2x2 ' 

x+cos x 
27 Compute lim -by common sense. Show that 

X + Q  x + sin x 
l'H6pital gives no answer. 

CSC X
28 Compute lirn -by common sense or trickery. 

x+O cot X 

29 The Mean Value Theorem applied to f (x)=x3 guarantees 
that some number c between 1 and 4 has a certain property. 
Say what the property is and find c. 

30 If Idf/dxl< 1 at all points, prove this fact: 

31 The error in Newton's method is squared at each step: 

32 (Rolle's theorem backward) Suppose fl(c) =0. Are there 
necessarily two points around c where f (a)=f (b)? 

33 SupposeflO)=0. If f (x)/x has a limit as x +0, that limit 
is better known to us as . L'H6pital's Rule looks 
instead at the limit of 

Conclusion from l'H6pital: The limit of f '(x), if it exists, 
agrees with fl(0). Thus f '(x) cannot have a "removable 

3' 

34 It is possible that f '(x)/gl(x) has no limit but f (x)/g(x)+L. 
This is why l'H6pital included an "if." 

(a) Find L as x -,0 when f (x)=x2 cos (l/x)'and g(x) = x. 
Remember that cosines are below 1. 
(b) From the formula f '(x) =sin (llx) + 2x cos (llx) show 
that f '/g' has no limit as x --+0. 

35 Stein's calculus book asks for the limiting ratio of 
f (x)= triangular area ABC to g(x)=curved area ABC. 
(a) Guess the limit of f/g as the angle x goes to zero. 
(b) Explain why f (x) is $(sin x -sin x cos x) and g(x) is 
i(x -sin x cos x). (c) Compute the true limit of f (x)/g(x). 

36 If you drive 3000 miles from New York to L.A. in 100 
hours (sleeping and eating and going backwards are allowed) 
then at some moment your speed is 

37 As x + m l'H6pital's Rule still applies. The limit of 
f(x)/g(x) equals the limit of f1(x)/g',(x), if that limit exists. 
What is the limit as the graphs become parallel in Figure B? 

Ix,+ -X*1 < Mlx, -x* 1'. 

f (x,,)+f '(x,,)(x*-x,) +4f (c)(x*-x,)'. Divide by f'(x,), f'(c) >0 at all points c, then f(b) >f(a) at all pairs of points 
recognize x, + ,,and estimate M. b > a. 

The proof starts from 0 =f(x*)= 38 Prove that f(x) is increasing when its slope is positive: If 
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C H A P T E R  4 


Derivatives by the Chain Rule 


1 4.1 The Chain Rule 

You remember that the derivative of f(x)g(x) is not (df/dx)(dg/dx). The derivative 
of sin x times x2 is not cos x times 2x. The product rule gave two terms, not one 
term. But there is another way of combining the sine function f and the squaring 
function g into a single function. The derivative of that new function does involve 
the cosine times 2x (but with a certain twist). We will first explain the new function, 
and then find the "chain rule" for its derivative. 

May I say here that the chain rule is important. It is easy to learn, and you will 
use it often. I see it as the third basic way to find derivatives of new functions from 
derivatives of old functions. (So far the old functions are xn, sin x, and cos x. Still 
ahead are ex and log x.) When f and g are added and multiplied, derivatives come 
from the sum rule and product rule. This section combines f and g in a third way. 

The new function is sin(x2)-the sine of x2. It is created out of the two original 
functions: if x = 3 then x2 = 9 and sin(x2) = sin 9. There is a "chain" of functions, 
combining sin x and x2 into the composite function sin(x2). You start with x, then 
find g(x), then Jindf (g(x)): 

The squaring function gives y = x2. This is g(x). 
The sine function produces z = sin y = sin(x2). This is f(g(x)). 

The "inside function" g(x) gives y. This is the input to the "outside function" f(y). That 
is called composition. It starts with x and ends with z.  The composite function is 
sometimes written fog (the circle shows the difference from an ordinary product fg). 
More often you will see f(g(x)): 

Other examples are cos 2x and ( 2 ~ ) ~ ,  with g = 2x. On a calculator you input x, then 
push the "g" button, then push the "f" button: 

From x compute y =g(x) From y compute z =f(y). 

There is not a button for every function! But the squaring function and sine function 
are on most calculators, and they are used in that order. Figure 4.la shows how 
squaring will stretch and squeeze the sine function. 

-1 




4.1 The Chaln Rule 

That graph of sin x2 is a crazy FM signal (the Frequency is Modulated). The wave 
goes up and down like sin x, but not at the same places. Changing to sin g(x) moves 
the peaks left and right. Compare with a product g(x) sin x, which is an AM signal 
(the Amplitude is Modulated). 

Remark f(g(x)) is usually different from g( f(x)). The order off and g is usually 
important. For f(x) = sin x and g(x) = x2, the chain in the opposite order g( f(x)) gives 
something different: 

First apply the sine function: y = sin x 
Then apply the squaring function: z = (sin x ) ~ .  

That result is often written sin2x, to save on parentheses. It is never written sin x2, 
which is totally different. Compare them in Figure 4.1. 

1 1 2 n: 

y = (sin x ) ~  

Fig. 4.1 f(g(x)) is different from g(f(x)) .Apply g then f,or f then g. 

EXAMPLE I The composite functionfig can be deceptive. If g(x) = x3 and fly) = y4, 
how does f(g(x)) differ from the ordinary product f(x)g(x)? The ordinary product is 
x7. The chain starts with y = x3, and then z = y4 = x12. The composition of 2t3 and 
y4 gives f(g(x)) = x12. 

EXAMPLE 2 In Newton's method, F(x) is composed with itself. This is iteration. 
Every output xn is fed back as input, to find xn + , = F(xn). The example F(x) = f x + 4 
has F(F(x)) = f($x + 4) + 4. That produces z =&x+ 6. 

The derivative of F(x) is t .The derivative of z = F(F(x)) is a,  which is f times f .  
We multiply derivatives. This is a special case of the chain rule. 

An extremely special case is f(x)= x and g(x) = x. The ordinary product is x2. The 
chain f(g(x)) produces only x! The output from the "identity function" is g(x) = x.t 
When the second identity function operates on x it produces x again. The derivative 
is 1 times 1. I can give more composite functions in a table: 

Y=gM z=f(y) z=f(g(x)) 

- 1 J; Jn 
COS X y3 (COS x ) ~  

2" 2Y 22x 
x + 5  Y - 5  X 

The last one adds 5 to get y. Then it subtracts 5 to reach z. So z = x. Here output 

f.A calculator has no button for the identity function. It wouldn't do anything. 
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equals input: f(g(x)) = x. These "inverse functions" are in Section 4.3. The other 
examples create new functions z(x) and we want their derivatives. 

THE DERIVATIVE OF f(g(x)) 

What is the derivative of z = sin x2? It is the limit of AzlAx. Therefore we look at a 
nearby point x + Ax. That change in x produces a change in y = x2-which moves 
to y + Ay = (x + AX)^. From this change in y, there is a change in z =f(y). It is a 
"domino effect," in which each changed input yields a changed output: Ax produces 
Ay produces Az. We have to connect the final Az to the original Ax. 

The key is to write AzlAx as AzlAy times AylAx. Then let Ax approach zero. 
In the limit, dzldx is given by the "chain rule": 

Az - AzAy dz dz dy ---- becomes the chain rule -= --. 
Ax; AyAx dx dydx (2) 

As Ax goes to zero, the ratio AylAx approaches dyldx. Therefore Ay must be going 
to zero, and AzlAy approaches dzldy. The limit of a product is the product of the 
separate limits (end of quick proof). We multiply derivatiues: 

4A Chah Raze Suppose gCx) has a derivative at x df(y) has a derivative 
at y =g(x). Then the derivative of z =f(g(x))  is 

dz d z d y
- 5 1 -

d y d x  =f'(gf4) sf(*.dx 

I The slope at x is dfldy (at y) times dg/dx (at x). 

Caution The chain rule does not say that the derivative of sin x2 is (cos x)(2x). 
True, cos y is the derivative of sin y. The point is that cos y must be evaluated at y 
(not at x). We do not want dfldx at x, we want dfldy at y = x2: 

The derivative of sin x2 is (cos x2) times (2x). (4) 

EXAMPLE 3 If z = (sin x ) ~  then dzldx = (2 sin x)(cos x). Here y = sin x is inside. 

In this order, z = y2 leads to dzldy = 2y. It  does not lead to 2x. The inside function 
sin x produces dyldx = cos x. The answer is 2y cos x. We have not yet found the 
function whose derivative is 2x cos x. 

dz dz dy 
EXAMPLE 4 The derivative of z = sin 3x is -= --= 3 cos 3x.

dx dydx 

Az Az Ay dz d z  d y  
Fig. 4.2 The chain rule: -= --approaches -= --

Ax Ay Ax dx d y  dx' 



4.1 The Chain Rule 

The outside function is z = sin y. The inside function is y = 3x. Then dzldy = cos y- 
this is cos 3x, not cos x. Remember the other factor dy/dx = 3. 

I can explain that factor 3, especially if x is switched to t. The distance is z = sin 3t. 
That oscillates like sin t except three times as fast. The speeded-up function sin 3t 
completes a wave at time 2n/3 (instead of 2.n). Naturally the velocity contains the 
extra factor 3 from the chain rule. 

EXAMPLE 5 Let z =f(y) = yn. Find the derivative of f(g(x)) = [g(x)ln. 

In this case dzldy is nyn-'. The chain rule multiplies by dyldx: 

This is the power rule! It was already discovered in Section 2.5. Square roots (when 
n = 112) are frequent and important. Suppose -y = x2 - 1: 

Question A Buick uses 1/20 of a gallon of gas per mile. You drive at 60 miles per 
hour. How many gallons per hour? 
Answer (Gallons/hour) = (gallons/mile) (mileslhour). The chain rule is (d y/d t) = 

(dy/dx)(dx/dt). The answer is (1/20)(60) = 3 gallons/hour. 

Proof of the chain rule The discussion above was correctly based on 

Az - AzAy dz - dzdy
and ----

Ax AyAx dx dydx' 

It was here, over the chain rule, that the "battle of notation" was won by Leibniz. 
His notation practically tells you what to do: Take the limit of each term. (I have to 
mention that when Ax is approaching zero, it is theoretically possible that Ay might 
hit zero. If that happens, Az/Ay becomes 010. We have to assign it the correct meaning, 
which is dzldy.) As Ax +0, 

AY Az 
---+g'(x) and -+f '( y) =f '(g(x)).Ax AY 

Then AzlAx approaches f '(y) times gf(x), which is the chain rule (dz/dy)(dy/dx). In the 
table below, the derivative of (sin x ) ~  cos x. That extra factor cos x is easy is 3(sin x ) ~  
to forget. It is even easier to forget the -1 in the last example. 

z = (x3+ 1)5 dz/dx = 5(x3+ times 3x2 

z = (sin x ) ~  dzldx = 3 sin2x times cos x 

z = (1 - x ) ~  dz/dx = 2(1 - x) times -1 

Important All kinds of letters are used for the chain rule. We named the output z. 
Very often it is called y, and the inside function is called u: 

dy duThe derivative of y = sin u(x) is -= cos u -.
dx dx 

Examples with duldx are extremely common. I have to ask you to accept whatever 
letters may come. What never changes is the key idea-derivative of outside function 
times derivative of inside function. 
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EXAMPLE 6 The chain rule is barely needed for sin(x - 1). Strictly speaking the 
inside function is u = x - 1. Then duldx is just 1 (not -1). If y = sin(x - 1) then 
dyldx = cos(x - 1). The graph is shifted and the slope shifts too. 

Notice especially: The cosine is computed at x - 1 and not at the unshifted x. 

RECOGNIZING f(y) AND g(x) 

A big part of the chain rule is recognizing the chain. The table started with (x3 + 1)'. 
You look at it for a second. Then you see it as us. The inside function is u = x3 + 1. 
With practice this decomposition (the opposite of composition) gets easy: 

cos (2x + 1) is cos u is & x sin x is ... (product rule!) 

In calculations, the careful way is to write down all the functions: 

z = cos u u = 2x + 1 dzldx = (- sin u)(2) = - 2 sin (2x + 1). 

The quick way is to keep in your mind "the derivative of what's inside." The slope 
of cos(2x + 1) is -sin(2x + I), times 2 from the chain rule. The derivative of 2x + 1 
is remembered-without z or u or f or g. 

EXAMPLE 7 sin J& is a chain of z = sin y, y = &,u = 1 - x (three functions). 

With that triple chain you will have the hang of the chain rule: 

The derivative of sin f i is (cos J K )  
(2&) (-

This is (dz/dy)(dy/du)(du/dx). Evaluate them at the right places y, u, x. 
Finally there is the question of second derivatives. The chain rule gives dzldx as a 

product, so d 2 z / d ~ 2  needs the product rule: 

---- leadsto d2z - dz d2y d (dz) dydz - dz dy ----+- - -
dx dydx dx2 dydx2 dx dy dx' 

That last term needs the chain rule again. It becomes d2z/dy2 times ( d ~ / d x ) ~ .  

EXAMPLE 8 The derivative of sin x2 is 2x cos x2. Then the product rule gives 
d2z/dx2= 2 cos x2 - 4x2 sin x2. In this case ytt = 2 and (yt)2 = 4x2. 

Read-through questions cos u(x) has dyldx = m . The power rule for y = [u(x)In is 
the chain rule dyldx = n . The slope of 5g(x) is 0 and 

z =f(g(x)) comes from z =f(y) and y = a . At x = 2, the 
the slope of g(5x) is P . When f =cosine and g =sine and 

chain (x2 - equals b . Its inside function is y = c , x =0, the numbers f(g(x)) and g( f(x)) and f(x)g(x) are s .
its outside function is z = d . Then dzldx equals e . 
The first factor is evaluated at y = f (not at y =x). dz 
For z = sin(x4- 1) the derivative is g . The triple chain In 1-10 identify f(y) and g(x). From their derivatives find -. 
z =cos(x + 1)' has a shift and a h and a cosine. Then 1 Z = ( X ~ - ~ ) ~  

dx 
2 z =(x3-3)2

dzldx = 1 . 
-

3 z =cos(x3) 4 z=tan 2x 
The proof of the chain rule begins with Az/Ax= 

( I ) k ) and ends with I . Changing letters, y = 5 z = , / G  6 z =sin & 
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In 11-16 write down dzldx. Don't write down f and g. 

15 z =x2 sin x 16 z =(9x + 4)312 

Problems 17-22 involve three functions z(y), y(u), and u(x). 
Find dzldx from (dz/dy)(dy/du)(du/dx). 

17 z=sin J3 18 z = d w )  

19 z = , / m  20 z = sin($ + 1) 

21 z = sin(l/sin x) 22 z = (sin x ~ ) ~  

In 23-26 find dzldx by the chain rule and also by rewriting z. 

27 If f(x) =x2 + 1 what is f(f(x))? If U(x) is the unit step 
function (from 0 to 1 at x =0) draw the graphs of sin U(x) 
and U(sin x). If R(x) is the ramp function i(x + [XI), draw the 
graphs of R(x) and R(sin x). 

28 (Recommended) If g(x) = x3 find f(y) so that f(g(x)) = 

x3 + 1. Then find h(y) so that h(g(x)) = x. Then find k(y) so 
that k(g(x)) = 1. 

29 If f(y) =y - 2 find g(x) so that f(g(x)) = x. Then find h(x) 
so that f(h(x)) =x2. Then find k(x) so that f(k(x)) = 1. 

30 Find two different pairs f(y), g(x) so that f(g(x)) = 
Jrn. 
31 The derivative of f(f(x)) is . Is it ( d f l d ~ ) ~ ?  Test 
your formula on f(x) = l/x. 

32 If f(3) = 3 and g(3) = 5 and f '(3) = 2 and g'(3) =4, find the 
derivative at x = 3 if possible for 

(a)f(xlg(x) (b)f(g(x)) ( 4  g(f(x)) ( 4  f(f(x)) 

33 For F(x) = i x  + 8, show how iteration gives F(F(x)) = 

dx + 12. Find F(F(F(x)))-also called F(~)(x).  The derivative 
of F( 4 ) ( ~ )  .is 

34 In Problem 33 the limit of F("'(x) is a constant C = 

. From any start (try x = 0) the iterations x,, ,= 

F(x,) converge to C. 

35 Suppose g(x) = 3x + 1 and f(y) = i (y - 1). Then f(g(x)) = 

and g ( f ( ~ ) )  = -. These are inverse functions. 

36 Suppose g(x) is continuous at x = 4, say g(4) = 7. Suppose 
f ( y )  is continuous at y = 7, say f(7) = 9. Then f(g(x)) is con- 
tinuous at x = 4 and f(g(4)) = 9. 
Proof E is given. Because is continuous, there is a 
6 such that I f(g(x)) -91 < E whenever Ig(x) - 71 < 6. Then 

because is continuous, there is a 6 such that 
Ig(x) -71 < 6 whenever Ix -41 < 8. Conclusion: If Ix -4)< 6 
then . This shows that f(g(x)) approaches f(g(4)). 

37 Only six functions can be constructed by compositions (in 
any sequence) of g(x) = 1 -x and f(x) = llx. Starting with g 
and f, find the other four. 

38 If g(x) = 1 -x then g(g(x)) = 1 -(1 -x) =x. If g(x) = l lx 
then g(g(x)) = l/(l/x) =x. Draw graphs of those g's and 
explain from the graphs why g(g(x)) =x. Find two more g's 
with this special property. 

39 Construct functions so that f(g(x)) is always zero, but f(y) 
is not always zero. 

40 True or false 
(a) If f(x) =f(-x) then fl(x) =f1(-x). 
(b) The derivative of the identity function is zero. 
(c) The derivative of f(l/x) is -l / (  f ( ~ ) ) ~ .  
(d)The derivative of f ( l  + x) is f '(1+ x). 
(e) The second derivative of f(g(x)) is f "(g(x))gW(x). 

41 On the same graph draw the parabola y =  x2 and the 
curve z = sin y (keep y upwards, with x and z across). Starting 
at x = 3 find your way to z = sin 9. 

42 On the same graph draw y = sin x and z =y2 (y upwards 
for both). Starting at x = n/4 find z = (sin x ) ~  on the graph. 

43 Find the second derivative of 
(a) sin(x2+ I) (b) J'm (c) cos 4 

-((")-($)(2)in44 Explain why - - equation (8).
dx .dy

, . , . ,  
Check this when z =y2, y = x3. 

Final practice with the chain rule and other rules (and other 
letters!). Find the x or t derivative of z or y. 

55 Iff =x4 and g = x3 then f '  = 4x3 and g' = 3x2. The chain 
rule multiplies derivatives to get 12x5. But f(g(x)) = x12 and 
its derivative is not 12x5. Where is the flaw? 

56 The derivative of y = sin(sin x) is dyldx = 

57 (a) A book has 400 words per page. There are 9 pages per 
section. So there are words per section. 
(b)You read 200 words per minute. So you read 
pages per minute. How many minutes per section? 
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58 (a) You walk in a train at 3 miles per hour. The train 59 Coke costs 113 dollar per bottle. The buyer gets 
moves at 50 miles per hour. Your ground speed is bottles per dollar. If dyldx = 113 then dxldy = . 

miles per hour. 
(b)You walk in a train at 3 miles per hour. The train is 60 (Computer) Graph F(x) = sin x and G(x) = sin (sin x)- 
shown on TV (1 mile train = 20 inches on TV screen). not much difference. Do the same for F1(x) and G1(x). Then 
Your speed across the screen is inches per hour. plot F"(x) and G"(x) to see where the difference shows up. 

4.2 Implicit Differentiation and Related Rates 

We start with the equations xy = 2 and y5+ xy = 3. As x changes, these y's will 
change-to keep (x, y) on the curve. We want to know dy/dx at a typical point. For 
xy = 2 that is no trouble, but the slope of y5+ xy = 3 requires a new idea. 

In the first case, solve for y = 2/x and take its derivative: dy/dx = - 2/x2.The curve 
is a hyperbola. At x = 2 the slope is -214 = -112. 

The problem with y5+ xy = 3 is that it can't be solved for y. Galois proved that 
there is no solution formula for fifth-degree equations.? The function y(x) cannot 
be given explicitly. All we have is the implicit definition of y, as a solution to 
y5 + xy = 3. The point x = 2, y = 1 satisfies the equation and lies on the curve, but 
how to find dyldx? 

This section answers that question. It is a situation that often occurs. Equations 
like sin y + sin x = 1 or y sin y = x (maybe even sin y = x) are difficult or impossible 
to solve directly for y. Nevertheless we can find dyldx at any point. 

The way out is implicit differentiation. Work with the equation as it stands. Find 
the x derivative of every term in y5 + xy = 3. That includes the constant term 3, whose 
derivative is zero. 

EXAMPLE I The power rule for y5 and the product rule for xy yield 

Now substitute the typical point x = 2 and y = 1 ,  and solve for dyldx: 

dy dy dy5 - + 2 - + 1 = 0  produces - = - -
1 

dx dx dx 7 '  

This is implicit differentiation (ID), and you see the idea: Include dyldx from the 
chain rule, even if y is not known explicitly as a function of x. 

dyEXAMPLE 2 sin y + sin x = 1 leads to cos y -+ cos x = 0 
dx 

dyEXAMPLE 3 y sin y = x leads to y cos y -+ sin y-dy 
= 1 

dx dx 

Knowing the slope makes it easier to draw the curve. We still need points (x, y) 
that satisfy the equation. Sometimes we can solve for x. Dividing y5+ xy = 3 by y 

+That was before he went to the famous duel, and met his end. Fourth-degree equations do 
have a solution formula, but it is practically never used. 
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gives x = 3/y - y4 . Now the derivative (the x derivative!) is

14y3 d -77 at y=l. (3)
y2 dx dx

Again dy/dx = - 1/7. All these examples confirm the main point of the section:

4B (Implicit differentiation) An equation F(x, y) = 0 can be differentiated
directly by the chain rule, without solving for y in terms of x.

The example xy = 2, done implicitly, gives x dy/dx + y = 0. The slope dy/dx is - y/x.
That agrees with the explicit slope - 2/x 2.

ID is explained better by examples than theory (maybe everything is). The essential
theory can be boiled down to one idea: "Go ahead and differentiate."

EXAMPLE 4 Find the tangent direction to the circle x 2 + y2 = 25.

We can solve for y = + 25 - x2 , or operate directly on x2 + y2 = 25:

dy dy x
2x + 2y = 0 or (4)

dx dx y

Compare with the radius, which has slope y/x. The radius goes across x and up y.
The tangent goes across - y and up x. The slopes multiply to give (- x/y)(y/x) = - 1.

To emphasize implicit differentiation, go on to the second derivative. The top of the
circle is concave down, so d2y/dx 2 is negative. Use the quotient rule on - x/y:

dy x d2 y y dx/dx - x dy/dx y + (x 2/y) y2 + x
2

-so - = . (5)dx y dx 2  y2 y2 y3

RELATED RATES

There is a group of problems that has never found a perfect place in calculus. They
seem to fit here-as applications of the chain rule. The problem is to compute
df/dt, but the odd thing is that we are given another derivative dg/dt. To find df/dt,
we need a relation between f and g.

The chain rule is df/dt = (df/dg)(dg/dt). Here the variable is t because that is typical
in applications. From the rate of change of g we find the rate of change off. This is
the problem of related rates, and examples will make the point.

EXAMPLE 5 The radius of a circle is growing by dr/dt = 7. How fast is the circum-
ference growing? Remember that C = 27rr (this relates C to r).

dC dCdr
Solution d(2)(7) = 14ir.

dt dr dt

That is pretty basic, but its implications are amazing. Suppose you want to put a
rope around the earth that any 7-footer can walk under. If the distance is 24,000
miles, what is the additional length of the rope? Answer: Only 147r feet.

More realistically, if two lanes on a circular track are separated by 5 feet, how
much head start should the outside runner get? Only 10i feet. If your speed around
a turn is 55 and the car in the next lane goes 56, who wins? See Problem 14.

Examples 6-8 are from the 1988 Advanced Placement Exams (copyright 1989 by
the College Entrance Examination Board). Their questions are carefully prepared.



4 Derhrathres by the Chain Rule 

Fig. 4.3 Rectangle for Example 6, shadow for Example 7, balloon for Example 8. 

EXAMPLE 6 The sides of the rectangle increase in such a way that dzldt = 1 and 
dxldt  = 3dyldt. At the instant when x = 4 and y = 3, what is the value of dxldt? 

Solution The key relation is x 2  + y2 = z2. Take its derivative (implicitly): 

dx d y  dz d x  dy
2 x - + 2 y - = 2 z - produces 8 - + 6 - = l o .  

dt dt dt dt dt 

We used all information, including z = 5, except for dxldt  = 3dyldt. The term 6dyldt 
equals 2dx/dt ,  so we have l0dxldt  = 10. Answer: dx!& = 1. 

EXAMPLE 7 A person 2 meters tall walks directly away from a streetlight that is 8 
meters above the ground. If the person's shadow is lengthening at the rate of 419 
meters per second, at what rate in meters per second is the person walking? 

Solution Draw a figure! You must relate the shadow length s to the distance x from 
the streetlight. The problem gives dsldt = 419 and asks for dxldt: 

x s d x  6 ds 4
By similar triangles - = - so -= ---- (3)(;) = j.

6 2 dt 2 dt 

Note This problem was hard. I drew three figures before catching on to x and s. 
It is interesting that we never knew x or s or the angle. 

EXAMPLE 8 An observer at point A is watching balloon B as it rises from point C .  
( T h e  Jigure is given.) The balloon is rising at a constant rate of 3 meters per second 
(this means dyldt = 3)  and the observer is 100 meters from point C. 

(a) Find the rate of change in z at the instant when y = 50. (They  want dzldt.) 

dz  2 . 5 0 0 3  - 3 f i  
z =  J S K i i % P = ~ o f i= - =  

dt 2 0 5 0 f i - 7 '  

(b) Find the rate of change in the area of right triangle BCA when y = 50. 

(c) Find the rate of change in 8 when y = 50. (They  want dB/dt.) 

Y dB 1 d y  dB 2 2 3  - 3 
tan I!?=-= sec28 -= --

100 dt 100 di z=(3)i66-125 
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In all problems Ifivst wrote down a relation from the figure. Then I took its derivative. 
Then I substituted known information. (The substitution is after taking the derivative 
of tan 8 = y/100. If we substitute y = 50 too soon, the derivative of 50/100 is useless.) 

"Candidates are advised to show their work in order to minimize the risk of not 
receiving credit for it." 50% solved Example 6 and 21% solved Example 7. From 
12,000 candidates, the average on Example 8 (free response) was 6.1 out of 9. 

D U P L E  9 A is a lighthouse and BC is the shoreline (same figure as the balloon). 
The light at A turns once a second (d8ldt = 211 radianslsecond). How quickly does 
the receiving point B move up the shoreline? 

Solution The figure shows y = 100 tan 8. The speed dyldt is 100 sec28 d8/dt. This is 
200n sec28, so B speeds up as sec 8 increases. 

Paradox When 8 approaches a right angle, sec 8 approaches infinity. So does 
dy/dt. B moves faster than light! This contradicts Einstein's theory of relativity. The 
paradox is resolved (I hope) in Problem 18. 

If you walk around a light at A, your shadow at B seems to go faster than light. 
Same problem. This speed is impossible-something has been forgotten. 

Smaller paradox (not destroying the theory of relativity). The figure shows y = z sin 8. 
Apparently dyldt = (dzldt) sin 8. This is totally wrong. Not only is it wrong, the exact 
opposite is true: dzldt = (dyldt) sin 9. If you can explain that (Problem IS), then ID 
and related rates hold no terrors. 

4.2 EXERCISES 

Read-through questions 

For x3 + y3 = 2 the derivative dyldx comes from a 11 Show that the hyperbolas xy = C are perpendicular to the 
differentiation. We don't have to solve for b . Term by hyperbolas x2 -y2= D. (Perpendicular means that the pro- 
term the derivative is 3x2 + c = 0. Solving for dyldx gives duct of slopes is -1.) 

d . At x =y = 1 this slope is e . The equation of the 12 Show that the circles (x -2)2+ y2= 2 and x2 + (y -2)2= 
tangent line is y -1 = f . 2 are tangent at the point (1, 1). 

A second example is y2 = x. The x derivative of this 13 At 25 meterslsecond, does your car turn faster or slower 
equation is a . Therefore dyldx = h . Replacing y than a car traveling 5 meters further out at 26 meters/second? 
by &,this is dyldx = I . Your radius is (a) 50 meters (b) 100 meters. 

In related rates, we are given dgldt and we want dfldt. We 14 Equation (4) is 2x + 2y dyldx = 0 (on a circle). Directly by 
need a relation between f and I . Iff =g2, then (dfldt) = ID reach d2y/dx2 in equation (5).

k (dgldt). If f 2 + g 2 = 1 ,  then df/dt= I . If the 
sides of a cube grow by dsldt =2, then its volume grows by 
dV/dt = m . To find a number (8 is wrong), you also need Problems 15-18 resolve the speed of light paradox in 
to know n . Example 9. 

15 (Small paradox first) The right triangle has z2 = y2 + 1W2. 
By implicit differentiation find dyldx in 1-10. Take the t derivative to show that z' = y' sin 0. 

16 (Even smaller paradox) As B moves up the line, why is 
dyldt larger than dzldt? Certainly z is larger than y. But as 0 
increases they become 

17 (Faster than light) The derivative of y=  100 tan 0 in 
7 x2y= y2x 8 x = sin y Example 9 is y' = 100 sec20 8' = 2OOn sec20. Therefore y' 
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passes c (the speed of light) when sec28 passes . 
Such a speed is impossible-we forget that light takes time 
to reach B. 

A 8 increases by 27t 
in 1 second 

~ ( t )  t is arrival time 
of light 

A 
100 8 is different from 2nt 

18 (Explanation by ID) Light travels from A to B in time 
z/c, distance over speed. Its arrival time is t =8/2n+ Z/C SO 

8'/2n = 1-z1/c. Then z' =y' sin 8 and y' = 100 sec28 8' (all 
these are ID) lead to 

y' =20hc/(c cos28 + 20071 sin 8) 

As 8 approaches n/2, this speed approaches . 
Note: y' still exceeds c for some negative angle. That is for 
Einstein to explain. See the 1985 College Math Journal, page 
186, and the 1960 ScientiJic American, "Things that go faster 
than light." 

19 If a plane follows the curve y =f(x), and its ground speed 
is dxldt = 500 mph, how fast is the plane going up? How fast 
is the plane going? 

20 Why can't we differentiate x = 7 and reach 1 =O? 

Problems 21-29 are applications of related rates. 

21 (Calculus classic) The bottom of a 10-foot ladder is going 
away from the wall at dx/dt = 2 feet per second. How fast is 
the top going down the wall? Draw the right triangle to find 
dy/dt when the height y is (a) 6 feet (b) 5 feet (c) zero. 

22 The top of the 10-foot ladder can go faster than light. At 
what height y does dyldt = -c? 

23 How fast does the level of a Coke go down if you drink 
a cubic inch a second? The cup is a cylinder of radius 
2 inches-first write down the volume. 

24 A jet flies at 8 miles up and 560 miles per hour. How fast 
is it approaching you when (a) it is 16 miles from you; (b) its 

shadow is 8 miles from you (the sun is overhead); (c) the plane 
is 8 miles from you (exactly above)? 

25 Starting from a 3-4-5 right triangle, the short sides 
increase by 2 meters/second but the angle between them 
decreases by 1 radianlsecond. How fast does the area increase 
or decrease? 

26 A pass receiver is at x =4, y = 8t. The ball thrown at 
t = 3 is at x = c(t -3), y = 10c(t-3). 

(a) Choose c so the ball meets the receiver. 
*(b) At that instant the distance D between them is chang- 
ing at what rate? 

27 A thief is 10 meters away (8 meters ahead of you, across 
a street 6 meters wide). The thief runs on that side at 7 meters/ 
second, you run at 9 meters/second. How fast are you 
approaching if (a) you follow on your side; (b) you run toward 
the thief; (c) you run away on your side? 

28 A spherical raindrop evaporates at a rate equal to twice 
its surface area. Find drldt. 

29 Starting from P = V = 5 and maintaining PV = T, find 
dV/dt if dP/dt =2 and dT/dt = 3. 

30 (a) The crankshaft AB turns twice a second so dO/dt = 

(b) Differentiate the cosine law 62 = 32+x2-2 (3x cos 8) 
to find the piston speed dxldt when 0 =7112 and 0 =n. 

31 A camera turns at C to follow a rocket at K. 
(a) Relate dzldt to dyldt when y = 10. 
(b) Relate dO/dt to dyldt based on y = 10 tan 8. 
(c) Relate d28/dt2 to d2y/dt2 and dyldt. 

There is a remarkable special case of the chain rule. It occurs when f(y) and g(x) are 
"inverse functions." That idea is expressed by a very short and powerful equation: 
f(g(x)) = x. Here is what that means. 

Inverse functions: Start with any input, say x = 5. Compute y =g(x), say y = 3. Then 
compute f(y), and the answer must be 5. What one function does, the inverse function 
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undoes. If g(5) = 3 then f(3) = 5. The inverse function f takes the output y back to the 
input x. 

EXAMPLE 1 g(x) = x - 2 and f(y) =y + 2 are inverse functions. Starting with x = 5, 
the function g subtracts 2. That produces y = 3. Then the function f adds 2. That 
brings back x = 5. To say it directly: The inverse of y = x - 2 is x =y + 2. 

EXAMPLE 2 y =g(x) =$(x - 32) and x =f(y) = :y + 32 are inverse functions (for 
temperature). Here x is degrees Fahrenheit and y is degrees Celsius. From x = 32 
(freezing in Fahrenheit) you find y = 0 (freezing in Celsius). The inverse function takes 
y = 0 back to x = 32. Figure 4.4 shows how x = 50°F matches y = 10°C. 

Notice that $(x - 32) subtracts 32 first. The inverse gy + 32 adds 32 last. In the 
same way g multiplies last by $ while f multiplies first by 3 .  

domain off =range of g 

5y = -(x- 32) y=G9 

x 2 0  
range 0f.f= domain of g 

Fig. 4.4 "F to "C to O F .  Always g- '(Ax)) = x and g(g- =y. Iff =g- ' then g =f - '. 

The inverse function is written f =g - ' and pronounced "g inverse." It is not l/g(x). 

If the demand y is a function of the price x, then the price is a function of the demand. 
Those are inverse functions. Their derivatives obey a fundamental rule: dyldx times 
dxldy equals 1. In Example 2, dyldx is 519 and dxldy is 915. 

There is another important point. When f and g are applied in the opposite order, 
they still come back to the start. First f adds 2, then g subtracts 2. The chain g( f(y)) = 
(y + 2) - 2 brings back y. Iff is  the inverse of g then g is the inverse off .  The relation 
is completely symmetric, and so is the definition: 

Inverse function: If y = g(x) then x = g-  '(y). I f x  =g-  '(y) then y =g(x). 

The loop in the figure goes from x to y to x. The composition g-  '(g(x)) is the "identity 
function." Instead of a new point z it returns to the original x. This will make the 
chain rule particularly easy-leading to (dy/dx)(dx/dy) = 1. 

EXAMPLE 3 y =g(x) = f i  and x =f(y) = y2 are inverse functions. 

Starting from x = 9 we find y = 3. The inverse gives 32 = 9. The square of f i  is 
f(g(x)) = x. In the opposite direction, the square root of y2 is g(f(y)) = y. 

Caution That example does not allow x to be negative. The domain of g-the set 
of numbers with square roots-is restricted to x 2 0. This matches the range of g -  '. 
The outputs y2 are nonnegative. With domain of g = range of g-', the equation x = 
(&)2 is possible and true. The nonnegative x goes into g and comes out of g-'. 

In this example y is also nonnegative. You might think we could square anything, 
but y must come back as the square root of y2. So y 2 0. 

To summarize: The domain of a function matches the range of its inverse. The inputs 
to g-' are the outputs from g. The inputs to g are the outputs from g-'. 
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Zf g(x)= y then solving that equation for x gives x =g - l(y): 

if y = 3x - 6 then x =+(y+ 6) (this is g-'(y)) 

i f y = x 3 +  1 t h enx=13  (thisisg-'(y)) 

In practice that is how g-' is computed: Solve g(x) = y. This is the reason inverses 
are important. Every time we solve an equation we are computing a value of g- '. 

Not all equations have one solution. Not all functions have inverses. For each y, 
the equation g(x) = y is only allowed to produce one x. That solution is x =g- '(y). 
If there is a second solution, then g-l  will not be a function-because a function 
cannot produce two x's from the same y. 

EXAMPLE 4 There is more than one solution to sin x =f.Many angles have the 
same sine. On the interval 0 <x <n, the inverse of y = sin x is not a function. 
Figure 4.5 shows how two x's give the same y. 

Prevent x from passing n/2 and the sine has an inverse. Write x = sin- 'y. 

The function g has no inverse if two points x1 and x2 give Ax,) =g(x2). Its inverse 
would have to bring the same y back to x1 and x2. No function can do that; g-'(y) 
cannot equal both xl and x2. There must be only one x for each y. 

To be invertible over an interval, g must be steadily increasing or steadily decreasing. 

I x = sin -' y I y = sin x 

x nl2 X I  n12 x2 n 

Fig. 4.5 Inverse exists (one x for each y). No inverse function (two x's for one y). 

THE DERWNE OF g-' 

It is time for calculus. Forgive me for this very humble example. 

EXAMPLE 5 (ordinary multiplication) The inverse of y =g(x) = 3x is x =f(y) = iy. 

This shows with special clarity the rule for derivatives: The slopes dyldx = 3 and 
dxldy =5 multiply to give 1. This rule holds for all inverse functions, even if their 
slopes are not constant. It is a crucial application of the chain rule to the derivative 
of f(g(x)) = x. 

This is the chain rule with a special feature. Since f(g(x)) = x, the derivative of both 
sides is 1. If we know g' we now know f'. That rule will be tested on a familiar 
example. In the next section it leads to totally new derivatives. 
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EXAMPLE 6 The inverse of y = x3 is x = y1I3. We can find dxldy two ways: 

The equation (dx/dy)(dy/dx) = 1 is not ordinary algebra, but it is true. Those deriva- 
tives are limits of fractions. The fractions are (Ax/Ay)(Ay/Ax) = 1 and we let Ax +0. 

Fig. 4.6 Graphs of inverse functions: x =i y  is the mirror image of y = 3x. 

Before going to new functions, I want to draw graphs. Figure 4.6 shows y = f i  
and y = 3x. What is s ecial is that the same graphs also show the inverse functions. 
The inverse of y = $is x.= y2. The pair x = 4, y = 2 is the same for both. That is 
the whole point of inverse functions-if 2 =g(4) then 4 =g - '(2). Notice that the 
graphs go steadily up. 

The only problem is, the graph of x =g-'(y) is on its side. To change the slope 
from 3 to f ,  you would have to turn the figure. After that turn there is another 
problem-the axes don't point to the right and up. You also have to look in a mirror! 
(The typesetter refused to print the letters backward. He thinks it's crazy but it's not .) 
To keep the book in position, and the typesetter in position, we need a better idea. 

The graph of x = i y  comes from turning the picture across the 45" line. The y axis 
becomes horizontal and x goes upward. The point (2,6) on the line y = 3x goes into 
the point (6,2) on the line x = fy. The eyes see a reflection across the 45" line 
(Figure 4.6~). The mathematics sees the same pairs x and y. The special properties of 
g and g-' allow us to know two functions-and draw two graphs-at the same 
time.? The graph of x = g-'(y) is the mirror image of the graph of y = g(x). 

EXPONENTIALS AND LOGARITHMS 

I would like to add two more examples of inverse functions, because they are so 
important. Both examples involve the exponential and the logarithm. One is made up 
of linear pieces that imitate 2"; it appeared in Chapter 1. The other is the true function 
2", which is not yet defined-and it' is not going to be defined here. The functions bx 
and logby are so overwhelmingly important that they deserve and will get a whole 
chapter of the book (at least). But you have to see the graphs. 

The slopes in the linear model are powers of 2. So are the heights y at the start of 
each piece. The slopes 1,2,4, .. . equal the heights 1, 2,4, .. . at those special points. 

The inverse is a discrete model for the logarithm (to base 2). The logarithm of 1 is 
0,because 2' = 1. The logarithm of 2 is 1, because 2' = 2. The logarithm of 2j is the 
exponent j. Thus the model gives the correct x = log2y at the breakpoints y = 
1,2,4, 8, .... The slopes are I,:, $, 4, ... because dxldy = l/(dy/dx). 

TI have seen graphs with y=g(x) and also y=g-'(x). For me that is wrong: it has to be 
x =g-'(y). If y =sin x then x =sin-'y. 
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The model is good, but the real thing is better. The figure on the right shows the 
true exponential y = 2". At x = 0, 1,2, . . . the heights y are the same as before. But 
now the height at x = is the number 2'12, which is fi.The height at x = .10 is the 
tenth root 2'/1° = 1.07.... The slope at x = 0 is no longer 1-it is closer to Ay/Ax = 

.07/. 10. The exact slope is a number c (near .7) that we are not yet prepared to reveal. 
The special property of y = 2" is that the slope at all points is cy. The slope is 

proportional to the function. The exponential solves dyldx = cy. 
Now look at the inverse function-the logarithm. Its graph is the mirror image: 

If y = ZX then x = log,y. If 2'/1° 1.07 then log, 1 .O7 1/10. 

What the exponential does, the logarithm undoes-and vice versa. The logarithm of 
2" is the exponent x. Since the exponential starts with slope c, the logarithm must 
start with slope l/c. Check that numerically. The logarithm of 1.07 is near 1/10. The 
slope is near .10/.07. The beautiful property is that dxldy = llcy. 

1 2 4 1 2 4 

Fig. 4.7 Piecewise linear models and smooth curves: y = 2" and x = log, y. Base b = 2. 

I have to mention that calculus avoids logarithms to base 2. The reason lies in that 
mysterious number c. It is the "natural logarithm" of 2, which is .693147.. .-and 
who wants that? Also 11.693 147.. . enters the slope of log, y. Then (dx/dy)(dy/dx) = 1. 
The right choice is to use "natural logarithms" throughout. In place of 2, they are 
based on the special number e: 

y =  ex is the inverse of x = In y. (2) 

The derivatives of those functions are sensational-they are saved for Chapter 6.  
Together with xn and sin x and cos x, they are the backbone of calculus. 

Note It is almost possible to go directly to Chapter 6 .  The inverse functions x = 

sin- 'y and x = tan-'y can be done quickly. The reason for including integrals first 
(Chapter 5) is that they solve differential equations with no guesswork: 

dx 1
dy -y  or -= - leads to j d x = j $  or x = l n  y +  C.
dx dy Y 

Integrals have applications of all kinds, spread through the rest of the book. But do 
not lose sight of 2" and ex. They solve dyldx = cy-the key to applied calculus. 

THE INVERSE OF A CHAIN h(g(x)) 

The functions g(x) = x - 2 and h(y) = 3y were easy to invert. For g-'  we added 2, 
and for h-' we divided by 3. Now the question is: If we create the composite function 
z = h(g(x)), or z = 3(x - 2), what is its inverse? 



4.3 Inverse Functions and Their Derivatives 

Virtually all known functions are created in this way, from chains of simpler 
functions. The problem is to  invert a  chain using the inverse of each piece. The answer 
is one of the fundamental rules of mathematics: 

40 The inverse of z = h(g(x))is a chain of inverses in the opposite order: 

x = g - l ( h - f ( z ) ) .  (3) 

h- ' is applied first because h was applied last: g- '(h- (h(g(x))))=x .  

That last equation looks like a mess, but it holds the key. In the middle you see 
h- ' and h. That part of the chain does nothing! The inverse functions cancel, to leave 
g-'(g(x)) .  But that is x .  The whole chain collapses, when g-' and h-' are in the 
correct order-which is opposite to the order of h(g(x)). 

EXAMPLE 7 z =  h(g(x))= 3 ( x -  2)  and x = g - ' ( h - ' ( z ) ) = i z +  2. 

First h- ' divides by 3.  Then g - ' adds 2.  The inverse of h 0 g is g - 'o h- ' .  I t  can be 
found directly by solving z = 3(x - 2). A chain of inverses is like writing in prose-we 
do it without knowing it. 

EXAMPLE 8 Invert z = J x  - 2 by writing z2 = x - 2 and then x = z2 + 2. 

The inverse adds 2 and takes the square-but not in that order. That would give 
( z+ 2)2 ,which is wrong. The correct order is z2  + 2.  

The domains and ranges are explained by Figure 4.8. We start with x 2 2.  
Subtracting 2 gives y 2 0. Taking the square root gives z 3 0. Taking the square 
brings back y 3 0. Adding 2 brings back x 3 2-which is in the original domain of g.  

Fig. 4.8 The chain g - '(hK1(h(g(x))))= x is one-to-one at every step. 

EXAMPLE 9 Inverse matrices (AB)-'  = B- 'A- '  (this linear algebra is optional). 

Suppose a vector x is multiplied by a square matrix B: y = g(x)= Bx. The inverse 
function multiplies by the inverse matrix: x = g -  ' ( y )  = B -  ' y .  It is like multiplication 
by B = 3 and B - '= 113, except that x and y are vectors. 

Now suppose a second function multiplies by another matrix A: z = h(g(x))= ABx. 
The problem is to recover x from z. The first step is to invert A,  because that came 
last: Bx = A - ' z .  Then the second step multiplies by B-' and brings back x = 

B -  ' A -  ' z .  The product B - 'A - ' inverts the product AB. The rule for matrix inverses 
is like the rule for function inverses-in fact it is a special case. 

I had better not wander too far from calculus. The next section introduces the 
inverses of the sine and cosine and tangent, and finds their derivatives. Remember 
that the ultimate source is the chain rule. 
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4.3 EXERCISES 

Read-through questions 

The functions g(x) =x -4 andfly) =y +4 are a func-
tions, because = b . Also g( f(y)) = c . The 
notation is f =g- ' and g = d .The composition e is 
the identity function. By definition x =g-'(y) if and only if 
Y=- f . When y is in the range of g, it is in the g of 
g-'. Similarly x is in the h of g when it is in the I 

of g-'. If g has an inverse then Ax,) i g(x2) at any two 
points. The function g must be steadily k or steadily 

I . 

The chain rule applied to f(g(x))=x gives (df/dy)( m ) = 
n . The slope of g-  ' times the slope of g equals 0 . 

More directly dxldy = 11 P . For y =2x + 1 and x = 
%y- I), the slopes are dy/dx = q and dx/dy = r . 
For y =x2 and x = s ,the slopes are dyldx = t and 
dx/dy = u . Substituting x2 for y gives dx/dy = v . 
Then (dx/dy)(dy/dx)= w . 

The graph of y =g(x) is also the graph of x = x , but 
with x across and y up. For an ordinary graph of g-  ',take 
the reflection in the line Y . If (3,8) is on the graph of g, 
then its mirror image ( ) is on the graph of g-'. Those 
particular points satisfy 8 =23 and 3 = A . 

The inverse of the chain n =h(g(x)) is the chain x = B . 
If g(x) = 3x and h(y) =y3 then z = c . Its inverse is x = 

D ,which is the composition of E and F . 

Solve equations 1-10 for x, to find the inverse function x = 

g- When more than one x gives the same y, write 
"no inverse." 

1 y=3x-6  2 y = A x + B  

3 y = x 2 - 1  4 y =x/(x - 1) [solve xy -y =x] 

5 y = l + x - '  6 Y = 1x1 

7 Y = X ~ - I  8 y=2x+Ixl 

9 y =sin x 10 y =x1IS [draw graph] 

1
11 Solving y = -gives xy-ay=1 or x=-

1 +ay . Now 
x - a  Y 

solve that equation for y. 

x + l
12 Solving y = -givesxy- y = x +  1 orx=*. raw

x - 1  Y - 1  
the graph to see why f and f - are the same. Compute.dy/dx 
and dxldy. 

13 Supposef is increasing and f(2) = 3 and f(3) = 5. What can 
you say about f - '(4)? 

14 Supposef(2) = 3 and f(3) = 5 and fl5) = 5. What can you 
say about f - '? 

15 Suppose f(2) =3 and f(3) = 5 and f(5) =0. How do you 
know that there is no function f - '? 

16 Vertical line test: If no vertical line touches its graph twice ' 

then flx) is a function (one y for each x). Horizontal line 
test: If no horizontal line touches its graph twice then f(x) is 
invertible because 

17 Ifflx) and g(x) are increasing, which two of these might 
not be increasing? 

f ( 4  +&x) fwd4 f(dx)) f - ' (4  l/f(x) 

18 If y = l/x then x = lly. If y = 1 -x then x = 1-y. The 
graphs are their own mirror images in the 45" line. Construct 
two more functions with this property f =f -' or f(f(x)) =x. 

19 For which numbers m are these functions invertible? 

(a) y =mx +b (b) y =mx +x3 (c) y =mx +sin x 

20 From its graph show that y = 1x1+cx is invertible if c > 1 
and also if c < - 1. The inverse of a piecewise linear function 
is piecewise . 

In 21-26 find dyldx in terms of x and dxldy in terms of y. 

23 y =x3 - 1 

X 
25 y=-

x-1  

27 If dyldx = lly then dxldy = and x =  . 
28 If dxldy = Ily then dyldx =-(these functions are 
Y =ex and x =In Y 9  soon to be honored properly). 

29 The slopes of&) =3x3 and g(x) = - l/x are x2 and l/x2. 
Why isn't f =g- '? What is g- '? Show that gl(g- ')'= 1. 

30 At the points x,, x2, x3 a piecewise constant function 
jumps to yl ,  y2, y3. Draw its graph starting from y(0) =0. 
The mirror image is piecewise constant with jumps at the 
points to the heights . Why isn't this the 
inverse function? 

In 31-38 draw the graph of y =g(x). Separately draw its mirror 
image x =g- '(y). 

31 y=5x-10 32 y=cos x, O S x G n  

33 y =  l/(x+ 1) 34 y=Ixl-2x 

35 y =  10" 36 y = J ~ , ~ G x < l  

37 y = 2 - 38 y = I/,/-, x O S x < l  

In 39-42 find dxldy at the given point. 

39 y =sin x at x =n/6 40 y = tan x at x = n/4 

41 y = sin x2 at x = 3 42 y=x-s in  x at x=O 
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43 If y is a decreasing function of x, then x is a 54 Newton's method solves Ax*) =0 by applying a linear 
function of y. Prove by graphs and by the chain rule. approximation to f -': 
44 If f(x) > x for all x, show that f -'(y) cy. 

45 True orfalse, with example: For y =Ax) this is Newton's equation x* x x + 
(a) If flx) is invertible so is h(x) = 55 If the demand is l/(p + when the price is p, then the 
(b)If f(x) is invertible so is h(x) =f(flx)). demand is y when the price is .If the range of prices 
(c)f - '(y) has a derivative at every y. is p 2 0, what is the range of demands? 

In the ehains 46-51 write down g(x) andfly) and their inverses. 
56 If dF/dx =f(x) show that the derivative of G(y) = 

Then find x =g- '( f - '(2)). yf -YY) -F(f - '(~1) isf -YY). 

57 For each number y find the maximum value of yx -2x4.
46 z=5(x-4) 47 z =(xm)" This maximum is a function G(y). Verify that the derivatives 
48 Z = ( ~ + X ) ~  49 z = 6 + x 3  of G(y) and 2x4 are inverse functions. 

50 z=#x+4)+4  51 z = log(l0") 58 (for professors only) If G(y) is the maximum value of 
yx -F(x), prove that F(x) is the maximum value of xy -G(y).

52 Solvingflx) =0 is a large part of applied mathematics. Assume that f(x)=dF/dx is increasing, like 8x3 in 
Express the solution x* in terms off - ': x* = . Problem 57. 

53 (a) Show by example that d 2~/dy2  is not l/(d 2y/d~2). 59 Suppose the richest x percent of people in the world have 
(b)If y is in meters and x is in seconds, then d2y/dx2 is in 10& percent of the wealth. Then y percent of the wealth is 

and d2x/dy2 is in . held by percent of the people. 

4.4 Inverses of Trigonometric Functions 

Mathematics is built on basic functions like the sine, and on basic ideas like the 
inverse. Therefore it is totally natural to invert the sine function. The graph of x = 
sin-'y is a mirror image of y = sin x. This is a case where we pay close attention to 
the domains, since the sine goes up and down infinitely often. We only want one piece 
of that curve, in Figure 4.9. 

For the bold line the domain is restricted. The angle x lies between -7r/2and + n/2. 
On that interval the sine is increasing, so each y comesfvom exactly one angle x. If 
the whole sine curve is allowed, infinitely many angles would have sin x = 0. The sine 

Fig. 4.9 Graphs of sin x and sin- ' ly. Their slopes are cos x and I/,/-. 
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function could not have an inverse. By restricting to an interval where sin x is increas- 
ing, we make the function invertible. 

The inverse function brings y back to x. It is x = sin-'y (the inverse sine): 

x = sin- 'y when y = sin x and 1x1 < 7112. (1) 

The inverse starts with a number y between -1 and 1. It produces an angle x = 

sin - ly--the angle whose sine is y. The angle x is between -s/2 and 7112, with the 
required sine. Historically x was called the "arc sine" of y, and arcsin is used in 
computing. The mathematical notation is sin-'. This has nothing to do with l/sin x. 

The figure shows the 30"angle x = 7116. Its sine is y = 4.The inverse sine of 4is 7116. 
Again: The symbol sin-'(1) stands for the angle whose sine is 1 (this angle is x = 

n/2). We are seeing g- '(g(x)) = x: 

n
sin-'(sin x)= x for - - d x  < -71 sin(sin-'y) = for - 1 < y < 1 .

2 2 

EXAMPLE 1 (important) If sin x = y find a formula for cos x. 

Solution We are given the sine, we want the cosine. The key to this problem must 
be cos2x = 1 - sin2x. When the sine is y, the cosine is the square root of 1 - y2: 

cos x = cos(sin- 'y) = Jl-y". (2) 

This formula is crucial for computing derivatives. We use it immediately. 

THE DERIVATIVE OF THE INVERSE SINE 

The calculus problem is to find the slope of the inverse function f(y) = sin-'y. 
The chain rule gives (slope of inverse function) = l/(slope of original function). 
Certainly the slope of sin x is cos x. To switch from x to y, use equation (2): 

dy dx 1 - 1y = sin x gives -= cos x so that -= ------
dx dy cos x 

This derivative 11 Jmgives a new v-f pair that is extremely valuable in calculus: 

velocity v(t)= 1/,/1 - t2 'distance f(t) = sin - 't. 
Inverse functions will soon produce two more pairs, from the derivatives of tan-'y 
and sec- 'y. The table at the end lists all the essential facts. 

EXAMPLE 2 The slope of sin - 'y at y = 1 is infinite: l / J W  = 110. Explain. 

At y = 1 the graph of y = sin x is horizontal. The slope is zero. So its mirror image 
is vertical. The slope 110 is an extreme case of the chain rule. 

Question What is dldx (sin-'x)? Answer 1/,/1 - x2. I just changed letters. 

THE INVERSE COSINE AND ITS DERIVATIVE 

Whatever is done for the sine can be done for the cosine. But the domain and range 
have to be watched. The graph cannot be allowed to go up and down. Each y from 
-1 to 1 should be the cosine of only one angle x. That puts x between 0 and n.Then 
the cosine is steadily decreasing and y = cos x has an inverse: 

cos - '(cos x) = x and cos(cos - 'y) = y. (4) 
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The cosine of the angle x = 0 is the number y = 1. The inverse cosine of y = 1 is the
angle x = 0. Those both express the same fact, that cos 0 = 1.

For the slope of cos- 'y, we could copy the calculation that succeeded for sin -y.
The chain rule could be applied as in (3). But there is a faster way, because of a
special relation between cos- 'y and sin- 'y. Those angles always add to a right angle:

cos- ly + sin- 'y = ~n/2.

Figure 4.9c shows the angles and Figure 4. 10c shows the graphs. The sum is nT/2 (the
dotted line), and its derivative is zero. So the derivatives of cos- ly and sin-'y must
add to zero. Those derivatives have opposite sign. There is a minus for the inverse
cosine, and its graph goes downward:

The derivative of x = cos-'y is dx/dy = - 1/ 1-y 2 .

(-1, )

-

x= cos ly1

(0, Tc/2)

(1,0)

(- 1 'r)

Fig. 4.10 The graphs of y = cos x and x = cos- y. Notice the domain 0 < x < 7n.

Question How can two functions x = sin-ly and x =- cos- y have the same
derivative?
Answer sin -y must be the same as - cos- ly + C. Equation (5) gives C = 7E/2.

THE INVERSE TANGENT AND ITS DERIVATIVE

The tangent is sin x/cos x. The inverse tangent is not sin-'y/cos- 'y. The inverse
function produces the angle whose tangent is y. Figure 4.11 shows that angle, which
is between - 7t/2 and 7r/2. The tangent can be any number, but the inverse tangent
is in the open interval - 7r/2 < x < rn/2. (The interval is "open" because its endpoints
are not included.) The tangents of nr/2 and - 7r/2 are not defined.

The slope of y = tan x is dy/dx = sec 2x. What is the slope of x = tan-'y?

dx 1 1 1
By the chain rule d.= I I

dy sec2x 1 + tan2x + y 2

4E The derivative off(y) = tan- y is df = (8)
dy I + y.(
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(0, 1)

-1

in-y = 2
T

, 11
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slope = -

slope = 1 
Y 

slope = 
I Y I  Jy2-I 

Fig. 4.11 x = tan-ly has slope 1/(1 +y2). x =sec-'y has slope l / l y l , / m .  

EXAMPLE 3 The tangent of x = z/4 is y = 1. We check slopes. On the inverse tangent 
curve, dx/dy = 1/(1+ y2) =1. On the tangent curve, dy/dx = sec2x. At z/4 the secant 
squared equals 2. The slopes dx/dy =f and dy/dx = 2 multiply to give 1. 

Zmportant Soon will come the following question. What function has the derivative 
1/(1+ x2)? One reason for reading this section is to learn the answer. The function 
is in equation (8)-if we change letters. It is f(x) = tan- 'x that has sfope 1/(1+ x2). 

COS X 1 cot x 

Fig. 4.12 cos2x +sin2x= 1 and 1+tan2x=sec2x and 1+cot2x=csc2x. 

INVERSE COTANGENT, INVERSE SECANT, INVERSE COSECANT 

There is no way we can avoid completing this miserable list! But it can be painless. 
The idea is to use l/(dy/dx) for y = cot x and y = sec x and y = csc x: 

dx - -1 dx 1 dx -1--- and -= and -= 
dy csc2x dy sec x tan x dy csc x cot x '  (9) 

In the middle equation, replace sec x by y and tan x by Jy2 - 1. Choose the sign 
for positive slope (compare Figure 4.11). That gives the middle equation in (10): 

The derivatives of cot - 'y and sec- 'y and CSC- 'y IVC 

d -1 d 1 d -1
-(cot-ly)=-

1 + y2 
-(set-ly)= -(csc-'y) = . (10)

dy dy I Y I J ~ d~ IYIJ-

Note about the inverse secant When y is negative there is a choice for x = sec-ly. 
We selected the angle in the second quadrant (between 4 2  and z). Its cosine is 
negative, so its secant is negative. This choice makes sec-'y = cos-'(lly), which 
matches sec x = l/cos x. It also makes sec- 'y an increasing function, where cos- 'y 
is a decreasing function. So we needed the absolute value lyl in the derivative. 
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Some mathematical tables make a different choice. The angle x could be in the 
third quadrant (between -n and -n/2). Then the slope omits the absolute value. 
Summary For the six inverse functions it is only necessary to learn three derivatives. 
The other three just have minus signs, as we saw for sin-'y and cos-'y. Each inverse 
function and its "cofunction" add to n/2, so their derivatives add to zero. Here are 
the six functions for quick reference, with the three new derivatives. 

function f(y) inputs y outputs x slope dxldy 

If y = cos x or y = sin x then lyJ < 1. For y = sec x and y = csc x the opposite is true; 
we must have lyl> 1. The graph of sec-ly misses all the points -1 < y < 1. 

Also, that graph misses x = n/2-where the cosine is zero. The secant of n/2 would 
be 110 (impossible). Similarly csc- ly misses x = 0, because y = csc 0 cannot be l/sin 0. 
The asterisks in the table are to remove those points x = n/2 and x = 0. 

The column of derivatives is what we need and use in calculus. 

Read-through questions 

The relation x = sin-'y means that a is the sine of 
b . Thus x is the angle whose sine is c . The number 

y lies between d and e . The angle x lies between 
f and g . (If we want the inverse to exist, there 

cannot be two angles with the same sine.) The cosine of the 
angle sin- 'y is ,/?. The derivative of x = sin - 'y is 

The relation x = cos- 'y means that y equals i . Again 
the number y lies between k and . I . This time the 
angle x lies between m and n (so that each y comes 
from only one angle x). The sum sin- ' y + cos - 'y = 0 . 
(The angles are called P , and they add to a q angle.) 
Therefore the derivative of x = cos- 'y is dxldy = r , the 
same as for sin-'y except for a s sign. 

The relation x =  tan-'y means that y =  t . The 
number y lies between u and v . The angle x lies 
between w and x . The derivative is dxldy = Y . 
Since tan- 'y + cot- 'y = z , the derivative of cot - 'y is 
the same except for a A sign. 

The relation x = sec- ly means that B . The number y 
never lies between C and D . The angle x lies between 

E and F , but never at x = G . The derivative of 
x = sec- 'y is dxldy = H . 

In 1-4, find the angles sin- 'y and cos- 'y and tan- 'y in 
radians. 

1 y = o  2 y = - 1  3 y = l  4 y = J 3  

5 We know that sin .n = 0. Why isn't .n = sin- ' O? 

6 Suppose sin x = y. Under what restriction is x = sin- ly? 

7 Sketch the graph of x = sin- ' y and locate the points with 
slope dxldy = 2. 

8 Find dxldy if x = sin-' iy.  Draw the graph. 

9 If y = cos x find a formula for sin x. First draw a right 
triangle with angle x and near side y-what are the other 
two sides? 

10 If y = sin x find a formula for tan x. First draw a right 
triangle with angle x and far side y-what are the other sides? 

11 Take the x derivative of sin- ' sin x) = x by the chain rule. 
Check that d(sin-'y)/dy = 11V+ 1-y2 gives a correct result. 

12 Take the y derivative of cos(cos-' = y by the chain rule. 
Check that d(cos- 'y)/dy = -11 ?1 -y2 gives a correct result. 

13 At y = 0 and y = 1, find the slope dx/dy of x = sin- 'y and 
x = cos-'y and x = tan-'y. 

14 At x = 0 and x = 1, find the slope dxldy of x = sin-'y and 
x = COS-'y and x = tan-'y. 
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15 True or false, with reason: 
(a) (sin- 'y)2 + (cos- ' Y ) ~= 1 
(b) sin- ' y = cos- ' y has no solution 
(c) sin- l y  is an increasing function 
(d)sin- ' is an odd function 
(e) sin - ' y and -cos- ' y have the same slope-so they are 
the same. 
(f) sin(cos x) = cos(sin x) 

16 Find tan(cos-'(sin x)) by drawing a triangle with sides 
sin x, cos x, 1. 

Compute the derivatives in 17-28 (using the letters as given). 

u = sin- 'x 18 u = tan-'2x 

z = sin - '(sin 3x) 20 z = sin- '(cos x) 

z = (sin- ' x ) ~  22 z=(sin-'x)-' 

z = d m  sin-'y 24 z=(1  +x2)tan-'x 

x = ~ e c - ' ( ~ +  26 u = sec-'(sec x2) 1) 

u = sin- ly/cos- Jm 
u = ~ i n - ' ~ + c o s - ' y +  tanply 

Draw a right triangle to show why tan- 'y + cot- ly  = 42 .  

Draw a right triangle to show why tan-'y = cot-'(lly). 

If y = tan x find sec x in terms of y. 

Draw the graphs of y = cot x and x = cot - ' y. 

Find the slope dx/dy of x = tan-'y at 

(a) y = -3 (b) x = 0 (c) x = -4 4  

34 Find a function u(t) whose slope satisfies u' + t2u' = 1. 

35 What is the second derivative d2x/dy2 of x = sin-ly? 

36 What is d'u/dy2 for u = tan- ' y? 

Find the derivatives in 37-44. 

37 y = sec 3x 38 x=sec-'2y 

39 u = sec- '(xn) 40 u=sec-'(tan x) 

41 tan y = (x - l)/(x + 1) 42 z = (sin $(sin-'x) 

43 y = sec- ',/= 44 z = sin(cos- ' x) -cos(sin- ' x) 

45 Differentiate cos- '(lly) to find the slope of sec- ' y in a 
new way. 

The domain and range of x = csc-ly are . 

Find a function u(y) such that du/dy = 4/,/1 -y2. 

Solve the differential equation du/dx = 1/(1+ 4x2). 

If dujdx = 21J1_X2 find u(1) -u(O). 

50 (recommended) With u(x) = (x - l)/(x + I), find the deriv- 
ative of tan-'u(x). This is also the derivative of . So 
the difference between the two functions is a . 
51 Find u(x) and tan-'u(x) and tan-'x at x=O and x =  m. 
Conclusion based on Problem 50: tan- ' u(x)- tan- ' x equals 
the number . 
52 Find u(x) and tan- 'u(x) and tan- 'x as x + - co. Now 
tan- 'u(x) - tan- 'x equals , Something has hap- 
pened to tan-'u(x). At what x do u(x) and tan-'u(x) change 
instantly? 
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C H A P T E R  

Integrals 


5.1 The Idea of the Integral 

This chapter is about the idea of integration, and also about the technique of integ- 
ration. We explain how it is done in principle, and then how it is done in practice. 
Integration is a problem of adding up infinitely many things, each of which is infini- 
tesimally small. Doing the addition is not recommended. The whole point of calculus 
is to offer a better way. 

The problem of integration is to find a limit of sums. The key is to work backward 
from a limit of differences (which is the derivative). We can integrate v(x) i f i t  turns 
up as the derivative of another function f(x). The integral of v = cos x is f = sin x. The 
integral of v = x is f = $x2. Basically, f(x) is an "antiderivative". The list of j ' s  will 
grow much longer (Section 5.4 is crucial). A selection is inside the cover of this book. 
If we don't find a suitable f(x), numerical integration can still give an excellent answer. 

I could go directly to the formulas for integrals, which allow you to compute areas 
under the most amazing curves. (Area is the clearest example of adding up infinitely 
many infinitely thin rectangles, so it always comes first. It is certainly not the only 
problem that integral calculus can solve.) But I am really unwilling just to write down 
formulas, and skip over all the ideas. Newton and Leibniz had an absolutely brilliant 
intuition, and there is no reason why we can't share it. 

They started with something simple. We will do the same. 

SUMS A N D  DIFFERENCES 

Integrals and derivatives can be mostly explained by working (very briefly) with sums 
and differences. Instead of functions, we have n ordinary numbers. The key idea is 
nothing more than a basic fact of algebra. In the limit as n + co,it becomes the basic 
fact of calculus. The step of "going to the limit" is the essential difference between 
algebra and calculus! It has to be taken, in order to add up infinitely many 
infinitesimals-but we start out this side of it. 

To see what happens before the limiting step, we need two sets of n numbers. The 
first set will be v, ,  v,, ..., v,, where suggests velocity. The second set of numbers 
will be f,,f,, . . . ,f,, where f recalls the idea of distance. You might think d would 
be a better symbol for distance, but that is needed for the dx and dy of calculus. 
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A first example has n = 4: 
01, 212, v3, v 4 =  L 2 ,  3 ,4  f1,f2,f3,f4= 1, 3, 6, 10. 

The relation between the v's and f's is seen in that example. When you are given 
1, 3, 6, 10, how do you produce 1, 2, 3, 4? By taking drerences. The difference 
between 10 and 6 is 4. Subtracting 6 - 3 is 3. The difference f2 -fl = 3 - 1 is v2 = 2. 
Each v is the difference between two f 's: 

vj  is the dierencefi . 
This is the discrete form of the derivative. I admit to a small difficulty at j = 1, from 
the fact that there is no fo. The first v should be fl -fo, and the natural idea is to 
agree that fo is zero. This need for a starting point will come back to haunt us (or 
help us) in calculus. 

Now look again at those same numbers-but start with v. From v = 1,2,3,4 how 
do you produce f = 1,3,6, lo? By taking sums. The first two v's add to 3, which is f2. 

The first three v's add to f3 = 6. The sum of all four v's is 1 + 2 + 3 + 4 = 10. Taking 
sums is the opposite of taking di$erences. 

That idea from algebra is the key to calculus. The sum& involves all the numbers 
v, + v2 + + vj. The difference vj involves only the two numbers f i  - f i  - . The fact 
that one reverses the other is the "Fundamental Theorem." Calculus will change sums 
to integrals and differences to derivatives-but why not let the key idea come through 
now? 

The differences of the f's add up to f,-fo . All f's in between are canceled, leaving 
only the last fn and the starting foe The sum "telescopes": 

01 + U2 + 03 + ... + vn  = (fl -fo) + (f2 -f1) + (f3 -f2) + ... + (fn -fn- 1)-

The number fl is canceled by -fl. Similarly -f2 cancels f2 and -f, cancels f3. 

Eventuallyfn and -fo are left. When fo is zero, the sum is the finalf,. 
That completes the algebra. We add the v's by finding the f 's. 

Question How do you add the odd numbers 1 + 3 + 5 + -..+ 99 (the v's)? 
Answer They are the differences between 0, 1,4,9, . . . . These f's are squares. By the 
Fundamental Theorem, the sum of 50 odd numbers is (50)2. 

The tricky part is to discover the right f's! Their differences must produce the v's. 
In calculus, the tricky part is to find the right f(x). Its derivative must produce v(x).  
It is remarkable how often f can be found-more often for integrals than for sums. 
Our next step is to understand how the integral is a limit of sums. 

SUMS APPROACH INTEGRALS 

Suppose you start a successful company. The rate of income is increasing. After 
x years, the income per year is &million dollars. In the first four years you reach 
f i,$, $,and $million dollars. Those numbers are displayed in a bar graph 
(Figure S.la, for investors). I realize that most start-up companies make losses, but 
your company is an exception. If the example is too good to be true, please keep 
reading. 
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* Year 

Fig. 5.1 Total income = total area of rectangles = 6.15. 

The graph shows four rectangles, of heights ,,h, fi,fi,fi.Since the base of 
each rectangle is one year, those numbers are also the areas of the rectangles. One 
investor, possibly weak in arithmetic, asks a simple question: What is the total income 
for all four years? There are two ways to answer, and I will give both. 

The first answer is f i+ fi+ f i+ $. Addition gives 6.15 million dollars. 
Figure 5.lb shows this total-which is reached at year 4. This is exactly like velocities 
and distances, but now v is the incomeper year andf is the totalincome.Algebraically,
fi is still v l  + + v j .  

The second answer comes from geometry. The total income is the total area of the 
rectangles. We are emphasizing the correspondence between athiition and area. That 
point may seem obvious, but it becomes important when a second investor (smarter 
than the first) asks a harder question. 

Here is the problem. The incomes as stated are false. The company did not make 
a million dollars the first year. After three months, when x was 114, the rate of income 
was only & = 112. The bar graph showed f i= 1 for the whole year, but that was 
an overstatement. The income in three months was not more than 112 times 114, the 

. rate multiplied by the time. 
All other quarters and years were also overstated. Figure 5.2a is closer to reality, 

with 4 years divided into 16 quarters. It gives a new estimate for total income. 
Again there are two ways to find the total. We add a+ + + ,/16/4,

remembering to multiply them all by 114 (because each rate applies to 114 year). 
This is also the area of the 16 rectangles. The area approach is better because the 114 
is automatic. Each rectangle has base 114, so that factor enters each area. The total 
area is now 5.56 million dollars, closer to the truth. 

You see what is coming. The next step divides time into weeks. After one week the 
rate f i is only J1/52. That is the height of the first rectangle-its base is Ax = 
1/52. There is a rectangle for every week. Then a hard-working investor divides time 
into days, and the base of each rectangle is Ax = 11365. At that point there are 
4 x 365 = 1460 rectangles, or 1461 because of leap year, with a total area below 5) 
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Total income I 

= area of rectangles I 
1 = (sum of heights) I 

I 

I 
0 I 

2.04 -- I 0 
I . 
I . I 

0 I 
.768 -- 0 I . I . 

I 
; " " " ,  I Year 

Fig. 5.2 Income = sum of areas (not heights) 

million dollars. The calculation is elementary but depressing-adding up thousands 
of square roots, each multiplied by A x  from the base. There has to be a better way. 

The better way, in fact the best way, is calculus. The whole idea is to allow for 
continuous change. The geometry problem is to find the area under the square root 
curve. That question cannot be answered by arithmetic, because it involves a limit. 
The rectangles have base A x  and heights &, ,,/%, ... ,d. There are 4/Ax 
rectangles-more and more terms from thinner and thinner rectangles. The area is 
the limit of the sum as A x  + 0. 

This limiting area is the "integral." We are looking for a number below 54. 

Algebra (area of n rectangles): Compute v, + . a -  + v, by finding f's. 
Key idea: If vj =fj - f j ,  then the sum isf,  - f,. 

Calculus (area under curve): Compute the limit of Ax[v(Ax)  + v(2Ax) + ...I. 
Key idea: If v(x) = dfldx then area = integral to be explained next. 

- - 

5.1 EXERCISES 

Read-through questions 

The problem of summation is to add v ,  + ... + v,. It is solved 
if we find f ' s  such that vj  = a . Then v, + ... + v, equals 

b . The cancellation in ( f l  - f,) + ( f2 - f , )  + ... + 
(f, -,f, - , ) leaves only c . Taking sums is the d of 
taking differences. 

The differences between 0, 1,4 ,  9 are v , ,  v,, o, = e . 
For jj = j the difference between f l ,  and f ,  is v,, = f . 
From this pattern 1 + 3 + 5 + ... + 19 equals g . 

For functions, finding the integral is the reverse of h . 
If the derivative of f ( x )  is v(x),  then the i of v(x) is f (x) .  
If V ( X )  = l o x  then f ( x )  = i . This is the k of a triangle 
with base x and height lox. 

Integrals begin with sums. The triangle under v = l o x  out 
to x = 4 has area I . It is approximated by four rectangles 
of heights 10, 20, 30, 40 and area m . It is better approxi- 
mated by eight rectangles of heights n and area o . 
For n rectangles covering the triangle the area is the sum of 

P . As n -+ cc this sum should approach the number 
CI . That is the integral of v = lOxfrom 0 to 4. 
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Problems 1-6 are about sumsfj and differences vj. 

1 With v = 1, 2, 4, 8, the formula for vj  is (not 2j). 
Find f,,f2 ,  f,, f, starting from fo =0. What is f,? 

2 The same v = 1,2,4,8, . . . are the differences between 
f =  1, 2, 4, 8, 16, .... Now fo = 1 and f j =  2j. (a) Check that 
25-24equal~  v,. (b) What is 1 + 2 + 4 + 8 +  l6? 

3 The differences between f =  1, 112, 114, 118 are v = 

-112, -114, -118. These negative v's do not add up to these 
positive f's. Verify that u,  + 11, + v, =f, -fo is still true. 

4 Any constant C can be added to the antiderivative f(x) 
because the of a constant is zero. Any C can be 
added to fo, f,, . . . because the between the f's is 
not changed. 

5 Show thath = rj/(r - 1) hash -f,- = rj-'. Therefore the 
geometric series 1 + r + .-.+ r j- '  adds up to 
(remember to subtract f,). 

6 The sums h = (rj- l)/(r- 1) also have f j  -fj-, = rj- '. 

14 The optimist and pessimist arrive at the same limit as 
years are divided into weeks, days, hours, seconds. Draw the 
& curve between the rectangles to show why the pessimist 
is always too low and the optimist is too high. 

15 (Important) Let f(x) be the area under the f i curve, above 
the interval from 0 to x. The area to x + Ax is f(x + Ax). The 
extra area is Af = . This is almost a rectangle with 
base and height &.So Af/Ax is close to . 
As Ax +0 we suspect that dfldx = . 

16 Draw the f i curve from x =0 to 4 and put triangles 
below to prove that the area under it is more than 5. Look 
left and right from the point where f i = 1. 

Problems 17-22 are about a company whose expense rate 
v(x) = 6 -x is decreasing. 

17 The expenses drop to zero at x = . The total 
expense during those years equals . This is the area 

--of 
Now fo = . Therefore 1 + r + ...+ rj- '  adds up to 
f , . T h e s u m l + r + . . . + r n e q u a l s  . 

7 Suppose v(x) = 3 for x < 1 and v(x) = 7 for x > 1. Find the 
area f(x) from 0 to x, under the graph of v(x). (Two pieces.) 

8 If v = 1, -2, 3, -4, ..., write down the f 's starting from 
fo = 0. Find formulas for v j  andfj when j is odd and j is even. 

Problems 9-16 are about the company earning & per year. 

9 When time is divided into weeks there are 4 x 52 = 208 
rectangles. Write down the first area, the 208th area, and the 
jth area. 

10 How do you know that the sum over 208 weeks is smaller 
than the sum over 16 quarters? 

11 A pessimist would use & at the beginning of each time 
period as the income rate for that period. Redraw Figure 5.1 
(both parts) using heights 4,,,h,,,b, 4.How much lower . . 
is the estimate of total income? 

12 The same pessimist would redraw Figure 5.2 with heights 
0, m,.... What is the height of the last rectangle? How 
much does this change reduce the total rectangular area 5.56? 

13 At every step from years to weeks to days to hours, the 
pessimist's area goes and the optimist's area goes 

. The difference between them is the area of the last 

18 The rectangles of heights 6, 5, 4, 3, 2, 1 give a total 
estimated expense of . Draw them enclosing the 
triangle to show why this total is too high. 

19 How many rectangles (enclosing the triangle) would you 
need before their areas are within 1 of the correct triangular 
area? 

20 The accountant uses 2-year intervals and computes v = 

5, 3, 1 at the midpoints (the odd-numbered years). What is 
her estimate, how accurate is it, and why? 

21 What is the area f(x) under the line v(x) = 6 -x above the 
interval from 2 to x? What is the derivative of this f(x)? 

22 What is the area f(x) under the line v(x) = 6 -x above the 
interval from x to 6? What is the derivative of this f(x)? 

23 With Ax = 113, find the area of the three rectangles that 
enclose the graph of v(x) = x2. 

24 Draw graphs of v = f i and v = x2 from 0 to 1. Which 
areas add to l? The same is true for 11 =x3 and v = . 

25 From x to x +Ax, the area under v =x2 is AJ: This 
is almost a rectangle with base Ax and height . So 
Af1A.u is close to . In the limit we find dfldx = x2 
and f(x) = . 

26 Compute the area of 208 rectangles under v(x) = & from 
x = O t o x = 4 .  
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5.2 Antiderivatives 


The symbol was invented by Leibniz to represent the integral. It is a stretched-out 
S ,  from the Latin word for sum. This symbol is a powerful reminder of the whole 
construction: Sum approaches integral, S approaches I, and rectangular area 
approaches curved area: 

curved area = l v(x) dx = 5 f i  dx. (1) 
The rectangles of base Ax lead to this limit-the integral of &.The "dx" indicates 
that Ax approaches zero. The heights vj of the rectangles are the heights v(x) of the 
curve. The sum of vj  times Ax approaches "the integral of v of x dx." You can imagine 
an infinitely thin rectangle above every point, instead of ordinary rectangles above 
special points. 

We now find the area under the square root curve. The "limits of integration" are 
0 and 4. The lower limit is x = 0, where the area begins. (The start could be any point 
x = a.) The upper limit is x = 4, since we stop after four years. (The Jinish could be 
any point x = b.) The area of the rectangles is a sum of base Ax times heights &. 
The curved area is the limit of this sum. That l i d  is the integral of &porn 0 to 4: 

The outstanding problem of integral calculus is still to be solved. What is this limiting 
area? We have a symbol for the answer, involving I and & and dx-but we don't 
have a number. 

THE ANTIDERIVATIVE 

I wish I knew who discovered the area under the graph of &.It may have been 
Newton. The answer was available earlier, but the key idea was shared by Newton 
and Leibniz. They understood the parallels between sums and integrals, and between 
differences and derivatives. I can give the answer, by following that analogy. I can't 
give the proof (yet)-it is the Fundamental Theorem of Calculus. 

In algebra the differencef;. -f;.-, is vj. When we add, the sum of the v's isf. -fo. 
In calculus the derivative of f(x) is v(x). When we integrate, the area under the v(x) 
curve is f(x) minus f(0). Our problem asks for the area out to x = 4: 

50 (Discrete vs. continuous, rectangles vs. curved areas, addition vs. 
integration) laAe integral of 4 x )  ib the wnence iir fix):I I 


I rfdfldx = fi then area = dx =f(4) -fo. (3) 1 
What is f(x)? Instead of the derivative of &,we need its "antiderivative." We have 
to find a function f(x) whose derivative is &.It is the opposite of Chapters 2-4, and 
requires us to work backwards. The derivative of xn is nxn-'-now we need the 
antiderivative. The quick formula is f(x) = xn+'/(n+ 1)-we aim to understand it. 

Solution Since the derivative lowers the exponent, the antiderivative raises it. We 
go from x'I2 to x3I2. But then the derivative is (3/2)x1I2. It contains an unwanted 
factor 312. To cancel that factor, put 213 into the antiderivative: 

f(x) = 3x3I2has the required derivative V(X)= x'I2 = &. 
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Fig. 5.3 The integral of v(x)  = ,,& is the exact area 1613 under the curve. 

There you see the key to integrals: Work backward from derivatives (and adjust). 
Now comes a number-the exact area. At x = 4 we find x3I2 = 8. Multiply by 213 

to get 1613. Then subtract f(0) = 0: 

The total income over four years is 1613= 53 million dollars. This is f(4) -f(0). The 
sum from thousands of rectangles was slowly approaching this exact area 5f. 

Other areas The income in the first year, at x = 1, is = 3 million dollars. 
(The false income was 1 million dollars.) The total income after x years is 3x3I2, 
which is the antiderivative f(x). The square root curve covers 213 of the overall rectangle 
it sits in. The rectangle goes out to x and up to &, with area x3I2, and 213 of that 
rectangle is below the curve. (113 is above.) 

Other antiderivatives The derivative of x5 is 5x4. Therefore the antiderivative of x4 
is x5/5. Divide by 5 (or n + 1) to cancel the 5 (or n + 1) from the derivative. And don't 
allow n + 1 = 0: 

The derivative v(x) = xn has the antiderivative f(x) = xn+' / ( n+ 1). 

EXAMPLE 1 The antiderivative of x2 is ix3. This is the area under the parabola 
v(x) = x2. The area out to x = 1 is - f (0)3, or 113. 

Remark on & and x2 The 213 from & and the 113 from x2 add to 1. Those are 
the areas below and above the & curve, in the corner of Figure 5.3. If you turn the 
curve by 90°, it becomes the parabola. The functions y = & and x = y2 are inverses! 
The areas for these inverse functions add to a square of area 1. 

AREA UNDER A STRAIGHT LINE 

You already know the area of a triangle. The region is below the diagonal line v = x 
in Figure 5.4. The base is 4, the height is 4, and the area is g4)(4) = 8. Integration is 
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Exact area = 8 
Area under v (x) = x 

u(x) = S 

Fig. 5.4 Triangular area 8 as the limit of rectangular areas 10, 9, 83, .... 

not required! But if you allow calculus to repeat that answer, and build up the integral 
f(x) = +x2 as the limiting area of many rectangles, you will have the beginning of 
something important. 

The four rectangles have area 1 + 2 + 3 + 4 = 10. That is greater than 8, because 
the triangle is inside. 10 is a first approximation to the triangular area 8, and to 
improve it we need more rectangles. 

The next rectangles will be thinner, of width Ax = 112 instead of the original 
Ax = 1. There will be eight rectangles instead of four. They extend above the line, 
so the answer is still too high. The new heights are 112, 1, 312, 2, 512, 3, 712, 4. The 
total area in Figure 5.4b is the sum of the base Ax = 112 times those heights: 

area = $($ + 1 + $ + 2 + + 4) = 9 (which is closer to 8). 

Question What is the area of 16 rectangles? Their heights are $, 3, . . . ,4. 
Answer With base A x = $  the area is $($+++ +4)=8$ .  

The effort of doing the addition is increasing. A formula for the sums is needed, and 
will be established soon. (The next answer would be 84.) But more important than 
the formula is the idea. We are carrying out a Iimiting process, one step at  a time. The 
area of the rectangles is approaching the area of the triangle, as Ax decreases. The 
same limiting process will apply to other areas, in which the region is much more 
complicated. Therefore we pause to comment on what is important. 

Area Under a Curve 
What requirements are imposed on those thinner and thinner rectangles? It is not 

essential that they all have the same width. And it is not required that they cover the 
triangle completely. The rectangles could lie below the curve. The limiting answer 
will still be 8, even if the widths Ax are unequal and the rectangles fit inside the 
triangle or across it. We only impose two rules: 

1. The largest width Ax,,, must approach zero. 
2. The top of each rectangle must touch or cross the curve. 

The area under the graph is defined to be the limit of these rectangular areas, if that 
limit exists. For the straight line, the limit does exist and equals 8. That limit is 
independent of the particular widths and heights-as we absolutely insist it should 
be. 

Section 5.5 allows any continuous v(x). The question will be the same-Does the 
limit exist? The answer will be the same- Yes. That limit will be the integral of v(x), 
and it will be the area under the curve. It will be f(x). 



EXAMPLE 2 The triangular area from 0 to x is f(base)(height) = f(x)(x). That is 
f(x) = f x2. Its derivative is v(x) = x. But notice that fx2 + 1 has the same derivative. 
So does f = f x2 + C, for any constant C. There is a "constant of integration" in f(x), 
which is wiped out in its derivative v(x). 

EXAMPLE 3 Suppose the velocity is decreasing: v(x) = 4 -x. If we sample v at x = 
1,2,3,4, the rectangles lie under the graph. Because v is decreasing, the right end of 
each interval gives v,,. Then the rectangular area 3 + 2 + 1+ 0 = 6 is less than the 
exact area 8. The rectangles are inside the triangle, and eight rectangles with base 4 
come closer: 

rectangular area =f(3f + 3 + + f +0) = 7. 

Sixteen rectangles would have area 7f. We repeat that the rectangles need not have 
the same widths Ax, but it makes these calculations easier. 

What is the area out to an arbitrary point (like x = 3 or x = l)? We could insert 
rectangles, but the Fundamental Theorem offers a faster way. Any antiderivative of 
4 -x will give the area. We look for a function whose derivative is 4 -x. The derivative 
of 4x is 4, the derivative of fx2 is x, so work backward: 

to achieve dfldx = 4 - x choose f(x) = 4x -fx2. 

Calculus skips past the rectangles and computes f(3) = 7f. The area between x = 1 
and x = 3 is the dference 77:- 3f = 4. In Figure 5.5, this is the area of the trapezoid. 

The f-curve flattens out when the v-curve touches zero. No new area is being added. 

1 2 3 4 1 2 3 4 

Fig. 5.5 The area is Af = 74 - 34 =4. Since v(x) decreases,f (x )  bends down. 

INDEFINITE INTEGRALS AND DEFINITE INTEGRALS 

We have to distinguish two different kinds of integrals. They both use the antideriva- 
tive f(x). The definite one involves the limits 0 and 4, the indefinite one doesn't: 

The indefinite integral is a function f(x) = 4x - ix2 .  

The definite integral from x = 0 to x = 4 is the number f(4) -f(0). 

The definite integral is definitely 8. But the indefinite integral is not necessarily 
4x -$x2. We can change f(x) by a constant without changing its derivative (since the 
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derivative of a constant is zero). The following functions are also antiderivatives: 

The first two are particular examples. The last is the general case. The constant C 
can be anything (including zero), to give all functions with the required derivative. 
The theory of calculus will show that there are no others. The indefinite integral is 
the most general antiderivative (with no limits): 

indefinite integral f(x)=J v(x) dx = 4x - $ x 2+ C. (5) 

By contrast, the definite integral is a number. It contains no arbitrary constant C. 
More that that, it contains no variable x. The definite integral is determined by the 
function v(x) and the limits of integration (also known as the endpoints).It is the area 
under the graph between those endpoints. 

To see the relation of indefinite to definite, answer this question: What is the definite 
integral between x = 1 and x = 3? The indefinite integral gives f(3) = 74 + C and 
f(1) = 3f + C. To find the area between the limits, subtractf at one limit from f at the 
other limit: 

The constant cancels itself! The definite integral is the diflerence between the values 
of the indefinite integral. C disappears in the subtraction. 

The difference f(3) -f( l )  is like fn -f,. The sum of v j  from 1 to n has become "the 
integral of v(x) from 1 to 3." Section 5.3 computes other areas from sums, and 5.4 
computes many more from antiderivatives. Then we come back to the definite integral 
and the Fundamental Theorem: 

5.2 EXERCISES 

Read-through questions Find an antiderivative f(x) for v(x) in 1-14. Then compute the 
definite integral 1; u(x) dx =f(1) -f(0).Integration yields the a under a curve y =v(x). It starts 

from rectangles with base b and heights v(x) and areas 
. As Ax -+ 0 the area v,Ax + + v,Ax becomes the 1 5x4 +4x5 2 x + 12x2 

d of ~ ( x ) .  The symbol for the indefinite integral of v(x) is 3 I/& (or x -  l") 4 (&)3 (or x3I2) 

The problem of integration is solved if we find f(x) such 7 2 sin +sin zx 8 sec2x+ 1 
that f . Then f is the g of v, and S:v(x) dx equals 

h minus i .The limits of integration are i . This COS l o  sin (by experiment) 
is a k integral, which is a I and not a function f(x). 11 sin cos 12 sin2x cos x 

The example v(x) =x has f(x) = m . It also has f(x) = 13 0 (find all f )  14 - 1  (find all f )  

" * The area under from to is z.The 'Onstant 15 If dfldx = v(x) then the definite integral of v(x) from a to 
is canceled in computing the difference P minus q . is . If f,-fj-, = uj  then the definite sum of 
If V(X) =x8 then f(x) = r . v3 + .- -+ u7  is . 

The sum v ,  + + v, =f, -fo leads to the Fundamental 16 The areas include a factor Ax, the base of each rectangle. 
Theorem 1: v(x) dx = s . The t integral is f(x) and So the sum of v's is multiplied by to approach the 
the LJ integral is f(b) -f(a). Finding the v under the integral. The difference of f's is divided by to 
v-graph is the opposite of finding the w of thef-graph. approach the derivative. 



5.3 Summation versus Integration 

17 The areas of 4, 8, and 16 rectangles were 10, 9, and 83, 
containing the triangle out to x = 4. Find a formula for the 
area AN of N rectangles and test it for N = 3 and N = 6. 

18 Draw four rectangles with base 1 below the y = x line, and 
find the total area. What is the area with N rectangles? 

p v\; / 
19 Draw y = sin x from 0 to 11.. Three rectangles (base 11.13) 0 10 

and six rectangles (base 11.16) contain an arch of the sine func- 
tion. Find the areas and guess the limit. 26 Draw y = v(x) so that the area Ax) increases until x = 1, 

stays constant to x = 2, and decreases to f(3) = 1. 
20 Draw an example where three lower rectangles under a 
curve (heights m,, m2, m3) have less area than two rectangles. 27 Describe the indefinite integrals of vl and u2. Do the areas 

increase? Increase then decrease? . . . 
21 Draw y = l/x2 for 0 < x < 1 with two rectangles under it 
(base 112). What is their area, and what is the area for four 
rectangles? Guess the limit. 

22 Repeat Problem 21 for y = llx. 

23 (with calculator) For v(x) = I/& take enough rectangles 
over 0 < x < 1 to convince any reasonable professor that the 
area is 2. Find Ax) and verify that f(1) - f(0) = 2. 

24 Find the area under the parabola v = x2 from x = 0 to 
x = 4. Relate it to the area 1613 below &. 
25 For vl and v2 in the figure estimate the areasf(2) and f(4). 
Start with f(0) = 0. 

28 For v4(x) find the areaf(4) - f(1). Draw f4(x). 

29 The graph of B(t) shows the birth rate: births per unit time 
at time t. D(t) is the death rate. In what way do these numbers 
appear on the graph? 

1. The change in population from t = 0 to t = 10. 
2. The time T when the population was largest. 
3. The time t* when the population increased fastest. 

30 Draw the graph of a function y4(x) whose area function 
is v4(x). 

31 If v2(x) is an antiderivative of y2(x), draw y2(x). 

32 Suppose u(x) increases from 40) = 0 to v(3) = 4. The area 
under y = v(x) plus the area on the left side of x = v-'(y) 
equals . 
33 True or false, whenflx) is an antiderivative of u(x). 

(a) 2f(x) is an antiderivative of 2v(x) (try examples) 
(b) f(2x) is an antiderivative of v(2x) 
(c) f(x) + 1 is an antiderivative of v(x) + 1 
(d) f(x + 1) is an antiderivative of v(x + I). 
(e) ( f ( ~ ) ) ~  is an antiderivative of ( 4 ~ ) ) ~ .  

5.3 Summation versus Integration - 
This section does integration the hard way. We find explicit formulas for f, = 
u, + + u, . From areas of rectangles, the limits produce the area f(x) under a curve. 
According to the Fundamental Theorem, dfldx should return us to v(x)-and we 
verify in each case that it does. 

May I recall that there is sometimes an easier way? If we can find an f(x) whose 
derivative is u(x), then the integral of u is$ Sums and limits are not required, when f 
is spotted directly. The next section, which explains how to look for f(x), will displace 
this one. (If we can't find an antiderivative we fall back on summation.) Given a 
successful f, adding any constant produces another f-since the derivative of the 
constant is zero. The right constant achieves f(0) = 0, with no extra effort. 
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This section constructs f(x) from sums. The next section searches for antiderivatives. 

THE SIGMA NOTATION 

In a section about sums, there has to be a decent way to express them. Consider 
l 2  + 2' + 32+ 42.The individual terms are v j  =j2.  Their sum can be written in sum-
mation notation, using the capital Greek letter C (pronounced sigma): 

4 

1' + 2' + 32+ 42 is written x j2.  
j=1 

Spoken aloud, that becomes "the sum of j 2  from j = 1 to 4." It equals 30. The limits 
on j (written below and above C) indicate where to start and stop: 

The k at the end of ( 1 )  makes an additional point. There is nothing special about the 
letter j. That is a "dummy variable," no better and no worse than k (or i). Dummy 
variables are only on one side (the side with C),and they have no effect on the sum. 
The upper limit n is on both sides. Here are six sums: 

1 1 1'f 7= I + - + - + ... = 2 [infinite series] 
k = O  2 2 4 

The numbers 1 and n or 1 and 4 (or 0 and K )  are the lower limit and upper limit. 
The dummy variable i or j or k is the index of summation. I hope it seems reasonable 
that the infinite series 1 + 3+ $ + adds to 2. We will come back to it in Chapter 10.t 

A sum like Z:=, 6 looks meaningless, but it is actually 6 + 6 + ... + 6 = 6n. 
It follows the rules. In fact C:=, j 2  is not meaningless either. Every term is j 2  and 
by the same rules. that sum is 4j2. However the i was probably intended to be j. 
Then the sum is 1 + 4 + 9 + 16 = 30. 

Question What happens to these sums when the upper limits are changed to n? 
Answer The sum depends on the stopping point n. A formula is required (when 
possible). Integrals stop at .u, sums stop at n, and we now look for special cases when 
.f(.u) or *f,can be found. 

A SPECIAL SUMMATION FORMULA 

How do you add the first 100 whole numbers? The problem is to compute 

tZeno the Greek believed it was impossible to get anywhere, since he would only go halfway 
and then half again and half again. Infinite series would have changed his whole life. 
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If you were Gauss, you would see the answer at once. (He solved this problem at a 
ridiculous age, which gave his friends the idea of getting him into another class.) His 
solution was to combine 1 + 100, and 2 + 99, and 3 + 98, always adding to 101. There 
are fifty of those combinations. Thus the sum is (50)(101) = 5050. 

The sum from 1 to n uses the same idea. The first and last terms add to n + 1. The 
next terms n - 1 and 2 also add to n + 1. If n is even (as 100 was) then there are i n  
parts. Therefore the sum is i n  times n + 1: 

The important term is i n 2 ,  but the exact sum is i n 2  + i n .  
What happens if n is an odd number (like n = 99)? Formula (2) remains true. The 

combinations 1 + 99 and 2 + 98 still add to n + 1 = 100. There are 399) = 493 such 
pairs, because the middle term (which is 50) has nothing to combine with. Thus 
1 + 2 + + 99 equals 493 times 100, or 4950. 

Remark That sum had to be 4950, because it is 5050 minus 100. The sum up to 99 
equals the sum up to 100 with the last term removed. Our key formula fn -fn- = v, 
has turned up again! 

EXAMPLE Find the sum 101 + 102+ ... + 200 of the second hundred numbers. 

First solution This is the sum from 1 to 200 minus the sum from 1 to 100: 

The middle sum is $(200)(201) and the last is i(100)(101). Their difference is 15050. 
Note! I left out '7 = "in the limits. It is there, but not written. 

Second solution The answer 15050 is exactly the sum of the first hundred numbers 
(which was 5050) plus an additional 10000. Believing that a number like 10000 can 
never turn up by accident, we look for a reason. It is found through changing the 
limits of summation: 

200 

j is the same sum as (k + 100). 
j= 101 k = l  

This is important, to be able to shift limits around. Often the lower limit is moved 
to zero or one, for convenience. Both sums have 100 terms (that doesn't change). The 
dummy variable j is replaced by another dummy variable k. They are related by 
j = k + 100 or equivalently by k =j - 100. 

The variable must change everywhere-in the lower limit and the upper limit as 
well as inside the sum. If j starts at 101, then k =j - 100 starts at 1. If j ends at 200, 
k ends at 100. If j appears in the sum, it is replaced by k + 100 (and if j2 appeared it 
would become (k + 

From equation (4) you see why the answer is 15050. The sum 1 + 2 + ... + 100 is 
5050 as before. 100 is added to each of those 100 terms. That gives 10000. 

EXAMPLES OF CHANGING THE VARIABLE (and the limits) 

3 4

1 2' equals 1 2 ' '  (here i =j - 1). Both sums are 1 + 2 + 4 + 8 
i = 0 j= 1 

.. -

1 viequals uj+,  (here i = j + 3  a n d j = i - 3 ) .  Bothsums are v 3 + - . + v n .  
i = 3  j = O  



Why change n to n - 3? Because the upper limit is i = n. So j + 3 = n and j = n - 3. 
A final step is possible, and you will often see it. The new variable j can be changed 

back to i. Dummy variables have no meaning of their own, but at first the result 
looks surprising: 

5 6 

C 2' equals 2 2'- ' equals 2 zi- '. 
i = 0 j= 1 i =  1 

With practice you might do that in one step, skipping the temporary letter j. Every 
i on the left becomes i - 1 on the right. Then i = 0, . . . , 5  changes to i = 1, . . . ,6 .  (At 
first two steps are safer.) This may seem a minor point, but soon we will be changing 
the limits on integrals instead of sums. Integration is parallel to summation, and it 
is better to see a "change of variable" here first. 

Note about 1 + 2 + .-. + n. The good thing is that Gauss found the sum f n(n + 1). 
The bad thing is that his method looked too much like a trick. I would like to show 
how this fits the fundamental rule connecting sums and differences: 

Gauss says thatf, is f n(n + 1). Reducing n by 1, his formula for&-, is f (n - 1)n. The 
dference f, - f,-, should be the last term n in the sum: 

This is the one term v, = n that is included inf ,  but not inf,-I . 
There is a deeper point here. For any sum f,, there are two things to check. The 

f's must begin correctly and they must change correctly. The underlying idea is 
mathematical induction: Assume the statement is true below n. Prove it for n. 

Goat To prove that 1 + 2 + --. + n = f n(n + 1). This is the guess f,. 

Proof by induction: Check fl (it equals 1). Check f, -f, - (it equals n). 

For n = 1 the answer fn(n + 1) = f 1 2 is correct. For n = 2 this formula f 2 3 
agrees with 1 + 2. But that separate test is not necessary! Iffl is right, and i f  the 
changef, -f,-, is right for every n, thenf, must be right. Equation (6) was the key 
test, to show that the change in f's agrees with v. 

That is the logic behind mathematical induction, but I am not happy with most 
of the exercises that use it. There is absolutely no excitement. The answer is given by 
some higher power (like Gauss), and it is proved correct by some lower power (like 
us). It is much better when we lower powers find the answer for ourse1ves.t Therefore 
I will try to do that for the second problem, which is the sum of squares. 

THE SUM OF j2 AND THE INTEGRAL OF x2 

An important calculation comes next. It is the area in Figure 5.6. One region is made 
up of rectangles, so its area is a sum of n pieces. The other region lies under the 
parabola v = x2. It cannot be divided into rectangles, and calculus is needed. 

The first problem is to find f, = 1' + 22 + 32 + + n2. This is a sum of squares, 
with fl = 1 and f2 = 5 and f, = 14. The goal is to find the pattern in that sequence. 
By trying to guessf, we are copying what will soon be done for integrals. 

Calculus looks for an f(x) whose derivative is v(x). There f is an antiderivative (or 

+The goal of real teaching is for the student to find the answer. And also the problem. 
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1 2 3 = n  A x  1 2 3 = n A x  I 2 3 
Fig. 5.6 Rectangles enclosing v =x2 have area (4n3+in2+ AX)^ z AX)^ =3x3. 

an integral). Algebra looks for f,'s whose differences produce v,. Here f, could be 
called an antidiflerence (better to call it a sum). 

The best start is a good guess. Copying directly from integrals, we might try 
fn = fn3. To test if it is right, check whether f,-f n - I  produces on = n2: 

We see n2, but also -n + f. The guess fn3  needs correction terms. To cancel f in the 
difference, I subtract f n  from the sum. To put back n in the difference, I add 
1 + 2 + .-.+ n =qn(n + 1) to the sum. The new guess (which should be right) is 

To check this answer, verify first that fl = 1. Also f2 = 5 and f3 = 14. To be certain, 
verify that fn -f,-, = n2. For calculus the important term is in3: 

n 1 1 1 
The sum j2 of the first n squares is - n3 plus corrections - n2 and - n. 

j =  1 3 2 6 

In practice fn3  is an excellent estimate. The sum of the first 100 squares is approxi- 
mately f(100)3, or a third of a million. If we need the exact answer, equation (7) is 
available: the sum is 338,350. Many applications (example: the number of steps to 
solve 100 linear equations) can settle for in3.  

What is fascinating is the contrast with calculus. Calculus has no correction terms! 
They get washed away in the limit of thin rectangles. When the sum is replaced by 
the integral (the area), we get an absolutely clean answer: 

The integral of v = x2from x = 0 to x = n is exactly in3.  

The area under the parabola, out to the point x = 100, is precisely a third of a million. 
We have to explain why, with many rectangles. 

The idea is to approach an infinite number of infinitely thin rectangles. A hundred 
rectangles gave an area of 338,350. Now take a thousand rectangles. Their heights 
are (&)2, (&)2, ... because the curve is v = x2. The base of every rectangle is 
Ax =&, and we add heights times base: 

area of rectangles = (;J($) ($&) (FJ(k).+ + * m e  + 

Factor out (&)3. What you have left is l 2  + 22 + + 10002, which fits the sum of 
squares formula. The exact area of the thousand rectangles is 333,833.5. I could try 
to guess ten thousand rectangles but I won't. 

Main point: The area is approaching 333,333.333. ... But the calculations are getting 
worse. It is time for algebra-which means that we keep "Ax" and avoid numbers. 
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The interval of length 100 is divided into n pieces of length Ax. (Thus n = 100/Ax.) 
The jth rectangle meets the curve v = x2, so its height is AX)^. Its base is Ax, and 
we add areas: 

n 

area = (AX)~(AX)+ (2Ax)'(Ax) + ... + (nAx)'(Ax) = (jAx)'(Ax).
j= 1 

(8) 

100
Factor out AX)^. leaving a sum of n squares. The area is (Ax)3 timesf., and n = -: 

Ax 

This equation shows what is happening. The leading term is a third of a million, 
as predicted. The other terms are approaching zero! They contain Ax, and as the 
rectangles get thinner they disappear. They only account for the small corners of 
rectangles that lie above the curve. The vanishing of those corners will eventually be 
proved for any continuous functions-the area from the correction terms goes to 
zero-but here in equation (9) you see it explicitly. 

The area under the curve came from the central idea of integration: 100/Ax rectan- 
gles of width Ax approach the limiting area = f The rectangular area is Z v j  Ax. 
The exact area is j V(X)dx. In the limit Z becomes j and v j  becomes v(x) and AX 
becomes dx. 

That completes the calculation for a parabola. It used the formula for a sum of 
squares, which was special. But the underlying idea is much more general. The limit 
of the sums agrees with the antiderivative: The antiderivative of v(x) = x2 isf(x) = i x3 .  
According to the Fundamental Theorem, the area under v(x) is f(x): 

That Fundamental Theorem is not yet proved! I mean it is not proved by us. Whether 
Leibniz or Newton managed to prove it, I am not quite sure. But it can be done. 
Starting from sums of differences, the difficulty is that we have too many limits at 
once. The sums of cjAx are approaching the integral. The differences Af/Ax approach 
the derivative. A real proof has to separate those steps, and Section 5.7 will do it. 

Proved or not, you are seeing the main point. What was true for the numbersf, 
and cj is true in the limit for u(x) and.f(x). Now v(s) can vary continuously, but it is 
still the slope of f'(s).The reverse of slope is area. 

(1 + 2 + 3 + 412= 13 + 23 + 33 + 43 
Proof without words by Roger Nelsen (Matlzenmtics 

Finally we review the area under r; = x. The sum of 1 + 2 + + n is i n 2  + i n .  This 
gives the area of n = 4/Ax rectangles, going out to x = 4. The heights are jAx, the 
bases are Ax, and we add areas: 
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With A x  = 1 the area is 1 + 2 + 3 + 4 = 10. With eight rectangles and Ax = f ,  the 
area was 8 + 2Ax = 9. Sixteen rectangles of width i brought the correction 2Ax down 
to f .  The exact area is 8.  The error is proportional to Ax .  

Important note There you see a question in applied mathematics. If there is an error, 
what size is it? How does it behave as Ax + O? The A x  term disappears in the limit, 
and   AX)^ disappears faster. But to get an error of we need eight million 
rectangles: 

2A x = 2 4/8,000,000 = 10 - 6. 

That is horrifying! The numbers 10,9, 83, 8 i ,  . . . seem to approach the area 8 in a 
satisfactory way, but the convergence is much too slow. It takes twice as much work 
to get one more binary digit in the answer-which is absolutely unacceptable. Some- 
how the A x  term must be removed. If the correction is   AX)^ instead of Ax,  then a 
thousand rectangles will reach an accuracy of 

The problem is that the rectangles are unbalanced. Their right sides touch the graph 
of v, but their left sides are much too high. The best is to cross the graph in the middle 
of the interval-this is the midpoint rule. Then the rectangle sits halfway across the 
line v = x, and the error is zero. Section 5.8 comes back to this rule-and to Simpson's 
rule that fits parabolas and removes the S AX)^ term and is built into many calculators. 

Finally we try the quick way. The area under v = x is f = f x2 ,  because dfldx is v. 
The area out to x = 4 is 3(4)2 = 8.  Done. 

Fig. 5.7 Endpoint rules: error - l/(work) - lln. Midpoint rule is better: error - l / ( ~ o r k ) ~ .  

Optional: pth powers Our sums are following a pattern. First, 1 + + n is f n2 plus 
i n .  The sum of squares is i n 3  plus correction terms. The sum of pth powers is 

1 1~ + 2~ + ... + nP = - n P + l  plus ~0wection terms. 
p + l  

( 1  1) 

The correction involves lower powers of n, and you know what is coming. Those 
corrections disappear in calculus. The area under v = xP from 0 to n is 

n/Ax 1 
x p  d x =  lim ( ~ A x ) ~ ( A x ) =  -nP? 

A x + O  j = 1  ~ + l 

Calculus doesn't care if the upper limit n is an integer, and it doesn't care if the power 
p is an integer. We only need p + 1 > 0 to be sure nP+ is genuinely the leading term. 
The antiderivative of v = xP is f = xP+ ' / ( p  + 1 ) .  

We are close to interesting experiments. The correction terms disappear and the 
sum approaches the integral. Here are actual numbers for p = 1, when the sum and 
integral are easy: Sn = 1 + --. + n and In = x dx = i n 2 .  The difference is Dn = f n. The 
thing to watch is the relative error En = Dn/In: 



The number 20100 is f(200)(201). Please write down the next line n = 400, and please 
jind a formula for En.You can guess Enfrom the table, or you can derive it from 
knowing Snand I , .  The formula should show that Engoes to zero. More important, 
it should show how quick (or slow) that convergence will be. 

One more number-a third of a million-was mentioned earlier. It came from 
integrating x2 from 0 to 100, which compares to the sum Sloe of 100 squares: 

These numbers suggest a new idea, to keep njixed and change p. The computer can 
find sums without a formula! With its help we go to fourth powers and square roots: 

lo0 $ 671A629 3(100)~'~ 4.7963 0.0072 

In this and future tables we don't expect exact values. The last entries are rounded 
off, and the goal is to see the pattern. The errors En,,are sure to obey a systematic 
rule-they are proportional to l/n and to an unknown number C(p) that depends 
on p. I hope you can push the experiments far enough to discover C(p). This is not 
an exercise with an answer in the back of the book-it is mathematics. 

Read-through questions 

The Greek letter a indicates summation. In uj the 
dummy variable is b . The limits are c , so the first 
term is d and the last term is . When uj = j  this 
sum equals f . For n = 100 the leading term is g . 
The correction term is h . The leading term equals the 
integral of v = x from 0 to 100, which is written i . The 
sum is the total i of 100 rectangles. The correction term 
is the area between the k and the I . 

The sum z:=, i2 is the same as 2;=, m and equals 
n . The sum Zf=, vi is the same as 0 ui+, and equals 
P . For& = Z;= vj the difference fn -f.- equals 4 . 
Theformulafor 12+22+ . . .+n2 i s f .=  r .Toprove 

it by mathematical induction, check f l  = s and check 
f.-S,- = t . The area under the parabola v = x2 from 
x = 0 to x = 9 is u . This is close to the area of v 
rectangles of base Ax. The correction terms approach zero 
very w . 

4 5 

1 Compute the numbers l/n and 1 (2i -3). 
n =  1 i = 2  

3 n 

2 Compute x ( j2-j) and 1 112'. 
j=O j= 1 

6 n 

3 Evaluate the sum 2' and 2'. 
i=O i = 0 

6 n 

4 Evaluate 1 (- 1)'i and 1 (- 1)'j. 
i=  1 j =  1 

5 Write these sums in sigma notation and compute them: 

6 Express these sums in sigma notation: 

7 Convert these sums to sigma notation: 

8 The binomial formula uses coefficients 

100 1000 
9 With electronic help compute 1 l / j  and x l/j. 

1 1 

10 

10 On a computer find x (-l)'/i! times 
10 

lo! 
0 0 
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n n n 
11 Simplify x (ai+ bil2+ x (ai-bi)2 to x 

i =  1 i =  1 i= 1 

a: and i aibi# f aj i bk. 
i=  1 j=1 k = 1  

n 
13 "Telescope" the sums x (2' -2'- ') and 

k =  1 

All but two terms cancel. 
n 12 

14 Simplify the sums x ( 5  -5- 1) and x (h+1-5)-
j= 1 j=3 

17 The antiderivative of d2fldx2 is dfldx. What is the sum 
(f2 -2fl+f0) +(f3 -2f2 +fl) + "' +(f9 -2f8 +f7)? 

18 Induction: Verify that l2+ 22 + .-• + n2 is f,= 
n(n + 1)(2n+ 1)/6 by checking that fl is correct and 
f,-f,-l = n2. 

19 Prove by induction: 1 + 3 + + (2n - 1)=n2. 

20 Verify that 1 + 23 + + n3 is f, =in2(n+ by check- 
ing f, and fn -f,-, . The text has a proof without words. 

21 Suppose f, has the form an + bn2+ cn3. If you know 
fl = 1, fi =5, f3 = 14, turn those into three equations for 
a, b, c. The solutions a =4, b =3, c =$ give what formula? 

22 Find q in the formula l8+ + n8 =qn9+correction. 

23 Add n =400 to the table for Sn = 1+ + n and find-the 
relative error En. Guess and prove a formula for En. 

24 Add n = 50 to the table for Sn = l 2+ + n2 and compute --• 

ESo. Find an approximate formula for En. 

25 Add p =3 and p = 3 to the table for SloO,p= 
1P + - - - + 1W. Guess an approximate formula for E1OO,p. 

26 Guess C(p) in the formula E n ,  zC(p)/n. 

27 Show that 11 -51 < 111+ 1-51. Always Ivl + v21 < lvll + lv21 
unless . 

28 Let S be the sum 1 + x + x2+ of the (infinite) geometric 
series. Then xS =x + x2+ x3 + ... is the same as S minus 

. Therefore S = .None of this makes sense 
if x = 2 because 

29 The doubik sum x [ (i +j)] is vl = x (1 +j) plus 
J 


v2 = (2+j). Compute vl and v2 and the double sum. 
j= 1 

(j130 he double sum wi,j) is ( ~ 1 , 1 + ~ 1 , 2  + ~ 1 , 3 )+ 

i(i. The double sum j=l  i = 1  wi,j) is 

(wl,l + ~2.1)+h , 2  + ~2.2)+ .Compare. 

31 Find the flaw in the proof that 2" = 1 for every 
n =0, 1,2, .... For n =0 we have 2' = 1. If 2" = 1 for every 
n e  N, then 2N=2N-192N-1/2N-2= 1*1/1= 1. 

32 Write out all terms to see why the following are true: 

33 The average of 6, 11, 4 is I7 =3(6 + 11 + 4). Then 
(6-@+(11-@+(4-fl= . The average of . -Vl, ...,vn 1s v = . Prove that Z (ui-17)=0. 

34 The S ~ I W ~ ~ Z  inequality is ($ aibiJ < ($ a:) ($ bf). 

Compute both sides if al  = 2, a2 = 3, bl = 1, b2 =4. Then 
compute both sides for any a,, a,, b,, b,. The proof in 
Section 1 1.1 uses vectors. 

35 Suppose n rectangles with base Ax touch the graph of v(x) 
at the points x = Ax, 2Ax, ...,nAx. Express the total rectan- 
gular area in sigma notation. 

36 If l/Ax rectangles with base Ax touch the graph of u(x) 
at the left end of each interval (thus at x =0, Ax, 2Ax, ...) 
express the total area in sigma notation. 

'IAx f(jAx) -f((j - 1)Ax)
37 The sum Ax 1 equals

AX
i =  1

1; In the limit this becomes dx = -5.4 Indefinite Integrals and Substitutions -
This section integrates the easy way, by looking for antiderivatives. We leave aside 
sums of rectangular areas, and their limits as Ax -+ 0.Instead we search for an f (x) 
with the required derivative u(x). In practice, this approach is more or less indepen- 
dent of the approach through sums-but it gives the same answer. And also, the 
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search for an antiderivative may not succeed. We may not find f. In that case we go 
back to rectangles, or on to something better in Section 5.8. 

A computer is ready to integrate v, but not by discovering f .  It integrates between 
specified limits, to obtain a number (the definite integral). Here we hope to find a 
function (the indefinite integral). That requires a symbolic integration code like 
MACSYMA or Mathematica or MAPLE, or a reasonably nice v(x), or both. An 
expression for f (x) can have tremendous advantages over a list of numbers. 

Thus our goal is to find antiderivatives and use them. The techniques will be further 
developed in Chapter 7-this section is short but good. First we write down what 
we know. On each line, f (x) is an antiderivative of v(x) because df /dx = v(x). 

Known pairs Function v(x) Antiderivative f (x) 

Powers of x xn xn+'/(n + 1) + C 

n = - 1 is not included, because n +1 would be zero. v = x-' will lead us to f = In x. 

Trigonometric functions cos x sin x + C 

sin x -cos x + C 

sec2x tan x + C 

sec x tan x sec x + C 

csc x cot x -csc x + C 

Inverse functions I/,/- sin-' x + C 

1/(1+ x2) tan-' x + C 

You recognize that each integration formula came directly from a differentiation 
formula. The integral of the cosine is the sine, because the derivative of the sine is 
the cosine. For emphasis we list three derivatives above three integrals: 

d d 
-(constant)= 0 -(x)= 1
dx dx 

There are two ways to make this list longer. One is to find the derivative of a new 
f (x). Then f goes in one column and v = df/dx goes in the other co1umn.T The other 
possibility is to use rules for derivatives to find rules for integrals. That is the way to 
extend the list, enormously and easily. 

RULES FOR INTEGRALS 

Among the rules for derivatives, three were of supreme importance. They were linear-
ity, the product rule, and the chain rule. Everything flowed from those three. In the 

tWe will soon meet ex, which goes in both columns. It is f ( x )  and also ~ ( x ) .  
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reverse direction (from v to f )this is still true. The three basic methods of differential 
calculus also dominate integral calculus: 

linearity of derivatives -,linearity of integrals 

product rule for derivatives -+ integration by parts 

chain rule for derivatives -+ integrals by substitution 

The easiest is linearity, which comes first. Integration by parts will be left for 
Section 7.1. This section starts on substitutions, reversing the chain rule to make an 
integral simpler. 

LINEARITY OF INTEGRALS 

What is the integral of v (x)  + w(x)? Add the two separate integrals. The graph of 
t. + w has two regions below it, the area under v and the area from v to v + w. 
Adding areas gives the sum rule. Suppose f and g are antiderivatives of v and w: 

sum rule: f + g is an antiderivative of v + w 

constant rule: cf is an antiderivative of cv 

linearity : af + bg is an antiderivative of av + bw 

This is a case of overkill. The first two rules are special cases of the third, so logically 
the last rule is enough. However it is so important to deal quickly with constants- 
just "factor them outv-that the rule cv-cf is stated separately. The proofs come 
from the linearity of derivatives: (af + bg)' equals af' + bg' which equals av + bw. 
The rules can be restated with integral signs: 

+ w ( x ) ]dx  = J V ( X )  dx  + J W ( X )  dxsum rule: J [ ~ ( x )  

constant rule: J C V ( X )  dx  = c J V ( X )  dx  

linearity: ~ [ a v ( x ) + b w ( x ) ] d x = a ~ t . ( x ) d x + b ~ w ( x ) d x  

Note about the constant in f ( x )  + C. All antiderivatives allow the addition of a con- 
stant. For a combination like av(x)+ bw(x), the antiderivative is af ( x )  + bg(x)+ C. 
The constants for each part combine into a single constant. To give all possible antide- 
rivatives of a function, just remember to write "+ C" after one of them. The real 
problem is to find that one antiderivative. 

EXAMPLE 1 The antiderivative of v = x2 + x - is f = x3/3+ ( x - ' ) I(-1) + C. 

EXAMPLE 2 The antiderivative of 6 cos t + 7 sin t is 6 sin t - 7 cos t + C. 

1 1 - sin x - 1 - sin x
EXAMPLE 3 Rewrite 

1 + sin x 
as 

1 - sin2x 
- = sec2x - sec x tan x .  

cos2x 

The antiderivative is tan x - sec x + C. That rewriting is done by a symbolic algebra 
code (or by you). Differentiation is often simple, so most people check that df ldx  = v(x).  

Question How to integrate tan2 x? 
Method Write it as sec2 x - 1. Answer tan x - x + C 
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INTEGRALS BY SUBSTITUTION 

We now present the most valuable technique in this section-substitution. To see the 
idea, you have to remember the chain rule: 

f (g(x)) has derivative f '(g(x))(dg/dx) 

sin x2 has derivative (cos x2)(2x) 

(x3+ 1)' has derivative 5(x3+ ll4(3x2) 

If the function on the right is given, the function on the left is its antiderivative! There 
are two points to emphasize right away: 

1. Constants are no problem-they can always be jixed. Divide by 2 or 15: 

Notice the 2 from x2, the 5 from the fifth power, and the 3 from x3. 

2. Choosing the insid? function g (or u) commits us to its derivative: 

the integral of 2x cos x2 is sin x2 + C (g = x2, dgldx = 2x) 

the integral of cos x2 is (failure) (no dgldx) 

the integral of x2 cos x2 is (failure) (wrong dgldx) 

To substitute g for x2, we need its derivative. The trick is to spot an inside function 
whose derivative is present. We can fix constants like 2 or 15, but otherwise dgldx 
has to be there. Very often the inside function g is written u. We use that letter to state 
the substitution rule, when f is the integral of v :  

EXAMPLE 4 1sin x cos x dx =&(sin x)' + C u = sin x (compare Example 6) 

+ C u = sin x EXAMPLE 5 1sin2 x cos x dx = $(sin x ) ~  

EXAMPLE 6 j cos x sin x dx = - f (cos x ) ~+ C u = cos x (compare Example 4) 

The next example has u = x2 - 1 and duldx = 2x. The key step is choosing u: 

EXAMPLE 8 x d x / , / n -  = JFi+ C j x J F T  dx = $(x2- 1)3'2+ C 

A ship of x (to x + 2) or a multiple of x (rescaling to 2x) is particularly easy: 

EXAMPLES 9-40 5 (x + 2)) dx = $(x + 2)4 + C j cos 2x dx =f sin 2x + C 

You will soon be able to do those in your sleep. Officially the derivative of (x + 2)4 
uses the chain rule. But the inside function u = x + 2 has duldx = 1. The "1" is there 
automatically, and the graph shifts over-as in Figure 5.8b. 

For Example 10 the inside function is u = 2x. Its derivative is duldx = 2. This 
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V(X -

xV (x 2) area
lf (x2)

0 2 0 1 0 1 0 1
Fig. 5.8 Substituting u = x + 1 and u = 2x and u = x2. The last graph has half of du/dx = 2x.

required factor 2 is missing in J cos 2x dx, but we put it there by multiplying and
dividing by 2. Check the derivative of ½ sin 2x: the 2 from the chain rule cancels the
½. The rule for any nonzero constant is similar:

Sv(x + c) dx =f(x + c) and v(cx) dx= f (cx). (2)

Squeezing the graph by c divides the area by c. Now 3x + 7 rescales and shifts:

EXAMPLE 14 f cos(3x+7) dx= ' sin(3x+7)+ C (3x+7)2 dx= (3x+7)3 + C

Remark on writing down the steps When the substitution is complicated, it is a good
idea to get du/dx where you need it. Here 3x2 + 1 needs 6x:

7x(3x 2 + dx 6 (3x2 + 1)46x dx u4  dx

7 us  7 (3X 2 + 1)5
Now integrate: - - + C- (3 5 + C. (3)

65 6 5

Check the derivative at the end. The exponent 5 cancels 5 in the denominator, 6x from
the chain rule cancels 6, and 7x is what we started with.

Remark on differentials In place of (du/dx) dx, many people just write du:

S(3X2 + 1)4 6x dx = u4 du = u5 + C. (4)

This really shows how substitution works. We switch from x to u, and we also switch
from dx to du. The most common mistake is to confuse dx with du. The factor du/dx
from the chain rule is absolutely needed, to reach du. The change of variables (dummy
variables anyway!) leaves an easy integral, and then u turns back into 3x2 + 1. Here
are the four steps to substitute u for x:

1. Choose u(x) and compute du/dx
2. Locate v(u) times du/dx times dx, or v(u) times du
3. Integrate J v(u) du to find f(u) + C
4. Substitute u(x) back into this antiderivative f.

EXAMPLE 12 J(cos Vx) dxl 2/: = f cos u du= sin u + C = sin x + C

(put in u) (integrate) (put back x)

The choice of u must be right, to change everything from x to u. With ingenuity,
some remarkable integrals are possible. But most will remain impossible forever. The
functions cos x 2 and 1/ 4 - sin 2 x have no "elementary" antiderivative. Those integ-
rals are well defined and they come up in applications--the latter gives the distance
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around an ellipse. That can be computed to tremendous accuracy, but not to perfect 
accuracy. 

The exercises concentrate on substitutions, which need and deserve practice. We 
give a nonexample-1 (x2+ dx does not equal i ( x 2  + l)3-to emphasize the need 
for duldx. Since 2x is missing, u = x2 + 1 does not work. But we can fix up n: 

cos u + C = - -
1 

cos nx + C. 
n n 

Read-through questions 

Finding integrals by substitution is the reverse of the a 
isrule. The derivative of (sin x ) ~  b . Therefore the antide- 

rivative of c is d . To compute 5 (1 + sin x ) ~  cos x dx, 
substitute u = e . Then duldx = f so substitute 
du = g . In terms of u the integral is h = I . 
Returning to x gives the final answer. 

The best substitutions for 1 tan (x + 3) sec2(x + 3)dx 
areand J ( ~ ~ + l ) ' ~ x d x  u =  I and u =  k . Then 

du= I and m . The answers are n and 0 . 
The antiderivative of v dv/dx is P . 5 2x dx/(l + x2) 
leads to J q , which we don't yet know. The integral 
J dx/(l + x2) is known immediately as r . 

Find the indefinite integrals in 1-20. 

1 1 J2$x. dx (add + C) 2 1,/=dx (always+ C) 

7 1 cos3x sin x dx 8 1 cos x dx/sin3 x 

9 1 cos3 2x sin 2x dx 10 J cos3 x sin 2x dx 

11 J d t / J s  12 1t , / g  dt 

13 1 t3 d t / J g  14 1t 3 & 7  dt 

15 J (I + &) dx/& 16 J (1 + x312)& dx 

17 J sec x tan x dx 18 j sec2 x tan2 x dx 

19 1 cos x tan x dx 20 J sin3 x dx 

In 21-32 find a function y(x) that solves the differential 
equation. 

21 dyldx = x2 + J; 22 dyldx = y2 (try y = cxn) 

23 dyldx = J1-Zx 24 dyldx = l / J n  

dyldx = lly 26 dyldx = x/y 

d2y/dx2= 1 28 d y/dx5 = 1 

d2y/dx2= - y  30 dy/dx = fi 
d 2 ~ / d x 2= 32 (dyldx)' = & 
True or false, when f is an antiderivative of v: 

( 4  1 v ( W )  dx =f(u(x))+ C 
(b) J v2(x) dx = ff 3(x)+ C 
(c) j v(x)(du/dx) dx =f ( ~ ( x ) )+ C 
(d) J v(x)(dv/dx) dx = 4f 2(x)+ C 

True or false, when f is an antiderivative of v: 

(a) J f(x)(dv/dx) dx =if2(x)+ C 

(b) j v(v(x))(dvIdx) dx =f(V(X))+ C 
(c) Integral is inverse to derivative so f (v(x))= x 
(d) Integral is inverse to derivative so J (df /dx) dx =f (x) 

If df /dx = v(x) then v(x - I) dx = and 

36 If df /dx = v(x) then 1v(2x - I) dx = and 
v(x2)x dx = . 

38 j (x2+ 1)'dx is not &(x2 + 1)) but . 
39 J 2x dx/(x2 + 1) is J du which will soon be In u. 

= j (U40 Show that 1 2x3 dx/(l + x ~ ) ~- 1) du/u3 = . 

41 The acceleration d2 f /dt2 = 9.8 gives f (t) = (two 
integration constants). 

42 The solution to d4~ /dx4  = 0 is (four constants). 

43 If f(t) is an antiderivative of v(t), find antiderivatives of 
(a) v(t + 3) (b) v(t) + 3 (c) 3v(t) (d) v(3t). 
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The Definite lntearal 

The integral of v(x) is an antiderivative f(x) plus a constant C. This section takes 
two steps. First, we choose C. Second, we construct f (x). The object is to define the 
integral-in the most frequent case when a suitable f (x) is not directly known. 

The indefinite integral contains "+ C." The constant is not settled because f (x) + C 
has the same slope for every C. When we care only about the derivative, C makes 
no difference. When the goal is a number-a definite integral-C can be assigned a 
definite value at the starting point. 

For mileage traveled, we subtract the reading at the start. This section does the 
same for area. Distance is f(t) and area is f(x)-while the definite integral is 
f (b) -f (a). Don't pay attention to t or x, pay attention to the great formula of integral 
calculus: 

~ ( t )lab dt = IabV(X)d~ =f (b) -f (a). 

Viewpoint 1: When f is known, the equation gives the area from a to b. 
Viewpoint 2: When f is not known, the equation defines f from the area. 

For a typical v(x), we can't find f (x) by guessing or substitution. But still v(x) has an 
"area" under its graph-and this yields the desired integral f (x). 

Most of this section is theoretical, leading to the definition of the integral. You 
may think we should have defined integrals before computing them-which is logi- 
cally true. But the idea of area (and the use of rectangles) was already pretty clear in 
our first examples. Now we go much further. Every continuous function v(x) has an 
integral (also some discontinuous functions). Then the Fundamental Theorem com- 
pletes the circle: The integral leads back to dfldx = u(x). The area up to x is the 
antiderivative that we couldn't otherwise discover. 

THE CONSTANT OF INTEGRATION 

Our goal is to turn f (x) + C into a definite integral- the area between a and b. The 
first requirement is to have area = zero at the start: 

f (a) + C = starting area = 0 so C = -f (a). (2) 

For the area up to x (moving endpoint, indefinite integral), use t as the dummy variable: 

-f (a) (indefinite integral) 

the a m  afro  a to b is v(x) dx =f (b)-f (a) (definite integral) 

EXAMPLE I The area under the graph of 5(x + 1)4 from a to b has f (x) = (x + 1)': 

The calculation has two separate steps-first find f (x), then substitute b and a. After 
the first step, check that df /dx is v. The upper limit in the second step gives plus f (b), 
the lower limit gives minus f(a). Notice the brackets (or the vertical bar): 

f(x)]: =f(b)- f(a) x31: = 8 - 1 [cos XI:'=cos 2t - 1. 

Changing the example to f (x) = (x + - 1 gives an equally good antiderivative- 

(x)f=dtv(t) 1; isxthe area from a to 



and now f (0)= 0. But f (b)-f (a)stays the same, because the -1 disappears: 

[ ( x  + 1)' - 11: = ((b+ 1)' - 1)- ((a+ 1)' - 1)= (b+ 1)' - (a+ 1)'. 

EXAMPLE 2 When v = 2x sin x2 we recognize f = -cos x2. m e  area from 0 to 3 is 

The upper limit copies the minus sign. The lower limit gives -(- cos 0), which is 
+cos 0. That example shows the right form for solving exercises on dejkite integrals. 

Example 2 jumped directly to f (x)= -cos x2. But most problems involving the 
chain rule go more slowly-by substitution. Set u =x2, with duldx = 2x:

IO3 lo3 du
2x sin x2 dx = sin u -dx = sin u du.

dx 

We need new limits when u replaces x2. Those limits on u are a' and b2.(In this case 
a' = O2 and b2= 32= 9.) Z fx  goes from a to b, then u goesfrom ~ ( a )to u(b). 

In this case u = x2 + 5. Therefore duldx = 2x (or du = 2x dx for differentials). We have 
to account for the missing 2. The integral is Qu4. The limits on u =x2 + 5 are 

O2 + 5 and u(1)u(0)= The6.to5That is why the u-integral goes from 5.+ 1' = 
alternative is to find f ( x )= Q(x2+ 5)4in one jump (and check it). 

EXAMPLE 4 1: sin x2 dx = ?? (no elementary function gives this integral). 

If we try cos x2, the chain rule produces an extra 2x-no adjustment will work. Does 
sin x2 still have an antiderivative? Yes! Every continuous v(x)has an f (x).Whether 
f (x )  has an algebraic formula or not, we can write it as J v(x) dx. To define that 
integral, we now take the limit of rectangular areas. 

INTEGRALS AS LIMITS OF "RIEMANN SUMS" 

We have come to the definition of the integral. The chapter started with the integrals 
of x and x2,from formulas for 1 + ..-+ n and l 2+ ..-+ n2.We will not go back to 
those formulas. But for other functions, too irregular to find exact sums, the rectangu- 
lar areas also approach a limit. 

That limit is the integral. This definition is a major step in the theory of calculus. 
It can be studied in detail, or understood in principle. The truth is that the definition 
is not so painful-you virtually know it already. 

Problem Integrate the continuous function v(x)over the interval [a, b]. 
Step 1 Split [a, b] into n subintervals [a, x,], [x,, x2] ,  ..., [xn- b]. 

The "meshpoints" x,, x2,  . .. divide up the interval from a to b. The endpoints are 
xo = a and x, = b. The length of subinterval k is Ax, = xk - xk- l .  In that smaller 
interval, the minimum of v(x)is mk.The maximum is M,. 
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Now construct rectangles. The "lower rectangle" over interval k has height mk. The
"upper rectangle" reaches to Mk. Since v is continuous, there are points Xmin and Xmax
where v = mk and v = Mk (extreme value theorem). The graph of v(x) is in between.

Important: The area under v(x) contains the area "s" of the lower rectangles:

fb v(x) dx > m Ax1 + m2Ax 2 + + m, nx, = s. (5)

The area under v(x) is contained in the area "S" of the upper rectangles:

f bv(x) dx MAx + M2 Ax 2 + + MAxn= S. (6)

The lower sum s and the upper sum S were computed earlier in special cases-when
v was x or x2 and the spacings Ax were equal. Figure 5.9a shows why s < area < S.

A•v

(X)1 )V (1

Mkm k

3,x
a r. r. h r. X ,.

Fig. 5.9 Area of lower rectangles = s. Upper sum S includes top pieces. Riemann sum S* is in between.

Notice an important fact. When a new dividing point x' is added, the lower sum
increases. The minimum in one piece can be greater (see second figure) than the
original mk. Similarly the upper sum decreases. The maximum in one piece can be
below the overall maximum. As new points are added, s goes up and S comes down.
So the sums come closer together:

s < s' < IS' < S. (7)

I have left space in between for the curved area-the integral of v(x).
Now add more and more meshpoints in such a way that Axmax -+ 0. The lower

sums increase and the upper sums decrease. They never pass each other. If v(x) is
continuous, those sums close in on a single number A. That number is the definite
integral-the area under the graph.

DEFINITION The area A is the common limit of the lower and upper sums:

s - A and S -+ A as Axmax -+ 0. (8)

This limit A exists for all continuous v(x), and also for some discontinuous functions.
When it exists, A is the "Riemann integral" of v(x) from a to b.

REMARKS ON THE INTEGRAL

As for derivatives, so for integrals: The definition involves a limit. Calculus is built
on limits, and we always add "if the limit exists." That is the delicate point. I hope
the next five remarks (increasingly technical) will help to distinguish functions that
are Riemann integrable from functions that are not.

Remark 1 The sums s and S may fail to approach the same limit. A standard
example has V(x) = 1 at all fractions x = p/q, and V(x) = 0 at all other points. Every

v(x

-p. X
"I· "L·rl LI nl,
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interval contains rational points (fractions) and irrational points (nonrepeating deci-
mals). Therefore mk = 0 and Mk = 1. The lower sum is always s = 0. The upper sum
is always S = b - a (the sum of 1's times Ax's). The gap in equation (7) stays open. This
function V(x) is not Riemann integrable. The area under its graph is not defined (at
least by Riemann-see Remark 5).

Remark 2 The step function U(x) is discontinuous but still integrable. On every
interval the minimum mk equals the maximum Mk-except on the interval containing
the jump. That jump interval has mk = 0 and Mk = 1. But when we multiply by Axk,
and require Axmax -+ 0, the difference between s and S goes to zero. The area under
a step function is clear-the rectangles fit exactly.

Remark 3 With patience another key step could be proved: If s -+ A and S -+ A for
one sequence of meshpoints, then this limit A is approached by every choice of mesh-
points with Axmax , 0. The integral is the lower bound of all upper sums S, and it is
the upper bound of all possible s-provided those bounds are equal. The gap must
close, to define the integral.

The same limit A is approached by "in-between rectangles." The height v(x*) can
be computed at any point x* in subinterval k. See Figures 5.9c and 5.10. Then the
total rectangular area is a "Riemann sum" between s and S:

S= v(x )Ax 1 + v(x*)Ax 2 + ... + v(x*)Ax. (9)

We cannot tell whether the true area is above or below S*. Very often A is closer to
S* than to s or S. The midpoint rule takes x * in the middle of its interval (Figure 5.10),
and Section 5.8 will establish its extra accuracy. The extreme sums s and S are used
in the definition while S* is used in computation.

/4""
./I

right mid min max any x k

Fig. 5.10 Various positions for x*' in the base. The rectangles have height v(x*).

Remark 4 Every continuous function is Riemann integrable. The proof is optional (in
my class), but it belongs here for reference. It starts with continuity at x*: "For any
e there is a 6 .... " When the rectangles sit between x* - 6 and x* + 6, the bounds Mk
and mk differ by less than 2e. Multiplying by the base Axk, the areas differ by less
than 2e(AXk). Combining all rectangles, the upper and lower sums differ by less than
2e(Ax 1 + Ax 2 + ... + Ax,)= 2e(b - a).

As e -+ 0 we conclude that S comes arbitrarily close to s. They squeeze in on a
single number A. The Riemann sums approach the Riemann integral, ifv is continuous.

Two problems are hidden by that reasoning. One is at the end, where S and s come
together. We have to know that the line of real numbers has no "holes," so there is
a number A to which these sequences converge. That is true.

Any increasing sequence, if it is bounded above, approaches a limit.

The decreasing sequence S, bounded below, converges to the same limit. So A exists.
The other problem is about continuity. We assumed without saying so that the

V ( X )/ 0 -
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width 26 is the same around every point x*. We did not allow for the possibility that 
6 might approach zero where v(x) is rapidly changing-in which case an infinite 
number of rectangles could be needed. Our reasoning requires that 

v(x) is unifomly continuous: 6 depends on E but not on the position of x*. 

For each E there is a 6 that works at all points in the interval. A continuous function 
on a closed interval is uniformly continuous. This fact (proof omitted) makes the 
reasoning correct, and v(x) is integrable. 

On an infinite interval, even v =x2 is not uniformly continuous. It changes across 
a subinterval by (x* + ~ 5 ) ~- (x* - 6)2=4x*6. As x* gets larger, 6 must get smaller- 
to keep 4x*6 below E. No single 6 succeeds at all x*. But on a finite interval [O, b], 
the choice 6 =~ / 4 bworks everywhere-so v =x2 is uniformly continuous. 

Remark 5 If those four remarks were fairly optional, this one is totally at your 
discretion. Modern mathematics needs to integrate the zero-one function V(x) in the 
first remark. Somehow V has more 0's than 1's. The fractions (where V(x) = 1) can 
be put in a list, but the irrational numbers (where V(x) =0) are "uncountable." The 
integral ought to be zero, but Riemann's upper sums all involve M ,  = 1. 

Lebesgue discovered a major improvement. He allowed infinitely many subintervals 
(smaller and smaller). Then all fractions can be covered with intervals of total width 
E. (Amazing, when the fractions are packed so densely.) The idea is to cover 1/q, 2/q, 
. . . ,q/q by narrow intervals of total width ~ 1 2 ~ .  Combining all q = 1,2, 3, .. . ,the total 
width to cover all fractions is no more than E(& +$ +$ + --.)= E. Since V(x) =0 
everywhere else, the upper sum S is only E. And since E was arbitrary, the "Lebesgue 
integral" is zero as desired. 

That completes a fair amount of theory, possibly more than you want or need- 
but it is satisfying to get things straight. The definition of the integral is still being 
studied by experts (and so is the derivative, again to allow more functions). By 
contrast, the properties of the integral are used by everybody. Therefore the next 
section turns from definition to properties, collecting the rules that are needed in 
applications. They are very straightforward. 

5.5 EXERCISES 
Read-through questions approach the same r ,that defines the integral. The inter- 

In J: v(t) dt =f (x)+ C, the constant C equals a . Then 
mediate sums S*, named after s ,use rectangles of height 

at x =a the integral is b . At x =b the integral becomes v(x,*). Here X$ is any point between t ,and S* = u 

.The notation f ($1: means d .Thus cos x]: equals approaches the area. 

e . Also [cos x +3]",quals t , which shows why If u(x) =dfldx, what constants C make 1-10 true? 
the antiderivative includes an arbitrary Q . Substituting 
u =2x - 1 changes J: Jndx into h (with limits 1 Jb, V(X) dx =f (b)+C 
on u). 2 j; v(x) dx =f (4) +C 

The integral J,b U(X)dx can be defined for any I func- 3 1: v(t) dt = -f(x) + C 
tion v(x), even if we can't find a simple i .First the mesh- 
points xl ,  x2, . . . divide [a, b] into subintervals of length 4 J:,, v(sin x) cos x dx =f (sin b) + C 

Axk= k . The upper rectangle with base Ax, has height 5 v(t) dt =f (t)+ C (careful) 
Mk= 1 . The upper sum S is equal to m . The lower 

6 dfldx =v(x) + C sum s is n . The o is between s and S. As more 
meshpoints are added, S P and s q . If S and s 7 1; (x2-l)j2x dx=j:, u3du. 

c 
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15 

21 

8 I:' v(t) dt =f(x2)+ C 26 Find the Riemann sum S* for V(x) in Remark 1, when 

-(changeC=v(- X) dx 1: 
=v(x) dx 1; 10 

x to t; also dx and limits) Ax = l/n and each xf is the midpoint. This S* is well-behaved 
but still V(x) is not Riemann integrable. 

C v(2t) dt. 
27 W(x) equals S at x = 3,4,4, .. ., and elsewhere W(x) = 0. 
For Ax = .O1 find the upper sum S. Is W(x) integrable? 

28 Suppose M(x) is a multistep function with jumps of 3, f ,
Choose u(x) in 11-18 and change limits. Compute the integral 4, ... at the points x = +,&,4, ... . Draw a rough graph with 
in 11-16. 

11 1; (x2+ l)lOx dx 
M(0)= 0 and M(1) = 1. With Ax = 5 find S and s. 

12 1:" sin8 x cos x dx 29 For M(x) in Problem 28 find the difference S -s (which 

13 El4tan x sec2 x dx 14 1; x2"+' dx (take u = x2) approaches zero as Ax -* 0). What is the area under the 
graph?

x d x / J m '  1; 16sec2'x tan x dx 
v(t) dt. 1: =(x)f0, explain 30 If dfldx = -V(X)and f (I)= 

17 1: dx/x (take u = l/x) -x3(1 1; 18 x ) ~dx (u = 1-x) 
31 (a) If df /dx = + v(x) and f(0)= 3, find f (x). 

(b) If df /dx = + v(x) and f (3)= 0, find f(x). 

32 In your own words define the integral of v(x) from a to b. 

33 True or false, with reason or example. 
With Ax = 3 in 19-22, find the maximum Mk and minimum 
mkand upper and lower sums S and s. 

114 dx +(x' 1; 19 

x3 dx 

20 sin 2nx dx (a) Every continuous v(x) has an antiderivative f (x). 

22 x dx. (b) If v(x) is not continuous, S and s approach different 
limits. 

23 Repeat 19 and 20 with Ax = 4 and compare with the cor- (c) If S and s approach A as Ax + 0, then all Riemann 
rect answer. sums S* in equation (9) also approach A. 

24 The difference S -s in 21 is the area 23 Ax of the far right (d) If vl(x) + v2(x)= u3(x), their upper sums satisfy 
rectangle. Find Ax so that S < 4.001. 

25 If v(x) is increasing for a ,< x ,< b, the difference S -s is the 
area of the rectangle minus the area of the 

' 

S1 +S2 =S3. 
(e) If vl(x) + v2(x)= u3(x), their Riemann sums at the 
midpoints xf satisfy Sf + S t  = ST. 

rectangle. Those areas approach zero. So every increasing (f) The midpoint sum is the average of S and s. 
function on [a, b] is Riemann integrable. (g) One xf in Figure 5.10 gives the exact area 

15.6 Properties of the Integral and Average Value m 

The previous section reached the definition of 1:: v(x) dx. But the subject cannot stop 
there. The integral was defined in order to be used. Its properties are important, and 
its applications are even more important. The definition was chosen so that the 
integral has properties that make the applications possible. 

One direct application is to the average value of v(x). The average of n numbers is 
clear, and the integral extends that idea-it produces the average of a whole contin- 
uum of numbers v(x). This develops from the last rule in the following list (Property 
7). We now collect toget her seven basic properties of defirrite integrals. 

The addition rule for [v(x) + w(x)] dx will not be repeated-even though this 
property of linearity is the most fundamental. We start instead with a different kind 
of addition. There is only one function v(x), but now there are two intervals. 

The integral from a to b is added to its neighbor from b to c. Their sum is the integral 
from a to c .  That is the first (not surprising) property in the list. 
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Property 1 Areas over neighboring intervals add to the area over the combined
interval:

J v(x) dx + I' v(x) dx = J v(x) dx. (1)

This sum of areas is graphically obvious (Figure 5.1 la). It also comes from the formal
definition of the integral. Rectangular areas obey (1)-with a meshpoint at x = b to
make sure. When Axmax approaches zero, their limits also obey (1). All the normal
rules for rectangular areas are obeyed in the limit by integrals.

Property 1 is worth pursuing. It indicates how to define the integral when a = b.
The integral "from b to b" is the area over a point, which we expect to be zero. It is.

Property 2 fb v(x) dx = 0.

That comes from Property 1 when c = b. Equation (1) has two identical integrals, so
the one from b to b must be zero. Next we see what happens if c = a-which makes
the second integral go from b to a.

What happens when an integralgoes backward? The "lower limit" is now the larger
number b. The "upper limit" a is smaller. Going backward reverses the sign:

Property 3 fa v(x) dx = - f~ v(x) dx =f(a) -f(b).

Proof When c = a the right side of (1) is zero. Then the integrals on the left side
must cancel, which is Property 3. In going from b to a the steps Ax are negative. That
justifies a minus sign on the rectangular areas, and a minus sign on the integral
(Figure 5.1 1b). Conclusion: Property 1 holds for any ordering of a, b, c.

EXAMPLES t2 dt = - - dt = -1 _ = 0

Property 4 For odd functions Ja, v(x) dx = O0. "Odd" means that v(- x) = - v(x).
For even functions •-a v(x) dx = 2 fo v(x) dx. "Even" means that v(- x) = + v(x).

The functions x, x3 , x 5, ... are odd. If x changes sign, these powers change sign. The
functions sin x and tan x are also odd, together with their inverses. This is an impor-
tant family of functions, and the integral of an odd function from - a to a equals zero.
Areas cancel:

j•a 6x d= x]', a6 -(- a)6 = 0.

If v(x) is odd then f(x) is even! All powers 1, x2, x4 ,... are even functions. Curious
fact: Odd function times even function is odd, but odd number times even number is
even.

For even functions, areas add: J"a cos x dx = sin a - sin(- a) = 2 sin a.

v(-x) = - v(x)

a - o _ c a -1 o x -x x

Fig. 5.11 Properties 1-4: Add areas, change sign to go backward, odd cancels, even adds.
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The next properties involve inequalities. If v(x) is positive, the area under its graph
is positive (not surprising). Now we have a proof: The lower sums s are positive and
they increase toward the area integral. So the integral is positive:

Property 5 If v(x) > 0 for a < x < b then J v(x) dx > 0.

A positive velocity means a positive distance. A positive v lies above a positive area.
A more general statement is true. Suppose v(x) stays between a lower function 1(x)
and an upper function u(x). Then the rectangles for v stay between the rectangles for 1
and u. In the limit, the area under v (Figure 5.12) is between the areas under I and u:

Property 6 If 1(x) < v(x) < u(x) for a < x < b then

II 1(x) dx a ~ v(x) dx a ~ u(x) dx. (2)

EXAMPLE 1 cos t<1 =~ cosC t dt I 1 dt = sin x x

EXAMPLE 2 1 sec 2 t =• 1 dt <• sec 2tdtdt x <tanx

1
EXAMPLE 3 Integrating 1 2 1 leads to tan- x < x.

All those examples are for x > 0. You may remember that Section 2.4 used geometry
to prove sin h < h < tan h. Examples 1-2 seem to give new and shorter proofs. But I
think the reasoning is doubtful. The inequalities were needed to compute the deriva-
tives (therefore the integrals) in the first place.

Vave

Fig. 5.12 Properties 5-7: v above zero, v between 1 and u, average value (+ balances -).

Property 7 (Mean Value Theorem for Integrals) If v(x) is continuous, there is a
point c between a and b where v(c) equals the average value of v(x):

(c I v(x) dx = "average value of v(x)." (3)v(c) b-a a

This is the same as the ordinary Mean Value Theorem (for the derivative of f(x)):

f(b) -f(a)
f'(c) - (a)- average slope of f." (4)b-a

With f' = v, (3) and (4) are the same equation. But honesty makes me admit to a flaw
in the logic. We need the Fundamental Theorem of Calculus to guarantee that
f(x) = f v(t) dt really gives f'= v.

A direct proof of (3) places one rectangle across the interval trom a to b. Now raise
the top of that rectangle, starting at Vmin (the bottom of the curve) and moving up to
vmax (the top of the curve). At some height the area will be just right-equal to the
area under the curve. Then the rectangular area, which is (b - a) times v(c), equals
the curved area Jf v(x) dx. This is equation (3).
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/ u ( x ) = x  u(x>= x2 u(x) = sin2x 

Fig. 5.13 Mean Value Theorem for integrals: area/(b -a) = average height = v(c) at some c. 

That direct proof uses the intermediate value theorem: A continuous function v(x) 
takes on every height between v,,, and v,,,. At some point (at two points in 
Figure 5.12~) the function v(x) equals its own average value. 

Figure 5.13 shows equal areas above and below the average height v(c) = vaVe. 

EXAMPLE 4 The average value of an odd function is zero (between -1 and 1): 

For once we know c. It is the center point x = 0, where v(c) = vav, = 0. 

EXAMPLE 5 The average value of x2 is f (between 1 and -1): 

(note ,,-- 7  
Where does this function x2 equal its average value f? That happens when c2 = f ,  so 
c can be either of the points I/& and -1/J? in Figure 5.13b. Those are the Gauss 
points, which are terrific for numerical integration as Section 5.8 will show. 

EXAMPLE 6 The average value of sin2 x over a period (zero to n) is i :  

- 7(note -; 

The point c is n/4 or 344,  where sin2 c = $. The graph of sin2 x oscillates around its 
average value f .  See the figure or the formula: 

sin2 x = f - f cos 2x. (5) 

The steady term is f ,  the oscillation is - 4 cos 2x. The integral is f (x) = i x  - sin 2x, 
which is the same as fx -i sin x cos x. This integral of sin2 x will be seen again. Please 
verify that df /dx = sin2 x. 

THE AVERAGE VALUE AND EXPECTED VALUE 

The "average value" from a to b is the integral divided by the length b - a. This 
was computed for x and x2 and sin2 x, but not explained. It is a major application 
of the integral, and it is guided by the ordinary average of n numbers: 

1
V(X)dx comes from uave = - (vl + v2 + .. . + v,).Vave = - n 

Integration is parallel to summation! Sums approach integrals. Discrete averages 
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approach continuous averages. The average of 4, %,3 is 3. The average of f ,$,3, 4,
3 is 3. The average of n numbers from l/n to n/n is 

The middle term gives the average, when n is odd. Or we can do the addition. As 
n -,oo the sum approaches an integral (do you see the rectangles?). The ordinary 
average of numbers becomes the continuous average of v(x) = x: 

n + l  +-1 Iolx dx =and (note b-o -1 )
2n 2 

In ordinary language: "The average value of the numbers between 0 and 1 is 4." Since 
a whole continuum of numbers lies between 0 and 1, that statement is meaningless 
until we have integration. 

The average value of the squares of those numbers is (x2),,, = x2 dx/(b - a) = 4. 
Ifyou pick a number randomly between 0 and 1, its expected value is 5 and its expected 
square is 3.  

To me that sentence is a puzzle. First, we don't expect the number to be exactly 
&so we need to define "expected value." Second, if the expected value is 9, why is 
the expected square equal to 3 instead of i?The ideas come from probability theory, 
and calculus is leading us to continuous probability. We introduce it briefly here, and 
come back to it in Chapter 8. 

PREDlClABLE AVERAGES FROM RANDOM EVENTS 

Suppose you throw a pair of dice. The outcome is not predictable. Otherwise why 
throw them? But the average over more and more throws is totally predictable. We 
don't know what will happen, but we know its probability. 

For dice, we are adding two numbers between 1 and 6. The outcome is between 2 
and 12. The probability of 2 is the chance of two ones: (1/6)(1/6) = 1/36. Beside each 
outcome we can write its probability: 

To repeat, one roll is unpredictable. Only the probabilities are known, and they add 
to 1. (Those fractions add to 36/36; all possibilities are covered.) The total from a 
million rolls is even more unpredictable-it can be anywhere between 2,000,000 and 
12,000,000. Nevertheless the average of those million outcomes is almost completely 
predictable. This expected value is found by adding the products in that line above: 

Expected value: multiply (outcome)times (probability of outcome) and add: 

If you throw the dice 1000 times, and the average is not between 6.9 and 7.1, you get 
an A. Use the random number generator on a computer and round off to integers. 

Now comes continuous probability. Suppose all numbers between 2 and 12 are 
equally probable. This means all numbers-not just integers. What is the probability 
of hitting the particular number x = n? It is zero! By any reasonable measure, n has 
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no chance to occur. In the continuous case, every x has probability zero. But an 
interval of x's has a nonzero probability: 

the probability of an outcome between 2 and 3 is 1/10 
the probability of an outcome between x and x + Ax is Ax110 

To find the average, add up each outcome times the probability of that outcome. 
First divide 2 to 12 into intervals of length Ax = 1 and probability p = 1/10. If we 
round off x, the average is 63: 

Here all outcomes are integers (as with dice). It is more accurate to use 20 intervals 
of length 112 and probability 1/20. The average is 6$, and you see what is coming. 
These are rectangular areas (Riemann sums). As Ax -+ 0 they approach an integral. 
The probability of an outcome between x and x + dx is p(x) dx, and this problem has 
p(x) = 1/10. The average outcome in the continuous case is not a sum but an integral: 

dx x2 l 2
expected value E(x)= xp(x) dx = S212 x 10= 20]2 = 7. 

That is a big jump. From the point of view of integration, it is a limit of sums. From 
the point of view of probability, the chance of each outcome is zero but the probability 
density at x is p(x) = 1/10. The integral of p(x) is 1, because some outcome must 
happen. The integral of xp(x) is x,,, = 7, the expected value. Each choice of x is 
random, but the average is predictable. 

This completes a first step in probability theory. The second step comes after more 
calculus. Decaying probabilities use e-" and e-"'-then the chance of a large x is 
very small. Here we end with the expected values of xn and I/& and l/x, for a 
random choice between 0 and 1 (so p(x) = 1): 

A CONFUSION ABOUT "EXPECTED" CLASS SIZE 

A college can advertise an average class size of 29, while most students are in large 
classes most of the time. I will show quickly how that happens. 

Suppose there are 95 classes of 20 students and 5 classes of 200 students. The total 
enrollment in 100 classes is 1900 + 1000 = 2900. A random professor has expected 
class size 29. But a random student sees it differently. The probability is 1900/2900 
of being in a small class and 1000/2900 of being in a large class. Adding class size 
times probability gives the expected class size for the student: 

(20)(E)+ (200)(IWO) = 82 students in the class. 
2900 2900 

Similarly, the average waiting time at a restaurant seems like 40 minutes (to the 
customer). To the hostess, who averages over the whole day, it is 10 minutes. If you 
came at a random time it would be 10, but if you are a random customer it is 40. 

Traffic problems could be eliminated by raising the average number of people per 
car to 2.5, or even 2. But that is virtually impossible. Part of the problem is the 
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difference between (a) the percentage of cars with one person and (b) the percentage 
of people alone in a car. Percentage (b) is smaller. In practice, most people would be 
in crowded cars. See Problems 37-38. 

Read-through questions 

The integrals 1; v(x) dx and v(x) dx add to a . The 
integral v(x) dx equals b . The reason is c . If 
V(X)<x then v(x) dx < d .The average value of v(x) on 
the interval 1 <x <9 is defined by . It is equal to u(c) 
at a point x =c which is . The rectangle across this f 

interval with height v(c) has the same area as g . The 
average value of u(x) =x + 1 on the interval 1 <x <9 is 

h 

If x is chosen from 1, 3, 5, 7 with equal probabilities $, its 
expected value (average) is 1 . The expected value of x2 
is 1 . If x is chosen from 1, 2, ..., 8 with probabilities i, 
its expected value is k . If x is chosen from 1 <x <9, the 
chance of hitting an integer is I . The chance of falling 
between x and x +dx is p(x) dx = m . The expected value 
E(x) is the integral n . It equals 0 . 

In 1-6 find the average value of v(x) between a and b, and find 
all points c where vave =v(c). 

Are 9-16 true or false? Give a reason or an example. 

9 The minimum of S", v(t) dt is at x =4. 

10 The value of v(t) dt does not depend on x. 

11 The average value from x =0 to x = 3 equals 

$(vaVeon 0 <x < 1)+3(vav, on 1 <x < 3). 

12 The ratio (f (b) -f (a))/(b-a) is the average value of f (x) 
o n a < x < b .  

13 On the symmetric interval -1 <x < 1, v(x) -vave is an 
odd function. 

14 If l(x) < v(x) < u(x) then dlldx <dvldx <duldx. 

15 The average of v(x) from 0 to 2 plus the average from 2 
to 4 equals the average from 0 to 4. 

16 (a) Antiderivatives of even functions are odd functions. 
(b) Squares of odd functions are odd functions. 

17 What number 8 gives j! (v(x)-8) dx =O? 

18 If f (2) = 6 and f (6)=2 then the average of df /dx from 
x = 2 t o x = 6 i s  . 
19 (a) The averages of cos x and lcos xl from 0 to n are 

(b) The average of the numbers v,, .. . ,v, is than 
the average of Ivll, ...,lu,l. 

20 (a) Which property of integrals proves ji v(x) dx < 
j: I.(x,I dx? 
(b) Which property proves -1: v(x) dx <j: Iv(x)l dx? 

Together these are Property 8: 11;v(x) dxl6  Iv(x)l dx. 

21 What function has vave (from 0 to x) equal to $ v(x) at all 
x? What functions have vave=v(x)at all x? 

22 (a) If v(x) is increasing, explain from Property 6 why 
j",(t) dt <xv(x) for x >0. 
(b) Take derivatives of both sides for a second proof. 

23 The average of v(x) = 1/(1 +x2)  on the interval [0, b] 
approaches as b -+ co. The average of V(x) = 

x2/(1+ x2) approaches . 

24 If the positive numbers v, approach zero as n -+ co prove 
that their average (vl + - - - + vJn also approaches zero. 

25 Find the average distance from x =a to points in the 
interval 0 <x < 2. Is the formula different if a < 2? 

26 (Computer experiment) Choose random numbers x 
between 0 and 1 until the average value of x2 is between .333 
and .334. How many values of x2 are above and below? If 
possible repeat ten times. 

27 A point P is chosen randomly along a semicircle (see 
figure: equal probability for equal arcs). What is the 
average distance y from the x axis? The radius is 1. 

28 A point Q is chosen randomly between -1 and 1. 
(a) What is the average distance Y up to the semicircle? 
(b) Why is this different from Problem 27? 

Buffon needle 
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29 (A classic way to compute n;) A 2" needle is tossed onto 37 Suppose four classes have 6,8,10, and 40 students, averag- 
a floor with boards 2" wide. Find the probability of falling ing . The chance of being in the first class is 
across a crack. (This happens when cos 8>y =distance from . The expected class size (for the student) is 
midpoint of needle to nearest crack. In the rectangle 
0 68<7r/2,O <y 6 1, shade the part where cos 8 >y and find 
the fraction of area that is shaded.) 

30 If Buffon's needle has length 2x instead of 2, find the 
38 With groups of sizes xl  ,. . . ,x, adding to G, the average 
size is . The chance of an individual belonging to 

probability P(x) of falling across the same cracks. group 1 is . The expected size of his or her group is 
31 If you roll three dice at once, what are the probabilities of E(x) =x, (xl /G) + -.-+x,(x,/G). *Prove Z: X?/G 2 G/n. 
each outcome between 3 and 18? What is the expected value? True or false, 15 seconds each: 

32 If you choose a random point in the square 0 6x < 1, (a) If f (x) <g(x) then df ldx 6dgldx. 
0 <y 6 1, what is the chance that its coordinates have yZ <x? (b) If df /dx 6 dgldx then f (x) <g(x). 

33 The voltage V(t) =220 cos 2n;t/60 has frequency 60 hertz (c) xv(x) is odd if v(x) is even. 

and amplitude 220 volts. Find Kvefrom 0 to t. (d) If v,,, d wave on all intervals then u(x) 6w(x) at all 
points. 

34 (a) Show that veve,(x) =$(v(x)+u(-x)) is always even. 
2x for x <3 x2 for x <3

(b) Show that vOdd(x) =$(v(x)-v(-x)) is always odd. If v(x) = then f(x) = 
-2x for x >3 -x2 for x > 3 '  

35 By Problem 34 or otherwise, write (x + and l/(x + 1) 
Thus v(x) dx =f (4)-f (0) =-16. Correct the mistake. as an even function plus an odd function. 
41 If v(x) = Ix -2) find f (x). Compute u(x) dx. 36 Prove from the definition of dfldx that it is an odd func- 

tion if f (x) is even. 42 Why are there equal areas above and below vave? -5.7 The Fundamental Theorem and Its Applications 

When the endpoints are fixed at a and b, we have a definite integral. When the upper 
limit is a variable point x, we have an indefinite integral. More generally: When the 
endpoints depend in any way on x, the integral is a function of x.  Therefore we can 
find its derivative. This requires the Fundamental Theorem of Calculus. 

The essence of the Theorem is: Derivative of integral of v equals v. We also compute 
the derivative when the integral goes from a(x) to b(x)-both limits variable. 

Part 2 of the Fundamental Theorem reverses the order: Integral ofderivative o f f  
equals f + C .  That will follow quickly from Part 1, with help from the Mean Value 
Theorem. It is Part 2 that we use most, since integrals are harder than derivatives. 

After the proofs we go to new applications, beyond the standard problem of area 
under a curve. Integrals can add up rings and triangles and shells-not just rectangles. 
The answer can be a volume or a probability-not just an area. 

THE FUNDAMENTAL THEOREM, PART 1 

Start with a continuous function v .  Integrate it from a fixed point a to a variable 
point x. For each x, this integral f(x) is a number. We do not require or expect a 
formula for f (x)-it is the area out to the point x. It is a function of x! The Fundamen- 
tal Theorem says that this area function has a derivative (another limiting process). 
The derivative df ldx equals the original v(x). 
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The dummy variable is written as t, so we can concentrate on the limits. The val 
of the integral depends on the limits a and x, not on t. 

To find df ldx, start with Af =f (x + Ax) -f (x) = diflerence of areas: 

~ ( t )~f= I."+Ax dt - 1; v(t) dt = v(t) dt. (1) 
Officially, this is Property 1.The area out to x + Ax minus the area out to x equals 
the small part from x to x + Ax. Now divide by Ax: 

1 x+Ax
Af - v(t) dt = average value = v(c).
Ax Ax I 

This is Property 7, the Mean Value Theorem for integrals. The average value on this 
short interval equals v(c). This point c is somewhere between x and x + Ax (exact 
position not known), and we let Ax approach zero. That squeezes c toward x, so v(c) 
approaches u(x)-remember that v is continuous. The limit of equation (2) is the 
Fundamental Theorem: 

dfAf-+ d f  and v(c) + u(x) SO -= v(x).
Ax dx dx 

If Ax is negative the reasoning still holds. Why assume that v(x) is continuous? 
Because if v is a step function, then f (x) has a corner where dfldx is not v(x). 

We could skip the Mean Value Theorem and simply bound v above and below: 

for t between x and x + Ax: umin 6 ~ ( t )G Vmax 

integrate over that interval: vminAxQ Af G vmaxAx (4) 

As Ax -,0, umin and vmax approach v(x). In the limit dfldx again equals v(x). tpj.(.\-+ A.v) Af *= u(.u)A.r 

f(.d 

x X + A K  x . \ - + A X  

Fig. 5.14 Fundamental Theorem, Part 1: (thin area Af)/(base length Ax) -+ height u(x). 

Graphical meaning The f-graph gives the area under the v-graph. The thin strip in 
Figure 5.14, has area Af. That area is approximately v(x) times Ax. Dividing by its 
base, AflAx is close to the height v(x). When Ax -* 0 and the strip becomes infinitely 
thin, the expression "close to" converges to "equals." Then df ldx is the height at v(x). 

DERIVATIVES WITH VARIABLE ENDPOINTS 


When the upper limit is x, the derivative is v(x). Suppose the lower limit is x. The 
integral goes from x to 6,instead of a to x. When x moves, the lower limit moves. 
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The change in area is on the left side of Figure 5.15. As x goesforward, area is removed. 
So there is a minus sign in the derivative of area: 

dgThe derivative of g(x) = v(t) dt is -= -v(x).
dx 

The quickest proof is to reverse b and x, which reverses the sign (Property 3):

1' dgg(x) = - v(t) dt so by part I -= - v(x).
dx 

Fig. 5.15 Area from x to b has dgldx = -u(x). Area v(b)db is added, area v(a)da is lost 

The general case is messier but not much harder (it is quite useful). Suppose both 
limits are changing. The upper limit b(x) is not necessarily x, but it depends on x. 
The lower limit a(x) can also depend on x (Figure 5.15b). The area A between those 
limits changes as x changes, and we want dAldx: 

dA db da
v(t) dt then -= v(b(x)) -- v(a(x))-.

dx dx dx 

The figure shows two thin strips, one added to the area and one subtracted. 
First check the two cases we know. When a = 0 and b = x, we have daldx = 0 and 

dbldx = 1. The derivative according to (6) is v(x) times 1 -the Fundamental Theorem. 
The other case has a = x and b = constant. Then the lower limit in (6) produces -v(x). 
When the integral goes from a = 2x to b = x3, its derivative is new: 

EXAMPLE 1 A = 5;: cos t dt = sin x3 - sin 2x 

dAjdx = (cos x3)(3x2) - (cos 2x)(2). 

That fits with (6), because dbldx is 3x2 and daldx is 2 (with minus sign). It also looks 
like the chain rule-which it is! To prove (6) we use the letters v and f :  

A = ~ ( t )dt =j(h(x)) -f (a(x)) (by Part 2 below) 

(by the chain rule) 

Since f '  = v, equation (6) is proved. In the next example the area turns out to be 
constant, although it seems to depend on x. Note that v(t) = l / t  so v(3x) = 1/3x. 

dA = ( ) (3) (&)(2)EXAMPLE2 A=[: - dt has - - = 0. 
t dx 
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dA
Question A = I.u(t) dt has -= u(x) + v(- x). Why does v(- x) have a plus sign? 

dx 

THE FUNDAMENTAL THEOREM, PART 2 


We have used a hundred times the Theorem that is now to be proved. It is the key 
to integration. "The integral of dfldx is f (x) + C." The application starts with v(x). 
We search for an f (x) with this derivative. If dfldx = v(x), the Theorem says that 

We can't rely on knowing formulas for v and f-only the definitions of and dldx. 
The proof rests on one extremely special case: dfldx is the zero function. We easily 

find f (x)= constant. The problem is to prove that there are no other possibilities: f '  
must be constant. When the slope is zero, the graph must be flat. Everybody knows 
this is true, but intuition is not the same as proof. 

Assume that df ldx = 0 in an interval. Iff  (x) is not constant, there are points where 
f (a) #f (b). By the Mean Value Theorem, there is a point c where 

f '(c) = (b)-f (this is not zero because f (a)#f (b)).
b - a  

But f '(c) # 0 directly contradicts df ldx = 0. Therefore f (x) must be constant. 
Note the crucial role of the Mean Value Theorem. A local hypothesis (dfldx = 0 

at each point) yields a global conclusion (f = constant in the whole interval). The 
derivative narrows the field of view, the integral widens it. The Mean Value Theorem 
connects instantaneous to average, local to global, points to intervals. This special 
case (the zero function) applies when A(x) and f(x) have the same derivative: 

IfdAldx = dfldx on an interval, then A(x) =f (x)  + C. (7) 

Reason: The derivative of A(x) -f (x) is zero. So A(x) -f (x) must be constant. 
Now comes the big theorem. It assumes that v(x) is continuous, and integrates 

using f (x): 

5D (Fu~tdamental Theorem, Part 2) If u(x) = u(x) dx =f (b) -f (a).dx 

Proof The antiderivative is f (x). But Part 1gave another antiderivative for the same 
v(x). It was the integral-constructed from rectangles and now called A(x): 

dA 
v ( t )d t  alsohas ---=v(x).

dx 

Since A' = v and f '  = v, the special case in equation (7) states that A(x) =f (x)+ C. 
That is the essential point: The integral from rectangles equals f (x)+ C. 

At the lower limit the area integral is A = 0. So f (a)+ C = 0. At the upper limit 
j'(b) + C = A(b). Subtract to find A(b), the definite integral: 

Calculus is beautiful-its Fundamental Theorem is also its most useful theorem. 
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Another proof of Part 2 starts with f' = v and looks at subintervals:

f(xi) - f(a) = v(x*)(xi - a)

f(x 2) -f(x 1)= V(X2)(X2 - Xi)

f(b) - f(x -,) = v(x,*)(b - x, _)

(by the Mean Value Theorem)

(by the Mean Value Theorem)

(by the Mean Value Theorem).

The left sides add to f(b) -f(a). The sum on the right, as Ax -- 0, is J v(x) dx.

APPLICATIONS OF INTEGRATION

Up to now the integral has been the area under a curve. There are many other
applications, quite different from areas. Whenever addition becomes "continuous," we
have integrals instead of sums. Chapter 8 has space to develop more applications, but
four examples can be given immediately--which will make the point.

We stay with geometric problems, rather than launching into physics or engineering
or biology or economics. All those will come. The goal here is to take a first step
away from rectangles.

EXAMPLE 3 (for circles) The area A and circumference C are related by dA/dr = C.

The question is why. The area is 7r2. Its derivative 27nr is the circumference. By the
Fundamental Theorem, the integral of C is A. What is missing is the geometrical
reason. Certainly rr2 is the integral of 2nrr, but what is the real explanation for A =
J C(r) dr?

My point is that the pieces are not rectangles. We could squeeze rectangles under
a circular curve, but their heights would have nothing to do with C. Our intuition
has to take a completely different direction, and add up the thin rings in Figure 5.16.

shell volume = 4ntr 2Ar

Fig. 5.16 Area of circle = integral over rings. Volume of sphere = integral over shells.

Suppose the ring thickness is Ar. Then the ring area is close to C times Ar. This is
precisely the kind of approximation we need, because its error is of higher order (Ar)2.
The integral adds ring areas just as it added rectangular areas:

A = C dr = 2nr dr = Ir 2 .

That is our first step toward freedom, away from rectangles to rings.
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The ring area AA can be checked exactly-it is the difference of circles:

AA = ir(r + Ar)2 - trr2 = 2rr Ar + 7r(Ar)2 .

This is CAr plus a correction. Dividing both sides by Ar - 0 leaves dA/dr = C.
Finally there is a geometrical reason. The ring unwinds into a thin strip. Its width

is Ar and its length is close to C. The inside and outside circles have different perime-
ters, so this is not a true rectangle-but the area is near CAr.

EXAMPLE 4 For a sphere, surface area and volume satisfy A = dV/dr.

What worked for circles will work for spheres. The thin rings become thin shells. A
shell goes from radius r to radius r + Ar, so its thickness is Ar. We want the volume
of the shell, but we don't need it exactly. The surface area is 47rr2 , so the volume is
about 47rr 2 Ar. That is close enough!

Again we are correct except for (Ar)2. Infinitesimally speaking dV= A dr:

V = A dr = 4rr2 dr = rr3 .

This is the volume of a sphere. The derivative of V is A, and the shells explain why.
Main point: Integration is not restricted to rectangles.

EXAMPLE 5 The distance around a square is 4s. Why does the area have dAlds = 2s?

The side is s and the area is s2. Its derivative 2s goes only half way around the square.
I tried to understand that by drawing a figure. Normally this works, but in the figure
dAlds looks like 4s. Something is wrong. The bell is ringing so I leave this as an
exercise.

EXAMPLE6 Find the area under v(x)= cos- x from x= 0 to x= 1.

That is a conventional problem, but we have no antiderivative for cos- x. We could
look harder, and find one. However there is another solution-unconventional but
correct. The region can be filled with horizontal rectangles (not vertical rectangles).
Figure 5.17b shows a typical strip of length x = cos v (the curve has v = cos'- x). As
the thickness Av approaches zero, the total area becomes J x dv. We are integrating
upward, so the limits are on v not on x:

area = O2 cos v dv = sin v]-' 2 = 1.

The exercises ask you to set up other integrals-not always with rectangles. Archi-
medes used triangles instead of rings to find the area of a circle.

S

s s do

S

OS-lX
OS V

AA = 4sAs? dx 1

Fig. 5.17 Trouble with a square. Success with horizontal strips and triangles.

------
t

T
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5.7 EXERCISES
Read-through questions

The area f(x) = J v(t) dt is a function of a . By Part 1 of
the Fundamental Theorem, its derivative is b . In the
proof, a small change Ax produces the area of a thin c
This area Af is approximately d times o . So the
derivative of J t2 dt is f

The integral Sb t2 dt has derivative . . The minus sign
is because h . When both limits a(x) and b(x) depend on
x, the formula for df/dx becomes I minus __j_. In the
example X" t dt, the derivative is k

By Part 2 of the Fundamental Theorem, the integral of
df/dx is I . In the special case when df/dx = 0, this says
that m . From this special case we conclude: If dA/dx =
dB/dx then A(x) = n . If an antiderivative of 1/x is In x
(whatever that is), then automatically 1Sb dx/x = o

The square 0 < x < s, 0 < y < s has area A = p. If s
is increased by As, the extra area has the shape of .....
That area AA is approximately r . So dA/ds = s

Find the derivatives of the following functions F(x).

xf CoS2 t dt 2 1S cos 3t dt

1
2 t" dt

fX2 U3 du
4 JS x"dt

6 Sfx v(u) du

7 jx+1 v(t) dt (a "running average" of v)

1 tX
8 - v(t) dt (the average of v;

x o

9 - sin 2 t dt
x o

So [fo v(u) du] dt

Jo v(t) dt + Sl v(t) dt

fXX sin t 2 dt

17 Sx u(t)v(t) dt

19 sin x sin- t dt0o

1 0 x + 2

10 x
2 x

use product rule)

t3 dt

12 jx (df/dt)2 dt

14 Sx v(- t) dt

16 Ix sin t dt
18 J(x) 5 dt

f(x)

20 x) dfdt
dt

21 True or false
If df/dx = dg/dx then f(x) = g(x).

If d2 f/dx2 = d2 g/dx2 then f(x) = g(x) + C.
If 3 > x then the derivative of fJ v(t) dt is - v(x).
The derivative of J1 v(x) dx is zero.

24 Suppose df/dx = 2x. We know that d(x 2)/dx = 2x. How
do we prove that f(x) = x2 + C?

25 If JSx v(t) dt = Sx v(t) dt (equal areas left and right of
zero), then v(x) is an function. Take derivatives to
prove it.

26 Example 2 said that 2x dt/t does not really depend on x
(or t!). Substitute xu for t and watch the limits on u.

27 True or false, with reason:
(a) All continuous functions have derivatives.
(b) All continuous functions have antiderivatives.
(c) All antiderivatives have derivatives.
(d) A(x) = J~ dt/t 2 has dA/dx = 0.

Find f~ v(t) dt from the facts in 28-29.

28 dx = v(x) 29 o v(t) dt- xo x+2"

30 What is wrong with Figure 5.17? It seems to show that
dA = 4s ds, which would mean A = J 4s ds = 2s2.

31 The cube 0 < x, y, z s has volume V= . The
three square faces with x = s or y = s or z = s have total area
A = . If s is increased by As, the extra volume has
the shape of . That volume AV is approximately

. So dV/ds =

32 The four-dimensional cube 0 < x, y, z, t < s has hyper-
volume H= . The face with x= s is really a

. Its volume is V = . The total volume of
the four faces with x = s, y = s, z = s, or t = s is
When s is increased by As, the extra hypervolume is
AH ; . So dH/ds =

33 The hypervolume of a four-dimensional sphere is H =
-1

2 r4. Therefore the area (volume?) of its three-dimensional
surface x 2 +y2 + Z2 + t2 = r2 is_

34 The area above the parabola y = x 2 from x = 0 to x = 1
is 4. Draw a figure with horizontal strips and integrate.

35 The wedge in Figure (a) has area ½r2 dO. One reason: It is
a fraction dO/2n of the total area ,7r2. Another reason: It is
close to a triangle with small base rdO and height
Integrating ½r2 dO from 0 = 0 to 0 = gives the area

of a quarter-circle.

36 A = So - x2 dx is also the area of a quarter-circle.
Show why, with a graph and thin rectangles. Calculate this
integral by substituting x = r sin 0 and dx = r cos 0 dO.

22 For F(x) = 1Sx sin t dt, locate F(n + Ax) - F(Xi) on a sine
graph. Where is F(Ax)- F(0)?

23 Find the function v(x) whose average value between 0 and
x is cos x. Start from fo v(t) dt = x cos x.

(b)

Sr

(c)

x
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37 The distance r in Figure (b) is related to 0 by r = 

Therefore the area of the thin triangle is i r 2d0 = 

Integration to 0 = gives the total area 4. 
38 The x and y coordinates in Figure (c) add to 
r cos 0 +r sin 0 = .Without integrating explain why 

39 The horizontal strip at height y in Figure (d) has width dy 
and length x = . So the area up to y =2 is . 
What length are the vertical strips that give the same area? 

40 Use thin rings to find the area between the circles r =2 
and r =3. Draw a picture to show why thin rectangles would 
be extra difficult. 

41 The length of the strip in Figure (e) is approximately 
. The width is . Therefore the triangle has 

area da (do you get i?). 

42 The area of the ellipse in Figure (f) is 2zr2. Its derivative 
is 4zr. But this is not the correct perimeter. Where does the 
usual reasoning go wrong? 

43 The derivative of the integral of v(x) is ~ ( x ) .  What is the 
corresponding statement for sums and differences of the num- 
bers vj? Prove that statement. 

44 The integral of the derivative of f(x) is f(x) + C. What is 
the corresponding statement for sums of differences of f,? 
Prove that statement. 

45 Does d2f /dx2 =a(x) lead to (It a(t) dt) dx =f ( I )  -f(O)? 

46 The mountain y = -x2 + t has an area A(t) above the x 
axis. As t increases so does the area. Draw an xy graph of the 
mountain at t = 1. What line gives dA/dt? Show with words 
or derivatives that d 2 ~ / d t 2  >0. 

5.8 Numerical Integration 

This section concentrates on definite integrals. The inputs are y (x )and two endpoints 
a and b. The output is the integral I. Our goal is to find that number
1; y(x)  d x  = I, accurately and in a short time. Normally this goal is achievable-as 
soon as we have a good method for computing integrals. 

Our two approaches so far have weaknesses. The search for an antiderivative 
succeeds in important cases, and Chapter 7 extends that range-but generally f ( x )  
is not available. The other approach (by rectangles) is in the right direction but too 
crude. The height is set by y(x)  at the right and left end of each small interval. The 
right and left rectangle rules add the areas ( A x  times y): 

R ,=(Ax) (y ,+y ,+  -..+y, )  and L n = ( A x ) ( y o + y l +  . - -+y,- , ) .  

The value of y(x)  at the end of interval j is yj .  The extreme left value yo = y(a) enters 
L, . With n equal intervals of length A x  = ( b- a)/n, the extreme right value is y, = 
y(b). It enters R,.  Otherwise the sums are the same-simple to compute, easy to 
visualize, but very inaccurate. 

This section goes from slow methods (rectangles) to better methods (trapezoidal 
and midpoint) to good methods (Simpson and Gauss). Each improvement cuts down 
the error. You could discover the formulas without the book, by integrating x and 
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x2 and x4. The rule R, would come out on one side of the answer, and L, would be
on the other side. You would figure out what to do next, to come closer to the exact
integral. The book can emphasize one key point:

The quality of a formula depends on how many integrals
f 1 dx, f x dx, f x 2 dx, ..., it computes exactly. If f xP dx
is the first to be wrong, the order of accuracy is p.

By testing the integrals of 1, x, x2, ..., we decide how accurate the formulas are.
Figure 5.18 shows the rectangle rules R, and L,. They are already wrong when

y = x. These methods are first-order: p = 1. The errors involve the first power of
Ax-where we would much prefer a higher power. A larger p in (Ax)P means a
smaller error.

n E= Ax(yj+- yj) e=-EYn E= -• 1 -2

Y 1

I I

Yn- 1

¥

Yj+

Yj

Yj+1

U I Ii
Ax Ax Ax

Fig. 5.18 Errors E and e in R. and L, are the areas of triangles.

When the graph of y(x) is a straight line, the integral I is known. The error triangles
E and e have base Ax. Their heights are the differences yj+ 1 - yj. The areas are
'(base)(height), and the only difference is a minus sign. (L is too low, so the error
L - I is negative.) The total error in R. is the sum of the E's:

R, - I = ½Ax(y - Yo) + -.- + ½Ax(y - yn-_1)= Ax(y. - yo). (1)

All y's between Yo and y, cancel. Similarly for the sum of the e's:

L- I - - ½Ax(Yn - Yo) = - Ax[y(b - y(a)]. (2)

The greater the slope of y(x), the greater the error-since rectangles have zero slope.
Formulas (1) and (2) are nice-but those errors are large. To integrate y = x from

a = 0 to b = 1, the error is ½Ax(1 - 0). It takes 500,000 rectangles to reduce this error
to 1/1,000,000. This accuracy is reasonable, but that many rectangles is unacceptable.

The beauty of the error formulas is that they are "asymptotically correct" for all
functions. When the graph is curved, the errors don't fit exactly into triangles. But
the ratio of predicted error to actual error approaches 1. As Ax -+ 0, the graph is
almost straight in each interval-this is linear approximation.

The error prediction ½Ax[y(b) - y(a)] is so simple that we test it on y(x) = x:

I = o  dx n 1 10 100 1000

error R - I= .33 .044 .0048 .00049

error L, - I= -. 67 -. 056 -. 0052 -. 00051

The error decreases along each row. So does Ax = .1, .01, .001, .0001. Multiplying n
by 10 divides Ax by 10. The error is also divided by 10 (almost). The error is nearly
proportional to Ax-typical of first-order methods.

The predicted error is ½Ax, since here y(1) = 1 and y(O) = 0. The computed errors
in the table come closer and closer to ½Ax = .5, .05, .005, .0005. The prediction is the
"leading term" in the actual error.
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The table also shows a curious fact. Subtracting the last row from the row above
gives exact numbers 1, .1, .01, and .001. This is (R, - I) - (L, - I), which is R, - L,.
It comes from an extra rectangle at the right, included in R. but not L,. Its height is
1 and its area is 1, .1, .01, .001.

The errors in R. and L. almost cancel. The average T, = ½(R, + L,) has less error-
it is the "trapezoidal rule." First we give the rectangle prediction two final tests:

n = l n= 10 n = 100 n= 1000

J (x2 - x) dx: errors 1.7 10- ' 1.7 10- 3  1.7 10-5 1.7*10 - 7

J dx/(l0 + cos 2nx): errors -1 10-3 2 . 10-'4 "0" "0"

Those errors are falling faster than Ax. For y = x2 - x the prediction explains why:
y(O) equals y(l). The leading term, with y(b) minus y(a), is zero. The exact errors are
'(Ax) 2, dropping from 10-1 to 10- 3 to 10- 5 to 10- 7 . In these examples L, is identical
to R. (and also to T,), because the end rectangles are the same. We will see these
((Ax) 2 errors in the trapezoidal rule.

The last row in the table is more unusual. It shows practically no error. Why do
the rectangle rules suddenly achieve such an outstanding success?

The reason is that y(x) = 1/(10 + cos 2nrx) is periodic. The leading term in the error
is zero, because y(O) = y(l). Also the next term will be zero, because y'(0) = y'(1). Every
power of Ax is multiplied by zero, when we integrate over a complete period. So the
errors go to zero exponentially fast.

Personal note I tried to integrate 1/(10 + cos 27rx) by hand and failed. Then I was
embarrassed to discover the answer in my book on applied mathematics. The method
was a special trick using complex numbers, which applies over an exact period.
Finally I found the antiderivative (quite complicated) in a handbook of integrals, and
verified the area 1/-99.

THE TRAPEZOIDAL AND MIDPOINT RULES

We move to integration formulas that are exact when y = x. They have second-
order accuracy. The Ax error term disappears. The formulas give the correct area
under straight lines. The predicted error is a multiple of (Ax) 2. That multiple is found
by testing y = x2-for which the answers are not exact.

The first formula combines R. and L,. To cancel as much error as possible, take
the average !(R, + L,). This yields the trapezoidal rule, which approximates
Sy(x) dx by Tn:

RT.= + ULn= Ax(½yo + yl + Y2 + .. + y.n-1 + yn). (3)

Another way to find T.is from the area of the "trapezoid" below y = x in Figure 5.19a.

Tn =- Ax I(Yo + )+ -+ I(Y1 + Y2) + "'
2 2 1 E= (Ax)2 ( V,, ) e=--I E

yi

I

j+l j
Ax Ax Ax Ax Ax

Fig. 5.19 Second-order accuracy: The error prediction is based on v = x2.

j+ 1
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The base is Ax and the sides have heights yj-l and yj. Adding those areas gives 
+(L,+ R,) in formula (3)-the coefficients of yj combine into f + f = 1. Only the first 
and last intervals are missing a neighbor, so the rule has fyo and fy,. Because 
trapezoids (unlike rectangles) fit under a sloping line, T,, is exact when y = x. 

What is the difference from rectangles? The trapezoidal rule gives weight fAx to 
yo and y,. The rectangle rule R, gives full weight Ax to y, (and no weight to yo). 
R, - T,is exactly the leading error fy, -+yo. The change to T,,knocks out that error. 

Another important formula is exact for y(x) = x. A rectangle has the same area as 
a trapezoid, if the height of the rectangle is halfway between yj - and yj . On a straight 
line graph that is achieved at the midpoint of the interval. By evaluating y(x) at the 
halfway points fAx, AX, AX, ..., we get much better rectangles. This leads to the 
midpoint rule Mn: 

f(4)+3+2+1+(0)fx dx, trapezoids give 1; For = 8. The midpoint rule gives 
4 + 4+ 3 + 3= 8, again correct. The rules become different when y = x2, because y,,, 
is no longer the average of yo and y,. Try both second-order rules on x2: 

I = x2 dx n =  1 10 100 

error T,- I = 116 l/600 1/60000 

error M ,  - I = -1112 -1/1200 -1/120000 

The errors fall by 100 when n is multiplied by 10. The midpoint rule is twice as good 
(- 1/12 vs. 116). Since all smooth functions are close to parabolas (quadratic approxi- 
mation in each interval), the leading errors come from Figure 5.19. The trapezoidal 
error is exactly when y(x) is x2 (the 12 in the formula divides the 2 in y'): 

For exact error formulas, change yt(b) - yt(a) to (b - a)yM(c).The location of c is 
unknown (as in the Mean Value Theorem). In practice these formulas are not much 
used-they involve the pth derivative at an unknown location c. The main point 
about the error is the factor AX)^. 

One crucial fact is easy to overlook in our tests. Each value of y(x) can be extremely 
hard to compute. Every time a formula asks for yj, a computer calls a subroutine. The 
goal of numerical integration is to get below the error tolerance, while calling for a 
minimum number of values of y. Second-order rules need about a thousand values for 
a typical tolerance of The next methods are better. 

FOURTH-ORDER RULE: SIMPSON 

The trapezoidal error is nearly twice the midpoint error (116 vs. -1/12). So a 
good combination will have twice as much of M, as T,. That is Simpson's rule: 

Multiply the midpoint values by 213 = 416. The endpoint values are multiplied by 
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2/6, except at the far ends a and b (with heights Yo and y,). This 1-4-2-4-2-4-1
pattern has become famous.

Simpson's rule goes deeper than a combination of T and M. It comes from a
parabolic approximation to y(x) in each interval. When a parabola goes through yo,
Yl/2, yl, the area under it is !Ax(yo + 4 yl/2+ YI). This is S over the first interval. All
our rules are constructed this way: Integrate correctly as many powers 1, x, x 2, ... as
possible. Parabolas are better than straight lines, which are better than flat pieces.
S beats M, which beats R. Check Simpson's rule on powers of x, with Ax = 1/n:

n = 1 n= 10 n= 100

error if y = x2  0 0 0

error if y = x3  0 0 0

error if y = x4  8.33 -10-3 8.33 10-7 8.33.10-11

Exact answers for x2 are no surprise. S, was selected to get parabolas right. But the
zero errors for x3 were not expected. The accuracy has jumped to fourth order, with
errors proportional to (Ax)4. That explains the popularity of Simpson's rule.

To understand why x3 is integrated exactly, look at the interval [-1, 1]. The odd
function x3 has zero integral, and Simpson agrees by symmetry:

Sx3 dx = x = 0 and [(-1)3 +4(0)3+ 13 =0. (8)

4
2 6 1 1

yn 4 6 2

.I

2

G

j+1I j j+1
Ax Ax Ax Ax Ax/f-

Fig. 5.20 Simpson versus Gauss: E = c(Ax)4 (yj'i 1 - yj") with cs = 1/2880 and c, = - 1/4320.

THE GAUSS RULE (OPTIONAL)

We need a competitor for Simpson, and Gauss can compete with anybody. He
calculated integrals in astronomy, and discovered that two points are enough for a
fourth-order method. From -1 to 1 (a single interval) his rule is

I_ y(x) dx ?% y(- 1//3) + y(1/-,3).  (9)

Those "Gauss points" x = - 1/,3 and x = 1/,3 can be found directly. By placing
them symmetrically, all odd powers x, x3, ... are correctly integrated. The key is in
y = x2 , whose integral is 2/3. The Gauss points - x, and + XG get this integral right:

2 1 1
- (- xG)2 (X )2, SO x = and x, = +3 3

Figure 5.20c shifts to the interval from 0 to Ax. The Gauss points are
(1 ± 1/ •) Ax/2. They are not as convenient as Simpson's (which hand calculators
prefer). Gauss is good for thousands of integrations over one interval. Simpson is

Y(
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good when intervals go back to back-then Simpson also uses two y's per interval. 
For y = x4, you see both errors drop by lop4  in comparing n = I to n = 10: 

I = 1; x4 dx Simpson error 8.33 l o p 3  8.33 l o p 7  

Gauss error - 5.56 - 5.56 l o p 7  

DEFINITE INTEGRALS ON A CALCULATOR 

It is fascinating to know how numerical integration is actually done. The points are 
not equally spaced! For an integral from 0 to 1, Hewlett-Packard machines might 
internally replace x by 3u2 - 2u3 (the limits on u are also 0 and 1). The machine 
remembers to change dx. For example, 

1: 5 becomes 

Algebraically that looks worse-but the infinite value of l/& at x = 0 disappears 
at u = 0. The differential 6(u - u2) du was chosen to vanish at u = 0 and u = 1. We 
don't need y(x) at the endpoints-where infinity is most common. In the u variable 
the integration points are equally spaced-therefore in x they are not. 

When a difficult point is inside [a, b], break the interval in two pieces. And chop 
off integrals that go out to infinity. The integral of epx2 should be stopped by 
x = 10, since the tail is so thin. (It is bad to go too far.) Rapid oscillations are among 
the toughest- the answer depends on cancellation of highs and lows, and the calcula- 
tor requires many integration points. 

The change from x to u affects periodic functions. I thought equal spacing was 
good, since 1/(10 + cos 2nx) was integrated above to enormous accuracy. But there 
is a danger called aliasing. If sin 8nx is sampled with Ax = 118, it is always zero. A 
high frequency 8 is confused with a low frequency 0 (its "alias" which agrees at the 
sample points). With unequal spacing the problem disappears. Notice how any integ- 
ration method can be deceived: 

Ask for the integral of y = 0 and specify the accuracy. The calculator 
samples y at x,,  . . . , x,. (With a PAUSE key, the x's may be displayed.) 
Then integrate Y(x) = (x - x , ) ~  (x - x , )~ .  That also returns the 
answer zero (now wrong), because the calculator follows the same steps. 

On the HP-28s you enter the function, the endpoints, and the accuracy. The 
variable x can be named or not (see the margin). The outputs 4.67077 and 4.7E-5 are 
the requested integral ex dx and the estimated error bound. Your input accuracy 
.00001 guarantees 

The machine estimates accuracy based on its experience in sampling y(x). If you 
guarantee ex within .00000000001, it thinks you want high accuracy and takes longer. 

In consulting for HP, William Kahan chose formulas using 1, 3, 7, 15, . . . sample 
points. Each new formula uses the samples in the previous formula. The calculator 
stops when answers are close. The last paragraphs are based on Kahan's work. 

3 :  ' E X P ( X 1 '  
2 :  € X  1 2)  relative error in y = 

1 : .00001 1 : .00001 

true y - computed y 
computed y 

3 :  ( ( E X P I )  
< .00001. 2 :  € 1  2 3  



5 Integrals 

TI-81 Program to Test the Integration Methods L, R, T, M ,  S 

Prgm1:NUM I N T  
: D i s p  " A = "  
: I n p u t  A 
:D iS P  IIB=~I 
: I n p u t  B 
: L b l  N 
: D i s p  "N="  
: I n p u t  N 
:(B-A)  /N+D 

:D/2+H 
:A+X 
: Y p L  
: l + J  
:@+R 
:8 + M  
:LbL  I 
:X+H+X 
:M+Yl  -+M 

:A+JD-,X 
: R + Y l + R  
: IS>(J ,N)  
: G o t o  1 
: ( L + R - Y l ) D + L  
:R D + R  
:MD+M 
:(L+R)  /2+T 
:( 2 M t T )  /3+S 

: D i s p  "L, R, M, 
T, S "  

: D i s p  L 
: D i s p  R 
: D i s p  M 
: D i s p  T 
: D i s p  S 
:Pause  
: G o t o  N 

Place the integrand y(x)  in the Y 1 position on the Y = function edit screen. Execute 
this program, indicating the interval [A, B ]  and the number of subintervals N. Rules 
L and R and M use N evaluations of y(x). The trapezoidal rule uses N + 1 and 
Simpson's rule uses 2N + 1. The program pauses to display the results. Press ENTER 
to continue by choosing a different N. The program never terminates (only pauses). 
You break out by pressing ON. Don't forget that IS, G o t o,  ... are on menus. 

5.8 EXERCISES 
Read-through questions 

To integrate y(x), divide [a, b] into n pieces of length 
Ax = a . R, and L, place a b over each piece, 
using the height at the right or c endpoint: 
R, =Ax(yl + +y,) and L, = d . These are e 
order methods, because they are incorrect for y = f .The 
total error on [0,1] is approximately Q . For y =cos ax 
this leading term is h . For y =cos 2nx the error is very 
small because [0, 1) is a complete i . 

A much better method is T,=$Rn+ i = 
Ax[iyo + k y1 + +L y , ] .  This m rule is 

n -order because the error for y =x is o . The error 
for y =x2 from a to b is P . The CI rule is twice as 
accurate, using M, =Ax[ r 1. 

Simpson's method is S, =$Mn+ s . It is t -order, 
because the powers u are integrated correctly. The 
coefficients of yo, yIl2, yl are v times Ax. Over three 
intervals the weights are Ax16 times 1-4- w . Gauss uses 

points in each interval, separated by ~ x / f i  For a 
method of order p the error is nearly proportional to Y . 
1 What is the difference L, - T,?Compare with the leading 

error term in (2). 

2 If you cut Ax in half, by what factor is the trapezoidal 
error reduced (approximately)? By what factor is the error in 
Simpson's rule reduced? 

3 Compute Rn and Ln for x3 dx and n = l,2,10. Either 
verify (with computer) or use (without computer) the formula 
l 3  +23 + +n3 = tn2(n+ 

4 One way to compute T,, is by averaging i(L, +R,). 
Another way is to add iyo +yl + +iy,. Which is more 
efficient? Compare the number of operations. 

5 Test three different rules on I = x4 dx for n =2 4 ,  8. 

6 Compute n to six places as 4 1; dx/(l +x2), using any 
rule. 

7 Change Simpson's rule to Ax($ yo +4yllz+4y ) in each 
interval and find the order of accuracy p. 

8 Demonstrate superdecay of the error when 1/(3 + sin x) is 
integrated from 0 to 2a. 

9 Check that (A~)~ (y j+ ,  -yj)/12 is the correct error for 
y = 1 and y =x and y =x2 from the first trapezoid (j=0). 
Then it is correct for every parabola over every interval. 

10 Repeat Problem 9 for the midpoint error 
- (A~)~(y j+-yj)/24. Draw a figure to show why the rectan- 
gle M has the same area as any trapezoid through the mid- 
point (including the trapezoid tangent to y(x)). 

11 In principle sin2 x dx/x2 =n. With a symbolic alge- 
bra code or an HP-28S, how many decimal places do you 
get? Cut off the integral to I!,, and test large and small A. 

12 These four integrals all equal n: 
m - 112 dx 

=dxLJ& I-rn 1'-
x l + x  

(a) Apply the midpoint rule to two of them until 
n x 3.1416. 
(b) Optional: Pick the other two and find a x 3. 

x 



5.8 Numerical Intogrotion 

13 To compute in 2 = dx/x = .69315 with error less than 
.001, how many intervals should T, need? Its leading error is 
 AX)^ [yt(b) - yt(a)]/12. Test the actual error with y = llx. 

14 Compare T. with Mn for I; & dx and n = 1,10,100. The 
error prediction breaks down because yt(0) = oo. 

15 Take f (x) = 1; y(x) dx in error formula 3R to prove that 
y(x) dx - y(0) Ax is exactly f (AX)~Y'(C) for some point c. 

16 For the periodic function y(x) = 1/(2 + cos 6zx) from -1 
to 1, compare T and S and G for n = 2. 

17 For I = 1; dx, the leading error in the trapezoi- 
dal rule is . Try n = 2,4,8 to defy the prediction. 

18 Change to x = sin 8, ,/- = cos 8, dx = cos 8 dB, and 
repeat T, on j;l2 cos2 8 dB. What is the predicted error after 
the change to O? 

19 Write down the three equations Ay(0) + By($) + Cy(1) = I 
for the three integrals I = 1; 1 dx, I: x dx, 1; x2 dx. Solve for 
A, B, C and name the rule. 

20 Can you invent a rule using Ay, + Byll4 + CyIl2 + 
Dy3/, + Ey, to reach higher accuracy than Simpson's? 

21 Show that T, is the only combination of L, and R, that 
has second-order accuracy. 

22 Calculate 1 e-x2 dx with ten intervals from 0 to 5 and 0 
to 20 and 0 to 400. The integral from 0 to m is f &. What 
is the best point to chop off the infinite integral? 

23 The graph of y(x) = 1/(x2 + 10- l o )  has a sharp spike and 
a long tail. Estimate 1; y dx from Tlo and Tloo (don't expect 
much). Then substitute x = 10- tan 8, dx = sec2 8 d0 
and integrate lo5 from 0 to 44. 

24 Compute Jx - nl dx from T, and compare with the 
divide and conquer method of separating 1; lx - n( dx from 

Ix - nl dx. 

25 Find a, b, c so that y = ax2 + bx + c equals 1,3,7 at 
x = 0, 3, 1 (three equations). Check that 4 1 + 8 3 + 4 7 
equals 1; y dx. 

26 Find c in S - I =  AX)^ [yftt(l) - yt"(0)] by taking y = x4 
and Ax = 1. 

27 Find c in G - I = ~(Ax)~[y"'(l) - y"'(- 1)] by taking 
y = x4, Ax = 2, and G = (- l ~ f l ) ~  + (l/fi14. 

28 What condition on y(x) makes L, = R, = T, for the 
integral y(x) dx? 

29 Suppose y(x) is concave up. Show from a picture that the 
trapezoidal answer is too high and the midpoint answer is 
too low. How does y" > 0 make equation (5) positive and (6) 
negative? 
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C H A P T E R  6 

Exponentials and Logarithms 

This chapter is devoted to exponentials like 2" and 10" and above all ex. The goal is 
to understand them, differentiate them, integrate them, solve equations with them, 
and invert them (to reach the logarithm). The overwhelming importance of ex makes 
this a crucial chapter in pure and applied mathematics. 

In the traditional order of calculus books, ex waits until other applications of the . 

integral are complete. I would like to explain why it is placed earlier here. I believe 
that the equation dyldx = y has to be emphasized above techniques of integration. 
The laws of nature are expressed by drflerential equations, and at the center is ex. Its 
applications are to life sciences and physical sciences and economics and engineering 
(and more-wherever change is influenced by the present state). The model produces 
a differential equation and I want to show what calculus can do. 

The key is always bm+"= (bm)(b3. Section 6.1 applies that rule in three ways: 

1. to understand the logarithm as the exponent; 
2. to draw graphs on ordinary and semilog and log-log paper; 
3. to find derivatives. The slope of b" will use bX+*" = (bx)(bh"). 

h6.1 An Overview 

There is a good chance you have met logarithms. They turn multiplication into 
addition, which is a lot simpler. They are the basis for slide rules (not so important) 
and for graphs on log paper (very important). Logarithms are mirror images of 
exponentials-and those I know you have met. 

Start with exponentials. The numbers 10 and lo2and lo3 are basic to the decimal 
system. For completeness I also include lo0, which is "ten to the zeroth power" or 
1. The logarithms of those numbers are the exponents. The logarithms of 1 and 10 and 
100 and 1000 are 0 and 1 and 2 and 3. These are logarithms "to base 10,"because 
the powers are powers of 10. 

Question When the base changes from 10 to b, what is the logarithm of l ?  
Answer Since b0 = 1, logJ is always zero. To base b, the logarithm of bn is n. 



6.1 An Overview

Negative powers are also needed. The number 10x is positive, but its exponent x can
be negative. The first examples are 1/10 and 1/100, which are the same as 10-' and
10- 2. The logarithms are the exponents -1 and -2:

1000 = 103  and

1/1000 = 10- 3 and

log 1000 = 3

log 1/1000 = - 3.

Multiplying 1000 times 1/1000 gives 1 = 100. Adding logarithms gives 3 + (- 3) = 0.
Always 10m times 10" equals 10" +".In particular 103 times 102 produces five tens:

(10)(10)(10) times (10)(10) equals (10)(10)(10)(10)(10) = 105.

The law for b" times b" extends to all exponents, as in 104.6 times 10'. Furthermore
the law applies to all bases (we restrict the base to b > 0 and b - 1). In every case
multiplication of numbers is addition of exponents.

6A bm times b" equals b'", so logarithms (exponents) add
b' divided by b" equals b", so logarithms (exponents) subtract

logb(yZ) = lOgby + lOgbz and logb(Y/Z) = lOgby - lOgbz. (1)

Historical note In the days of slide rules, 1.2 and 1.3 were multiplied by sliding
one edge across to 1.2 and reading the answer under 1.3. A slide rule made in
Germany would give the third digit in 1.56. Its photograph shows the numbers on a
log scale. The distance from 1 to 2 equals the distance from 2 to 4 and from 4 to 8.
By sliding the edges, you add distances and multiply numbers.

Division goes the other way. Notice how 1000/10 = 100 matches 3 - 1 = 2. To divide
1.56 by 1.3, look back along line D for the answer 1.2.

The second figure, though smaller, is the important one. When x increases by 1, 2 x

is multiplied by 2. Adding to x multiplies y. This rule easily gives y = 1, 2, 4, 8, but
look ahead to calculus-which doesn't stay with whole numbers.

Calculus will add Ax. Then y is multiplied by 2ax. This number is near 1. If
Ax = A then 2"ax  1.07-the tenth root of 2. To find the slope, we have to consider
(2 ax - 1)/Ax. The limit is near (1.07 - 1)/- = .7, but the exact number will take time.

1 1+1 1+1+1

Fig. 6.1 An ancient relic (the slide rule). When exponents x add, powers 2x multiply.

229

^ ^

2>



6 Exponentials and Logarithms 

Base Change Bases other than 10 and exponents other than 1,2,3, . . . are needed 
for applications. The population of the world x years from now is predicted to grow 
by a factor close to 1.02". Certainly x does not need to be a whole number of years. 
And certainly the base 1.02 should not be 10 (or we are in real trouble). This prediction 
will be refined as we study the differential equations for growth. It can be rewritten 
to base 10 if that is preferred (but look at the exponent): 

1.02" is the same as 10('Og .02)". 

When the base changes from 1.02 to 10, the exponent is multiplied-as we now see. 
For practice, start with base b and change to base a. The logarithm to base a will 

be written "log." Everything comes from the rule that logarithm = exponent: 

base change for numbers: b = d o g b .  

Now raise both sides to the power x. You see the change in the exponent: 

base change for exponentials: bx = a('0g ,Ix. 

Finally set y = bX. Its logarithm to base b is x. Its logarithm to base a is the exponent 
on the right hand side: logay = (log,b)x. Now replace x by logby: 

base change for logarithms: log, y = (log, b) (log, y ). 

We absolutely need this ability to change the base. An example with a = 2 is 

b = 8 = Z3 g2 = (z3), = 26 log, 64 = 3 2 = (log28)(log864). 

The rule behind base changes is (am)" = am". When the mth power is raised to the 
xth power, the exponents multiply. The square of the cube is the sixth power: 

(a)(a)(a) times (a)(a)(a) equals (a)(a)(a)(a)(a)(a): (a3),=a6. 

Another base will soon be more important than 10-here are the rules for base 
changes: 

The first is the definition. The second is the xth power of the first. The third is the 
logarithm of the second (remember y is bx). An important case is y = a: 

log, a = (log, b)(logb a) = 1 so log, b = 1 /log, a. (3) 

EXAMPLE 8 = 23 means 8lI3 = 2. Then (10g28)(l0g82) = (3)(1/3) = 1. 

This completes the algebra of logarithms. The addition rules 6A came from 
(bm)(b") = bm +". The multiplication rule 68 came from (am)" = am". We still need to 
deJine b" and ax for all real numbers x. When x is a fraction, the definition is easy. 
The square root of a8 is a4 (m = 8 times x = 112). When x is not a fraction, as in 2", 
the graph suggests one way to fill in the hole. 

We could defne 2" as the limit of 23, 231110, 23141100, . . . . As the fractions r approach 
7t, the powers 2' approach 2". This makes y = 2" into a continuous function, with the 
desired properties (2")(2") = 2"'" and (2")" = 2""-whether m and n and x are inte- 
gers or not. But the E'S and 6's of continuity are not attractive, and we eventually 
choose (in Section 6.4) a smoother approach based on integrals. 



GRAPHS OF b" AND logby 

It is time to draw graphs. In principle one graph should do the job for both functions, 
because y =bx means the same as x = logby. These are inverse functions. What one 
function does, its inverse undoes. The logarithm of g(x) = bX is x: 

In the opposite direction, the exponential of the logarithm of y is y: 
g(g - = b('08b~)= Y. (9 

This holds for every base b, and it is valuable to see b = 2 and b = 4 on the same 
graph. Figure 6.2a shows y = 2" and y = 4". Their mirror images in the 45" line give 
the logarithms to base 2 and base 4, which are in the right graph. 

When x is negative, y = bx is still positive. If the first graph is extended to the left, 
it stays above the x axis. Sketch it in with your pencil. Also extend the second graph 
down, to be the mirror image. Don't cross the vertical axis. 

Fig. 6.2 Exponentials and mirror images (logarithms). Different scales for x and y. 

There are interesting relations within the left figure. All exponentials start at 1, 
because b0 is always 1. At the height y = 16, one graph is above x = 2 (because 4' = 
16). The other graph is above x = 4 (because 24 = 16). Why does 4" in one graph equal 
2," in the other? This is the base change for powers, since 4 = 2,. 

The figure on the right shows the mirror image-the logarithm. All logarithms 
start from zero at y = 1. The graphs go down to -co at y = 0. (Roughly speaking 
2-" is zero.) Again x in one graph corresponds to 2x in the other (base change for 
logarithms). Both logarithms climb slowly, since the exponentials climb so fast. 

The number log, 10 is between 3 and 4, because 10 is between 23 and 24. The slope 
of 2" is proportional to 2"-which never happened for xn. But there are two practical 
difficulties with those graphs: 

1. 2" and 4" increase too fast. The curves turn virtually straight up. 
2. The most important fact about Ab" is the value of 6-and the base 

doesn't stand out in the graph. 

There is also another point. In many problems we don't know the function y = 
f(x). We are looking for it! All we have are measured values of y (with errors mixed 
in). When the values are plotted on a graph, we want to discover f(x). 

Fortunately there is a solution. Scale the y axis dfferently. On ordinary graphs, 
each unit upward adds a fixed amount to y. On a log scale each unit multiplies y by 
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aJixed amount. The step from y = 1 to y = 2 is the same length as the step from 3 to 
6 or 10 to 20. 

On a log scale, y = 11 is not halfway between 10 and 12. And y = 0 is not there at 
all. Each step down divides by a fixed amount-we never reach zero. This is com- 
pletely satisfactory for Abx, which also never reaches zero. 

Figure 6.3 is on semilog paper (also known as log-linear), with an ordinary x axis. 
The graph of y = Abx is a straight line. To see why, take logarithms of that equation: 

log y = log A + x log b. (6) 

The relation between x and log y is linear. It is really log y that is plotted, so the graph 
is straight. The markings on the y axis allow you to enter y without looking up its 
logarithm-you get an ordinary graph of log y against x. 

Figure 6.3 shows two examples. One graph is an exact plot of y = 2 loX. It goes 
upward with slope 1, because a unit across has the same length as multiplication by 
10 going up. lox has slope 1 and 10("gb)" (which is bx) will have slope log b. The 
crucial number log b can be measured directly as the slope. 

Fig. 6.3 2 = 10" and 4 10-"I2 on semilog paper. Fig. 6.4 Graphs of  AX^ on log-log paper. 

The second graph in Figure 6.3 is more typical of actual practice, in which we start 
with measurements and look for f(x) .  Here are the data points: 

We don't know in advance whether these values fit the model y = Abx. The graph is 
strong evidence that they do. The points lie close to a line with negative slope- 
indicating log b < 0 and b < 1. The slope down is half of the earlier slope up, so the 
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model is consistent with 

y =  Ado-X12 or log y= log  A- fx .  (7) 

When x reaches 2, y drops by a factor of 10. At x = 0 we see A z 4. 
Another model-a power y = Axk instead of an exponential-also stands out with 

logarithmic scaling. This time we use log-log paper, with both axes scaled. The 
logarithm of y = Axk gives a linear relation between log y and log x: 

log y = log A + k log x. (8) 

The exponent k becomes the slope on log-log paper. The base b makes no difference. 
We just measure the slope, and a straight line is a lot more attractive than a power 
curve. 

The graphs in Figure 6.4 have slopes 3 and 4 and -1. They represent Ax3 and 
A& and Alx. To find the A's, look at one point on the line. At x = 4 the height is 
8, so adjust the A's to make this happen: The functions are x3/8 and 4& and 32/x. 
On semilog paper those graphs would not be straight! 

You can buy log paper or create it with computer graphics. 

THE DERIVATIVES OF y = bxAND x= log,y 

This is a calculus book. We have to ask about slopes. The algebra of exponents is 
done, the rules are set, and on log paper the graphs are straight. Now come limits. 

The central question is the derivative. What is dyldx when y = bx? What is dxldy 
when x is the logarithm logby? Thpse questions are closely related, because bx and 
logby are inverse functions. If one slope can be found, the other is known from 
dxldy = l/(dy/dx). The problem is to find one of them, and the exponential comes 
first. 

You will now see that those questions have quick (and beautiful) answers, except 
for a mysterious constant. There is a multiplying factor c which needs more time. I 
think it is worth separating out the part that can be done immediately, leaving c in 
dyldx and llc in dxldy. Then Section 6.2 discovers c by studying the special number 
called e (but c # e). 

6C The derivative of bX is a multiple ebx. The number c depends on the 
base b.I I 


The product and power and chain rules do not yield this derivative. We are pushed 
all the way back to the original definition, the limit of AylAx: 

Key idea: Split bx+h into bX times bh. Then the crucial quantity bx factors out. More 
than that, bx comes outside the limit because it does not depend on h. The remaining 
limit, inside the brackets, is the number c that we don't yet know: 

This equation is central to the whole chapter: dyldx equals cbx which equals cy. The 
rate of change of y is proportional to y. The slope increases in the same way that bx 
increases (except for the factor c). A typical example is money in a bank, where 
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interest is proportional to the principal. The rich get richer, and the poor get slightly 
richer. We will come back to compound interest, and identify b and c. 

The inverse function is x = logby. Now the unknown factor is l/c: 

I 6D The slope of logby is llcy with the same e (depending on b). I 
Proof If dy/dx = cbx then dxldy = l/cbx = llcy. (1 1) 

That proof was like a Russian toast, powerful but too quick! We go more carefully: 

f(bx) = x (logarithm of exponential) 

f '(bx)(cbx) = 1 (x derivative by chain rule) 

f '(bx) = l/cbx (divide by cbx) 

f '(y) = l/cy (identify bx as y) 

The logarithm gives another way to find c. From its slope we can discover l/c. This 
is the way that finally works (next section). 

- 1  0 1 

Fig. 6.5 The slope of 2" is about .7 2". The slope of log2y is about 11.7~. 

Final remark It is extremely satisfying to meet an f(y) whose derivative is llcy. 
At last the " - 1 power" has an antiderivative. Remember that j'xndx = xn+'/(n + 1) 
is a failure when n = - 1. The derivative of x0 (a constant) does not produce x-'. 
We had no integral for x - ' , and the logarithm fills that gap. If y is replaced by x or t 
(all dummy variables) then 

d 1 d 1 
- log,x=- and -log,t=-.  
dx cx dt c t 

The base b can be chosen so that c = 1. Then the derivative is llx. This final touch 
comes from the magic choice b = e-the highlight of Section 6.2. 

6.1 EXERCISES 

Read-through questions On ordinary paper the graph of y = I is a straight line. 
Its slope is m . On semilog paper the graph of y = n 

In lo4 = 10,000, the exponent 4 is the a of 10,000. The is a straight line. Its slope is 0 . On log-log paper the 
base is b = b . The logarithm of 10" times 10" is c . graph of y = p is a straight line. Its slope is 9 . 
The logarithm of 10m/lOn is d . The logarithm of 10,000" 

The slope of y = b" is dyldx = r , where c depends on is e . If y = bX then x = f . Here x is any number, 
b. The number c is the limit as h -, 0 of s . Since x = and y is always s . 

k logby is the inverse, (dx/dy)(dy/dx) = t . Knowing 
A base change gives b = a - and b" = a -. Then dyldx = cb" yields dxldy = u . Substituting b" for y, the 

8' is 2". In other words log2 y is i times log8y. When slope of log,?; is v . With a change of letters, the slope of 
y = 2 it follows that log28 times log82 equals k . log,x is w . 
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Problems 1-10 use the rules for logarithms. 

1 Find these logarithms (or exponents): 

(a)log232 (b) logz(1/32) ( 4  log32(1/32) 

(d) (e) log, dl0-) (f) log2(l0g2 16) 

2 Without a calculator find the values of 
(a)310g35 (b) 3210835 

(c) log, 05 + log1o2 (d) (l0g3~)(logbg) 
(e) 10510-4103 (f) log256 -log27 

3 Sketch y = 2-" and y = g4") from -1 to 1 on the same 
graph. Put their mirror images x = -log2y and x = log42y 
on a second graph. 

4 Following Figure 6.2 sketch the graphs of y = (iy and x = 
logl12y. What are loglI22 and loglI24? 

5 Compute without a computer: 

(a)log23 + log23 (b) log2(i)10 
(c) log,010040 ( 4  (log 104(loge 10) 
(e) 223/(22)3 (f logdlle) 

6 Solve the following equations for x: 

(a)log10(10")= 7 (b) log 4x -log 4 = log 3 
(c) logXlO= 2 (d) 10g2(l/x) ,=2 
(e) log x + log x = log 8 (f) logx(xx) = 5 

7 The logarithm of y = xn is logby = . 
*8 Prove that (1ogba)(logdc) = (logda)(logbc). 

9 2'' is close to lo3 (1024 versus 1000). If they were equal 
then log,lO would be . Also logl02 would be 

instead of 0.301. 

10 The number 21°00 has approximately how many (decimal) 
digits? 

Questions 11-19 are about the graphs of y = bx and x = logby. 

11 By hand draw the axes for semilog paper and the graphs 
of y = l.lX and y = lq1.1)". 

12 Display a set of axes on which the graph of y = loglox is 
a straight line. What other equations give straight lines on 
those axes? 

13 When noise is measured in decibels, amplifying by a factor 
A increases the decibel level by 10 log A. If a whisper is 20db 
and a shout is 70db then 10 log A = 50 and A = . 

14 Draw semilog graphs of y = lo1-' and y = ~fi)". 
15 The Richter scale measures earthquakes by loglo(I/Io) = 
R. What is R for the standard earthquake of intensity I,? If 
the 1989 San Francisco earthquake measured R = 7, how did 
its intensity I compare to I,? The 1906 San Francisco quake 
had R = 8.3. The record quake was four times as intense with 
R =  . 
16 The frequency of A above middle C is 440/second. The 
frequency of the next higher A is . Since 2'/l2 x 1.5, 
the note with frequency 660/sec is 

17 Draw your own semilog paper and plot the data 

Estimate A and b in y = Abx. 

18 Sketch log-log graphs of y = x2 and y = &. 
19 On log-log paper, printed or homemade, plot y = 4, 11, 
21, 32, 45 at x = 1, 2, 3, 4, 5. Estimate A and k in y = AX^. 

Questions 20-29 are about the derivative dyldx = cbx. 

20 g(x) = bx has slope g' = cg. Apply the chain rule to 
g(f(y))= y to prove that dfldy = llcy. 

21 If the slope of log x is llcx, find the slopes of log (2x) and 
log (x2) and log (2"). 

22 What is the equation (including c) for the tangent line to 
y = 10" at x = O? Find also the equation at x = 1. 

23 What is the equation for the tangent line to x = log, ,y at 
y = l? Find also the equation at y = 10. 

24 With b = 10, the slope of 10" is c10". Use a calculator for 
small h to estimate c = lim (loh - l)/h. 

25 The unknown constant in the slope of y = (.l)" is 
L =lim (. l h- l)/h. (a) Estimate L by choosing a small h. 
(b) Change h to -h to show that L = -c from Problem 24. 

26 Find a base b for which (bh - l)/h x 1. Use h = 114 by hand 
or h = 1/10 and 1/100 by calculator. 

27 Find the second derivative of y = bx and also of x = logby. 

28 Show that C = lim (lWh - l)/h is twice as large as c = 
lim (10" - l)/h. (Replace the last h's by 2h.) 

29 In 28, the limit for b = 100 is twice as large as for b = 10. 
So c probably involves the of b. 
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6.2 The Exponential eX 

The last section discussed bx and logby. The base b was arbitrary-it could be 2 or 6 
or 9.3 or any positive number except 1. But in practice, only a few bases are used. 
I have never met a logarithm to base 6 or 9.3. Realistically there are two leading 
candidates for b, and 10 is one of them. This section is about the other one, which is 
an extremely remarkable number. This number is not seen in arithmetic or algebra 
or geometry, where it looks totally clumsy and out of place. In calculus it comes into 
its own. 

The number is e. That symbol was chosen by Euler (initially in a fit of selfishness, 
but he was a wonderful mathematician). It is the base of the natural logarithm. 
It also controls the exponential ex, which is much more important than In x. 
Euler also chose 7c to stand for perimeter-anyway, our first goal is to find e. 

Remember that the derivatives of bx and logby include a constant c that depends 
on b. Equations (10) and (1 1) in the previous section were 

d - b" = cb" d 1 
and - logby = -. 

dx d~ CY 
(1) 

At x = 0, the graph of bx starts from b0 = 1. The slope is c. At y = 1, the graph of 
logby starts from logbl = 0. The logarithm has slope llc. With the right choice of the 
base b those slopes will equal 1 (because c will equal 1). 

For y = 2" the slope c is near .7. We already tried Ax = .1 and found Ay z -07. The 
base has to be larger than 2, for a starting slope of c = 1. 

We begin with a direct computation of the slope of logby at y = 1: 

1 1 
- = slope at 1 = lim - [logb(l + h) - logbl] = lim logb[(l + h)'lh]. 
C h + O  h h-0  

Always logbl = 0. The fraction in the middle is logb(l + h) times the number l/h. This 
number can go up into the exponent, and it did. 

The quantity (1 + h)'Ih is unusual, to put it mildly. As h + 0, the number 1 + h is 
approaching 1. At the same time, l/h is approaching infinity. In the limit we have 
1". But that expression is meaningless (like 010). Everything depends on the 
balance bet.ween "nearly 1" and "nearly GO." This balance produces the extraordinary 
number e: 

DEFINITION The number e is equal to lim (1 +'h)'lh. Equivalently e = lim 
h + O  n+ co 

Before computing e, look again at the slope llc. At the end of equation (2) is the 
logarithm of e: 

When the base is b = e, the slope is logee = 1. That base e has c = 1 as desired 

1 
The derivative of ex is 1 ex and the derivative of log,y is - 

1 my' (4) 

This is why the base e is all-important in calculus. It makes c = 1. 
To compute the actual number e from (1 + h)'lh, choose h = 1, 1/10, 1/100, . . . . Then 

the exponents l/h are n = 1, 10, 100, . . . . (All limits and derivatives will become official 
in Section 6.4.) The table shows (1 + h)lih approaching e as h -, 0 and n -, oo: 
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The last column is converging to e (not quickly). There is an infinite series that 
converges much faster. We know 125,000 digits of e (and a billion digits of n). There 
are no definite patterns, although you might think so from the first sixteen digits: 

e = 2.7 1828 1828 45 90 45 .-. (and lle z .37). 

The powers of e produce y = ex. At x = 2.3 and 5, we are close to y = 10 and 150. 

The logarithm is the inverse function. The logarithms of 150 and 10, to the base e, 
are close to x = 5 and x = 2.3. There is a special name for this logarithm--the natural 
logarithm. There is also a special notation "ln" to show that the base is e: 

In y means the same as log,y. The natural logarithm is the exponent in ex =y. 

The notation In y (or In x-it is the function that matters, not the variable) is standard 
in calculus courses. After calculus, the base is generally assumed to be e. In most of 
science and engineering, the natural logarithm is the automatic choice. The symbol 
"exp (x)" means ex, and the truth is that the symbol "log x" generally means In x. 
Base e is understood even without the letters In. But in any case of doubt-on a 
calculator key for example-the symbol "ln x" emphasizes that the base is e. 

THE DERIVATIVES OF ex AND In x 

Come back to derivatives and slopes. The derivative of bx is cbx, and the derivative 
of log, y is llcy. If b = e then c = 1 .  For all bases, equation (3) is llc = logbe. 
This gives c-the slope of bx at x = 0: 

c = In b is the mysterious constant that was not available earlier. The slope of 2" is 
In 2 times 2". The slope of ex is In e times ex (but In e = 1). We have the derivatives 
on which this chapter depends: 

6F The derivatives of ex and In y are ex and 1 fy.  For other bases 

d d 1 
-bx = (In b)bx and - logby= --- (6)dx d~ (in b ) ~ '  

To make clear that those derivatives come from the functions (and not at all from 
the dummy variables), we rewrite them using t and x: 

d d 1-e'=ef and - l n x = - .  
dt dx x 
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Remark on slopes at x = 0: It would be satisfying to see directly that the slope of 2" 
is below 1, and the slope of 4" is above 1. Quick proof: e is between 2 and 4. 
But the idea is to see the slopes graphically. This is a small puzzle, which is fun to 
solve but can be skipped. 

2" rises from 1 at x = 0 to 2 at x = 1. On that interval its average slope is 1. Its 
slope at the beginning is smaller than average, so it must be less than 1-as desired. 
On the other hand 4" rises from :at x = - to 1 at x = 0. Again the average slope 
is L/L = 1. Since x = 0 comes at the end of this new interval, the slope of 4" at that , , 
point exceeds 1. Somewhere between 2" and 4" is ex, which starts out with slope 1. 

This is the graphical approach to e. There is also the infinite series, and a fifth 
definition through integrals which is written here for the record: 

1. e is the number such that ex has slope 1 at x = 0 

2. e is the base for which In y = log,y has slope 1 at y = 1 

3. e is the limit of ( 1 + - as n -, co:r 

5. the area 5; x - l  dx equals 1. 

The connections between 1, 2, and 3 have been made. The slopes are 1 when e is the 
limit of (1 + lln)". Multiplying this out wlll lead to 4, the infinite series in Section 6.6. 
The official definition of in x comes from 1 dxlx, and then 5 says that in e = 1. This 
approach to e (Section 6.4) seems less intuitive than the others. 

Figure 6.6b shows the graph of e-". It is the mirror image of ex across the vertical 
axis. Their product is eXe-"= 1. Where ex grows exponentially, e-" decays 
exponentially-or it grows as x approaches - co. Their growth and decay are faster 
than any power of x. Exponential growth is more rapid than polynomial growth, so 
that e"/xngoes to infinity (Problem 59). It is the fact that ex has slope ex which keeps 
the function climbing so fast. 

Fig. 6.6 ex grows between 2" and 4". Decay of e-", faster decay of e-"'I2. 

The other curve is y = e-"'I2. This is the famous "bell-shaped curve" of probability 
theory. After dividing by fi,it gives the normal distribution, which applies to so 
many averages and so many experiments. The Gallup Poll will be an example in 
Section 8.4. The curve is symmetric around its mean value x = 0, since changing x to 
-x has no effect on x2. 

About two thirds of the area under this curve is between x = - 1 and x = 1. If you 
pick points at random below the graph, 213 of all samples are expected in that 
interval. The points x = - 2 and x = 2 are "two standard deviations" from the center, 
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enclosing 95% of the area. There is only a 5% chance of landing beyond. The decay
is even faster than an ordinary exponential, because -ix2 has replaced x.

THE DERIVATIVES OF eX AND eu x)

The slope of ex is ex. This opens up a whole world of functions that calculus can deal
with. The chain rule gives the slope of e3 x and esinx and every e"(x):

6G The derivative of euix) is eu(x) times du/dx. (8)

Special case u = cx: The derivative of e" is cecx. (9)

EXAMPLE 1 The derivative of e3 x is 3e3 x (here c = 3). The derivative of esinx is
esin x cos x (here u = sin x). The derivative of f(u(x)) is df/du times du/dx. Here
f= e" so df/du = e". The chain rule demands that second factor du/dx.

EXAMPLE 2 e(In 2 2)x is the same as 2x. Its derivative is In 2 times 2x. The chain rule
rediscovers our constant c = In 2. In the slope of bx it rediscovers the factor c = In b.

Generally ecx is preferred to the original bx. The derivative just brings down the
constant c. It is better to agree on e as the base, and put all complications (like c =
In b) up in the exponent. The second derivative of ecx is c2ecx.

EXAMPLE 3 The derivative of e-x2/2 is - xe -
x

2/ 2 (here u = - x2/2 so du/dx= - x).

EXAMPLE 4 The second derivative off= e - x2/2, by the chain rule and product rule,
is

f" = (-1) e-x 2/2 + ( x) 2 e-x 2/2 = ( 2 - l)e -x 2/2 . (10)

Notice how the exponential survives. With every derivative it is multiplied by more
factors, but it is still there to dominate growth or decay. The points of inflection,
where the bell-shaped curve hasf" = 0 in equation (10), are x = 1 and x = - 1.

EXAMPLE 5 (u = n In x). Since en" n is x" in disguise, its slope must be nx - 1:

slope = e""nx (n In x)= x(n) = nx (11)

This slope is correct for all n, integer or not. Chapter 2 produced 3x2 and 4x3 from
the binomial theorem. Now nx"- 1 comes from In and exp and the chain rule.

EXAMPLE 6 An extreme case is xx = (eInx)x. Here u = x In x and we need du/dx:

d (x) = exnxIn x+ x- = xx(ln x + 1).dx x)
INTEGRALS OF e" AND e" du/dx

The integral of ex is ex. The integral of ecx is not ecx. The derivative multiplies by c so
the integral divides by c. The integral of ecx is ecx/c (plus a constant).

EXAMPLES e2xdx - e2x + C bxdx = + C
2 f Inb
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The first one has c = 2. The second has c = In b-remember again that bx = e('nb)x. 
The integral divides by In b. In the third one, e3("+')is e3" times the number e3 and 
that number is carried along. Or more likely we see e3'"+'I as eu.The missing du/dx = 

3 is fixed by dividing by 3. The last example fails because duldx is not there. We 
cannot integrate without duldx: 

Here are three examples with du/dx and one without it: 

The first is a pure eudu. So is the second. The third has u = and du/dx = l/2&, 
so only the factor 2 had to be fixed. The fourth example does not belong with the 
others. It is the integral of du/u2, not the integral of eudu. I don't know any way to 
tell you which substitution is best-except that the complicated part is 1 + ex and it 
is natural to substitute u. If it works, good. 

Without an extra ex for duldx, the integral 5 dx/( l  + looks bad. But u = 1 + ex 
is still worth trying. It has du = exdx = (u- 1)dx: 

That last step is "partial fractions.'' The integral splits into simpler pieces (explained 
in Section 7.4) and we integrate each piece. Here are three other integrals: 

The first can change to -5 eudu/u2,which is not much better. (It is just as impossible.) 
The second is actually Judu ,  but I prefer a split: 54ex and 5e2" are safer to do 
separately. The third is 5 (4e-" + l)dx,  which also separates. The exercises offer prac- 
tice in reaching eudu/dx - ready to be integrated. 

Warning about dejinite integrals When the lower limit is x = 0, there is a natural 
tendency to expect f(0) = 0-in which case the lower limit contributes nothing. For 
a power f = x3 that is true. For an exponential f = e3" it is definitely not true, because 
f(0) = 1: 
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6.2 EXERCISES 
Read-through questions 

The number e is approximately a . It is the limit of (1+ h) 
to the power b . This gives l.O1lOOwhen h = c . An 
equivalent form is e = lim ( d )". 

When the base is b = e, the constant c in Section 6.1 is e . 
Therefore the derivative of y = exis dyldx = f .The deriv- 
ative of x = logey is dxldy = g . The slopes at x =0 and 
y = 1 are both h . The notation for log,y is I ,which 
is the I logarithm of y. 

The constant c in the slope of bxis c = k .The function 
bx can be rewritten as I . Its derivative is m . The 
derivative of eU(")is n . The derivative of ednXis 0 . 
The derivative of ecxbrings down a factor P . 

The integral of ex is q . The integral of ecxis r . 
The integral of eU(")du/dx s . In general the integral of is 
eU(")by itself is t to find. 

Find the derivatives of the functions in 1-18. 

17 esinx + sin ex 18 x- ' I x  (which is e-) 

19 The difference between e and (1+ l/n)" is approximately 
Celn. Subtract the calculated values for n = 10, 100, 1000 from 
2.7183 to discover the number C. 

20 By algebra or a calculator find the limits of ( 1  + l/n)2nand 
(1+ l / n ) 4  

21 The limit of (11/10)1°, (101/100)100, ... is e. So the limit of 
(10111)1°, (100/101)100,... is . So the limit of 
(lO/ll)ll ,  (100/101)101,... is . The last sequence is 
(1- l/ny. 

22 Compare the number of correct decimals of e for 
(l.OO1)lOOO and if possible (l.OOOO1)lOOOOO.and (l.OOO1)lOOOO 
Which power n would give all the decimals in 2.71828? 

23 The function y =ex solves dyldx =y. Approximate this 
equation by A Y A x  = Y; which is Y(x+ h)- Y(x)=h Y(x). 
With h =& find Y(h)after one step starting from Y(0)= 1. 
What is Y ( l )after ten steps? 

24 The function that solves dyldx = -y starting from y = 1 
at x =0 is . Approximate by Y(x+ h)- Y(x)= 
-hY(x).If h = what is Y(h)after one step and what is Y ( l )  
after four steps? 

25 Invent three functions f, g, h such that for x >  10 
(1 + llx)" <f (x)< e" <g(x)<e2" < h(x)<xx. 

26 Graph ex and # at x = -2, -1, 0, 1 ,  2. Another form 
o f f i i s  . 

Find antiderivatives for the functions in 27-36. 

33 xeX2+ xe-x2 34 (sin x)ecO" + (cos x)e"'"" 

35 @+(ex)' 36 xe" (trial and error) 

37 Compare e-" with e-X2.Which one decreases faster near 
x =O? Where do the graphs meet again? When is the ratio of 
e-x2to e-X less than 1/100? 

38 Compare ex with xX:Where do the graphs meet? What 
are their slopes at that point? Divide xx by ex and show that 
the ratio approaches infinity. 

39 Find the tangent line to y = ex at x = a. From which point 
on the graph does the tangent line pass through the origin? 

40 By comparing slopes, prove that if x > 0 then 
(a)ex> 1 + x  (b)e-"> 1-x .  

41 Find the minimum value of y =xx for x >0.Show from 
dZy/dx2that the curve is concave upward. 

42 Find the slope of y = x1lXand the point where dy/dx =0. 
Check d2y/dx2to show that the maximum of xllxis 

43 If dyldx = y find the derivative of e-"y by the product 
rule. Deduce that y(x)= Cex for some constant C. 

44 Prove that xe =ex has only one positive solution. 

Evaluate the integrals in 45-54. With infinite limits, 49-50 are 
"improper." 

46 Jb" sin x ecoSx dx 

48 S l2-. dx 

50 J; xe-.. dx 
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53 1: 2sinx cos x dx 54 1'' (1 -ex)'' ex dx 

55 Integrate the integrals that can be integrated: 

56 Find a function that solves yl(x) = 5y(x) with y(0) = 2. 

57 Find a function that solves yl(x) = l/y(x) with y(0) = 2. 

58 With electronic help graph the function (1 + llx)". What 
are its asymptotes? Why? 

59 This exercise shows that F(x) = x"/ex -, 0 as x + m. 
(a) Find dF/dx. Notice that F(x) decreases for x > n > 0. 
The maximum of xn/e", at x = n, is nn/en. 
(b) F(2x) = (2x)"/ezx = 2"xn/eX ex < 2"n"/en ex. 
Deduce that F(2x) + 0 as x + bo. Thus F(x) + 0. 

60 With n = 6, graph F(x) = x6/ex on a calculator or com- 
puter. Estimate its maximum. Estimate x when you reach 
F(x) = 1. Estimate x when you reach F(x) = 4. 
61 Stirling's formula says that n! z @ JZn. Use it to esti- 
mate 66/e6 to the nearest whole number. Is it correct? How 
many decimal digits in lo!? 

62 x6/ex -, 0 is also proved by l'H6pital's rule (at x = m): 

lim x6/ex = lim 6xs/ex = fill this in = 0. 

6.3 Growth and Decay in Science and Economics 

The derivative of y = e" has taken time and effort. The result was y' = cecx, which 
means that y' = cy. That computation brought others with it, virtually for free-the 
derivatives of bx and xx  and eu(x). But I want to stay with y' = cy-which is the most 
important differential equatibn in applied mathematics. 

Compare y' = x with y' = y. The first only asks for an antiderivative of x .  We quickly 
find y = i x 2  + C. The second has dyldx equal to y itself-which we rewrite as dy/y = 
dx.  The integral is in y = x + C. Then y itself is exec. Notice that the first solution is 
$x2 plus a constant, and the second solution is ex times a constant. 

There is a way to graph slope x versus slope y. Figure 6.7 shows "tangent arrows," 
which give the slope at each x and y.  For parabolas, the arrows grow steeper as x 

1 2 1 

Fig. 6.7 The slopes are y' = x and y' = y. The solution curves fit those slopes. 
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grows-because y' = slope = x. For exponentials, the arrows grow steeper as y
grows-the equation is y'= slope = y. Now the arrows are connected by y = Aex.
A differential equation gives afield of arrows (slopes). Its solution is a curve that stays
tangent to the arrows - then the curve has the right slope.

A field of arrows can show many solutions at once (this comes in a differential
equations course). Usually a single Yo is not sacred. To understand the equation we
start from many yo-on the left the parabolas stay parallel, on the right the heights
stay proportional. For y' = - y all solution curves go to zero.

From y' = y it is a short step to y' = cy. To make c appear in the derivative, put c
into the exponent. The derivative of y = ecx is cecx, which is c times y. We have reached
the key equation, which comes with an initial condition-a starting value yo:

dy/dt = cy with y = Yo at t = 0. (1)

A small change: x has switched to t. In most applications time is the natural variable,
rather than space. The factor c becomes the "growth rate" or "decay rate"-and ecx
converts to ect.

The last step is to match the initial condition. The problem requires y = Yo at
t = 0. Our ec' starts from ecO = 1. The constant of integration is needed now-the
solutions are y = Ae". By choosing A = Yo, we match the initial condition and solve
equation (1). The formula to remember is yoec'.

61 The exponential law y = yoec' solves y' = cy starting from yo.

The rate of growth or decay is c. May I call your attention to a basic fact? The
formula yoec' contains three quantities Yo, c, t. If two of them are given, plus one
additional piece of information, the third is determined. Many applications have one
of these three forms: find t, find c, find yo.

1. Find the doubling time T if c = 1/10. At that time yoecT equals 2yo:

In 2 .7
e T = 2 yields cT= In 2 so that T= I --. (2)

c .1

The question asks for an exponent T The answer involves logarithms. If a cell grows
at a continuous rate of c = 10% per day, it takes about .7/.1 = 7 days to double in
size. (Note that .7 is close to In 2.) If a savings account earns 10% continuous interest,
it doubles in 7 years.

In this problem we knew c. In the next problem we know T

2. Find the decay constant c for carbon-14 if y = ½yo in T= 5568 years.

ecr = 4 yields cT= In I so that c (In 5)/5568. (3)

After the half-life T= 5568, the factor ecT equals 4. Now c is negative (In = - In 2).
Question 1 was about growth. Question 2 was about decay. Both answers found

ecT as the ratio y(T)/y(O). Then cT is its logarithm. Note how c sticks to T.
T has the units of time, c has the units of "1/time."

Main point: The doubling time is (In 2)/c, because cT= In 2. The time to multiply
by e is 1/c. The time to multiply by 10 is (In 10)/c. The time to divide by e is - 1/c,
when a negative c brings decay.

3. Find the initial value Yo if c = 2 and y(l) = 5:

y(t) = yoec' yields Yo = y(t)e -
c = 5e-2
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(1.05 1 3)20 
(1 .05l2O 

2 

simple interest .
f 
c T = l n 2  5 10 15 20 years 

Fig. 6.8 Growth (c  >0) and decay (c <0). Doubling time T =(In 2)lc. Future value at 5%. 

All we do is run the process backward. Start from 5 and go back to yo. With time 
reversed, ect becomes e-". The product of e2 and e-2 is 1-growth forward and 
decay backward. 

Equally important is T+ t. Go forward to time Tand go on to T + t: 
y(T+ t) is yoec(T+t) which is (yoecT)ect. (4) 

Every step t, at the start or later, multiplies by the same ect. This uses the fundamental 
property of exponentials, that eT+' = eT et. 

EXAMPLE 1 Population growth from birth rate b and death rate d (both constant): 

dyldt = by - dy = cy (the net rate is c = b - d). 

The population in this model is yoect = yoebte-dt. It grows when b > d (which makes 
c > 0). One estimate of the growth rate is c = 0.02/year: 

In2 .7
The earth's population doubles in about T= -x -= 35 years. 

c .02 

First comment: We predict the future based on c. We count the past population 
to find c. Changes in c are a serious problem for this model. 

Second comment: yoect is not a whole number. You may prefer to think of bacteria 
instead of people. (This section begins a major application of mathematics to economics 
and the life sciences.) Malthus based his theory of human population on this equation 
y' = cy-and with large numbers a fraction of a person doesn't matter so much. To 
use calculus we go from discrete to continuous. The theory must fail when t is very 
large, since populations cannot grow exponentially forever. Section 6.5 introduces the 
logistic equation y' = cy - by2, with a competition term -by2 to slow the growth. 

Third comment: The dimensions of b, c, d are "l/time." The dictionary gives birth 
rate = number of births per person in a unit of time. It is a relative rate-people 
divided by people and time. The product ct is dimensionless and ect makes sense (also 
dimensionless). Some texts replace c by 1- (lambda). Then 1/A is the growth time or 
decay time or drug elimination time or diffusion time. 

EXAMPLE 2 Radioactive dating A gram of charcoal from the cave paintings in 
France gives 0.97 disintegrations per minute. A gram of living wood gives 6.68 disin- 
tegrations per minute. Find the age of those Lascaux paintings. 

The charcoal stopped adding radiocarbon when it was burned (at t = 0). The 
amount has decayed to yoect. In living wood this amount is still yo, because cosmic 
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rays maintain the balance. Their ratio is ect= 0.97/6.68. Knowing the decay rate c 
from Question 2 above, we know the present time t: 

5568 0.97
ln (~3ct = yields t = -in - = 14,400 years.

- .7 (6.68) 

Here is a related problem-the age of uranium. Right now there is 140 times as much 
U-238 as U-235. Nearly equal amounts were created, with half-lives of (4.5)109 and 
(0.7)109 years. Question: How long since uranium was created? Answer: Find t by 
sybstituting c = (In $)/(4.5)109and C = (ln ;)/(0.7)109: 

In 140
ect/ect=140 * ct - Ct = In 140 =. t = --- 6(109) years.

c - C  

EXAMPLE 3 Calculus in Economics: price inflation and the value of money 

We begin with two inflation rates - a continuous rate and an annual rate. For the 
price change Ay over a year, use the annual rate: 

Ay = (annual rate) times (y) times (At). (5) 

Calculus applies the continuous rate to each instant dt. The price change is dy:
k 

dy = (continuous rate) times (y) times (dt). (6) 

Dividing by dt, this is a differential equation for the price: 

dyldt = (continuous rate) times (y) = .05y. 

The solution is yoe.05'.Set t = 1. Then emo5= 1.0513 and the annual rate is 5.13%. 

When you ask a bank what interest they pay, they give both rates: 8% and 8.33%. 
The higher one they call the "effective rate." It comes from compounding (and depends 
how often they do it). If the compounding is continuous, every dt brings an increase 
of dy-and eeo8is near 1.0833. 

Section 6.6 returns to compound interest. The interval drops from a month to a 
day to a second. That leads to (1 + lln)", and in the limit to e. Here we compute the 
effect of 5% continuous interest: 

Future value A dollar now has the same value as esoSTdollars in T years. 

Present value A dollar in T years has the same value as e--OSTdollars now. 
Doubling time Prices double (emosT= 2) in T= In 21.05 x 14 years. 

With no compounding, the doubling time is 20 years. Simple interest adds on 20 
times 5% = 100%. With continuous compounding the time is reduced by the factor 
In 2 z -7, regardless of the interest rate. 

EXAMPLE 4 In 1626 the Indians sold Manhattan for $24. Our calculations indicate 
that they knew what they were doing. Assuming 8% compound interest, the original 
$24 is multiplied by e.08'. After t = 365 years the multiplier is e29.2and the $24 has 
grown to 115 trillion dollars. With that much money they could buy back the land 
and pay off the national debt. 

This seems farfetched. Possibly there is a big flaw in the model. It is absolutely 
true that Ben Franklin left money to Boston and Philadelphia, to be invested for 200 
years. In 1990 it yielded millions (not trillions, that takes longer). Our next step is a 
new model. 
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Question How can you estimate e2'm2 with a $24 calculator (log but not In)? 
Answer Multiply 29.2 by loglo e = .434 to get 12.7. This is the exponent to base 10. 
After that base change, we have or more than a trillion. 

GROWTH OR DECAY WlTH A SOURCE TERM 

The equation y' = y will be given a new term. Up to now, all growth or decay has 
started from yo. No deposit or withdrawal was made later. The investment grew by 
itself-a pure exponential. The new term s allows you to add or subtract from the 
account. It is a "source"-or a "sink" if s is negative. The source s = 5 adds 5dt, 
proportional to dt but not to y: 

Constant source: dyldt = y + 5 starting from y = yo. 

Notice y on both sides! My first guess y = et+' failed completely. Its derivative is et+' 
again, which is not y + 5. The class suggested y = et + 5t. But its derivative et + 5 is 
still not y + 5. We tried other ways to produce 5 in dyldt. This idea is doomed to 
failure. Finally we thought of y = Aet - 5. That has y' = Aet = y + 5 as required. 

Important: A is not yo. Set t = 0 to find yo = A - 5. The source contributes 5et - 5: 

The solution is (yo+ 5)e' - 5. That is the same as yOef+ 5(et- 1). 

s = 5 multiplies the growth term ef - 1 that starts at zero. yoef grows as before. 

EXAMPLE 5 dyldt = -y + 5 has y = (yo- 5)e-' + 5. This is y0e-' + 5(1 - e-'). 7 ,lOet-5 

That final term from the soul-ce is still positive. The other term yoe-' decays to zero. 
The limit as t + is y, = 5 .  A negative c leads to a steady state y,. 

Based on these examples with c = 1 and c = -- 1, we can find y for any c and s. 
Oet -5 

EQUATION WlTH SOURCE 2 = cy + s starts from y = yo at t = 0. (7)dt 
5e&+5 

The source could be a deposit of s = $1000/year, after an initial investment of yo = 5 =Y,
$8000. Or we can withdraw funds at s = -$200/year. The units are "dollars per year" 
to match dyldt. The equation feeds in $1000 or removes $200 continuously-not all 0 -5e-'+5 

at once. 1 
Note again that y = e(c+s)tis not a solution. Its derivative is (c + sly. The combina- Rgmdm9 

tion y = ect+ s is also not a solution (but closer). The analysis of y' = cy + s will be 
our main achievement for dzrerential equations (in this section). The equation is not 
restricted to finance-far from it-but that produces excellent examples. 

I propose to find y in four ways. You may feel that one way is enough.? The first 
way is the fastest-only three lines-but please give the others a chance. There is no 
point in preparing for real problems if we don't solve them. 

Solution by Method 1 (fast way) Substitute the combination y = Aec' + B. The solu- 
tion has this form-exponential plus constant. From two facts we find A and B: 

the equation y' = cy + s gives cAect = c(Aect+ B) + s 

the initial value at t = 0 gives A + B = yo. 

tMy class says one way is more than enough. They just want the answer. Sometimes I cave 
in and write down the formula: y is y,ect plus s(e" - l)/c from the source term. 
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The first line has cAect on both sides. Subtraction leaves cB + s = 0,or B = -SIC. 
Then the second line becomes A = yo -B = yo + (slc): 

S
KEY FORMULA y = or y = yoect+ -(ect - 1) .  

C 

With s = 0 this is the old solution yoect (no source). The example with c = 1 and 
s = 5 produced (yo+ 5)ef - 5. Separating the source term gives yo& + 5(et - 1). 

Solution by Method 2 (slow way) The input yo produces the output yo@. After t 
years any deposit is multiplied by ea. That also applies to deposits made after the 
account is opened. If the deposit enters at time 'IS the growing time is only t - T 
Therefore the multiplying factor is only ec(t- This growth factor applies to the small 
deposit (amount s dT)  made between time Tand T+ dT. 

Now add up all outputs at time t .  The output from yo is yoea. The small deposit 
s dTnear time T grows to ec('-T)s dT. The total is an integral: 

This principle of Duhamel would still apply when the source s varies with time. 
Here s is constant, and the integral divides by c: 

That agrees with the source term from Method 1, at the end of equation (8). There 
we looked for "exponential plus constant," here we added up outputs. 

Method 1 was easier. It succeeded because we knew the form A&'+ B-with 
"undetermined coefficients." Method 2 is more complete. The form for y is part of 
the output, not the input. The source s is a continuous supply of new deposits, all 
growing separately. Section 6.5 starts from scratch, by directly integrating y' = cy + s. 

Remark Method 2 is often described in terms of an integrating factor. First write 
the equation as y' - cy = s. Then multiply by a magic factor that makes integration 
possible: 

( y r- cy)e-ct  = se-c' multiply by the factor e-" 

ye-"]: = - -S 
e - ~ t $  integrate both sides 

C 

ye - C t  - yo = - -S (e- C f  - 1) substitute 0 and t 
C 

y = ectyo+ -S 
(ect- 1 )  isolate y to reach formula (8) 

C 


The integrating factor produced a perfect derivative in line 1. I prefer Duhamel's idea, 
that all inputs yo and s grow the same way. Either method gives formula (8) for y. 

THE MATHEMATICS OF FINANCE (AT A CONTINUOUS RATE) 

The question from finance is this: What inputs give what outputs? The inputs can 
come at the start by yo, or continuously by s. The output can be paid at the end or 
continuously. There are six basic questions, two of which are already answered. 

The future value is yoect from a deposit of yo. To produce y in the future, deposit 
the present value ye-". Questions 3-6 involve the source term s. We fix the continuous 
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rate at 5% per year (c = .05), and start the account from yo = 0. The answers come 
fast from equation (8). 

Question 3 With deposits of s = $1000/year, how large is y after 20 years? 

One big deposit yields 20,000e z$54,000. The same 20,000 via s yields $34,400. 
Notice a small by-product (for mathematicians). When the interest rate is c = 0, 

our formula s(ec'- l)/c turns into 010. We are absolutely sure that depositing 
$1000/year with no interest produces $20,000 after 20 years. But this is not obvious 
from 010. By l'H6pital's rule we take c-derivatives in the fraction: 

s(ec'- 1) steC'lim -= lim -= st. This is (1000)(20)= 20,000. (11)
c+O C c-ro 1 

Question 4 What continuous deposit of s per year yields $20,000 after 20 years? 

S 1000
20,000 = -(e(.0"(20)- 1) requires s = ---582.

.05 e - 1 

Deposits of $582 over 20 years total $11,640. A single deposit of yo = 20,00O/e = 
$7,360 produces the same $20,000 at the end. Better to be rich at t = 0. 

Questions 1and 2 had s = 0 (no source). Questions 3 and 4 had yo = 0 (no initial 
deposit). Now we come to y = 0. In 5, everything is paid out by an annuity. In 6, 
everything is paid up on a loan. 

Question 5 What deposit yo provides $1000/year for 20 years? End with y = 0. 

-S 
y = yoec'+ -S 

(ec'- 1)= 0 requires yo = -(1 - e-").
C C 

Substituting s = - 1000, c = .05, t = 20 gives yo x 12,640. If you win $20,000 in a 
lottery, and it is paid over 20 years, the lottery only has to put in $12,640. Even less 
if the interest rate is above 5%. 

Question 6 What payments s will clear a loan of yo = $20,000 in 20 years? 

Unfortunately, s exceeds $1000 per year. The bank gives up more than the $20,000 
to buy your car (and pay tuition). It also gives up the interest on that money. You pay 
that back too, but you don't have to stay even at every moment. Instead you repay 
at a constant rate for 20 years. Your payments mostly cover interest at the start and 
principal at the end. After t = 20 years you are even and your debt is y = 0. 

This is like Question 5 (also y = O), but now we know yo and we want s: 

y = yoec'+ -S 
(ec' - 1)= 0 requires s = - cyoec'/(ec'- 1).

C 

The loan is yo = $20,000, the rate is c = .05/year, the time is t = 20 years. Substituting 
in the formula for s, your payments are $1582 per year. 

Puzzle How is s = $1582 for loan payments related to s = $582 for deposits? 

0 -+ $582 per year +$20,000 and $20,000 + - $1582 per year +0. 
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That difference of exactly 1000 cannot be an accident. 1582 and 582 came from

e 1 e-1
1000 • and 1000 with difference 1000 - 1000.

e-1 e-1 e-1

Why? Here is the real reason. Instead of repaying 1582 we can pay only 1000 (to
keep even with the interest on 20,000). The other 582 goes into a separate account.
After 20 years the continuous 582 has built up to 20,000 (including interest as in
Question 4). From that account we pay back the loan.

Section 6.6 deals with daily compounding-which differs from continuous com-
pounding by only a few cents. Yearly compounding differs by a few dollars.

34400 +s = 1000 y'= - 3y + 6
20000 - 20000 s =-1582 6 2

12640 Yoo - 3 - 1
s= 582 + 2

20 s =-1000 20

Fig. 6.10 Questions 3-4 deposit s. Questions 5-6 repay loan or annuity. Steady state -s/c.

TRANSIENTS VS. STEADY STATE

Suppose there is decay instead of growth. The constant c is negative and yoec" dies
out. That is the "transient" term, which disappears as t -+ co. What is left is the
"steady state." We denote that limit by y.

Without a source, y, is zero (total decay). When s is present, y, = - s/c:

6J The solution y = Yo + - e" - - approaches y, =- - when ec -*0.

At this steady state, the source s exactly balances the decay cy. In other words
cy + s = 0. From the left side of the differential equation, this means dy/dt = 0. There
is no change. That is why y, is steady.

Notice that y. depends on the source and on c-but not on yo.

EXAMPLE 6 Suppose Bermuda has a birth rate b = .02 and death rate d = .03. The
net decay rate is c = - .01. There is also immigration from outside, of s = 1200/year.
The initial population might be Yo = 5 thousand or Yo = 5 million, but that number
has no effect on yo. The steady state is independent of yo.

In this case y. = - s/c = 1200/.01 = 120,000. The population grows to 120,000 if
Yo is smaller. It decays to 120,000 if Yo is larger.

EXAMPLE 7 Newton's Law of Cooling: dy/dt = c(y - y.). (12)

This is back to physics. The temperature of a body is y. The temperature around it
is y.. Then y starts at Yo and approaches y,, following Newton's rule: The rate is
proportional to y - y. The bigger the difference, the faster heat flows.

The equation has - cy. where before we had s. That fits with y. = - s/c. For the
solution, replace s by - cy. in formula (8). Or use this new method:
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Solution by Method 3 The new idea is to look at the dzrerence y - y, . Its derivative 
is dy/dt, since y, is constant. But dy/dt is c(y -y,)- this is our equation. The differ- 
ence starts from yo -y,, and grows or decays as a pure exponential: 

d
-(y-y,)=c(y-y,) hasthesolution (y-y,)=(yo-y,)e". (13).
dt 

This solves the law of cooling. We repeat Method 3 using the letters s and c: 

(y + :) = c(y + :) has the solution (y + f) = (yo + :)ect. (14) 

Moving s/c to the right side recovers formula (8). There is a constant term and an 
exponential term. In a differential equations course, those are the "particular solution" 
and the "homogeneous solution." In a calculus course, it's time to stop. 

EXAMPLE 8 In a 70" room, Newton's corpse is found with a temperature of 90". A 
day later the body registers 80". When did he stop integrating (at 98.6")? 

Solution Here y, = 70 and yo = 90. Newton's equation (13) is y = 20ec' + 70. Then 
y = 80 at t = 1 gives 206 = 10. The rate of cooling is c = In ). Death occurred when 
2 0 8  + 70 = 98.6 or ect= 1.43. The time was t = In 1.43/ln )= half a day earlier. 

6.3 EXERCISES 

Read-through exercises 

If y' = cy then At) = a . If dyldt = 7y and yo = 4 then 
y(t) = b . This solution reaches 8 at t = c . If the dou- 
bling time is Tthen c = d . If y' = 3y and y(1) = 9 then yo 
was e . When c is negative, the solution approaches 

f a s t j o o .  

The constant solution to dyldt = y + 6 is y = g . The 
general solution is y = Aet -6. If yo = 4 then A = h . The 
solution of dyldt = cy + s starting from yo is y = Ae" + B = 

. The output from the source s is i . An input at 
time T grows by the factor k at time t. 

At c = lo%, the interest in time dt is dy = 1 . This 
equation yields At) = m . With a source term instead of 
yo, a continuous deposit of s = 4000/year yields y = n 
after 10 years. The deposit required to produce 10,000 in 10 
years is s = 0 (exactly or approximately). An income of 
4000/year forever (!) comes from yo = P . The deposit to 
give 4OOOIyear for 20 years is yo = 9 . The payment rate 
s to clear a loan of 10,000 in 10 years is r . 

The solution to y' = -3y + s approaches y, = s . 

Solve 1-4 starting from yo = 1 and from yo = - 1. Draw both 
solutions on the same graph. 

Solve 5-8 starting from yo = 10. At what time does y increase 
to 100 or drop to l? 

9 Draw a field of "tangent arrows" for y' = -y, with the 
solution curves y = e-" and y = -e-". 

10 Draw a direction field of arrows for y' = y -1, with solu- 
tion curves y = eX + 1 and y = 1. 

Problems 11-27 involve yoect.They ask for c or t or yo. 

11 If a culture of bacteria doubles in two hours, how many 
hours to multiply by lo? First find c. 

12 If bacteria increase by factor of ten in ten hours, how 
many hours to increase by 100?What is c? 

13 How old is a skull that contains 3 as much radiocarbon 
as a modern skull? 

14 If a relic contains 90% as much radiocarbon as new mate- 
rial, could it come from the time of Christ? 

15 The population of Cairo grew from 5 million to 10 million 
in 20 years. From y' = cy find c. When was y = 8 million? 

16 The populations of New York and Los Angeles are grow- 
ing at 1% and 1.4% a year. Starting from 8 million (NY) and 
6 million (LA), when will they be equal? 
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17 Suppose the value of $1 in Japanese yen decreases at 2% 
per year. Starting from $1 =Y240, when will 1 dollar equal 1 
yen? 

18 The effect of advertising decays exponentially. If 40% 
remember a new product after three days, find c. How long 
will 20% remember it? 

19 If y = 1000 at t = 3 and y = 3000 at t =4 (exponential 
growth), what was yo at t =O? 

20 If y = 100 at t =4 and y = 10 at t = 8 (exponential decay) 
when will y = l? What was yo? 

21 Atmospheric pressure decreases with height according to 
dpldh =cp. The pressures at h =0 (sea level) and h =20 km 
are 1013 and 50 millibars. Find c. Explain why p = 

halfway up at h = 10. 

22 For exponential decay show that y(t) is the square root of 
y(0) times y(2t). How could you find y(3t) from y(t) and y(2t)? 

23 Most drugs in the bloodstream decay by y' = cy @st- 
order kinetics). (a) The half-life of morphine is 3 hours. Find 
its decay constant c (with units). (b) The half-life of nicotine 
is 2 hours. After a six-hour flight what fraction remains? 

24 How often should a drug be taken if its dose is 3 mg, it is 
cleared at c =.Ol/hour, and 1 mg is required in the blood- 
stream at all times? (The doctor decides this level based on 
body size.) 

25 The antiseizure drug dilantin has constant clearance rate 
y' = -a until y =yl . Then y' = -ayly,. Solve for y(t) in two 
pieces from yo. When does y reach y,? 

26 The actual elimination of nicotine is multiexponential: y = 
Aect+ ~ e ~ ' .The first-order equation (dldt -c)y =0 changes 
to the second-order equation (dldt -c)(d/dt-C)y =0. Write 
out this equation starting with y", and show that it is satisfied 
by the given y. 

27 True or false. If false, say what's true. 
(a) The time for y = ec' to double is (In 2)/(ln c). 
(b) If y' = cy and z' =cz then (y + 2)' =2c(y + z). 
(c) If y' = cy and z' = cz then (ylz)' =0. 
(d)If y' = cy and z' = Cz then (yz)' = (c + C)yz. 

28 A rocket has velocity u. Burnt fuel of mass Am leaves at 
velocity v -7. Total momentum is constant: 

mu =(m -Am)(v + Av) + Am(u -7). 

What differential equation connects m to v? Solve for v(m) not 
v(t), starting from vo = 20 and mo =4. 

Problems 29-36 are about solutions of y' =cy + s. 
29 Solve y' = 3y + 1 with yo = 0 by assuming y = Ae3' + B 
and determining A and B. 

30 Solve y' = 8 -y starting from yo and y = Ae-' + B. 

Solve 31-34 with yo =0 and graph the solution. 

35 (a) What value y =constant solves dy/dt = -2y + 12? 
(b) Find the solution with an arbitrary constant A. 
(c) What solutions start from yo =0 and yo = lo? 
(d) What is the steady state y,? 

36 Choose + signs in dyldt = + 3y f6 to achieve the 
following results starting from yo = 1. Draw graphs. 

(a) y increases to GO (b) y increases to 2 
(c) y decreases to -2 (d) y decreases to -GO 

37 What value y =constant solves dyldt =4 -y? Show that 
y(t)= Ae-' + 4 is also a solution. Find y(1) and y, if yo = 3. 

38 Solve y' =y + e' from yo =0 by Method 2, where the 
deposit eT at time Tis multiplied by e'-T. The total output 
at time t is y(t) =j',eT e' - d ~ =  . Substitute back to 
check y' =y + et. 

39 Rewrite y' =y + et as y' -y = et. Multiplying by e-', the 
left side is the derivative of . Integrate both sides 
from yo =0 to find y(t). 

40 Solve y' = -y + 1 from yo =0 by rewriting as y' + y = 1, 
multiplying by et, and integrating both sides. 

41 Solve y' =y + t from yo =0 by assuming y = Aet + Bt + C. 

Problems 42-57 are about the mathematics of finance. 

42 Dollar bills decrease in value at c = - .04 per year because 
of inflation. If you hold $1000, what is the decrease in dt 
years? At what rate s should you print money to keep even? 

43 If a bank offers annual interest of 74% or continuous 
interest of 74%, which is better? 

44 What continuous interest rate is equivalent to an annual 
rate of 9%? Extra credit: Telephone a bank for both rates 
and check their calculation. 

45 At 100% interest (c = 1) how much is a continuous deposit 
of s per year worth after one year? What initial deposit yo 
would have produced the same output? 

46 To have $50,000 for college tuition in 20 years, what gift 
yo should a grandparent make now? Assume c = 10%. What 
continuous deposit should a parent make during 20 years? If 
the parent saves s = $1000 per year, when does he or she reach 
$50,000 arid retire? 
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47 Income per person grows 3%, the population grows 2%, 
the total income grows . Answer if these are (a) 
annual rates (b) continuous rates. 

48 When dyldt = cy + 4, how much is the deposit of 4dT at 
time T worth at the later time t? What is the value at t = 2 of 
deposits 4dTfrom T= 0 to T= I? 

49 Depositing s = $1000 per year leads to $34,400 after 20 
years (Question 3). To reach the same result, when should you 
deposit $20,000 all at once? 

50 For how long can you withdraw s = $500/year after 
depositing yo = $5000 at 8%, before you run dry? 

51 What continuous payment s clears a $1000 loan in 60 
days, if a loan shark charges 1% per day continuously? 

52 You are the loan shark. What is $1 worth after a year of 
continuous compounding at 1 % per day? 

53 You can afford payments of s = $100 per month for 48 
months. If the dealer charges c = 6%, how much can you 
borrow? 

54 Your income is Ioe2" per year. Your expenses are Eoect 
per year. (a) At what future time are they equal? (b) If you 
borrow the difference until then, how much money have you 
borrowed? 

55 If a student loan in your freshman year is repaid plus 20% 
four years later, what was the effective interest rate? 

56 Is a variable rate mortgage with c = .09 + .001t for 20 
years better or worse than a fixed rate of lo%? 

57 At 10% instead of 8%, the $24 paid for Manhattan is 
worth after 365 years. 

Problems 58-65 approach a steady state y, as t -+ m. 

58 If dyldt = -y + 7 what is y,? What is the derivative of 
y -y,? Then y -y, equals yo -y ,  times . 

59 Graph y(t) when y' = 3y - 12 and yo is 

(a)below 4 (b) equal to 4 (c) above 4 

60 The solutions to dyldt = c(y - 12) converge to y ,  = 

provided c is . 

61 Suppose the time unit in dyldt = cy changes from minutes 
to hours. How does the equation change? How does dyldt = 

-y + 5 change? How does y ,  change? 

62 True or false, when y, and y, both satisfy y' = cy + s. 

(a)The sum y = y, + y, also satisfies this equation. 

(b)The average y = $(yl + y2) satisfies the same equation. 

(c) The derivative y = y; satisfies the same equation. 

63 If Newton's coffee cools from 80" to 60" in 12 minutes 
(room temperature 20G), find c. When was the coffee at 100G? 

64 If yo = 100 and y(1) = 90 and y(2) = 84, what is y,? 

65 If yo = 100 and y(1) = 90 and y(2) = 81, what is yr? 

66 To cool down coffee, should you add milk now or later? 
The coffee is at 70°C, the milk is at lo0, the room is at 20". 

(a) Adding 1 part milk to 5 parts coffee makes it 60". With 
y, = 20", the white coffee cools to y(t) = . 

(b)The black coffee cools to y,(t) = . The milk 
warms to y,(t) = . Mixing at time t gives 
(5yc + y J 6  =--

6.4 Logarithms 

We have given first place to ex and a lower place to In x. In applications that is 
absolutely correct. But logarithms have one important theoretical advantage (plus 
many applications of their own). The advantage is that the derivative of In x is l/x, 
whereas the derivative of ex is ex. We can't define ex as its own integral, without 
circular reasoning. But we can and do define In x (the natural logarithm) as the 
integral of the " - 1 power" which is llx: 

Note the dummy variables, first x then u. Note also the live variables, first x then y. 
Especially note the lower limit of integration, which is 1 and not 0. The logarithm is 
the area measured from 1. Therefore In 1 = 0 at that starting point-as required. 
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Earlier chapters integrated all powers except this "-1 power." The logarithm is
that missing integral. The curve in Figure 6.11 has height y = 1/x-it is a hyperbola.
At x = 0 the height goes to infinity and the area becomes infinite: log 0 = - 00.
The minus sign is because the integral goes backward from 1 to 0. The integral
does not extend past zero to negative x. We are defining In x only for x > O.t

I 1

In 2-

1 x 1 a ab 1/2 1 2 4

Fig. 6.11 Logarithm as area. Neighbors In a + In b = In ab. Equal areas: -In = In 2 = In 4.

With this new approach, In x has a direct definition. It is an integral (or an area).
Its two key properties must follow from this definition. That step is a beautiful
application of the theory behind integrals.

Property 1: In ab = In a + In b. The areas from 1 to a and from a to ab combine into
a single area (1 to ab in the middle figure):

a 1 ab fab

Neighboring areas: dx + - dx - dx. (2)
x x x

The right side is In ab, from definition (1). The first term on the left is In a. The
problem is to show that the second integral (a to ab) is In b:

- d x  du = In b. (3)

We need u = 1 when x = a (the lower limit) and u = b when x = ab (the upper limit).
The choice u = x/a satisfies these requirements. Substituting x = au and dx = a du
yields dx/x = du/u. Equation (3) gives In b, and equation (2) is In a + In b = In ab.

Property 2: In b" = n In b. These are the left and right sides of

{b" 1 dx (?) n -Jdu. (4)

This comes from the substitution x = u". The lower limit x = 1 corresponds to u = 1,
and x = b" corresponds to u = b. The differential dx is nu"-ldu. Dividing by x = u"
leaves dx/x = n du/u. Then equation (4) becomes In b" = n In b.

Everything comes logically from the definition as an area. Also definite integrals:

3x3x
EXAMPLE I Compute - dt. Solution: In 3x - In x = In - In 3.

11
EXAMPLE 2 Compute - dx. Solution: In 1 - In .1 = In 10. (Why?)

tThe logarithm of -1 is 7ni (an imaginary number). That is because e"'= -1. The logarithm
of i is also imaginary-it is ½7i. In general, logarithms are complex numbers.

1
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EXAMPLE 3 Compute ' du. Solution: In e2 = 2. The area from 1 to e2 is 2.

Remark While working on the theory this is a chance to straighten out old debts.
The book has discussed and computed (and even differentiated) the functions ex and
bx and x", without defining them properly. When the exponent is an irrational number
like rt, how do we multiply e by itself i times? One approach (not taken) is to come
closer and closer to it by rational exponents like 22/7. Another approach (taken now)
is to determine the number e' = 23.1 ... by its logarithm.t Start with e itself:

e is (by definition) the number whose logarithm is 1

e" is (by definition) the number whose logarithm is 7r.

When the area in Figure 6.12 reaches 1, the basepoint is e. When the area reaches 7E,

the basepoint is e'. We are constructing the inverse function (which is ex). But how
do we know that the area reaches 7t or 1000 or -1000 at exactly one point? (The
area is 1000 far out at e1000 . The area is -1000 very near zero at e-100ooo0.) To define
e we have to know that somewhere the area equals 1!

For a proof in two steps, go back to Figure 6.11c. The area from 1 to 2 is more
than 1 (because 1/x is more than - on that interval of length one). The combined area
from 1 to 4 is more than 1. We come to area = 1 before reaching 4. (Actually at
e = 2.718....) Since 1/x is positive, the area is increasing and never comes back to 1.

To double the area we have to square the distance. The logarithm creeps upwards:

In x
In x -+ oo but --* 0. (5)

x

The logarithm grows slowly because ex grows so fast (and vice versa-they are
inverses). Remember that ex goes past every power x". Therefore In x is passed by
every root x'l". Problems 60 and 61 give two proofs that (In x)/xl"I approaches zero.

We might compare In x with x/. At x = 10 they are close (2.3 versus 3.2). But out
at x = e'o the comparison is 10 against e5, and In x loses to x.

e
e

e 1 ex e

Fig. 6.12 Area is logarithm of basepoint. Fig. 6.13 In x grows more slowly
than x.

tChapter 9 goes on to imaginary exponents, and proves the remarkable formula e"' = - 1.

I
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APPROXIMATION OF LOGARITHMS

1= -
x T

area x
minus
area x2/2

1 1+x

S= ex
I areax2/2

area x

Ox

Rg. 6.14

The limiting cases In 0 = - co and In oo = + co are important. More important are
logarithms near the starting point In 1 = 0. Our question is: What is In (1 + x) for x
near zero? The exact answer is an area. The approximate answer is much simpler.
If x (positive or negative) is small, then

In (1 +x) x and ex ;1 + x.

The calculator gives In 1.01 = .0099503. This is close to x = .01. Between 1 and 1 + x
the area under the graph of 1/x is nearly a rectangle. Its base is x and its height is 1.
So the curved area In (1 + x) is close to the rectangular area x. Figure 6.14 shows
how a small triangle is chopped off at the top.

The difference between .0099503 (actual) and .01 (linear approximation) is
-. 0000497. That is predicted almost exactly by the second derivative: ½ times (Ax)2

times (In x)" is (.01)2( - 1)= - .00005. This is the area of the small triangle!

In(1 + x) . rectangular area minus triangular area = x - Ix 2.

The remaining mistake of .0000003 is close to x3 (Problem 65).
May I switch to ex? Its slope starts at eo = 1, so its linear approximation is 1 + x.

Then In (ex) % In (1 + x) x x. Two wrongs do make a right: In (ex) = x exactly.
The calculator gives e"01 as 1.0100502 (actual) instead of 1.01 (approximation). The

second-order correction is again a small triangle: ix 2 = .00005. The complete series

for In (1 + x) and ex are in Sections 10.1 and 6.6:

In (1 +x)= x- x 2 /2 + x 3 /3- ... ex = 1 + x + x 2/2+ x3/6 + ....

DERIVATIVES BASED ON LOGARITHMS

Logarithms turn up as antiderivatives very often. To build up a collection of integrals,
we now differentiate In u(x) by the chain rule.

1 du
6K The derivative of In x is -. The derivative of In u(x) is .x u :x

The slope of In x was hard work in Section 6.2. With its new definition (the integral
of 1/x) the work is gone. By the Fundamental Theorem, the slope must be 1/x.

For In u(x) the derivative comes from the chain rule. The inside function is u, the
outside function is In. (Keep u > 0 to define In u.) The chain rule gives

d 1 1
dIn cx= -c- ( !)

dx cx x
d

d In (x 2 + 1)= 2x/(x2 + 1)dx

In ex = exlex = 1
dx

d 3
In X3 = 3x 2 /x 3 =3

dx x

d -sin x
in cos x - tan x

dx cos x

d 11
In (In x)= I

dx In x x

Those are worth another look, especially the first. Any reasonable person would
expect the slope of In 3x to be 3/x. Not so. The 3 cancels, and In 3x has the same
slope as In x. (The real reason is that In 3x = In 3 + In x.) The antiderivative of 3/x is
not In 3x but 3 In x, which is In x3.
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Before moving to integrals, here is a new method for derivatives: logarithmic dzreren- 
tiation or LD. It applies to products and powers. The product and power rules are 
always available, but sometimes there is an easier way. 

Main idea: The logarithm of a product p(x) is a sum of logarithms. Switching to 
In p, the sum rule just adds up the derivatives. But there is a catch at the end, as you 
see in the example. 

EXAMPLE 4 Find dpldx if p(x) = xxJx - 1.  Here ln p(x) = x in x + f ln(x - 1). 

1 
Take the derivative of In p: l d p = x . - + l n x + - 1 

pdx x 2(x - 1)' 

Now multiply by p(x): 

The catch is that last step. Multiplying by p complicates the answer. This can't be 
helped-logarithmic differentiation contains no magic. The derivative of p =fg is the 
same as from the product rule: In p = ln f  + In g gives 

For p = xex sin x, with three factors, the sum has three terms: 

In p = l n  x + x + l n  sin x and p l = p  
L 

We multiply p times pl/p (the derivative of In p). Do the same for powers: 

INTEGRALS BASED ON LOGARITHMS 

Now comes an important step. Many integrals produce logarithms. The foremost 
example is llx, whose integral is In x. In a certain way that is the only example, but 
its range is enormously extended by the chain rule. The derivative of In u(x) is uf/u, 
so the integral goes from ul/u back to In u: 

dx = ln u(x) or equivalently = In u. 

Try to choose u(x) so that the integral contains duldx divided by u. 

EXAMPLES 
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Final remark When u is negative, In u cannot be the integral of llu. The logarithm 
is not defined when u < 0. But the integral can go forward by switching to -u: 

jdu? 
dx= 

I-du/dx
-dx =In(- u). 

- U  

Thus In(- u) succeeds when In u fails.? The forbidden case is u =0. The integrals In u 
and In(- u), on the plus and minus sides of zero, can be combined as lnlul. Every 
integral that gives a logarithm allows u < 0 by changing to the absolute value lul: 

The areas are -1 and -In 3. The graphs of llx and l/(x -5) are below the x axis. 
We do not have logarithms of negative numbers, and we will not integrate l/(x -5) 
from 2 to 6. That crosses the forbidden point x = 5, with infinite area on both sides. 

The ratio dulu leads to important integrals. When u =cos x or u = sin x, we are 
integrating the tangent and cotangent. When there is a possibility that u <0, write 
the integral as In lul. 

Now we report on the secant and cosecant. The integrals of llcos x and llsin x 
also surrender to an attack by logarithms - based on a crazy trick: 

sec x + tan x 
+1sec dx = 1 GeC tan x) dx = In isec x + tan XI. (9) 

csc x -cot x 1CSC x dx = j csc x (CSC - X) dx = ln csc x -cot xi. (10) 

Here u = sec x + tan x is in the denominator; duldx = sec x tan x + sec2 x is above it. 
The integral is In lul. Similarly (10) contains duldx over u =csc x -cot x. 

In closing we integrate In x itself. The derivative of x In x is In x + 1. To remove 
the extra 1, subtract x from the integral: I ln x dx = x in x -x. 

In contrast, the area under l/(ln x) has no elementary formula. Nevertheless it is 
the key to the greatest approximation in mathematics-the prime number theorem. 
The area J: dxlln x is approximately the number of primes between a and b. Near eloo0, 
about 1/1000 of the integers are prime. 

6.4 EXERCISES 

Read-through questions e . As x + GO, In x approaches f . But the ratio 

The natural logarithm of x is a . This definition leads (ln x)/& approaches g . The domain and range of in x 

to In xy = b and In xn= c . Then e is the number are h . 
whose logarithm (area under llx curve) is d . Similarly 
ex is now defined as the number whose natural logarithm is The derivative of In x is I . The derivative of ln(1 + x) 

?The integral of llx (odd function) is In 1x1 (even function). Stay clear of x =0. 
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is I . The tangent approximation to ln(1 + x) at x = 0 is 
k . The quadratic approximation is I . The quadratic 

approximation to ex is m . 
The derivative of In u(x) by the chain rule is n . Thus 

(ln cos x)' = 0 . An antiderivative of tan x is P . The 
product p = x e5" has In p = q . The derivative of this equ- 
ation is r . Multiplying by p gives p' = s , which is 
LD or logarithmic differentiation. 

The integral of ul(x)/u(x) is t . The integral of 
2x/(x2+ 4) is u . The integral of llcx is v . The integ- 
ral of l/(ct + s)is w . The integral of l/cos x, after a trick, 
is x . We should write In 1x1 for the antiderivative of llx, 
since this allows Y . Similarly Idu/u should be written 

2 . 

Find the derivative dyldx in 1-10. 

3 y=(ln x)-' 4 y = (ln x)/x 

5 y = x  ln x-x 6 y=loglox 

Find the indefinite (or definite) integral in 11-24. 

cos x dx 
19 1- sin x 

21 I tan 3x dx 22 I cot 3x dx 

25 Graph y = ln (1 + x) 26 Graph y = In (sin x) 

Compute dyldx by differentiating In y. This is LD: 

27 y=,/m 28 Y=,/mJn 
29 y = esinx 30 = x- l lx  

Evaluate 37-42 by any method. 

41 -
d 

ln(sec x + tan x) 
42 lsec2x+ sec x tan x 

dx sec x + tan x 
dx 

Verify the derivatives 43-46, which give useful antiderivatives: 

d x - a  2a
44 -In ---

dx (x + a) -(X2-a') 

Estimate 47-50 to linear accuracy, then quadratic accuracy, 
by exx 1+ x + ix2. Then use a calculator. 

In(' +51 Compute lim -
x+O x 

53 Compute lim logdl x,+ 

x+O x 

ex- 1
52 Compute lim -

x-ro x 

bX- 1 
9Compute lim -

x-ro x 

55 Find the area of the "hyperbolic quarter-circle" enclosed 
byx=2andy=2abovey=l /x .  

56 Estimate the area under y = l/x from 4 to 8 by four upper 
rectangles and four lower rectangles. Then average the 
answers (trapezoidal rule). What is the exact area? 

1 1  
--•57 Why is - + - + + -1 

near In n? Is it above or below? 
2 3 n 

58 Prove that ln x < 2(& - 1) for x > 1. Compare the integ- 
rals of l/t and 1 1 4 ,  from 1 to x. 

59 Dividing by x in Problem 58 gives (In x)/x < 2(& - l)/x. 
Deduce that (In x)/x -,0 as x -, co.Where is the maximum 
of (In x)/x? 

60 Prove that (In x)/xlln also approaches zero. (Start with 
(In xlln)/xlln -,0.)Where is its maximum? 
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61 For any power n, Problem 6.2.59 proved ex> xnfor large 
x. Then by logarithms, x > n In x. Since (In x)/x goes below 
l/n and stays below, it converges to . 
62 Prove that y In y approaches zero as y -+ 0, by changing 
y to llx. Find the limit of yY(take its logarithm as y +0). 
What is .I.' on your calculator? 

63 Find the limit of In x/log,,x as x + co. 

64 We know the integral th-' dt = [th/h]Z = (xh- l)/h. 
Its limit as h +0 is . 

65 Find linear approximations near x = 0 for e-" and 2". 

66 The x3 correction to ln(1 + x) yields x - ix2+ ix3.  Check 
that In 1.01x -0099503and find In 1.02. 

67 An ant crawls at 1foot/second along a rubber band whose 
original length is 2 feet. The band is being stretched at 1 
footlsecond by pulling the other end. At what time T, ifever, 
does the ant reach the other end? 

One approach: The band's length at time t is t + 2. Let y(t) 
be the fraction of that length which the ant has covered, and 
explain 

(a) y' = 1/(t + 2) (b)y = ln(t + 2) - ln 2 (c) T = 2e -2. 

68 If the rubber band is stretched at 8 feetlsecond, when if 
ever does the same ant reach the other end? 

69 A weaker ant slows down to 2/(t + 2) feetlsecond, so y' = 
2/(t + 2)2. Show that the other end is never reached. 

70 The slope of p = xx comes two ways from In p = x In x: 
1 Logarithmic differentiation (LD): Compute (In p)' and 
multiply by p. 
2 Exponential differentiation (ED): Write xX as eXlnX, 
take its derivative, and put back xx. 

71 If p = 2" then In p = . LD gives p' = (p)(lnp)' = 

. ED gives p = e and then p' = . 

72 Compute In 2 by the trapezoidal rule and/or Simpson's 
rule, to get five correct decimals. 

73 Compute In 10 by either rule with Ax = 1, and compare 
with the value on your calculator. 

74 Estimate l/ln 90,000, the fraction of numbers near 90,000 
that are prime. (879 of the next 10,000 numbers are actually 
prime.) 

75 Find a pair of positive integers for which xY=yx. Show 
how to change this equation to (In x)/x = (In y)/y. So look for 
two points at the same height in Figure 6.13. Prove that you 
have discovered all the integer solutions. 

*76 Show that (In x)/x = (In y)/y is satisfied by 

with t # 0. Graph those points to show the curve xY= y'. It 
crosses the line y = x at x = ,where t + co. 

6.5 Separable Equations Including the Logistic Equation 

This section begins with the integrals that solve two basic differential equations: 

-- CY and -
dy - dy -- cy + s. 
dt dt 

We already know the solutions. What we don't know is how to discover those solu-
tions, when a suggestion "try eC"' has not been made. Many important equations, 
including these, separate into a y-integral and a t-integral. The answer comes directly 
from the two separate integrations. When a differential equation is reduced that far-
to integrals that we know or can look up-it is solved. 

One particular equation will be emphasized. The logistic equation describes the 
speedup and slowdown of growth. Its solution is an S-curve, which starts slowly, 
rises quickly, and levels off. (The 1990's are near the middle of the S, if the 
prediction is correct for the world population.) S-curves are solutions to nonlinear 
equations, and we will be solving our first nonlinear model. It is highly important 
in biology and all life sciences. 
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SEPARABLE EQUNIONS 

The equations dyldt = cy and dyldt = cy + s (with constant source s) can be solved 
by a direct method. The idea is to separate y from t: 

9= c dt and -dy -- c dt. 
Y Y + (sld 

All y's are on the left side. All t's are on the right side (and c can be on either side). 
This separation would not be possible for dyldt = y + t. 

Equation (2) contains differentials. They suggest integrals. The t-integrals give ct 
and the y-integrals give logarithms: 

In y = ct + constant and In (3) 

The constant is determined by the initial condition. At t =0we require y = yo, and the 
right constant will make that happen: 

l n y = c t + l n y o  and In y + -  3= c t + l n y o + - .( ( 3 
Then the final step isolates y. The goal is a formula for y itself, not its logarithm, so 
take the exponential of both sides (elny is y): 

y +:y = yoeC' and = (yo + :)ec'. 

It is wise to substitute y back into the differential equation, as a check. 
This is our fourth method for y' = cy + s. Method 1 assumed from the start that 

y = Aect+ B. Method 2 multiplied all inputs by their growth factors ec(' - ') and added 
up outputs. Method 3 solved for y -y,. Method 4 is separation of variables (and all 
methods give the same answer). This separation method is so useful that we repeat 
its main idea, and then explain it by using it. 

To solve dyldt = u(y)v(t), separate dy/u(y)from v(t)dt and integrate both sides: 

Then substitute the initial condition to determine C, and solve for y(t). 

EXAMPLE I dyldt =y2 separates into dyly2 = dt. Integrate to reach -l/y = t + C. 
Substitute t =0 and y = yo to find C = - l/yo. Now solve for y: 

- - =  1 
t - -

1 
and y=-. Yo 

Y Yo 1 - tYo 

This solution blows up (Figure 6.15a) when t reaches lly,. If the bank pays interest 
on your deposit squared (y' =y2), you soon have all the money in the world. 

EXAMPLE 2 dyldt = ty separates into dy/y = t dt. Then by integration in y =ft2 + C. 
Substitute t =0 and y =yo to find C = In yo. The exponential of *t2 + In yo gives 
y =yoe'2'2. When the interest rate is c = t, the exponent is t2/2. 

EXAMPLE 3 dyldt =y + t is not separable. Method 1 survives by assuming y = 
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I I blowup times r =l 
I I Yo 

0 1 2 0 1 

d y  d y  d y  dtFig. 6.15 The solutions to separable equations -= y2 and -= n-Y or -= n-.
dt d t t y t 

Ae' + B + Dt-with an extra coefficient D in Problem 23. Method 2 also succeeds- 
but not the separation method. 

EXAMPLE 4 Separate dyldt = nylt into dyly = n dtlt. By integration In y = n In t + C. 
Substituting t = 0 produces In 0 and disaster. This equation cannot start from time 
zero (it divides by t). However y can start from y, at t = 1, which gives C = In y, . The 
solution is a power function y = y, t ". 

This was the first differential equation in the book (Section 2.2). The ratio of dyly 
to dtlt is the "elasticity" in economics. These relative changes have units like 
dollars/dollars-they are dimensionless, and y = tn has constant elasticity n. 

On log-log paper the graph of In y = n In t + C is a straight line with slope n. 

THE LOGISTIC EQUATION 

The simplest model of population growth is dyldt = cy. The growth rate c is the birth 
rate minus the death rate. If c is constant the growth goes on forever-beyond the 
point where the model is reasonable. A population can't grow all the way to infinity! 
Eventually there is competition for food and space, and y = ect must slow down. 

The true rate c depends on the population size y. It is a function c(y) not a constant. 
The choice of the model is at least half the problem: 

Problem in biology or ecology: Discover c(y). 

Problem in mathematics: Solve dyldt = c(y)y. 

Every model looks linear over a small range of y's-but not forever. When the rate 
drops off, two models are of the greatest importance. The Michaelis-Menten equation 
has c(y) = c/(y + K). The logistic equation has c(y) = c - by. It comes first. 

The nonlinear effect is from "interaction." For two populations of size y and z, the 
number of interactions is proportional to y times z. The Law of Mass Action produces 
a quadratic term byz. It is the basic model for interactions and competition. Here we 
have one population competing within itself, so z is the same as y. This competition 
slows down the growth, because -by2 goes into the equation. 

The basic model of growth versus competition is known as the logistic equation: 

Normally b is very small compared to c. The growth begins as usual (close to ect). 
The competition term by2 is much smaller than cy, until y itselfgets large. Then by2 
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(with its minus sign) slows the growth down. The solution follows an S-curve that 
we can compute exactly. 

What are the numbers b and c for human population? Ecologists estimate the 
natural growth rate as c = .029/year. That is not the actual rate, because of b. About 
1930, the world population was 3 billion. The cy term predicts a yearly increase of 
(.029)(3 billion) = 87 million. The actual growth was more like dyldt = 60 millionlyear. 
That difference of 27 millionlyear was by2: 

27 millionlyear = b(3 b i l l i ~ n ) ~  leads to b = 3 10- 12/year. 

Certainly b is a small number (three trillionths) but its effect is not small. It reduces 
87 to 60. What is fascinating is to calculate the steady state, when the new term by2 
equals the old term cy. When these terms cancel each other, dyldt = cy - by2 is zero. 
The loss from competition balances the gain from new growth: cy = by2 and y = c/b. 
The growth stops at this equilibrium point-the top of the S-curve: 

c .029 
- 1012 = 10 billion people. Y , = T ; =  3 

According to Verhulst's logistic equation, the world population is converging to 10 
billion. That is from the model. From present indications we are growing much faster. 
We will very probably go beyond 10 billion. The United Nations report in Section 3.3 
predicts 11 billion to 14 billion. 

Notice a special point halfway to y, = clb. (In the model this point is at 5 billion.) 
It is the inflection point where the S-curve begins to bend down. The second derivative 
d2y/dt2 is zero. The slope dyldt is a maximum. It is easier to find this point from the 
differential equation (which gives dyldt) than from y. Take one more derivative: 

y" = (cy - by2)' = cy' - 2byy' = (c - 2by)y'. (8) 

The factor c - 2by is zero at the inflection point y = c/2b, halfway up the S-curve. 

THE S-CURVE 

The logistic equation is solved by separating variables y and t: 

dyldt = cy - by2 becomes J dy/(cy - by2) = ) dt. 

The first question is whether we recognize this y-integral. No. The second question 
is whether it is listed in the cover of the book. No. The nearest is Idx/(a2 - x2), which 
can be reached with considerable manipulation (Problem 21). The third question is 
whether a general method is available. Yes. "Partial fractions" is perfectly suited to 
l/(cy - by2), and Section 7.4 gives the following integral of equation (9): 

Y Yo In-=ct+C andthen In-=C. 
c - by c -  YO (10) 

That constant C makes the solution correct at t = 0. The logistic equation is integ- 
rated, but the solution can be improved. Take exponentials of both sides to remove 
the logarithms: 

y - ect Yo -- 
c-by c-byo' 

This contains the same growth factor ec' as in linear equations. But the logistic 
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equation is not linear-it is not y that increases so fast. According to ( l l ) ,  it is 
y/(c - by) that grows to infinity. This happens when c - by approaches zero. 

The growth stops at y = clb. That is the final population of the world (10 billion?). 
We still need a formula for y. The perfect S-curve is the graph of y = 1/(1 + e-'). It 

equals 1 when t = oo,it equals 4when t = 0, it equals 0 when t = - co. It satisfies 
y' = y - y2, with c = b = 1. The general formula cannot be so beautiful, because it 
allows any c, b, and yo. To find the S-curve, multiply equation (11) by c - by and 
solve for y: 

When t approaches infinity, e-" approaches zero. The complicated part of the for- 
mula disappears. Then y approaches its steady state clb, the asymptote in Figure 6.16. 
The S-shape comes from the inflection point halfway up. 

1 2 3 4  1988 

Fig. 6.16 The standard S-curve y = 1/(1+ e - ' ) .  The population S-curve (with prediction). 

Surprising observation: z = l /y satisjes a linear equation. By calculus z' = - y'/y2. So 

This equation z' = - cz + b is solved by an exponential e-" plus a constant: 
Year US Model 

Population 

1790 3.9 = 3.9 
1800 5.3 5.3 Turned upside down, y = l/z is the S-curve (12). As z approaches blc, the S-curve 
1810 7.2 7.2 approaches clb. Notice that z starts at l /yo.  
1820 9.6 9.8 
1830 12.9 13.1 EXAMPLE 1 (United States population) The table shows the actual population and 
1840 17.1 17.5 the model. Pearl and Reed used census figures for 1790, 1850, and 1910 to compute 
1850 23.2 = 23.2 c and b. In between, the fit is good but not fantastic. One reason is war-another is
1860 31.4 30.4 
1870 38.6 39.4 depression. Probably more important is immigration."fn fact the Pearl-Reed steady 

1880 50.2 50.2 state c/b is below 200 million, which the US has already passed. Certainly their model 
1890 62.9 62.8 can be and has been improved. The 1990 census predicted a stop before 300 million. 
1900 76.0 76.9 For constant immigration s we could still solve y' = cy - by2 + s by partial fractions- 
1910 92.0 = 92.0 but in practice the computer has taken over. The table comes from Braun's book 
1920 105.7 107.6 DifSerentiaE Equations (Springer 1975). 
1930 122.8 123.1 
1940 131.7 # 136.7 
1950 150.7 149.1 ?Immigration does not enter for the world population model (at least not yet). 
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Remark For good science the y2 term should be explained and justified. It gave a 
nonlinear model that could be completely solved, but simplicity is not necessarily 
truth. The basic justification is this: In a population of size y, the number of encounters 
is proportional to y2. If those encounters are fights, the term is -by2. If those 
encounters increase the population, as some like to think, the sign is changed. There 
is a cooperation term + by2, and the population increases very fast. 

EXAMPLE 5 y' = cy + by2: y goes to infinity in afinite time. 

EXAMPLE6 y' = - dy + by2: y dies to zero if yo < dlb. 

In Example 6 death wins. A small population dies out before the cooperation by2 
can save it. A population below dlb is an endangered species. 

The logistic equation can't predict oscillations-those go beyond dyldt =f(y). 

The y line Here is a way to understand every nonlinear equation y' =f(y). Draw a 
" y  line." Add arrows to show the sign of f(y).  When y' =f ( y )  is positive, y is increasing 
(it follows the arrow to  the right). When f is negative, y goes to the left. When f is zero, 
the equation is y' = 0 and y is stationary: 

y' = cy - by2 (this is f (y))  y' = - dy + by2 (this is f (y))  

The arrows take you left or right, to the steady state or to infinity. Arrows go toward 
stable steady states. The arrows go away, when the stationary point is unstable. The 
y line shows which way y moves and where it stops. 

The terminal velocity of a falling body is v, = & in Problem 6.7.54. For f ( y )  = 

sin y there are several steady states: 

falling body: dvldt = g - v2 dyldt = sin y 

EXAMPLE 7 Kinetics of a chemical reaction mA + nB -+ pC. 

The reaction combines m molecules of A with n molecules of B to produce p 
molecules of C. The numbers m, n, p are 1, 1,2 for hydrogen chloride: H, + C1, = 

2 HCl. The Law of Mass Action says that the reaction rate is proportional to the 
product of the concentrations [ A ]  and [B] .Then [ A ]  decays as [C]  grows: 

d[A]/dt= - r[A]  [B]  and d [Clldt = + k [ A ]  [B] .  (15) 

Chemistry measures r and k. Mathematics solves for [ A ]  and [ C ] .Write y for the 
concentration [ C ] ,  the number of molecules in a unit volume. Forming those y 
molecules drops the concentration [ A ]  from a, to a, - (m/p)y.Similarly [B] drops 
from b, to b, - (n/p)y.The mass action law (15)contains y2: 
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This fits our nonlinear model (Problem 33-34). We now find this same mass action 
in biology. You recognize it whenever there is a product of two concentrations. 

THE MM EQUATION wdt=- cy/(y+ K) 

Biochemical reactions are the keys to life. They take place continually in every living 
organism. Their mathematical description is not easy! Engineering and physics go 
far with linear models, while biology is quickly nonlinear. It is true that y' = cy is 
extremely effective in first-order kinetics (Section 6.3), but nature builds in a nonlinear 
regulator. 

It is enzymes that speed up a reaction. Without them, your life would be in slow 
motion. Blood would take years to clot. Steaks would take decades to digest. Calculus 
would take centuries to learn. The whole system is awesomely beautiful-DNA tells 
amino acids how to combine into useful proteins, and we get enzymes and elephants 
and Isaac Newton. 

Briefly, the enzyme enters the reaction and comes out again. It is the catalyst. Its 
combination with the substrate is an unstable intermediate, which breaks up into a 
new product and the enzyme (which is ready to start over). 

Here are examples of catalysts, some good and some bad. 

The platinum in a catalytic converter reacts with pollutants from the car engine. 
(But platinum also reacts with lead-ten gallons of leaded gasoline and you 
can forget the platinum.) 
Spray propellants (CFC's) catalyze the change from ozone (03) into ordinary 
oxygen (0J. This wipes out the ozone layer-our shield in the atmosphere. 
Milk becomes yoghurt and grape juice becomes wine. 
Blood clotting needs a whole cascade of enzymes, amplifying the reaction at 
every step. In hemophilia-the "Czar's diseasew-the enzyme called Factor VIII 
is missing. A small accident is disaster; the bleeding won't stop. 
Adolph's Meat Tenderizer is a protein from papayas. It predigests the steak. 
The same enzyme (chymopapain) is injected to soften herniated disks. 
Yeast makes bread rise. Enzymes put the sour in sourdough. 

Of course, it takes enzymes to make enzymes. The maternal egg contains the material 
for a cell, and also half of the DNA. The fertilized egg contains the full instructions. 

We now look at the Michaelis-Menten (MM) equation, to describe these reactions. 
It is based on the Law of Mass Action. An enzyme in concentration z converts a 
substrate in concentration y by dyldt = - byz. The rate constant is 6, and you see 
the product of "enzyme times substrate." A similar law governs the other reactions 
(some go backwards). The equations are nonlinear, with no exact solution. It is 
typical of applied mathematics (and nature) that a pattern can still be found. 

What happens is that the enzyme concentration z(t) quickly drops to z, K/(y + K). 
The Michaelis constant K depends on the rates (like 6) in the mass action laws. 
Later the enzyme reappears (z, = 2,). But by then the first reaction is over. Its law 
of mass action is effectively 

with c =.bz,K. This is the Michaelis-Menten equation-basic to biochemistry. 
The rate dyldt is all-important in biology. Look at the function cy/(y + K): 

when y is large, dyldt x - c when y is small, dyldt x - cylK. 
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The start and the finish operate at different rates, depending whether y dominates K 
or K dominates y. The fastest rate is c. 

A biochemist solves the MM equation by separating variables: 

S y d y =  -Sc dt gives y +  K In y =  - ct + C. 

Set t = 0 as usual. Then C = yo + K In yo. The exponentials of the two sides are 

We don't have a simple formula for y. We are lucky to get this close. A computer 
can quickly graph y(t)-and we see the dynamics of enzymes. 

Problems 27-32 follow up the Michaelis-Menten theory. In science, concentrations 
and rate constants come with units. In mathematics, variables can be made dimen- 
sionless and constants become 1. We solve d v d T  = Y/(Y+ 1) and then $witch back 
to y, t, c, K. This idea applies to other equations too. 

Essential point: Most applications of calculus come through dzrerential equations. 
That is the language of mathematics-with populations and chemicals and epidemics 
obeying the same equation. Running parallel to dyldt = cy are the difference equations 
that come next. 

6.5 EXERCISES 

Read-through questions 

The equations dy/dt = cy and dyldt = cy + s and dyldt = 

u(y)v(t) are called a because we can separate y from t. 
6 dy/dx=tan ycos x, yo= 1 Integration of idyly =1c dt gives b . Integration of 

1dy/(y + sjc) = i c  dt gives c . The equation dyldx = 7 dyldt = y sin t, yo = 1 
-xly leads to d . Then y2 + x2 = e and the solution 
stays on a circle. 8 dyldt = et-Y, yo =e 

9 Suppose the rate of rowth is proportional to & instead 
The logistic equation is dyldt = f . The new term -by2 of y. Solve dyldt = c&starting from yo. 

represents g when cy represents growth. Separation gives 
10 The equation dyjdx = nylx for constant elasticity is the idy/(cy -by2)= [dt, and the y-integral is l/c times In h . 

. The solution is In y = Substituting yo at t =0 and taking exponentials produces same as d(ln y)/d(ln x) = 

y/(c -by) = ect( i ). As t + co,y approaches i . That 
is the steady state where cy - by2 = k . The graph of y 11 When c =0 in the logistic equation, the only term is y' = 

looks like an I , because it has an inflection point at -by2. What is the steady state y,? How long until y drops 
y =  m . from yo to iyo? 

In biology and chemistry, concentrations y and z react at 12 Reversing signs in Problem 11, suppose y' = + by2. At 

a rate proportional to y times n . This is the Law of what time does the population explode to y = co, starting 

o . In a model equation dyldt = c(y)y, the rate c depends from yo = 2 (Adam + Eve)? 

on P . The MM equation is dyldt = q . Separating 
variables yields j r dy = s = -ct + C. Problems 13-26 deal with logistic equations y' =cy -by2. 

13 Show that y = 1/(1+ e-') solves the equation y' = y -y2. 
Draw the graph of y from starting values 3 and 3 .

Separate, integrate, and solve equations 1-8. 
14 (a) What logistic equation is solved by y = 2/(1 + e-')? 

(b) Find c and b in the equation solved by y = 1/(1 + e-3t). 

15 Solve z' = - z + 1 with zo = 2. Turned upside down as in 
3 dyjdx =xly2, yo = 1 ( 1  3), what is y = l/z? 
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16 By algebra find the S-curve (12) from y = l/z in (14). 

17 How many years to grow from yo =$c/b to y =#c/b? Use 
equation (10) for the time t since the inflection point in 1988. 
When does y reach 9 billion = .9c/b? 

18 Show by differentiating u =y/(c-by) that if y' =cy -by2 
then u' =cu. This explains the logistic solution (11) - it is 
u =uoect. 

19 Suppose Pittsburgh grows from yo = 1 million people in 
1900 to y =3 million in the year 2000. If the growth rate is 
y' = 12,00O/year in 1900 and y' =30,00O/year in 2000, substi- 
tute in the logistic equation to find c and b. What is the steady 
state? Extra credit: When does y =y, /2 =c/2b? 

20 Suppose c = 1 but b = - 1, giving cooperation y' =y +y2. 
Solve for fit) if yo = 1. When does y become infinite? 

21 Draw an S-curve through (0,O) with horizontal asymp- 
totes y = - 1 and y = 1. Show that y =(et-e-')/(et + e-') has 
those three properties. The graph of y2 is shaped like 

22 To solve y' =cy -by3 change to u = l/y2. Substitute for 
y' in u' = -2y'/y3 to find a linear equation for u. Solve it as 
in (14) but with uo = ljy;. Then y = I/&. 

23 With y =rY and t =ST, the equation dyldt =cy -by2 
changes to d Y/d T= Y-Y'. Find r and s. 

24 In a change to y =rY and t =ST,how are the initial values 
yo and yb related to Yo and G? 
25 A rumor spreads according to y' =y(N -y). If y people 
know, then N -y don't know. The product y(N -y) measures 
the number of meetings (to pass on the rumor). 

(a) Solve dyldt =y(N -y) starting from yo = 1. 
(b) At what time T have N/2 people heard the rumor? 
(c) This model is terrible because T goes to as 
N + GO. A better model is y' =by(N -y). 

26 Suppose b and c are bcth multiplied by 10. Does the 
middle of the S-curve get steeper or flatter? 

Problems 27-34 deal with mass action and the MM equation 
y' = -cy/(y + K). 

27 Most drugs are eliminated acording to y' = -cy but 

aspirin follows the MM equation. With c =K =yo = 1, does 
aspirin decay faster? 

28 If you take aspirin at a constant rate d (the maintenance 
dose), find the steady state level where d =cy/(y + K). Then 
y' =0. 

29 Show that the rate R =cy/(y +K) in the MM equation 
increases as y increases, and find the maximum as y -* a. 

30 Graph the rate R as a function of y for K = 1 and K = 
10. (Take c = 1.) As the Michaelis constant increases, the rate 

. At what value of y i s  R =*c? 

31 With y =KY and ct = KT, find the "nondimensional" 
MM equation for dY/dT. From the solution erY= 
e-= eroYo recover the y, t solution (19). 

32 Graph fit) in (19) for different c and K (by computer). 

33 The Law of Mass Action for A + B + C is y' = 
k(ao-y)(bo-y). Suppose yo =0, a. =bo =3, k = 1. Solve for 
y and find the time when y =2. 

34 In addition to the equation for d[C]/dt, the mass action 
law gives d[A]/dt = 

35 Solve y' =y + t from yo =0 by assuming y =Aet + B +Dt. 
Find A, B, D. 

36 Rewrite cy -by2 as a2 -x2, with x =Gy-c/2$ and 
a =  . Substitute for a and x in the integral taken 
from tables, to obtain the y-integral in the text: 

1 Y--In- {A=-ln-
-a2-x2 2a a - xa ' x  cy-by2 c c-by 

37 (Important) Draw the y-lines (with arrows as in the text) 
for y' =y/(l -y) and y' =y -y3. Which steady states are 
approached from which initial values yo? 

38 Explain in your own words how the y-line works. 

39 (a) Solve yl= tan y starting from yo = n / 6  to find 
sin y =$et. 
(b)Explain why t = 1 is never reached. 
(c) Draw arrows on the y-line to show that y approaches 
7112 -when does it get there? 

40 Write the logistic equation as y' =cy(1-y/K). As y' 
approaches zero, y approaches . Find y, y', y" at the 
inflection point. 

6.6 Powers lnstead of Exponentials 

You may remember our first look at e. It is the special base for which ex has slope 1 
at x = 0.That led to the great equation of exponential growth: The derivative of 
ex equals ex. But our look at the actual number e = 2.71828 ... was very short. 
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It appeared as the limit of (1 + lln)". This seems an unnatural way to write down 
such an important number. 

I want to show how (1 + lln)" and (1 + xln)" arise naturally. They give discrete 
growth infinite steps-with applications to compound interest. Loans and life insur- 
ance and money market funds use the discrete form of yf = cy + s. (We include extra 
information about bank rates, hoping this may be useful some day.) The applications 
in science and engineering are equally important. Scientific computing, like account- 
ing, has diflerence equations in parallel with differential equations. 

Knowing that this section will be full of formulas, I would like to jump ahead and 
tell you the best one. It is an infinite series for ex. What makes the series beautiful is 
that its derivative is itself: 

Start with y = 1 + x.  This has y = 1 and yt = 1 at x = 0. But y" is zero, not one. 
Such a simple function doesn't stand a chance! No polynomial can be its own deriva- 
tive, because the highest power xn drops down to nxn-l. The only way is to have no 
highest power. We are forced to consider infinitely many terms-a power series-to 
achieve "derivative equals function.'' 

To produce the derivative 1 + x, we need 1 + x + ix2. Then ix2  is the derivative 
of Ax3, which is the derivative of &x4. The best way is to write the whole series at 
once: 

Infinite series ex = 1 + x + ix2  + 4x3 + &x4 + -. (1) 

This must be the greatest power series ever discovered. Its derivative is itself: 

The derivative of each term is the term before it. The integral of each term is the one 
after it (so j exdx = ex + C). The approximation ex = 1 + x appears in the first two 
terms. Other properties like (ex)(ex) = eZX are not so obvious. (Multiplying series is 
hard but interesting.) It is not even clear why the sum is 2.718 ... when x =  1. 
Somehow 1 + 1 + f + & + equals e. That is where (1 + lln)" will come in. 

Notice that xn is divided by the product 1 2 3 * - . -  n. This is "n factorial." Thus 
x4 is divided by 1 2 - 3 4 = 4! = 24, and xS is divided by 5! = 120. The derivative of . 
x5/120 is x4/24, because 5 from the derivative cancels 5 from the factorial. In general 
xn/n! has derivative xn - '/(n - l)! Surprisingly O! is 1. 

Chapter 10 emphasizes that xn/n! becomes extremely small as n increases. The 
infinite series adds up to a finite number-which is ex. We turn now to discrete 
growth, which produces the same series in the limit. 

This headline was on page one of the New York Times for May 27, 1990. 

213 Years After Loan, Uncle Sam is Dunned 

San Antonio, May 26-More than 200 years ago, a wealthy Pennsylvania 
merchant named Jacob DeHaven lent $450,000 to the Continental Congress to 
rescue the troops at Valley Forge. That loan was apparently never repaid. 

So Mr. DeHaven's descendants are taking the United States Government to 
court to collect what they believe they are owed. The total: $141 billion if the 
interest is compounded daily at 6 percent, the going rate at the time. If com- 
pounded yearly, the bill is only $98 billion. 

The thousands of family members scattered around the country say they are 
not being greedy. "It's not the money-it's the principle of the thing," said 
Carolyn Cokerham, a DeHaven on her father's side who lives in San Antonio. 
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"You have to wonder whether there would even be a United States if this man 
had not made the sacrifice that he did. He gave everything he had." 

The descendants say that they are willing to be flexible about the amount of 
settlement. But they also note that interest is accumulating at $190 a second. 

"None of these people have any intention of bankrupting the Government," 
said Jo Beth Kloecker, a lawyer from Stafford, Texas. Fresh out of law school, 
Ms. Kloecker accepted the case for less than the customary 30 percent 
contingency. 

It is unclear how many descendants there are. Ms. Kloecker estimates that 
based on 10 generations with four children in each generation, there could be as 
many as half a million. 

The initial suit was dismissed on the ground that the statute of limitations is 
six years for a suit against the Federal Government. The family's appeal asserts 
that this violates Article 6 of the Constitution, which declares as valid all debts 
owed by the Government before the Constitution was adopted. 

Mr. DeHaven died penniless in 1812. He had no children. 

C O M P O U N D  INTEREST 

The idea of compound interest can be applied right away. Suppose you invest $1000 
at a rate of 100% (hard to do). If this is the annual rate, the interest after a year is 
another $1000. You receive $2000 in all. But if the interest is compounded you receive 
more: 

after six months: Interest of $500 is reinvested to give $1500 

end of year: New interest of $750 (50% of 1500) gives $2250 total. 

The bank multiplied twice by 1.5 (1000 to 1500 to 2250). Compounding quarterly 
multiplies four times by 1.25 (1 for principal, .25 for interest): 

after one quarter the total is 1000 + (.25)(1000) = 1250 

after two quarters the total is 1250 + (.25)(1250)= 1562.50 

after nine months the total is 1562.50 + (.25)(1562.50)= 1953.12 

after a full year the total is 1953.12 + (.25)(@53. 12) = 2441.41 

Each step multiplies by 1 + (l/n), to add one nth of a year's interest-still at 100%: 

quarterly conversion: (1 + 1/4)4x low = 2441.41 

monthly conversion: (1 + 1/12)" x 1Qh= 2613.04 

daily conversion: (1 + 1/365)36% 1000 = 2714.57. 

Many banks use 360 days in a year, although computers have made that obsolete. 
Very few banks use minutes (525,600 per year). Nobody compounds every second 
(n = 31,536,000). But some banks offer continuous compounding. This is the limiting 
case (n -+ GO) that produces e: 

x 1000 approaches e x 1000 = 2718.28. 
(1 + 

1 
1. Quick method for (1 + lln)": Take its logarithm. Use ln(1 + x) x x with x = -: 

n 
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As l/n gets smaller, 
(1 + l/n)" approaches 

this approximation gets better. The limit is 1. Conclusion: 
the number whose logarithm is 1. Sections 6.2 and 6.4 define 

the same number (which is e). 

2. Slow method for (1 + l/n)": Multiply out all the terms. Then let n + a. 

This is a brutal use of the binomial theorem. It involves nothing smart like logarithms, 
but the result is a fantastic new formula for e. 

Practice for n = 3: 

Binomial theorem for any positive integer n: 

Each term in equation (4) approaches a limit as n + a. Typical terms are 

Next comes 111 2 3 4. The sum of all those limits in (4) is our new formula for e: 

In summation notation this is Z,"=, l/k! = e. The factorials give fast convergence: 

Those nine terms give an accuracy that was not reached by n = 365 compoundings. 
A limit is still involved (to add up the whole series). You never see e without a limit! 
It can be defined by derivatives or integrals or powers (1 + l/n)" or by an infinite 
series. Something goes to zero or infinity, and care is required. 

All terms in equation (4) are below (or equal to) the corresponding terms in (5). 
The power (1 + l/n)" approaches e from below. There is a steady increase with n. Faster 
compounding yields more interest. Continuous compounding at 100% yields e, as 
each term in (4) moves up to its limit in (5). 

Remark Change (1 + lln)" to (1 + xln)". Now the binomial theorem produces ex: 

Please recognize ex on the right side! It is the infinite power series in equation (1). 
The next term is x3/6 (x can be positive or negative). This is a final formula for ex: 

The logarithm of that power is n In(1 + x/n) x n(x/n) = x. The power approaches ex. 
To summarize: The quick method proves (1 + lln)" + e by logarithms. The slow 

method (multiplying out every term) led to the infinite series. Together they show the 
agreement of all our definitions of e. 



DIFFERENCE EQUATIONS VS. DIFFERENTIAL EQUATIONS 


We have the chance to see an important part of applied mathematics. This is not a 
course on differential equations, and it cannot become a course on difference equ- 
ations. But it is a course with a purpose-we aim to use what we know. Our main 
application of e was to solve y' = cy and y' = cy + s. Now we solve the corresponding 
difference equations. 

Above all, the goal is to see the connections. The purpose of mathematics is to 
understand and explain patterns. The path from "discrete to continuous" is beautifully 
illustrated by these equations. Not every class will pursue them to the end, but I 
cannot fail to show the pattern in a difference equation: 

Each step multiplies by the same number a. The starting value yo is followed by ay,, 
a2yo, and a3y0. The solution at discrete times t = 0, 1,2, .. . is y(t) = atyo. 

This formula atyo replaces the continuous solution ectyo of the differential equation. 

decaying 

Fig. 6.17 Growth for la1 > 1, decay for la1 < 1. Growth factor a compares to ec. 

A source or sink (birth or death, deposit or withdrawal) is like y' = cy + s: 
y(t + 1)= ay(t) + s. 

Each step multiplies by a and adds s. The first outputs are 

We saw this pattern for differential equations-every input s becomes a new starting 
point. It is multiplied by powers of a. Since s enters later than yo, the powers stop at 
t - 1. Algebra turns the sum into a clean formula by adding the geometric series: 

y(t)= atyo + s[at-' +at-' + + a +  1]= atyo + s(at- l)/(a- 1). (9) 

EXAMPLE 1 Interest at 8% from annual IRA deposits of s = $2000 (here yo = 0). 

The first deposit is at year t = 1. In a year it is multiplied by a = 1.08, because 8% is 
added. At the same time a new s = 2000 goes in. At t = 3 the first deposit has been 
multiplied by (1.08)2, the second by 1.08, and there is another s = 2000. After year t, 

y(t) = 2000(1.08' - 1)/(1 .08 - 1). (10) 

With t = 1 this is 2000. With t = 2 it is 2000 (1.08 + 1)-two deposits. Notice how 
a - 1 (the interest rate .08) appears in the denominator. 

EXAMPLE 2 Approach to steady state when la1 < 1. Compare with c <0. 

With a > 1, everything has been increasing. That corresponds to c > 0 in the 
differential equation (which is growth). But things die, and money is spent, so a can 
be smaller than one. In that case atyo approaches zero-the starting balance disap- 
pears. What happens if there is also a source? Every year half of the balance y(t) is 
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spent and a new $2000 is deposited. Now a = +: 

y(t + 1) = $y(t) + 2000 yields y(t) = (f)ty, + 2000[((+)' - I)/(+- I)]. 

The limit as t -,co is an equilibrium point. As (fy goes to zero, y(t) stabilizes to 

y, = 200qO - I)/($- 1)= 4000 = steady state. (1 1) 

Why is 4000 steady? Because half is lost and the new 2000 makes it up again. The 
iteration is y,,, ,= fy,, + 2000. Ztsfied point is where y, =fy, + 2000. 

In general the steady equation is y, = ay, + s. Solving for y, gives s/(l - a). 
Compare with the steady differential equation y' = cy + s = 0: 

S S 
y, = - - (differential equation) us. y, = -(difference equation). (12)

c 1 - a  

EXAMPLE 3 Demand equals supply when the price is right. 

Difference equations are basic to economics. Decisions are made every year (by a 
farmer) or every day (by a bank) or every minute (by the stock market). There are 
three assumptions: 

1. Supply next time depends on price this time: S(t + 1)= cP(t). 
2. Demand next time depends on price next time: D(t + 1) = -dP(t + 1)+ b. 
3. Demand next time equals supply next time: D(t + 1)= S(t + 1). 

Comment on 3: the price sets itself to make demand = supply. The demand slope -d 
is negative. The supply slope c is positive. Those lines intersect at the competitive 
price, where supply equals demand. To find the difference equation, substitute 1 and 
2 into 3: 

Difference equation: -dP(t + 1)+ b = cP(t) 

Steady state price: -dP, + b = cP,. Thus P, = b/(c + d). 

If the price starts above P,, the difference equation brings it down. If below, the 
price goes up. When the price is P,, it stays there. This is not news-economic 
theory depends on approach to a steady state. But convergence only occurs if c < d. 
If supply is less sensitive than demand, the economy is stable. 

Blow-up example: c = 2, b = d = 1. The difference equation is -P(t + 1)+ 1 = 2P(t). 
From P(0) = 1 the price oscillates as it grows: P = - 1, 3, -5, 11, .... 

Stable example: c = 112, b = d = 1. The price moves from P(0) = 1 to P(m) = 213: 

1 3 5  2 
-P(t + 1)+ 1 = -

1 
P(t) yields P = 1' - - - 2' 4' 8' "" approaching -.

2 3 

Increasing d gives greater stability. That is the effect of price supports. For d = 0 
(fixed demand regardless of price) the economy is out of control. 

THE MATHEMATICS OF FINANCE 

It would be a pleasure to make this supply-demand model more realistic-with 
curves, not straight lines. Stability depends on the slope-calculus enters. But we 
also have to be realistic about class time. I believe the most practical application is 
to solve the fundamentalproblems offinance. Section 6.3 answered six questions about 
continuous interest. We now answer the same six questions when the annual rate is 
x = .05 = 5% and interest is compounded n times a year. 



6.6 Powers Instead of Exponentials 

First we compute eflective rates, higher than .05 because of compounding: 

compounded quarterly ( 1 + - = 1.0509 [effective rate .0509 = 5.09%].:T 
compounded continuously eno5= 1 .O5 13 [effective rate 5.13%] 

Now come the six questions. Next to the new answer (discrete) we write the old 
answer (continuous). One is algebra, the other is calculus. The time period is 20 years, 
so simple interest on yo would produce (.05)(20)(yo). That equals yo -money doubles 
in 20 years at 5% simple interest. 

Questions 1and 2 ask for the future value y and present value yo with compound 
interest n times a year: 

y = e(~OS,(20)yo1. y growing from yo: y = (1 + yonyo 
2. deposit yo to reach y: yo = (1 + :F20ny 

yo = e-(-05)(20)y 

Each step multiplies by a = (1 + .05/n). There are 20n steps in 20 years. Time goes 
backward in Question 2. We divide by the growth factor instead of multiplying. The 
future value is greater than the present value (unless the interest rate is negative!). As 
n + GO the discrete y on the left approaches the continuous y on the right. 

Questions 3 and 4 connect y to s (with yo = 0 at the start). As soon as each s is 
deposited, it starts growing. Then y = s + as + a2s+ --. 

3. y growing from deposits s: y = s[ 
(1 + .05/n)20n- I] 

.05/n 

y = s  [e(.05)(20) - I] 

.05 

4. deposits s to reach y: 

Questions 5 and 6 connect yo to s. This time y is zero-there is nothing left at  the 
end. Everything is paid. The deposit yo is just enough to allow payments of s. This 
is an annuity, where the bank earns interest on your yo while it pays you s (n times 
a year for 20 years). So your deposit in Question 5 is less than 20ns. 

Question 6 is the opposite-a loan. At the start you borrow yo (instead of giving 
the bank yo). You can earn interest on it as you pay it back. Therefore your payments 
have to total more than yo. This is the calculation for car loans and mortgages. 

5. Annuity: Deposit yo to receive 20n payments of s: 

6. Loan:. Repay yo with 20n payments of s: 

Questions 2 ,4 ,6  are the inverses of 1,3,5. Notice the pattern: There are three num- 
bers y, yo, and s. One of them-is zero each time. If all three are present, go back to 
equation (9). 

The algebra for these lines is in the exercises. I t  is not calculus because At is not dt. 
All factors in brackets [ 1are listed in tables, and the banks keep copies. It might 
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also be helpful to know their symbols. If a bank has interest rate i per period over 
N periods, then in our notation a = 1 + i = 1 + .05/n and t = N = 20n: 

future value of yo = $1 (line 1):y(N) = (1 + i)N 

present value of y = $1 (line 2): yo = (1 + i)-N 

future value of s = $1 (line 3): y(N) = s~~= [(I + i)N- l]/i 

present value of s = $1 (line 5): yo = a~~= [l- (1 + i)-']/i 
To tell the truth, I never knew the last two formulas until writing this book. The 
mortgage on my home has N = (12)(25) monthly payments with interest rate i = 
.07/12. In 1972 the present value was $42,000 = amount borrowed. I am now going 
to see if the bank is honest.? 

Remark In many loans, the bank computes interest on the amount paid back 
instead of the amount received. This is called discounting. A loan of $1000 at 5% 
for one year costs $50 interest. Normally you receive $1000 and pay back $1050. 
With discounting you receive $950 (called the proceeds) and you pay back $1000. 
The true interest rate is higher than 5%-because the $50 interest is paid on the 
smaller amount $950. In this case the "discount rate" is 501950 = 5.26%. 

SCIENTIFIC COMPUTING: DIFFERENTIAL EQUATIONS BY DIFFERENCE EQUATIONS 

In biology and business, most events are discrete. In engineering and physics, time 
and space are continuous. Maybe at some quantum level it's all the same, but the 
equations of physics (starting with Newton's law F = ma) are differential equations. 
The great contribution of calculus is to model the rates of change we see in nature. 
But to solve that model with a computer, it needs to be made digital and discrete. 

These paragraphs work with dyldt = cy. It is the test equation that all analysts use, 
as soon as a new computing method is proposed. Its solution is y = ect, starting from 
yo = 1. Here we test Euler's method (nearly ancient, and not well thought of). He 
replaced dyldt by AylAt: 

The left side is dyldt, in the limit At +0. We stop earlier, when At > 0. 
The problem is to solve (13). Multiplying by At, the equation is 

y(t + At) = (1 + cAt)y(t) (with y(0) = 1). 

Each step multiplies by a = 1 + cAt, so n steps multiply by an: 

y = an= (1 + cAt)" at time nAt. (14) 
This is growth or decay, depending on a. The correct ectis growth or decay, depending 
on c. The question is whether an and eczstay close. Can one of them grow while the 
other decays? We expect the difference equation to copy y' = cy, but we might be 
wrong. 

A good example is y' = -y. Then c = - 1 and y = e-'-the true solution decays. 

?It's not. s is too big. I knew it. 



The calculator gives the following answers anfor n = 2, 10,20: 

The big step At = 3 shows total instability (top row). The numbers blow up when 
they should decay. The row with At = 1 is equally useless (all zeros). In practice the 
magnitude of cAt must come down to .10 or .05. For accurate calculations it would 
have to be even smaller, unless we change to a better difference equation. That is the 
right thing to do. 

Notice the two reasonable numbers. They are .35 and .36, approaching e- ' = .37. 
They come from n = 10 (with At = 1/10) and n = 20 (with At = 1/20). Those have the 
same clock time nAt = 1: 

The main diagonal of the table is executing (1 + xln)" -, e" in the case x = - 1. 

Final question: How quickly are .35 and .36 converging to e-' = .37? With At = .10 
the error is .02. With At = .05 the error is .01. Cutting the time step in half cuts the 
error in half. We are not keeping enough digits to be sure, but the error seems close 
to *At. To test that, apply the "quick method" and estimate an= (1 -Atr from its 
logarithm: 

=ln(1- Atr = n ln(1- At) z n[- At -+ ( ~ t ) ~ ]- 1-fAt. 

The clock time is nAt = 1. Now take exponentials of the far left and right: 

The difference between anand e- ' is the last term *Ate- '. Everything comes down 
to one question: Is that error the same as *At? The answer is yes, because e-'12 is 
115. If we keep only one digit, the prediction is perfect! 

That took an hour to work out, and I hope it takes longer than At to read. I wanted 
you to see in use the properties of In x and e". The exact property In an= n In a came 
first. In the middle of (15) was the key approximation ln(1 + x) z x -fx2, with x = 
-At. That x2 term uses the second derivative (Section 6.4). At the very end came 
e " x l + x .  

A linear approximation shows convergence: (1 + x/n)" -,ex. A quadratic shows the 
error: proportional to At = l/n. It is like using rectangles for areas, with error propor- 
tional to Ax. This minimal accuracy was enough to define the integral, and here it is 
enough to define e. It is completely unacceptable for scientific computing. 

The trapezoidal rule, for integrals or for y' = cy, has errors of order (Ax)2 and (At)2. 
All good software goes further than that. Euler's first-order method could not predict 
the weather before it happens. 

t).Euler's Method for -dy = F(y, t): Y(' + At)-y(t) = ~ ( ~ ( t ) ,
dt At 
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6.6 EXERCISES 

Read-through questions 

The infinite series for e" is a . Its derivative is b .The 
denominator n! is called " c " and it equals d .At x = 
1 the series for e is e . 

To match the original definition of e, multiply out 
(1 + l/n)" = f (first three terms). As n + co those terms 
approach Q in agreement with e. The first three terms of 
(1 + xln)" are h . As n + co they approach 1 in 
agreement with ex. Thus (1 +xln)" approaches I . A 
quicker method computes ln(1 +xln)" x k (first term 
only) and takes the exponential. 

Compound interest (n times in one year at annual rate x) 
multiplies by ( I )". As n -+ co, continuous compounding 
multiplies by m .At x = 10% with continuous compound- 
ing, $1 grows to n in a year. 

The difference equation y(t + 1)=ay(t) yields fit) = o 
times yo. The equation y(t + 1) =ay(t) +s is solved by y = 
atyo+ $1 + a + -.-+at-']. The sum in brackets is P . 
When a = 1.08 and yo =0, annual deposits of s = 1 produce 
y = q after t years. If a =9 and yo =0, annual deposits 
of s = 6 leave r after t years, approaching y, = s . 
The steady equation y, =ay, +s gives y, = t . 

When i = interest rate per period, the value of yo =$1 after 
N periods is y(N) = u . The deposit to produce y(N) = 1 
is yo = v .The value of s = $1 deposited after each period 
grows to y(N) = w . The deposit to reach y(N) = 1 is s = 

x . 

Euler's method replaces y' =cy by Ay =cyAt. Each step 
multiplies y by Y . Therefore y at t = 1 is (1 + cAt)ll'yo, 
which converges to as At -+0. The error is proportional 
to A ,which is too B for scientific computing. 

1 Write down a power series y = 1 -x + .-.whose derivative 
is -y. 

2 Write down a power series y = 1 + 2x + .--whose deriva- 
tive is 2y. 

3 Find two series that are equal to their second derivatives. 

4 By comparing e = 1 + 1 +9 +4 + + -.. with a larger 
series (whose sum is easier) show that e < 3. 

5 At 5% interest compute the output from $1000 in a year 
with 6-month and 3-month and weekly compounding. 

6 With the quick method ln(1 +x) z x, estimate ln(1- lln)" 
and ln(1 + 2/n)". Then take exponentials to find the two limits. 

7 With the slow method multiply out the three terms of 
(1 -$)2 and the five terms of (1 -$I4.What are the first three 
terms of (1 - l/n)", and what are their limits as n -+ oo? 

8 The slow method leads to 1 - 1 + 1/2! - 1/3! + -.-for the 

limit of (1 - l/n)". What is the sum of this infinite series -
the exact sum and the sum after five terms? 

9 Knowing that (1 + l/n)" -+ e, explain (1 + l/n)2n-+ e2 and 
(1 + 2/N)N-+e2. 

10 What are the limits of (1 + l/n2)" and (1 + l/n)"*? 
OK to use a calculator to guess these limits. 

11 (a) The power (1 + l/n)" (decreases) (increases) with n, as 
we compound more often. (b) The derivative of f(x)= 
x ln(1 + llx), which is ,should be (<0)(> 0). This is 
confirmed by Problem 12. 

12 Show that ln(1 + l/x) > l/(x + 1) by drawing the graph of 
llt. The area from t = 1 to 1 + l /x is . The rectangle 
inside it has area . 
13 Take three steps of y(t + 1) =2y(t) from yo = 1. 

14 Take three steps of y(t + 1)= 2y(t) + 1 from yo =0. 

Solve the difference equations 15-22. 

In 23-26, which initial value produces y, =yo (steady state)? 

23 y(t + 1) =2y(t) -6 24 y(t + 1) =iy(t) -6 

25 y(t + 1)= -y(t) + 6 26 y(t + 1)= -$y(t)+ 6 

27 In Problems 23 and 24, start from yo =2 and take three 
steps to reach y,. Is this approaching a steady state? 

28 For which numbers a does (1 -at)/(l-a) approach a limit 
as t -+ oo and what is the limit? 

29 The price P is determined by supply =demand or 
-dP(t + 1) + b =cP(t). Which price P is not changed from 
one year to the next? 

30 Find P(t) from the supply-demand equation with c = 1, 
d =2, b = 8, P(0) =0. What is the steady state as t -+ co? 

Assume 10% interest (so a = 1 + i = 1.1) in Problems 31-38. 

31 At 10% interest compounded quarterly, what is the effec- 
tive rate? 

32 At 10% interest compounded daily, what is the effective 
rate? 

33 Find the future value in 20 years of $100 deposited now. 

34 Find the present value of $1000 promised in twenty years. 
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35 For a mortgage of $100,000 over 20 years, what is the
monthly payment?

36 For a car loan of $10,000 over 6 years, what is the monthly
payment?

37 With annual compounding of deposits s = $1000, what is
the balance in 20 years?

38 If you repay s = $1000 annually on a loan of $8000, when
are you paid up? (Remember interest.)

39 Every year two thirds of the available houses are sold, and
1000 new houses are built. What is the steady state of the
housing market - how many are available?

40 If a loan shark charges 5% interest a month on the $1000
you need for blackmail, and you pay $60 a month, how much
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do you still owe after one month (and after a year)?

41 Euler charges c = 100% interest on his $1 fee for discover-
ing e. What do you owe (including the $1) after a year with
(a) no compounding; (b) compounding every week; (c) con-
tinuous compounding?

42 Approximate (1 + 1/n)" as in (15) and (16) to show that
you owe Euler about e - e/2n. Compare Problem 6.2.5.

43 My Visa statement says monthly rate = 1.42% and yearly
rate = 17%. What is the true yearly rate, since Visa com-
pounds the interest? Give a formula or a number.

44 You borrow yo = $80,000 at 9% to buy a house.

(a) What are your monthly payments s over 30 years?
(b) How much do you pay altogether?

6.7 Hyperbolic Functions

This section combines ex with e - x. Up to now those functions have gone separate
ways-one increasing, the other decreasing. But two particular combinations have
earned names of their own (cosh x and sinh x):

ex + e - x
hyperbolic cosine cosh x- =

2
ex - e-x

hyperbolic sine sinh x = -
2

The first name rhymes with "gosh". The second is usually pronounced "cinch".
The graphs in Figure 6.18 show that cosh x > sinh x. For large x both hyperbolic

functions come extremely close to ½ex. When x is large and negative, it is e- x that
dominates. Cosh x still goes up to + 00 while sinh x goes down to - co (because
sinh x has a minus sign in front of e-x).

1 1 1 1
cosh x = eX+ e-x sinh x = -ex e

2 2 2 2
\ /I

1 1e-X 1 ex2 2

-1 1

Fig. 6.18 Cosh x and sinh x. The hyperbolic
functions combine 'ex and ½e- x.

Fig. 6.19 Gateway Arch courtesy of the St.
Louis Visitors Commission.

The following facts come directly from ((ex + e - x) and ½(ex - e-X):

cosh(- x) = cosh x and cosh 0 = 1 (cosh is even like the cosine)

sinh(- x) = - sinh x and sinh 0 = 0 (sinh is odd like the sine)

I
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The graph of cosh x corresponds to a hanging cable (hanging under its weight).
Turned upside down, it has the shape of the Gateway Arch in St. Louis. That must
be the largest upside-down cosh function ever built. A cable is easier to construct
than an arch, because gravity does the work. With the right axes in Problem 55, the
height of the cable is a stretched-out cosh function called a catenary:

y = a cosh (x/a) (cable tension/cable density = a).

Busch Stadium in St. Louis has 96 catenary curves, to match the Arch.

The properties of the hyperbolic functions come directly from the definitions. There
are too many properties to memorize-and no reason to do it! One rule is the most
important. Every fact about sines and cosines is reflected in a corresponding fact about
sinh x and cosh x. Often the only difference is a minus sign. Here are four properties:

1. (cosh x)2 - (sinh x)2 = 1 instead of (cos x)2 + (sin x)2 = 1]

Check: ex e-x 2 x e- 2 = e2 x+2+e-2x e2x+2 -e
- 2x

2. d (cosh x) = sinh x instead of d (cos x) - sin xdx dx

3. d (sinh x) = cosh x like d sin x = cos x

4. f sinh x dx = cosh x + C and f cosh x dx = sinh x + C

t)
t, sinh t)

Fig. 6.20 The unit circle cos 2t + sin2t = 1 and the unit hyperbola cosh 2t - sinh 2t = 1.

Property 1 is the connection to hyperbolas. It is responsible for the "h" in cosh and
sinh. Remember that (cos x)2 + (sin x)2 = 1 puts the point (cos x, sin x) onto a unit
circle. As x varies, the point goes around the circle. The ordinary sine and cosine are
"circular functions." Now look at (cosh x, sinh x). Property 1 is (cosh x)2 - (sinh x) 2 =
1, so this point travels on the unit hyperbola in Figure 6.20.

You will guess the definitions of the other four hyperbolic functions:

sinh x ex - e-x cosh x ex + e-x
tanh x - - coth x - - -

cosh x ex + e - x sinh x ex - e - x

1 2 1 2sech x csch x
cosh x ex + e-x sinh x ex - e-x

I think "tanh" is pronounceable, and "sech" is easy. The others are harder. Their
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properties come directly from cosh2x- sinh2x= 1. Divide by cosh2x and sinh2x: 

1 - tanh 2x = sech2x and coth2x - 1 =csch2x 

(tanh x)' = sech2x and (sech x)' = -sech x tanh x 

sinh x1tanh x dx =S=dx = ln(cosh x) + C. 

INVERSE HYPERBOLIC FUNCTIONS 

You remember the angles sin-'x and tan-'x and sec-'x. In Section 4.4 we 
differentiated those inverse functions by the chain rule. The main application was to 
integrals. If we happen to meet jdx/(l+ x2), it is tan-'x + C. The situation for 
sinh- 'x and tanh- 'x and sech- 'x is the same except for sign changes -which are 
expected for hyperbolic functions. We write down the three new derivatives: 

y = sinh-'x (meaning x = sinh y) has 9= 
1 

dx J 2 T i  

y = tanh-'x (meaning x = tanh y) has 9= -
1 

dx 1 - x2 

-1 
y = sech -'x (meaning x = sech y) has d y  = 

dx X J i 7  

Problems 44-46 compute dyldx from l/(dx/dy). The alternative is to use logarithms. 
Since In x is the inverse of ex, we can express sinh-'x and tanh-'x and sech-'x as 
logarithms. Here is y = tanh- 'x: 

The last step is an ordinary derivative of 4 ln(1 + x) - ln(1 - x). Nothing is new 
except the answer. But where did the logarithms come from? In the middle of the 
following identity, multiply above and below by cosh y: 

1 + x - 1 + tanh y cosh y + sinh y eY 
- e2y.

1 - x 1- tanh y cosh y - sinh y e-y 

Then 2y is the logarithm of the left side. This is the first equation in (4), and it is the 
third formula in the following list: 

Remark 1 Those are listed onlyfor reference. If possible do not memorize them. The 
derivatives in equations (I), (2), (3) offer a choice of antiderivatives - either inverse 
functions or logarithms (most tables prefer logarithms). The inside cover of the book 
has 1% = f l n [ E ]  + C (in place of tanh- 'x + C). 

Remark 2 Logarithms were not seen for sin- 'x and tan- 'x and sec- 'x. You might 
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wonder why. How does it happen that tanh-'x is expressed by logarithms, when the 
parallel formula for tan-lx was missing? Answer: There must be a parallel formula. 
To display it I have to reveal a secret that has been hidden throughout this section. 

The secret is one of the great equations of mathematics. What formulas for cos x 
and sin x correspond to &ex+ e-x) and &ex- e-x)? With so many analogies 
(circular vs. hyperbolic) you would expect to find something. The formulas do exist, 
but they involve imaginary numbers. Fortunately they are very simple and there is 
no reason to withhold the truth any longer: 

1 1 .
c o s x = - ( e i x + e i x )  and s i n ~ = - ( e ' ~ - - e - ' ~ ) .  ( 5 )2 2i 

It is the imaginary exponents that kept those identities hidden. Multiplying sin x by 
i and adding to cos x gives Euler's unbelievably beautiful equation 

cos x + i sin x = eiX. (6) 

That is parallel to the non-beautiful hyperbolic equation cosh x + sinh x = ex. 
I have to say that (6) is infinitely more important than anything hyperbolic will 

ever be. The sine and cosine are far more useful than the sinh and cosh. So we end 
our record of the main properties, with exercises to bring out their applications. 

Read-through questions 

Cosh x = a and sinh x = b and cosh2x - sinh2x= 

. Their derivatives are d and e and f . 
The point (x, y) = (cosh t ,  sinh t )  travels on the hyperbola 

g . A cable hangs in the shape of a catenary y = h . 

The inverse functions sinh-'x and t a n h l x  are equal to 
ln[x + ,/x2 + 11 and 4ln I . Their derivatives are i 
and k . So we have two ways to write the anti I . The 
parallel to cosh x + sinh x = ex is Euler's formula m . 
The formula cos x = $(eix+ ePix) involves n exponents. 
The parallel formula for sin x is o . 

1 Find cosh x + sinh x, cosh x - sinh x, and cosh x sinh x. 

2 From the definitions of cosh x and sinh x, find their deriv- 
atives. 

3 Show that both functions satisfy y" = y. 

4 By the quotient rule, verify (tanh x)' = sech2x. 

5 Derive cosh2x + sinh2x = cosh 2x, from the definitions. 

6 From the derivative of Problem 5 find sinh 2x. 

7 The parallel to (cos x + i sin x r  = cos nx + i sin nx is a 
hyperbolic formula (cosh x + sinh x)" = cosh nx + . 
8 Prove sinh(x + y) = sinh x cosh y + cosh x sinh y by 

changing to exponentials. Then the x-derivative gives 
cosh(x + y) = 

Find the derivatives of the functions 9-18: 

9 cosh(3x + 1) 10 sinh x2 

11 l/cosh x 12 sinh(1n x) 

13 cosh2x + sinh2x 14 cosh2x - sinh2x 

15 tanh ,,/= 16 (1 + tanh x)/(l - tanh x) 

17 sinh6x 18 ln(sech x + tanh x) 

19 Find the minimum value of cosh(1n x) for x > 0. 

20 From tanh x = +find sech x, cosh x, sinh x, coth x, csch x. 

21 Do the same if tanh x = - 12/13. 

22 Find the other five values if sinh x = 2. 

23 Find the other five values if cosh x = 1. 

24 Compute sinh(1n 5) and tanh(2 In 4). 

Find antiderivatives for the functions in 25-32: 

25 cosh(2x + 1)  26 x cosh(x2) 

27 cosh2x sinh 

sinh x ex+ ePx
30 ~ 0 t hx = ----

29 1 +cosh x ex - e-" 

31 sinh x + cosh x 32 (sinh x + cosh x)" 
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33 The triangle in Figure 6.20 has area 3cosh t sinh t. 
(a) Integrate to find the shaded area below the hyperbola 
(b)For the area A in red verify that dA/dt =4 
(c) Conclude that A =it + C and show C =0. 

Sketch graphs of the functions in 34-40. 

34 y = tanh x (with inflection point) 

35 y =coth x (in the limit as x 4 GO) 

36 y =sech x 

38 y=cosh-lx for x 3 1 

39 y =sech- 'x for 0 c x d 1 

40 = tanh-'x = - In - for lxlc 1 : (i':) 
41 (a) Multiplying x =sinh y =b(ey -e-Y) by 2eY gives 

(eq2-248)  - 1=0. Solve as a quadratic equation for eY. 
(b)Take logarithms to find y =sinh - 'x and compare with 
the text. 

42 (a) Multiplying x =cosh y =i ( 8  +ebY) by 2ey gives 
( e ~ ) ~-2x(e") + 1=0. Solve for eY. 
(b)Take logarithms to find y =cosh- 'x and compare with 
the text. 

43 Turn (4) upside down to prove y' = - l/(l -x2), if y = 
coth- 'x. 

44 Compute dy/dx = I/,/= by differentiating x =sinh y 
and using cosh2 y -sinh2y= 1. 

45 Compute dy/dx = l/(l -x2) if y =tanh- 'x by differen- 
tiating x = tanh y and using sech2y + tanh2y= 1. 

46 Compute dyldx = -l / x J E ?  for y =sech- 'x, by 
differentiating x =sech y. 

From formulas (I), (2), (3) or otherwise, find antiderivatives in 
47-52: 

54 A falling body with friction equal to velocity squared 
obeys dvldt =g -v2. 

(a) Show that v(t) =&tanh &t satisfies the equation. 
(b)Derive this v yourself, by integrating dv/(g -v2)=dt. 
(c) Integrate v(t) to find the distance f(t). 

55 A cable hanging under its own weight has slope S =dyldx 
that satisfies dS/dx =c d m .  The constant c is the ratio of 
cable density to tension. 

(a) Show that S =sinh cx satisfies the equation. 
(b)Integrate dyldx =sinh cx to find the cable height y(x), 
if y(0)= llc. 
(c) Sketch the cable hanging between x = -L and x =L 
and find how far it sags down at x =0. 

56 The simplest nonlinear wave equation (Burgers' equation) 
yields a waveform W(x) that satisfies W" = WW' -W'. One 
integration gives W' =3w2-W. 

(a) Separate variables and integrate: 
dx=dw/(3w2- W)=-dW/(2- W)-dW/W. 
(b) Check W' =3W2-W. 

57 A solitary water wave has a shape satisfying the KdV 
equation y" =y' -6yy'. 

(a) Integrate once to find y". Multiply the answer by y'. 
(b) Integrate again to find y' (all constants of integration 
are zero). 
(c) Show that y =4 sech2(x/2) gives the shape of the 
"soliton." 

58 Derive cos ix =cosh x from equation (5). What is the 
cosine of the imaginary angle i = 

59 Derive sin ix = i sinh x from (5). What is sin i? 

60 The derivative of eix =cos x + i sin x is 
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Techniques of Integration 


Chapter 5 introduced the integral as a limit of sums. The calculation of areas was 
started-by hand or computer. Chapter 6 opened a different door. Its new functions 
ex and In x led to differential equations. You might say that all along we have been 
solving the special differential equation dfldx = v(x). The solution is f = 1 v(x)dx. But 
the step to dyldx = cy was a breakthrough. 

The truth is that we are able to do remarkable things. Mathematics has a language, 
and you are learning to speak it. A short time ago the symbols dyldx and J'v(x)dx 
were a mystery. (My own class was not too sure about v(x) itself-the symbol for a 
function.) It is easy to forget how far we have come, in looking ahead to what is next. 

I do want to look ahead. For integrals there are two steps to take-more functions 
and more applications. By using mathematics we make it live. The applications are 
most complete when we know the integral. This short chapter will widen (very much) 
the range of functions we can integrate. A computer with symbolic algebra widens it 
more. 

Up to now, integration depended on recognizing derivatives. If v(x) = sec2x then 
f(x) = tan x. To integrate tan x we use a substitution:, 

I!&dx.=-1"-- - In u = - In cos x. 
U 

What we need now ,are techniques for other integrals, to change them around until 
we can attack them. Two examples are j x cos x dx and 5 ,/- dx, which are not 
immediately recognizable. With integration by parts, and a new substitution, they 
become simple. 

Those examples indicate where this chapter starts and stops. With reasonable effort 
(and the help of tables, which is fair) you can integrate important functions. With 
intense effort you could integrate even more functions. In older books that extra 
exertion was made-it tended to dominate the course. They had integrals like 

which we could work on if we had to. Our time is too 
valuable for that! Like long division, the ideas are for us and their intricate elaboration 
is for the computer. 

Integration by parts comes first. Then we do new substitutions. Partial fractions 
is a useful idea (already applied to the logistic equation y' = cy - by2). In the last 
section x goes to infinity or y(x) goes to infinity-but the area stays finite. These 
improper integrals are quite common. Chapter 8 brings the applications. 

,/-,l)dx/+J(x 
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7.1 Integration by Parts

There are two major ways to manipulate integrals (with the hope of making them
easier). Substitutions are based on the chain rule, and more are ahead. Here we
present the other method, based on the product rule. The reverse of the product rule,
to find integrals not derivatives, is integration by parts.

We have mentioned J cos2x dx and J In x dx. Now is the right time to compute
them (plus more examples). You will see how J In x dx is exchanged for J 1 dx-a
definite improvement. Also J xex dx is exchanged for J ex dx. The difference between
the harder integral and the easier integral is a known term-that is the point.

One note before starting: Integration by parts is not just a trick with no meaning.
On the contrary, it expresses basic physical laws of equilibrium and force balance.
It is a foundation for the theory of differential equations (and even delta functions).
The final paragraphs, which are completely optional, illustrate those points too.

We begin with the product rule for the derivative of u(x) times v(x):

dv du d
u(x) + v(x)d - d (u(x)v(x)). (1)dx dx dx

Integrate both sides. On the right, integration brings back u(x)v(x). On the left are
two integrals, and one of them moves to the other side (with a minus sign):

u(x) dx = u(x)v(x) - v(x) dx. (2)

That is the key to this section-not too impressive at first, but very powerful. It is
integration by parts (u and v are the parts). In practice we write it without x's:

7A The integration by parts formula is j u dv = uv - Jv du. (3)

The problem of integrating u dv/dx is changed into the problem of integrating
v du/dx. There is a minus sign to remember, and there is the "integrated term" u(x)v(x).
In the definite integral, that product u(x)v(x) is evaluated at the endpoints a and b:

Lb dv du

u dx -u(b)v(b) - u(a)v(a) - v dx. (4)
a dx dx

The key is in choosing u and v. The goal of that choice is to make 5 v du easier than
j u dv. This is best seen by examples.

EXAMPLE 1 For f In x dx choose u = In x and dv = dx (so v= x):

In xdx = uv - v du = x ln x - x dx.

I used the basic formula (3). Instead of working with In x (searching for an antideriva-
tive), we now work with the right hand side. There x times l/x is 1. The integral of
1 is x. Including the minus sign and the integrated term uv = x In x and the constant
C, the answer is

J In x dx = x In x - x + C. (5)

For safety, take the derivative. The product rule gives In x + x(1/x) - 1, which is In x.
The area under y = In x from 2 to 3 is 3 In 3 - 3 - 2 In 2 + 2.
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To repeat: We exchanged the integral of In x for the integral of 1. 

EXAMPLE 2 For 5 x cos x dx choose u = x and dv = cos x dx (so v(x) = sin x): 

Again the right side has a simple integral, which completes the solution: 

J'xcos x d x = x  sin x+cos  x +  C. (7) 

Note The new integral is not always simpler. We could have chosen u = cos x and 
dv = x dx. Then v = fx2. Integration using those parts give the true but useless result 

The last integral is harder instead of easier (x2 is worse than x). In the forward 
direction this is no help. But in the opposite direction it simplifies Sf x2 sin x dx. The 
idea in choosing u and v is this: Try to give u a nice derivative and du a nice integral. 

EXAMPLE 3 For J (cos x ) ~dx choose u = cos x and dv = cos x dx (so v = sin x): 

x ) ~ ~ x  dx.~ ( C O S  = uv - J v du = cos x sin x + 1(sin x ) ~  

The integral of (sin x)' is no better and no worse than the integral of (cos x ) ~ .  But we 
never see (sin x ) ~  without thinking of 1 - (cos x ) ~ .  So substitute for (sin x ) ~ :  

J'(cos x ) ~dx = cos x sin x + J' 1 dx - J (cos x)2 dx. 

The last integral on the right joins its twin on the left, and J' 1 dx = x: 

2 J (cos x ) ~  dx = cos x sin x + x. 

Dividing by 2 gives the answer, which is definitely not gcos x ) ~ .  Add any C: 

{(cos x)' dx = f (cos x sin x + x) + C. (8) 

Question Integrate (cos x)' from 0 to 2n. Why should the area be n? 
Answer The definite integral is gcos x sin x + x)]:". This does give n. That area can 
also be found by common sense, starting from (cos x ) ~  =+ (sin x ) ~  1. The area under 
1 is 2n. The areas under (cos x ) ~  are the same. So each one is n. and (sin x ) ~  

EXAMPLE 4 Evaluate J tan-'x dx by choosing u = tan-'x and v = x: 

Stan-'x dx= uv- Sv d u = x  tan-'x- 

The last integral has w = 1 + x2 below and almost has dw = 2x dx above: 

Substituting back into (9) gives J tan- 'x dx as x tan- 'x - f ln(1 + x2). All the familiar 
inverse functions can be integrated by parts (take v = x, and add "+ C" at the end). 

Our final example shows how two integrations by parts may be needed, when the 
first one only simplifies the problem half way. 

EXAMPLE 5 For j x2exdx choose u = x2 and dv = exdx (so v = ex): 

j x2exdx= uv - v du = x2ex- ex(2x dx). 
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The last integral involves xex. This is better than x 2 ex, but it still needs work:

f xexdx = uv - fv du = xex - exdx (now u = x). (11)

Finally ex is alone. After two integrations by parts, we reach I exdx. In equation (11),
the integral of xex is xex - ex. Substituting back into (10),

f x2exdx = x2ex - 2[xex - ex] + C. (12)

These five examples are in the list of prime candidates for integration by parts:

xnex, x"sin x, x"cos x, x"ln x, exsin x, excos x, sin-'x, tan-x, ....

This concludes the presentation of the method-brief and straightforward.
Figure 7.1a shows how the areas f u dv and I v du fill out the difference between the
big area u(b)v(b) and the smaller area u(a)v(a).

v(x) 8(x) " = v(0) 6(x)
red area = large box s
- small box - gray area

= V2 U2 - v1u 1 - fvdu

V(X)

X
0 vi  v2  0

Fig. 7.1 The geometry of integration by parts. Delta function (area 1) multiplies v(x) at x = 0.

In the movie Stand and Deliver, the Los Angeles teacher Jaime Escalante computed
J x2sin x dx with two integrations by parts. His success was through exercises-plus
insight in choosing u and v. (Notice the difference from f x sin x2 dx. That falls the
other way-to a substitution.) The class did extremely well on the Advanced Place-
ment Exam. If you saw the movie, you remember that the examiner didn't believe
it was possible. I spoke to him long after, and he confirms that practice was the key.

THE DELTA FUNCTION

From the most familiar functions we move to the least familiar. The delta function is
the derivative of a step function. The step function U(x) jumps from 0 to 1 at x = 0.
We write 6(x) = dU/dx, recognizing as we do it that there is no genuine derivative at
the jump. The delta function is the limit of higher and higher spikes-from the
"burst of speed" in Section 1.2. They approach an infinite spike concentrated at a
single point (where U jumps). This "non-function" may be unconventional--it is
certainly optional-but it is important enough to come back to.

The slope dU/dx is zero except at x = 0, where the step function jumps. Thus
6(x) = 0 except at that one point, where the delta function has a "spike." We cannot
give a value for 6 at x = 0, but we know its integral across the jump. On every interval
from - A to A, the integral of dU/dx brings back U:

-A 6(x) dx= - dx d= U(x)] A = 1. (13)

"The area under the infinitely tall and infinitely thin spike 6(x) equals 1."
So far so good. The integral of 6(x) is U(x). We now integrate by parts for a crucial

purpose-tofind the area under v(x)6(x). This is an ordinary function times the delta
function. In some sense v(x) times 6(x) equals v(O) times 6(x)-because away from
x = 0 the product is always zero. Thus ex6(x) equals 6(x), and sin x 6(x) = 0.

U
2

U
1

0
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The area under v(x)6(x) is v(0)-which integration by parts will prove:

7B The integral of v(x) times 6(x) is fA_ v(x)6(x)dx = v(0).

The area is v(0) because the spike is multiplied by v(O)-the value of the smooth
function v(x) at the spike. But multiplying infinity is dangerous, to say the least. (Two
times infinity is infinity). We cannot deal directly with the delta function. It is only
known by its integrals! As long as the applications produce integrals (as they do), we
can avoid the fact that 6 is not a true function.

The integral of v(x)6(x)= v(x)dU/dx is computed "by parts:"

v(x)6(x) dx = v(x)U(x)] A - U(x) dx. (14)
-A - -A dx

Remember that U = 0 or U = 1. The right side of (14) is our area v(O):

A dv
v(A) . 1 - 1 dx = v(A) - (v(A) - v(O))= v(O). (15)

o dx

When v(x) = 1, this answer matches f 6dx = 1. We give three examples:

S2 cos x 6(x) dx = 1 f6
5 (U(x) + 6(x))dx = 7 1_1 (6(x))2dx = c00.

A nightmare question occurs to me. What is the derivative of the delta function?

INTEGRATION BY PARTS IN ENGINEERING

Physics and engineering and economics frequently involve products. Work is force
times distance. Power is voltage times current. Income is price times quantity. When
there are several forces or currents or sales, we add the products. When there are
infinitely many, we integrate (probably by parts).

I start with differential equations for the displacement u at point x in a bar:

dv du
S= f(x) with v(x) = k (16)dx dx

This describes a hanging bar pulled down by a forcef(x). Each point x moves through
a distance u(x). The top of the bar is fixed, so u(0)= 0. The stretching in the bar is
du/dx. The internal force created by stretching is v = k du/dx. (This is Hooke's law.)
Equation (16) is a balance of forces on the small piece of the bar in Figure 7.2.

0

W
Fig. 7.2 Difference in internal force balances external force

- Av =fAx or -dv/dx =f(x)

v = W at x = 1 balances hanging weight

286
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7.1 Integrationby Paits 

EXAMPLE 6 Supposef(x) = F, a constant force per unit length. We can solve (16): 

V ( X )  = -Fx + C and ku(x)= -f FX' + C x  + D. (17) 

The constants C and D are settled at the endpoints (as usual for integrals). At x = 0 
we are given u = O  so D = O .  At x =  1 we are given v =  W so C =  W +F. Then v(x) 
and u(x)give force and displacement in the bar. 

To see integration by parts, multiply -dvldx = f(x) by u(x)and integrate: 

] f(x)u(x) dx = - ] u(x) dx = - u(x)v(x)]i+ ] v(x) dx.  
0 0 dx o dx 

The left side is force times displacement, or external work. The last term is internal 
force times stretching-or internal work. The integrated term has u(0)= 0-the fixed 
support does no work. It also has -u( l )W,  the work by the hanging weight. The 
balance of forces has been replaced by a balance of work. 

This is a touch of engineering mathematics, and here is the main point. Integration 
by parts makes physical sense! When -dvldx = f is multiplied by other functions- 
called test functions or virtual displacements-then equation (18) becomes the 
principle of virtual work. It is absolutely basic to mechanics. 

7.1 EXERCISES 
Read-through questions 9 l e X s i n x d x  10 jexcos x dx 

Integration by parts is the reverse of the a rule. It [9 and 10 need two integrations. I think ex can be u or v.] 
changes u dv into b minus c . In case u = x and 11 j eax sin bx dx 12 jxe-"dx
dv = eZxdx, it changes 1xe2'dx to d minus e . The 
definite integral ji xeZxdx becomes f minus 9 . 13 J sin(1n x) dx 14 cos(1n x) dx 

In choosing u and dv, the h of u and the i of 15 5 (In ~ ) ~ d x  16 j x21nxdx  
dvldx should be as simple as possible. Normally In x goes into 17 1sin- 'X dx 18 1cos"(2x) dx

and e" goes into k . Prime candidates are u = x or 
x 2 a n d v = s i n x o r  I or m .Whenu=x2weneed  19 j x  tan-'x dx 

n integrations by parts. For 1 sin- 'x dx, the choice dv = 
20 1 x2 sin x dx (from the movie) 

dx leads to o minus P . 
21 jx3cos x dx 22 j x3 sin x dx 

If U is the unit step function, dU/dx = S is the unit q 
function. The integral from -A to A is U(A) -U(- A) = 23 j x3exdx 24 1x sec'lx dx 

r . The integral of v(x)S(x) equals s . The integral 25 1 x sec2x dx 26 1x cosh x dx 
jLl cos x S(x)dx equals t . In engineering, the balance of 
forces -dv/dx = f is multiplied by a displacement u(x) and 
integrated to give a balance of u . Compute the definite integrals 27-34. 

27 ln x dx 1; 28 1; & dx (let u = A) 
Integrate 1-16, usually by parts (sometimes twice). 29 1; x e""dx 30 j; ln(x2) dx 

1 x sin x dx 2 jxe4"dx 31 [E x cos x dx 32 xsin x dx 

33 1: ln(x2+ 1)dx 34 g2x2 sin x dx, 3 jxe-'dx 4 x cos 3x dx 

5 x2 cos x dx (use Problem 1) In 35-40 derive "reduction formulas" from higher to lower 
powers. , 

8 j x2 e4x dx (use Problem 2) 35 xnexdx= xnex-n j xn- -'eXdx 
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37 lxncos  x dx=xnsin x -n  1xn-'sin x dx 

38 1xnsin x dx = 

39 1(ln x)"dx =x(ln x)" -n 1(ln x)"- ldx 

41 How would you compute I x sin x exdx using Problem 9? 
Not necessary to do it. 

42 How would you compute I x ex tan- 'x dx? Don't do it. 

43 (a) Integrate 1x3sin x2dx by substitution and parts. 
(b) The integral xnsin x2dx is possible if n is . 

44-54 are about optional topics at the end of the section. 

44 For the delta function 6(x) find these integrals: 

(a) J! ,e2xS(x)dx (b) j), v(x)6(x)dx (c) cos x 6(x)dx. 

45 Solve dyldx = 36(x) and dyldx = 36(x)+ y(x). 

46 Strange fact: 6(2x) is diflerent from 6(x). Integrate them 
both from -1 to 1. 

47 The integral of 6(x) is the unit step U(x). Graph the next 
integrals R(x) =I U(x)dx and Q(x) =I R(x)dx. The ramp R 
and quadratic spline Q are zero at x = 0. 

48 In 6(x -4),the spike shifts to x =f. It is the derivative of 
the shifted step U(x -3). The integral of v(x)d(x -3) equals 
the value of v at x =3. Compute 

(a) 6(x -f)dx; (b) 1; ex6(x-4)dx; 

( 4  I! I 6(x)6(x-t)dx. , 

49 The derivative of 6(x) is extremely singular. It is a "dipole" 
known by its integrals. Integrate by parts in .(b) and (c): 

50 Why is I!, U(x)6(x)dx equal to f? (By parts.) 

51 Choose limits of integration in v(x)=J f(x)dx so that 
dv/dx= -f(x) and v = O  at x =  1. 

52 Draw the graph of v(x) if v(1) =0 and -dv/dx =.f(x): 

(a)f = x; (b)f = U(x -3); (c)f = S(x -3). 

53 What integral u(x) solves k duldx = v(x) with end con-
dition u(O)=O? Find u(x) for the three v's (not f's) in 
Problem 52, and graph the three u's. 

54 Draw the graph of AUlAx = [U(x + Ax) -U(x)]/Ax. 
What is the area under this graph? 

Problems 55-62 need more than one integration. 

55 Two integrations by parts lead to V = integral of v: 

I uv'dx = uv - Vu' + I Vu"dx. 

Test this rule on 1x2sin x dx. 

56 After n integrations by parts, 1u(dv/dx)dx becomes 

-uv - U'"V(~ ,  + u ' ~ ' v ( ~ ,  +(- 1)" 1u'"'u(,- ,,dx. 

dn)is the nth derivative of u, and v(,, is the nth integral of v. 
Integrate the last term by parts to stretch this formula to 
n + 1 integrations. 

57 Use Problem 56 to find [x3exdx. 

58 From f(x) -f(0) =[tf '(t)dt, integrate by parts (notice dt 
not dx) to reach f(x) =f(0) +f '(0)x + J","(t)(x - t)dt. Con- 
tinuing as in Problem 56 produces Taylor's formula: 

1
f ( x ) = f ( 0 ) + f 1 ( O ) x + - f " ( 0 ) x 2 + . - +  dt.

2! n! 

59 What is the difference between 1; uw"dx and I; u"w dx? 

60 compute the areas A =[; In x dx and B =1; eY dy. Mark 
them on the rectangle with corners (0, 0), (e, 0), (e, I), (0, 1). 

61 Find the mistake. I don't believe ex cosh x = ex sinh x: 

= ex cosh x -exsinh x + ex sinh x dx. 

62 Choose C and D to make the derivative of 
C eaXcos bx + D eaxsin bx equal to eaXcos bx. Is this easier 
than integrating eaxcos hx twice by parts? 

7.2 Trigonometric Integrals 

The next section will put old integrals into new forms. For example x2,/-' dx 
will become jsin20 cos20 dB. That looks simpler because the square root is gone. But 
still sin20 cos28 has to be integrated. This brief section integrates any product of shes 
and cosines and secants and tangents. 

There are two methods to choose from. One uses integration by parts, the other 
is based on trigonometric identities. Both methods try to make the integral easy (but 
that may take time). We follow convention by changing the letter 8 back to x. 
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Notice that sin4x cos x dx is easy to integrate. It is u4du. This is the goal in 
Example l-to separate out cos x dx. It becomes du, and sin x is u. 

EXAMPLE I j sin2x cos3x dx (the exponent 3 is odd) 

Solution Keep cos x dx as du. Convert the other cos2x to 1 - sin2x: 

EXAMPLE 2 5 sin5x dx (the exponent 5 is odd) 

Solution Keep sin x dx and convert everything else to cosines. The conversion is 
always based on sin2x+ cos2x= 1: 

j ( l  - c o ~ ~ x ) ~ s i nx dx = !(I- 2 cos2x + cos4x) sin x dx. 

Now cos x is u and -sin x dx is du. We have !(- 1 + 2u2 - u4)du. 

General method for 5 sinmx cosnx dx, when m or n is odd 

If n is odd, separate out a single cos x dx. That leaves an even number of cosines. 
Convert them to sines. Then cos x dx is du and the sines are u's. 

If m is odd, separate out a single sin x dx as du. Convert the rest to cosines. 
If m and n are both odd, use either method. 
If m and n are both even, a new method is needed. Here are two examples. 

EXAMPLE 3 5 cos2x dx (m = 0,n = 2, both even) 

There are two good ways to integrate cos2x, but substitution is not one of them. If 
u equals cos x, then du is not here. The successful methods are integration by parts 
and double-angle formulas. Both answers are in equation (2) below-I don't see 
either one as the obvious winner. 

Integrating cos2x by parts was Example 3 of Section 7.1. The other approach, by 
double angles, is based on these formulas from trigonometry: 

cos2x= f(1 + cos 2x) sin2x= f(1- cos 2x) (1) 

The integral of cos 2x is 5 sin 2x. So these formulas can be integrated directly. They 
give the only integrals you should memorize-either the integration by parts form, 
or the result from these double angles: 

cos2x dx equals )(x + sin x cos x) or )x + 4sin 2x (plus C). (2) 

1sin2x dx equals $(x - sin x cos x) or f x -& sin 2x (plus C). (3) 

EXAMPLE 4 1cos4x dx (m = 0,n = 4, both are even) 

Changing cos2x to 1 - sin2x gets us nowhere. All exponents stay even. Substituting 
u = sin x won't simplify sin4x dx, without du. Integrate by parts or switch to 2x. 

First solution Integrate by parts. Take u = cos3x and dv = cos x dx: 

1(cos3x)(cos x dx) = uv - j v du = cos3x sin x - j (sin x)(- 3 cos2x sin x dx). 

The last integral has even powers sin2x and cos2x. This looks like no progress. 
Replacing sin2x by 1 - cos2x produces cos4x on the right-hand side also: 

J cos4x dx = cos3x sin x + 3 5 cos2x(l - cos2x)dx. 
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Always even powers in the integrals. But now move 3 cos4x dx to the left side: 

Reduction 4 5 cos4x dx = cos3x sin x + 3 cos2x dx. (4) 

Partial success-the problem is reduced from cos4x to cos2x. Still an even power, 
but a lower power. The integral of cos2x is already known. Use it in equation (4): 

I cos4x dx = $ cos3x sin x + 3 f (x + sin x cos x) + C. (5 )  

Second solution Substitute the double-angle formula cos2x = 3 + 3 cos 2x: 

cos4x dx = 5 (f + f cos 2x)'dx = I (1 + 2 cos 2x + cos2 2x)dx. 

Certainly I dx = x. Also 2 I cos 2x dx = sin 2x. That leaves the cosine squared: 

I cos22x = I f (1 + cos 4x)dx = f x  + sin 4x + C. 

The integral of cos4x using double angles is 

$[x + sin 2x + f x  + $sin 4x1 + C. 

That solution looks different from equation (S), but it can't be. There all angles were 
x, here we have 2x and 4x. We went from cos4x to cos22x to cos 4x, which was 
integrated immediately. The powers were cut in half as the angle was doubled. 

Double-angle method for I sinmx cosnx dx, when m and n are even. 

Replace sin2x by f (1 - cos 2x) and cos2x by & I +  cos 2x). The exponents drop to 
m/2 and n/2. If those are even, repeat the idea (2x goes to 4x). If m/2 or n/2 is odd, 
switch to the "general method" using substitution. With an odd power, we have du. 

EXAMPLE 5 (Double angle) I sin2x cos2x dx = I i ( l  - cos 2x)(1 + cos 2x)dx. 

This leaves 1 - cos2 2x in the last integral. That is familiar but not necessarily easy. 
We can look it up (safest) or remember it (quickest) or use double angles again: 

x sin 4x 
(1-cos22x)dx=- 1 - - - - C O S ~ X  dx=---  

4 ' I ( : :  ) 8 3 2  + C. 

Conclusion Every sinmx cosnx can be integrated. This includes negative m and n- 
see tangents and secants below. Symbolic codes like MACSYMA or Mathematica 
give the answer directly. Do they use double angles or integration by parts? 

You may prefer the answer from integration by parts (I usually do). It avoids 2x 
and 4x. But it makes no sense to go through every step every time. Either a computer 
does the algebra, or we use a "reduction formula" from n to n - 2: 

Reduction n J cosnx dx = cosn-'x sin x + (n - 1) COS"-~X dx. (7) 

For n = 2 this is I cos2x dx-the integral to learn. For n = 4 the reduction produces 
cos2x. The integral of cos6x goes to cos4x. There are similar reduction formulas for 
sinmx and also for sinmx cosnx. I don't see a good reason to memorize them. 

INTEGRALS WITH ANGLES px AND qx 

Instead of sin8x times cos6x, suppose you have sin 8x times cos 6x. How do you 
integrate? Separately a sine and cosine are easy. The new question is the integral of 
the product: 
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EXAMPLE 6 Find I:" sin 8x cos 6x dx. More generallyfind I:" sin px cos qx dx. 

This is not for the sake of making up new problems. I believe these are the most 
important definite integrals in this chapter (p and q are 0, 1,2, . . .). They may be the 
most important in all of mathematics, especially because the question has such a 
beautiful answer. The integrals are zero. On that fact rests the success of Fourier 
series, and the whole industry of signal processing. 

One approach (the slow way) is to replace sin 8x and cos 6x by powers of cosines. 
That involves cos14x. The integration is not fun. A better approach, which applies to 
all angles px and qx, is to use the identity 

sin px cos qx =f sin(p + q)x +f sin(p - q)x. (8) 

Thus sin 8x cos 6x =f sin 14x +f sin 2x. Separated like that, sines are easy to 
integrate: 

1 cos 14x 1 cos 2x 2"
s in8xcos6xdx= ------ =0.1
lo2" [ I 4 2 2  0 

Since cos 14x is periodic, it has the same value at 0 and 2n. Subtraction gives zero. 
The same is true for cos 2x. The integral of sine times cosine is always zero over a 
complete period (like 0 to 2n). 

What about sin px sin qx and cos px cos qx? Their integrals are also zero, provided 
p is dinerent from q. When p = q we have a perfect square. There is no negative area 
to cancel the positive area. The integral of cos2px or sin2px is n. 

EXAMPLE 7 I:" sin 8x sin 7x dx = 0 and I:" sin2 8x dx = n. 

With two sines or two cosines (instead of sine times cosine), we go back to the 
addition formulas of Section 1.5. Problem 24 derives these formulas: 

sin px sin qx = -4 cos(p + q)x + cos(p - q)x (9) 

cos px cos qx = + cos(p + q)x +9cos(p - q)x. (10) 

With p = 8 and q = 7, we get cos 15x and cos x. Their definite integrals are zero. With 
p = 8 and q = 8, we get cos 16x and cos Ox (which is 1). Formulas (9) and (10) also 
give a factor f .  The integral of f is n: 

1:" sin 8x sin 7x dx = - f1:" cos 15x dx + $I:" cos x dx = 0 + 0 

1:" sin 8x sin 8x dx = - )I:" coCl6x dx + fI:" cos Ox dx = 0 + n 
The answer zero is memorable. The answer n appears constantly in Fourier series. 
No ordinary numbers are seen in these integrals. The case p = q = 1 brings back 

cos2x dx = f + t sin 2x. 

SECANTS AND TANGENTS 

When we allow negative powers m and n, the main fact remains true. All integrals 
I sinmx cosnx dx can be expressed by known functions. The novelty for negative pow- 
ers is that logarithms appear. That happens right at the start, for sin x/cos x and for 
ljcos x (tangent and secant): 

I tan x dx = - I duju = - lnlcos x J  (here u = cos x) 

I sec x dx = duju = lnlsec x + tan xl (here u = sec x + tan x). 
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For higher powers there is one key identity: 1 + tan2x = sec2x. That is the old 
identity cos2x + sin2x= 1 in disguise (just divide by cos2x). We switch tangents to 
secants just as we switched sines to cosines. Since (tan x)' = sec2x and (sec x)' = 
sec x tan x, nothing else comes in. 

EXAMPLE 8 [ tan2x dx = [(sec2x - 1)dx= tan x - x + C.  

EXAMPLE 9 [ tan3x dx = [ tan x(sec2x - 1)dx. 

The first integral on the right is [u du = iu2, with u = tan x. The last integral is 
-[ tan x dx. The complete answer is f(tan x ) ~+ lnlcos x I + C. By taking absolute 
values, a negative cosine is also allowed. Avoid cos x = 0. 

- x)m-2dxEXAMPLE 10 Reduction I(tan x)"dx = ('an x)"'-' I(tan
m-1 

Same idea-separate off (tan x ) ~  as sec2x - 1. Then integrate (tan x)"-'sec2x dx, 
which is urn-'du. This leaves the integral on the right, with the exponent lowered by 
2. Every power (tan x)" is eventually reduced to Example 8 or 9. 

EXAMPLE II [sec3x dx = uv -[ v du = sec x tan x -[ tan2x sec x dx 

This was integration by parts, with u = sec x and v = tan x. In the integral on the 
right, replace tan2x by sec2x - 1 (this identity is basic): 

[ sec3x dx = sec x tan x -[ sec3x dx + [ sec x dx. 

Bring I sec3x dx to the left side. That reduces the problem from sec3x to sec x. 

I believe those examples make the point-trigonometric integrals are computable. 
Every product tanmx secnx can be reduced to one of these examples. If n is even we 
substitute u = tan x. If m is odd we set u = sec x. If m is even and n is odd, use a 
reduction formula (and always use tan2x = sec2x- 1). 

I mention very briefly a completely different substitution u = tan ix .  This seems to 
all students and instructors (quite correctly) to come out of the blue: 

2u 1 - u2 2du
sin x = - and cos x =  - and dx = - (1 1) 1 + u2 1+ u2 1 + u2' 

The x-integral can involve sums as well as products-not only sinmx cosnx but also 
1/(5+ sin x - tan x). (No square roots.) The u-integral is a ratio of ordinary polynomi- 
als. It is done by partial fractions. 

Application of j sec x dx to distance on a map (Mercator projection) 

The strange integral ln(sec x + tan x) has an everyday application. It measures the 
distance from the equator to latitude x, on a Mercator map of the world. 

All mapmakers face the impossibility of putting part of a sphere onto a flat page. 
You can't preserve distances, when an orange peel is flattened. But angles can be 
preserved, and Mercator found a way to do it. His map came before Newton and 
Leibniz. Amazingly, and accidentally, somebody matched distances on the map with 
a table of logarithms-and discovered sec x dx before calculus. You would not be 
surprised to meet sin x, but who would recognize ln(sec x + tan x)? 

The map starts with strips at all latitudes x. The heights are dx, the lengths are 
proportional to cos x. We stretch the strips by l/cos x-then Figure 7 . 3 ~  lines up 
evenly on the page. When dx is also divided by cos x, angles are preserved-a small 
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A map width 

Rdx Rdx 
map width 

Fig. 7.3 Strips at latitude x are scaled by sec x, making Greenland too large. 

square becomes a bigger square. The distance north adds up the strip heights 
dxlcos x. This gives I sec x dx. 

The distance to the North Pole is infinite! Close to the Pole, maps are stretched 
totally out of shape. When sailors wanted to go from A to B at a constant angle with 
the North Star, they looked on Mercator's map to find the angle. 

7.2 EXERCISES 

Read-through questions 

To integrate sin4x cos3x, replace cos2x by a . Then 
(sin4x-sin6x) cos x dx is b du. In terms of u = sin x the 
integral is c . This idea works for sinmx cosnx if either m 
or n is d . 

If both m and n are , one method is integration by 
f . For sin4x dx, split off dv = sin x dx. Then -I v du is 
g . Replacing cos2x by h creates a new sin4x dx that 

combines with the original one. The result is a reduction to 
1sin2x dx, which is known to equal I . 

The second method uses the double-angle formula sin2x = 
. Then sin4x involves cos2 k . Another doubling 

comes from cos22x = I . The integral contains the sine of 
m .  


To integrate sin 6x cos 4x, rewrite it as isin lox + n . 
The indefinite integral is 0 . The definite integral from 
0 to 271 is P . The product cos px cos qx is written as 
4 cos (p + q)x + q . Its integral is also zero, except if 

r when the answer is s . 

With u = tan x, the integral of tangx sec2x is t . Simi-
larly J secgx (sec x tan x dx) = u . For the combination 
tanmx secnx we apply the identity tan2x = v . After reduc- 
tion we may need j tan x dx = w and J sec x dx = x . 

Compute 1-8 by the "general method," when m or n is odd. 

3 J sin x cos x dx 4 j cos5x dx 

5 J sin5x cos2x dx 6 j sin3x cos3x dx 

1 sin x cos x dx 7 8 1 rsin x cos3x dx 

9 Repeat Problem 6 starting with sin x cos x = $sin 2x. 

10 Find sin2ax cos ax dx and sin ax cos ax dx. 

In 11-16 use the double-angle formulas (m, n even). 

11 S",in2x dx 12 J",in4x dx 

13 J cos23x dx 14 1sin2x cos2x dx 

15 sin2x dx + J cos2x dx 16 J sin2x cos22x dx 

17 Use the reduction formula (7) to integrate cos6x. 

18 For n > 1 use formula (7) to prove 

19 For n = 2,4, 6, . . . deduce from Problem 18 that 

20 For n = 3, 5, 7, . . . deduce from Problem 18 that 

21 (a) Separate dv = sin x dx from u = sinn- 'x and integrate 
1sinnx dx by parts. 
(b) Substitute 1- sin2x for cosZx to find a reduction 
formula like equation (7). 

22 For which n does symmetry give J",osnx dx = O? 

23 Are the integrals (a)-(f) positive, negative, or zero? 
(a) J>os 3x sin 3x dx (b) j b o s  x sin 2x dx 
(c) J! 2n cos x sin x dx (d)J: (cos2x-sin2x) dx 
(e) 5:" cos px sin qx dx (f) cos4x dx 5; 
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cos 99x cos lOlx dx 1: 29 

24 Write down equation (9) for p =q = 1, and (10) for p = 2, 
q = 1. Derive (9) from the addition formulas for cos(s + t) and 
cos(s- t) in Section 1.5. 

In 25-32 compute the indefinite integrals first, then the definite 
integrals. 

25 jc cos x sin 2x dx 26 j",in 3x sin 5x dx 

30 52 sin x sin 2x sin 3x dx 

31 cos x/2 sin x/2 dx 32 ĵ ,x cos x dx (by parts) 

33 Suppose a Fourier sine series A sin x + B sin 2x + 
C sin 3x + adds up to x on the interval from 0 to n. Find - 0 -

A by multiplying all those functions (including x) by sin x 
and integrating from 0 to z. (B and C will disappear.) 

34 Suppose a Fourier sine series A sin x + B sin 2x + 
C sin 3x + adds up to 1 on the interval from 0 to n. Find 
C by multiplying all functions (including 1) by sin 3x 
and integrating from 0 to a. (A and B will disappear.) 

35 In 33, the series also equals x from -n to 0, because all 
functions are odd. Sketch the "sawtooth function," which 
equals x from -n to z and then has period 2n. What is the 
sum of the sine series at x = n? 

36 In 34, the series equals -1 from -n to 0, because sines 
are odd functions. Sketch the "square wave," which is 
alternately -1 and +1, and find A and B. 

37 The area under y = sin x from 0 to n is positive. Which 
frequencies p have 1; sin px dx =O? 

38 Which frequencies q have J; cos qx dx = O? 

39 For which p, q is S", sin px cos qx dx = O? 

40 Show that I",in px sin qx dx is always zero. 

Compute the indefinite integrals 41-52. 

41 sec x tan x dx 42 J tan 5x dx 

43 1tan2x sec2x dx 44 1tan2x sec x dx 

45 j tan x sec3x dx 46 sec4x dx 

49 1cot x dx 50 1csc x dx 

53 Choose A so that cos x -sin x = A cos(x + ~14). Then 
integrate l/(cos x -sin x). 

54 Choose A so that cos x -f i sin x = A cos(x + n/3). Then 
integrate l/(cos x -asin x)l. 

55 Evaluate lcos x -sin xl dx. 

56 Show that a cos x + b sin x = cos (x -a) and 
find the correct phase angle a. 

57 If a square Mercator map shows 1000 miles at latitude 
30", how many miles does it show at latitude 60°? 

58 When lengths are scaled by sec x, area is scaled by 
. Why is the area from the equator to latitude x 

proportional to tan x? 

59 Use substitution (1 1) to find I dx/(l + cos x). 

60 Explain from areas why J^,sin2x dx =J: cos2x dx. These 
integrals add to I",dx, so they both equal . 

61 What product sin px sin qx is graphed below? Check 
that (p cos px sin qx -q sin px cos qx)/(q2 -p2) has this 
derivative. 

62 Finish sec3x dx in Example 11. This is needed for the 
length of a parabola and a spiral (Problem 7.3.8 and 
Sections 8.2 and 9.3). 

Trigonometric Substitutions 

The most powerful tool we have, for integrating with pencil and paper and brain, is 
the method of substitution. To make it work, we have to think of good substitutions- 
which make the integral simpler. This section concentrates on the single most valu- 
able collection of substitutions. They are the only ones you should memorize, and 
two examples are given immediately. 
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To integrate J K i ,  substitute x = sin 9. Do not set u = 1 - x2 (::is missing )-

cos 0 d0 1 J- dx -j(cos 0)(cos 0 40) 

The expression J1 - x2 is awkward as a function of x. It becomes graceful as a 
function of 8. We are practically invited to use the equation 1 - (sin 0)2 = (COS 
Then the square root is simply cos 9-provided this cosine is positive. 

Notice the change in dx. When x is sin 8, dx is cos 0 dO. Figure 7.4a shows the 
original area with new letters. Figure 7.4b shows an equal area, after rewriting 
j (COS B)(COS O dO) as 5 (cos2e) do. Changing from x to 8 gives a new height and a new 
base. There is no change in area-that is the point of substitution. 

To put it bluntly: If we go from ,,/- to cos 0, and forget the difference between 
dx and dB, and just compute j cos 0 dB, the answer is totally wrong. 

Fig. 7.4 Same area for Jl -x2 dx and cos28 dB. Third area is wrong: dx #dB 

We still need the integral of cos20. This was Example 3 of integration by parts, and 
also equation 7.2.6. It is worth memorizing. The example shows this 0 integral, and 
returns to x: 

EXAMPLE 1 5 cos20 dO = & sin O cos 8 + &O is after substitution 

,,/- dx = i x , , / m  + 4 sin- 'x is the original problem. 

We changed sin 0 back to x and cos O to ,,/-. Notice that 0 is sin-'x. The answer 
is trickier than you might expect for the area under a circular arc. Figure 7.5 shows 
how the two pieces of the integral are the areas of a pie-shaped wedge and a triangle. 

cos 0 d8 
EXAMPLE 2 - 0 + C = s i n - l x + C .  

Remember: We already know sin-'x. Its derivative l/Jm was computed in 
Section 4.4. That solves the example. But instead of matching this special problem 

1 1 A 

1 e area -8 = -sin-' x
2 2 

y = d T Z ?  
10 

area I x4 - 7  area = ~ 1 2  I 
I 

2 J I 

Fig. 7.5 Jmdx is a sum of simpler areas. Infinite graph but finite area. 
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with a memory from Chapter 4, the substitution x = sin 8 makes the solution auto- 
matic. From 5 d8 = 8 we go back to sin-'x. 

The rest of this section is about other substitutions. They are more complicated 
than x = sin 8 (but closely related). A table will display the three main choices-sin 8, 
tan 8, sec 8-and their uses. 

TRIGONOMETRIC SUBSTITUTIONS 

After working with ,/-, the next step is ,/-.
 The change x = sin 8 simplified 
the first, but it does nothing for the second: 4 - sin28 is not familiar. Nevertheless a 
factor of 2 makes everything work. Instead of x = sin 8, the idea is to substitute x = 
2 sin 8: 

JF?= JGGG = 2 cos 8 and dx = 2 cos 8 do. 

Notice both 2's. The integral is 4 1 cos28 dB = 2 sin 8 cos 8 + 28. But watch closely. 
This is not 4 times the previous 1 cos28 do! Since x is 2 sin 8, 8 is now sin- '(~12). 

EXAMPLE 3 1 ,/- dx = 4 1 cos28 d8 = x , / m  + 2 sin- '(~12). 

Based on ,/- and ,/-, here is the general rule for ,/-.
 Substitute 
x = a sin 8. Then the a's separate out: 

J ~ = , / ~ = a c o s ~  d x = a c o s 8 d 8 .and 

That is the automatic substitution to try, whenever the square root appears. 

Here a2 = 16. Then a = 4 and x = 4 sin 8. The integral has 4 cos 8 above and below, 
so it is 1 dB. The antiderivative is just 8. For the definite integral notice that x = 4 
means sin 8 = 1, and this means 8 = 7112. 

A table of integrals would hide that substitution. The table only gives sin-'(~14). 
There is no mention of 1 d8 = 8. But what if 16 - x2 changes to x2 - 16? 

8 dx = ?EXAMPLE 5 1x=4, / F X  
Notice the two changes-the sign in the square root and the limits on x. Example 4 
stayed inside the interval 1x1 < 4, where 16 -x2 has a square root. Example 5 stays 
outside, where x2 - 16 has a square root. The new problem cannot use x = 4 sin 8, 
because we don't want the square root of -cos28. 

The new substitution is x = 4 sec 8. This turns the square root into 4 tan 8: 

x = 4  sec 8 gives d x = 4  sec 8 tan 8 d8 and x2 - 16= 16sec28- 16= 16 tan2@. 

This substitution solves the example, when the limits are changed to 8: 

!:I3 4 sec 8 tan do -- Jy3s e c 8 d 8 = l n ( ~ e c 8 + t a n 8 ) ] ~ ~ = l n ( 2 + f i ) .  
4 tan 8 

I want to emphasize the three steps. First came the substitution x = 4 sec 8. An 
unrecognizable integral became sec 6dB. Second came the new limits (8 = 0 when 
x = 4, 8 = 7113 when x = 8). Then I integrated sec 8. 



2977.3 Trigonometric Substitutions

Example 6 has the same x 2 - 16. So the substitution is again x = 4 sec 8:

r 16 dx fi,/2 64 sec 0 tan 0 dO i/2 cos 6 dOEXAMPLE 6 =8 (x2 -- 16)3/2 0=,/3 (4 tan )3  /3 sin20

Step one substitutes x = 4 sec 0. Step two changes the limits to 0. The upper limit
x = oo becomes 0 = in/2, where the secant is infinite. The limit x = 8 again means 0 =
7r/3. To get a grip on the integral, I also changed to sines and cosines.

The integral of cos 6/sin20 needs another substitution! (Or else recognize
cot 0 csc 0.) With u = sin 0 we have f du/u 2 = - 1/u = - 1/sin 8:

rK/2 cos 6 dO -1 1n/ 2 2
Solution sin sin +

Jn/3 sin28 sin 8n/3 /

Warning With lower limit 0 = 0 (or x = 4) this integral would be a disaster. It divides
by sin 0, which is zero. This area is infinite.

(Warning)2  Example 5 also blew up at x = 4, but the area was not infinite. To make
the point directly, compare x-- 1/2 to x- 3/ 2. Both blow up at x = 0, but the first one
has finite area:

dx=2 o 2 2 dx =  = co.

Section 7.5 separates finite areas (slow growth of 1/ x) from infinite areas (fast
growth of x-3/2).

Last substitution Together with 16 - x 2 and x 2 - 16 comes the possibility 16 + x 2.
(You might ask about -16 - x2, but for obvious reasons we don't take its square
root.) This third form 16 + x2 requires a third substitution x = 4 tan 0. Then
16 + x2 = 16 + 16 tan20 = 16 sec 20. Here is an example:

f dx f,/2 4 sec20 dO 1 /2 r
EXAMPLE 7 0 =8'x=o 16 + x

2 0=o 16 sec2 0 4 81 t

Note There is a subtle difference between changing x to sin 0 and changing sin 0 to u:

in Example 1, dx was replaced by cos 0 dO (new method)

in Example 6, cos 0 dO was already there and became du (old method).

The combination cos 0 dO was put into the first and pulled out of the second.
My point is that Chapter 5 needed du/dx inside the integral. Then (du/dx)dx

became du. Now it is not necessary to see so far ahead. We can try any substitution.
If it works, we win. In this section, x = sin 0 or sec 0 or tan 0 is bound to succeed.

dx_ xdx d rdu
NEW = dO by trying x = tan OLD +x -2 u by seeing du1+ X2I+X2 2u

Table of substitutions for a - x', a2 + X2, x2 - 2

x = a sin 0 replaces a2 X2 by a2cos 0 and dx by a cos 0 dO

x = a tan 0 replaces a2 + X2 by a2 seC2O and dx by a sec20 dO

x = a sec 0 replaces x 2 -a 2 by a2tan22 and dx by a sec 0 tan 0 dO
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We mention the hyperbolic substitutions tanh 8, sinh 8, and cosh 8. The table below 
shows their use. They give new forms for the same integrals. If you are familiar with 
hyperbolic functions the new form might look simpler-as it does in Example 8. 

x = a tanh8 replaces a2 - x2 by a2 sech28 and dx by a sech28 dB 

x = a sinh8 replaces a2 + x2 by a2 cosh28 and dx by a cosh 8 d8 

x = a cosh 8 replaces x2 - a2  by a2 sinh28 and dx by a sinh 8 d8 

sinh 8 d8 
EXAMPLE 8 I,/&=sinh 0 = 8 + C = cosh-'x + C. 

dB is simple. The bad part is cosh- 'x at the end. Compare with x = sec 8: 

sec 8 tan 8 d8 
= ln(sec 8 + tan 8) + C = ln(x + d m )+ C.SJ&=j' t a n 0  

This way looks harder, but most tables prefer that final logarithm. It is clearer than 
cosh-'x, even if it takes more space. All answers agree if Problem 35 is correct. 

COMPLETING THE SQUARE 

We have not said what to do for Jm,/-.or Those square roots 
contain a linear term-a multiple of x. The device for removing linear terms is worth 
knowing. It is called completing the square, and two examples will begin to explain it: 

x 2 - 2 x + 2 = ( x - 1 = u 2 +  1 

The idea has three steps. First, get the x2 and x terms into one square. Here that 
square was (x - 1)2= x2 - 2x + 1. Second, fix up the constant term. Here we recover 
the original functions by adding 1. Third, set u = x - 1 to leave no linear term. Then 
the integral goes forward based on the substitutions of this section: 

The same idea applies to any quadratic that contains a linear term 2bx: 

rewrite x2 + 2bx + c as (x + b)2+ C ,  with C = c - b2 

rewrite - x2 + 2bx + c as - (x - b)2+ C ,  with C = c + b2 

To match the quadratic with the square, we fix up the constant: 

x2 + lox + 16= (x + 5)2+ C leads to C =  16 - 25 = -9  

- x 2 +  l o x +  16= - ( x -  5)*+ C leads to C =  16+25=41 .  

EXAMPLE 9 

Here u = x + 5 and du = dx. Now comes a choice-struggle on with u = 3 sec 0 or 
look for du/(u2- a') inside the front cover. Then set a = 3: 



Note If the quadratic starts with 5x2 or -5x2, factor out the 5 first: 

5x2- lox + 25 = 5(x2-2x + 5) = (complete the square) = 5[(x - + 41. 

Now u = x - 1 produces 5[u2 + 41. This is ready for table lookup or u = 2 tan 8: 

dx - du - 1 2  sec28d"EXAMPLE 10 I I 1 Id8,
5x2- lox + 25 - 5[u2 + 41 - 5[4 sec28] 10 

This answer is 8/10 + C. Now go backwards: 8/10 = (tan- ' f u)/lO = (tan- ' f(x - -))/lo. 
Nobody could see that from the start. A double substitution takes practice, from x 
to u to 8. Then go backwards from 8 to u to x. 

Final remark For u2 + aZ we substitute u = a tan 8. For u2 - a2 we substitute u = 
a sec 8. This big dividing line depends on whether the constant C (after completing 
the square) is positive or negative. We either have C = a* or C = -a2. The same 
dividing line in the original x2 + 2bx + c is between c > b2 and c < b2. In between, 
c = b2 yields the perfect square (x + b)'- and no trigonometric substitution at all. 

7.3 EXERCISES 
Read-through questions 

The function ,/- suggests the substitution x = a . 
The square root becomes b and dx changes to c . 
The integral j(1 -x2)3i2dx becomes J d dB. The interval 
3 < x < 1  changes to 8 f . 

For ,/a2 -x2 the substitution is x = P with dx = 
h . or x2-a2 we use x = I with dx = 1 . Then 

dx/(l + x2) becomes j dB, because 1 + tan28= k . The 
answer is 8 = tan-'x. We already knew that I is the 
derivative of tan- 'x. 

The quadratic x2 + 2bx + c contains a m term 2bx. To 
remove it we n the square. This gives (x + b)2+ C with 
C = 0 . The example x2 + 4x + 9 becomes P . Then 

(Important) This section started with x = sin 8 and u = x + 2. In case x2 enters with a minus sign, -x2+ 4x + 9 
becomes ( q )2+ r . When the quadratic contains j d x / , / m  = j dB = 8 = sin- 'JC.
4x2, start by factoring out s . 

(a)Use x = cos 8 to get a different answer. 
Integrate 1-20 by substitution. Change 8 back to x. (b) How can the same integral give two answers? 

Compute I dx/x,/= with x = sec 0. Recompute with 
x = csc 8. HOW can both answers be correct? 

23 Integrate x/(x2 + 1) with x = tan 8, and also directly as a 
logarithm. Show that the results agree. 

24 Show that jd x / x , / a  = f sec- '(x2). 

Calculate the definite integrals 25-32. 

25 dx = area of I& 8 j,/- dx (see 7.2.62) Fa ,/-
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Rewrite 43-48 as ( x+ b)2+ C or -( x- b)2+ C by completing 
the square. 

x d x  43 x 2 - 4 x + 8  44 - x 2 + 2 x + 8  
30 1 -

- 1  x 2 +  1 45 x2 -6x 46 - x 2  + 10 

47 x 2  + 2x + 1 48 x 2  + 4x - 12 
32 jl:2Jm~dx  = area of . 

49 For the three functions f ( x )  in Problems 43, 45, 47 

33 Combine the integrals to prove the reduction formula integrate l / f ( x ) .  

( n# 0): 50 For the three functions g(x)  in Problems 44, 46, 48 

d - j c d - x .  integrate l / m .  
n .x2+1 51 For j dx/(x2+ 2bx + c) why does the answer have different 

Integrate l/cos x and 1 / ( 1  + cos x )  and J I+ cos x. forms for b2> c and b2< c? What is the answer if b2= c? 

(a)x = gives i d x / J x 2  - 1 = ln(sec 0 + tan 0). 52 What substitution u=x + b or u= x -b will remove the 
linear term? (b)From the triangle, this answer is f = In(x + Jn). 

Check that df/dx = l / J m - .  

(c) Verify that coshf =i (ef + e - I )  = x. Thenf = cosh-'x, 
the answer in Example 8. 

(a) .u = gives i d x / , / x 2+ 1 = ln(sec B + tan 0). 

(b)The second triangle converts this answer to g = ln(x + 53 Find the mistake. With x = sin 0 and J-x"= cos 8,Jm).Check that dg/dx = l / J m .  substituting dx =cos B dB changes 
(c) Verify that sinh g = +(eg- e-g)= .u so g = sinh- ' x .  
(d)Substitute x = sinh g directly into i dx/,/+ and 
integrate. 

54 (a) If x = tan 0 then 1J m d x  =1 dB. 

(b) Convert i[sec 0 tan 0 + ln(sec 0 + tan 0)] back to x. 

dB.(c) If x = sinh 0 then Jwdx =1 
(d)Convert i[sinh 0 cosh 0 + 01 back to x. 

1 1 These answers agree. In Section 8.2 they will give the length 
of a parabola. Compare with Problem 7.2.62. 

37-42 substitute .u = sinh 0. cosh 0. or tanh 0. After intee- -
ration change back to x.  55 Rescale x and y in Figure 7.5b to produce the equal area 

37 1-
y dx in Figure 7 .5~ .  What happens to y and what happens 

dx dx to dx? 
J'X- 1 56 Draw y = l / J c 2  and y = l/J= to the same 

scale (1" across and up; 4" across and a" up). 

57 What is wrong, if anything, with 

7.4 

This section is about rational functions P(x)/Q(x).Sometimes their integrals are also 
rational functions (ratios of polynomials). More often they are not. It is very common 
for the integral of PIQ to involve logarithms. We meet logarithms immediately in the 

1-Partial Fractions 
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simple case l/(x - 2), whose integral is lnlx - 21 + C. We meet them again in a sum 
of simple cases: 

Our plan is to split PIQ into a sum like this-and integrate each piece. 
Which rational function produced that particular sum? It was 

This is PIQ. It is a ratio of polynomials, degree 1 over degree 3. The pieces of P are 
collected into -4x + 16. The common denominator (x - 2)(x + 2)(x)= x3 - 4x is Q. 
But I kept these factors separate, for the following reason. When we start with PIQ, 
and break it into a sum of pieces, thefirst things we need are the factors of Q. 

In the standard problem PIQ is given. To integrate it, we break it up. The goal of 
partial fractions is to find the pieces-to prepare for integration. That is the technique 
to learn in this section, and we start right away with examples. 

EXAMPLE 1 Suppose PIQ has the same Q but a different numerator P: 

Notice the form of those pieces! They are the "partial fractions" that add to PIQ. 
Each one is a constant divided by a factor of Q. We know the factors x - 2 and x + 2 
and x. We don't know the constants A, B, C. In the previous case they were 1,3, -4. 
In this and other examples, there are two ways to find them. 

Method 1(slow) Put the right side of (1) over the common denominator Q: 

Why is A multiplied by (x + 2)(x)? Because canceling those factors will leave A/(x - 2) 
as in equation (1). Similarly we have B/(x + 2) and Clx. Choose the numbers A, B, C 
so that the numerators match. As soon as they agree, the splitting is correct. 

Method 2 (quicker) Multiply equation (1) by x - 2. That leaves a space: 

Now set x = 2 and immediately you have A. The last two terms of (3) are zero, because 
x - 2 is zero when x = 2. On the left side, x = 2 gives 

Notice how multiplying by x - 2 produced a hole on the left side. Method 2 is the 
"cover-up method." Cover up x - 2 and then substitute x = 2. The result is 3 = 

A + 0 + 0, just what we wanted. 
In Method 1, the numerators of equation (2) must agree. The factors that multiply 

B and C are again zero at x = 2. That leads to the same A-but the cover-up method 
avoids the unnecessary step of writing down equation (2). 
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Calculation ofB Multiply equation (1) by x + 2, which covers up the (x + 2): 

Now set x = - 2, so A and C are multiplied by zero: 

This is almost full speed, but (4) was not needed. Just cover up in Q and give x the 
right value (which makes the covered factor zero). 

Calculation of C (quickest) In equation (I), cover up the factor (x) and set x = 0: 

To repeat: The same result A = 3, B = - 1, C = 1 comes from Method 1. 

EXAMPLE 2 

First cover up (x - 1) on the left and set x = 1. Next cover up (x + 3) and set x = - 3: 

The integral is tlnlx - 11+ ilnlx + 31 + C. 

EXAMPLE 3 This was needed for the logistic equation in Section 6.5: 

A1 
- +- B 

~ ( ~ - b y ) - ;  c - by' 

First multiply by y. That covers up y in the first two terms and changes B to By. 
Then set y = 0. The equation becomes l/c = A. 

To find B, multiply by c - by. That covers up c - by in the outside terms. In the 
middle, A times c - by will be zero at y = clb. That leaves B on the right equal to 
l/y = blc on the left. Then A = llc and B = blc give the integral announced in 
Equation 6.5.9: 

It is time to admit that the general method of partial fractions can be very awkward. 
First of all, it requires the factors of the denominator Q. When Q is a quadratic 
ax2+ bx + c, we can find its roots and its factors. In theory a cubic or a quartic can 
also be factored, but in practice only a few are possible-for example x4 - 1 is 
(x2- 1)(x2+ 1). Even for this good example, two of the roots are imaginary. We can 
split x2 - 1 into (x + l)(x - 1). We cannot split x2 + 1 without introducing i. 

The method of partial fractions can work directly with x2 + 1, as we now see. 

EXAMPLE 4 dx (a quadratic over a quadratic). 

This has another difficulty. The degree of P equals the degree of Q (= 2). Partial 
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jiactions cannot start until P has lower degree. Therefore I divide the leading term x2 
into the leading term 3x2. That gives 3, which is separated off by itself: 

Note how 3 really used 3x2 + 3 from the original numerator. That left 2x + 4. Partial 
fractions will accept a linear factor 2x + 4 (or Ax + B, not just A) above a quadratic. 

This example contains 2x/(x2 + I), which integrates to ln(x2 + 1). The final 
4/(x2 + 1) integrates to 4 tan-'x. When the denominator is x2 + x + 1 we complete 
the square before integrating. The point of Sections 7.2 and 7.3 was to make that 
integration possible. This section gets the fraction ready-in parts. 

The essential point is that we never have to go higher than quadratics. Every 
denominator Q can be split into linear factors and quadratic factors. There is no magic 
way to find those factors, and most examples begin by giving them. They go into 
their own fractions, and they have their own numerators-which are the A and B 
and 2x + 4 we have been computing. 

The one remaining question is what to do if a factor is repeated. This happens in 
Example 5. 

EXAMPLE 5 

The key is the new term B/(x - That is the right form to expect. With (x - l)(x - 2) 
this term would have been B/(x - 2). But when (x - 1) is repeated, something new is 
needed. To find B, multiply through by (x - and set x = 1: 

2 x + 3 =  A(x- 1)+ B becomes 5 =  B when x =  1. 

This cover-up method gives B. Then A =  2 is easy, and the integral is 
2 lnlx - 11 - 5/(x - 1). The fraction 5/(x - 1)2 has an integral without logarithms. 

EXAMPLE 6 

This final example has almost everything! It is more of a game than a calculus 
problem. In fact calculus doesn't enter until we integrate (and nothing is new there). 
Before computing A, B, C, D, E, we write down the overall rules for partial fractions: 

The degree of P must be less than the degree of Q. Otherwise divide their leading 
terms as in equation (8) to lower the degree of P. Here 3 < 5. 
Expect the fractions illustrated by Example 6. The linear factors x and x + 1 
(and the repeated x2) are underneath constants. The quadratic x2 + 4 is under a 
linear term. A repeated (x2 + 4)2 would be under a new Fx + G. 
Find the numbers A, B, C, .. . by any means, including cover-up. 
Integrate each term separately and add. 

We could prove that this method always works. It makes better sense to show that 
it works once, in Example 6. 

To find E, cover up (x - 1) on the left and substitute x = 1. Then E = 3. 
To find B, cover up x2 on the left and set x = 0. Then B = 4/(0 + 4)(0 - 1)= -1. 
The cover-up method has done its job, and there are several ways to find A, C, D. 
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Compare the numerators, after multiplying through by the common denominator Q: 

The known terms on the right, from B = - 1 and E = 3, can move to the left: 

We can divide through by x and x - 1, which checks that B and E were correct: 

-3x2 - 4 = A(x2+ 4) + (Cx + D)x. 

Finally x = 0 yields A = - 1. This leaves -2x2 = (Cx + D)x. Then C = - 2 and 
D=O. 

You should never have to do such a problem! I never intend to do another one. 
It completely depends on expecting the right form and matching the numerators. 
They could also be matched by comparing coefficients of x4, x3, x2, x, 1-to give five 
equations for A, B, C, D, E. That is an invitation to human error. Cover-up is the 
way to start, and usually the way to finish. With repeated factors and quadratic 
factors, match numerators at the end. 

7.4 EXERCISES 

Read-through questions Multiply by x - 1 and set x = 1. Multiply by x + 1 and set 

The idea of a fractions is to express P(x)/Q(x) as a b 
x = - 1. Integrate. Then find A and B again by method 1 -
with numerator A(x + 1)+ B(x - 1) equal to 1. of simpler terms, each one easy to integrate. To begin, the 

degree of P should be c the degree of Q. Then Q is split 
into d factors like x -5 (possibly repeated) and quadratic 

Express the rational functions 3-16 as partial fractions: 

factors like x2 + x + 1 (possibly repeated). The quadratic 
factors have two e roots, and do not allow real linear 
factors. 

A factor like x -  5 contributes a fraction A/ f . Its 
integral is g . To compute A, cover up h in the 
denominator of P/Q. Then set x = i , and the rest of 
P/Q becomes A. An equivalent method puts all fractions over 
a common denominator (which is I ). Then match the 

3x2 1 
k . At the same point x = I this matching gives A. 9-x2+1 (divide first) 

lo (x - 1)(x2+ 1) 
A repeated linear factor (x -5)2 contributes not only 

A/(x -5) but also B/ m . A quadratic factor like x2 + x + 1 
contributes a fraction n /(x2+ x + 1) involving C and D. 
A repeated quadratic factor or a triple linear factor would 1 x2 + 1 
bring in (Ex + F)/(x2+ x + or G/(x -5)3. The conclusion l 3  X(X - 1)(x-2)(x -3) 

14 -(divide first) 
x + l

is that any PIQ can be split into partial o , which can 
always be integrated. 

1 Find the numbers A and B to split l/(.u2 -x): 
1

16 7x (x- 1) (remember the 

Cover up x and set x =0 to find A. Cover up x - 1 and set 17 Apply Method 1 (matching numerators) to Example 3: 
x = 1 to find B. Then integrate. 1 B - A(c-by)+By

--- - A +--
2 Find the numbers A and B to split l/(x2 - 1): cy -by2 y c -by y(c -by) ' 

Match the numerators on the far left and far right. Why does 
Ac = l? Why does -bA + B = O? What are A and B? 
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18 What goes wrong if we look for A and B so that By slibstitution change 21-28 to integrals of rational functions. 
Problem 23 integrates l/sin 8 with no special trick. 

Over a common denominator, try to match the numerators. sin 0 do
What to do first? 

23 I G a  
3x2 3x2 A Bx+C

19 Split -- into -+-
x ~ - 1- (x-1)(x2+x+1) X-1 x2+x+l '  

(a) Cover up x - 1 and set x = 1 to find A. 
(b) Subtract A/(x - 1) from the left side. Find Bx +C. 
(c) Integrate all terms. Why do we already know 

29 Multiply this partial fraction by x -a. Then let x -+ a: 

1 A--- + .*-.  

20 Solve dyldt = 1-y2 by separating idyll -y2 = dt. Then Q(x) - x -a 

Show that A = l/Q'(a). When x =a is a double root this fails 
because Q'(a) = 

1 A
30 Find A in ----+.-..Use Problem 29.

x8-1 x -1Integration gives 31n = t + C. With yo =0 the con- 
stant is C = . Taking exponentials gives . 31 (for instructors only) Which rational functions P/Qare the 
The solution is y = . This is the S-curve. derivatives of other rational functions (no logarithms)? 

1 . L 7.5 Improper Integrals 1-1 


"Zmp~oper"means that some part of Jt y(x)dx becomes infinite. It might be b or a or 
the function y. The region under the graph reaches infinitely far-to the right or left 
or up or down. (Those come from b = oo and a = - oo and y + oo and y -,-oo.) 
Nevertheless the integral may "converge." Just because the region is infinite, it is not 
automatic that the area is infinite. That is the point of this section-to decide when 
improper integrals have proper answers. 

The first examples show finite area when b = oo, then a = - m ,  then y = I/& at 
x = 0.The areas in Figure 7.6 are 1, 1,2: 

Fig. 7.6 The shaded areas are finite but the regions go to infinity. 
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In practice we substitute the dangerous limits and watch what happens. When the
integral is -1/x, substituting b = oo gives "- 1/oo = 0." When the integral is ex,
substituting a = - oo gives "e-" = 0." I think that is fair, and I know it is successful.
But it is not completely precise.

The strict rules involve a limit. Calculus sneaks up on 1/oo and e-" just as it
sneaks up on 0/0. Instead of swallowing an infinite region all at once, the formal
definitions push out to the limit:

00b b b

DEFINITION y(x)dx = lim y(x)dx y(x)dx = lim y(x)dx.
a b f f - 0 a -

The conclusion is the same. The first examples converged to 1, 1, 2. Now come two
more examples going out to b = oo:

The area under 1/x is infinite: d= In x = co (1)
SX

" dx x, _-' 1
The area under 1/xP is finite if p > 1: - x- -P -0 (2)

f XP 1 - P p-1
The area under 1/x is like 1 + I + - + + -, which is also infinite. In fact the sum
approximates the integral-the curved area is close to the rectangular area. They go
together (slowly to infinity).

A larger p brings the graph more quickly to zero. Figure 7.7a shows a finite area
1/(p - 1) = 100. The region is still infinite, but we can cover it with strips cut out of
a square! The borderline for finite area is p = 1. I call it the borderline, but p = 1 is
strictly on the side of divergence.

The borderline is also p = 1 when the function climbs the y axis. At x = 0, the graph
of y = 1/xP goes to infinity. For p = 1, the area under 1/x is again infinite. But at x =
0 it is a small p (meaning p < 1) that produces finite area:

- In =lnx 0o=0 - -o= ifp<l. (3)ox ox- 1-p0 1 p

Loosely speaking "-In 0 = oo." Strictly speaking we integrate from the point x = a
near zero, to get f, dx/x =- In a. As a approaches zero, the area shows itself as
infinite. For y = 1/x2, which blows up faster, the area - 1/x]o is again infinite.

For y = 1/ x, the area from 0 to 1 is 2. In that case p = ½. For p = 99/100 the area
is 1/(1 - p) = 100. Approaching p = 1 the borderline in Figure 7.7 seems clear. But
that cutoff is not as sharp as it looks.

1 1 1

Fig. 7.7 Graphs of 1/xP on both sides of p = 1. I drew the same curves!

306
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Narrower borderline Under the graph of llx, the area is infinite. When we divide 
by in x or (ln x ) ~ ,  the borderline is somewhere in between. One has infinite area (going 
out to x = a ) ,  the other area is finite: 

The first is dulu with u = In x. The logarithm of in x does eventually make it to 
infinity. At x = 10l0, the logarithm is near 23 and ln(1n x) is near 3. That is slow! 
Even slower is ln(ln(1n x)) in Problem 11. No function is exactly on the borderline. 

The second integral in equation (4) is convergent (to 1). It is 1du/u2 with u = In x. 
At first I wrote it with x going from zero to infinity. That gave an answer I couldn't 
believe: 

There must be a mistake, because we are integrating a positive function. The area 
can't be zero. It is true that l/ln b goes to zero as b + oo. It is also true that l/ln a 
goes to zero as a -,0. But there is another infinity in this integral. The trouble is at 
x = 1, where In x is zero and the area is infinite. 

EXAMPLE 1 The factor e-" overrides any power xP (but only as x -,a ) .  

Jr~ 'Oe-~dx  == 50! but Jr~ - ' e - ~ d x  oo. 

The first integral is (50)(49)(48)--.(I). It comes from fifty integrations by parts (not 
recommended). Changing 50 to 3, the integral defines "ifactorial." The product 
*(- i)(-$).-- has no way to stop, but somehow i!is *&.See Problem 28. 
The integral ic xOe-"dx= 1 is the reason behind "zero factorial" = 1. That seems the 
most surprising of all. 

The area under e-"/x is (-I)! = oo. The factor e-" is absolutely no help at x = 0. 
That is an example (the first of many) in which we do not know an antiderivative- 
but still we get a decision. To integrate e -"/x we need a computer. But to decide that 
an improper integral is infinite (in this case) or finite (in other cases), we rely on the 
following comparison test: 

7 6  (Corn-on test) Suppose that 0<Nx)< v(x).. 'Then the area under u(x) 
is smaller than the area under Hx): 

j'u(x)dx<ooif~u(x)dx<m iflu(x)dx=mthenjofx)dx=co. 

Comparison can decide if the area is finite. We don't get the exact area, but we learn 
about one function from the other. The trick is to construct a simple function (like 
l/xP) which is on one side of the given function-and stays close to it: 

EXAMPLE 2 converges by comparison with [ y  $ = I .  

EXAMPLE 3 diverges by comparison with 
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ri dx dxEXAMPLE 4 dx diverges by comparison with - = o.
Eo x 2 + 4x fo 5x

EXAMPLE 5 dx converges by comparison with dx = 1.

In Examples 2 and 5, the integral on the right is larger than the integral on the left.
Removing 4x and x/ increased the area. Therefore the integrals on the left are
somewhere between 0 and 1.

In Examples 3 and 4, we increased the denominators. The integrals on the right
are smaller, but still they diverge. So the integrals on the left diverge. The idea of
comparing functions is seen in the next examples and Figure 7.8.

EXAMPLE 6 e-xdx is below f 1 dx + e-xdx = 1 + 1.

e dxL ev dx
EXAMPLE 7 is above x In x .J, Inx 1 x In x

EXAMPLE 8 x is below 'dx+ lo J' - 2 + 2.

1 1

2

1

4-

3-

2-

1-

V= + ----

;X -_ 7

area = o0 -

red

- area = -oo

- area
=4

1 2 e .2 .4 .6 .8

Fig. 7.8 Comparing u(x) to v(x): Se dx/ln x = oo and fo dx/lx- < 4. But oo - oo : 0.

There are two situations not yet mentioned, and both are quite common. The first is
an integral all the way from a = - oo to b = + oo. That is split into two parts, and
each part must converge. By definition, the limits at - 00 and + 00 are kept separate:

(o 0 ('c 0 fb

f 0 y(x) dx = y(x) dx + y(x) dx = lim y(x) dx + lim y(x) dx.

The bell-shaped curve y = e- 2 covers a finite area (exactly i/). The region extends
to infinity in both directions, and the separate areas are •-. But notice:

0, x dx is not defined even though fb b x dx = 0 for every b.

The area under y = x is + oo00 on one side of zero. The area is - oo00 on the other side.
We cannot accept oo - oo = 0. The two areas must be separately finite, and in this
case they are not.

- I -. -11 -.

I I ~-
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EXAMPLE 9 l l x  has balancing regions left and right of x = 0. Compute j?, d x / x .  

This integral does not exist. There is no answer, even for the region in Figure 7 . 8 ~ .  
(They are mirror images because l l x  is an odd function.) You may feel that the 
combined integral from -1 to 1 should be zero. Cauchy agreed with that-his 
"principal value integral" is zero. But the rules say no: co - co is not zero. 

7.5 EXERCISES 

Read-through questions 

An improper integral j: y(x) dx has lower limit a = a or 
upper limit b = b or y becomes c in the interval 
a < x < b. The example jy dx/x3 is improper because d . 
We should study the limit of j; dx/x3 as e . In practice 
we work directly with -$x -2]y = f . For p > 1 the 
improper integral g is finite. For p < 1 the improper 
integral h is finite. For y = e-" the integral from 0 to co 
is i . 

Suppose 0 < u(x) < v(x) for all x. The convergence of i 
implies the convergence of k . The divergence of 
1u(x) dx I the divergence of v(x) dx. From -co to co, 
the integral of l/(ex + e-") converges by comparison with 
m . Strictly speaking we split (- co, co) into ( n ,0) and 

(0, 0 ). Changing to l/(ex -e-") gives divergence, because 
P . Also j'Cndxlsin x diverges by comparison with q . 

The regions left and right of zero don't cancel because co - co 
is r . 

Decide convergence or divergence in 1-16. Compute the integ- 
rals that converge. 

In 17-26, find a larger integral that converges or a smaller 
integral that diverges. 

27 If p > 0, integrate by parts to show that 

The first integral is the definition of p! So the equation is p! = 

. In particular O! = . Another notation for 
p! is T(p + 1)-using the gamma function emphasizes that p 
need not be an integer. 

28 Compute (- $)! by substituting x = u2: 

1;
 x-1'2e-x  dx = = & (known). 

Then apply Problem 27 to find ($)! 

x2e-"dx 1; Integrate29 by parts. 

8 jYrn 
30 The beta function B(m. n) = 1; x m  1 -x )  'dx is finite 

sin x dx when m and n are greater than . 

31 A perpetual annuity pays s dollars a year forever. With 
se-"dt. 1; 

xe-.dx 1: 10 
continuous interest rate c, its present value is yo = 

n x x (by parts) (by parts) To receive $1000/year at c = lo%, you deposit yo = . 

32 In a perpetual annuity that pays once 2 year, the present 
value is yo = sla + s/a2+ ... = . To receive 
$1000/year at 10% (now a = 1.1) you again deposit yo = 

. Infinite sums are like improper integrals. 

33 The work to move a satellite (mass m) infinitely far from 
the Earth (radius R, mass M )  is W= 1," GMm dx/x2. Evaluate 
W What escape uelocity at liftoff gives an energy $mvi that 
equals W? 

9 
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34 The escape velocity for a black hole exceeds the speed of *38 Compute any of these integrals found by geniuses: 
light: v, > 3 lo8 m/sec. The Earth has GM = 4 *1014m3/sec2. 
1 f  it were compressed to radius R = , the Earth 
would be a black hole. 

35 Show how the area under y = 112" can be covered (draw 
a graph) by rectangles of area 1 + 3 + $ + - - -  = 2. What is the 
exact area from x = 0 to x = a? 1: xe-. cos x dx = 0 1: cos x2dx = m. 
36 Explain this paradox: 

dx 
* x d x  39 For which p is [ - - - co? 

- 0 for every b but - 1. I + x2 diverges. x p  + x - ~  
- h  1 + x2 S""- 

37 Compute the area between y = sec x and y = tan x for 40 Explain from Figure 7 . 6 ~  why the red area is 2, when 
0 < x < 7112. What is improper? Figure 7.6a has red area 1. 
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Applications of the Integral 


We are experts in one application of the integral-to find the area under a curve. 
The curve is the graph of y = v(x), extending from x = a at the left to x = b at the 
right. The area between the curve and the x axis is the definite integral. 

I think of that integral in the following way. The region is made up of thin strips. 
Their width is dx and their height is v(x). The area of a strip is v(x) times dx. The 
area of all the strips is 1: v(x) dx. Strictly speaking, the area of one strip is 
meaningless-genuine rectangles have width Ax. My point is that the picture of thin 
strips gives the correct approach. 

We know what function to integrate (from the picture). We also know how (from 
this course or a calculator). The new applications to volume and length and surface 
area cut up the region in new ways. Again the small pieces tell the story. In this 
chapter, what to integrate is more important than how. 

8.1 Areas and Volumes by Slices 

This section starts with areas between curves. Then it moves to volumes, where the 
strips become slices. We are weighing a loaf of bread by adding the weights of the 
slices. The discussion is dominated by examples and figures-the theory is minimal. 
The real problem is to set up the right integral. At the end we look at a different way 
of cutting up volumes, into thin shells. All formulas are collected into a j n a l  table. 

Figure 8.1 shows the area between two curves. The upper curve is the graph of 
y = v(x). The lower curve is the graph of y = w(x). The strip height is v(x) -w(x), from 
one curve down to the other. The width is dx (speaking informally again). The total 
area is the integral of "top minus bottom": 

area between two curves = [v(x) -w (x)] dx. (1) 

EXAMPLE 1 The upper curve is y = 6x (straight line). The lower curve is y = 3x2 
(parabola). The area lies between the points where those curves intersect. 

To find the intersection points, solve u(x) = w(x) or 6x = 3x2. 
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circle 
o = G

I 

Fig. 8.1 Area between curves = integral of v -w. Area in Example 2 starts with x 2 0. 

One crossing is at x = 0, the other is at x = 2. The area is an integral from 0 to 2: 

area = jz (v -w) d x  = ji (6x  - 3 x 2 )  d x  = 3x2 - x 3 ] ;  = 4. 

EXAMPLE 2 Find the area between the circle v = Jmand the 45" line w = x .  

First question: Which area and what limits? Start with the pie-shaped wedge in 
Figure 8.1 b. The area begins at the y axis and ends where the circle meets the line. 
At the intersection point we have u(x)= w(x): 

from = x squaring gives 1 - x2  = x 2  and then 2x2 = 1. 

Thus x2= f .  The endpoint is at x = 1/J2. Now integrate the strip height v - w: 

The area is n/8 (one eighth of the circle). To integrate Jpdx  we apply the 
techniques of Chapter 7: Set x = sin 0, convert to cos20 d0 = f(0 + sin 0 cos O), 
convert back using 0 = sin-' x .  It is harder than expected, for a familiar shape. 

Remark Suppose the problem is to find the whole area between the circle and the 
line. The figure shows v = w at two points, which are x = 1/$ (already used) and 
also x = - I/$. Instead of starting at x = 0, which gave $ of a circle, we now include 
the area to the left. 

Main point: Integrating from x = -I/$ to x = 1 / f i  will give the wrong answer. 
It misses the part of the circle that bulges out over itself, at the far left. In that part, 
the strips have height 2v instead of v - w. The figure is essential, to get the correct 
area of this half-circle. 

HORIZONTAL STRIPS INSTEAD OF VERTICAL STRIPS 

There is more than one way to slice a region. Vertical slices give x integrals. Horizontal 
slices give y integrals. We have a free choice, and sometimes the y integral is better. 
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dx d x l d x  1 1 du e 

Fig. 8.2 Vertical slices (x integrals) vs. horizontal slices (y integrals). 

Figure 8.2 shows a unit parallelogram, with base 1 and height 1. To find its area from 
vertical slices, three separate integrals are necessary. You should see why! With hori- 
zontal slices of length 1 and thickness dy, the area is just Jidy = 1. 

EXAMPLE 3 Find the area under y = In x (or beyond x = eY) out to x = e. 

The x integral from vertical slices is in Figure 8 .2~.  The y integral is in 8.2d. The area 
is a choice between two equal integrals (I personally would choose y): 

Jz=, in x dx = [x in x -XI',= 1 or I:=,eY)dy= [ey - ey]; = 1.(e-

VOLUMES BY SLICES 

For the first time in this book, we now look at volumes. The regions are three- 
dimensional solids. There are three coordinates x, y, z-and many ways to cut up a 
solid. 

Figure 8.3 shows one basic way-using slices. The slices have thickness dx, like 
strips in the plane. Instead of the height y of a strip, we now have the area A of a 
cross-section. This area is different for different slices: A depends on x. The volume 
of the slice is its area times its thickness: dV = A(x) dx. The volume of the whole solid 
is the integral: 

volume = integral of area times thickness = 1 A(x)  dx. (2) 
Note An actual slice does not have the same area on both sides! Its thickness is Ax 
(not dx). Its volume is approximately A(x) Ax (but not exactly). In the limit, the 
thickness approaches zero and the sum of volumes approaches the integral. 

For a cylinder all slices are the same. Figure 8.3b shows a cylinder-not circular. 
The area is a fixed number A, so integration is trivial. The volume is A times h. The 

Fig. 8.3 Cross-sections have area A(x). Volumes are A(x) dx. 
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letter h, which stands for height, reminds us that the cylinder often stands on its end. 
Then the slices are horizontal and the y integral or z integral goes from 0 to h. 

When the cross-section is a circle, the cylinder has volume nr2 h. 

EXAMPLE 4 The triangular wedge in Figure 8.3b has constant cross-sections with 
area A = f(3)(4)= 6. The volume is 6h. 

EXAMPLE 5 For the triangular pyramid in Figure 8.3c, the area A(x) drops from 6 
to 0. It is a general rule for pyramids or cones that their volume has an extra factor 
f (compared to cylinders). The volume is now 2h instead of 6h. For a cone with base 
area nr2, the volume is f nu2 h. Tapering the area to zero leaves only f of the volume. 

Why the f ?  Triangles sliced from the pyramid have shorter sides. Starting from 3 
and 4, the side lengths 3(1 - x/h) and 4(1- x/h) drop to zero at x = h. The area is 
A = 6(1- ~ / h ) ~ .Notice: The side lengths go down linearly, the area drops quadrati- 
cally. The factor f really comes from integrating r2to get i x 3 :  

EXAMPLE 6 A half-sphere of radius R has known volume $($nR3). Its cross-sections 
are semicircles. The key relation is x2 + r2 = R ~ ,for the right triangle in Figure 8.4a. 
The area of the semicircle is A = fnr2  = $n(R2 - x2 ) .So we integrate A(u): 

EXAMPLE 7 Find the volume of the same half-sphere using horizontal slices 
(Figure 8.4b). The sphere still has radius R. The new right triangle gives y2 + r2 = R ~ .  
Since we have full circles the area is nr2 = n(R2- y2). Notice that this is A(y) not 
A(x). But the y integral starts at zero: 

volume = A(y) dy = n(R2 y - f y3)]; = S ~ R - '(as before). 

Fig. 8.4 A half-sphere sliced vertically or horizontally. Washer area nf - ng2. 

SOLIDS OF REVOLUTION 

Cones and spheres and circular cylinders are "solids of revolution." Rotating a hori- 
zontal line around the x axis gives a cylinder. Rotating a sloping line gives a cone. 
Rotating a semicircle gives a sphere. If a circle is moved away from the axis, rotation 
produces a torus (a doughnut). The rotation of any curve y =f (x) produces a solid 
of revolution. 
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The volume of that solid is made easier because every cross-section is a circle. All
slices are pancakes (or pizzas). Rotating the curve y =f(x) around the x axis gives
disks of radius y, so the area is A = cry 2 = r[f(x)]2. We add the slices:

volume of solid of revolution = ry2 dx = J f (x) 2 dx.

EXAMPLE 8 Rotating y = / with A = ar(iX)2 produces a "headlight" (Figure 8.5a):

volume of headlight = J2 A dx = f2 x dx = I"x2 • = 2tr.

If the same curve is rotated around the y axis, it makes a champagne glass. The slices
are horizontal. The area of a slice is trx2 not try2.When y = x this area is ry4 .
Integrating from y = 0 to gives the champagne volume i(x2/)5/5.

revolution around the y axis: volume = x 2 dy.

EXAMPLE 9 The headlight has a hole down the center (Figure 8.5b). Volume = ?

The hole has radius 1. All of the ./X solid is removed, up to the point where \/&
reaches 1. After that, from x = 1 to x = 2, each cross-section is a disk with a hole.
The disk has radius f= ./ and the hole has radius g = 1. The slice is a flat ring or
a "washer." Its area is the full disk minus the area of the hole:

area of washer = cf 
2 - icg2 = 7r(/x)2 - 7r(1) 2 = 2 rx - 7.

This is the area A(x) in the method of washers. Its integral is the volume:

J• A dx = •2 (x - r) dx = [ x2 - rx]= -17r.

Please notice: The washer area is not ir(f- g)2 . It is A = 7rf2 - 7rg 2.

1 -

- x - -3 x

Fig. 8.5 y = Ix revolved; y = 1 revolved inside it; circle revolved to give torus.

EXAMPLE 10 (Doughnut sliced into washers) Rotate a circle of radius a around the
x axis. The center of the circle stays out at a distance b > a. Show that the volume
of the doughnut (or torus) is 27E2 a2 b.

315
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The outside half of the circle rotates to give the outside of the doughnut. The inside 
half gives the hole. The biggest slice (through the center plane) has outer radius b + a 
and inner radius b - a. 

Shifting over by x, the outer radius is f = b + Jnand the inner radius is 
g = b -J-. Figure 8 . 5 ~  shows a slice (a washer) with area nf - ng2. 

area A = n(b + - n(b - = 4 n b J 2 7 .  

Now integrate over the washers to find the volume of the doughnut: 

That integral $nu2 is the area of a semicircle. When we set x = a sin 8 the area is 
5 a2 cos2 8do. Not for the last time do we meet cos2 8. 

The hardest part is visualizing the washers, because a doughnut usually breaks the 
other way. A better description is a bagel, sliced the long way to be buttered. 

VOLUMES BY CYLINDRICAL SHELLS 

Finally we look at a different way of cutting up a solid of revolution. So far it was 
cut into slices. The slices were perpendicular to the axis of revolution. Now the cuts 
are parallel to the axis, and each piece is a thin cylindrical shell. The new formula 
gives the same volume, but the integral to be computed might be easier. 

Figure 8.6a shows a solid cone. A shell is inside it. The inner radius is x and the 
outer radius is x + dx. The shell is an outer cylinder minus an inner cylinder: 

shell volume n(x + d ~ ) ~  h -h - nx2 h = nx2 h +2nx(ds)h + ~ ( d x ) ~nx2h. (3) 

The term that matters is 2nx(dx)h. The shell volume is essentially 2nx (the distance 
around) times dx (the thickness) times h (the height). The volume of the solid comes 
from putting together the thin shells: 

solid volume = integral of shell volumes = (4) 

This is the central formula of the shell method. The rest is examples. 

Remark on this volume formula It is completely typical of integration that ( d ~ ) ~  and 
AX)^ disappear. The reason is this. The number of shells grows like l/Ax. Terms of 
order AX)^ add up to a volume of order Ax (approaching zero). The linear term 
involving Ax or dx is the one to get right. Its limit gives the integral 2nxh dx. The 
key is to build the solid out of shells-and to find the area or volume of each piece. 

EXAMPLE I I Find the volume of a cone (base area nr2, height b) cut into shells. 

A tall shell at the center has h near b. A short shell at the outside has h near zero. In 
between the shell height h decreases linearly, reaching zero at x = r. The height in 
Figure 8.6a is h = b - bxlr. Integrating over all shells gives the volume of the cone 
(with the expected i): 
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hole radius a

l11 radius x

b2 - x2 (up)
sphere radius b

b2 -X2 (down)/

x 4-$
Fig. 8.6 Shells of volume 27rxh dx inside cone, sphere with hole, and paraboloid.

EXAMPLE 12 Bore a hole of radius a through a sphere of radius b > a.

The hole removes all points out to x = a, where the shells begin. The height of the
shell is h = 2b 2 

- x2 . (The key is the right triangle in Figure 8.6b. The height upward
is b2 - x2-this is half the height of the shell.) Therefore the sphere-with-hole has

volume = fb 27nxh dx = fb 4cxx b2 - x2 dx.

With u = b2 - x2 we almost see du. Multiplying du = - 2x dx is an extra factor - 2n:

volume = - 2rx Jf du = - 2n(u3/2

We can find limits on u, or we can put back u = b2 - 2:

volume = - (b2 - 23/2 = (b2 - 2)3 /2

3 ] 3
If a = b (the hole is as big as the sphere) this volume is zero. If a = 0 (no hole) we
have 47rb 3/3 for the complete sphere.

Question What if the sphere-with-hole is cut into slices instead of shells?
Answer Horizontal slices are washers (Problem 66). Vertical slices are not good.

EXAMPLE 13 Rotate the parabola y = x2 around the y axis to form a bowl.

We go out to x = 2/ (and up to y = 2). The shells in Figure 8.6c have height
h = 2 - x2 . The bowl (or paraboloid) is the same as the headlight in Example 8, but
we have shells not slices:

S2rx(2 - x2 ) dx = 2rx 2 - 27r.
o4 0-

317
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- x

2

X
2
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TABLE area between curves: A = J (v(x) - w(x)) dx
OFOFAREAS solid volume cut into slices: V = j A(x) dx or f A(y) dy

AREAS
AND solid of revolution: cross-section A = 7y2  or rx

VOLUMES
solid with hole: washer area A = rf 2 - tgg

solid of revolution cut into shells: V = J 2nxh dx.
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Which to use, slices or shells? Start with a vertical line going up to y = cos x. Rotating 
the line around the x axis produces a slice (a circular disk). The radius is cos x. 
Rotating the line around the y axis produces a shell (the outside of a cylinder). The 
height is cos x. See Figure 8.7 for the slice and the shell. For volumes we just integrate 
7r cos2x dx (the slice volume) or 27rx cos x dx (the shell volume). 

This is the normal choice-slices through the x axis and shells around the y axis. 
Then y =f (x) gives the disk radius and the shell height. The slice is a washer instead 
of a disk if there is also an inner radius g(x). No problem-just integrate small 
volumes. 

What if you use slices for rotation around the y axis? The disks are in Figure 8.7b, 
and their radius is x. This is x = cos- 'y in the example. It is x =f - '(y) in general. 
You have to solve y =f (x) to find x in terms of y. Similarly for shells around the x 
axis: The length of the shell is x =f -'(y). Integrating may be difficult or impossible. 

When y = cos x is rotated around the x axis, here are the choices for volume: 

(good by slices) j n cos2x dx (bad by shells) 5 2ny cos - ' y dy. 

= COS X 

Fig. 8.7 Slices through x axis and shells around y axis (good). The opposite way needs f - '(y). 

8.1 EXERCISES 

Read-through questions 

The area between y = x3 and y = x4 equals the integral of 
a . If the region ends where the curves intersect, we find 

the limits on x by solving b . Then the area equals c . 
When the area between y = $and the y axis is sliced hori- 
zontally, the integral to compute is d . 

In three dimensions the volume of a slice is its thickness dx 
times its e . If the cross-sections are squares of side 1 -x, 
the volume comes from f . From x = 0 to x = 1, this 
gives the volume s of a square h . If the cross-sec- 
tions are circles of radius 1 -x, the volume comes from 
j i . This gives the volume i of a circular k . 

For a solid of revolution, the cross-sections are I . 
Rotating the graph of y =f (x) around the x axis gives a solid 
volume j m . Rotating around the y axis leads to j n . 
Rotating the area between y =f (x) and y =g(x) around the x 
axis, the slices look like 0 . Their areas are P so the 
volume is j q . 

Another method is to cut the solid into thin cylindrical 
r . Revolving the area under y =f (x) around the y axis, 

a shell has height s and thickness dx and volume t . 
The total volume is 1 u . 

Find where the curves in 1-12 intersect, draw rough graphs, 
and compute the area between them. 

1 y = x 2 - 3 a n d y = 1  2 y = ~ 2 - 2 a n d y = 0  

3 y 2 = x a n d x = 9  4 y 2 = ~ a n d x = y + 2  

5 y=x4-2x2 and y=2x2 6 x=y5  and y = x 4  

7 y=x2  andy=-x2+18x 

8 y =  l/x and y =  1/x2 and x = 3  

9 y=cos x and y=cos2x 

10 y = sin nx and y = 2x and x =0 

11 y=ex and y=e2x-1 and x=O 

12 y = e  and y=ex and y=e-" 

13 Find the area inside the three lines y = 4 -x, y = 3x, and 
y = x. 

14 Find the area bounded by y = 12-x, y = &,and y = 1. 

15 Does the parabola y = 1-x2 out to x = 1 sit inside or 
outside the unit circle x2 + y2 = l? Find the area of the "skin" 
between them. 
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16 Find the area of the largest triangle with base on the x
axis that fits (a) inside the unit circle (b) inside that parabola.

17 Rotate the ellipse x2/a2 + y2/b2 = 1 around the x axis to
find the volume of a football. What is the volume around the
y axis? If a = 2 and b = 1, locate a point (x, y, z) that is in one
football but not the other.

18 What is the volume of the loaf of bread which comes from
rotating y = sin x (0 < x < 7r) around the x axis?

19 What is the volume of the flying saucer that comes from
rotating y = sin x (0 < x < x7) around the y axis?

20 What is the volume of the galaxy that comes from rotating
y = sin x (0 < x < n) around the x axis and then rotating the
whole thing around the y axis?

Draw the region bounded by the curves in 21-28. Find the
volume when the region is rotated (a) around the x axis (b)
around the y axis.

21 x+y=8,x=0,y=0

22 y-e= , x= l, y = O, x = 0

23 y=x 4, y = 1,x=0

24 y=sinx, y=cosx, x = 0

25 xy= 1, x = 2, y= 3

26 x 2 - y2 = 9, x + y = 9 (rotate the region where y > 0)

27 x2 = y3, x3 = y2

28 (x - 2)2 + (y - 1)2 = 1

In 29-34 find the volume and draw a typical slice.

29 A cap of height h is cut off the top of a sphere of radius
R. Slice the sphere horizontally starting at y = R - h.

30 A pyramid P has height 6 and square base of side 2. Its
volume is '(6)(2) 2 = 8.

(a) Find the volume up to height 3 by horizontal slices.
What is the length of a side at height y?
(b) Recompute by removing a smaller pyramid from P.

31 The base is a disk of radius a. Slices perpendicular to the
base are squares.

32 The base is the region under the parabola y = 1-x 2.
Slices perpendicular to the x axis are squares.

33 The base is the region under the parabola y = 1 - x2.
Slices perpendicular to the y axis are squares.

34 The base is the triangle with corners (0, 0), (1, 0), (0, 1).
Slices perpendicular to the x axis are semicircles.

35 Cavalieri's principle for areas: If two regions have strips
of equal length, then the regions have the same area. Draw a
parallelogram and a curved region, both with the same strips
as the unit square. Why are the areas equal?

36 Cavalieri's principle for volumes: If two solids have slices
of equal area, the solids have the same volume. Find the
volume of the tilted cylinder in the figure.

37 Draw another region with the same slice areas as the tilted
cylinder. When all areas A(x) are the same, the volumes
S are the same.

38 Find the volume common to two circular cylinders of
radius a. One eighth of the region is shown (axes are perpen-
dicular and horizontal slices are squares).

39 A wedge is cut out of a cylindrical tree (see figure). One
cut is along the ground to the x axis. The second cut is at
angle 0, also stopping at the x axis.

(a) The curve C is part of a (circle) (ellipse) (parabola).
(b) The height of point P in terms of x is

(c) The area A(x) of the triangular slice is

(d) The volume of the wedge is

h
x

x
2

40 The same wedge is sliced perpendicular to the y axis.
(a) The slices are now (triangles) (rectangles) (curved).
(b) The slice area is _ (slice height y tan 0).

(c) The volume of the wedge is the integral

(d) Change the radius from 1 to r. The volume is
multiplied by

41 A cylinder of radius r and height h is half full of water.
Tilt it so the water just covers the base.

(a) Find the volume of water by common sense.
(b) Slices perpendicular to the x axis are (rectangles) (trap-
ezoids) (curved). I had to tilt an actual glass.

*42 Find the area of a slice in Problem 41. (The tilt angle has
tan 0 = 2h/r.) Integrate to find the volume of water.

L

,9
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The slices in 43-46 are washers. Find the slice area and volume. 56 y = llx, l <x < 100 (around the y axis) 

43 The rectangle with sides x = 1, x = 3, y =2, y = 5 is rotated 57 y = ,/-, 0 <x < 1 (around either axis) 
around the x axis. 

58 y = 1/(1+x2), 0 <x < 3 (around the y axis) 
44 The same rectangle is rotated around the y axis. 

59 y = sin (x2), 0<x <f i (around the y axis) 45 The same rectangle is rotated around the line y = 1. 

46 Draw the triangle with corners (1, O), (1, I), (0, 1). After 60 y = l/,/l- x2, 0 <x < 1 (around the y axis) 

rotation around the x axis, describe the solid and find its 61 y =x2, 0 < x < 2 (around the x axis) 
volume. 

62 y =ex, 0 <x < 1 (around the x axis) 
47 Bore a hole of radius a down the axis of a cone and 
through the base of radius b. If it is a 45" cone (height also 63 y = In x, 1 <x < e (around the x axis) 
b), what volume is left? Check a =0 and a = b. 

64 The region between y = x2 and y =x is revolved around 
48 Find the volume common to two spheres of radius r if the y axis. (a) Find the volume by cutting into shells. (b) Find 
their centers are 2(r -h) apart. Use Problem 29 on spherical the volume by slicing into washers. 
caps. 

65 The region between y =f(x) and y = 1 +f(x) is rotated 
49 (Shells vs. disks) Rotate y = 3 -x around the x axis from around the y axis. The shells have height . The vol- 
x =0 to x =2. Write down the volume integral by disks and ume out to x = a  is . It equals the volume of a 
then by shells. because the shells are the same. 

50 (Shells vs. disks) Rotate y =x3 around the y axis from 66 A horizontal slice of the sphere-with-hole in Figure 8.6b 
y =0 to y = 8. Write down the volume integral by shells and is a washer. Its area is nx2 -nu2 =n(b2- y2 -a2).
disks and compute both ways. (a) Find the upper limit on y (the top of the hole). 
51 Yogurt comes in a solid of revolution. Rotate the line (b) Integrate the area to verify the volume in Example 12. 
y = mx around the y axis to find the volume between y =a 
and y = b. 67 If the hole in the sphere has length 2, show that the volume 

is 4 4 3  regardless of the radii a and b. 
52 Suppose y =f(x) decreases from f(0)=b to f(1)=0. The 
curve is rotated around the y axis. Compare shells to disks: *68 An upright cylinder of radius r is sliced by two parallel 

dy. planes at angle r .  One is a height h above the other. J A  Znxf(x) dx =I",(/ - '( Y ) ) ~  
(a) Draw a picture to show that the volume between the 

Substitute y =f (x) in the second. Also substitute dy =f '(x) dx. planes is nr2 h. 
Integrate by parts to reach the first. 

(b) Tilt the picture by r ,  so the base and top are flat. What 
53 If a roll of paper with inner radius 2 cm and outer radius is the shape of the base? What is its area A? What is the 
10 cm has about 10 thicknesses per centimeter, approximately height H of the tilted cylinder? 
how long is the paper when unrolled? 

69 True or false, with a reason. 
54 Find the approximate volume of your brain. OK to (a) A cube can only be sliced into squares. 
include everything above your eyes (skull too). 

(b) A cube cannot be cut into cylindrical shells. 
Use shells to find the volumes in 55-63. The rotated regions (c) The washer with radii r and R has area n(R - r)2. 
lie between the curve and x axis. (d) The plane w =$ slices a 3-dimensional sphere out of 
55 y = 1 -x2, 0 <x d 1 (around the y axis) a 4-dimensional sphere x2 + y2 + z2+ w2 = 1. 

Length of a Plane Curve 

The graph of y = x3I2is a curve in the x-y plane. How long is  that curve? A definite 
integral needs endpoints, and we specify x = 0 and x = 4. The first problem is to know 
what "length function" to integrate. 

The distance along a curve is the arc length. To set up an integral, we break the 
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problem into small pieces. Roughly speaking, smallpieces of a smooth curve are nearly 
straight. We know the exact length As of a straight piece, and Figure 8.8 shows how 
it comes close to a curved piece. 

(ds)' = (dx)' + (2J(dX)'
dx 

Fig. 8.8 Length As of short straight segment. Length ds of very short curved segment. 

Here is the unofficial reasoning that gives the length of the curve. A straight piece 
has (As)2 = (AX)' + (AY)~.Within that right triangle, the height Ay is the slope 
(AylAx) times Ax. This secant slope is close to the slope of the curve. Thus Ay is 
approximately (dyldx) Ax. 

As z J(AX)~+ (dy/dx)'(Ax)' = ,/I+(dyldX)2 Ax. (1) 

Now add these pieces and make them smaller. The infinitesimal triangle has (ds)' = 

(dx)' + (dy)'. Think of ds as Jl+(dyldx)i dx and integrate: 

length of curve = j ds = j d w dx. 

EXAMPLE 1 Keep y = x3I2 and dyldx = #x112. Watch out for 3 and $: 

length = ,/- dx = ($)($)(I + $x)~/']: = &(lO3I2- l3I2). 

This answer is just above 9. A straight line from (0,O) to (4, 8) has exact length 
fi.Note 4' + 8' = 80. Since f i is just below 9, the curve is surprisingly straight. 

You may not approve of those numbers (or the reasoning behind them). We can 
fix the reasoning, but nothing can be done about the numbers. This example y = x3/' 
had to be chosen carefully to make the integration possible at all. The length integral 
is difficult because of the square root. In most cases we integrate numerically. 

EXAMPLE 2 The straight line y = 2x from x = 0 to x = 4 has dyldx = 2: 

length = 5; ,/=dx = 4 f i  = as before (just checking). 

We return briefly to the reasoning. The curve is the graph of y =f (x). Each piece 
contains at least one point where secant slope equals tangent slope: AylAx =ft(c). 
The Mean Value Theorem applies when the slope is continuous-this is required 
for a smooth curve. The straight length As is exactly J(Ax)' + (ft(c)Ax)'. Adding 
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the n pieces gives the length of the broken line (close to the curve): 

As n -, co and Ax,,, -,0 this approaches the integral that gives arc length. 
. 

8A The length of the curve y = f(x )  from x = a to x = 6 is 

EXAMPLE 3 Find the length of the first quarter of the circle y = ,/=. 
Here dyldx = -XI, /=.  From Figure 8.9a, the integral goes from x = 0 to x = 1: 

dx
length = So1,/l+o'l+O' dx = So1dl + -x2 

dx = Jol,,--I - x ~  

The antiderivative is sin-' x.  It equals 7112 at x = 1 .  This length 7112 is a quarter of 
the full circumference 271. 

EXAMPLE 4 Compute the distance around a quarter of the ellipse y2 + 2x2 = 2. 

The equation is y = ,/=and the slope is dyldx = -2x/ , / - .  So I s  is 

That integral can't be done in closed form. The length of an ellipse can only be 
computed numerically. The denominator is zero at x = 1, so a blind application of the 
trapezoidal rule or Simpson's rule would give length = co. The midpoint rule gives 
length = 1.9 1 with thousands of intervals. 

.v = cost, 4' = G s i n t  

Fig. 8.9 Circle and ellipse, directly by y =f (x)  or parametrically by x( t )  and y(t). 

LENGTH OF A CURVE FROM PARAMETRIC EQUATIONS: x(t) AND y(t)  

We have met the unit circle in two forms. One is x2 + y2 = 1. The other is x = cos t ,  
y = sin t .  Since cos2 t + sin2t = 1,this point goes around the correct circle. One advan- 
tage of the "parameter" t is to give extra information-it tells where the point is and 
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also when. In Chapter 1, the parameter was the time and also the angle-because
we moved around the circle with speed 1.

Using t is a natural way to give the position of a particle or a spacecraft. We can
recover the velocity if we know x and y at every time t. An equation y =f(x) tells the
shape of the path, not the speed along it.

Chapter 12 deals with parametric equations for curves. Here we concentrate on
the path length-which allows you to see the idea of a parameter t without too much
detail. We give x as a function of t and y as a function of t. The curve is still
approximated by straight pieces, and each piece has (As)2 = (Ax)2 + (Ay)2. But instead
of using Ay - (dy/dx) Ax, we approximate Ax and Ay separately:

Ax x (dx/dt) At, Ay - (dy/dt) At, As ; /(dx/dt) 2 + (dy/dt)2 At.

8B The length of a parametric curve is an integral with respect to t:

J ds = (dsdt)dt = d/dt) 2 + (dy/ 2 t (6)

EXAMPLE5 Find the length of the quarter-circle using x = cos t and y = sin t:

2 /(dx/dt) 2 + (dy/dt)2 dt = X/sin 2 t + cos2 t dt = dt = .

The integral is simpler than 1/ /1-x2, and there is one new advantage. We can
integrate around a whole circle with no trouble. Parametric equations allow a path to
close up or even cross itself. The time t keeps going and the point (x(t), y(t)) keeps
moving. In contrast, curves y =f(x) are limited to one y for each x.

EXAMPLE6 Find the length of the quarter-ellipse: x = cos t and y = /2 sin t:

On this path y2 + 2x 2 is 2 sin2 t + 2 cos2 t = 2 (same ellipse). The non-parametric
equation y = /2 - 2x 2 comes from eliminating t. We keep t:

length = 1 /(dx/dt)2 + (dy/dt)2 dt = | /sin 2 t + 2 cos2 t dt. (7)

This integral (7) must equal (5). If one cannot be done, neither can the other. They
are related by x = cos t, but (7) does not blow up at the endpoints. The trapezoidal
rule gives 1.9101 with less than 100 intervals. Section 5.8 mentioned that calculators
automatically do a substitution that makes (5) more like (7).

EXAMPLE7 The path x= t2, y = t3 goes from (0, 0) to (4, 8). Stop at t = 2.

To find this path without the parameter t, first solve for t = x1 /2. Then substitute
into the equation for y: y = t3 = x 3 /2. The non-parametricform (with t eliminated) is
the same curve y = x3/2 as in Example 1.

The length from the t-integral equals the length from the x-integral. This is
Problem 22.

EXAMPLE8 Special choice of parameter: t is x. The curve becomes x = t, y = t3/2 .

If x = t then dx/dt = 1. The square root in (6) is the same as the square root in (4).
Thus the non-parametric form y =f(x) is a special case of the parametric form-just
take t = x.

Compare x = t, y = t3/ 2 with x = t
2 , y = t3. Same curve, same length, different speed.

� ,�
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short distance ---ds
EXAMPLE 9 Define "speed" by 

short time dt ' It is /($I + (%I. 
When a ball is thrown straight upward, dx/d t  is zero. But the speed is not dy/dt .  

It is Idy ldt) .The speed is positive downward as well as upward. 

8.2 EXERCISES 

Read-through questions 

The length of a straight segment (Ax across, Ay up) is 
As = a . Between two points of the graph of y(x), By is 
approximately dyldx times b . The length of that piece 
is approximately J ( A ~ ) ~  c . An infinitesimal piece of + 
the curve has length ds = d . Then the arc length integral 
i s j  0 . 

For y = 4 - x  from x=O to x = 3 the arc length is 
f = g . For y =  x3 the arc length integral is h . 

The curve x = cos t ,  y =sin t is the same as i . The 
length of a curve given by x(t), y(t) is I ,/Fdt. For exam- 
ple x = cos t ,  y = sin t from t = 4 3  to t = 4 2  has length 

k . The speed is dsldt = I . For the special case 
x = t ,  y = / ( t )  the length formula goes back to dx. 

Find the lengths of the curves in Problems 1-8. 

1 y = x3I2from (0, 0) to (1, 1) 

2 y = x2I3from (0,O) to (1, 1) (compare with Problem 1 or 
put u =$ + x2I3in the length integral) 

3 y = 3(x2+ 2)312from x = 0 to x = 1 

4 y = &x2 -2)3/2from x = 2 to x = 4 

7 y = 3x3I2- i x1 I2from x = 1 to x = 4 

8 y = x2 from (0, 0) to (1, 1) 

9 The curve given by x = cos3t ,  y = sin3t is an astroid (a 
hypocycloid). Its non-parametric form is x2I3+ y2I3= 1. 
Sketch the curve from t = 0 to t = z/2 and find its length. 

10 Find the length from t = 0 to t = z of the curve- given by 
x = cos t + sin t ,  y = cos t -sin t. Show that the curve is a 
circle (of what radius?). 

11 Find the length from t = 0 to t = n/2 of the curve given by 
x = cos t ,  y = t -sln t. 

12 What integral gives the length of Archimedes' spiral 
x = t cos t, y = t sin t? 

13 Find the distance traveled in the first second (to t = I )  if 
=i t 2 ,  = 5(2t + 1)3/2. 

14 x = (1 -3 cos 2t)cos t and y = (1 + i cos  2t) sin t lead to 
4(1- x2 -y2) j  = 27(x2-y2)2.Find the arc length from t = 0 
to x/4. 

Find the arc lengths in 15-18 by numerical integration. 

15 One arch of y = sin x, from x = 0 to x = K. 

17 y=ln  x from x =  1 to x=e. 

19 Draw a rough picture of y = xl0.  Without computing the 
length of y = xn from (0,O) to (1, I), find the limit as n -+ sc;. 

20 Which is longer between (1, 1) and (2,3), the hyperbola 
y = l / x  or the graph of x + 2y = 3? 

21 Find the speed dsldt on the circle x = 2 cos 3t, y = 2 sin 3t. 

22 Examples 1 and 7 were y = x3I2and x = t2, y = t 3 :  

length = 1: dx, length = d m dt. 

Show by substituting x = that these integrals agree. 

23 Instead of y =f (x )a curve can be given as x =g(y). Then 

ds = = dy.JmJm 
Draw x = 5y from y = 0 to y = 1 and find its length. 

24 The length of x=y3I2  from (0,O) to (1, 1) is 
I ds = ,/=dy. Compare with Problem 1: Same length? 
Same curve? 

25 Find the length of ~ = i ( e ~ + e - ~ )from y=  -1 to y =  1 
and draw the curve. 

26 The length of x =g(y)is a special case of equation (6)with 
y = t and x =g(t). The length integral becomes . 
27 Plot the point x = 3 cos t ,  y = 4 sin t at the five times 
t = 0, 4 2 ,  z, 3x12, 2 ~ .  The equation of the curve is 
( ~ 1 3 ) ~+ (y/4)2= 1, not a circle but an . This curve 
cannot be written as y =f (x )because . 
28 (a) Find the length of x = cos2t ,  y = sin2t, 0 d y < z. 

(b) Why does this path stay on the line x + y = l ?  
(c) Why isn't the path length equal to JI? 
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29 (important) The line y =x is close to a staircase of pieces (b) This particular curve has ds = . Find its 
that go straight across or straight up. With 100 pieces of length length from t =0 to t = 2n. 
Ax = 1/100 or Ay = 1/100, find the length of carpet on the (c) Describe the curve and its shadow in the xy plane. 
staircase. (The length of the 45" line is a.The staircase can 
be close when its length is not close.) 32 Explain in 50 words the difference between a non-para-

metric equation y=f(x) and two parametric equations 
30 The area of an ellipse is nab. The area of a strip around x =x(t), y =y(t). 
it (width A) is n(a + A)(b +A) -nab x n(a + b)A. The distance 33 Write down the integral for the length L of y =x2 from 
around the ellipse seems to be n(a + b). But this distance is (0, 0) to (1, 1). Show that y =$x2 from (0, 0) to (2, 2) is exactly 
impossible to find-what is wrong? twice as long. If possible give a reason using the graphs. 
31 The point x =cos t, y =sin t, z = t moves on a space curve. 34 (for professors) Compare the lengths of the parabola 

(a) In three-dimensional space ( d ~ ) ~  +equals ( d ~ ) ~  y =x2 and the line y =bx from (0,O) to (b, b2). Does the 
. In equation (6),ds is now dt. difference approach a limit as b -+ GO? 

8.3 Area of a Surface of Revolution 

This section starts by constructing surfaces. A curve y =f (x) is revolved around an 
axis. That produces a "surface of revolution," which is symmetric around the axis. If 
we revolve a sloping line, the result is a cone. When the line is parallel to the axis we 
get a cylinder (a pipe). By revolving a curve we might get a lamp or a lamp shade 
(or even the light bulb). 

Secti.on 8.1 computed the volume inside that surface. This section computes the 
surface area. Previously we cut the solid into slices or shells. Now we need a good 
way to cut up the surface. 

The key idea is to revolve short straight line segments. Their slope is Ay/Ax. They 
can be the same pieces of length As that were used to find length-now we compute 
area. When revolved, a straight piece produces a "thin ban&' (Figure 8.10). The curved 
surface, from revolving y =f (x), is close to the bands. The first step is to compute the 
surface area of a band. 

A small comment: Curved surfaces can also be cut into tiny patches. Each patch 
is nearly flat, like a little square. The sum of those patches leads to a double integral 
(with dx dy). Here the integral stays one-dimensional (dx or dy or dt). Surfaces of 
revolution are special-we approximatz them by bands that go all the way around. 
A band is just a belt with a slope, and its slope has an effect on its area. 

middle radius x 

area AS = 2xrAs area AS = 2xxAs 

Fig. 8.10 Revolving a straight piece and a curve around the y axis and x axis. 
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Revolve a small straight piece (length As not Ax). The center of the piece goes 
around a circle of radius r. The band is a slice of a cone. When we flatten it out 
(Problems 11- 13) we discover its area. The area is the side length As times the middle 
circumference 2nr : 

The surface area of a band is 2nrAs = 2nrdl+( A ~ / A x ) ~Ax. 

For revolution around the y axis, the radius is r = x. For revolution around the x 
axis, the radius is the height: r = y = f (x). Figure 8.10 shows both bands-the problem 
tells us which to use. The sum of band areas 2nr As is close to the area S of the curved 
surface. In the limit we integrate 2nr ds: 

8C The surface area generated by revolving the curve y = f (x) between x = a 
and x =  b is 

S = 2 n y J l + o z  1: dx around the x axis (r = y) (1) 

S = j: 2nx,/l+(dyldx)Zl+OZ dx around the y axis (r  = x). (2) 

EXAMPLE 1 Revolve a complete semicircle y = ,/- around the x axis. 

The surface of revolution is a sphere. Its area (known!) is 4nR2. The limits on x are 
-R and R. The slope of y = d m  is dyldx = -x/,/R"-X2: 

area S = jR  2nd- JGdx = lR2nR dx = 4 n ~ ' .  
- R  X - R  

EXAMPLE 2 Revolve a piece of the straight line y = 2x around the x axis. 

The surface is a cone with (dy/dx)2 = 4. The band from x = 0 to x = 1 has area 
2 n d :  

This answer must agree with the formula 2nr As (which it came from). The line from 
(0,O) to (l ,2) has length As = fi.Its midpoint is ( t ,1). Around the x axis, the middle 
radius is r = 1 and the area is 2 n d .  

EXAMPLE 3 Revolve the same straight line segment around the y axis. Now the 
radius is x instead of y = 2x. The area in Example 2 is cut in half: 

For surfaces as for arc length, only a few examples have convenient answers. 
Watermelons and basketballs and light bulbs are in the exercises. Rather than stretch- 
ing out this section,' we give a final area formula and show how to use it. 

The formula applies when there is a parameter t. Instead of (x, f (x)) the points on 
the curve are (x(t), y(t)). As t varies, we move along the curve. The length formula 

= ( d ~ ) ~  is expressed in terms oft. ( d ~ ) ~  + ( d ~ ) ~  
For the surface of revolution around the x axis, the area becomes a t-integral: 

1 80 The surface area is 2ny ds = 2ny(t) ,/(dx/dt)' + (dy[dt)2 dt. (3) 1 
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EXAMPLE 4 The point x = cos t, y = 5 + sin t travels on a circle with center at (0, 5). 
Revolving that circle around the x axis produces a doughnut. Find its surface area. 

Solution ( d ~ l d t ) ~+ (dy/dt)2= sin2 t + cos2 t = 1. The circle is complete at t = 2n: 

j 2ny ds = Sin 2n(5 + sin t) dt = [2n(5t - cos t)]:= = 20n2. 

8.3 EXERCISES 

Read-through questions 

A surface of revolution comes from revolving a a around 
b . This section computes the c . When the curve is 

a short straight piece (length As), the surface is a d . Its 
area is AS = e . In that formula (Problem 13) r is the 
radius of f . The line from (0,O)to (1, 1) has length g , 
and revolving it produces area h . 

When the curve y =f (x) revolves around the x axis, the 
surface area is the integral i . For y = x2 the integral to 
compute is i . When y = x2 is revolved around the y axis, 
the area is S = k . For the curve given by x = 2t, y = t2, 
change ds to I dt. 

Find the surface area when curves 1-6 revolve around the x 
axis. 

1 y=&, 2 6 x 6 6  

3 y=7x,  - 1 6 x 6 1  (watchsign) 

In 7-10 find the area of the surface of revolution around the y 
axis. 

7 y = x 2 ,  0 6 x 6 2  8 y = i ~ 2 + i ,  0 6 x 6 1  

9 y = x +  1, 0 6 x 6 3  10 y= . r~"~ ,  0 6 x 6 1  

11 A cone with base radius R and slant height s is laid out 
flat. Explain why the angle (in radians) is 0 = 2nRls. Then the 
surface area is a fraction of a circle: 

($) ns2 (t)ns2area = = = nRs. 

12 A band with slant height As = s - s' and radii R and R' is 
laid out flat. Explain in one line why its surface area is 
nRs -nR1s'. 

13 By similar triangles Rls = R'ls' or Rs' = R's. The middle 
radius r is i (R  + R'). Substitute for r and As in the proposed 
area formula 2nr AS, to show that this gives the correct area 
nRs -nR1s'. 

14 Slices of a basketball all have the same area of cover, 
if they have the same thickness. 

(a) Rotate y = around the x axis. Show that 
dS = 2n dx. 
(b) The area between x = a and x = a + h is 
(c) $ of the Earth's area is above latitude 

15 Change the circle in Example 4 to x = a  cos t and y = 

b + a sin t. Its radius is and its center is . 
Find the surface area of a torus by revolving this circle around 
the x axis. 

16 What part of the circle x = R cos t, y = R sin t should 
rotate around the y axis to produce the top half of a sphere? 
Choose limits on t and verify the area. 

17 The base of a lamp is constructed by revolving the quar- 
ter-circle y = 4- (x = 1 to x = 2) around the y axis. 
Draw the quarter-circle, find the area integral, and compute 
the area. 

18 The light bulb is a sphere of radius 112 with its bottom 
sliced off to fit onto a cylinder of radius 1/4 and length 113. 
Draw the light bulb and find its surface area (ends of the 
cylinder not included). 

19 The lamp shade is constructed by rotating y = l / x  around 
the y axis, and keeping the part from y = 1 to y = 2. Set up 
the definite integral that gives its surface area. 

20 Compute the area of that lamp shade. 
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21 Explain why the surface area is infinite when y = llx is cover the disk. Hint: Change to a unit sphere sliced by planes 
rotated around the x axis (1 6 x < a).But the volume of 3" apart. Problem 14 gives surface area n for each slice. 
"Gabriel's horn" is It can't enough paint to 23 A watermelon (maybe a football) is the result of rotating 
paint its surface. 

half of the ellipse x =f i cos t ,  y = sin t (which means 

22 A disk of radius 1" can be covered by four strips of tape x2+ 2y2= 2). Find the surface area, parametrically or not. 

(width y).If the strips are not parallel, prove that they can't 24 Estimate the surface area of an egg. 

8.4 Probability and Calculus 

Discrete probability usually involves careful counting. Not many samples are taken 
and not many experiments are made. There is a list of possible outcomes, and a 
known probability for each outcome. But probabilities go far beyond red cards and 
black cards. The real questions are much more practical: 

1. How often will too many passengers arrive for a flight? 
2. How many random errors do you make on a quiz? 
3. What is the chance of exactly one winner in a big lottery? 

Those are important questions and we will set up models to answer them. 
There is another point. Discrete models do not involve calculus. The number of 

errors or bumped passengers or lottery winners is a small whole number. Calculus 
enters for continuous probability. Instead of results that exactly equal 1 or 2 or 3, 
calculus deals with results that fall in a range of numbers. Continuous probability 
comes up in at least two ways: 

(A) An experiment is repeated many times and we take averages. 
(B) The outcome lies anywhere in an interval of numbers. 

In the continuous case, the probability p, of hitting a particular value x = n becomes 
zero. Instead we have a probability density p(x)-which is a key idea. The chance that 
a random X falls between a and b is found by integrating the density p(x): 

Roughly speaking, p(x) d x  is the chance of falling between x and x + dx. Certainly 
p(x) 2 0. If a and b are the extreme limits - co and a,including all possible outcomes, 
the probability is necessarily one: 

This is a case where infinite limits of integration are natural and unavoidable. In 
studying probability they create no difficulty-areas out to infinity are often easier. 

Here are typical questions involving continuous probability and calculus: 

4. How conclusive is a 53%-47% poll of 2500 voters? 
5. Are 16 random football players safe on an elevator with capacity 3600 pounds? 
6. How long before your car is in an accident? 

It is not so traditional for a calculus course to study these questions. They need extra 
thought, beyond computing integrals (so this section is harder than average). But 
probability is more important than some traditional topics, and also more interesting. 
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Drug testing and gene identification and market research are major applications. 
Comparing Questions 1-3 with 4-6 brings out the relation of discrete to continuous-
the differences between them, and the parallels. 

It would be impossible to give here a full treatment of probability theory. I believe 
you will see the point (and the use of calculus) from our examples. Frank Morgan's 
lectures have been a valuable guide. 

DISCRETE RANDOM VARIABLES 

A discrete random variable X has a list of possible values. For two dice the outcomes 
are X = 2,3, ...,12. For coin tosses (see below), the list is infinite: X = 1,2,3, ... . 

A continuous variable lies in an interval a <X d b. 

EXAMPLE 1 Toss a fair coin until heads come up. The outcome X is the number of 
tosses. The value of X is 1 or 2 or 3 or ...,and the probability is i that X = 1 (heads 
on the first toss). The probability of tails then heads is p2 = a. The probability that 
X = n is p,, = (&"-this is the chance of n - 1 tails followed by heads. The sum of all 
probabilities is necessarily 1: 

EXAMPLE 2 Suppose a student (not you) makes an average of 2 unforced errors per 
hour exam. The number of actual errors on the next exam is X = 0or 1 or 2 or .. . . 
A reasonable model for the probability of n errors-when they are random and 
independent-is the Poisson model (pronounced Pwason): 

2" 
p,, =probability of n errors = 7 e- '. 

n. 


The probabilities of no errors, one error, and two errors are po, pl, and p,: 

The probability of more than two errors is 1 - .I35 - .27 - .27 = .325. 
This Poisson model can be derived theoretically or tested experimentally. The total 

probability is again 1, from the infinite series (Section 6.6) for e2: 

EXAMPLE 3 Suppose on average 3 out of 100 passengers with reservations don't 
show up for a flight. If the plane holds 98 passengers, what is the probability that 
someone will be bumped! 

If the passengers come independently to the airport, use the Poisson model with 2 
changed to 3. X is the number of no-shows, and X = n happens with probability pn : 

There are 98 seats and 100 reservations. Someone is bumped if X = 0 or X = 1: 

chance of bumping = po + p1 = e- + 3e- x 4/20. 

We will soon define the average or expected value or mean of X-this model has p = 3. 
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CONTINUOUS RANDOM VARIABLES 

If X is the lifetime of a VCR, all numbers X 2 0 are possible. If X is a score on the 
SAT, then 200 <X <800. If X is the fraction of computer owners in a poll of 600 
people, X is between 0 and 1. You may object that the SAT score is a whole number 
and the fraction of computer owners must be 0 or 11600 or 21600 or . . . . But it is 
completely impractical to work with 601 discrete possibilities. Instead we take X to 
be a continuous random variable, falling anywhere in the range X 2 0 or [200,800] or 
0 <X < 1. Of course the various values of X are not equally probable. 

EXAMPLE 4 The average lifetime of a VCR is 4 years. A reasonable model for break- 
down time is an exponential random variable. Its probability density is 

p(x)= ae-"I4 for 0 <x < GO. 

The probability that the VCR will eventually break is 1: 

The probability of breakdown within 12 years (X from 0 to 12) is .95: 

An exponential distribution has p(x) = ae-"". Its integral from 0 to x is F(x) = 
1 - e - a x  . Figure 8.1 1 is the graph for a = 1. It shows the area up to x = 1. 

To repeat: The probability that a < X < b is the integral of p(x) from a to b. 

Fig. 8.11 Probabilities add to C p,, = 1. Continuous density integrates to p(x) d x  = 1. 

EXAMPLE 5 We now define the most important density function. Suppose the 
average SAT score is 500, and the standard deviation (defined below-it measures the 
spread around the average) is 200. Then the normal distribution of grades has 

This is the normal (or Gaussian) distribution with mean 500 and standard deviation 
200. The graph of p(x) is the famous bell-shaped curve in Figure 8.12. 

A new objection is possible. The actual scores are between 200 and 800, while the 
density p(x) extends all the way from - a0 to m. I think the Educational Testing 
Service counts all scores over 800 as 800. The fraction of such scores is pretty small- 
in fact the normal distribution gives 
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Fig. 8.12 The normal distribution (bell-shaped curve) and its cumulative density F(x).  

Regrettably, e-"' has no elementary antiderivative. We need numerical integration. 
But there is nothing the matter with that! The integral is called the "error function," 
and special tables give its value to great accuracy. The integral of e-X212 from - co 
to co is exactly fi.Then division by f i keeps j p(x) dx = 1. 

Notice that the normal distribution involves two parameters. They are the mean 
value (in this case p = 500) and the standard deviation (in this case a = 200). Those 
numbers mu and sigma are often given the "normalized" values p = 0 and a = 1: 

P(X) = -
- (x - ,421202 becomes p(x) = -L e-"'I2. 

a& Jz;; 

The bell-shaped graph of p is symmetric around the middle point x = p. The width 
of the graph is governed by the second parameter a-which stretches the x axis and 
shrinks the y axis (leaving total area equal to 1). The axes are labeled to show the 
standard case p = 0, a = 1 and also the graph for any other p and a. 

We now give a name to the integral of p(x). The limits will be - co and x, so the 
integral F(x) measures the probability that a random sample is below x: 

Prob {X< x] = r-"_, p(x) dx = cumulative density function F(x). (7) 

F(x) accumulates the probabilities given by p(x), so dF/dx = p(x). The total prob- 
ability is F(co) = 1. This integral from - co to.. co covers all outcomes. 

Figure 8.12b shows the integral of the bell-shaped normal distribution. The middle 
point x = p has F = ). By symmetry there is a 50-50 chance of an outcome below the 
mean. The cumulative density F(x)  is near .l6 at p -a and near .84 at p + a. The 
chance of falling in between is .84 - .16 = .68. Thus 68% of the outcomes are less 
than one deviation a away from the center p. 

Moving out to p - 20 and p + 20, 95% of the area is in between. With 95% 
confidence X is less than two deviations from the mean. Only one sample in 20 is 
further out (less than one in 40 on each side). 

Note that a = 200 is not the precise value for the SAT! 

MEAN, VARIANCE, AND STANDARD DEVIATION 

In Example 1, X was the number of coin tosses until the appearance of heads. The 
probabilities were p1 =$, p, = a, p3 = Q, . . . . What is the average number of tosses? 
We now find the "mean" p of any distribution p(x)-not only the normal distribution, 
where symmetry guarantees that the built-in number p is the mean. 

To find p, multiply outcomes by probabilities and add: 

p = mean = np,, = l(pl) + 2(p2)+ 3(p3)+ (8)- - a .  
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The average number of tosses is l ( f )  + 2($) + 3(i)+ .-..This series adds up (in 
Section 10.1) to p = 2. Please do the experiment 10 times. I am almost certain that 
the average will be near 2. 

When the average is A = 2 quiz errors or 3, = 3 no-shows, the Poisson probabilities 
are pn =Ane-vn! Check that the formula p =X np, does give 3, as the mean: 

For continuous probability, the sum p =X np, changes to p = j xp(x) dx. We 
multiply outcome x by probability p(x) and integrate. In the VCR model, integration 
by parts gives a mean breakdown time of p =4 years: 

Together with the mean we introduce the variance. It is always written 02, and in 
the normal distribution that measured the "width" of the curve. When a2  was 2002, 
SAT scores spread out pretty far. If the testing service changed to o2 = 12, the scores 
would be a disaster. 95% of them would be within +2  of the mean. When a teacher 
announces an average grade of 72, the variance should also be announced-if it is 
big then those with 60 can relax. At least they have company. 

8E The mean p is the expected value of X. The variance 02 is the expected 
value of (X -mean)2= (X -P ) ~ .  Multiply outcome times probability and add: 

pna =C npn a2=C(n-P ) ~  (discrete) 

dxp = j"O, xp(x) dx o2= 5" (x -~ ) ~ p ( x )  (continuous) 

The standard deviation (written o) is the square root of 02. 

EXAMPLE 6 (Yes-no poll, one person asked) The probabilities are p and 1 - p. 

A fraction p = f of the population thinks yes, the remaining fraction 1 -p = 3 thinks 
no. Suppose we only ask one person. If X = 1 for yes and X = 0 for no, the expected 
value of X is p =p = f. The variance is o2 = p(l - p) =6: 

a = O ( 3 ) + l ( f ) = '  3 and 0 2 = ( O - f ~ ( ~ ) + ( 1 - f ) 2 ( f ) = $ .  

The standard deviation is o = ,/2/9. When the fraction p is near one or near zero, 
the spread is smaller-and one person is more likely to give the right answer for 
everybody. The maximum of o2 =p(l -p) is at p = f ,  where o =4. 

The table shows p and o2 for important probability distributions. 

Model Mean Variance Application 

P1 =P, Po= 1 -P  P ~ ( 1-P) yes-no 

Poisson p, = E,"e-A/n! 1" 3. random occurrence 

Exponential p(x) = ae-"" l/a 1 /a2 waiting time 

distribution 
around mean 



8.4 ProbabllHy and Calculus 

THE LAW OF AVERAGES AND THE CENTRAL LIMIT THEOREM 

We come to the center of probability theory (without intending to give proofs). The 
key idea is to repeat an experiment many times-poll many voters, or toss many 
dice, or play considerable poker. Each independent experiment produces an outcome 
X, and the average from N experiments is R.  It is called "X bar": 

8=XI + X, + ... + X ,  
= average outcome. 

N 


All we know about p(x) is its mean p and variance a2. It is amazing how much 
information that gives about the average 8: 

No matter what the probabilities for X, the probabilities for R move toward the normal 
bell-shaped curve. The standard deviation is close to a / f i  when the experiment is 
repeated N times. In the Law of Averages, "almost sure" means that the chance of 
R not approaching p is zero. It can happen, but it won't. 

Remark 1 The Boston Globe doesn't understand the Law of Averages. I quote from 
September 1988: "What would happen if a giant Red Sox slump arrived? What would 
happen if the fabled Law of Averages came into play, reversing all those can't miss 
decisions during the winning streak?" They think the Law of Averages evens every- 
thing up, favoring heads after a series of tails. See Problem 20. 

EXAMPLE 7 Yes-no poll of N = 2500 voters. Is a 53%-47% outcome conclusive? 

The fraction p of "yes" voters in the whole population is not known. That is the reason 
for the poll. The deviation a = ,/=is also not known, but for one voter this is 
never more than * (when p = f). Therefore a l p  for 2500 voters is no larger than 
+/,/%, which is 1%. 

The result of the poll was R = 53%. With 95% confidence, this sample is within 
two standard deviations (here 2%) of its mean. Therefore with 95% confidence, the 
unknown mean p = p of the whole population is between 51% and 55%. This p~11 is 
conclusive. 

If the true mean had been p = 50%, the poll would have had only a ,0013 chance 
of reaching 53%. The error margin on each side of a poll is amazingly simple; it is 
always I/*. 

Remark 2 The New York Times has better mathematicians than the Globe. Two 
days after Bush defeated Dukakis, their poll of N = 11,645 voters was printed with 
the following explanation. "In theory, in 19 cases out of 20 [there is 95%] the results 
should differ by no more than one percentage point [there is 1 / a ]  from what 
would have been obtained by seeking out all voters in the United States." 

EXAMPLE 8 Football players at Caltech (if any) have average weight p = 210 pounds 
and standard deviation a = 30 pounds. Are N = 16 players safe on an elevator with 
capacity 3600 pounds? 16 times 210 is 3360. 



8 Applications of the Integral 

The average weight is approximately a normal random variable with ji = 210 and 
5 = 3 0 / p  = 3014. There is only a 2% chance that 8 is above ji + 25 = 225 (see 
Figure 8.12b-weights below the mean are no problem on an elevator). Since 16 
times 225 is 3600, a statistician would have 98O/0 confidence that the elevator is safe. 
This is an example where 98% is not good enough-I wouldn't get on. 

EXAMPLE 9 (The famous Weldon Dice) Weldon threw 12 dice 26,306 times and 
counted the 5's and 6's. They came up in 33.77% of the 315,672 separate rolls. Thus 

= .3377 instead of the expected fraction p = f- of 5's and 6's. Were the dice fair? 

The variance in each roll is a2= p(1- p) = 219. The standard deviation of 8 is 
6 = a j f i  = m/J315672 z -00084. For fair dice, there is a 95% chance that 8 
will differ from f- byless than 26. (For Poisson probabilities that is false. Here R is 
normal.) But .3377 differs from .3333 by more than 55. The chance of falling 5 standard 
deviations away from the mean is only about 1 in 10,000.t 

So the dice were unfair. The faces with 5 or 6 indentations were lighter than the 
others, and a little more likely to come up. Modern dice are made to compensate for 
that, but Weldon never tried again. 

8.4 EXERCISES 

Read-through questions In a yes-no poll when the voters are 50-50, the mean for 
one voter is p = O(3)+ l(3) = Y . The variance is

Discrete probability uses counting, a probability uses + (1 -p)2pl = z . For a poll with N = 100,a is calculus. The function p(x) is the probability b . The (0 - , ~ ) ~ p ,  
A . There is a 95% chance that 8 (the fraction saying yes) 

chance that a random variable falls between a and b is c . 
The total probability is 5" p(x) dx = d . In the dis- 

will be between B and c . 

crete case C p, = e . The mean (or expected value) 1 If p1 = 3, p, =$, p3 = &, . . ., what is the probability of an 
is p = S  f in the continuous case and p = Z np,  in outcome X < 4? What are the probabilities of X = 4 and 
the g . X > 4? 

The Poisson distribution with mean j. has p, = h . The 2 With the same p, = (i)",what is the probability that X is 
sum C p, = 1 comes from the i series. The exponential odd? Why is p, = (4)" an impossible set of probabilities? 
distribution has p(x) = e-" or 2e-2" or i . The standard What multiple c(4)" is possible? 
Gaussian (or k ) distribution has G p ( x )  = e-'*I2. Its 
graph is the well-known I curve. The chance that the 3 Why is p(x) = e- 2x not an acceptable probability density 
variable falls below x is F(x) = m . F is the n density for x 2 O? Why is p(x) = 4e- 2x -e-" not acceptable? 

function. The difference F(x + dx) -F(x) is about o , *4 If p, = (i)", show that the probability P that X is a prime 
which is the chance that X is between x and x + dx. number satisfies 61 16 < P < 71 16. 

The variance, which measures the spread around p, is 
5 If p(x) = e-" for x 2 0, find the probability that X 3 2 anda2 = 1 p in the continuous case and a2  = Z q in the 

discrete case. Its square root a is the r . The normal the approximate probability that 1 < X < 1.01. 

distribution has p(x) = s . If X is the t of N samples 6 If p(x) = C/x3 is a probability density for x 2 1, find the 
from any population with mean p and variance a2, the Law constant C and the probability that X < 2. 
of Averages says that X will approach u . The Central 
Limit Theorem says that the distribution for 8 approaches 7 If you choose x completely at random between 0 and z, 

v . Its mean is w and its variance is x . what is the density p(x) and the cumulative density F(x)? 

?Joe DiMaggio's 56-game hitting streak was much more improbable-I think it is statistically 
the most exceptional record in major sports. 
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In 8-13 find the mean value p =E npnor p =j xp(x) dx. 

12 p(x)=e-" (integrate by parts) 

13 p(x)=ae-"" (integrate by parts) 

14 Show by substitution that 

15 Find the cumulative probability F (the integral of p) in 
Problems 11, 12, 13. In terms of F, what is the chance that a 
random sample lies between a and b? 

16 Can-Do Airlines books 100 passengers when their plane 
only holds 98. If the average number of no-shows is 2, what 
is the Poisson probability that someone will be bumped? 

17 The waiting time for a bus has probability density 
(l/lO)e-xllO, with p = 10 minutes. What is the probability of 
waiting longer than 10 minutes? 

18 You make a 3-minute telephone call. If the waiting time 
for the next incoming call has p(x) =e-", what is the prob- 
ability that your phone will be busy? 

19 Supernovas are expected about every 100 years. What is 
the probability that you will be alive for the next one? Use a 
Poisson model with R = .O1 and estimate your lifetime. (Super- 
novas actually occurred in 1054 (Crab Nebula), 1572, 1604, 
and 1987. But the future distribution doesn't depend on the 
date of the last one.) 

20 (a) A fair coin comes up heads 10 times in a row. Will 
heads or tails be more likely on the next toss? 
(b) The fraction of heads after N tosses is a. The expected 
fraction after 2N tosses is . 

21 Show that the area between p and p + a under the bell- 
shaped curve is a fixed number (near 1/3), by substituting 
Y=-: 

What is the area between p -a and p? The area outside 
(p -a, p +a)? 

22 For a yes-no poll of two voters, explain why 

Find p and a2. N voters give the "binomial distribution." 

Pmbabilily and Calculus 

23 Explain the last step in this reorganization of the formula 
for a2 : 

a2=1(X-p)lp(x) dx =1(x2-2xp +p2)~(x)dx 

=j xZp(x) dx -2p j xp(x) dx +p2 j p(x) dx 

= x2p(x) dx -p2. 

24 Use (x -p)'p(x) dx and also 1x2p(x) dx -p2 to find cr2 
for the uniform distribution: p(x) = 1 for 0 <x < 1. 

25 Find a2 if po = 113, p1 = 113, p2 = 113. Use Z (n -p)2pn and 
also Z n2Pn-p2. 

26 Use Problem 23 and integration by parts (equation 7.1.10) 
to find a2 for the exponential distribution p(x) =2e-2x for 
x 2 0, which has mean 3. 
27 The waiting time to your next car accident has probability 
density p(x) =3e-"I2. What is p? What is the probability of 
no accident in the next four years? 

28 With p =3, 4, 4, ..., find the average number p of coin 
tosses by writing p,+2p2+3p3+ --.as (pl+p2+p3+ -.)+ 
(p2+p3+p4+ " ' )+(~3+P4+P5+ -)+ ...-
29 In a poll of 900 Americans, 30 are in favor of war. What 
range can you give with 95% confidence for the percentage 
of peaceful Americans? 

30 Sketch rough graphs of p(x) for the fraction x of heads in 
4 tosses of a fair coin, and in 16 tosses. The mean value is 3. 
31 A judge tosses a coin 2500 times. How many heads does 
it take to prove with 95% confidence that the coin is unfair? 

32 Long-life bulbs shine an average of 2000 hours with stan- 
dard deviation 150 hours. You can have 95% confidence that 
your bulb will fail between and hours. 

33 Grades have a normal distribution with mean 70 and stan- 
dard deviation 10. If 300 students take the test and passing is 
55, how many are expected to fail? (Estimate from 
Figure 8.12b.) What passing grade will fail 1/10 of the .class? 

34 The average weight of luggage is p = 30 pounds with devi- 
ation a =8 pounds. What is the probability that the luggage 
for 64 passengers exceeds 2000 pounds? How does the answer 
change for 256 passengers and 8000 pounds? 

35 A thousand people try independently to guess a number 
between 1 and 1000. This is like a lottery. 

(a) What is the chance that the first person fails? 
(b) What is the chance Po that they all fail? 
(c) Explain why Po is approximately lle. 

36 (a) In Problem 35, what is the chance that the first person 
is right and all others are wrong? 
(b) Show that the probability P1 of exactly one winner is 
also close to lle. 
(c) Guess the probability Pn of n winners (fishy question). 
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8.5 Masses and Moments 

This chapter concludes with two sections related to engineering and physics. Each 
application starts with a finite number of masses or forces. Their sum is the total 
mass or  total force. Then comes the "continuous case," in which the mass is spread 
out instead of lumped. Its distribution is given by a density function p (Greek rho), 
and the sum changes to an integral. 

The first step (hardest step?) is to get the physical quantities straight. The second 
step is to move from sums to integrals (discrete to continuous, lumped to distributed). 
By now we hardly stop to think about it-although this is the key idea of integral 
calculus. The third step is to evaluate the integrals. For that we can use substitution 
or integration by parts or tables or a computer. 

Figure 8.13 shows the one-dimensional case: masses along the x axis. The total 
mass is the sum of the masses. The new idea is that of moments-when the mass or 
force is multiplied by a distance: 

moment of mass around the y axis = mx = (mass) times (distance to axis). 

Fig. 8.13 The center of mass is at 2 =(total moment)/(total mass) =average distance. 

The figure has masses 1, 3, 2. The total mass is 6. The "lever arms" or "moment 
arms" are the distances x = 1, 3,7. The masses have moments 1 and 9 and 14 (since 
mx is 2 times 7). The total moment is 1 + 9 + 14 = 24. Then the balance point is at 
2 = M,/M = 2416 = 4. 

The total mass is the sum of the m's. The total moment is the sum of m, times x, 
(negative on the other side of x = 0). If the masses are children on a seesaw, the 
balance point is the center of gravity 2-also called the center of mass: 

- 1m,u, - total moment 
DEFINITION x=--

E m ,  totalmass 

If all masses are moved to 2, the total moment (6 times 4) is still 24. The moment 
equals the mass C m, times 2.  The masses act like a single mass a t  2.  

Also: If we move the axis to 2, and leave the children where they are, the seesaw 
balances. The masses on the left of 2 = 4 will offset the mass on the right. Reason: 
The distances to the new axis are x, - 2. The moments add to zero by equation (1): 

moment around new axis = x m,(xn - 2)= 1m,xn -x m.2 = 0. 

Turn now to the continuous case, when mass is spread out along the line. Each 
piece of length Ax has an average density p, = (mass of piece)/(length of piece) = 

AmlAx. As the pieces get shorter, this approaches dmldx-the density at the point. 
The limit of (small mass)/(small length) is the density p(x). 

Integrating that derivative p = dmldx, we recover the total mass: C p,Ax becomes 

total mass M = j p(x) dx. (2) 

When the mass is spread evenly, p is constant. Then M = pL = density times length. 
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The moment formula is similar. For each piece, the moment is mass p,Ax 
multiplied by distance x-and we add. In the continuous limit, p(x) dx is multiplied 
by x and we integrate: 

total moment around y axis = My= I xp(x) dx. (3) 

Moment is mass times distance. Dividing by the total mass M gives "average 
distance": 

moment - My- 5 xp(x) dx 
center of mass 2 = ----

mass M J p(x) dx ' (4) 

Remark If you studied Section 8.4 on probability, you will notice how the formulas 
match up. The mass I p(x) dx is like the total probability p(x) dx. The moment 

xp(x) dx is like the mean I xp(x) dx. The moment of inertia (x -~ ) ~ p ( x )dx is the 
variance. Mathematics keeps hammering away at the same basic ideas! The only 
difference is that the total probability is always 1. The mean really corresponds to 
the center of mass 2, but in probability we didn't notice the division by p(x) dx = 1. 

EXAMPLE 1 With constant density p from 0 to L, the mass is M = pL. The moment 

The center of mass is 2 = My/M= L/2. It is halfway along. 

EXAMPLE 2 With density e-" the mass is 1, the moment is 1, and 2 is 1: 

I," e--" dx = [-e-"1," = 1 and J," xe-" dx = [-xe-" - e-"1," = 1. 

MASSES AND MOMENTS IN TWO DIMENSIONS 

Instead of placing masses along the x axis, suppose m, is at the point (x,, y,) in the 
plane. Similarly m, is at (x,, y,). Now there are two moments to consider. Around the 
y axis M,, = C mnxn and around the x axis M, = C m, yn. Please notice that the x's go 
into the moment My-because the x coordinate gives the distance from the y axis! 

Around the x axis, the distance is y and the moment is M,. The center of mass is 
the point (2,j)at which everything balances: 

In the continuous case these sums become two-dimensional integrals. The total 
mass is JJ p(x, y) dx dy, when the density is p = mass per unit area. These "double 
integrals" are for the future (Section 14.1). Here we consider the most important case: 
p = constant. Think of a thin plate, made of material with constant density (say 
p = 1). To compute its mass and moments, the plate is cut into strips (Figure 8.14): 

mass M = area of plate (6) 

moment My= J (distance x) (length of vertical strip) dx (7) 

moment M, = 5 (height y) (length of horizontal strip) dy. (8) 
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Fig. 8.14 Plates cut into strips to compute masses and moments and centroids. 

The mass equals the area because p = 1. For moments, all points in a vertical strip 
are the same distance from the y axis. That distance is x. The moment is x times area, 
or x times length times dx-and the integral accounts for all strips. 

Similarly the x-moment of a horizontal strip is y times strip length times dy. 

EXAMPLE 3 A plate has sides x = 0 and y = 0 and y = 4 - 2x. Find M, My, M,. 

mass M = area = 1; y dx = 5; (4 - 2x) dx = [4x - x2]; = 4. 

The vertical strips go up to y = 4 - 2x, and the horizontal strips go out to x = f (4 -y):

Io2 1 : ;moment M, = x(4 - 2x1 dx = [2x2 - -x3 = -

1 1 16
moment M,=Jb yj(4-y)dy=[y2-6Y3]o=i. 

The "center of mass" has 2 = M,/M = 213 and j= M,/M = 413. This is the centroid 
of the triangle (and also the "center of gravity"). With p = 1 these terms all refer to 
the same balance point (2,J) .  The plate will not tip over, if it rests on that point. 

EXAMPLE 4 Find My and M, for the half-circle below x2 + y2 = r2. 

My= 0 because the region is symmetric-Figure 8.14 balances on the y axis. In the 
x-moment we integrate y times the length of a horizontal strip (notice the factor 2): 

Divide by the mass (the area :nr2) to find the height of the centroid: j= M,/M = 
4r/3n. This is less than f r  because the bottom of the semicircle is wider than the top. 

MOMENT OF INERTIA 

The moment of inertia comes from multiplying each mass by the square of its 
distance from the axis. Around the y axis, the distance is x. Around the origin, it is r: 

I y = E x i m n  and I,=Eyim,, and Io=Er;mn. 

Notice that I, + I, = I, because xi  + yi = r:. In the continuous case we integrate. 
The moment of inertia around the y axis is I, = Jjx2 p(x, y) dx dy. With a constant 

density p = 1, we again keep together the points on a strip. On a vertical strip they 
share the same x. On a horizontal strip they share y: 

I, = 1(x2) (vertical strip length) dx and I, = j (y2) (horizontal strip length) dy. 
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In engineering and physics, it is rotation that leads to the moment of inertia. Look 
at the energy of a mass m going around a circle of radius r. It has I, = mr2. 

kinetic energy = fmv2 = + m ( r ~ ) ~= fI, w2. (9) 

The angular velocity is w (radians per second). The speed is v = rw (meters per second). 
An ice skater reduces I, by putting her arms up instead of out. She stays close to 

the axis of rotation (r is small). Since her rotational energy i Iow2  does not change, 
w increases as I, decreases. Then she spins faster. 

Another example: It takes force to turn a revolving door. More correctly, it takes 
torque. The force is multiplied by distance from the turning axis: T = Fx, so a push 
further out is more effective. 

To see the physics, replace Newton's law F = ma = m dv/dt by its rotational form: 
T = I dwldt. Where F makes the mass move, the torque T makes it turn. Where m 
measures unwillingness to change speed, I measures unwillingness to change rotation. 

EXAMPLE 5 Find the moment of inertia of a rod about (a) its end and (b) its center. 

The distance x from the end of the rod goes from 0 to L. The distance from the center 
goes from -L/2 to L/2. Around the center, turning is easier because I is smaller: 

I,,, = 1; x2 dx = i~~ I,,,,,, = f!'i_'ti2x2 dx = & L ~ .  

Fig. 8.15 Moment of inertia for rod and propeller. Rolling balls beat cylinders. 

MOMENT OF INERTIA EXPERIMENT 

Experiment: Roll a solid cylinder (a coin), a hollow cylinder (a ring), a solid ball (a 
marble), and a hollow ball (not a pingpong ball) down a slope. Galileo dropped things 
from the Leaning Tower-this experiment requires a Leaning Table. Objects that fall 
together from the tower don't roll together down the table. 

Question 1 What is the order of finish? Record your prediction Jirst! 

Question 2 Does size make a difference if shape and density are the same? 

Question 3 Does density make a difference if size and shape are the same? 

Question 4 Find formulas for the velocity v and the finish time T. 

To compute v, the key is that potential energy plus kinetic energy is practically 
constant. Energy loss from rolling friction is very small. If the mass is m and the 
vertical drop is h, the energy at the top (all potential) is mgh. The energy at the bottom 
(all kinetic) has two parts: $mv2 from movement along the plane plus +la2from 
turning. Important fact: v = wr for a rolling cylinder or ball of radius r. 



8 Applications of the Integral 

Equate energies and set c;o = vlr: 

The ratio I/mr2 is critical. Call it J and solve (11 )  for v2: 

2ghv2 = -(smaller J means larger velocity). 
l + J  

The order of J's, for different shapes and sizes, should decide the race. Apparently 
the density doesn't matter, because it is a factor in both I and m-so it cancels in 
J = I /mr2.  A hollow cylinder has J = 1, which is the largest possible-all its mass is 
at the full distance r from the axis. So the hollow cylinder should theoretically come 
in last. This experiment was developed by Daniel Drucker. 

Problems 35-37 find the other three J's. Problem 40 finds the time T by integration. 
Your experiment will show how close this comes to the measured time. 

8.5 EXERCISES 

Read-through questions 

If masses m, are at distances x,, the total mass is M = a . 
The total moment around x = 0 is M ,  = b . The center of 
mass is at 2 = c . In the continuous case, the mass distri- 
bution is given by the d p(x). The total mass is M = 

e and the center of mass is at 2 = f . With p = x, 
the integrals from 0 to L give M = 9 and j xp(x) dx = 

h and 2 = i . The total moment is the same if the 
whole mass M is placed at i . 

In a plane, with masses m, at the points (x,, y,), the moment 
around the y axis is k . The center of mass has X = I 

and j = m . For a plate with density p = 1, the mass M 
equals the n . If the plate is divided into vertical strips of 
height y(x), then M = J y(x) dx and M y  = J 0 dx. For a 
square plate 0 < x, y < L, the mass is M = P and the 
moment around the y axis is M,, = q . The center of mass 
is at (X, j )  = r . This point is the s , where the plate 
balances. 

A mass m at a distance x from the axis has moment of 
inertia I = t . A rod with p = 1 from x = a to x = b has 
I y =  u . For a plate with p = 1 and strips of height y(x), 
this becomes I, = v . The torque T is w times 

x . 

Compute the mass M along the x axis, the moment M, around 
x = 0, and the center of mass 2 = M y / M .  

1 m l = 2 a t x , = 1 , m 2 = 4 a t x 2 = 2  

2 m = 3  at x = 0 ,  1, 2, 6 

3 p = l f o r  - l < x < 3  

5 p = l  f o r O < x < l , p = 2 f o r  1 < x < 2  

6 p=sin  xfor O < x < n  

Find the mass M, the moments M y  and M,, and the center of 
mass (2, j). 

7 Unit masses at (x, y) = (1, 0), (0, I), and (1, 1) 

8 m, = 1 at (1, 0), m2 = 4 at (0, 1) 

9 p = 7  in the square O < x <  1, O < y <  1. 

10 p = 3 in the triangle with vertices (0, 0), (a, O), and (0, b). 

Find the area M and the centroid (i,j)inside curves 11-16. 

11 y = d m ,y = 0, x = 0 (quarter-circle) 

12 y = x, y = 2 -x, y = 0 (triangle) 

13 y = eP2", y = 0, x = 0 (infinite dagger) 

14 y = x2,y = x (lens) 

15 x 2 + y 2 =  1 , . ~ ~ + ~ ~ = 4  (ring) 

16 x2 + y2 = 1, x2 + y2 = 4, y = 0 (half-ring). 

Verify these engineering formulas for I ,  with p = 1: 

17 Rectangle bounded by x = 0, x = a, y = 0, y = b: 
I ,  = a3b/3. 

18 Square bounded by x = -+a, x = $a, y = -+a, y = fa :  
I ,  = ~4112. 

19 Triangle bounded by x = 0, y = 0, x + y = a: I ,  = a4/12. 

20 Disk of radius a centered at x = y = 0: I ,  = na4/4. 
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21 The moment of inertia around the point x = t of a rod
with density p(x) is I = J (x - t)2p(x) dx. Expand (x - t) 2 and
I into three terms. Show that dI/dt = 0 when t = x. The
moment of inertia is smallest around the center of mass.

22 A region has x = 0 if My = J x(height of strip) dx = 0.
The moment of inertia about any other axis x = c is
I= J (x -c) 2(height of strip) dx. Show that I=IY +
(area)(c2 ). This is the parallel axis theorem: I is smallest
around the balancing axis c = 0.

23 (With thanks to Trivial Pursuit) In what state is the center
of gravity of the United States-the "geographical center" or
centroid?

24 Pappus (an ancient Greek) noticed that the volume is

V = S 2ry(strip width) dy = 27tMx = 2nyM

when a region of area M is revolved around the x axis. In the
first step the solid was cut into

4-

(
2 2r y

25 Use this theorem of Pappus to find the volume of a torus.
Revolve a disk of radius a whose center is at height y = b > a.

26 Rotate the triangle of Example 3 around the x axis and
find the volume of the resulting cone-first from V = 2rjyM,
second from 7rxr2 h.

27 Find Mx and My for a thin wire along the semicircle
y = -x 2. Take p = 1 so M = length = r.

28 A second theorem of Pappus gives A = 27ryL as the surface
area when a wire of length L is rotated around the x axis.
Verify his formula for a horizontal wire along y = 3 (x = 0
to x = L) and a vertical wire (y = 1 to y = L + 1).

length L
polar 1o

(r2)(2x rdr)/ I
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29 The surface area of a sphere is A = 4n when r = 1. So A =
27ryL leads to j = for the semicircular wire in
Problem 27.

30 Rotating y = mx around the x axis between x = 0 and
x = 1 produces the surface area A =

31 Put a mass m at the point (x, 0). Around the origin the
torque from gravity is the force mg times the distance x. This
equals g times the mx.

32 If ten equal forces F are alternately down and up at
x = 1, 2, ... , 10, what is their torque?

33 The solar system has nine masses m, at distances r, with
angular velocities o,. What is the moment of inertia around
the sun? What is the rotational energy? What is the torque
provided by the sun?

34 The disk x 2  y a2 has Io = So r2 2nr dr = ½ra4 . Why is
this different from I, in Problem 20? Find the radius of
gyration Fr= .1/M. (The rotational energy 110 02 equals

M-F2 o2-- when the whole mass is turning at radius F.)

Questions 35-42 come from the moment of inertia experiment.

35 A solid cylinder of radius r is assembled from hollow cylin-
ders of length 1, radius x, and volume (2xx)(l)(dx). The solid
cylinder has

mass M = S 2xxlp dx and I= fo x 22xxlp dx.

With p = 7 find M and I and J = I/Mr2.

36 Problem 14.4.40 finds J = 2/5 for a solid ball. It is less
than J for a solid cylinder because the mass of the ball is
more concentrated near

37 Problem 14.4.39 finds J = Sfo sin'3 do = for a
hollow ball. The four rolling objects finish in the order

38 By varying the density of the ball how could you make it
roll faster than any of these shapes?

39 Answer Question 2 about the experiment.

40 For a vertical drop of y, equation (12) gives the velocity
along the plane: v2 = 2gy/(1 + J). Thus v = cy 1/ 2 for c =

. The vertical velocity is dy/dt = v sin ci:

dy/dt= cy / 2 sin t and J y- 1/2dy = c sin a dt.

Integrate to find y(t). Show that the bottom is reached
(y = h) at time T = 2 •/c sin o.

41 What is the theoretical ratio of the four finishing times?

42 True or false:
(a) Basketballs roll downhill faster than baseballs.
(b) The center of mass is always at the centroid.
(c) By putting your arms up you reduce Ix and I,.
(d) The center of mass of a high jumper goes over the bar
(on successful jumps).
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8.6 Force, Work, and Energy 

Chapter 1 introduced derivatives df /d t  and df / dx .  The independent variable could be 
t or x .  For velocity it was natural to use the letter t .  This section is about two 
important physical quantities-force and work-for which x is the right choice. 

The basic formula is W = Fx.  Work equals force times distance moved (distance in 
the direction of F ). With a force of 100 pounds on a car that moves 20 feet, the work 
is 2000 foot-pounds. If the car is rolling forward and you are pushing backward, the 
work is -2000 foot-pounds. If your force is only 80 pounds and the car doesn't 
move, the work is zero. In these examples the force is constant. 

W = Fx is completely parallel to f = v t .  When v is constant, we only need multi- 
plication. It is a changing velocity that requires calculus. The integral f v( t )  dt adds 
up small multiplications over short times. For a changing force, we add up small 
pieces of work F dx  over short distances: 

W = Fx (constant force) W = J F(x)  dx  (changing force). 

In the first case we lift a suitcase weighing F = 30 pounds up x = 20 feet of stairs. 
The work is W = 600 foot-pounds. The suitcase doesn't get heavier as we go up-it 
only seems that way. Actually it gets lighter (we study gravity below). 

In the second case we stretch a spring, which needs more force as x increases. 
Hooke's law says that F(x)  = kx.  The force is proportional to the stretching distance x .  
Starting from x = 0, the work increases with the square of x :  

F = k x  and w = J ; k x d x = : k x 2 .  (1 )  

In metric units the force is measured in Newtons and the distance in meters. The unit 
of work is a Newton-meter (a joule). The 600 foot-pounds for an American suitcase 
would have been about 800 joules in France. 

EXAMPLE 1 Suppose a force of F = 20 pounds stretches a spring 1 foot. 

(a) Find k. The elastic constant is k = Flx = 20 pounds per foot. 

(b) Find W. The work is i k x 2  = i 20 1' = 10 foot-pounds. 

(c) Find x when F = - 10 pounds. This is compression not stretching: x = - foot. 

Compressing the same spring through the same distance requires the same work. For 
compression x and F are negative. But the work W = f kx2 is still positive. Please 
note that W does not equal kx times x! That is the whole point of variable force 
(change Fx to 5 F(x)  dx) .  

May I add another important quantity from physics? It comes from looking at the 
situation from the viewpoint of the spring. In its natural position, the spring rests 
comfortably. It feels no strain and has no energy. Tension or compression gives it 
potential energy. More stretching or more compression means more energy. The 
change in energy equals the work. The potential energy of the suitcase increases by 
600 foot-pounds, when it is lifted 20 feet. 

Write V ( x )  for the potential energy. Here x is the height of the suitcase or the 
extension of the spring. In moving from x = a to x = b, work = increase in potential: 

This is absolutely beautiful. The work W is the definite integral. The potential V is 
the indefinite integral. If we carry the suitcase up the stairs and back down, our total 
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work is zero. We may feel tired, but the trip down should have given back our energy. 
(It was in the suitcase.) Starting with a spring that is compressed one foot, and ending 
with the spring extended one foot, again we have done no work. V =fkx2 is the same 
for x = -1 and x = 1. But an extension from x = 1 to x = 3 requires work: 

W = change in V = 3k(3)2-3k(1)2. 

Indefinite integrals like V come with a property that we know well. They include 
an arbitrary constant C. The correct potential is not simply $kx2, it is ikx2  + C. To 
compute a change in potential, we don't need C. The constant cancels. But to deter- 
mine V itself, we have to choose C. By fixing V =  0 at one point, the potential 
is determined at all other points. A common choice is V= 0 at x = 0. Sometimes 
V= 0 at x = oo (for gravity). Electric fields can be "grounded" at any point. 

There is another connection between the potential V and the force F. According 
to (2), V is the indefinite integral of F. Therefore F(x) is the derivative of V(x). The 
fundamental theorem of calculus is also fundamental to physics: 

force exerted on spring: F = dV/dx (34  

force exerted by spring: F = - dV/dx (3b) 

Those lines say the same thing. One is our force pulling on the spring, the other is 
the "restoring force" pulling back. (3a) and (3b) are a warning that the sign of F 
depends on the point of view. Electrical engineers and physicists use the minus sign. 
In mechanics the plus sign is more common. It is one of the ironies of fate that 
F = V', while distance and velocity have those letters reversed: v =f '. Note the change 
to capital letters and the change to x. 

GMm 0 
v=--/ .r Motion9: 

f Amx" = - k.v 

Fig. 8.16 Stretched spring; suitcase 20 feet up; moon of mass in; oscillating spring. 

EXAMPLE 2 Newton's law of gravitation (inverse square law): 

force to overcome gravity = GMm/x2 force exerted by gravity = - GMm/x2 

An engine pushes a rocket forward. Gravity pulls it back. The gravitational constant 
is G and the Earth's mass is M. The mass of the rocket or satellite or suitcase is m, 
and the potential is the indefinite integral: 

Usually C = 0, which makes the potential zero at x = co. 

Remark When carrying the suitcase upstairs, x changed by 20 feet. The weight was 
regarded as constant-which it nearly is. But an exact calculation of work uses the 
integral of F(x), not just the multiplication 30 times 20. The serious difference comes 
when the suitcase is carried to x = co.With constant force that requires infinite work. 
With the correct (decreasing) force, the work equals V at infinity (which is zero) minus 
V at the pickup point x, . The change in V is W = GMmlx, . 
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KINETIC ENERGY 

This optional paragraph carries the physics one step further. Suppose you release the 
spring or drop the suitcase. The external force changes to F = 0. But the internal 
force still acts on the spring, and gravity still acts on the suitcase. They both start 
moving. The potential energy of the suitcase is converted to kinetic energy, until it 
hits the bottom of the stairs. 

Time enters the problem, either through Newton's law or Einstein's: 

dv d
(Newton) F = ma = m - (Einstein) F = - (mu). ( 5 )dt dt 

Here we stay with Newton, and pretend the mass is constant. Exercise 21 follows 
Einstein; the mass increases with velocity. There m = m,/ goes to infinity 
as v approaches c, the speed of light. That correction comes from the theory of 
relativity, and is not needed for suitcases. 

What happens as the suitcase falls? From x = a at the top of the stairs to x = b at 
the bottom, potential energy is lost. But kinetic energy imv2 is gained, as we see from 
integrating Newton's law: 

dv dv dx dv 
force F=m-=m--=mu-  

dt dx dt dx 

1 1 
work jabF dx = labmv $ dx = -mv2(b)- -mv2(a).

2 2 

This same force F is given by -dV/dx. So the work is also the change in V: 

Since (6) = (7), the total energy +mu2 + V (kinetic plus potential) is constant: 

This is the law of conservation of energy. The total energy is conserved. 

EXAMPLE 3 Attach a mass m to the end of a stretched spring and let go. The spring's 
energy V = ikx2  is gradually converted to kinetic energy of the mass. At x = 0 the 
change to kinetic energy is complete: the original ikx2  has become ;mu2. Beyond 
x = 0 the potential energy increases, the force reverses sign and pulls back, and kinetic 
energy is lost. Eventually all energy is potential-when the mass reaches the other 
extreme. It is simple harmonic motion, exactly as in Chapter 1 (where the mass was 
the shadow of a circling ball). The equation of motion is the statement that the rate 
of change of energy is zero (and we cancel v = dxldt): 

That is F = ma in disguise. For a spring, the solution x = cos f i t  will be found 
in this book. For more complicated structures, engineers spend a billion dollars a 
year computing the solution. 
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PRESSURE AND HYDROSTATIC FORCE

Our forces have been concentrated at a single points. That is not the case for pressure.
A fluid exerts a force all over the base and sides of its container. Suppose a water
tank or swimming pool has constant depth h (in meters or feet). The water has weight-
density w % 9800 N/m3 - 62 lb/ft3 . On the base, the pressure is w times h. The force
is wh times the base area A:

F = whA (pounds or Newtons) p = F/A = wh (lb/ft2 or N/m 2 ). (10)

Thus pressure is force per unit area. Here p and F are computed by multiplication,
because the depth h is constant. Pressure is proportional to depth (as divers know).
Down the side wall, h varies and we need calculus.

The pressure on the side is still wh-the same in all directions. We divide the side
into horizontal strips of thickness Ah. Geometry gives the length 1(h) at depth h
(Figure 8.17). The area of a strip is 1(h) Ah. The pressure wh is nearly constant on the
strip-the depth only changes by Ah. The force on the strip is AF = whlAh. Adding
those forces, and narrowing the strips so that Ah -+ 0, the total force approaches an
integral:

total force F= f whl(h) dh (11)

1•= 60

Ah l(h)

-ngth I = 2 nr h = 20
area A =-r 2  1= 50

esIlre p = wh

Fig. 8.17 Water tank and dam: length of side strip = 1, area of layer = A.

EXAMPLE 4 Find the total force on the trapezoidal dam in Figure 8.17.

The side length is 1= 60 when h = 0. The depth h increases from 0 to 20. The main
problem is to find I at an in-between depth h. With straight sides the relation is
linear: 1= 60 + ch. We choose c to give 1= 50 when h = 20. Then 50 = 60 + c(20)

yields c= - 1.
The total force is the integral of whl. So substitute 1 = 60 - ½h:

F = fo0 wh(60 - -h) dh = [30wh2 - -wh3] o = 12000w - t(8000w).

With distance in feet and w = 62 lb/ft3 , F is in pounds. With distance in meters and
w = 9800 N/m3, the force is in Newtons.

Note that (weight-density w) = (mass-density p) times (g) = (1000)(9.8). These SI
units were chosen to make the density of water at O0C exactly p = 1000 kg/m 3.

EXAMPLE 5 Find the work to pump water out of a tank. The area at depth h is A(h).

Imagine lifting out one layer of water at a time. The layer weighs wA(h) Ah. The
work to lift it to the top is its weight times the distance h, or whA(h) Ah. The work
to empty the whole tank is the integral:

345

W = f whA(h) dh. (12)



8 Applications of the Integral 

Suppose the tank is the bottom half of a sphere of radius R. The cross-sectional area 
at depth h is A = n(R2 - h2). Then the work is the integral (12) from 0 to R. It equals 
W = nwR4/4. 

Units: w = for~e/(distance)~ times R~ = (distan~e)~ gives work W = (force)(distance). 

8.6 EXERCISES 
Read-through questions 

Work equals a times b . For a spring the force is 
F = c , proportional to the extension x (this is d law). 
With this variable force, the work in stretching from 0 to x is 
w = J  e = f . This equals the increase in the g 

energy V. Thus W is a h integral and V is the corre- 
sponding i integral, which includes an arbitrary i . 
The derivative dV/dx equals k . The force of gravity is 
F = I and the potential is V= m . 

In falling, V is converted to n energy K = o . The 
total energy K + V is P (this is the law of CI when 
there is no external force). 

Pressure is force per unit r . Water of density w in 
a pool of depth h and area A exerts a downward force 
F = s on the base. The pressure is p = t . On the 
sides the u is still wh at depth h, so the total force is 
J whl dh, where 1 is v . In a cubic pool of side s, the force 
on the base is F = w , the length around the sides is 
I = x , and the total force on the four sides is F = Y . 
The work to pump the water out of the pool is 
w = J w h ~ d h =  z . 

1 (a) Find the work W when a constant force F = 12 pounds 
moves an object from x = .9 feet to x = 1.1 feet. 
(b) Compute W by integration when the force F = 12/x2 
varies with x. 

2 A 12-inch spring is stretched to 15 inches by a force of 75 
pounds. 

(a) What is the spring constant k in pounds per foot? 
(b) Find the work done in stretching the spring. 
(c) Find the work to stretch it 3 more inches. 

3 A shock-absorber is compressed 1 inch by a weight of 1 
ton. Find its spring constant k in pounds per foot. What 
potential energy is stored in the shock-absorber? 

4 A force F = 20x - x3 stretches a nonlinear spring by x. 
(a) What work is required to stretch it from x = O  to 
x = 2? 
(b) What is its potential energy V at x = 2, if V(0) = 5? 
(c) What is k = dF/dx for a small additional stretch at 
x = 2? 

5 (a) A 120-lb person makes a scale go down x inches. How 
much work is done? 
(b) If the same person goes x inches down the stairs, how 
much potential energy is lost? 

6 A rocket burns its 100 kg of fuel at a steady rate to reach 
a height of 25 km. 

(a) Find the weight of fuel left at height h. 
(b) How much work is done lifting fuel? 

7 Integrate to find the work in winding up a hanging cable 
of length 100 feet and weight density 5 lb/ft. How much addi- 
tional work is caused by a 200-pound weight hanging at the 
end of the cable? 

g The great pyramid (height 500'-you can see it from 
Cairo) has a square base 800' by 800'. Find the area A at 
height h. If the rock weighs w = 100 lb/ft3, approximately how 
much work did it take to lift all the rock? 

9 The force of gravity on a mass m is F = - GMm/x2. With 
G = 6 10- l 7  and Earth mass M = 6 and rocket mass 
rn = 1000, compute the work to lift the rocket from x = 6400 
to x = 6500. (The units are kgs and kms and Newtons, giving 
work in Newton-kms.) 

10 The approximate work to lift a 30-pound suitcase 20 feet 
is 600 foot-pounds. The exact work is the change in the poten- 
tial V = -GmM/x. Show that A V  is 600 times a correction 
factor R2/(R2 - lo2), when x changes from R - 10 to R + 10. 
(This factor is practically 1, when R = radius of the Earth.) 

11 Find the work to lift the rocket in Problem 9 from 
x = 6400 out to x = m. If this work equals the original 
kinetic energy +mu2, what was the original v (the escape 
velocity)? 

12 The kinetic energy )mu2 of a rocket is converted into 
potential energy - G Mm/x. Starting from the Earth's radius 
x = R, what x does the rocket reach? If it reaches x = rn show 
that v = d m .  This escape velocity is 25,000 miles per 
hour. 

13 It takes 20 foot-pounds of work to stretch a spring 2 feet. 
How much work to stretch it one more foot? 

14 A barrel full of beer is 4 feet high with a 1 foot radius and 
an opening at the bottom. How much potential energy is lost 
by the beer as it comes out of the barrel? 
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15 A rectangular dam is 40 feet high and 60 feet wide. Com- 
pute the total side force F on the dam when (a) the water is 
at the top (b) the water level is halfway up. 

16 A triangular dam has an 80-meter base at a depth of 30 
meters. If water covers the triangle, find 

(a) the pressure at depth h 
(b) the length 1 of the dam at depth h 
(c) the total force on the dam. 

17 A cylinder of depth H and cross-sectional area A stands 
full of water (density w). (a) Compute the work W =J wAh dh 
to lift all the water to the top. (b) Check the units of W. 
(c) What is the work W if the cylinder is only half full? 

18 In Problem 17, compute W in both cases if H =20 feet, 
w =62 lb/ft3, and the base is a circle of radius r = 5 feet. 

19 How much work is required to pump out a swimming 
pool, if the area of the base is 800 square feet, the water is 4 
feet deep, and the top is one foot above the water level? 

20 For a cone-shaped tank the cross-sectional area increases 
with depth: A = ,nr2h2/H2.Show that the work to empty it is 
half the work for a cylinder with the same height and base. 
What is the ratio of volumes of water? 

21 In relativity the mass is m =mo/J1-V'/CZ. Find the cor- 
rection factor in Newton's equation F =moa to give Einstein's 
equation F =d(mv)/dt=(d(mv)/dv)(dv/dt)= mo a. 

22 Estimate the depth of the Titanic, the pressure at that 
depth, and the force on a cabin door. Why doesn't every door 
collapse at the bottom of the Atlantic Ocean? 

23 A swimming pool is 4 meters wide, 10 meters long, and 2 
meters deep. Find the weight of the water and the total force 
on the bottom. 

24 If the pool in Problem 23 has a shallow end only one 
meter deep, what fraction of the water is saved? Draw a cross- 
section (a trapezoid) and show the direction of force on the 
sides and the sloping bottom. 

25 In what ways is work like a definite integral and energy 
like an indefinite integral? Their derivative is the 
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C H A P T E R  9 


Polar Coordinates and Complex 

Numbers 


Up to now, points have been located by their x and y coordinates. But if you were 
a flight controller, and a plane appeared on the screen, you would not give its 
position that way. Instead of x and y, you would read off the direction of the plane 
and its distance. The direction is given by an angle 6. The distance is given by a 
positive number r. Those are the polar coordinates of the point, where x and y are 
the rectangular coordinates. 

The angle 6 is measured from the horizontal. Suppose the distance is 2 and the 
direction is 30"or 4 6  (degrees preferred by flight controllers, radians by mathemati- 
cians). A pilot looking along the x axis would give the plane's direction as "11 
o'clock." This totally destroys our system of units, by measuring direction in hours. 
But the angle and the distance locate the plane. 

How far to a landing strip at r = 1 and 8 = - n/2? For that question polar coordi- 
nates are not good. They are perfect for distance from the origin (which equals r), 
but for most other distances I would switch to x and y. It is extremely simple to 
determine x and y from r and 8, and we will do it constantly. The most used formulas 
in this chapter come from Figure 9.1-where the right triangle has angle 6 and 
hypotenuse r. The sides of that triangle are x and y: 

x = r cos 8 and y = r sin 8. (1) 

The point at r = 2, 8 = 4 6  has x = 2 cos(n/6) and y = 2 sin(n/6). The cosine of 
n/6 is J 5 / 2  and the sine is f. So x = $ and y = 1. Polar coordinates convert 
easily to xy coordinates-now we go the other way. 

Always x2 + y2 = r2. In this example (&)2 + = (2)2. Pythagoras produces 
r from x and y. The direction 8 is also available, but the formula is not so beautiful: 

r = J w  and t a n g =  -Y and(a1most) ~ = t a n - ' Y .  (2)
X X 

Our point has y/x = I/&. One angle with this tangent is 8 = tan-' ( 1 1 8 )  = n/6. 
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Fig. 9.1 Polar coordinates r, 8 and rectangular coordinates x =r cos 9, y =r sin 8. 

EXAMPLE 1 Point B in Figure 9.lc is at a negative angle 8 = -4 4 .  The x coordinate 
r COS(-n/4) is the same as r cos 4 4  (the cosine is even). But the y coordinate 
r sin(-n/4) is negative. Computing r and 8 from x = 1 and y = 1, the distance is 
r = ,/mand tan 8 is -111. 

Warning To any angle 8 we can add or subtract 2n-which goes a full 360" circle 
and keeps the same direction. Thus -n/4 or -45" is the same angle as 7n/4 or 3 15". 
So is 15n/4 or 675". 

If we add or subtract 1 80°, the tangent doesn't change. The point (1, -1) is on the 
-45" line at r = f i.The point (- 1, 1) is on the 135" line also with r = fi.Both 
have tan 8 = - 1. We had to write "almost" in equation (2),because a point has many 
8's and two points have the same r and tan 8. 

Even worse, we could say that B = (1, -1) is on the 135" line but at a negative 
distance r = -&.A negative r carries the point backward along the 135" line, which 
is forward to B. In giving the position of B, I would always keep r > 0. But in drawing 
the graph of a polar equation, r < 0 is allowed. We move now to those graphs. 

THE CIRCLE r=  cos 8 

The basis for Chapters 1-8 was y =f ( x ) .  The key to this chapter is r = F(8). That is 
a relation between the polar coordinates, and the points satisfying an equation like 
r = cos 8 produce a polar graph. 

It is not obvious why r = cos 8 gives a circle. The equations r = cos 28 and 
r = cos28 and r = 1 + cos 8 produce entirely different graphs-not circles. The direct 
approach is to take 8 = 0°, 30°, 60°, . . . and go out the distance r = cos 8 on each ray. 
The points are marked in Figure 9.2a, and connected into a curve. It seems to be a 
circle of radius i,with its center at the point (i,0). We have to be able to show 
mathematically that r = cos 8 represents a shifted circle. 

One point must be mentioned. The angles from 0 to n give the whole circle. The 
number r = cos 8 becomes negative after 7~12, and we go backwards along each ray. 

Fig. 9.2 The circle r = cos 9 and the switch to x and y. The circle r = sin 8. 



9 Polar Coordinates and Complex Numbers 

At 8 = .n (to the left of the origin) the cosine is -1. Going backwards brings us to 
the same point as 8 = 0 and r = + 1-which completes the circle. 

When 8 continues from 7c to 2.n we go around again. The polar equation gives the 
circle twice. (Or more times, when 8 continues past 2.n.) If you don't like negative r's 
and multiple circles, restrict 8 to the range from -7112 to 7~12. We still have to see 
why the graph of r = cos 8 is a circle. 

Method 1 Multiply by r and convert to rectangular coordinates x and y: 

r = cos 8 * r2 = r cos 8 * x2 + y2 = x. (3) 

This is a circle because of x2 + y2. From rewriting as (x - f)2 + y2 = (f)2 we recognize 
its center and radius. Center at x = 4 and y = 0; radius f .  Done. 

Method 2 Write x and y separately as functions of 8. Then 8 is a "parameter": 

x = r cos 8 = cos28 and y = r sin 8 = sin 8 cos 8. (4) 
These are not polar equations but parametric equations. The parameter 0 is the angle, 
but it could be the time-the curve would be the same. Chapter 12 studies parametric 
equations in detail-here we stay with the circle. 

To find the circle, square x and y and add. This produces x2 + y2 = x in Problem 26. 
But here we do something new: Start with the circle andfind equation (4).In case you 
don't reach Chapter 12, the idea is this. Add the vectors OC to the center and C P  
out the radius: 

The point P in Figure 9.2 has (x, y) = OC + C P  = (f,0) + (f cos t, f sin t). 

The parameter t is the angle at the center of the circle. The equations are 
x = f + f cos t and y = sin t. A trigonometric person sees a double angle and sets 
t = 28. The result is equation (4) for the circle: 

x = f + f cos 28 = cos28 and y = f sin 28 = sin 8 cos 8. (5 )  

This step rediscovers a basic theorem of geometry: The angle t at the center is twice 
the angle 0 at the circumference. End of quick introduction to parameters. 

A second circle is r = sin 0, drawn in Figure 9.2~.  A third circle is r = cos 8 + sin 8, 
not drawn. Problem 27 asks you to find its xy equation and its radius. All calculations 
go back to x = r cos 8 and y = r sin 8-the basic facts of polar coordinates! The last 
exercise shows a parametric equation with beautiful graphs, because it may be pos- 
sible to draw them now. Then the next section concentrates on r = F(8)-and goes 
far beyond circles. 

9.1 EXERCISES 
Read-through questions The polar equation r = cos 8 produces a shifted m . The 

top point is at 0 = n , which gives r = o . When 8
Polar coordinates r and 8 correspond to x = a and y = goes from 0 to 271, we go P times around the graph. 

b . The points with r > 0 and 8 = 7~ are located c . 
The points with r = 1 and 0 < 8 < n are located d . Re- Rewriting as r2 = r cos 8 leads to the xy equation q . Sub-

versing the sign of 8 moves the point ( x , y) to e . stituting r = cos 0 into x = r cos 8 yields x = r and simi- 
larly y = s . In this form x and y are functions of the 

Given x and y, the polar distance is r = t . The tangent t 0. 
of 8 is a . The point (6, 8) has r = h and 8 = i . 

Another point with Find the polar Another point with the same is 1. r 2 () and 0 < 8 < 2R of these pints. 
the same r is k . Another point with the same r and tan 8 
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Find rectangular coordinates (x, y) from polar coordinates. 

11 (r ,  9) =(2, -n/6) 12 (r, 8) =(2, 5n/6) 

13 What is the distance from (x, y) = ( 3 ,  1) to (1, -fi)? 

14 How far is the point r = 3, 9 =n/2 from r =4, 6 = n? 

15 How far is (x, y) =(r cos 9, r sin 9) from (X, Y) =(R cos 4, 
R sin $)? Simplify (x -X)2+ (y -Y)2 by using cos(8 -$) = 
cos 9 cos $ + sin 9 sin $. 

16 Find a second set of polar coordinates (a different r or 8) 
for the points 

(r, $1 = (- 1, 42), (- 1, W ) ,  (1, -n/2), (0,O). 

17 Using polar coordinates describe (a) the half-plane x > 0; 
(b) the half-plane y < 0; (c) the ring with x2 + y2 between 4 
and 5; (d) the wedge x 3 lyl. 

True or false, with a reason or an example: 
(a) Changing to -r and -9 produces the same point. 
(b) Each point has only one r and 9, when r < 0 is not 
allowed. 
(c) The graph of r = l/sin 9 is a straight line. 

From x and 9 find y and r. 

Which other point has the same r and tan 9 as x = fi, 
y = 1 in Figure 9.1 b? 

21 Convert from rectangular to polar equations: 
( a ) y = x  ( b ) x + y = l  ( c ) x 2 + y 2 = x + y  

22 Show that the triangle with vertices at (0, 0), (r, ,el), and 
(r2, 02) has area A =3rlr2 sin(02 -9,). Find the base and 
height assuming 0 < 9, < 9, < n. 

Problems 23-28 are about polar equations that give circles. 

23 Convert r =sin 9 into an xy equation. Multiply first by r. 

24 Graph r = sin 8 at 8 = 0",30", 60°, .. . ,360". These thirteen 
values of 8 give different points on the graph. What 
range of 9's goes once around the circle? 

25 Substitute r = sin 8 into x = r cos 8 and y =r sin 8 to find 
x and y in terms of the parameter 8. Then compute x2 + y2 
to reach the xy equation. 

26 From the parametric equations x =cos29 and y = 
sin 8 cos 9 in (4), recover the xy equation. Square, add, 
eliminate 8. 

27 (a) Multiply r = cos 9 + sin 9 by r to convert into an xy 
equation. (b) Rewrite the equation as (x -3)2+ (y -i)2=R2 
to find the radius R. (c) Draw the graph. 

28 Find the radius of r = a cos 9 + b sin 8. (Multiply by r.) 

29 Convert x + y = 1 into an r9 equation and solve for r. 
Then substitute this r into x = r cos 9 and y = r sin 9 to find 
parametric equations for the line. 

30 The equations x =cos29 and y=sin29 also lead to 
x + y = 1-but they are different from the answer to 
Problem 29. Explanation: 9 is no longer the polar angle and 
we should have written t. Find a point x =cos29, y = sin29 
that is not at the angle 8. 

31 Convert r =cos29 into an xy equation (of sixth degree!) 

32 If you have a graphics package for parametric curves, 
graph some hypocycloids. The equations are x = 
(1 -b) cos t + b cos(1- b)t/b, y =(1 -b)sin t -b sin(1- b)t/b. 
The figure shows b =& and part of b = .31831. 

19.2 Polar Equations and Graphs 

The most important equation in polar coordinates, by far, is r = 1. The angle 8 does 
not even appear. The equation looks too easy, but that is the point! The graph is a 
circle around the origin (the unit circle). Compare with the line x = 1. More important, 
compare the simplicity of r = 1with the complexity of y = J-'. Circles are so 
common in applications that they created the need for polar coordinates. 

,-
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This section studies polar curves r = F(8). The cardioid is a sentimental favorite- 
maybe parabolas are more practical. The cardioid is r = 1+ cos 8, the parabola is 
r = 1/(1+ cos 8). Section 12.2 adds cycloids and astroids. A graphics package can 
draw them and so can we. 

Together with the circles r = constant go the straight lines 8 = constant. The equa- 
tion 8 = n/4is a ray out from the origin, at that fixed angle. If we allow r < 0, as we 
do in drawing graphs, the one-directional ray changes to a full line. Important: The 
circles are perpendicular to the rays. We have "orthogonal coordinates"-more inter-
esting than the x - y grid of perpendicular lines. In principle x could be mixed with 
8 (non-orthogonal), but in practice that never happens. 

Other curves are attractive in polar coordinates-we look first at five examples. 
Sometimes we switch back to x = r cos 8 and y = r sin 8, to recognize the graph. 

EXAMPLE 1 The graph of r = l/cos 8 is the straight line x = 1 (because r cos 8 = 1). 

EXAMPLE 2 The graph of r = cos 28 is the four-petalflower in Figure 9.3. 

The points at 8 = 30" and -30" and 150" and -150" are marked on the flower. They 
all have r = cos 28 = 9 .  There are three important symmetries-across the x axis, 
across the y axis, and through the origin. This four-petal curve has them all. So does 
the vertical flower r = sin 28-but surprisingly, the tests it passes are different. 

(Across the x axis: y to -y) There are two ways to cross. First, change 8 to -8. 
The equation r = cos 28 stays the same. Second, change 8 to n - 8 and also r to - r. 
The equation r = sin 28 stays the same. Both flowers have x axis symmetry. 

(Across the y axis: x to -x) There are two ways to cross. First, change 8 to n - 8. 
The equation r = cos 28 stays the same. Second, change 8 to -8 and r to -r. Now 
r = sin 28 stays the same (the sine is odd). Both curves have y axis symmetry. 

(Through the origin) Now we change r to - r or 8 to 8 + n. The flower equations 
pass the second test only: cos 2(8 + n )  = cos 28 and sin 2(8 + n)= sin 28. Every 
equation r2 = F(8) passes the first test, since (- r)2= r2. 

The circle r = cos 8 has x axis symmetry, but not y or r. The spiral r = 8' has 
y axis symmetry, because -r = (- Q3 is the same equation. 

Question What happens if you change r to -r and also change 8 to 8 + n? 
Answer Nothing-because (r, 8) and (- r, 8 + n)are always the same point. 

Fig. 9.3 The four-petal flower r =cos 28 and the spiral r = 8 ( r  > 0 in red). 
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EXAMPLE 3 The graph of r = 8 is a spiral of Archimedes-or maybe two spirals. 

The spiral adds new points as 8 increases past 271. Our other examples are 
"periodic"--8 = 271 gives the same point as 8 = 0. A periodic curve repeats itself. The 
spiral moves out by 271 each time it comes around. If we allow negative angles and 
negative r = 8, a second spiral appears. 

EXAMPLE 4 The graph of r = 1 + cos 8 is a cardioid. It is drawn in Figure 9 .4~ .  

The cardioid has no simple xy equation. Still the curve is very attractive. It has a 
cusp at the origin and it is heart-shaped (hence its name). To draw it, plot r = 1 + cos 8 
at 30" intervals and connect the points. For this curve r is never negative, since cos 8 
never goes below -1. 

It is a curious fact that the electrical vector in your heart almost traces out a 
cardioid. See Section 11.1 about electrocardiograms. If it is a perfect cardioid you are 
in a little trouble. 

1.= 1 +&OS
3 

0 1- = 1 + L o ,  0
3 

I- = 1 + cos 0 r =  1 + - L o S
3 

0 

no dimple dimple cardioid inner loop 

Fig. 9.4 Lima~onsr = 1 + b cos 0, including a cardioid and Mars seen from Earth. 

EXAMPLE 5 The graph of r = 1 + b cos 8 is a limagon (a cardioid when b = 1). 

Limaqon (soft c) is a French word for snail-not so well known as escargot but just 
as inedible. (I am only referring to the shell. Excusez-moi!) Figure 9.4 shows how a 
dimple appears as b increases. Then an inner loop appears beyond b = 1 (the cardioid 
at b = 1 is giving birth to a loop). For large b the curve looks more like two circles. 
The limiting case is a double circle, when the inner loop is the same as the outer 
loop. Remember that r = cos 8 goes around the circle twice. 

We could magnify the limaqon by a factor c, changing to r = c(l + b cos 8). We 
could rotate 180" to r = 1 - b cos 8. But the real interest is whether these figures arise 
in applications, and Donald Saari showed me a nice example. 

Mars seen from Earth The Earth goes around the Sun and so does Mars. Roughly 
speaking Mars is 14 times as far out, and completes its orbit in two Earth years. 

We take the orbits as circles: r = 2 for Earth and r = 3 for Mars. Those equations 
tell where but not when. With time as a parameter, the coordinates of Earth and Mars 
are given at every instant t: 

x, = 2 cos 2nt, yE = 2 sin 271t and x, = 3 cos nt, y, = 3 sin nt. 
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At t = 1 year, the Earth completes a circle (angle = 2n) and Mars is halfway. 
Now the key step. Subtract to find the position of Mars relative to Earth: 

xM-,=3cosnt -2cos2nt  and ~ ~ - ~ = 3 s i n n t - 2 s i n 2 ~ t .  

Replacing cos 2nt by 2 cos2nt - 1 and sin 2nt by 2 sin nt cos nt, this is 

x, -,= (3 -4 cos nt)cos nt + 2 and yM-,= (3 - 4 cos nt)sin nt. 

Seen from the Earth, Mars does a loop in the sky! There are two t's for which 
3 -4 cos a t  = 0 (or cos nt = 3). At both times, Mars is two units from Earth (x,-, = 

2 and yM-, = 0). When we move the origin to that point, the 2 is subtracted away- 
the M -E coordinates become x = r cos nt and y = r sin nt with r = 3 - 4 cos nt. That 
is a limacon with a loop, like Figure 9.4d. 

Note added in proof I didn't realize that a 3-to-2 ratio is also responsible for heating 
up two spots on opposite sides of Mercury. From the newspaper of June 13, 1990: 

"Astronomers today reported the first observations showing that Mercury 
has two extremely hot spots. That is because Mercury, the planet closest to the 
Sun, turns on its axis once every 59.6 days, which is a day on Mercury. It goes 
around the sun every 88 days, a Mercurian year. With this 3-to-2 ratio between 
spin and revolution, the Sun appears to stop in the sky and move backward, 
describing a loop over each of the hot spots." 

CONIC SECTIONS IN POLAR COORDINATES 

The exercises include other polar curves, like lemniscates and 200-petal flowers. But 
get serious. The most important curves are the ellipse and parabola and hyperbola. 
In Section 3.5 their equations involved 1, x, y, x2, xy, y2. With one focus at the origin, 
their polar equations are even better. 

9A The graph of r = A/(1+ e cos 0) is a conic section with "eccentricity" e: 

EXAMPLE 6 (e = 1) The graph of r = 1/(1+ cos 8) is a parabola. This equation is 
r + r cos 8 = 1 or r = 1 - x. Squaring both sides gives x2 + y2 = 1 - 2x + x2. Cancel- 
ing x2 leaves Y2 = 1 - 2x, the parabola in Figure 9.5b. 

The amplifying factor A blows up all curves, with no change in shape. 

EXAMPLE 7 (e = 2) The same steps lead from r(1 + 2 cos 8) = 1 to r = 1 - 2x. Squar- 
ing gives x2 + y2 = 1 - 4x + 4x2 and the x2 terms do not cancel. Instead we have 
y2 - 3x2= 1 - 4x. This is the hyperbola in Figure 9Sc, with a focus at (0,O). 

The hyperbola y2 - 3x2 = 1 (without the -4x) has its center at (0,O). 

EXAMPLE 8 (e = 4) The same steps lead from r(1 + 4 cos 8) = 1 to r = 1 -4x. Squar- 
ing gives the ellipse x2 + y2 = 1 - x + ax2. Polar equations look at conics in a new 
way, which happens to match the sun and planets perfectly. The sun at (0,O) is not 
the center of the system, but a focus. 

Finally e = 0 gives the circle r = 1. Center of circle = both foci = (0,O). 
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Fig. 9.5 r = 1/(1+ e cos 8) is an ellipse for e = 3, a parabola for e = 1, a hyperbola for e = 2. 

The divectrix The figure shows the line d (the "directrix") for each curve. All points 
P on the curve satisfy r = JPFI= eJPdl.The distance to the focus is e times the distance 
to the directrix. (eis still the eccentricity, nothing to do with exponentials.) A geometer 
would start from this property r = elPdl and construct the curve. We derive the 
property from the equation: 

The directrix is the line at x = Ale. That last equation is exactly lPFl = elPdl. 

Notice how two numbers determine these curves. Here the numbers are A and e. 
In Section 3.5 they were a and b. (The ellipse was x2/a2+ y2/b2= 1.) Using A and e 
we go smoothly from ellipses through parabolas (at e = 1) and on to hyperbolas. 
With three more numbers we can move the focus to any point and rotate the curve 
through any angle. Conics are determined by five numbers. 

Read-through questions In 7-14 sketch the curve and check for x, y, and r symmetry. 

The circle of radius 3 around the origin has polar equation 7 r 2 = 4  cos 28 (lemniscate) 
a . The 45" line has polar equation b . Those graphs g r2 = 4 sin 28 (lemniscate)

meet at an angle of c . Multiplying r = 4 cos 8 by r yields 
(three petals) the xy equation ci . Its graph is a e with center at 9 r=cos  38 

f . The graph of r = 4/cos 8 is the line x = Q . The 10 r2 = 10 + 6 cos 48 
equation r2 = cos 28 is not changed when 8 + -8 (symmetric 

11 r = e e  (logarithmic spiral) 
across h ) and when 8 -, rt + 8 (or r + I ). The graph 
o f r = l + c o s 8 i s a  i . 12 r = 118 (hyperbolic spiral) 

The graph of r = A/( IC ) is a conic section with one 13 r = t a n 8  
focus at I . It is an ellipse if m and a hyperbola if 14 r = 1-2 sin 38 (rose inside rose) 

n . The equation r = 1/(1+ cos 8) leads to r + x = 1 which 
15 Convert r = 6 sin 8 + 8 cos 8 to the xy equation of a circle gives a o . Then r = distance from origin equals 1 -x = 

distance from p . The equations r = 3(1- x) and r = (what radius, what center?). 

$(I -X) represents a a and an r . Including a shift "16 Squaring and adding in the Mars-Earth equation gives 
and rotation, conics are determined by s numbers. ~ ~ - ~ + y ~ - ~ = 1 3 - 1 2 c o s n t .  graph of r2=13-The 

12 cos 8 is not at all like Figure 9.4d. What went wrong? 

Convert to xy coordinates to draw and identify these curves. In 17-23 find the points where the two curves meet. 
1 r sin 8 =  1 2 r(cos 8 -sin 8) = 2 17 r = 2 c o s 8 a n d r = l + c o s 8  

Warning: You might set 2 cos 8 = 1+ cos 8 to find cos 8 = 1.3 r = 2  cos 8 4 r = - 2 s i n 8  
But the graphs have another meeting point-they reach it at 

5 r =1/(2+cos 8) 6 r = l /( l  + 2 cos 8) different 8's. Draw graphs to find all meeting points. 
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18 r2 = sin 20 and r2 = cos 28 

19 r = 1  +cosO and r =  1-sin8 

21 r = 2  and r=4s in28  

22 r2=4cosOand r=1-cos8  

23 r sin 8 = 1 and r cos (8 -n/4) = f i  (straight lines) 

24 When is there a dimple in r = 1 + b cos 8? From x = 
(1 + b cos 0)cos 8 find dx/d8 and d2x/d02 at 8 = n. When that 
second derivative is negative the lima~on has a dimple. 

25 How many petals for r = cos 5t?? For r = cos 8 there was 
one, for r = cos 28 there were four. 

26 Explain why r = cos 100 8 has 200 petals but r = cos 101 8 
only has 101. The other 101 petals are . What about 
r = cos it?? 

27 Find an xy equation for the cardioid r = 1 + cos 0. 

28 (a) The flower r = cos 28 is symmetric across the x and y 
axes. Does that make it symmetric about the origin? (Do 
two symmetries imply the third, so -r = cos 28 produces 
the same curve?) 
(b) How can r = 1, 0 = n/2 lie on the curve but fail to 
satisfy the equation? 

29 Find an xy equation for the flower r = cos 28. 

30 Find equations for curves with these properties: 
(a) Symmetric about the origin but not the x axis 
(b) Symmetric across the 45" line but not symmetric in x 
or y or r 
(c) Symmetric in x and y and r (like the flower) but 
changed when x -y (not symmetric across the 45" line). 

Problems 31-37 are about conic sections-especially ellipses. 

31 Find the top point of the ellipse in Figure 9.5a, by maxi- 
mizing y = r sin 0 = sin 8/(1 + + cos 8). 

32 (a) Show that all conics r = 1/(1 + e cos 8) go through 
x=O, y =  1. 
(b) Find the second focus of the ellipse and hyperbola. For 
the parabola (e = 1)where is the second focus? 

33 The point Q in Figure 9 . 5 ~  has y = 1. By symmetry find x 
and then r (negative!). Check that x2 + y2 = r2 and IQF( = 

21Qdl. 

34 The equations r = A/(1+ e cos 8) and r = 1/(C+ D cos 8) 
are the same if C = and D = . For the 
mirror image across the y axis replace 8 by . This 
gives r = 1/(C-D cos 8) as in Figure 12.10 for a planet 
around the sun. 

35 The ellipse r = Al(1 + e cos 8) has length 2a on the x axis. 
Add r at 8 = 0 to r at 8 = n to prove that a = Al(1- e2). The 
Earth's orbit has a = 92,600,000 miles = one astronomical 
unit (AU). 

36 The maximum height b occurs when y = r sin 8 = A sin 8/ 
(1 + e cos 8) has dy/d8 = 0. Show that b = y,,, = AIJX. 
37 Combine a and b from Problems 35-36 to find c = 

,/- = Ae/(l -e2). Then the eccentricity e is c/a. Halley's 
comet is an ellipse with a =  18.1 AU and b =4.6AU so 
e =  . 

Comets have large eccentricity, planets have much smaller e: 
Mercury .21, Venus .01, Earth .02, Mars .09, Jupiter .05, Sat-
urn .05, Uranus .05, Neptune .01, Pluto .25, Kohoutek ,9999. 

38 If you have a computer with software to do polar graphs, 
start with these: 

1. Flowers r = A + cos nO for n = 3, 3, 7, 8; A = 0, 1, 2 
2. Petals r = (cos me + 4 cos n0)lcos 8, (m, n) = (5,3), (3,5), 
(9, 11, (Z3) 
3. Logarithmic spiral r = eel2" 
4. Nephroid r = 1 + 2 sin f 0 from the bottom of a teacup 
5. Dr. Fay's butterfly r = ecO"-2 cos 40 + sin5(0/12) 

Then create and name your own curve. 

9.3 Slope, Length, and Area for Polar Curves 

The previous sections introduced polar coordinates and polar equations and polar 
graphs. There was no calculus! We now tackle the problems of area (integral calculus) 
and slope (differential calculus), when the equation is r = F(8). The use of F instead 
off is a reminder that the slope is not dFld8 and the area is not F(8)dB. 

Start with area. The region is always divided into small pieces-what is their 
shape? Look between the angles 8 and 8 + A8 in Figure 9.6a. Inside the curve is a 
narrow wedge-almost a triangle, with A8 as its small angle. If the radius is constant 
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1
area r = cos 0

area
1 1

2

2 2

Fig. 9.6 Area of a wedge and a circle and an intersection of circles.

the wedge is a sector of a circle. It is a piece of pie cut at the extremely narrow angle
AO. The area of that piece is a fraction (the angle AO divided by the whole angle 27r)
of the whole area 7rr 2 of the circle:

A 2 1 1
area of wedge = r= r2 2A= - [F(G)]-2A. (1)

27 2 2

We admit that the exact shape is not circular. The true radius F(O) varies with 0-
but in a narrow angle that variation is small. When we add up the wedges and let
AO approach zero, the area becomes an integral.

EXAMPLE 1 Find the area inside the circle r = cos 0 of radius - (Figure 9.6).

2 1 cos sin 8 + 0812  2
area = J cos20 dO =

02 4 0 4
That is wrong! The correct area of a circle of radius - is 7/4. The mistake is that we
went twice around the circle as 0 increased to 27n. Integrating from 0 to nr gives 7x/4.

EXAMPLE 2 Find the area between the circles r = cos 0 and r = ½.

The circles cross at the points where r = cos 0 agrees with r = -. Figure 9.6 shows these
points at + 60', or 0 = + 7r/3. Those are the limits of integration, where cos 0 = ½. The
integral adds up the difference between two wedges, one out to r = cos 0 and a smaller
one with r= 1:

area= /3 [(co s 0)2 
- ( dO. (3)

Note that chopped wedges have area -(F2 - F2)AO and not -(F1 - F2)2 A.

EXAMPLE 3 Find the area between the cardioid r = 1 + cos 0 and the circle r = 1.

area = n [(1 + cos 0)2
- 12]dO limits 0 = + -where 1 + cos 8 = 1

area

cos2 0AO2
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SLOPE OF A POLAR CURVE 

Where is the highest point on the cardioid r = 1 + cos 8? What is the slope at 8 = 
4 4 ?  Those are not the most important questions in calculus, but still we should 
know how to answer them. I will describe the method quickly, by switching to 
rectangular coordinates: 

x = r cos 9 = (1 + cos 9)cos 8 and y = r sin 9 = (1 + cos @sin 8. 

For the highest point, maximize y by setting its derivative to zero: 

dyld8 = (1+ cos O)(cos 8) + (- sin @(sin 8) = 0. (3) 

Thus cos 8 + cos 29 = 0, which happens at 60". The height is y = (1 + *)(,/5/2). 

For the slope, use the chain rule dyld0 = (dy/dx)(dx/dO): 

dy - dy/d8 - (1 + cos 8)(cos 8) + (-sin 8)(sin 8) 
dx dx/d8 (1 + cos 8)(- sin 8) + (- sin 8) cos 8'  (4) 

Equations (3) and (4) avoid the awkward (or impossible) step of eliminating 8. Instead 
of trying to find y as a function of x, we keep x and y as functions of 8. At 8 = n/4, 
the ratio in equation (4) yields dyldx = - 141 + fi). 

Problem 18 finds a general formula for the slope, using dyldx = (dy/dO)/(dx/dO). 
Problem 20 finds a more elegant formula, by looking at the question differently. 

LENGTH OF A POLAR CURVE 

The length integral always starts with ds = J ( ~ x ) ~+ (dy)2. A polar curve has x = 

r cos 8 = F(8) cos 8 and y = F(9) sin 8. Now take derivatives by the product rule: 

dx = (F'(9)cos 8 - F(8)sin 9)dO and dy = (F'(8)sin 8 + F(8)cos 8)dO. 

Squaring and adding (note cos28 + sin2$) gives the element of length ds: 

ds = J[F'(B)]~ + [F(B)]~ dB. 

The figure shows ( d ~ ) ~  += ( d ~ ) ~  the same formula with different letters. The 
total arc length is j ds. 

The area of a surface of revolution is j2ny ds (around the x axis) or j2nx ds r = F ( 8 )  

(around the y axis). Write x, y, and ds in terms of 9 and do. Then integrate. - ( d ~ ) ~  + (rd8)2= ( d ~ - ) ~  

EXAMPLE 4 The circle r = cos 8 has ds = ,/idB. So its length is n (not 2n!!-don't Fig. 9.7 

go around twice). Revolved around the y axis the circle yields a doughnut with no 
hole. Since x = r cos 8 = cos28, the surface area of the doughnut is 

EXAMPLE 5 The length of r = 1 + cos 8 is, by symmetry, double the integral from 
0 to 7r: 

length of cardioid = 2 ,/(- sin 8)2 + (1 + cos 19)~ dB 



-- 

9.3 Slope, Length, and Area for Polar Curves 

We substituted 4 cos2$0 for 2 + 2 cos 0 in the square root. It is possible to skip 
symmetry and integrate from 0 to 2n-but that needs the absolute value lcos 381 to 
maintain a positive square root. 

EXAMPLE 6 The logarithmic spiral r = e-' has ds = J- do. It spirals to 
zero as 8 goes to infinity, and the total length is finite: 

Revolve this spiral for a mathematical seashell with area J,"(2ne-' cos $)fie-'do. 

Read-through exercises 

A circular wedge with angle A8 is a fraction a of a whole 
circle. If the radius is r ,  the wedge area is b . Then the 
area inside r = F(8) is l c . The area inside r = O2 from 0 
to 7c is d . That spiral meets the circle r = 1 at 8 = e . 
The area inside the circle and outside the spiral is f . A 
chopped wedge of angle A8 between r ,  and r2 has area g . 

The curve r = F(8) has x = r cos 8 = h and y = i . 
=The slope dyldx is dyld8 divided by i . For length ( d ~ ) ~  

+ ( d ~ ) ~  k . The length of the spiral r = 8 to 8 = 71( d ~ ) ~  = 
is l I (not to compute integrals). The surface area when 
r = 8 is revolved around the x axis is j 27cy ds = J m . The 
volume of that solid is l7cY2dx= 1 n . 

In 1-6 draw the curve and find the area inside. 

2 r = sin 8 + cos 8 from 0 to 7c 

4 r = 1 + 2 cos 8 (inner loop only) 

5 r = cos 28 (one petal only) 

6 r = cos 38 (one petal only) 

Find the area between the curves in 7-12 after locating their 
intersections (draw them first). 

7 circle r = cos 8 and circle r = sin 8 

8 spiral r = 8 and y axis (first arch) 

9 outside cardioid r = 1 + cos 8 inside circle r = 3 cos 8 

10 lemniscate r2 = 4 cos 28 outside r = ,,h 
11 circle r = 8 cos 8 beyond line r cos 8 = 4 

12 circle r = 10 beyond line r cos 8 = 6 

13 Locate the mistake and find the correct area of the lemnis- 
cate r2 = cos 28: area = i",r2 d8 = J",cos 28 d8 = 0. 

14 Find the area between the two circles in Example 2. 

15 Compute the area between the cardioid and circle in 
Example 3. 

16 Find the complete area (carefully) between the spiral r = 

e-' (8 > 0) and the origin. 

17 At what 8's does the cardioid r = 1 + cos 8 have infinite 
slope? Which points are furthest to the left (minimum x)? 

18 Apply the chain rule dyldx = (dyldO)/(dx/d8) to x = 
F(8) cos 8, y = F(8) sin 8. Simplify to reach 

dy F + tan 8 dFld8 
-

dx -F tan 8 + dFld8' 

19 The groove in a record is nearly a spiral r = c8: 

length = J d mdB = Ji4 d mdrlc. 

Take c = .002 to give 636 turns between the outer radius 
14 cm and the inner radius 6 cm (14 -6 equals .002(636)2n). 

(a) Omit c2 and just integrate r drlc. 
(b)Compute the length integral. Tables and calculators 
allowed. You will never trust integrals again. 

20 Show that the angle $ between the ray from the origin 
and the tangent line has tan $ = Fl(dFld8). 
Hint: If the tangent line is at an angle 4 with the horizontal, 
then tan 6 is the slope dyldx in Problem 18. Therefore 

tan 4- tan 0 
tan $ = tan(4 -8) = 

1 + tan 4 tan 8' 

Substitute for tan 4 and simplify like mad. 

21 The circle r = F(8) = 4 sin 8 has $ = 8. Draw a figure 
including 8, 4,  $ and check tan $. 

22 Draw the cardioid r = 1-cos 8, noticing the minus sign. 
Include the angles 8, 4,  $ and show that $ = 812. 

23 The first l ima~on in Figure 9.4 looks like a circle centered 
at (4,0). Prove that it isn't. 

24 Find the equation of the tangent line to the circle r = cos 8 
at 8 = 4 6 .  
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In 25-28 compute the length of the curve. 

25 r = 8 (8 from 0 to 2n) 

26 r = sec 0 (8 from 0 to n/4) 

27 r = sin3(O/3) (8 from 0 to 371) 

28 r = O2 (0 from 0 to n) 

29 The narrow wedge in Figure 9.6 is almost a triangle. It 
was treated as a circular sector but triangles are more familiar. 
Why is the area approximately tr2AO? 

30 In Example 4 revolve the circle around the x axis and find 
the surface area. We really only revolve a semicircle. 

31 Compute the seashell area 271fij; e-2B cos 0 do using 
two integrations by parts. 

32 Find the surface area when the cardioid r = 1 + cos 0 
is revolved around the x axis. 

33 Find the surface area when the lemniscate r2 = cos 20 is 
revolved around the x axis. What is 8 after one petal? 

34 When y = f (x) is revolved around the x axis, the volume 
is j ny2dx. When the circle r = cos 0 is revolved, switch to a 
0-integral from 0 to n/2 and check the volume of a sphere. 

35 Find the volume when the cardioid r = 1 + cos 0 is rotated 
around the x axis. 

36 Find the surface area and volume when the graph of r = 

l/cos 8 is rotated around the y axis (0 < 8 < n/4). 

37 Show that the spirals r = 8 and r = 118 are perpendicular 
when they meet at 13 = 1. 

38 Draw three circles of radius 1 that touch each other and 
find the area of the curved triangle between them. 

39 Draw the unit square 0 < x < 1,0 < y < 1. In polar coordi- 
nates its right side is r = . Find the area from ~ ~ r 2 d 0 .  

40 (Unravel the paradox) The area of the ellipse x = 4 cos 0, 
y = 3 sin 0 is n 4 3 = 12n. But the integral of $r2d0 is 

1 Io2I (16 cos20 + 9 sin20)d0 = 12-n. 
2 

9.4 Complex Numbers 

Real numbers are sufficient for most of calculus. Starting from x2  + 4, its integral 
3x3 + 4x + C is also real. If we are given x3 - 1, its derivative 3x2 is real. But the 
roots (or zeros) of those polynomials are complex numbers: 

x2 + 4 = 0 and .u3 - 1 = 0 have complex solutions. 

We expect two square roots of - 4. There are three cube roots of 1. Complex numbers 
are unavoidable, in order to find n roots for each polynomial of degree n. 

This section explains how to work with complex numbers. You will see their 
relation to polar coordinates. At the end, we use them to solve differential equations. 

Start with the imaginary number i. Everybody knows that x2 = - 1 has no real 
solution. When you square a real number, the result is never negative. So the world 
has agreed on a solution called i. (Except that electrical engineers call it j.) Imaginary 
numbers follow the normal rules of addition, subtraction, multiplication, and division, 
with one difference: Whenever i2  appears it is replaced by - 1 .  In particular - i times 
- i gives + i2  = - 1. In other words, - i is also a square root of - 1 .  There are two 
solutions (i  and - i )  to the equation x2  + 1 = 0. 

Finding cube roots of 1 will stretch us further. We need complex numbers-real 
plus imaginary. 

9B A complex number (say 1 + 3i) is the sum of a real number (1) and a pure 
imaginary number (39. Addition keeps those parts separate; multiplication uses 
i2 = - 1: 

Addition: (1 + 3i) + (1 + 3i) = 1 + 1 + i(3 + 3) = 2 + 6i 

Multiplication: (1 + 3i)(1 + 3i) = 1 + 3i + 3i + 9i2 = - 8 + 6i. 
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Adding 1+ 3i to 5 - i is easy (6 + 2i). Multiplying is longer, but you see the rules: 

The point is this: We don't have to imagine any more new numbers. After accepting 
i, the rest is straightforward. A real number is just a complex number with no 
imaginary part! When 1+ 3i combines with its "complex conjugate" 1 - 3i-adding 
or multiplying-the answer is real: J+.(1 + 3i) + (1 - 3i) = 2 (real) 

(1 + 3i)(l - 3i) = 1 - 3i+ 3i- 9i2 = 10. (real) 
(1) 

The complex conjugate offers a way to do division, by making the denominator real: 

11 - ------- 1 1-3i - 1-3i  and ------ 1 x - iy - x-iy 
1 + 3 i  1+3 i1-3 i  10 x + i y  x + i y x - i y  x 2 +  y2' 

9C; The 6ompBex number x + iy has real part x and imaginary part y. Its 
complex conjugate is x - iy. The product (x + iy)(x- i ) equals, x2 + y2 = r2. 

(or modub) is r -in + iA = 

THE COMPLEX PLANE 

Complex numbers correspond to points in a plane. The number 1 + 3i corresponds to 
the point (1, 3). Similarly x + iy is paired with (x, y)-which is x units along the "real 
axis" and y units up the "imaginary axis." The ordinary plane turns into the complex 
plane. The absolute value r is the same as the polar coordinate r (Figure 9.8~). 

The figure shows two more copies of the complex plane. The one in the middle is 
for addition and subtraction. It uses rectangular coordinates. The one on the right is 
for multiplication and division and squaring. It uses polar coordinates. In squaring 
a complex number, r is squared and 8 is doubled-as the right figure and equation 
(3) both show. 

i y i A - v + i y  @:i r2=2b;yt.
-1 + i  

real" axis 
- - - _ 3,i-I 

- 0
imaginary axis conjugate r, 8 +r2,  28 

Fig. 9.8 The complex plane shows x, y, r, 8. Add with x and y, multiply with r and 8. 

Adding complex numbers is like adding vectors (Chapter 11). The real parts give 
3-1 and the imaginary parts give 1 + 1. The vector sum (2,2) corresponds to the 
complex sum 2 + 2i. The complex conjugate 3 - i is the mirror image across the real 
axis (i reversed to - i). The connection to r and 8 is the same as before (you see it in 
the triangle): 

x = r cos 8 and y = r sin 8 so that x + iy = r(cos 8 + i sin 8). (2) 

In the third figure, 1 + i has r = fi and 8 = n/4. The polar form is ficos n/4 + 
f i i  sin n/4. When this number is squared, its 45" angle becomes 90". The square is 
(1 + i)2= 1 + 2i - 1 = 2i. Its polar form is 2 cos 7c/2 + 2i sin n/2. 
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b. 

9D Multiplication adds angles, division subtracts angles, and squaring doubles 
angles. The absolute values are multiplied, divided, and squared: 

(r cos 0 + ir  sin Q2 = r2 cos 20 + i r2  sin 20. (3) 

For nth powers we reach $ and no. For square roots, r goes to f i and 8 goes to 
48. The number -1 is at 180°, so its square root i is at 90". 

To see why.0 is doubled in equation (3), factor out r2 and multiply as usual: 

(cos 0 + i sin 8)(cos 8 + i sin 8) = cos28- sin28+ 2i sin 8 cos 8. 

The right side is cos 28 + i sin 20. The double-angle formulas from trigonometry 
match the squaring of complex numbers. The cube would be cos 38 + i sin 38 (because 
20 and 0 add to 30, and r is still 1). The nth power is in de Moivre's formula: 

(cos 8 + i sin 8)"= cos n8 + i sin no. (4) 

With n = - 1 we get cos(- 8) + i sin(- @-which is cos 8 - i sin 8, the complex 
conjugate: 

1 -- 1 cos 8 - i sin 0 - cos 8 - i sin 8-
cos 0 + i sin 8 cos 8 + i sin 8 cos 8 - i sin 8 1 (5 )  

We are almost touching Euler's formula, the key to all numbers on the unit circle: 

Euler's formula: cos 8 + i sin 8 = eie. (6) 

Squaring both sides gives (ei3(eie)= e"'. That is equation (3).The -1 power is l/eie= 

e-". That is equation (5). Multiplying any eieby ei4produces ei(e+". The special case 
4 = 0 gives the square, and the special case C#I = - 8 gives eiBe-" = 1. 

Euler's formula appeared in Section 6.7, by changing x to i8 in the series for ex: 

x2 x3 O2 O3
e X = l + x + - + - + - - - becomes eie=l+i8---i-+.-• 

2 6 2 6 ' 

A highlight of Chapter 10 is to recognize two new series on the right. The real terms 
1 - #I2 + ..-add up to cos 8. The imaginary part 8 -&03+ + . *  adds up to sin 8. 
Therefore eie equals cos 8 + i sin 0. It is fantastic that the most important periodic 
functions in all of mathematics come together in this graceful way. 

We learn from Euler (pronounced oiler) that e2"' = 1. The cosine of 2n is 1, the sine 
is zero. If you substitute x = 2ni into the infinite series, somehow everything cancels 
except the 1-this is almost a miracle. From the viewpoint of angles, 8 = 2n carries 
us around a full circle and back to e2"' = 1. 

Multiplying Euler's formula by r, we have a third way to write a complex number: 

Every complex number is x + iy = r cos 8 + ir sin 8 = reie. (7) 

EXAMPLE 1 2eietimes 3eiBequals 6e2". For 8 = 4 2 ,  2i times 3i is -6. 

EXAMPLE 2 Find w b n d  w4 and w8 and w2' when w = ei"I4. 

Solution ei"I4 is 1/J? + i/J?. Note that r2 = + = 1. Now watch angles: 

Figure 9.9 shows the eight powers of w. They are the eighth roots of 1. 
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Fig. 9.9 The eight powers of w and the cube roots of 1. 

EXAMPLE 3 ( x 2+ 4 = 0 )  The square roots of -4 are 2i and -2i. Instead of (i)(i)= 

- 1 we have (2i)(2i)= - 4. If Euler insists, we write 2i and -2i as 2einl2and 2ei3"I2. 

EXAMPLE 4 (The cube roots of 1 )  In rectangular coordinates we have to solve 
( x  + iy)" 1, which is not easy. In polar coordinates this same equation is r3e3"= 1. 
Immediately r = 1. The angle 8 can be 27113 or 47113 or 67113-the cube roots in the 
figure are evenly spaced 

(e2ni/3)3 = e2ni = 1 (e4ni/3)3 = e4ni = 1 (e6ni/3)3 ,e6ni ,1. 

You see why the angle 87113 gives nothing new. It completes a full circle back to 27113. 

The nth roots of 1 are e2"'ln, e4"'/" , ..., 1 .  There are n of them. 
They lie at angles 2 4 n ,  4i~/n,. . . ,2;n around the unit circle. 

SOLUTION OF DIFFERENTIAL EQUATIONS 

The algebra of complex numbers is now applied to the calculus of complex functions. 
The complex number is c, the complex function is ec'. It will solve the equations 
y" = - 4y and y"' = y, by connecting them to c2 = - 4 and c3 = 1. Chapter 16 does 
the same for all linear differential equations with constant coefficients-this is an 
optional preview. 

Please memorize the one key idea: Substitute y = ect into the dzyerential equation 
and solve for c. Each derivative brings a factor c, so y' = cectand y" = c2ec': 

d2y/dt2= - 4y leads to c2ect= - 4ect,which gives c2 = - 4. (8) 

For this differential equation, c must be a square root of -4. We know the candidates 
(c= 2i and c = - 2i). The equation has two "pure exponential solutions" ec': 

Y = e2it and y = e-2i'. (9) 

Their combinations y = ~ e ~ "  give all solutions. In Chapter 16 we will choose + ~ e - ~ "  
the two numbers A and B to match two initial conditions at t = 0. 

The solution y = e2" = cos 2t + i sin 2t is complex. The differential equation is real. 
For real y's, take the real and imaginary parts of the complex solutions: 

yreal= cos 2t and yimaginary= sin 2t. (10) 

These are the "pure oscillatory solutions." When y = e2" travels around the unit 
circle, its imaginary part sin 2t moves up and down. (It is like the ball and its shadow 
in Section 1.4, but twice as fast because of 2t.) The real part cos 2t goes backward 
and forward. By the chain rule, the second derivative of cos 2t is -4 cos 2t. Thus 
d yldt = - 4y and we have real solutions. 
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EXAMPLE 5 Find three solutions and then three real solutions to d3y/d t3= y. 

Key step: Substitute y = ect.The result is c3ect= ect.Thus c3 = 1 and c is a cube root 
of 1. The candidate c = 1 gives y = et (our first solution). The next c is complex: 

The real part of the exponent leads to the absolute value lyl= e-'I2. It decreases as t 
gets larger, so y moves toward zero. At the same time, the factor eiAtI2goes around 
the unit circle. Therefore y spirals in to zero (Figure 9.10). So does its complex 
conjugate, which is the third exponential. Changing i to - i in (11) gives the third 
cube root of 1 and the third solution e-'I2e-

The first real solution is y = et. The others are the two parts of the spiral: 

That is r cos 0 and r sin 0. It is the ultimate use (until Chapter 16) of polar coordinates 
and complex numbers. We might have discovered cos 2t and sin 2t without help, for 
y" = - 4y.  I don't think these solutions to y"' = y would have been found. 

EXAMPLE 6 Find four solutions to d4y/dt4= y by substituting y = ect. 

Four derivatives lead to c4 = 1. Therefore c is i or -1 or - i or 1. The solutions are 
y = eit,  e - l ,  e-",  and et. If we want real solutions, eit and e-" combine into cos t and 
sin t .  In all cases y"" = y. 

Fig. 9.10 Solutions move in the complex plane: y" = -4 y  and y"' = y and y"" = y. 

9.4 EXERCISES 

Read-through questions To solve d8y /d t8= y, look for a solution of the form y = 

The complex number 3 + 4i has real part a and imagi- 
9 . Substituting and canceling ec' leads to the equation 
r . There are s choices for c, one of which is 

nary part b . Its absolute value is r = c and its com- 
(- 1 + i ) / f i .  With that choice lectl = t . The real

plex conjugate is * . Its position in the complex plane is 
at ( e ). Its polar form is r cos 9 + ir sin 8 = f eiB. Its 

solutions are Re ec' = u and Im ec' = v . 

square is g + i h . Its nth power is I eine. 

The sum of 1 + i and 1 - i is i . The product of 1 + i In 1-6 plot each number in the complex plane. 
and 1 - i is k . In polar form this is f i e i z i 4  times I . 1 2 + i and its complex conjugate 2 - i and their sum and 
The quotient (I + i)/(l - i) equals the imaginary number product 

m . The number (1 + i )8 equals n . An eighth root of 
1 is w = 0 . The other eighth roots are p . 2 1 + i and its square (1 + i)' and its reciprocal 1/(1 + i )  
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3 2ei"I6 and its reciprocal $e-iu/6 and their squares 

4 The sixth roots of 1 (six of them) 

5 cos 3x14 + i sin 3x14 and its square and cube 

6 4ei"I3 and its square roots 

7 For complex numbers c = x + iy = reie and their con-
jugates e = x - iy = re-", find all possible locations in the 
complex plane of (1) c + E (2) c -E (3) cE (4) c/E. 

8 Find x and y for the complex numbers x + iy at angles 
8 = 45", 90°, 135" on the unit circle. verify directly that the 
square of the first is the second and the cube of the first is the 
third. 

9 If c = 2 + i and d = 4 + 3i find cd and c/d. Verify that the 
absolute value Jcdl equals Icl times Idly and Ic/dl equals Icl 
divided by Id). 

10 Find a solution x to eiX = i and a solution to eiX = l/e. 
Then find a second solution. 

Find the sum and product of the numbers in 11-14. 

eie and e-ie also e2"i/3 and e4"i13 

e'e and e'#y also e"i/4 and e-"'/4 

The sixth roots of 1 (add and multiply all six) 

The two roots of c2 -4c + 5 = 0 

If c = re'B is not zero, what are c4 and c- l and c - ~ ?  

Multiply out (cos 8 + i sin 8)3 = ei3', to find the real part 
cos 38 and the imaginary part sin 38 in terms of cos 8 and 
sin 8. 

17 Plot the three cube roots of a typical number reie. Show 
why they add to zero. One cube root is r1/3eie13. 

18 Prove that the four fourth roots of reie multiply to give 
-reie. 

In 19-22, find all solutions of the form y = e"'. 

Construct two real solutions from the real and imaginary parts 
of ed (first find c): 

23 yM+49y=0 24 y"-2y1+2y=0 

Sketch the path of y = ectas t increases from zero, and mark 
y = e': 

28 What is the solution of dyldt = iy starting from yo = l? 
For this solution, matching real parts and imaginary parts of 
dy/dt = iy gives and 

29 In Figure 9. lob, at what time t does the spiral cross the 
real axis at the far left? What does y equal at that time? 

30 Show that cos 8 = $(eie+ e-ie) and find a similar formula 
for sin 8. 

31 True or false, with an example to show why: 
(a) If c, + c, is real, the c's are complex conjugates. 
(b) If Jc,J = 2 and JczJ = 4 then clc2 has absolute value 8. 
(c) If JclJ = 1 and Jc2J = 1 then Jc, + c2J is (at least 1) (at 
most 2) (equal to 2). 
(d) If e't approaches zero as t -, GO,then (c is negative) (the 
real part of c is negative) ( JcJ is less than 1). 

is . The rectan- 32 The polar form of reie times ~ e ' #  
gular form is . Circle the terms that give 
rR cos(8 + 4). 
33 The complex number l/(reie) has polar form and 
rectangular form and square roots 

34 Show that cos ix = cosh x and sin ix = i sinh x. What is 
the cosine of i? 
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C H A P T E R  

Infinite Series 


Infinite series can be a pleasure (sometimes). They throw a beautiful light on sin x 
and cos x. They give famous numbers like n and e. Usually they produce totally 
unknown functions-which might be good. But on the painful side is the fact that 
an infinite series has infinitely many terms. 

It is not easy to know the sum of those terms. More than that, it is not certain 
that there is a sum. We need tests, to decide if the series converges. We also need 
ideas, to discover what the series converges to. Here are examples of convergence, 
divergence, and oscillation: 

The first series converges. Its next term is 118, after that is 1116-and every step 
brings us halfway to 2. The second series (the sum of 1's) obviously diverges to infinity. 
The oscillating example (with 1's and -1's) also fails to converge. 

All those and more are special cases of one infinite series which is absolutely the 
most important of all: 

= -The geometric series is 1 + x + x2 + x3 + 1 
1 -x '  

This is a series of functions. It is a "power series." When we substitute numbers for 
x, the series on the left may converge to the sum on the right. We need to know when 
it doesn't. Choose x = 4and x = 1 and x = - 1: 

1
1 + 1 + 1 + is divergent. Its sum is ----

1 
-a-

1 - 1  0 

1 
--•1+ (- 1)+ (- + is the oscillating series. Its sum should be ----

1 
1 - ( - 1  2' 

The last sum bounces between one and zero, so at least its average is 3. At x = 2 
- a - 
there is no way that 1 + 2 + 4 + 8 + agrees with 1/(1 - 2). 

This behavior is typical of a power series-to converge in an interval of x's and 
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to diverge when x is large. The geometric series is safe for x between -1  and 1. 
Outside that range it diverges. 

The next example shows a repeating decimal 1.1 1 1.. .: 
1

Set x = - The geometric series is 1 + -+
10' 10 

The decimal 1.1 11 . . . is also the fraction 1/(1 -&), which is 1019. Every 
fvaction leads to a repeating decimal. Every repeating decimal adds up (through the 
geometric series) to a fraction. 

To get 3.333..., just multiply by 3. This is 1013. To get 1.0101..., set x = 1/100. 
This is the fraction 1/(1-&), which is 100/99. 

Here is an unusual decimal (which eventually repeats). I don't really understand it: 

-- -.004 115226337448 ...I 
243 

Most numbers are not fractions (or repeating decimals). A good example is a: 

This is 3.1415.. .,a series that certainly converges. We happen to know the first billion 
terms (the billionth is given below). Nobody knows the 2 billionth term. Compare 
that series with this one, which also equals a: 

That alternating series is really remarkable. It is typical of this chapter, because its 
pattern is clear. We know the 2 billionth term (it has a minus sign). This is not a 
geometric series, but in Section 10.1 it comes from a geometric series. 

Question Does this series actually converge? What if all signs are + ? 
Answer The alternating series converges to a (Section 10.3). The positive series 
diverges to infinity (Section 10.2).The terms go to zero, but their sum is infinite. 

This example begins to show what the chapter is about. Part of the subject deals 
with special series, adding to 1019 or n: or ex. The other part is about series in general, 
adding to numbers or functions that nobody has heard of. The situation was the 
same for integrals-they give famous answers like In x or unknown answers like 
1xX dx.  The sum of 1 + 118 + 1/27 + is also unknown-although a lot of mathema- 
ticians have tried. 

The chapter is not long, but it is full. The last half studies power series. We begin 
with a linear approximation like 1 + x.  Next is a quadratic approximation like 
1 + x + x2.  In the end we match all the derivatives of f(x) .  This is the "Taylor series," 
a new way to create functions-not by formulas or integrals but by infinite series. 

No example can be better than 1/(1 - x), which dominates Section 10.1. Then we 
define convergence and test for it. (Most tests are really comparisons with a geometric 
series.) The second most important series in mathematics is the exponential series 
eX = 1 + x +$x2 +&x3+ ---.It includes the series for sin x and cos x,  because of the 
formula eix= cos x + i sin x.  Finally a whole range of new and old functions will 
come from Taylor series. 

In the end, all the key functions of calculus appear as ''infinite polynomials" (except 
the step function). This is the ultimate voyage from the linear function y = mx + b. 
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1 1 10.1 

We begin by looking at both sides of the geometric series: 

How does the series on the left produce the function on the right? How does 1/(1 - x) 
produce the series? Add up two terms of the series, then three terms, then n terms: 

For the first, 1 +x times 1 -x equals 1- x 2  by ordinary algebra. The second begins 
to make the point: 1 + x + x 2  times 1 - x gives 1 - x + x - x 2  + x2 - x3. Between 
1 at the start and -x3 at the end, everything cancels. The same happens in all cases: 
1 + --.+ xn-' times 1 - x leaves 1 at the start and -xn at the end. This proves 
equation (2)-the sum of n terms of the series. 

For the whole series we will push n towards infinity. On a graph you can see what 
is happening. Figure 10.1 shows n = 1 and n =2 and n = 3 and n = a. 

Fig. 10.1 Two terms, then three 
terms, then full series: 

The infinite sum gives a jfnite 
answer, provided x is between 
- 1 and 1. Then xn goes to zero: 

Now start with the function 1/(1 - x). How does it produce the series? One way is 
elementary but brutal, to do "long division" of 1 - x into 1 (next to the figure). 
Another way is to look up the binomial formula for (1 - x)-l. That is cheating-we 
want to discover the series, not just memorize it. The successful approach uses cal- 
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culus. Compute the derivatives o f f  (x) = 1/(1 - x): 

At x = 0 these derivatives are 1, 2, 6,24, ....Notice how -1 from the chain rule keeps 
them positive. The nth derivative at x =0 is n factorial: 

Now comes the idea. To match the series with 1/(1- x), match all those derivatives at 
x = 0. Each power xn gets one derivative right. Its derivatives at x = 0 are zero, except 
the nth derivative, which is n! By adding all powers we get every derivative right- 
so the geometric series matches the function: 

1 + x + x 2  + x 3  + has the same derivatives at x = 0 as 1/(1 - x). 

The linear approximation is 1 + x. Then comes 3f "(0)x2= x2. The third derivative 
is supposed to be 6, and x 3  is just what we need. Through its derivatives, the function 
produces the series. 

With that example, you have seen a part of this subject. The geometric series 
diverges if 1x1 2 1. Otherwise it adds up to the function it comes from (when 
-1 < x < 1). To get familiar with other series, we now apply algebra or calculus- to 
reach the square of 1/(1 - x) or its derivative or its integral. The point is that these 
operations are applied to the series. 

The best I know is to show you eight operations that produce something useful. 
At the end we discover series for In 2 and n. 

1. Multiply the geometric series by a or ax: 

The first series fits the decimal 3.333 . . . . In that case a = 3. The geometric series for 
x =& gave 1.11 1 . . . = 1019, and this series is just three times larger. Its sum is 1013. 

The second series fits other decimals that are fractions in disguise. To get 12/99, 
choose a = 12 and x = 1/100: 

Problem 13 asks about ,8787 . . . and .I23123 . . . . It is usual in precalculus to write 
a + ar + ar2 + = a/(l - r). But we use x instead of r to emphasize that this is a 
function-which we can now differentiate. 

2. The derivative of the geometric series 1 + x + x + .-.is 1/(1- x ) ~ :  

At x =& the left side starts with 1.23456789. The right side is 1/(1 -&)2 = 1/(9/10)2, 
which is 10018 1. If you have a calculator, divide 100 by 81. 

The answer should also be near (1.11 11 11 1 I ) ~ ,  which is 1.2345678987654321. 

3. Subtract 1 + x + x 2  + from 1 + 2x + 3x2 + as you subtract functions: 

Curiously, the same series comes from multiplying (5) by x. It answers a question left 
open in Section 8.4-the average number of coin tosses until the result is heads. This 
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is the sum l(pl) + 2(p2) + --. from probability, with x = f :  

The probability of waiting until the nth toss is p,, = (4)". The expected value is two 
tosses. I suggested experiments, but now this mean value is exact. 

4 .  Multiply series: the geometric series times itselfis 1/(1 - x) squared: 

The series on the right is not new! In equation (5) it was the derivative of y = 1/(1- x). 
Now it is the square of the same y. The geometric series satisfies dyldx = y2, so the 
function does too. We have stumbled onto a differential equation. 

Notice how the series was squared. A typical term in equation (8) is 3x2, coming 
from 1 times x 2  and x times x and x 2  times 1 on the left side. It is a lot quicker to 
square 1/(1 - x)-but other series can be multiplied when we don't know what func- 
tions they add up to. 

5.  Solve dyldx = y2 fvom any starting value-a new application of series: 

Suppose the starting value is y = 1 at x = 0. The equation y' = y 2  gives l2 for the 
derivative. Now a key step: The derivative of the equation gives y" = 2yy'. At x = 0 
that is 2 1 1. Continuing upwards, the derivative of 2yy1 is 2yy" + 2(y')2. At x = 0 
that is y"' = 4 + 2 = 6. 

All derivatives are factorials: 1,2,6,24, . . . . We are matching the derivatives of the 
geometric series 1 + x + x2 + x3 + . . . . Term by term, we rediscover the solution to 
y' = Y2. The solution starting from y(0) = 1 is y = 1/(1 - x). 

A different starting value is - 1. Then y' = (- = 1 as before. The chain rule gives 
y" = 2yy' = - 2 and then y"' = 6. With alternating signs to match these derivatives, the 
solution starting from - 1 is 

It is a small challenge to recognize the function on the right from the series on the 
left. The series has - x in place of x; then multiply by -1. The sum y = - 1/(1 + x) 
also satisfies y' = y2. We can solve diferential equations from all starting values by 
inJinite series. Essentially we substitute an unknown series into the equation, and 
calculate one term at a time. 

6.  The integrals of 1 + x + x2 + ..- and 1 - x +  x2 - -.. are logarithms: 

The derivative of (10a) brings back the geometric series. For logarithms we find l/n 
not l/n! The first term x and second term i x 2  give linear and quadratic approxi- 
mations. Now we have the whole series. I cannot fail to substitute 1 and 4, to find 
ln(1 - 1) and ln(1 + 1) and ln(1 - )): 
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The first series diverges to infinity. This harmonic series 1 + 4 + 4+ came into the 
earliest discussion of limits (Section 2.6). The second series has alternating signs and 
converges to In 2. The third has plus signs and also converges to In 2. These will be 
examples for a major topic in infinite series-tests for convergence. 

For the first time in this book we are able to compute a logarithm! Something 
remarkable is involved. The sums of numbers in (11) and (12) were discoveredfrom the 
sums offunctions in (10). You might think it would be easier to deal only with numbers, 
to compute In 2. But then we would never have integrated the series for 1/(1- x) and 
detected (10). It is better to work with x, and substitute special values like 4at the 
end. 

There are two practical problems with these series. For In 2 they converge slowly. 
For In e they blow up. The correct answer is In e = 1, but the series can't find it. Both 
problems are solved by adding (10a) to (lob), which cancels the even powers: 

At x = f,the right side is in 4 - In 4 = In 2. Powers off-are much smaller than powers 
of 1 or f, so in 2 is quickly computed. All logarithms can be found from the improved 
series (13). 

7 .  Change variables in the geometric series (replace x by x 2  or -x2): 

This produces new functions (always our goal). They involve even powers of x. The 
second series will soon be used to calculate n. Other changes are valuable: 

X 1 -- 2
-in place of x: 1 + + ... = ------- -
2 1 -(x/2) 2 - x 

Equation (17) is a series of negative powers x-". It converges when 1x1 is greater than 
1. Convergence in (17) is for large x. Convergence in (16) is for 1x1 < 2. 

8. The integralof 1 - x 2  + x 4 - x6  + -..yields the inverse tangent of x: 

We integrated (15) and got odd powers. The magical formula for n (discovered by 
Leibniz) comes when x = 1. The angle with tangent 1 is n/4: 

The first three terms give n z 3.47 (not very close). The 5000th term is still of size 
.0001, so the fourth decimal is still not settled. By changing to x = l / d ,  the astrono-
mer Halley and his assistant found 71 correct digits of n/6 (while waiting for the 
comet). That is one step in the long and amazing story of calculating n. The Chudnov-
sky brothers recently took the latest step with a supercomputer-they have found 
more than one billion decimal places of n (see Science, June 1989). The digits look 
completely random, as everyone expected. But so far we have no proof that all ten 
digits occur & of the time. 
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Historical note Archimedes located n above 3.14 and below 3+. Variations of his 
method (polygons in circles) reached as far as 34 digits-but not for 1800 years. Then 
Halley found 71 digits of 7116 with equation (18). For faster convergence that series 
was replaced by other inverse tangents, using smaller values of x: 

A prodigy named Dase, who could multiply 100-digit numbers in his head in 8 hours, 
finally passed 200 digits of n. The climax of hand calculation came when Shanks 
published 607 digits. I am sorry to say that only 527 were correct. (With years of 
calculation he went on to 707 digits, but still only 527 were correct.) The mistake was 
not noticed until 1945! Then Ferguson reached 808 digits with a desk calculator. 

Now comes the computer. Three days on an ENIAC (1949) gave 2000 digits. A 
hundred minutes on an IBM 704 (1958) gave 10,000 digits. Shanks (no relation) 
reached 100,000 digits. Finally a million digits were found in a day in 1973, with a 
CDC 7600. All these calculations used variations of equation (20). 

The record after that went between Cray and Hitachi and now IBM. But the 
method changed. The calculations rely on an incredibly accurate algorithm, based 
on the "arithmetic-geometric mean iteration" of Gauss. It is also incredibly simple, 
all things considered: 

The number of correct digits more than doubles at every step. By n = 9 we are far 
beyond Shanks (the hand calculator). No end is in sight. Almost anyone can go past 
a billion digits, since with the Chudnovsky method we don't have to start over again. 

It is time to stop. You may think (or hope) that nothing more could possibly be 
done with geometric series. We have gone a long way from 1/(1- x), but some 
functions can never be reached. One is ex (and its relatives sin x, cos x, sinh x, cosh x). 
Another is JG(and its relatives I/,/-, sin- 'x, sec- 'x, . . .). The exponentials 
are in 10.4, with series that converge for all x. The square-roots are in 10.5, closer to 
geometric series and converging for 1x1 < 1. Before that we have to say what con- 
vergence means. 

The series came fast, but I hope you see what can be done (subtract, multiply, 
differentiate, integrate). Addition is easy, division is harder, all are legal. Some un- 
expected numbers are the sums of infinite series. 

Added in proof By e-mail I just learned that the record for TC is back in Japan: 
230 digits which is more than 1.07 billion. The elapsed time was 100 hours (75 hours 
of CPU time on an NEC machine). The billionth digit after the decimal point is 9. 

Read-through questions 

The geometric series 1 + x + x2 + ..- adds to a . It con- 
verges provided 1x1 < b . The sum of n terms is c . 
The derivatives of the series match the derivatives of 1/(1 -x) 
at the point x = d , where the nth derivative is e . 
The decimal 1.111... is the geometric series at x = f and 

equals the fraction g . The decimal .666... multiplies this 
by h . The decimal .999.. . is the same as i . 

The derivative of the geometric series is i = k . 
This also comes from squaring the I series. By choosing 
x = .01, the decimal 1.02030405 is close to m . The 
differential equation dyldx = y2 is solved by the geometric 
series, going term by term starting from y(0)= n , 
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The integral of the geometric series is 0 = P . At 
x = 1 this becomes the q series, which diverges. At x = 

r we find In 2 = s .The change from x to -x produ-
ces the series 1/(1+ x) = t and ln(1 +x) = u . 

In the geometric series, changing to x2 or -x2 gives 
1/(1- x2)= v and 1/(1+ x2)= w . Integrating the 
last one yields x -$x + f x5.--= x . The angle whose 
tangent is x = 1 is tan-' 1= Y . Then substituting x = 1 
gives the series n = z . 

1 The geometric series is 1+x +x2+ --.= G. Another way 
to discover G is to multiply by x. Then x +x2 + x3 + ...= 

xG, and this can be subtracted from the original series. What 
does that leave, and what is G? 

2 A basketball is dropped 10 feet and bounces back 6 feet. 
After every fall it recovers 3 of its height. What total distance 
does the ball travel, bouncing forever? 

3 Find the sums of 4 + $ + & +  .-.and 1-4 +&- .--and 
10- 1 + . l - .01... and 3.040404.... 
4 Replace x by 1-x in the geometric series to find a series 

for llx. Integrate to find a series for In x. These are power 
series "around the point x = 1." What is their sum at x =O? 

5 What is the second derivative of the geometric series, and 
what is its sum at x =i? 
6 Multiply the series (1 + x +x2+ -)(1- x +x2-.-) and 

find the product by comparing with equation(14). 

7 Start with the fraction 3. Divide 7 into 1.000... (by long 
division or calculator) until the numbers start repeating. 
Which is the first number to repeat? How do you know that 
the next digits will be the same as the first? 

Note about thefractions l/q, 10/q, 100/q, ...All remainders are 
less than q so eventually two remainders are the same. By 
subtraction, q goes evenly into a power loNminus a smaller 
power loN-". Thus qc = loN- loN-"for some c and l/q has 
a repeating decimal: 

1 C c 1 
q 10N-lON-n-lON1-lO-n 

Conclusion: Every fraction equals a repeating decimal. 

8 Find the repeating decimal for and read off c. What is 
the number n of digits before it repeats? 

9 From the fact that every q goes evenly into a power loN 
minus a smaller power, show that all primes except 2 or 5 go 
evenly into 9 or 99 or 999 or ..-. 
10 Explain why .010010001... cannot be a fraction (the 
number of zeros increases). 

11 Show that .123456789101112... is not a fraction. 

12 From the geometric series, the repeating decimal 
1.065065...equals what fraction?Explain why every repeating 
decimal equals a fraction. 

13 Write .878787... and .123123... as fractions and as geo-
metric series. 

14 Find the square of 1.111... as an infinite series. 

Find the functions which equal the sums 15-24. 

tan x-$tan3x+j.tan5x- -.-24 e" +e2"+ e3"+ -.-
Multiply the series for 1/(1- x) and 1/(1+ x) to find the 

coefficients of x, x2, x3 and xn. 

26 Compare the integral of 1 +x2+x4 + ..-to equation (13) 
and find jdx/(l- x '). 

27 What fractions are close to .2468 and .987654321? 

28 Find the first three terms in the series for 1/(1- x ) ~ .  

Add up the series 29-34. Problem 34 comes from (18). 

35 Compute the nth derivative of 1 +2x + 3x2+ ... at x =0. 
Compute also the nth derivative of (1 -x ) - ~ .  

36 The differential equation dyldx =y2 starts from y(0)=b. 
From the equation and its derivatives find y', y", y"' at x =0, 
and construct the start of a series that matches those deriva-
tives. Can you recognize y(x)? 

37 The equation dyldx =y2 has the differential form dy/y2= 
dx. Integrate both sides and choose the integration constant 
so that y =b at x =0. Solve for y(x) and compare with 
Problem 36. 

38 In a bridge game, what is the average number p of deals 
until you get the best hand? The probability on the first deal 
is p, =$. Then p2 =($)(4)=(probability of missing on the 
first) times (probability of winning on the second). Generally 
p, =($y-'($). The mean value p is p1 + 2p2+ 3p3+ =--• 

39 Show that (Zan)(Zbn)=Eanbn is ridiculous. 

40 Find a series for In 4 by choosing x in (lob). Find a series 
for In 3 by choosing x in (13). How is In 3 related to In 3, and 
which series converges faster? 
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41 Compute In 3 to its second decimal place without a calcu- 45 If tan y =$ and tan z =$, then the tangent of y +z is 
lator (OK to check). (tan y + tan z)/(l -tan y tan z) = 1. If tan y =4 and tan z = 

, again tan(y +z)  = 1. Why is this not as good as 
42 To four decimal places, find the angle whose tangent is equation (20), to find n/4? 
x=&.  

46 Find one decimal of n beyond 3.14 from the series for 
43 Two tennis players move to the net as they volley the ball. 4 tan-' 4 and 4 tan-' 4. How many terms are needed in each 
Starting together they each go forward 39 feet at 13 feet per series? 
second. The ball travels back and forth at 26 feet per second. 
How far does it travel before the collision at the net? (Look 47 (Calculator) In the same way find one decimal of n 

for an easy way and also an infinite series.) beyond 3.14159. How many terms did you take? 

44 How many terms of the series 1-3 +$ -f + - - - are 
48 From equation (10a) what is Xein/n? 

needed before the first decimal place doesn't change? Which 49 Zeno's Paradox is that if you go half way, and then half 
power of f equals the 100th power of $? Which power 1/d way, and then half way.. .,you will never get there. In your 
equals 1/2l OO? opinion, does 4 +$ +9 + add to 1 or not? 

10.2 Convergence Tests: Positive Series 

This is the third time we have stopped the calculations to deal with the definitions. 
Chapter 2 said what a derivative is. Chapter 5 said what an integral is. Now we say 
what the sum of a series is-if it exists. In all three cases a limit is involved. That is 
the formal, careful, cautious part of mathematics, which decides if the active and 
progressive parts make sense. 

The series f + 4+ + converges to 1. The series 1+f + 4 + diverges to infin- 
ity. The series 1 - + 4 - -..converges to In 2. When we speak about convergence or 
divergence of a series, we are really speaking about convergence or divergence of its 
"partial sums." 

DEFINITION 1 The partial sum s, of the series a, +a2 + a, + .-.stops at a,: 

s, = sum of the f i s t  n terms = al  + a2 + -.-+ a,. 

Thus sn is part of the total sum. The example f + 4+4+ -.-has partial sums 

Those add up larger and larger parts of the series-what is the sum of the whole 
series? The answer is: The series f + 4+ .. . converges to 1 because its partial sums s, 
converge to 1. The series a, + a2 + a, + ... converges to s when its partial sums- 
going further and further out-approach this limit s. Add the a's, not the s's. 

DEFINITION 2 The sum of a series is the limit of its partial sums s,. 

We repeat: if the limit exists. The numbers s, may have no limit. When the partial 
sums jump around, the whole series has no sum. Then the series does not converge. 
When the partial sums approach s, the distant terms a, are approaching zero. More 
than that, the sum of distant terms is approaching zero. 

The new idea (2a, = s) has been converted to the old idea (s, +s). 

EXAMPLE 1 The geometric series & + &+ &+ converges to s = 4. 
The partial sums sl ,s,, s,, s, are .l ,  .11, . I l l ,  .1111. They are approaching s =4. 
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Note again the difference between the series of a's and the sequence of s's. The series 
1 + 1 + 1 + ..-diverges because the sequence of s's is 1,2, 3, .. . . A sharper example is 
the harmonic series: 1+ i+ 4+ diverges because its partial sums 1, i f ,  ... eventu-
ally go past every number s. We saw that in 2.6 and will see it again here. 

Do not confuse a, -+ 0 with s, +s. You cannot be sure that a series converges, just 
on the basis that a, +0. The harmonic series is the best example: a, = l ln  -+ 0 but 
still s, -+ oo. This makes infinite series into a delicate game, which mathematicians 
enjoy. The line between divergence and convergence is hard to find and easy to cross. 
A slight push will speed up a, +0 and make the s, converge. Even though a, +0 
does not by itself guarantee convergence, it is the first requirement: 

I 10A If a series converges (s, 4 s) then its terms must approach zero (a, -+ 0). I 
Proof Suppose s, approaches s (as required by convergence). Then also s,-, 
approaches s, and the difference s, - s, -,approaches zero. That difference is a,. So 
a, -+ 0. 

EXAMPLE 1 (continued) For the geometric series 1 + x + x2 + . a - ,  the test an+0 is 
the same as xn -+ 0. The test is failed if 1x1 2 1, because the powers of x don't go to 
zero. Automatically the series diverges. The test is passed if -1 < x < 1. But to prove 
convergence, we cannot rely on a, -+ 0. It is the partial sums that must converge: 

1 - xns, = 1+ x + .., + x"-' = - and sn -+ -
1 . This is s.

1 - x  1 - x  

For other series, first check that a, -,0 (otherwise there is no chance of con- 
vergence). The a, will not have the special form xn-so we need sharper tests. 

The geometric series stays in our mind for this reason. Many convergence tests are 
comparisons with that series. The right comparison gives enough information: 

If la,/ <iand la2[<+and ..., then a,  + a 2  + ... converges faster than f + $ +  .... 
More generally, the terms in a,  + a2 + a3 + ... may be smaller than 
ax + ax2 + ax3 + + .  .. Provided x < 1, the second series converges. Then an also 
converges. We move now to convergence by comparison or divergence by comparison. 

Throughout the rest of this section, all numbers a, are assumed positive. 

COMPARISON TEST AND INTEGRAL TEST 

In practice it is rare to compute the partial sums s, = a ,  + + a,. Usually a simple 
formula can't be found. We may never know the exact limit s. But it is still possible 
to decide convergence- whether there is a sum- by comparison with another series 
that is known to converge. 

100 (Comparison test) Suppose that 0 <a, 4b. and 1b, converges. Then I I
zanconverges. 

The smaller terms an add to a smaller sum: 1an is below 1bn and must converge. 
On the other hand suppose an 2 cn and cn= co.This comparison forces 1an= m. 
A series diverges if it is above another divergent series. 

Note that a series of positive terms can only diverge "to infinity." It cannot oscillate, 
because each term moves it forward. Either the s, creep up on s, passing every number 
below it, or they pass all numbers and diverge. If an increasing sequence s, is bounded 
above, it must converge. The line of real numbers is complete, and has no holes. 
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The harmonic series 1 +3+4+ + .. . diverges to infinity. 

A comparison series is 1 + 3+$ + $ +$ +$ +$ +$ + .. . . The harmonic series is 
larger. But this comparison series is really 1 +3+3+3 + .. . , because i-= a =$. 

The comparison series diverges. The harmonic series, above it, must also diverge. 

To apply the comparison test, we need something to compare with. In Example 2, 
we thought of another series. It was convenient because of those 3's. But a different 
series will need a different comparison, and where will it come from? There is an 
automatic way to think of a comparison series. It comes from the integral test. 

Allow me to apply the integral test to the same example. To understand the integral 
test, look at the areas in Figure 10.2. The test compares rectangles with curved areas. 

y (s)= -1 y ( x )  = 1 

sum + oo so 

Fig. 10.2 Integral test: Sums and integrals both diverge (p = 1) and both converge (p > 1). 

EXAMPLE 2 (again) Compare 1 +3+ 4+ . . . with the area under the curve y = 1/x. 

Every term a, = lln is the area of a rectangle. We are comparing it with a curved 
area c,. Both areas are between x = n and x = n + 1, and the rectangle is above the 
curve. SO a, > c,: 

1 
rectangular area a, = - exceeds curved area c, = 

n 

Here is the point. Those c,'s look complicated, but we can add them up. The sum 
c, + ... + c, is the whole area, from 1 to n + 1. It equals ln(n + 1)-we know the 
integral of llx. We also know that the logarithm goes to infinity. 

The rectangular area 1 + 112 + ... + lln is above the curved area. By comparison 
of areas, the harmonic series diverges to infinity-a little faster than ln(n + 1). 

Remark The integral of l /x  has another advantage over the series with 3's. First, 
the integral test was automatic. From l/n in the series, we went to l /x  in the integral. 
Second, the comparison is closer. Instead of adding only $ when the number of terms 
is doubled, the true partial sums grow like In n. To prove that, put rectangles under 
the curve. 

Rectangles below the curve give an area below the integral. Figure 10.2b omits the 
first rectangle, to get under the curve. Then we have the opposite to the first 
comparison-the sum is now smaller than the integral: 

Adding 1 to both sides, s, is below 1 + In n. From the previous test, s, is above 
ln(n + 1). That is a narrow space-we have an excellent estimate of s,. The sum of lln 
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and the integral of 1/x diverge together. Problem 43 will show that the difference
between s, and In n approaches "Euler's constant," which is y = .577 ....

Main point: Rectangular area is sn. Curved area is close. We are using integrals to
help with sums (it used to be the opposite).

Question If a computer adds a million terms every second for a million years, how
large is the partial sum of the harmonic series?
Answer The number of terms is n = 602 * 24 * 365 " 1012 < 3.2 - 1019. Therefore In n
is less than In 3.2 + 19 In 10 < 45. By the integral test s. < 1 + In n, the partial sum
after a million years has not reached 46.

For other series, 1/x changes to a different function y(x). At x = n this function
must equal an. Also y(x) must be decreasing. Then a rectangle of height an is above
the graph to the right of x = n, and below the graph to the left of x = n. The series
and the integral box each other in: left sum > integral > right sum. The reasoning is
the same as it was for a, = 1/n and y(x) = llx: There is finite area in the rectangles
when there is finite area under the curve.

When we can't add the a's, we integrate y(x) and compare areas:

10C (Integral test) If y(x) is decreasing and y(n) agrees with an, then

a, + a2 + a3 + --- and y(x) dx both converge or both diverge.

1 1 1 1
EXAMPLE 3 The "p-series" -+ -+ + --+ converges if p > 1. Integrate y -

2P  3P 4P xP

1 " dx l1 dx
-< f p  so by addition 1 < x
/n i n=2 PP

In Figure 10.2c, the area is finite if p > 1. The integral equals [x1 -P(1 - p)]] , which
is 1/(p - 1). Finite area means convergent series. If 1/1P is the first term, add 1 to the
curved area:

1 1 1 1 p
-- +-+--+... < 1+
1P  2P 3P  p- 1 p- 1

The borderline case p = 1 is the harmonic series (divergent). By the comparison
test, every p < 1 also produces divergence. Thus 11/ n diverges by comparison with
Sdxl/x (and also by comparison with l1/n). Section 7.5 on improper integrals runs

parallel to this section on "improper sums" (infinite series).
Notice the special cases p = 2 and p = 3. The series 1 + 1 + -+ ... converges. Euler

found it2/6 as its sum. The series 1 + + -L + "' also converges. That is proved by
comparing Z1/n3 with 11/n 2 or with 5 dx/x3 . But the sum for p = 3 is unknown.

Extra credit problem The sum of the p-series leads to the most important problem
in pure mathematics. The "zeta function" is Z(p) = I1/n P, so Z(2) = ir2/6 and Z(3) is
unknown. Riemann studied the complex numbers p where Z(p) = 0 (there are infi-
nitely many). He conjectured that the real part of those p is always ½. That has been
tested for the first billion zeros, but never proved.

COMPARISON WITH THE GEOMETRIC SERIES

We can compare any new series aI + a2 + ... with 1 + x + --. Remember that the
first million terms have nothing to do with convergence. It is further out, as n - oo,
that the comparison stands or falls. We still assume that an > 0.

377
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1OD (Ratio test) If a, + I/an approaches a limit L < 1, the series converges. 

10E (Root test) If the nth root approaches L c 1, the series converges. 

Roughly speaking, these tests make a, comparable with Ln-therefore convergent. 
The tests also establish divergence if L > 1. They give no decision when L = 1. Unfor- 
tunately L = 1 is the most important and the hardest case. 

On the other hand, you will now see that the ratio test is fairly easy. 

EXAMPLE 4 The geometric series x + x 2  + -..has ratio exactly x. The nth root is 
also exactly x. So L =x. There is convergence if x < 1(known) and divergence if x > 1 
(also known). The divergence of 1 + 1 + -..is too delicate (!) for the ratio test and 
root test, because L = 1. 

EXAMPLE 5 The p-series has a, = l/nP and a,+ ,/a, = nP/(n+ The limit as n -+ co 
is L = 1, for every p. The ratio test does not feel the difference between p = 2 (conver-
gence) and p = 1 (divergence) or even p = - 1 (extreme divergence). Neither does the 
root test. So the integral test is sharper. 

EXAMPLE 6 A combination of p-series and geometric series can now be decided: 

X x2 xn an+ ,- xn+' np-+-+. . .+-+. . .  has ratio ---- approaching L = x.
lP  2P nP a, (n + xn 

It is 1x1 < 1 that decides convergence, not p. The powers xn are stronger than any nP. 
The factorials n! will now prove stronger than any xn. 

EXAMPLE 7 The exponential series ex = 1 + x + i x 2+ &x3+ ... converges for all x. 

The terms of this series are xn/n! The ratio between neighboring terms is 

xn+l/(n+ l)! - x which approaches L = 0 as n -+ cc 
xn/n! n +  1' 

With x = 1, this ratio test gives convergence of zl/n! The sum is e. With x = 4, the 
larger series 4"/n! also converges. We know this sum too-it is e4. Also the sum 
of xnnP/n! converges for any x and p. Again L = 0-the ratio test is not even close. 
The factorials take over, and give convergence. 

Here is the proof of convergence when the ratios approach L < 1. Choose x halfway 
from L to 1. Then x < 1. Eventually the ratios go below x and stay below: 

U N + I / U N <  a ~ + 2 / a ~ + 1x < aN+3/aN+2< X "' 

Multiply the first two inequalities. Then multiply all three: 

Therefore a,+ ,+ a,+, + a,+, + -.. is less than a,(x + x2 + x3 + ...). Since x < 1, 
comparison with the geometric series gives convergence. 

EXAMPLE 8 The series l/nn is ideal for the root test. The nth root is ljn. Its 
limit is L = 0. Convergence is even faster than for e = zl /n!  The root test is easily 
explained, since (an)ll" < x yields a, < xn  and x is close to L < 1. So we compare with 
the geometric series. 
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SUMMARY FOR POSITIVE SERIES

The convergence of geometric series and p-series and exponential series is settled. I
will put these an's in a line, going from most divergent to most convergent. The
crossover to convergence is after 1/n:

1 1 1 n 1 4" 1 11 + 1 + (p < 1) (p > 1)nP n n 2" 2" n! n! n"
10A l0B and 10C IOD and I0E

(an 0) (comparison and integral) (ratio and root)

You should know that this crossover is not as sharp as it looks. On the convergent
side, 1/n(In n)2 comes before all those p-series. On the divergent side, 1/n(ln n) and
1/n(ln n)(ln In n) belong after 1/n. For any divergent (or convergent) series, there is
another that diverges (or converges) more slowly.

Thus there is no hope of an ultimate all-purpose comparison test. But comparison
is the best method available. Every series in that line can be compared with its
neighbors, and other series can be placed in between. It is a topic that is understood
best by examples.

1 1
EXAMPLE 9 C diverges because - diverges. The comparison uses In n < n.

In n n

EXAMPLE1 dx 1 f dx
EXAMPLE 10 )2 < 00 E 00.

n(ln n)2  x(ln x)2  n(ln n) x(n x)

The indefinite integrals are - 1/In x and In(In x). The first goes to zero as x - co; the
integral and series both converge. The second integral In(In x) goes to infinity-very
slowly but it gets there. So the second series diverges. These examples squeeze new
series into the line, closer to the crossover.

1 1 1 1 1 1 1 1
EXAMPLE 11 < so - + - + -- + - < - +  + I + --- (convergence).

n2 + 1 n2 2 5 10 1 4 9

The constant 1 in this denominator has no effect-and again in the next example.

1 1 111 111
EXAMPLE 12 1l- > - so - + - + - + > - + - + - + • .

2n-1 2n 1 3 5 2 4 6

1/2n is 1/2 times E 1/n, so both series diverge. Two series behave in the same
way if the ratios an/b, approach L > 0. Examples 11-12 have n2/(n2 + 1) -+ 1 and
2n/(2n - 1) -> 1. That leads to our final test:

1OF (Limit comparison test) If the ratio an/bn approaches a positive limit L,
then E an and E bn either both diverge or both converge.

Reason: an is smaller than 2Lb, and larger than ½Lbn , at least when n is large. So the
two series behave in the same way. For example C sin (7/nP) converges for p > 1,
not for p < 1. It behaves like 1 1/np (here L = 7). The tail end of a series (large n)
controls convergence. The front end (small n) controls most of the sum.

There are many more series to be investigated by comparison.
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1 0.2 EXERCISES 

Read-through questions 

The convergence of a, + a, + - is decided by the partial sums 
s, = a . If the s, approach s, then Za, = b . For the 

c series 1 + x + s . 0  the partial sums are s, = d . In 
that case s, + 1/(1- x) if and only if . In all cases the 
limit s, + s requires that a, + t . But the harmonic series 
a, = l/n shows that we can have a, + g and still the series 

h . 

The comparison test says that if 0 d a, < b, then i . In 
case a decreasing y(x) agrees with a, at x = n, we can apply 
the 1 test. The sum Za, converges if and only if k . 
By this test the p-series Z l/nP converges if and only if p is 

I . For the harmonic series (p = I), s, = 1 + .-. + l/n is 
close to the integral f(n) = m . 

The n test applies when a,, , /a, + L. There is con- 
vergence if o , divergence if P , and no decision if 

q . The same is true for the r test, when (an)ll" + L. 
For a geometric-p-series combination a, = xn/nP, the ratio 
a,, ,/a, equals s . Its limit is L = t so there is con- 
vergence if u . For the exponential ex = Zxn/n! the limit- 
ing ratio a,, ,/a, is L = v . This series always w 
because n! grows faster than any xn or nP. 

There is no sharp line between x and Y . But if 
E b, converges and a,/b, + L, it follows from the test 
that Za, also converges. 

1 Here is a quick proof that a finite sum 1 + 4 + 3 + = s 
is impossible. Division by 2 would give 4 + b + & + -.- = is .  
Subtraction would leave 1 + 3. + 4 + ... = is. Those last two 
series cannot both add to 3s because . 

2 Behind every decimal s = .abc. .. is a convergent series 
a110 + b/100 + + By a comparison test prove 
convergence. 

3 From these partial sums s,, find a, and also s = Zy a,: 
1 2n 

(a) s, = 1 - - (b) s, = 4n (c) S, =In - 
n n +  1' 

4 Find the partial sums s, = a, + a, + + a,: 
n 

(a) a, = 113"-' (b) a, = In - (c) a, = n n + l  
5 Suppose 0 < a, < b, and Za, converges. What can be 

deduced about Z b,? Give examples. 

6 (a) Suppose b, + c, c a, (all positive) and Za, converges. 
What can you say about Zb, and Zc,? 
(b) Suppose a, < b, + c, (all positive) and Can diverges. 
What can you say about Z b, and Xc,? 

Decide convergence or divergence in 7-10 (and give a reason). 

Establish convergence or divergence in 11-20 by a comparison 
test. 

1 1 

16 z -$ cos (i) 

For 21-28 find the limit L in the ratio test or root test. 

3" 
21 C- 1 

n ! 22 C;;i 

29 ( j  - 4) + (4 - 4) + ($ - 4) is "telescoping" because 3 and 
cancel - 4 and - 5. Add the infinite telescoping series 

30 Compute the sum s for other "telescoping series": 

(b) In ++ln  $+ln $+ 

31 In the integral test, what sum is larger than JI y(x) dx and 
what sum is smaller? Draw a figure to illustrate. 

32 Comparing sums with integrals, find numbers larger and 
smaller than 

1 1 1 1 
s , = l + - + . - + -  

3 
and s,= 1 + -  +.-. $3.  

2n- 1 8 n 

33 Which integral test shows that 1; l/en converges? What 
is the sum? 

34 Which integral test shows that CT n/en converges? What 
is the sum? 
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Decide for or against convergence in 35-42, based on Jy(x) dx. 
1 1 

35 C m 56kz 
n 

x37 C nZ+l 38 x n (is 5decreasing? 

43 (a) Explain why D, = 

by using rectangles as in Figure 10.2. 
(b) Show that D,,, is less than D, by proving that 

(c)(Calculator)The decreasingD,'s must approach a limit. 
Compute them until they go below .6 and below .58 
(when?). The limit of the D, is Euler's constant y = .577.. .. 

44 In the harmonic series, use s, x .577 + In n to show that 
1 

s, = 1 + -1 + ... + -needs more than 600 terms to reach s, >7.
2 n 

How many terms for s, > lo? 

45 (a) Show that 1 -
1 1 
- + - - 1 --..- 1 1 

-- 1+ ...+ -by
2 3 4 2n n + l  2n 

(b) Why is the right side close to In 2n -1n n? Deduce that 
1-4 +3 -6 + ...approaches In 2. 

46 Every second a computer adds a million terms of 
l/(n in n). By comparison with J dx/(x in x), estimate the 

partial sum after a million years (see Question in text). 
1000 1 

47 Estimate 1 -by comparison with an integral. 
100 n2 

48 If C a, converges (all a, >0) show that X a: converges. 

49 If I:a, converges (all a, >0) show that Z sin a, converges. 
How could Z sin a, converge when C a, diverges? 

50 The nth prime number p, satisfies p,/n In n -* 1. Prove that 

1 1 1 1 1 1- - -+-+-+-+-+. . .  diverges.
2 3 5 7 11 

Construct a series E a, that converges faster than C b, but 
slower than I:cn(meaning a,/b, +0, a,/c, -,a). 

51 b, = l/n2, c, =1/n3 52 b, =n($)", c, =(+)" 

53 b, = 1In!, c, = 1/nn 54 b, = l/ne, c, = l/en 

In Problem 53 use Stirling's formula J2nn nn/e"n!-t 1. 

55 For the series 3 +3 +6 +6 +& +4 + -.- show that the 
ratio test fails. The roots (a,)'In do approach a limit L. Find 
L from the even terms a,, = 1/2k.Does the series converge? 

56 (For instructors) If the ratios a,, ,/a, approach a positive 
limit L show that the roots (a,)'In also approach L. 

Decide convergence in 57-66 and name your test. 
1 1 

57 1 "IF 

1 
(test all p) 64 CpIn n 

(test all p)
63 1-

67 Suppose a,/b, -* 0 in the limit comparison test. Prove that 
C a, converges if X b, converges. 

68 Can you invent a series whose convergence you and your 
instructor cannot decide? 

10.3 Convergence Tests: All Series 

This section finally allows the numbers a, to be negative. The geometric series 1 -
f ++++ ... -- is certainly allowed. So is the series n = 4 -$ + - + .--.If we5 7 
change all signs to +,the geometric series would still converge (to the larger sum 2). 
This is the first test, to bring back a positive series by taking the absolute value la,[ 
of every term. 

DEFINITION The series Z a, is "absolutely convergent" if Z la,[ is convergent. 
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Changing a negative number from a, to Ia,l increases the sum. Main point: The
smaller series Y a, is sure to converge if I la,,l converges.

4OG If Y a, converges then I a,, converges (absolutely). But I a,, might con-
verge, as in the series for 7, even if I fa,. diverges to infinity.

EXAMPLE 4 Start with the positive series + 1 + + . Change any signs to minus.
Then the new series converges (absolutely). The right choice of signs will make it
converge to any number between -1 and 1.

EXAMPLE 2 Start with the alternating series 1-½+- + +. which converges to
In 2. Change to plus signs. The new series 1 + +½+ ... diverges to infinity. The
original alternating series was not absolutely convergent. It was only "conditionally
convergent." A series can converge (conditionally) by a careful choice of signs-even
if Ila,,l = co.

If I la,n, converges then I a, converges. Here is a quick proof. The numbers a, + la,I
are either zero (if a, is negative) or 21a,l. By comparison with I 21an, which converges,
Y (a, + lan) must converge. Now subtract the convergent series I Ian,. The difference
I a, also converges, completing the proof. All tests for positive series (integral, ratio,
comparison, ...) apply immediately to absolute convergence, because we switch to
la,n.

EXAMPLE 3 Start with the geometric series 4± + + + + " which converges to -.
Change any of those signs to minus. Then the new series must converge (absolutely).
But the sign changes cannot achieve all sums between - 1 and 4. This time the sums
belong to the famous (and very thin) Cantor set of Section 3.7.

EXAMPLE 4 (looking ahead) Suppose I a,x" converges for a particular number x.
Then for every x nearer to zero, it converges absolutely. This will be proved and used
in Section 10.6 on power series, where it is the most important step in the theory.

EXAMPLE 5 Since Y 1/n2 converges, so does I (cos n)/n 2. That second series has
irregular signs, but it converges absolutely by comparison with the first series (since
I cos ni < 1). Probably I (tan n)/n2 does not converge, because the tangent does not
stay bounded like the cosine.

ALTERNATING SERIES

The series 1 - 1+- 4 + ... converges to In 2. That was stated without proof. This
is an example of an alternating series, in which the signs alternate between plus and
minus. There is the additional property that the absolute values 1, 1, 1, , ... decrease
to zero. Those two facts-decrease to zero with alternating signs-guarantee
convergence.

IOH An alternating series a, - a2  a3 - a4 .. converges (at least condition-
ally, maybe not absolutely) if every a,,, 1 < a. and a, -4 0.

The best proof is in Figure 10.3. Look at a, - a2 + a3. It is below a,, because a3 (with
plus sign) is smaller than a2 (with minus sign). The sum of five terms is less than the

382
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0 S2 S4 S5 S3 S1 

Fig. 10.3 An alternating series converges when the absolute values decrease to zero. 

sum of three terms, because a, is smaller than a4. These partial sums s,, s3, s5, . . . 
with an odd number of terms are decreasing. 

Now look at two terms a, - a2, then four terms, then six terms. Adding on a3 - a, 
increases the sum (because a3 2 a,). Similarly s, is greater than s4 (because it includes 
a, - a6 which is positive). So the sums s2, s4, S6, .. . are increasing. 

The difference between s, -,and s, is the single number +a,. It is required by 10H 
to approach zero. Therefore the decreasing sequence s, ,s3, .. . approaches the same 
limit s as the increasing sequence s,, s4, . . . . The series converges to s, which always 
lies between s, - and s,. 

This plus-minus pattern is special but important. The positive series Xa, may not 
converge. The alternating series is X(- lr+'a,. 

EXAMPLE 6 The alternating series 4 - 4 +4 -4 is conditionally convergent (to 
n). The absolute values decrease to zero. Is this series absolutely convergent? No. 
With plus signs, 4 (1+  3 + + diverges like the harmonic series. 

EXAMPLE 7 The alternating series 1 - 1 + 1 - 1 + .-.is not convergent at all. Which 
requirement in 10H is not met? The partial sums s1 ,s3, s,, . . . all equal 1 and 
s2, s,, S6, .. . all equal 0-but they don't approach the same limit s. 

MULTIPLYING AND REARRANGING SERIES 

In Section 10.1 we added and subtracted and multiplied series. Certainly addition 
and subtraction are safe. If one series has partial sums s, +s and the other has partial 
sums t, + t, then addition gives partial sums s, + t, -,s + t. But multiplication is 
more dangerous, because the order of the multiplication can make a difference. More 
exactly, the order of terms is important when the series are conditionally convergent. 
For absolutely convergent series, the order makes no difference. We can rearrange 
their terms and multiply them in any order, and the sum and product comes out 
right: 

Rather than proving 101 and 10J, we show what happens when there is only condi- 
tional convergence. Our favorite is 1 -4+ f -4+ converging conditionally to . . a ,  
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In 2. By rearranging, it will converge conditionally to anything! Suppose the desired 
sum is 1000. Take positive terms 1 +5 + until they pass 1000. Then add negative 
terms -;-;-... until the subtotal drops below 1000. Then new positive terms 

bring it above 1000, and so on. All terms are eventually used, since at least one new 
term is needed at each step. The limit is s = 1000. 

We also get strange products, when series fail to converge absolutely: 

On the left the series converge (conditionally). The alternating terms go to zero. On 
the right the series diverges. Its terms in parentheses don't even approach zero, and 
the product is completely wrong. 

I close by emphasizing that it is absolute convergence that matters. The most 
important series are power series Eanxn.Like the geometric series (with all a, = 1) 
there is absolute convergence over an interval of x's. They give functions of x, which 
is what calculus needs and wants. 

We go next to the series for ex, which is absolutely convergent everywhere. From 
the viewpoint of convergence tests it is too easy-the danger is gone. But from the 
viewpoint of calculus and its applications, ex is unconditionally the best. 

10.3 EXERCISES 

Read-through questions 13 Suppose Za, converges absolutely. Explain why keeping 
the positive a's gives another convergent series. 

The series Ea, is absolutely convergent if the series a is 
convergent. Then the original series Ea, is also b . But 14 Can Ea, converge absolutely if all a, are negative? 
the series Za, can converge without converging absolutely. 15 Show that the alternating series 1 -4 +$ -4+5 -& + -.-
That is called c convergence, and the series d is an does not converge, by computing the partial sums s2, s4, . . . .
example. Which requirement of 10H is not met? 

For alternating series, the sign of each a,+ ,is to the 16 Show that 4 -3 +4 -8 + .-.does not converge. Which 
sign of a,. With the extra conditions that f and g , requirement of 10H is not met? 
the series converges (at least conditionally). The partial sums 
s l ,  s3, ... are h and the partial sums s,, s,, . .. are i . 17 (a) For an alternating series with terms decreasing to zero, 
The difference between s, and s,- is i . Therefore the why does the sum s always lie between s,- and s,? 
two series converge to the same number s. An alternating (b) Is s -s, positive or negative if s, stops at a positive a,? 
series that converges absolutely [conditionally] (not at all) is 

18 Use Problem 17 to give a bound on the difference between k r I 1 ( m ). With absolute [conditional] con-
s, = 1 -4 +5 -6 +4 and the sum s = ln 2 of the infinite vergence a reordering (can or cannot?) change the sum. 
series. 

1 1Do the series 1-12 converge absolutely or conditionally? 
19 Find the sum 1 --+ -1 

--+ ...=s. The partial sum s4 
2! 3! 4! 

is (above s)(below s) by less than . 
20 Give a bound on the difference between sloe= 
1 1 1 1 
12 22 + j r  -- and s =C(- 1)"' '/n2. 

1 002 
1 1 1 n2

21 Starting from 1+ 7+ 3+ -.-= - with plus signs, 
1 2 3 6 '  

show that the alternating series in Problem 20 has s = n2/12. 

22 Does the alternating series in 20 or the positive series in 
21 give n2 more quickly? Compare 1/1012- 1/102' + with+ - a  

1/1012+ 1/1022+ -.-. 
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23 If Za, does not converge show that Zla,l does not 34 Verify the Schwarz inequality (C a, bJ2 <(C aZ)(Z bi) if 
converge. a, =(4)" and b, = (4)". 

a2
24 Find conditions which guarantee that a, + a, -a3+ 35 Under what condition does ?(a,+, -an) converge and 
a, +a5-a, + -.-will converge (negative term follows two what is its sum? 
positive terms). 

36 For a conditionally convergent series, explain how the 
25 If the terms of In 2 = 1-4 +3-f + --.are rearranged into terms could be rearranged so that the sum is + co. All terms 
1-3-6 +4 - - & + --.,show that this series now adds to must eventually be included, even negative terms. 4 In 2. (Combine each positive term with the following nega- 
tive term.) 37 Describe the terms in the product (1 +4 + f + .--)(I+4 + 
26 Show that the series 1 +4 - +4 +4- + converges 4 + ---)and find their sum. 

to 4 In 2. 
38 True or false: 

27 What is the sum of 1 +*-$+*-f + 4 - & +  - . a ?  (a) Every alternating series converges. 
1

28 Combine 1 + - - .  + - - l n n + y  and 1 - $ + ~ - . - + l n 2  (b) Za, converges conditionally if Z la,l diverges. 
n (c) A convergent series with positive terms is absolutely 

to prove 1+ * + 4 - 3 - $ - & +  = ln2. convergent. 

29 (a) Prove that this alternating series converges: (d) If Can and Cb, both converge, so does C(a, +b,). 

39 Every number x between 0 and 2 equals 1 +4 +4+ ..-
with suitable terms deleted. Why? 

(b) Show that its sum is Euler's constant y. 40 Every numbers between -1 and 1 equals +f f$ f$ f --. 
with a suitable choice of signs. (Add 1 =4+f +4 + --.to get 30 Prove that this series converges. Its sum is 42.  
Problem 39.) Which signs give s = - 1 and s =0 and s =i? 
41 Show that no choice of signs will make +4+4$&+ .--
equal to zero. 

1
31 The cosine of 8 = 1 radian is 1 --+ -.-

1 .--.Compute 42 The sums in Problem 41 form a Cantor set centered at 2! 4! 
cos 1 to five correct decimals (how many terms?). zero. What is the smallest positive number in the set? Choose 

signs to show that 4is in the set. 
It3 715 

m a . .32 The sine of 8 = 7~ radians is n --
3! 

+-
5! 
- Compute "43 Show that the tangent of 0 =q(n - 1) is sin 1/(1 -cos 1). 

sin 7~ to eight correct decimals (how many terms?). This is the imaginary part of s = - ln(1 -ei). From 
s =Z ein/n deduce the remarkable sum C (sin n)/n =q(7~- 1).

33 If Xai and Zbi are convergent show that Za,b, is abso- 
lutely convergent. 44 Suppose Can converges and 1x1 < 1. Show that Ca,xn 
Hint: (a fb)2 2 0 yields 2)abJ <a2+b2. converges absolutely. 

10.4 The Taylor Series for ex,sin x, and cos x -
This section goes back from numbers to functions. Instead of Xu, = s it deals with 
Xanxn=f(x). The sum is afunction of x. The geometric series has all a, = 1 (including 
a,, the constant term) and its sum is f(x) = 1/(1- x). The derivatives of 1 + x +x2 + --. 
match the derivatives off. Now we choose the an differently, to match a different 
function. 

The new function is ex. All its derivatives are ex. At x =0, this function and its 
derivatives equal 1. To match these l's, we move factorials into the denominators. 
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Term by term the series is 

xn/n!has the correct nth derivative (= 1). From the derivatives at x = 0, we have built 
back the function! At x = 1 the right side is 1 + 1 + 4+ & + .-.and the left side is e = 
2.71828 .... At x = - 1 the series gives 1- 1+ f -4+ -, which is e-'. 

The same term-by-term idea works for differential equations, as follows. 

EXAMPLE 1 Solve dyldx = -y starting from y = 1 at x = 0. 

Solution The zeroth derivative at x = 0 is thefunction itseg y = 1. Then the equation 
y' = -y gives y' = - 1 and y" = - y' = + 1. The alternating derivatives 
1, -1, 1, -1, ... are matched by the alternating series for e-": 

y = 1 -x + t x 2  - i x 3  + ... -- e- X  (the correct solution to y' = - y). 

EXAMPLE 2 Solve d'y/dx2 = - y starting from y = 1 and y' = 0 (the answer is cos x). 

Solution The equation gives y" = - 1(again at x = 0). The derivativeof the equation 
gives y'" = - y1= 0. Then = -y" = + 1. The even derivatives are alternately + 1 
and -1, the odd derivatives are zero. This is matched by a series of even powers, 
which constructs cos x: 

1 1 1 
y = 1 - -X2 + - -X6 + ... = cos X.

2! 4! 6! 

The first terms 1 -$x2 came earlier in the book. Now we have the whole alternating 
series. It converges absolutely for all x, by comparison with the series for ex (odd 
powers are dropped). The partial sums in Figure 10.4reach further and further before 
they lose touch with cos x. 

Fig. 10.4 The partial sums 1 -x2/2  + x4/24 - --.of the cosine series. 

If we wanted plus signs instead of plus-minus, we could average ex and e-". The 
differential equation for cosh x is d2y/dx2= + y, to give plus signs: 

1 1 1 1
-(ex + e-") = 1 + -x2 + -x4 + -x6 + (which is cosh x).
2 2! 4! 6! 

W O R  SERIES 

The idea of matching derivatives by powers is becoming central to this chapter. The 
derivatives are given at a basepoint (say x = 0). They are numbersf(O),f '(O), .... The 
derivative f@)(O)will be the nth derivative of anxn,if we choose a, to be f(")(O)/n! 
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Then the series I anx" has the same derivatives at the basepoint as f(x):

10K The Taylor series that matches f(x) and all its derivatives at x = 0 is

1 2....... + 1 1, , + fn)(0)...f(0) + f '(0)x + f" 0 2 + '(0)x + = x.2 6 n=O n!

The first terms give the linear and quadratic approximations that we know well. The
x3 term was mentioned earlier (but not used). Now we have all the terms-an "infinite
approximation" that is intended to equalf(x).

Two things are needed. First, the series must converge. Second, the function must
do what the series predicts, away from x = 0. Those are true for ex and cos x and
sin x; the series equals the function. We proceed on that basis.

The Taylor series with special basepoint x = 0 is also called the "Maclaurin series."

EXAMPLE 3 Find the Taylor series for f(x) = sin x around x = 0.

Solution The numbers f(")(0) are the values of f= sin x, f' = cos x, f" = - sin x,...
at x = 0. Those values are 0, 1, 0, -1, 0, 1, .... All even derivatives are zero. To find
the coefficients in the Taylor series, divide by the factorials:

sin x= x- ix 3 + ± X5 - (2)

EXAMPLE 4 Find the Taylor series forf(x) = (1 + x)5 around x = 0.

Solution This function starts at f(0) = 1. Its derivative is 5(1 + x)4 , so f'(0) = 5. The
second derivative is 5 . 4 .(1 + x)3 , so f "(0)= 5 4. The next three derivatives are
5 . 4 * 3, 5 * 4 . 3 * 2, 5 . 4 . 3 * 2 * 1. After that all derivatives are zero. Therefore the Taylor
series stops after the xs term:

5.4 5.4.3 5-4-3-2 5-4-3-2 " 1
1 + 5x+ + x 2  x4 5 . (3)

2! 3! 4! 5!
You may recognize 1, 5, 10, 10, 5, 1. They are the binomial coefficients, which appear
in Pascal's triangle (Section 2.2). By matching derivatives, we see why 0!, 1!, 2!, ... are
needed in the denominators.

There is no doubt that x = 0 is the nicest basepoint. But Taylor series can be con-
structed around other points x = a. The principle is the same-match derivatives by
powers-but now the powers to use are (x - a)". The derivatives f("'(a) are computed
at the new basepoint x = a.

The Taylor series begins with f(a) + f'(a)(x - a). This is the tangent approximation
at x = a. The whole "infinite approximation" is centered at a-at that point it has
the same derivatives as f(x).

10L The Taylor series for f(x) around the basepoint x = a is

+ .. ...(• f ", +(a)
f(x) = f(a) + f(a)(x - a) + (a)(x a) + = (x - a) (4)

2n =O n

EXAMPLE 5 Find the Taylor series forf(x) = (1 + x)5 around x = a = 1.

Solution At x = 1, the function is (1 + 1)' = 32. Its first derivative 5(1 + x)4 is
5-16 = 80. We compute the nth derivative, divide by n!, and multiply by (x - 1)":

32 + 80(x - 1) + 80(x - 1)2 + 40(x - 1)3 + 10(x - 1)4 + (x - 1)5.
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That Taylor series (which stops at n = 5) should agree with (1 + x)'. It does. We could 
rewrite 1+ x as 2 + (x - I), and take its fifth power directly. Then 32, 16, 8,4,2, 1 will 
multiply the usual coefficients 1,.5, 10, 10, 5, 1 to give our Taylor coefficients 
32, 80, 80,40, 10, 1. The series stops as it will stop for any polynomial-because the 
high derivatives are zero. 

EXAMPLE 6 Find the Taylor series for f(x) = ex around the basepoint x = 1. 

Solution At x = 1 the function and all its derivatives equal e. Therefore the 
Taylor series has that constant factor (note the powers of x - 1, not x): 

DEFINING THE FUNCTION BY ITS SERIES 

Usually, we define sin x and cos x from the sides of a triangle. But we could start 
instead with the series. Define sin x by equation (2). The logic goes backward, but it 
is still correct: 

First, prove that the series converges. 
Second, prove properties like (sin x)' = cos x. 
Third, connect the definitions by series to the sides of a triangle. 

We don't plan to do all this. The usual definition was good enough. But note first: 
There is no problem with convergence. The series for sin x and cos x and ex all have 
terms fxn/n!. The factorials make the series converge for all x. The general rule for 
ex times eYcan be based on the series. Equation (6) is typical: e is multiplied by 
powers of (x - 1). Those powers add to ex-'. So the series proves that ex = eex-'. 
That is just one example of the multiplication (ex)(eY) = ex+Y: 

Term by term, multiplication gives the series for ex+Y. Term by term, differentiating 
the series for ex gives ex. Term by term, the derivative of sin x is cos x: 

We don't need the famous limit (sin x)/x -,1, by which geometry gave us the deriva- 
tive. The identities of trigonometry become identities of infinite series. We could even 
define n as the first positive x at which x - i x 3  + .--equals zero. But it is certainly 
not obvious that this sine series returns to zero-much less that the point of return 
is near 3.14. 

The function that will be dejined by injnite series is eie. This is the exponential of 
the imaginary number i0 (a multiple of i = fl).The result eiB is a complex number, 
and our goal is to identify it. (We will be confirming Section 9.4.) The technique is to 
treat i0 like all other numbers, real or complex, and simply put it into the series: 

1 1
DEFINITION eie is the sum of 1 + (i0)+ -(i0)2 + -(i0)3 + -.-. (9)2! 3! 

Now use iZ= - 1. The even powers are i4= + 1, i6 = - 1, i8 = + 1, .... We are 
just multiplying -1 by -1 to get 1. The odd powers are i3  = - i, is = + i, .... There-



- - - - - - - - 

10.4 The Taylor Series for d,sin x, and cos x 

fore eiB splits into a real part (with no i's) and an imaginary part (multiplying i): 

You recognize those series. They are cos 8 and sin 8. Therefore: 

Euler's formula is eie=cos 8 + i sin 8. Note that e2"' = 1. 
y = r sin 8 
eie= cos 0 + i sine 

The real part is x = cos 8 and the imaginary part is y = sin 8. Those coordinates pick 
out the point eiB in the "complex plane." Its distance from the origin (0,O) is r = 1, 
because (cos 8)2 + (sin 8)2 = 1. Its angle is 8, as shown in Figure 10.5. The number 
-1 is ei", at the distance r = l and the angle n. It is on the real axis to the left of 
zero. If eiB is multiplied by r = 2 or r =3 or any r 2 0, the result is a complex number 
at a distance r from the origin: 

I x=r'cose 1 - Complex numbers: reiB= r(cos 8 + i sin 8) = r cos 8 + ir sin 8 = x + iy. 
Rg. 10.5 

With eie, a negative number has a logarithm. The logarithm of - 1  is imaginary 
(it is in, since ei" = - 1). A negative number also has fractional powers. The fourth 
root of -1 is (- l)'I4 = einI4. More important for calculus: The derivative of x5I4 is 
$x1I4. That sounds old and familiar, but at x = - 1 it was never allowed. 

Complex numbers tie up the loose ends left by the limitations of real numbers. 

The formula eie = cos 8 + i sin 8 has been called "one of the greatest mysteries of 
undergraduate mathematics." Writers have used desperate methods to avoid infinite 
series. That proof in (10) may be the clearest (I remember sending it to a prisoner 
studying calculus) but here is a way to start from d/dx(eix) = ieix. 

A diferent proof of Euler'sformula Any complex number is eix = r(cos 8 + i sin 8) 
for some r and 8. Take the x derivative of both sides, and substitute for ieix: 

(cos 8 + i sin B)dr/dx + r(- sin 8 + i cos B)d8/dx = ir(cos 8 + i sin 9). 

Comparing the real parts and also the imaginary parts, we need drldx =0 and 
d8/dx = 1. The starting values r = 1 and 8 =0 are known from eiO = 1. Therefore r is 
always 1 and 8 is x. Substituting into the first sentence of the proof, we have Euler's 
formula eie = l(cos 8 + i sin 8). 

Read-through questions We define ex, sin x, cos x, and also eie by their series. The 
derivative d/dx( l  +x + i x  + -.-)= 1 + x + --.translates to

The a series is chosen to match f (x)  and all its b 
t .Theder ivat iveo f l -+xZ+- . - i s  u . u s i n g i 2 =

at the basepoint. Around x =0 the series begins with - 1 the series 1 + ie + + - - - splits into eie= v . Its
f (0)  + c x + d x 2 .  The coefficient of xn  is e .For 

square gives e2" = w . Its reciprocal is e-" = x .
f ( x )  =ex this series is f . For f  ( x )  =cos x the series is Multiplying by r gives reie= Y + i ,which connects 

g . For f ( x )  =sin x the series is h . If the signs were the polar and rectangular forms of a A number. The 
all positive in those series, the functions would be cosh x and logarithm of eieis .

I . Addition gives cosh x + sinh x = I . 
In the Taylor series for f ( x )  around x =a, the coefficient of 

(x  -a)" is b, = k .Then b,(x -a)" has the same I as 1 Write down the series for e2"and compute all derivatives 
f a t  the basepoint. In the example f ( x )  =x2,  the Taylor coeffi- at x =0. Give a series of numbers that adds to e2. 
cients are bo = m , b ,  = n , b2 = 0 . The series 
bo +b ,  ( x  -a)  +b2(x - agrees with the original p . 2 Write down the series for sin 2x and check the third 
The series for ex around x = a has bn= q . Then the derivative at x =0.Give a series of numbers that adds to 
Taylor series reproduces the identity ex =( r 8 ). sin 211 =0. 
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In 3-8 find the derivatives off (x) at x =0 and the Taylor series 
(powers of x) with those derivatives. 

3 f(x) = eix 4 f(x) = 1/(1+ x) 

5 f(x) = 1/(1-2x) 6 f(x) =cosh x 

Problems 9-14 solve differential equations by series. 

9 From the equation dyldx = y -2 find all the derivatives 
of y at x =0 starting from y(0) = 1. Construct the infinite 
series for y, identify it as a known function, and verify that 
the function satisfies y' =y -2. 

10 Differentiate the equation y' =cy + s (c and s constant) 
to find all derivatives of y at x =0. If the starting value is 
yo =0, construct the Taylor series for y and identify it with 
the solution of y' = cy + s in Section 6.3. 

11 Find the infinite series that solves y" = -y starting from 
y=O and y'= 1 at x=0 .  

12 Find the infinite series that solves y' =y starting from y = 
1 at x = 3 (use powers of x -3). Identify y as a known 
function. 

13 Find the infinite series (powers of x) that solves y" = 
2y' -y starting from y =0 and y' = 1 at x =0. 

14 Solve y" = y by a series with y = 1 and y' = 0 at x =0 and 
identify y as a known function. 

15 Find the Taylor series for f(x) =(1 + x ) ~around x = a = 
0 and around x = a = 1 (powers of x - 1). Check that both 
series add to (1 + x ) ~ .  

16 Find all derivatives of f(x) =x3 at x =a and write out the 
Taylor series around that point. Verify that it adds to x3. 

17 What is the series for (1 -x)' with basepoint a = l ?  

18 Write down the Taylor series for f =cos x around x = 21t 
and also for f =cos (x -21t) around x = 0. 

In 19-24 compute the derivatives off and its Taylor series 
around x = 1. 

21 f(x) =In x 22 f(x)=x4 

In 25-33 write down the first three nonzero terms of the Taylor 
series around x = 

25 xe2X 

sin x 
28 -

0, from the series for ex, cos x, and sin x. 

26 cos 27 (1 -cos x)/x2 

sin x 
dx 30 sin x2 

*34 For x <0 the derivative of xn is still nxn-': 

What is dlxlldx? Rewrite this answer as nxn- '. 
35 Why doesn't f(x) =& have a Taylor series around x = 
O? Find the first two terms around x = 1. 

36 Find the Taylor series for 2" around x =0. 

In 37-44 find the first three terms of the Taylor series around 
x =0. 

37 f(x) = tan-'x 38 f(x) = sin - 'x 

39 f(x) =tan x 40 f(x) =ln(cos x) 

43 f(x) =cos2x 44 f(x) =sec2x 

45 From eie =cos 6 + i sin 8 and e-" =cos 6 - i sin 6, add 
and subtract to find cos 8 and sin 8. 

46 Does (eiB)2 equal cos28 + i sin26 or cos O2 + i sin 02? 

47 Find the real and imaginary parts and the 99th power of 
ei", ei"/2 ei"/4 ' and e-'"I6. 9 

48 The three cube roots of 1 are 1, e2"'I3, e4"'I3. 
(a) Find the real and imaginary parts of e2"'I3. 
(b) Explain why (e2"i13)3 = 1. 
(c) Check this statement in rectangular coordinates. 

49 The cube roots of -1 =ei" are ei"I3 and and 
. Find their sum and their product. 

50 Find the squares of 2eid3= 1 + f i  i and 4ei'I4 = 
2 f i  + i2& in both polar and rectangular coordinates. 

51 Multiply eis =cos s + i sin s times eit =cos t + i sin t to 
find formulas for cos(s + t) and sin(s + t). 
52 Multiply eis times e-" to find formulas for cos(s - t) and 
sin(s - t). 

53 Find the logarithm of i. Then find another logarithm of i. 
(What can you add to the exponent of elni without changing 
the result?) 

54 (Proof that e is irrational) If e =p/q then 

would be an integer. (Why?) The number in brackets-the 
distance from the alternating series to its sum lle-is less 
than the last term which is llp! Deduce that IN1 c 1 and reach 
a contradiction, which proves that e cannot equal plq. 

55 Solve dyldx = y by infinite series starting from y = 2 at 
31 ex' 32 bx = 33 ex cos x x =0. 

X 



10.5 Power Series

10.5 Power Series

This section studies the properties of a power series. When the basepoint is zero, the
powers are x". The series is anx". When the basepoint is x = a, the powers are
(x - a)". We want to know when and where (and how quickly) the series converges
to the underlying function. For ex and cos x and sin x there is convergence for all
x-but that is certainly not true for 1/(1 - x). The convergence is best when the
function is smooth.

First I emphasize that power series are not the only series. For many applications
they are not the best choice. An alternative is a sum of sines, f(x) = b, sin nx. That
is a "Fourier sine series", which treats all x's equally instead of picking on a basepoint.
A Fourier series allows jumps and corners in the graph-it takes the rough with the
smooth. By contrast a power series is terrific near its basepoint, and gets worse as
you move away. The Taylor coefficients an are totally determined at the base-
point-where all derivatives are computed. Remember the rule for Taylor series:

an = (nth derivative at the basepoint)/n! =f(")(a)/n! (1)
A remarkable fact is the convergence in a symmetric interval around x = a.

40M A power series Zax" either converges for all x, or it converges only at
the basepoint x =0, or else it has a radius of convergence r:

Ylax" converges absolutely if lxl < r and diverges if xi > r.

The series Ix"/n! converges for all x (the sum is ex). The series In!x" converges for
no x (except x = 0). The geometric series Ex" converges absolutely for Ixl < 1 and
diverges for Ixl > 1. Its radius of convergence is r = 1. Note that its sum 1/(1 - x) is
perfectly good for Ix > 1-the function is all right but the series has given up. If
something goes wrong at the distance r, a power series can't get past that point.

When the basepoint is x = a, the interval of convergence shifts over to Ix - al < r.
The series converges for x between a - r and a + r (symmetric around a). We cannot
say in advance whether the endpoints a + r give divergence or convergence (absolute
or conditional). Inside the interval, an easy comparison test will now prove con-
vergence.

PROOF OF 10M Suppose Ya,X" converges at a particular point X. The proof will
show that Ia,x" converges when Ixi is less than the number IXI. Thus convergence
at X gives convergence at all closer points x (I mean closer to the basepoint 0). Proof:
Since I anX" converges, its terms approach zero. Eventually lanX"I < 1 and then

Iaxnl = IaX"I Ix/lX < Ix/XI".

Our series I a,x" is absolutely convergent by comparison with the geometric series
for Ix/XI, which converges since Ix/XI < 1.

EXAMPLE 1 The series Inx"/4" has radius of convergence r = 4.

The ratio test and root test are best for power series. The ratios between terms
approach x/4 (and so does the nth root of nx"/4"):

(n + 1)x"+' Inx" x n + 1 x
4n+1 /4 -= 4 n approaches L = 4

The ratio test gives convergence if L < 1, which means Ixl < 4.
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X3 5

EXAMPLE 2 The sine series x - + - - has r = co (it converges everywhere).
3! 5!

The ratio of xn+ 2/(n + 2)! to x"/n! is x2/(n + 2)(n + 1). This approaches L = 0.

EXAMPLE 3 The series I(x - 5)"/n 2 has radius r = 1 around its basepoint a = 5.

The ratios between terms approach L = x - 5. (The fractions n2/(n + 1)2 go toward
1.) There is absolute convergence if Ix - 51 < 1. This is the interval 4 < x < 6, symmet-
ric around the basepoint. This series happens to converge at the endpoints 4 and 6,
because of the factor 1/n2. That factor decides the delicate question-convergence at
the endpoints-but all powers of n give the same interval of convergence 4 < x < 6.

CONVERGENCE TO THE FUNCTION: REMAINDER TERM AND RADIUS r

Remember that a Taylor series starts with a function f(x). The derivatives at the
basepoint produce the series. Suppose the series converges: Does it converge to
the function? This is a question about the remainder R,(x) =f(x) - sn(x), which is the
difference between f and the partial sum s, = ao + " + an(x - a)". The remainder Rn
is the error if we stop the series, ending with the nth derivative term a,(x - a)".

10N Suppose f has an (n + 1)st derivative from the basepoint a out to x. Then
for some point c in between (position not known) the remainder at x equals

R,(x) = f(x) - s,(x) = f("+ 1)(c)(x - a)" + '/(n + 1)! (2)

The error in stopping at the nth derivative is controlled by the (n + 1)st derivative.

You will guess, correctly, that the unknown point c comes from the Mean Value
Theorem. For n = 1 the proof is at the end of Section 3.8. That was the error e(x) in
linear approximation:

R1(x) = f(x) - f(a) - f'(a)(x - a) = f "(c)(x - a)2.

For every n, the proof compares Rn with (x - a)" +1. Their (n + 1)st derivatives are

f(n+ ') and (n + 1)! The generalized Mean Value Theorem says that the ratio of R, to
(x - a)" + equals the ratio of those derivatives, at the right point c. That is equation
(2). The details can stay in Section 3.8 and Problem 23, because the main point is
what we want. The error is exactly like the next term a, + (x - a)" +1, except that the
(n + 1)st derivative is at c instead of the basepoint a.

EXAMPLE 4 Whenf is ex, the (n + 1)st derivative is ex. Therefore the error is

Rn=ex - 1 +x+ ... + - = ec (3)
" n! = (n + 1)!*

At x = 1 and n = 2, the error is e - (1 + 1 + ) .218. The right side is ec/6. The
unknown point is c = In (.218 - 6) = .27. Thus c lies between the basepoint a = 0 and
the error point x = 1, as required. The series converges to the function, because
R, - 0.

In practice, n is the number of derivatives to be calculated. We may aim for an
error IRn, below 10- 6. Unfortunately, the high derivative in formula (2) is awkward
to estimate (except for ex). And high derivatives in formula (1) are difficult to compute.
Most real calculations use only afew terms of a Taylor series. For more accuracy we
move the basepoint closer, or switch to another series.
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There is a direct connection between the function and the convergence radius r. 
A hint came for f(x) = 1/(1- x). The function blows up at x = 1-which also ends 
the convergence interval for the series. Another hint comes for f = llx, if we expand 
around x = a = 1: 

This geometric series converges for 11 -XI< 1. Convergence stops at the end point 
x = 0-exactly where llx blows up. The failure of the function stops the convergence 
of the series. But note that 1/(1+ x2), which never seems to fail, also has convergence 
radius r = 1: 

1/(1+ x2) = 1 - x2 + x4 - x6 + converges only for 1x1 < 1. 

When you see the reason, you will know why r is a "radius." There is a circle, and 
the function fails at the edge of the circle. The circle contains complex numbers as 
well as real numbers. The imaginary points i and - i are at the edge of the circle. 
The function fails at those points because l/(l + i2)= co. 

Complex numbers are pulling the strings, out of sight. The circle of convergence 
reaches out to the nearest "singularity" of f(x), real or imaginary or complex. For 
1/(1+ x2), the singularities at i and - i make r = 1. If we expand around a = 3, the 
distance to i and - i is r = ,/%. If we change to in (1 + x), which blows up at 
X =  - 1, the radius of convergence of x -$x2 + gx3- .-• is r = 1. 

a = 0 

ln(1 + x )  and ( 1  +x ) ~  

1/(1 + x 2 )  = - also at -i 

Fig. 10.6 Convergence radius r is distance from basepoint a to nearest singularity. 

THE BINOMIAL SERIES 

We close this chapter with one more series. It is the Taylor series for (1 + x ) ~ ,around 
the basepoint x = 0. A typical power is p =3, where we want the terms in 

JK=1 + f x + a 2 x 2 +  e m - .  

The slow way is to square both sides, which gives 1 + x + (2a2+$)x2 on the right. 
Since 1 + x is on the left, a2 = -& is needed to remove the x2 term. Eventually a, 
can be found. The fast way is to match the derivatives off = (1 + x)'I2: 



At x = 0 those derivatives are 4,-i,8. Dividing by I!, 2!, 3! gives 

These are the binomial coeficients when the power is p = 4. 
Notice the difference from the binomials in Chapter 2. For those, the power p was 

a positive integer. The series (1 + x ) ~= 1 + 2x + x2 stopped at x2. The coefficients for 
p = 2 were 1,2, 1,0,0,0, . . . . For fractional p or negative p those later coefficients are 
not zero, and we find them from the derivatives of (1 + x ) ~ :  

Dividing by O!, I!, 2!, . . . , n! at x = 0, the binomial coefficients are 

For p = n that last binomial coefficient is n!/n! = 1. It gives the final xn at the end of 
(1 + x)". For other values of p, the binomial series never stops. It converges for 1x1< 1: 

When p = 1,2, 3, . .. the binomial coeflcient p!/n!(n -p)! counts the number of ways 
to select a group of n friends out of a group of p friends. If you have 20 friends, you 
can choose 2 of them in (20)(19)/2 = 190 ways. 

Suppose p is not a positive integer. What goes wrong with (1 + x ) ~ ,to stop the 
convergence at 1x1 = l? The failure is at x = -1. If p is negative, (1 + x ) ~  
If p is positive, as in ,/=, 

blows up. 
the higher derivatives blow up. Only for a positive 

integer p = n does the convergence radius move out to r = GO. In that case the series 
for (1 + x)" stops at xn, and f never fails. 

A power series is a function in a new form. It is not a simple form, but sometimes 
it is the only form. To compute f we have to sum the series. To square f we have to 
multiply series. But the operations of calculus-derivative and integral-are easier. 
That explains why power series help to solve differential equations, which are a rich 
source of new functions. (Numerically the series are not always so good.) I should 
have said that the derivative and integral are easy for each separate term anxn-and 
fortunately the convergence radius of the whole series is not changed. 

Iff (x) = Xanxnhas convergence radius r, so do its derivative and its integral: 

+df/dx = C nanxn- ' and If (x)dx= Z anxn '/(n + 1) also converge for 1x1 < r. 

EXAMPLE 5 The series for 1/(1 -x) and its derivative 1/(1 - x ) ~and its integral 
- ln(1 - x) all have r = 1 (because they all have trouble at x = 1). The series are Exn 
and Enxn-' and Cxn+'/(n + 1). 

EXAMPLE 6 We can integrate ex' (previously impossible) by integrating every term 
in its series: 

This always converges (r = a).The derivative of ex' was never a problem. 
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10.5 EXERCISES 
Read-through questions 

If 1x1 < IX I and Ca,Xn converges, then the series C.a,xn also 
a . There is convergence in a b interval around the 
c . For C(2x)" the convergence radius is r = d . For 

C.xn/n! the radius is r = e . For C(x - 3)" there is con- 
vergence for Ix - 31 < f . Then x is between g and 

h . 

Starting with f(x), its Taylor series Ca,xn has a, = i . 
With basepoint a, the coefficient of (x - a)" is i . The 
error after the xn  term is called the k R,(x). It is equal to 

I where the unknown point c is between m . Thus 
the error is controlled by the n derivative. 

The circle of convergence reaches out to the first point 
where f(x) fails. For f = 4/(2 - x), that point is x = o . 
Around the basepoint a = 5, the convergence radius would be 
r = P . For sin x and cos x the radius is r = q . 

The series for J l  + x is the series with p = f .  Its 
coefficients are a, = s . Its convergence radius is t . 
Its square is the very short series 1 + x. 

In 1-6 find the Taylor series for f (x) around x = 0 and its radius 
of convergence r. At what point does f(x) blow up? 

1 f(x) = 1/(1 - 4x) 2 f(x) = 1/(1 - 4x2) 

3 f(x)= el-" 4 f(x) = tan x (through x3) 

5 f(x) = ln(e + x) 6 f(x) = 1/(1 +4x2) 

Find the interval of convergence and the function in 7-10. 

11 Write down the Taylor series for (ex - l)/x, based on the 
series for ex. At x = 0 the function is 010. Evaluate the series 
at x = 0. Check by l'H6pital's Rule on (ex - l)/x. 

12 Write down the Taylor series for xex around x = 0. Inte- 
grate and substitute x = l to find the sum of l/n!(n + 2). 

13 Iff (x) is an even function, so f (-x) = f (x), what can you 
say about its Taylor coefficients in f = Ca,xn? 

14 Puzzle out the sums of the following series: 
( a ) x + x 2 - x 3 + x 4 + x 5 - - x 6 + - . .  

x4 x8 
(b) 1 + - + - + ... 

4! 8! 

15 From the series for (1 - cos x)/x2 find the limit as x + 0 
faster than 1'H;pital's rule. 

16 Construct a power series that converges for 0 < x < 27r. 

17-24 are about remainders and 25-36 are about binomials. 

17 If the cosine series stops before x8/8! show from (2) that 
the remainder R7 is less than x8/8! Does this also follow 
because the series is alternating? 

18 If the sine series around x = 27r stops after the terms in 
problem 10, estimate the remainder from equation (2). 

19 Estimate by (2) the remainder R, = xn+ ' + xn+ + in 
the geometric series. Then compute R, exactly and find the 
unknown point c for n = 2 and x = f .  

20 For -ln(l - x ) = x + ~ x 2 + ~ x 3  + R3, useequation(2) to 
show that R3 < $ at x = 3. 
21 Find R, in Problem 20 and show that the series converges 
to the function at x = f (prove that R, -+ 0). 

22 By estimating R, prove that the Taylor series for ex around 
x = 1 converges to ex as n -+ GO. 

23 (Proof of the remainder formula when n = 2) 
(a) At x = a find R,, R;, Ri, R;". 
(b) At x = a evaluate g(x) = (x - a)3 and g', g", g"'. 

(c) What rule gives R2W - R2@) R h ) ?  - 
g(x) - d a )  g'(c 1 ) 

Ri(c2) - R;'(a) Rll(c) -- - where are cl and c2 and c? 
g"(c2 ) - g"(4 g"'(c) 
(e) Combine (a-b-c-d) into the remainder formula (2). 

24 All derivatives off (x) = e- 'Ix2 are zero at x = 0, including 
f(0) = 0. What is f(.l)? What is the Taylor series around 
x = O? What is the radius of convergence? Where does the 
series converge to f(x)? For x = 1 and n = 1 what is the 
remainder estimate in (2)? 

25 (a) Find the first three terms in the binomial series for 
l / J i 7 .  
(b) Integrate to find the first three terms in the Taylor 
series for sin - 'x. 

26 Show that the binomial coefficients in I/,,/= = C.anxn 
are a, = 1 3 5 (2n - 1)/2"n! 

27 For p = - 1 and p = - 2 find nice formulas for the bino- 
mial coefficients. 

28 Change the dummy variable and add lower limits to make 
x w  nxn- 1 - - C" (n + l)xn. 
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29 In (1 -x)- ' = Exn the coefficient of xn  is the number of 
groups of n friends that can be formed from 1 friend (not 
binomial-repetition is allowed!). The coefficient is 1 and 
there is only one group-the same friend n times. 

(a) Describe all groups of n friends that can be formed 
from 2 friends. (There are n + 1 groups.) 
(b) How many groups of 5 friends can be formed from 3 
friends? 

30 (a) What is the coefficient of xn when 1 + x + x2 + .- -
multiplies 1 + x + x2 + . a * ?  Write the first three terms. 
(b) What is the coefficient of x5 in ( C X ~ ) ~ ?  

31 Show that the binomial series for ,,/- has integer 
coefficients. (Note that xn changes to (4x)". These coefficients 
are important in counting trees, paths, parentheses.. .) 

32 In the series for l /  ,/I -4x, show that the coefficient of xn 
is (2n)! divided by (n!)2. 

Use the binomial series to compute 33-36 with error less than 
1/1000. 

33 (15)'14 34 (1001)'/~ 

35 (1.1)l.l 36 e l / l O O O  

37 From sec x = 1/[1- (1 -cos x)] find the Taylor series of 
sec x up to x6. What is the radius of convergence r (distance 
to blowup point)? 

38 From sec2x = 1/[1 - sin2x] find the Taylor series up to 
x2. Check by squaring the secant series in Problem 37. Check 
by differentiating the tangent series in Problem 39. 

39 (Division of series) Find tan x by long division of sin x/ 
COS x: 

40 (Composition of series) If f = a. + a,x + a2x2+ and- a .  

g = blx + b2x2+ ... find the 1, x, x2 coefficients of f(g(x)). 
Test on f = 1/(1 + x), g = x/(l -x), with f(g(x)) = 1 -x. 

41 (Multiplication of series) From the series for sin x and 
1/(1-x) find the first four terms for f = sin x/(l -x). 

42 (Inversion of series) Iff =alx  + a2x2+ ... find coefficients 
bl, b2 in g = b , x + b2x + ... SO that f (g(x))=x. Compute 
b l , b 2 f o r f = e x - l , g = f - ' = l n ( l + x ) .  

43 From the multiplication (sin x)(sin x) or the derivatives of 
f(x) = sin2x find the first three terms of the series. Find the 
first four terms for cos2x by an easy trick. 

44 Somehow find the first six nonzero terms for f = (1 -x)/ 
(1 -x3). 

45 Find four terms of the series for 1/J1- x. Then square 
the series to reach a geometric series. 

46 Compute Ji ePx2 dx to 3 decimals by integrating the 
power series. 

47 Compute ji sin2t dt to 4 decimals by power series. 

48 Show that Cxn/n converges at x = - 1, even though its 
derivative Exn-' diverges. How can they have the same 
convergence radius? 

49 Compute lim (sin x - tan x)/x3 from the series. 
x + o  

50 If the nth root of an approaches L > 0, explain why Canxn 
has convergence radius r = 1/L. 

51 Find the convergence radius r around basepoints a = 0 
and a = 1 from the blowup points of (1 + tan x)/(l + x2). 
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Vectors and Matrices 


This chapter opens up a new part of calculus. It is multidimensional calculus, because 
the subject moves into more dimensions. In the first ten chapters, all functions 
depended on time t or position x-but not both. We had f(t) or y(x). The graphs 
were curves in a plane. There was one independent variable (x or t) and one dependent 
variable (y or f). Now we meet functions f(x, t) that depend on both x and t. Their 
graphs are surfaces instead of curves. This brings us to the calculus of several variables. 

Start with the surface that represents the function f(x, t) or f(x, y) or f(x, y,,t). I 
emphasize functions, because that is what calculus is about. 

EXAMPLE 1 f(x, t) = cos (x - t) is a traveling wave (cosine curve in motion). 

At t = 0 the curve is f = cos x. At a later time, the curve moves to the right 
(Figure 11.1). At each t we get a cross-section of the whole x-t surface. For a wave 
traveling along a string, the height depends on position as well as time. 

A similar function gives a wave going around a stadium. Each person stands up 
and sits down. Somehow the wave travels. 

EXAMPLE 2 f(x, y) = 3x + y + 1 is a sloping roof (fixed in time). 

The surface is two-dimensional-you can walk around on it. It is flat because 
3x + y + 1 is a linear function. In the y direction the surface goes up at 45". If y 
increases by 1, so does f .  That slope is 1. In the x direction the roof is steeper (slope 3). 
There is a direction in between where the roof is steepest (slope fi). 
EXAMPLE 3 f(x, y, t) = cos(x -y - t) is an ocean surface with traveling waves. 

This surface moves. At each time t we have a new x-y surface. There are three 
variables, x and y for position and t for time. I can't draw the function, it needs four 
dimensions! The base coordinates are x, y, t and the height is f.The alternative is a 
movie that shows the x-y surface changing with t. 

At time t = 0 the ocean surface is given by cos (x - y). The waves are in straight 
lines. The line x - y = 0 follows a crest because cos 0= 1. The top of the next wave 
is on the parallel line x -y = 2n, because cos 2n = 1. Figure 11.1 shows the ocean 
surface at a fixed time. 

The line x -y = t gives the crest at time t. The water goes up and down (like people 
in a stadium). The wave goes to shore, but the water stays in the ocean. 
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Fig. 11.1 Moving cosine with a small optical illusion-the darker Fig. 11.2 Linear functions give planes. 
bands seem to go from top to bottom as you turn. 

Of course multidimensional calculus is not only for waves. In business, demand is 
a function of price and date. In engineering, the velocity and temperature depend on 
position x and time t .  Biology deals with many variables at once (and statistics is 
always looking for linear relations like z = x + 2y). A serious job lies ahead, to carry 
derivatives and integrals into more dimensions. 

In a plane, every point is described by two numbers. We measure across by x and 
up by y. Starting from the origin we reach the point with coordinates (x, y). I want 
to describe this movement by a vector-the straight line that starts at (0,O) and ends 
at (x, y). This vector v has a direction, which goes from (0,O) to (x, y) and not the 
other way. 

In a picture, the vector is shown by an arrow. In algebra, v is given by its two 
components. For a column vector, write x above y: 

v = [,I (x and y are the components of v). 

Note that v is printed in boldface; its components x and y are in lightface.? The 
vector - v  in the opposite direction changes signs. Adding v to - v  gives the zero 
vector (different from the zero number and also in boldface): 

X - X  
and v v = [  -0 .]=[:I


Y - Y  

Notice how vector addition or subtraction is done separately on the x's and y's: 

?Another way to indicate a vector is 2You will recognize vectors without needing arrows. 
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Fig. 11.3 Parallelogram for v + w, stretching for 2v, signs reversed for -v. 

The vector v has components v ,  = 3 and v, = 1. (I write v ,  for the first component 
and v, for the second component. I also write x and y, which is fine for two com- 
ponents.) The vector w has w ,  = - 1 and w, = 2. To add the vectors, add the com- 
ponents. To draw this addition, place the start of w at the end of v. Figure 11.3 shows 
how w starts where v ends. 

VECTORS WITHOUT COORDINATES 

In that head-to-tail addition of v + w, we did something new. The vector w was moved 
away from the origin. Its length and direction were not changed! The new arrow is 
parallel to the old arrow-only the starting point is different. The vector is the same 
as before. 

A vector can be defined without an origin and without x and y axes. The purpose 
of axes is to give the components-the separate distances x and y. Those numbers 
are necessary for calculations. But x and y coordinates are not necessary for head- 
to-tail addition v + w, or for stretching to 2v, or for linear combinations 2v + 3w. 
Some applications depend on coordinates, others don't. 

Generally speaking, physics works without axes-it is "coordinate-free." A velocity 
has direction and magnitude, but it is not tied to a point. A force also has direction 
and magnitude, but it can act anywhere-not only at the origin. In contrast, a vector 
that gives the prices of five stocks is not floating in space. Each component has a 
meaning-there are five axes, and we know when prices are zero. After examples 
from geometry and physics (no axes), we return to vectors with coordinates. 

EXAMPLE 1 (Geometry) Take any four-sided figure in space. Connect the midpoints 
of the four straight sides. Remarkable fact: Those four midpoints lie in the same plane. 
More than that, they form a parallelogram. 

Frankly, this is amazing. Figure 1 1.4a cannot do justice to the problem, because it 
is printed on a flat page. Imagine the vectors A and D coming upward. B and C go 
down at different angles. Notice how easily we indicate the four sides as vectors, not 
caring about axes or origin. 

I will prove that V = W. That shows that the midpoints form a parallelogram. 
What is V? It starts halfway along A and ends halfway along B. The small triangle 

at the bottom shows V = $A + 3B. This is vector addition-the tail of 3B is at the 
head of 4A. Together they equal the shortcut V. For the same reason W = 3C + 3D. 
The heart of the proof is to see these relationships. 

One step is left. Why is +A + 3B equal to $C + i D ?  In other words, why is A + B 
equal to C + D? (I multiplied by 2.) When the right question is asked, the answer 
jumps out. A head-to-tail addition A + B brings us to the point R. Also C + D brings 
us to R. The proof comes down to one line: 

A + B =  P R = C + D .  Then V=+A+$Bequals  W = + C + + D .  
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Fig. 11.4 Four midpoints form a parallelogram (V =W). Three medians meet at P. 

EXAMPLE 2 (Also geometry) In any triangle, draw lines from the corners to the 
midpoints of the opposite sides. To prove by vectors: Those three lines meet at a point. 
Problem 38 finds the meeting point in Figure 11 . 4 ~ .Problem 37 says that the three 
vectors add to zero. 

EXAMPLE 3 (Medicine) An electrocardiogram shows the sum of many small vectors, 
the voltages in the wall of the heart. What happens to this sum-the heart vector 
V-in two cases that a cardiologist is watching for? 

Case 1 .  Part of the heart is dead (infarction). 
Case 2 .  Part of the heart is abnormally thick (hypertrophy). 

A heart attack kills part of the muscle. A defective valve, or hypertension, overworks 
it. In case 1the cells die from the cutoff of blood (loss of oxygen). In case 2 the heart 
wall can triple in size, from excess pressure. The causes can be chemical or mechanical. 
The effect we see is electrical. 

The machine is adding small vectors and bbprojecting" them in twelve directions. The 
leads on the arms, left leg, and chest give twelve directions in the body. Each graph 
shows the component of V in one of those directions. Three of the projections- 
two in the vertical plane, plus lead 2 for front-back-produce the "mean QRS vector" 
in Figure 11.5. That is the sum V when the ventricles start to contract. The left 
ventricle is larger, so the heart vector normally points down and to the left. 

Pace 
SA 

Fig. 11.5 V is a sum of small voltage vectors, at the moment of depolarization. 
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Fig. 11.6 Changes in V show dead muscle and overworked muscle. 

We come soon to projections, but here the question is about V itself. How does 
the ECCi identify the problem? 

Case 1: Heart attack The dead cells make no contribution to the electri- 
cid potential. Some small vectors are missing. Therefore the sum V 
turns away from the infarcted part. 
Chse 2: Hypertrophy The overwork increases the contribution to the 
potential. Some vectors are larger than normal. Therefore V turns 
toward the thickened part. 

When V points in an abnormal direction, the ECG graphs locate the problem. The 
P, Q, R, S, T waves on separate graphs can all indicate hypertrophy, in different 
regions of the heart. Infarctions generally occur in the left ventricle, which needs the 
greatest blood supply. When the supply of oxygen is cut back, that ventricle feels it 
first. The result can be a heart attack (= myocardial infarction = coronary occlusion). 
Section 11.2 shows how the projections on the ECG point to the location. 

First come the basic facts about vectors-components, lengths, and dot products. 

COORDINATE VECTORS AND LENGTH 

To compute with vectors we need axes and coordinates. The picture of the heart is 
"coordinate-free," but calculations require numbers. A vector is known by its compo- 
nents. The unit vectors along the axes are i and j in the plane and i, j, k in space: 

Notice h~ow easily we moved into three dimensions! The only change is that vectors 
have three components. The combinations of i and j (or i, j, k) produce all vectors v 
in the plane (and all vectors V in space): 
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Those vectors are also written v = (3, 1) andV = (1, 2, - 2). The components of the vector
are also the coordinates of a point. (The vector goes from the origin to the point.) This
relation between point and vector is so close that we allow them the same notation:
P = (x, y, z) and v = (x, y, z) = xi + yj + zk.

The sum v + V is totally meaningless. Those vectors live in different dimensions.

From the components we find the length. The length of (3, 1) is 32 + 12 = 10.
This comes directly from a right triangle. In three dimensions, V has a third com-
ponent to be squared and added. The length of V = (x, y, z) is IVI = x 2 + Y2 + z2.

Vertical bars indicate length, which takes the place of absolute value. The length
of v = 3i + j is the distance from the point (0, 0) to the point (3, 1):

IvI = v+ v= /10 IVl = 12+ 22 + (-2)2 = 3.

A unit vector is a vector of length one. Dividing v and V by their lengths produces
unit vectors in the same directions:

1/3
L-2/3

S IvA Each nonzero vector has a positive length vj. The direction of v is given
by a unit vector u = v/lvI. Then length times direction equals v.

A unit vector in the plane is determined by its angle 0 with the x axis:

u= sin ] = (cos 0)i + (sin 0)j is a unit vector: lu12 = cos 20 + sin 20 = 1.
LsinO]

In 3-space the components of a unit vector are its "direction cosines":

U = (cos a)i + (cos l)j + (cos y)k: o, fl, y = angles with x, y, z axes.

Then cos 2
a + cos 2f + cos 2 y = 1. We are doing algebra with numbers while we are

doing geometry with vectors. It was the great contribution of Descartes to see how
to study algebra and geometry at the same time.

k = 10

f. IlI

r-~1

[_6]2
I= L0

Fig. 11.7 Coordinate vectors i, j, k. Perpendicular vectors v * w = (6)(1) + (- 2)(3) = 0.

THE DOT PRODUCT OF TWO VECTORS

There are two basic operations on vectors. First, vectors are added (v + w). Second,
a vector is multiplied by a scalar (7v or - 2w). That leaves a natural question-how
do you multiply two vectors? The main part of the answer is-you don't. But there

402
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is an extremely important operation that begins with two vectors and produces a
number. It is usually indicated by a dot between the vectors, as in v -w, so it is called
the dot product.

DEFINITION I The dot product multiplies the lengths Ivl times Iwl times a cosine:

v * w = iv IwlI cos 0, 0 = angle between v and w.

EXAMPLE I0has length 3, 2Ihas length /8, the angle is 45.

The dot product is Ivl |wl cos 0 = (3)( )(1/ ), which simplifies to 6. The square
roots in the lengths are "canceled" by square roots in the cosine. For computing v .w,
a second and much simpler way involves no square roots in the first place.

DEFINITION 2 The dot product v * w multiplies component by component and adds:

V*W = V1W 1 + V2 W 2 S =(3)(2 )+(0)(2)=6.

The first form Ivl Iwl cos 0 is coordinate-free. The second form vlw, + v2W2 computes
with coordinates. Remark 4 explains why these two forms are equal.

r21 I = 32 (not perpendicular)

3 6 L6

[2 -1
21 2 = 0 (perpendicular).

-1 L 2

These dot products 32 and 0 equal IVI IWi cos 0. In the second one, cos 0 must be
zero. The angle is 7n/2 or - n/2-in either case a right angle. Fortunately the cosine
is the same for 0 and - 0, so we need not decide the sign of 0.

Remark 1 When V = W the angle is zero but not the cosine! In this case cos 0 = 1
and V . V = IVl2. The dot product of V with itself is the length squared:

V.V= (V, V2, V3)(VI, V2, V3) = V+ v+ v2 = IV2

Remark 2 The dot product of i = (1, 0, 0) with j = (0, 1, 0) is i j = 0. The axes are
perpendicular. Similarly i -k = 0 and j . k = 0. Those are unit vectors: i i= j =j
k-k= 1.

Remark 3 The dot product has three properties that keep the algebra simple:

1. V-W= WV 2. (cV). W = c(V. W) 3. (U+V).W= UW+V.W

When V is doubled (c = 2) the dot product is doubled. When V is split into i, j, k
components, the dot product splits in three pieces. The same applies to W, since

I4B The dot product or scalar product or inner product of three-dimensional
vectors is

V * W=VIWI cos = V1 1 + V2 W2+ V 3W 3. (4)

If the vectors are perpendicular then 0 = 90 and cos 6 = 0 and V W = 0.
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Fig. 11.8 Length squared = (V - W) (V - W), from coordinates and the cosine law. 

V W = W V. The nine dot products of i, j, k are zeros and ones, and a giant splitting 
of both V and W gives back the correct V W: 

Remark 4 The two forms of the dot product are equal. This comes from computing 
IV - wI2 by coordinates and also by the "law of cosines": 

with coordinates: IV - WI2 = (Vl - Wl)2 + (V2 - W2)2 + (V3 - W3)2 

from cosine law: IV - WI2 = IV12 + IWI2 - 21VI IWI cos 8. 

Compare those two lines. Line 1 contains V: and V: and V:. Their sum matches 
IV12 in the cosine law. Also W: + W: + W: matches IWI2. Therefore the terms contain- 
ing - 2 are the same (you can mentally cancel the - 2). The definitions agree: 

- 2(V1 Wl + V2 W2 + V3 W3) equals - 21VI IWI cos 8 equals - 2V W. 

The cosine law is coordinate-free. It applies to all triangles (even in n dimensions). 
Its vector form in Figure 11.8 is IV - WI2 = lV12 - 2V W + IWI2. This application to 
V W is its brief moment of glory. 

Remark 5 The dot product is the best way to compute the cosine of 8: 

vow 
cos 8 = - 

IVl lWl ' 

Here are examples of V and W with a range of angles from 0 to n: 

i and 3i have the same direction cos 8 = 1 8 = 0  

i (i + j) = 1 is positive cosB=l /& 8 = n / 4  
i and j are perpendicular: i j = 0 cos 8 = 0 8 = 7112 

i . (- i+ j)= - 1 is negative cos 8 = - 1 / f i  8 = 3 4 4  

i and - 3i have opposite directions cos 8 = - 1 8 = n  

Remark 6 The Cauchy-Schwarz inequality IV WI < IVI I WI comes from lcos 81 < 1. 

The left side is IVI IWI lcos 81. It never exceeds the right side IVI IWI. This is a key 
inequality in mathematics, from which so many others follow: 

Geometric mean f i  < arithmetic mean &x + y)  (true for any x 3 0 and y 3 0). 

Triangle inequality IV + W I < IVI + I WI ( (VI, IWI, IV + WI are lengths of sides). 

These and other examples are in Problems 39 to 44. The Schwarz inequality 
IV WI < IVI IW( becomes an equality when lcos 81 = 1 and the vectors are . 
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1 1.1 EXERCISES 

Read-through questions 

A vector has length and a . If v has components 6 and 
-8, its length is Ivl= b and its direction vector is u = 

c . The product of Ivl with u is d . This vector goes 
from (0,O) to the point x = e , y = f . A combination 
of the coordinate vectors i = g and j = h produces 
v =  i i +  i j. 

To add vectors we add their k . The sum of (6, - 8) and 
(1,O) is I . To see v + i geometrically, put the m of i 
at the n of v. The vectors form a 0 with diagonal 
v + i. (The other diagonal is P .) The vectors 2v and -v 
are q and r . Their lengths are s and t . 

In a space without axes and coordinates, the tail of V can 
be placed u . Two vectors with the same v are the 
same. If a triangle starts with V and continues with W, the 
third side is w . The vector connecting the midpoint of V 
to the midpoint of W is x . That vector is v the third 
side. In this coordinate-free form the dot product is V - W = 

2 . 

Using components, V*  W = A and (1,2, 1)- 
(2, - 3, 7) = B . The vectors are perpendicular if c . 
The vectors are parallel if D . V V is the same as E . 
The dot product of U + V with W equals F . The angle 
between V and W has cos 8 = G . When V W is negative 
then 8 is H . The angle between i + j and i + k is I . 
The Cauchy-Schwarz inequality is J , and for V = i + j 
and W = i + k it becomes 1 Q K . 
In 1-4 compute V + W and 2V - 3W and IVI2 and V W and 
cos 8. 

1 v = (1, 1, 1)' w = (-1, -1, -1) 

2 V = i + j ,  W = j - k  

3 V=i-2 j+k ,  W = i + j - 2 k  

4 V = ( l ,  1, 1, l), W = ( l ,  2, 3,4) 

5 (a) Find a vector that is perpendicular to (v,, 0,). 

(b) Find two vectors that are perpendicular to (v,, v,, v,). 

6 Find two vectors that are perpendicular to (1, 1,O) and to 
each other. 

7 What vector is perpendicular to all 2-dimensional vectors? 
What vector is parallel to all 3-dimensional vectors? 

8 In Problems 1-4 construct unit vectors in the same direc- 
tion as V. 

9 If v and w are unit vectors, what is the geometrical mean- 
ing of v * w? What is the geometrical meaning of (v * w)v? Draw 
a figure with v = i and w = (3/5)i + (4/5)j. 

10 Write down all unit vectors that make an angle 8 with the 
vector (1,O). Write down all vectors at that angle. . 

11 True or false in three dimensions: 
1. If both U and V make a 30" angle with W, so does 
U+V.  
2. If they make a 90" angle with W, so does U + V. 
3. If they make a 90" angle with W they are perpendicular: 
u * v = o .  

12 From W = (1, 2, 3) subtract a multiple of V = (1, 1, 1) so 
that W - cV is perpendicular to V. Draw V and W and 
W - cv. 

13 (a) What is the sum V of the twelve vectors from the center 
of a clock to the hours? 
(b) If the 4 o'clock vector is removed, find V for the other 
eleven vectors. 
(c) If the vectors to 1, 2, 3 are cut in half, find V for the 
twelve vectors. 

14 (a) By removing one or more of the twelve clock vectors, 
make the length IVI as large as possible. 
(b) Suppose the vectors start from the top instead of the 
center (the origin is moved to 12 o'clock, so v12 = 0). What 
is the new sum V*? 

15 Find the angle POQ by vector methods if P = (1, 1, O), 
0 = (0, 0, O),Q = (1, 2, -2). 

16 (a) Draw the unit vectors u1 = (cos 8, sin 8) and u2 = 
(cos 4, sin 4). By dot products find the formula for 
cos (e - 4). 
(b) Draw the unit vector u, from a 90" rotation of u2. By 
dot products find the formula for sin (8 + 4). 

17 Describe all points (x, y) such that v = xi + yj satisfies 

(a)Ivl=2 (b)Iv-il=2 
( c ) v 0 i = 2  (d)vWi=lvl 

18 (Important) If A and B are non-parallel vectors from the 
origin, describe 

(a) the endpoints of tB for all numbers t 
(b) the endpoints of A + tB for all t 
(c) the endpoints of sA + tB for all s and t 
(d) the vectors v that satisfy v A = v B 

19 (a)I fv+2w=iand 2v+3w=j  find vand w. 
(b)If v = i + j  and w=3i+4 j  then i =  v +  

W. 

20 If P = (0,O) and R = (0, 1) choose Q so the angle PQR is 
90". All possible Q's lie in a 

21 (a) Choose d so that A = 2i + 3j is perpendicular to 
B =  9i +dj. 
(b) Find a vector C perpendicular to A = i + j + k and 
B=i -k .  



406 11 Vectors and Matrices 

22 If a boat has velocity V with respect to the water and the 
water has velocity W with respect to the land, then . 
The speed of the boat is not IVI + IWI but 

23 Find the angle between the diagonal of cube and (a) an 
edge (b) the diagonal of a face (c) another diagonal of the 
cube. Choose lines that meet. 

24 Draw the triangle PQR in Example 1 (the four-sided figure 
in space). By geometry not vectors, show that PR is twice as 
long as V. Similarly lPRl= 21WI. Also V is parallel to W 
because both are parallel to . So V = W as before. 

(a) If A and B are unit vectors, show that they make equal 
angles with A + B. 
(b) If A, B, C are unit vectors with A + B + C = 0, they 
form a triangle and the angle between any two 
is 

(a) Find perpendicular unit vectors I and J in the plane 
that are different from i and j. 
(b) Find perpendicular unit vectors I, J ,  K different from 
i, j, k. 

If I and J are perpendicular, take their dot products with 
A = a1 + bJ to find a and b. 

28 Suppose I = (i +I)/* and J = (i - j)/& Check I J = 0 
and write A = 2i + 3j as a combination a1 + bJ. (Best method: 
use a and b from Problem 27. Alternative: Find i and j from 
I and J and substitute into A.) 

29 (a) Find the position vector OP and the velocity vector 
PQ when the point P moves around the unit circle (see figure) 
with speed 1. (b) Change to speed 2. 

30 The sum (A i)2 + (A j)2 + (A k)2 equals . 
31 In the semicircle find C and D in terms of A and B. Prove 
that C D = 0 (they meet at right angles). 

35 The vector from the earth's center to Seattle is ai + bj + ck. 
(a) Along the circle at the latitude of Seattle, what two 
functions of a, b, c stay constant? k goes to the North Pole. 
(b) On the circle at the longitude of Seattle-the 
meridian-what two functions of a, b, c stay constant? 
(c) Extra credit: Estimate a, b, c in your present position. 
The O" meridian through Greenwich has b = 0. 

36 If (A + BIZ = (AI2 + (BI2, prove that A is perpendicular to B. 

37 In Figure 11.4, the medians go from the corners to the 
midpoints of the opposite sides. Express MI, M2, M3 in terms 
of A, B, C. Prove that MI + M2 + M3 = 0. What relation 
holds between A, B, C? 

38 The point 3 of the way along is the same for all three 
medians. This means that A + $M3 = 3M, = . Prove 
that those three vectors are equal. 

39 (a) Verify the Schwarz inequality IV WI < IVI IW1 for V = 
i+2j+2k and W =2i+2j+k.  
(b) What does the inequality become when V = (A, &) 
and W = (&, &)? 

40 By choosing the right vector W in the Schwarz inequality, 
show that (V, + V2 + V3)2 < 3(V; + Vi + v:). What is W? 

41 The Schwarz inequality for ai + bj and ci + dj says that 
(a2 + b2)(c2 + d2) 2 (ac + bd)2. Multiply out to show that the 
difference is 2 0. 

42 The vectors A, B, C form a triangle if A + B + C = 0. The 
triangle inequality IA + BJ < IA( + IBI says that any one side 
length is less than . The proof comes from Schwarz: 

32 The diagonal PR has (PRI2 = (A + B) - (A + B) = A A + 43 True or false, with reason or example: 
A B + B A + B B. Add lQS12 from the other diagonal to 
prove the parallelogram law: I P R ~ ~  + IQSI2 = sum of squares (a) IV + W12 is never larger than lV12 + IWI2 
of the four side lengths. (b) In a real triangle IV + WI never equals IV( + IWI 

33 If (1, 2, 3), (3,4, 7), and (2, 1, 2) are corners of a parallelo- (c) V W equals W V 
gram, find all possible fourth corners. (d) The vectors perpendicular to i + j + k lie along a line. 
34 The diagonals of the parallelogram are A + B and 

. If they have the same length, prove that A B = 0 44 If V = i + 2k choose W so that V W = IVI IW( and 
and the region is a IV + Wl = IVl+ IWl. 



407 I1.2 Planes and Projections 

45 A methane molecule h~as a carbon atom at (0, 0,O) and 46 (a)Find a vector V at a 45" angle with i and j. 
hydrogen atoms at (1, 1, -I), (1, -1, I), (-1, 1, I), and (b) Find W that makes a 60" angle with i and j. 
(-1, -1, -1). Find (c) Explain why no vector makes a 30" angle with i and j. 

(a) the distance between hydrogen atoms 
(b)the angle between vectors going out from the carbon 
atom to the hydrogen ,atoms. 

11.2 Planes and Projections 

The most important "curves" are straight lines. The most important functions are 
linear. Those sentences take us back to the beginning of the book-the graph of 
mx + b is a line. The goal now is to move into three dimensions, where graphs are 
surfaces. Eventually the surfaces will be curved. But calculus starts with the flat 
surfaces that correspond to straight lines: 

What are the most important surfaces? Planes. 
What are the most important functions? Still linear. 

The geometrical idea of a plane is turned into algebra, by finding the equation of a 
plane. Not just a general formula, but the particular equation of a particular plane. 

A line is determined by one point (x,, yo) and the slope m. The point-slope equation 
is y - yo = m(x - x,). That is a linear equation, it is satisfied when y = yo and x = xo, 
and dyldx is m. For a plane, we start again with a particular point-which is now 
(x, ,yo, I:,). But the slope of a plane is not so simple. Many planes climb at a 45" 
angle-with "slope 1"-and more information is needed. 

The direction of a plane is described by a vector N. The vector is not in the plane, 
but perpmdicular to the plane. In the plane, there are many directions. Perpendicular 
to the plane, there is only one direction. A vector in that perpendicular direction is 
a normal vector. 

The normal vector N can point "up" or "down". The length of N is not crucial (we 
often make it a unit vector and call it n). Knowing N and the point Po = (x,, yo, z,), 
we know the plane (Figure 11.9). For its equation we switch to algebra and use the 
dot product-which is the key to perpendicularity. 

N is described by its components (a, b, c). In other words N is ai + bj + ck.  This 
vector is perpendicular to every direction in the plane. A typical direction goes from 

t N = ai + bj + ck 

normal vector 

Fig. 11.9 The normal vector to a plane. Parallel planes have the same N. 
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Po to another point P = (x, y, z) in the plane. The vector from Po to P has components 
(x - xo, y - yo, z - z,). This vector lies in the plane, so its dot product with N is zero: 

116 The plane through Po perpendicular to N = (a, b, c) has the equation 

(a, b,c)*(x-xo, y-yo, z-zo) = O  or 

4x-x0) + qy-yo)+ c(z-zo)= 0. (1) 

The point P lies on the plane when its coordinates x, y, z satisfy this equation. 

EXAMPLE 1 The plane through Po = (1,2,3) perpendicular to N = (1, 1, 1) has the 
equation (x - 1) + (y - 2) + (z - 3) = 0. That can be rewritten as x + y + z = 6. 

Notice three things. First, Po lies on the plane because 1 + 2 + 3 = 6. Second, N = 

(1, 1, 1) can be recognized from the x, y, z coefficients in x + y + z = 6. Third, we could 
change N to (2,2,2) and we could change Po to (8,2, - 4)-because N is still perpen- 
dicular and Po is still in the plane: 8 + 2 - 4 = 6. 

The new normal vector N = (2,2,2) produces 2(x - 1) + 2(y - 2) + 2(z - 3) = 0. 
That can be rewritten as 2x + 2y + 22 = 12. Same normal direction, same plane. 

The new point Po = (8, 2, - 4) produces (x - 8) + (y - 2) + (z + 4) = 0. That is 
another form of x + y + z = 6. All we require is a perpendicular N and a point Po in 
the plane. 

EXAMPLE 2 The plane through (1,2,4) with the same N = (1, 1, 1) has a different 
equation: (x - 1) + (y - 2) + (z - 4) = 0. This is x + y + z = 7 (instead of 6). These 
planes with 7 and 6 are parallel. 

Starting from a(x - x,) + b(y - yo) + c(z - 2,) = 0, we often move ax, + by, + cz, 
to the right hand side-and call this constant d: 

1 I D  With the Po terms on the right side, the equation of the plane is N P = d: 

a x + b y + c z = a x o +  byo+czo=d. (2) 

A different d gives a puraIle1 plane; d = 0 gives a plane throzcgh the origin. 

EXAMPLE 3 The plane x - y + 3z = 0 goes through the origin (0, 0, 0). The normal 
vector is read directly from the equation: N = (1, - 1, 3). The equation is satisfied by 
Po = (1, 1,O) and P = ( l ,4 ,  1). Subtraction gives a vector V = (0, 3, 1) that is in the 
plane, and N V = 0. 

The parallel planes x - y + 32 = d have the same N but different d's. These planes 
miss the origin because d is not zero (x = 0, y = 0, z = 0 on the left side needs d = 0 
on the right side). Note that 3x - 3y + 9z = - 15 is parallel to both planes. N is 
changed to 3N in Figure 11.9, but its direction is not changed. 

EXAMPLE 4 The angle between two planes is the angle between their normal vectors. 

The planes x - y + 3z = 0 and 3y + z = 0 are perpendicular, because (1, - 1, 3) 
(0, 3, 1) = 0. The planes z = 0 and y = 0 are also perpendicular, because (O,0, 1) 
(0, 1,O) = 0. (Those are the xy plane and the xz plane.) The planes x + y = 0 and 
x + z = O m a k e a 6 0 °  angle, becausecos60°=(l,  1,0)*(1,0, l)/dfi=+. 

The cosine of the angle between two planes is IN, N,I/IN,I IN,I. See Figure 11.10. 
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1

1, 1)

-k

Fig. 11.10 Angle between planes = angle between normals. Parallel and perpendicular to a
line. A line in space through P0 and Q.

Remark 1 We gave the "point-slope" equation of a line (using m), and the "point-
normal" equation of a plane (using N). What is the normal vector N to a line?

The vector V = (1, m) is parallel to the line y = mx + b. The line goes across by 1
and up by m. The perpendicular vector is N = (- m, 1). The dot product N V is
- m + m = 0. Then the point-normal equation matches the point-slope equation:

- m(x - x0 ) + 1(y - yo) = 0 is the same as y - yo = m(x - xo). (3)

Remark 2 What is the point-slope equation for a plane? The difficulty is that a
plane has different slopes in the x and y directions. The function f(x, y)=
m(x - x0) + M(y - yo) has two derivatives m and M.

This remark has to stop. In Chapter 13, "slopes" become "partial derivatives."

A LINE IN SPACE

In three dimensions, a line is not as simple as a plane. A line in space needs two
equations. Each equation gives a plane, and the line is the intersection of two planes.

The equations x + y + z = 3 and 2x + 3y + z = 6 determine a line.

Two points on that line are P0 = (1, 1, 1) and Q = (3, 0, 0). They satisfy both equations
so they lie on both planes. Therefore they are on the line of intersection. The direction
of that line, subtracting coordinates of P0 from Q, is along the vector V = 2i - j - k.

The line goes through P0 = (1, 1, 1) in the direction of V = 2i - j - k.

Starting from (xo, Yo, zo) = (1, 1, 1), add on any multiple tV. Then x = 1 + 2t and
y= 1 - t and z = 1 - t. Those are the components of the vector equation
P = P0 + tV-which produces the line.

Here is the problem. The line needs two equations-or a vector equation with a
parameter t. Neither form is as simple as ax + by + cz = d. Some books push ahead
anyway, to give full details about both forms. After trying this approach, I believe
that those details should wait. Equations with parameters are the subject of
Chapter 12, and a line in space is the first example. Vectors and planes give plenty
to do here-especially when a vector is projected onto another vector or a plane.

PROJECTION OF A VECTOR

What is the projection of a vector B onto another vector A? One part of B goes along
A-that is the projection. The other part of B is perpendicular to A. We now compute
these two parts, which are P and B - P.

I = i rI.h=mx·-· b
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In geometry, projections involve cos 0. In algebra, we use the dot product (which
is closely tied to cos 0). In applications, the vector B might be a velocity V or a force
F:

An airplane flies northeast, and a 100-mile per hour wind blows due
east. What is the projection of V = (100, 0) in the flight direction A?

Gravity makes a ball roll down the surface 2x + 2y + z = 0. What are
the projections of F = (0, 0, - mg) in the plane and perpendicular to
the plane?

The component of V along A is the push from the wind (tail wind). The other
component of V pushes sideways (crosswind). Similarly the force parallel to the
surface makes the ball move. Adding the two components brings back V or F.

B N=2i+2i+k

B-

IBI sin 0
00i

downhill force:
projection force
of F force

on plane
A

\\

A'B "rIBI cos 0-
IAI force of gravity

F = -mgk

Fig. 14.14 Projections along A of wind velocity V and force F and vector B.

We now compute the projection of B onto A. Call this projection P. Since its
direction is known-P is along A-we can describe P in two ways:

1) Give the length of P along A
2) Give the vector P as a multiple of A.

Figure 11.1lb shows the projection P and its length. The hypotenuse is IBI. The
length is IPI = HBI cos 0. The perpendicular component B - P has length IBI sin 0. The
cosine is positive for angles less than 900. The cosine (and P!) are zero when A and
B are perpendicular. IBI cos 0 is negative for angles greater than 900, and the pro-
jection points along -A (the length is IBI Icos 01). Unless the angle is 0O or 300 or 450
or 600 or 900, we don't want to compute cosines-and we don't have to. The dot
product does it automatically:

A'B
IA|I BI cos 0 = A -B so the length of P along A is IBI cos 0 - (4)

Notice that the length of A cancels out at the end of (4). If A is doubled, P is
unchanged. But if B is doubled, the projection is doubled.

What is the vector P? Its length along A is A . B/IAI. If A is a unit vector, then
JAl = 1 and the projection is A . B times A. Generally A is not a unit vector, until we
divide by IAI. Here is the projection P of B along A:

fA*B\/ A \ A-B
P = (length of P)(unit vector) (27 1 -1) ,A.

JAI | JA AIA

tailwind =
projection
of V on A

cros

U N =. .. . _

\ IAI /k, lAI/ IAI"
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EXAMPLE 5 For the wind velocity V = (100, 0) and flying direction A = (1, 1), find P.
Here V points east, A points northeast. The projection of V onto A is P:

A V 100 A V 100
length |PJ vector P= A = - (1, 1)= (50, 50).

Al 2 Al| 2

EXAMPLE 6 Project F = (0, 0, - mg) onto the plane with normal N = (2, 2, 1).

The projection of F along N is not the answer. But compute that first:

S mg P N - (2, 2, 1).
INI 3 IN12 9

P is the component of F perpendicular to the plane. It does not move the ball. The
in-plane component is the difference F - P. Any vector B has two projections, along
A and perpendicular:

A.B
The projection P = - A is perpendicular to the remaining component B - P.

A12

EXAMPLE 7 Express B = i -j as the sum of a vector P parallel to A = 3i + j and a
vector B - P perpendicular to A. Note A . B = 2.

A*B 2 6 2 4 12.
Solution P = A = A= i + j. Then B - P = i - j .

|Al2  10 10 10 10 10

Check: P (B - P) = (f6)(f0) - (2o)({) = 0. These projections of B are perpendicular.
Pythagoras: P12 + B- P12 equals IB12. Check that too: 0.4 + 1.6 = 2.0.

Question When is P = 0? Answer When A and B are perpendicular.

EXAMPLE 8 Find the nearest point to the origin on the plane x + 2y + 2z = 5.

The shortest distance from the origin is along the normal vector N. The vector P to
the nearest point (Figure 11.12) is t times N, for some unknown number t. We find t
by requiring P = tN to lie on the plane.

The plane x + 2y + 2z = 5 has normal vector N = (1, 2, 2). Therefore P = tN =
(t, 2t, 2t). To lie on the plane, this must satisfy x + 2y + 2z = 5:

t+2(2t) + 2(2t) = 5 or 9t=5 or t= . (6)

Then P = !N = (6, , ). That locates the nearest point. The distance is INI = N .
This example is important enough to memorize, with letters not numbers:

The steps are the same. N has components a, b, c. The nearest point on the plane is
a multiple (ta, tb, tc). It lies on the plane if a(ta) + b(tb) + c(tc) = d.

Thus t = d/(a2 + b2 + c2). The point (ta, tb, tc) = tN is in equation (7). The distance
to the plane is ItNI = Idl/INI.
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2j+2k

= tN IPI 5 5
ne 2y 4+4 3

mex + 2y + 2z = 5

= i + 3j + 2k

1- 5-111 =2
- +4+4

Q + tN

Fig. 11.12 Vector to the nearest point P is a multiple tN. The distance is in (7) and (9).

Question How far is the plane from an arbitrary point Q = (xl, yl, z1)?
Answer The vector from Q to P is our multiple tN. In vector form P = Q + tN. This
reaches the plane if P -N = d, and again we find t:

(Q + tN) N = d yields t = (d - Q . N)/IN12.

This new term Q N enters the distance from Q to the plane:

distance = ItNI = d - Q NI/INI = Id - ax1 - by, - cz1 l/ a2 + b2 c 2.

When the point is on the plane, that distance is zero-because ax, + by, + czx = d.
When Q is i + 3j + 2k, the figure shows Q . N = 11 and distance = 2.

PROJECTIONS OF THE HEART VECTOR

An electrocardiogram has leads to your right arm-left arm-left leg. You produce the
voltage. The machine amplifies and records the readings. There are also six chest
leads, to add a front-back dimension that is monitored across the heart. We will
concentrate on the big "Einthoven triangle," named after the inventor of the ECG.

The graphs show voltage variations plotted against time. The first graph plots the
voltage difference between the arms. Lead II connects the left leg to the right arm.
Lead III completes the triangle, which has roughly equal sides (especially if you are
a little lopsided). So the projections are based on 600 and 1200 angles.

The heart vector V is the sum of many small vectors-all moved to the same
origin. V is the net effect of action potentials from the cells-small dipoles adding to
a single dipole. The pacemaker (S-A node) starts the impulse. The atria depolarize
to give the P wave on the graphs. This is actually a P loop of the heart vector-the

LEAD aVR LtAU III

Fig. A The graphs show the component of the moving heart vector along each lead. These
figures are reproduced with permission from the CIBA Collection of Medical Illus-
trations by Frank H. Netter, M.D. Copyright 1978 CIBA-GEIGY, all rights reserved.

412
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graphs only show its projections. The impulse reaches the A V  node, pauses, and 
moves quickly through the ventricles. This produces the QRS complex-the large 
sharp movement on the graph. 

The total QRS interval should not exceed 1/10 second (2i spaces on the printout). 
V points first toward the right shoulder. This direction is opposite to the leads, so 
the tracings go slightly down. That is the Q wave, small and negative. Then the heart 
vector sweeps toward the left leg. In positions 3 and 4, its projection on lead I 
(between the arms) is strongly positive. The R wave is this first upward deflection in 
each lead. Closing the loop, the S wave is negative (best seen in leads I and aVR). 

Question 1 How many graphs from the arms and leg are really independent? 
Answer Only two! In a plane, the heart vector V has two components. If we know 
two projections, we can compute the others. (The ECG does that for us.) Different 
vectors show better in different projections. A mathematician would use 90" angles, 
with an electrode at your throat. 

Question 2 How are the voltages related? What is the aVR lead? 
Answer Project the heart vector V onto the sides of the triangle: 

'The lead vectors have L, - L,, + L,,, = O-they form a triangle. 

'The projections have V, - V,, + V,,, = V L, - V L,, + V L,,, = 0. 

The aVR lead is - iL ,  - Qh,. It is pure algebra (no wire . By vector addition it points 
toward the electrode on the right arm. Its length is J' 3 if the other lengths are 2. 

Including aVL and aVF to the left arm and foot, there are six leads intersecting at 
equal angles. Visualize them going out from a single point (the origin in the chest). 

QRS 
loop 

L 

Fig. B Heart vector goes around the QRS loop. Projections are spikes on the ECG. 

Question 3 If the heart vector is V = 2i - j, what voltage differences are recorded? 
Answer The leads around the triangle have length 2. The machine projects V: 

Lead I is the horizontal vector 2i. So V L, = 4. 
Lead I1 is the - 60" vector i - f i j .  So V L,, = 2 + fi. 
Lead I11 is the - 120" vector - i - f i j .  So V L,,, = - 2 + fi. 

The first and third add to the second. The largest R waves are in leads I and 11. In 
aVR the projection of V will be negative (Problem 46), and will be labeled an S wave. 
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Question 4 What about the potential (not just its differences). Is it zero at the center? 
Answer It is zero ifwe say so. The potential contains an arbitrary constant C. (It is 
like an indefinite integral. Its differences are like definite integrals.) Cardiologists 
define a "central terminal" where the potential is zero. 

The average of V over a loop is the mean heart vector H. This average requires 
[ Vdt, by Chapter 5. With no time to integrate, the doctor looks for a lead where the 
area under the QRS complex is zero. Then the direction of H (the axis) is perpendicu- 
lar to that lead. There is so much to say about calculus in medicine. 

1 1.2 EXERCISES 

Read-through questions 

A plane in space is determined by a point Po = (xo, yo, zo) 
and a a vector N with components (a, b, c). The point 
P = (x, y, z) is on the plane if the dot product of N with b 
is zero. (That answer was not P!) The equation of this plane 
is a( c ) + b( d ) + c( ) = 0. The equation is also 
written as ax + by + cz = d, where d equals f . A parallel 
plane has the same g and a different h . A plane 
through the origin has d = i . 

The equation of the plane through Po = (2, 1,O) perpendic- 
ular to N = (3,4, 5) is I . A second point in the plane is 
P = (0, 0, k ). The vector from Po to P is I , and it is 
m to N. (Check by dot product.) The plane through Po = 

(2, 1,0) perpendicular to the z axis has N = n and equa- 
tion 0 . 

The component of B in the direction of A is P , where 
8 is the angle between the vectors. This is A B divided by 

q . The projection vector P is IBI cos 8 times a r 
vector in the direction of A. Then P = ( IBI cos 8)(A/IAI) sim- 
plifies to 8 . When B is doubled, P is t . When A is 
doubled, P is u . If B reverses direction then P v . If 
A reverses direction then P w . 

When B is a velocity vector, P represents the x . When 
B is a force vector, P is Y . The component of B perpen- 
dicular to A equals . The shortest distance from (0, 0,O) 
to the plane ax + by + cz = d is along the A vector. The 
distance is B and the closest point on the plane is P = 

c . The distance from Q = (xl, y,, z,) to the plane is 
D . 

Find two points P and Po on the planes 1-6 and a normal 
vector N. Verify that N (P - Po) = 0. 

1 x+2y+3z=O 2 x + 2 y + 3 z = 6  3 the yzplane 

4 the plane through (0, 0,0) perpendicular to i + j - k 

5 the plane through (1, 1, 1) perpendicular to i + j - k 

6 the plane through (0, 0,O) and (1,0,0) and (0, 1, 1). 

Find an x - y - z equation for planes 7-10. 

7 The plane through Po = (1,2, -1) perpendicular to N = 

i + j 
8 The plane through Po = (1,2, -1) perpendicular to N = 

i+2 j -k  

9 The plane through (1,0, 1) parallel to x + 2y + z = 0 

10 The plane through (xo, yo, zo) parallel to x + y + z = 1. 

11 When is a plane with normal vector N parallel to the 
vector V? When is it perpendicular to V? 

(a) If two planes are perpendicular (front wall and side 
wall), is every line in one plane perpendicular to every line 
in the other? 
(b) If a third plane is perpendicular to the first, it might 
be (parallel) (perpendicular) (at a 45" angle) to the second. 

Explain why a plane cannot 
(a) contain (1, 2, 3) and (2, 3,4) and be perpendicular to 
N = i + j  
(b) be perpendicular to N = i + j and parallel to V = i + k 
(c) contain (1, 0, O), (0, 1, O), (0, 0, I), and (1, 1, 1) 
(d) contain (1, 1, - 1) if it has N = i + j - k (maybe it can) 
(e) go through the origin and have the equation 
ax+by+cz=  1. 

The equation 3x + 4y + 72 - t = 0 yields a hyperplane in 
four dimensions. Find its normal vector N and two points P, 
Q on the hyperplane. Check (P - Q) N = 0. 

15 The plane through (x, y, z) perpendicular to ai + bj + ck 
goes through (0, 0,0) if . The plane goes through 
(xo, Yo 20) if -- 
16 A curve in three dimensions is the intersection of 
surfaces. A line in four dimensions is the intersection of 

hyperplanes. 

17 (angle between planes) Find the cosine of the angle 
between x + 2 y + 2 z = 0  and (a) x + 2 z = 0  (b) x + 2 z = 5  
(c) X = 0. 
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18 N is perpendicular to a plane and V is along a line. Draw 
the angle 8 between the plane and the line, and explain why 
V N/IVI JNI is sin 8 not cos 0. Find the angle between the xy 
plane and v = i + j + dk. 
In 19-26 find the projection P of B along A. Also find IPI. 

21 B = unit vector at 60" angle with A 

22 B = vector of length 2 at 60" angle with A 

25 A is perpendicular to x - y + z = 0, B = i + j. 
26 A is perpendicular to x - y + z = 5, B = i + j + 5k. 

27 The force F = 3i - 4k acts at the point (1,2,2). How much 
force pulls toward the origin? How much force pulls vertically 
down? Which direction does a mass move under the force F? 

28 The projection of B along A is P = . The projec- 
tion of B perpendicular to A is . Check the dot 
product of the two projections. 

29 P=(x,y,z) is on the plane ax+by+cz=5 if P * N =  
IPI IN1 cos 8 = 5. Since the largest value of cos 8 is 1, the small- 
est value of IPI is . This is the distance between 

30 If the air speed of a jet is 500 and the wind speed is 50, 
what information do you need to compute the jet's speed over 
land? What is that speed? 

31 How far is the plane x + y - z = 1 from (0, 0, 0) and also 
from (1, 1, - l)? Find the nearest points. 

32 Describe all points at a distance 1 from the plane 
x+2y+2z=3. 

33 The shortest distance from Q =(2, 1, 1) to the plane 
x + y + z = 0 is along the vector . The point P = 
Q + tN = (2 + t, 1 + t, 1 + t) lies on the plane if t = . 
Then P = and the shortest distance is 
(This distance is not IPI.) 

34 The plane through (1, 1, 1) perpendicular to N =  
i + 2j + 2k is a distance from (0, 0, 0). 

35 (Distance between planes) 2x - 2y + z = 1 is parallel 
to 2x - 2y + z = 3 because . Choose a vector Q on 
the first plane and find t so that Q + tN lies on the second 
plane. The distance is ltNl= . 

36 The distance between the planes x + y + 5z = 7 and 
3x + 2y + z = 1 is zero because 

In Problems 37-41 all points and vectors are in the xy plane. 

37 The h e  3x + 4y = 10 is perpendicular to the vector N = 
. On the line, the closest point to the origin is P = 

tN. Find t and P and !PI. 

38 Draw the line x + 2y = 4 and the vector N = i + 2j. The 
closest point to Q = (3, 3) is P = Q + tN. Find t. Find P. 

39 A new way to find P in Problem 37: minimize x2 + y2 = 
x2 + (9 - 3 ~ ) ~ .  By calculus find the best x and y. 

40 To catch a drug runner going from (0,O) to (4,O) at 8 
meters per second, you must travel from (0, 3) to (4,O) at 

meters per second. The projection of your velocity 
vector onto his velocity vector will have length 

41 Show by vectors that the distance from (xl , y1 ) to the line 
ax + by = d is Id - axl - byll/ JW. 
42 It takes three points to determine a plane. So why does 
ax + by + cz = d contain four numbers a, b, c, d? When does 
ex + fy + gz = 1 represent the same plane? 

43 (projections by calculus) The dot product of B - tA with 
itself is JBI2 - 2tA B + t2(AI2. (a) This has a minimum at 
t =  . (b) Then tA is the projection of . A 
figure showing B, tA, and B - tA is worth 1000 words. 

44 From their equations, how can you tell if two planes are 
(a) parallel (b) perpendicular (c) at a 45" angle? 

Problems 45-48 are about the ECG and heart vector. 

45 The aVR lead is -$L,-iL,,. Find the aVL and aVF 
leads toward the left arm and foot. Show that 
aVR + aVL + aVF = 0. They go out from the center at 120" 
angles. 

46 Find the projection on the aVR lead of V = 2i - j in 
Question 3. 

47 If the potentials are rp,, = 1 (right arm) and (PLA = 2 and 
cpLL = - 3, find the heart vector V. The diflerences in potential 
are the projections of V. 

48 If V is perpendicular to a lead L, the reading on that lead 
is . If J V(t)dt is perpendicular to lead L, why is the 
area under the reading zero? 
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After saying that vectors are not multiplied, we offered the dot product. Now we 
contradict ourselves further, by defining the cross product. Where A B was a number, 
the cross product A x B is a vector. It has length and direction: 

The length is IAl IBI 1 sin 81. The direction is perpendicular to A and B. 

The cross product (also called vector product) is defined in three dimensions only. 
A and B lie on a plane through the origin. A x B is along the normal vector N, 
perpendicular to that plane. We still have to say whether it points "up" or "down" 
along N. 

The length of A x B depends on sin 8, where A B involved cos 8. The dot product 
rewards vectors for being parallel (cos 0 = 1). The cross product is largest when A is 
perpendicular to B (sin n/2 = 1). At every angle 

That will be a bridge from geometry to algebra. This section goes from definition to 
formula to volume to determinant. Equations (6) and (14) are the key formulas for 
A x B. 

Notice that A x A = 0. (This is the zero vector, not the zero number.) When B is 
parallel to A, the angle is zero and the sine is zero. Parallel vectors have A x B = 0. 
Perpendicular vectors have sin 8 = 1 and IA x BI = JAl IBI = area of rectangle with 
sides A and B. 

Here are four examples that lead to the cross product A x B. 

EXAMPLE 1 (From geometry) Find the area of a parallelogram and a triangle. 

Vectors A and B, going out from the origin, form two sides of a triangle. They produce 
'the parallelogram in Figure 1 1.13, which is twice as large as the triangle. 

The area of a parallelogram is base times height (perpendicular height not sloping 
height). The base is [A[. The height is IBI [sin 81. We take absolute values because 
height and area are not negative. Then the area is the length of the cross product: 

area of parallelogram = IAl IB( [sin 81 = IA x BI. (2) 

, height 

base 1 A 1 
area lAlIBl(sin81=IAxBI moment ) ~ l I F I s i n  8 

turning 4 axis 

i x j  

Fig. 11.13 Area ( A  x B( and moment (R x F(. Cross products are perpendicular to the page. 

EXAMPLE 2 (From physics) The torque vector T = R x F produces rotation. 

The force F acts at the point (x, y, z). When F is parallel to the position vector R = 
xi + yj + zk, the force pushes outward (no turning). When F is perpendicular to R, 
the force creates rotation. For in-between angles there is an outward force IF1 cos 8 
and a turning force IF1 sin 8. The turning force times the distance (RI is the moment 
JRI (FI sin 8. 
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The moment gives the magnitude and sign of the torque vector T = R x F. The
direction of T is along the axis of rotation, at right angles to R and F.

EXAMPLE 3 Does the cross product go up or down? Use the right-hand rule.

Forces and torques are probably just fine for physicists. Those who are not natural
physicists want to see something turn.t We can visualize a record or compact disc
rotating around its axis-which comes up through the center.

At a point on the disc, you give a push. When the push is outward (hard to do),
nothing turns. Rotation comes from force "around" the axis. The disc can turn either
way-depending on the angle between force and position. A sign convention is
necessary, and it is the right-hand rule:

A x B points along your right thumb when the fingers curl from A toward B.

This rule is simplest for the vectors i, j, k in Figure 11.14-which is all we need.
Suppose the fingers curl from i to j. The thumb points along k. The x-y-z axes

form a "right-handed triple." Since li| = 1 and I|j = 1 and sin 7n/2 = 1, the length of i x j
is 1. The cross product is i x j = k. The disc turns counterclockwise-its angular
velocity is up-when the force acts at i in the direction j.

Figure 11.14b reverses i and j. The force acts at j and its direction is i. The disc
turns clockwise (the way records and compact discs actually turn). When the fingers
curl from j to i, the thumb points down. Thus j x i = - k. This is a special case of an
amazing rule:

The cross product is anticommutative: B x A = - (A x B). (3)

That is quite remarkable. Its discovery by Hamilton produced an intellectual revolu-
tion in 19th century algebra, which had been totally accustomed to AB = BA. This
commutative law is old and boring for numbers (it is new and boring for dot pro-
ducts). Here we see its opposite for vector products A x B. Neither law holds for
matrix products.

ixj=k

ixk

turning jx k = i
axis

screw going in screw coming out

Fig. 11.14 ixj=k=-(jxi) ixk=-j=-(kxi) jxk=i=-(kxj).

EXAMPLE 4 A screw goes into a wall or out, following the right-hand rule.

The disc was in the xy plane. So was the force. (We are not breaking records here.)
The axis was up and down. To see the cross product more completely we need to
turn a screw into a wall.

Figure 11.14b shows the xz plane as the wall. The screw is in the y direction. By
turning from x toward z we drive the screw into the wall-which is the negative y
direction. In other words i x k equals minus j. We turn the screw clockwise to make
it go in. To take out the screw, twist from k toward i. Then k x i equals plus j.

tEverybody is a natural mathematician. That is the axiom behind this book.
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To summarize: k x i = j and j x k = i have plus signs because kij and jki are in the
same "cyclic order" as ijk. (Anticyclic is minus.) The z-x-y and y-z-x axes form right-
handed triples like x-y-z.

THE FORMULA FOR THE CROSS PRODUCT

We begin the algebra of A x B. It is essential for computation, and it comes out
beautifully. The square roots in IAI IBI Isin 01 will disappear in formula (6) for A x B.
(The square roots also disappeared in A * B, which is IAI IBI cos 0. But IAl IBI tan 0
would be terrible.) Since A x B is a vector we need to find three components.

Start with the two-dimensional case. The vectors a, i + a2j and b, i + b2j are in the
xy plane. Their cross product must go in the z direction. Therefore A x B = ? k
and there is only one nonzero component. It must be IAI IBI sin 0 (with the correct
sign), but we want a better formula. There are two clean ways to compute A x B,
either by algebra (a) or by a bridge (b) to the dot product and geometry:

(a) (ai+a2j) x (bi+b2j)=albixi+ab 2 ixj + a2bjxi+a2b2jx j. (4)

On the right are 0, ab 2 k, -a 2 b1 k, and 0. The cross product is (ab 2 - a2 b,)k.

(b) Rotate B= bli + b2j clockwise through 90o into B* = b2 i- b1j. Its length is
unchanged (and B - B* = 0). Then IAI IBI sin 0 equals IAl IB*I cos 0, which is A " B*:

IAIIBI sin = A B*= a1 b2  2 bl. (5)

SF In the xy plane, A x B equals (ab 2 - a2b)k. The parallelogram with
sides A and B has area |a1 b2 - a2b 1.The triangle OAB has area -|a, b2 - a2 b 1.

EXAMPLE 5 For A = i + 2j and B = 4i + 5j the cross product is (1 5 - 2 - 4)k = - 3k.
Area of parallelogram = 3, area of triangle = 3/2. The minus sign in A x B = - 3k is
absent in the areas.

Note Splitting A x B into four separate cross products is correct, but it does not
follow easily from IAl IBI sin 0. Method (a) is not justified until Remark 1 below. An
algebraist would change the definition of A x B to start with the distributive law
(splitting rule) and the anticommutative law:

Ax(B+C)=(AxB)+(AxC) and AxB=-(BxA).

THE CROSS PRODUCT FORMULA (3 COMPONENTS)

We move to three dimensions. The goal is to compute all three components of A x B
(not just the length). Method (a) splits each vector into its i, j, k components, making
nine separate cross products:

(ali + a2j + a3k) x (bai + b2 j + b3k) = alb2(i x i) + alb 2(i x j) + seven more terms.

Remember i x i = j x j = k x k = 0. Those three terms disappear. The other six terms
come in pairs, and please notice the cyclic pattern:

FORMULA A x B = (a2b3 - a3 b2)i + (a3b, - a1 b3)j + (alb2 - a2 b,)k. (6)

The k component is the 2 x 2 answer, when a3 = b3 = 0. The i component involves
indices 2 and 3, j involves 3 and 1, k involves 1 and 2. The cross product formula is
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written as a "determinant" in equation (14) below-many people use that form to
compute A x B.

EXAMPLE6 (i+2j+3k) x (4i+5j+6k)= (2*6- 35)i+(3*4- 16)j+(1 5- 24)k.
The i, j, k components give A x B = - 3i + 6j - 3k. Never add the - 3, 6, and - 3.

Remark 1 The three-dimensional formula (6) is still to be matched with A x B from
geometry. One way is to rotate B into B* as before, staying in the plane of A and B.
Fortunately there is an easier test. The vector in equation (6) satisfies all four geo-
metric requirements on A x B: perpendicular to A, perpendicular to B, correct length,
right-hand rule. The length is checked in Problem 16-here is the zero dot product
with A:

A (A x B)= al(a 2b3 - a3b2)+ a2(a 3b - ab 3)+ a3(ab 2 - a2b)= 0. (7)

Remark 2 (Optional) There is a wonderful extension of the Pythagoras formula
a2 + b2 = c2 . Instead of sides of a triangle, we go to areas of projections on the yz, xz,
and xy planes. 32 + 62 + 32 is the square of the parallelogram area in Example 6.

For triangles these areas are cut in half. Figure 11.15a shows three projected trian-
gles of area 1. Its Pythagoras formula is (1)2 + (1)2 + (½)2 = (area of PQR) 2.

EXAMPLE 7 P = (1, 0, 0), Q = (0, 1, 0), R = (0, 0, 1) lie in a plane. Find its equation.

Idea for any P, Q, R: Find vectors A and B in the plane. Compute the normal N = A x B.

Solution The vector from P to Q has components -1, 1, 0. It is A = j - i (subtract
to go from P to Q). Similarly the vector from P to R is B = k - i. Since A and B are
in the plane of Figure 11.15, N = A x B is perpendicular:

(j - i) x (k - i)=(j x k)- (i x k)-(j x i)+(i x i)= i + j + k. (8)

The normal vector is N = i + j + k. The equation of the plane is 1x + ly + z = d.

With the right choice d = 1, this plane contains P, Q, R. The equation is x + y + z = 1.

EXAMPLE 8 What is the area of this same triangle PQR?

Solution The area is half of the cross-product length IA x BI = Ii + j + ki = 3.

R = (0, 0, 1), planex+y +z = 1
normal N = i +j + k

B = k - i Q = (0, 1, 0) AI cos 0

A=j-i
P P=(1.. 0)

Fig. 11.15 Area of PQR is /3/2. N is PQ x PR. Volume of box is IA (B x C)I.

DETERMINANTS AND VOLUMES

We are close to good algebra. The two plane vectors ali + a2j and b1i + b2j are the
sides of a parallelogram. Its area is a1b2 - a2 bl, possibly with a sign change. There

, ,
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is a special way to write these four numbers-in a "square matrix." There is also a
name for the combination that leads to area. It is the "determinant of the matrix":

The matrix is a , its determinant is = ajb2 - a2bl.
b, b2  b1 b2

This is a 2 by 2 matrix (notice brackets) and a 2 by 2 determinant (notice vertical
bars). The matrix is an array of four numbers and the determinant is one number:

21 21 10
Examples of determinants: = 6 - 4 = 2, = 0, = 1.

4 3 2 1 0 1

The second has no area because A = B. The third is a unit square (A = i, B = j).
Now move to three dimensions, where determinants are most useful. The parallelo-

gram becomes a parallelepiped. The word "box" is much shorter, and we will use it,
but remember that the box is squashed. (Like a rectangle squashed to a parallelogram,
the angles are generally not 900.) The three edges from the origin are A = (a,, a2, a3),
B=(bl, b2, b3), C=(c1 , C2, c 3). Those edges are at right angles only when A B=
A C = B*C= 0.

Question: What is the volume of the box? The right-angle case is easy-it is length
times width times height. The volume is IAI times IBI times ICI, when the angles are
90'. For a squashed box (Figure 11.15) we need the perpendicular height, not the
sloping height.

There is a beautiful formula for volume. B and C give a parallelogram in the base,
and lB x CI is the base area. This cross product points straight up. The third vector
A points up at an angle-its perpendicular height is JAl cos 0. Thus the volume is
area IB x CI times JAI times cos 0. The volume is the dot product of A with B x C.

11G The triple scalar product is A (B x C). Volume of box = IA (B x C)I.

Important: A . (B x C) is a number, not a vector. This volume is zero when A is in
the same plane as B and C (the box is totally flattened). Then B x C is perpendicular
to A and their dot product is zero.

Usefulfacts: A (Bx C)=(Ax B)C=C (Ax B)=B.(C xA).

All those come from the same box, with different sides chosen as base-but no change
in volume. Figure 11.15 has B and C in the base but it can be A and B or A and C.
The triple product A- (C x B) has opposite sign, since C x B = - (B x C). This order
ACB is not cyclic like ABC and CAB and BCA.

To compute this triple product A . (B x C), we take B x C from equation (6):

A (B x C) = al(b2 c3 - b3C2) + a2 (b3 c 1 - blC3 ) + a3(blc 2 - b2 Cl). (9)

The numbers a,, a2, a3 multiply 2 by 2 determinants to give a 3 by 3 determinant!
There are three terms with plus signs (like alb2c3). The other three have minus signs
(like -alb 3c2). The plus terms have indices 123, 231, 312 in cyclic order. The minus
terms have anticyclic indices 132, 213, 321. Again there is a special way to write the
nine components of A, B, C-as a "3 by 3 matrix." The combination in (9), which
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gives volume, is a "3 by 3 determinant:" 

A single number is produced out of nine numbers, by formula (9). The nine numbers 
are multiplied three at a time, as in a, blc2-except this product is not allowed. Each 
row and column must be represented once. This gives the six terms in the determinant: 

, determinant = A (B x C) = 

The trick is in the _+ signs. Products down to the right are "plus": 

a1 a2 a3 

bl b2 b3 

C1 c2 c 3  

With practice the six products like 2 2 2 are done in your head. Write down only 
8 + 1 + 1 - 2 - 2 - 2 = 4. This is the determinant and the volume. 

Note the special case when the vectors are i, j, k. The box is a unit cube: 

If A, B, C lie in the same plane, the volume is zero. A zero determinant is the test 
to see whether three vectors lie in a plane. Here row A = row B - row C: 

volume of cube = 

Zeros in the matrix simplify the calculation. All three products with plus signs- 
down to the right-are zero. The only two nonzero products cancel each other. 

If the three - 1's are changed to + l's, the determinant is - 2. The determinant can 
be negative when all nine entries are positive! A negative determinant only means 
that the rows A, B, C form a "left-handed triple." This extra information from the 
sign-right-handed vs. left-handed-is free and useful, but the volume is the absolute 
value. 

The determinant yields the volume also in higher dimensions. In physics, four 
dimensions give space-time. Ten dimensions give superstrings. Mathematics uses all 
dimensions. The 64 numbers in an 8 by 8 matrix give the volume of an eight- 
dimensional box-with 8! = 40,320 terms instead of 3! = 6. Under pressure from my 
class I omit the formula. 

1 0 0  

0 1 0 

0 0 1  

1 + 0 + 0  
= = 1. 

- 0 - 0 - 0  
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Question When is the point (x, y, z) on the plane through the origin containing B 
and C? For the vector A = xi + yj + zk to lie in that plane, the volume A (B x C) 
must be zero. The equation of the plane is determinant = zero. 

Follow this example for B = j - i and C = k - i to find the plane parallel to B and C: 

This equation is x + y + z = 0. The normal vector N = B x C has components 1,1,1. 

THE CROSS PRODUCT AS A DETERMINANT 

There is a connection between 3 by 3 and 2 by 2 determinants that you have to see. 
The numbers in the top row multiply determinants from the other rows: 

The highlighted product al(b2c3 - b3c2) gives two of the six terms. AN six products 
contain an a and b and c from diflerent columns. There are 3! = 6 different orderings 
of columns 1,2, 3. Note how a3 multiplies a determinant from columns 1 and 2. 

Equation (1 3) is identical with equations (9) and (10). We are meeting the same six 
terms in different ways. The new feature is the minus sign in front of a,-and the 
common mistake is to forget that sign. In a 4 by 4 determinant, a l ,  - a,, a3, - a, 
would multiply 3 by 3 determinants. 

Now comes a key step. We write A x B as a determinant. The vectors i, j, k go in 
the top row, the components of A and B go in the other rows. The "determinant" is 
exactly A x B: 

This time we highlighted the j component with its minus sign. There is no great 
mathematics in formula (14)-it is probably illegal to mix i, j, k with six numbers but 
it works. This is the good way to remember and compute A x B. In the example 
( j  - i) x (k - i) from equation (8), those two vectors go into the last two rows: 

The k component is highlighted, to see a1b2 - a2bl again. Note the change from 
equation (1 I), which had 0,1, - 1 in the top row. That triple product was a number 
(zero). This cross product is a vector i + j + k. 
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Review question 1 
Answer 3 * 1 + 4 - 1  

Review question 2 
zero number. 

With the i, j, k row changed to 3,4,5, what is the determinant? 
k 5 1 = 12. That triple product is the volume of a box. 

When is A x B = 0 and when is A *(B x C) = O? Zero vector, 

Answer When A and B are on the same line. When A, B, C are in the same plane. 

Review question 3 Does the parallelogram area IA x BI equal a 2 by 2 determinant? 
Answer If A and B lie in the xy plane, yes. Generally no. 

Reviewquestion4 What are the vector triple products (A x B)-x C and 
A x (B x C)? 
Answer Not computed yet. These are two new vectors in Problem 47. 

Review question 5 Find the plane through the origin containing A = i + j + 2k and 
B = i + k. Find the cross product of those same vectors A and B. 
Answer The position vector P = x i  + yj + zk is perpendicular to N = A x B: 

Read-through questions 

The cross product A x B is a a whose length is b . 
Its direction is c to A and B. That length is the area of 

d whose base is IA( and whose height is e . When a-9 
A=ali+a2jandB=b,i+b2j,theareais f .Thisequals 
a 2 b y 2  s .IngeneralIA*B12+I~xB12= h . 

The rules for cross products are A x A =  i and 
A x B = - (  I ) and A x ( B + C ) = A x B +  k . In 
particular A x B needs the I -hand rule to decide its 
direction. If the fingers curl from A towards B (not more than 
180°), then m points n . By this rule i x j = 0 

a n d i x k =  P a n d j x k =  q . 
The vectors al i  + a2j  + a3k and bli + b2j + b3k have cross 

product r i + s j + t k. The vectors A = 

i + j + k  and B = i + j  have A x  B =  u . (This is also the 
3 by 3 determinant v .) Perpendicular to the plane con- 
taining (0, 0, O), (1, 1, I), (1, 1,0) is the normal vector N = 

w . The area of the triangle with those three vertices is 
x , which is half the area of the parallelogram with fourth 

vertex at Y . 
Vectors A, B, C from the origin determine a . Its vol- 

ume (A * (  A ))( comes from a 3 by 3 B . There are six 
terms, c with a plus sign and D with minus. In every 
term each row and E is represented once. The rows 
(1,0, O), (0,0, I), and (0, 1, 0) have determinant = F . That 
box is a G , but its sides form a H -handed triple in 
the order given. 

If A, B, C lie in the same plane then A (B x C) is I . 
For A = xi + yj + zk the first row contains the letters J . 
So the plane containing B and C has the equation K = 
0. When B = i + j and C = k that equation is . B x C is 

M .  

A 3 by 3 determinant splits into N 2 by 2 determinants. 
They come from rows 2 and 3, and are multiplied by'.:the 
entries in row 1. With i, j, k in row 1, this!determinant equals 
the 0 product. Its j component is p , including the 

Q sign which is easy to forget. 

Compute the cross products 1-8 from formula (6) or the ddter- 
minant (14). Do one example both ways. 

1 ( i x j ) x k  2 ( i x j ) x i  

3 (2i + 3j) x (i + k) 4 (2i + 3j + k) x (2i+ 3j - k) 

5 (2i+3j+k)x( i - j -k)  6 ( i + j - k ) x ( i - j + k )  

7 (i + 2j + 3k) x (4i - 9j) 

8 (i cos 8 + j sin 8) x (i sin 8 - j cos 8) 

9 When are (A x B( = (A( (B( and IA (B x C)( = /A1 /B( (C(? 

10 True or false: 
(a) A x B never equals A B. 
(b)IfA x B=Oand A*B=O, theneither A=OorB=O.  
(c) I f A  x B = A  x C and A#O, then B=C.  
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In 11-16 find IA x BI by equation (1) and then by computing 
A x B and its length. 

11 A = i + j + k , B = i  12 A = i + j ,  B = i - j  

13 A = - B  14 A = i + j , B = j + k  

15 A = al i  + a2j, B = b,i + b2j 

16 A = ( a l ,  a2, a3), B=(b , ,  b2, b3) 

In Problem 16 (the general case), equation (1) proves that the 
length from equation (6) is correct. 

17 True or false, by testing on A = i, B = j, C = k: 
(a) A x (A x B) = 0 (b) A . (B x C) = (A x B) C 

(c) A (B x C) = C . (B x A) 
(d) (A - B) x (A + B) = 2(A x B). 

18 (a) From A x B = - (B x A) deduce that A x A = 0. 
(b) Split (A + B) x (A + B) into four terms, to deduce that 
(A x B)= -(B x A). 

What are the normal vectors to the planes 19-22? 

19 (2, 1, 0) (x, y, z) = 4 20 3x + 4z = 5 

Find N and the equation of the plane described in 23-29. 

23 Contains the points (2, 1, I), (1, 2, I), (1, 1, 2) 

24 Contains the points (0, 1, 2), (1, 2, 3), (2, 3, 4) 

25 Through (0, 0, O), (1, 1, I), (a, b, c) [What if a = b = c?] 

26 Parallel to i + j and k 

27 N makes a 45" angle with i and j 

28 N makes a 60" angle with i and j 

29 N makes a 90" angle with i and j 

30 The triangle with sides i and j is as large as the 
parallelogram with those sides. The tetrahedron with edges 
i, j, k is as large as the box with those edges. Extra 
credit: In four dimensions the "simplex" with edges i, j, k, 1 
has volume = . 

31 If the points (x, y, z), (1, 1, O), and (1, 2, 1) lie on a plane 
through the origin, what determinant is zero? What equation 
does this give for the plane? 

32 Give an example of a right-hand triple and left-hand triple. 
Use vectors other than just i, j, k. 

33 When B = 3i + j is rotated 90" clockwise in the xy plane 
it becomes B* = . When rotated 90" counterclock- 
wise it is . When rotated 180" it is . 

34 From formula (6) verify that B (A x B) = 0. 

35 Compute 

36 Which of the following are equal 

(A + B) x B, (- B) x (-A), IAI IBl Isin 01, (A + C) x (B - C), 
HA - B) x (A + B). 

37 Compare the six terms on both sides to prove that 

The matrix is "transposed"-same determinant. 

38 Compare the six terms to prove that 

This is an "expansion on row 2." Note minus signs. 

39 Choose the signs and 2 by 2 determinants in 

40 Show that (A x B) + (B x C) + (C x A) is perpendicular to 
B-A and C - B  and A-C. 

Problems 41-44 compute the areas of triangles. 

41 The triangle PQR in Example 7 has squared area 
($12)~ = ((t2 + (j)2 + ((f2, from the 3D version of Pythagoras 
in Remark 2. Find the area of PQR when P = (a, 0, 0), Q = 

(0, b, O), and R = (0, 0, c). Check with #A x BI. 

42 A triangle in the xy plane has corners at (a,, b,), (a2, b2) 
and (a,, b,). Its area A is half the area of a parallelogram. 
Find two sides of the parallelogram and explain why 

A = *[(a2 - al)(b3 - bl)  - (a3 - al)(b2 - bl)l. 

43 By Problem 42 find the area A of the triangle with corners 
(2, 1) and (4, 2) and (1, 2). Where is a fourth corner to make a 
parallelogram? 
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44 Lifting the triangle of Problem 42 up to the plane z = 1 
gives corners (a,, bl , I), (a,, b, , I), (a,, b3, 1). The area of the 
triangle times 3 is the volume of the upside-down pyramid 
from (0, 0,0) to these corners. This pyramid volume is 4 the 
box volume, so 3 (area of triangle) = 4 (volume of box): 

Find the area A in Problem 43 from this determinant. 

1 
area of triangle = - 

2 

45 (1) The projections of A = a,i + a2j + a,k and B = 
bli + b2j + b3k onto the xy plane are 
(2) The parallelogram with sides A and B projects to a 
parallelogram with area . 
(3) General fact: The projection onto the plane normal to 
the unit vector n has area (A x B) n. Verify for n = k. 

46 (a )ForA=i+j -4kandB= -i  +j,compute(AxB)*i 
and (A x B) j and (A x B) k. By Problem 45 those are 
the areas of projections onto the yz and xz and xy planes. 
(b) Square and add those areas to find IA x BI2. This is 
the Pythagoras formula in space (Remark 2). 

a1 bl 1 

a, b2 1 

a3 b3 1 

47 (a) The triple cross product (A x B) x C is in the plane of 
A and B, because it is perpendicular to the cross product 

. 

(b) Compute (A x B) x C when A = a,i + a2j + a3k, B = 
bli+ b2j + b3k, C=i .  
(c) Compute (A C)B - (B C)A when C = i. The answers 
in (b) and (c) should agree. This is also true if C = j or C = 
k or C = c ,  i + c2 j + C, k. That proves the tricky formula 

48 Take the dot product of equation (*) with D to prove 

49 The plane containing P = (0, 1, 1) and Q = (1, 0, 1) and 
R = (1, 1,O) is perpendicular to the cross product N = 

. Find the equation of the plane and the area of 
triangle PQR. 

50 Let P =(I, 0, -I), Q = (1, 1, I), R = (2, 2, 1). Choose S so 
that PQRS is a parallelogram and compute its area. Choose 
T, U ,  V so that OPQRSTUV is a box (parallelepiped) and 
compute its volume. 

1 1.4 Matrices and Linear Equations 

We are moving from geometry to algebra. Eventually we get back to calculus, where 
functions are nonlinear-but linear equations come first. In Chapter 1, y = mx + b 
produced a line. Two equations produce two lines. If they cross, the intersection point 
solves both equations-and we want to find it. 

Three equations in three variables x, y, z produce three planes. Again they go 
through one point (usually). Again the problem is to find that intersection point 
-which solves the three equations. 

The ultimate problem is to solve n equations in n unknowns. There are n hyper- 
planes in n-dimensional space, which meet at the solution. We need a test to be sure 
they meet. We also want the solution. These are the objectives of linear algebra, which 
joins with calculus at the center of pure and applied mathematics.? 

Like every subject, linear algebra requires a good notation. To state the equations 
and solve them, we introduce a "matrix." The problem will be Au = d. The solution 
will be u = A-'d. It remains to understand where the equations come from, where 
the answer comes from, and what the matrices A and A -  ' stand for. 

TWO EQUATIONS IN TWO UNKNOWNS 

Linear algebra has no reason to choose one variable as special. The equation y - yo = 
m(x - xo) separates y from x. A better equation for a line is ax + by = d. (A vertical 

?Linear algebra dominates some applications while calculus governs others. Both are essential. 
A fuller treatment is presented in the author's book Linear Algebra and Its Applications 
(Harcourt Brace Jovanovich, 3rd edition 1988), and in many other texts. 
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line like x = 5 appears when b = 0. The first form did not allow slope m = oo.) This 
section studies two lines: 

By solving both equations at once, we are asking (x, y) to lie on both lines. The 
practical question is: Where do the lines cross? The mathematician's question is: Does 
a solution exist and is it unique? 

To understand everything is not possible. There are parts of life where you never 
know what is going on (until too late). But two equations in two unknowns can have 
no mysteries. There are three ways to write the system-by rows, by columns, and 
by matrices. Please look at all three, since setting up a problem is generally harder 
and more important than solving it. After that comes the concession to the real world: 
we compute x and y. 

EXAMPLE 1 How do you invest $5000 to earn $400 a year interest, if a money market 
account pays 5% and a deposit account pays lo%? 

Set up equations by rows: With x dollars at 5% the interest is .05x. With y dollars at 
10% the interest is .10y. One row for principal, another row for interest: 

Same equations by columns: The left side of (2) contains x times one vector plus y 
times another vector. The right side is a third vector. The equation by columns is 

Same equations by matrices: Look again at the left side. There are two unknowns x 
and y, which go into a vector u. They are multiplied by the four numbers 1, .05, 1, 
and .lo, which go into a two by  two matrix A. The left side becomes a matrix times 
a vector: 

NOW you see where the "rows" and "columns" came from. They are the rows and 
columns of a matrix. The rows entered the separate equations (2). The columns 
entered the vector equation (3). The matrix-vector multiplication Au is defined so 
that all these equations are the same: 

[:: ::I[:] [ a1x  + b1y]Au by rows: = (each is 
a2x  + b2y a dot product) 

Au by columns: (combination of [:I [;I = x [ ~ l ]+ y[:l] 
column vectors) 

A is the coeficient matrix. The unknown vector is u. The known vector on the right 
side, with components 5000 and 400, is d. The matrix equation is Au = d. 
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Fig. 11.16 Each row of Au =d gives a line. Each column gives a vector. 

This notation Au = d continues to apply when there are more equations and more 
unknowns. The matrix A has a row for each equation (usually m rows). It has a column 
for each unknown (usually n columns). For 2 equations in 3 unknowns it is a 2 by 3 
matrix (therefore rectangular). For 6 equations in 6 unknowns the matrix is 6 by 6 
(therefore square). The best way to get familiar with matrices is to work with them. 
Note also the pronunciation: "matrisees" and never "matrixes." 

Answer to the practical question The solution is x = 2000, y = 3000. That is the 
intersection point in the row picture (Figure 11.16). It is also the correct combination 
in the column picture. The matrix equation checks both at once, because matrices 
are multiplied by rows or by columns. The product either way is d: 

Singular case In the row picture, the lines cross at the solution. But there is a case 
that gives trouble. When the lines areparallel, they never cross and there is no solution. 
When the lines are the same, there is an infinity of solutions: 

2x+y=O 2x+ y = o
parallel lines same line (5)

2 x + y = 1  4x+2y=O 

This trouble also appears in the column picture. The columns are vectors a and b. 
The equation Au = d is the same as xa + yb = d. We are asked to find the combination 
of a and b (with coefficients x and y) that produces d. In the singular case a and b lie 
along the same line (Figure 11.17). No combination can produce d, unless it happens 
to lie on this line. 

parallel lines cross at solution 
lines * s = 1,  y =  1 

x a + y b  
, y =  I misses d 

Fig. 11.17 Row and column pictures: singular (no solution) and nonsingular ( x  =y = 1). 
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The investment problem is nonsingular, and 2000 a + 3000 b equals d. We also drew
Example 2: The matrix A multiplies u = (1, 1) to solve x + 2y = 3 and x - y = 0:

Au=[ 2] 1 1+2[].1 -11 1-1 0 By columns [ + 2]=1 -1 0
The crossing point is (1, 1) in the row picture. The solution is x = 1, y = 1 in the
column picture (Figure 11.17b). Then 1 times a plus 1 times b equals the right side d.

SOLUTION BY DETERMINANTS

Up to now we just wrote down the answer. The real problem is to find x and y when
they are unknown. We solve two equations with letters not numbers:

a x + b y = d,

a2 x + b2y= d2.

The key is to eliminate x. Multiply the first equation by a2 and the second equation
by a,. Subtract the first from the second and the x's disappear:

(ab 2 - a2 bl)y = (ad 2 - a2 d,).

To eliminate y, subtract b, times the second equation from b2 times the first:

(b2al - b a2 )x = (b2 d, - bid 2).

What you see in those parentheses are 2 by 2 determinants! Remember from
Section 11.3:

F a1  b1  a1  b1
The determinant of is the number alb 2 - a2 bl.

a2 b2  a2 b2

This number appears on the left side of (6) and (7). The right side of (7) is also a
determinant-but it has d's in place of a's. The right side of (6) has d's in place of
b's. So x and y are ratios of determinants, given by Cramer's Rule:

11 H Cramer's Rule

dl bl al d i

d2 b2  a2 d2
The solution is x -,

a2 bi a2 b2

a2 b2 a2 b2

The investment example is solved by three determinants from the three columns:

1 1 .05

.05 .10

5000 1
= 100

400 .10

1 5000
= 150.

.05 400

Cramer's Rule has x = 100/.05 = 2000 and y = 150/.05 = 3000. This is the solution.
The singular case is when the determinant of A is zero-and we can't divide by it.

111 Cramer's Rule breaks down when det A = 0-which is the singular case.
Then the lines in the row picture are parallel, and one column is a multiple of
the other column.

428
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EXAMPLE 3 The lines 2x + y = 0, 2x + y = 1 are parallel. The determinant is zero: 

The lines in Figure 11.17a don't meet. Notice the columns: [:I is a multiple of [:I. 
One final comment on 2 by 2 systems. They are small enough so that all solution 

methods apply. Cramer's Rule uses determinants. Larger systems use elimination 
(3 by 3 matrices are on the borderline). A third solution (the same solution!) comes 
from the inverse matrix A- ' ,  to be described next. But the inverse is more a symbol 
for the answer than a new way of computing it, because to find A-' we still use 
determinants or elimination. 

THE INVERSE OF A MATRIX 

The symbol A-' is pronounced "A inverse." It stands for a matrix-the one that 
solves Au = d .  I think of A as a matrix that takes u to d. Then A-' is a matrix that 
takes d back to u. If Au = d then u = A -  'd  (provided the inverse exists). This is exactly 
like functions and inverse functions: g(x) = y and x =gP'(y). Our goal is to find A - ' 
when we know A. 

The first approach will be very direct. Cramer's Rule gave formulas for x and y, 
the components of u. From that rule we can read off A - ' ,  assuming that D = 

a ,  b2 - a2bl is not zero. D is det A and we divide by it: 

The matrix on the right (including 1/D in all four entries) is A-' .  Notice the sign 
pattern and the subscript pattern. The inverse exists if D is not zero-this is impor- 
tant. Then the solution comes from a matrix-vector multiplication, A-' times d. We 
repeat the rules for that multiplication: 

DEFINITION A matrix M times a vector v equals a vector of dot products: 

row 2 

Equatioin (8) follows this rule with M = A-' and v = d. Look at Example 1: 

There st,ands the inverse matrix. It multiplies d to give the solution u: 

The formulas work perfectly, but you have to see a direct way to reach A -  Id. Multiply 
both sides of Au = d by A - ' .  The multiplication "cancels" A on the left side, and 
leaves u = A-'d .  This approach comes next. 
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MATRIX MULTIPLICATION

To understand the power of matrices, we must multiply them. The product of A- 1

with Au is a matrix times a vector. But that multiplication can be done another way.
First A-' multiplies A, a matrix times a matrix. The product A -'A is another matrix
(a very special matrix). Then this new matrix multiplies u.

The matrix-matrix rule comes directly from the matrix-vector rule. Effectively, a
vector v is a matrix V with only one column. When there are more columns, M times
V splits into separate matrix-vector multiplications, side by side:

DEFINITION A matrix M times a matrix V equals a matrix of dot products:

[row F
MV= v I V1 V2]

Lrow 2 L

(row 1)'v, (row 1)*v 2]

(row 2) v, (row 2) v2 1

S2][5 6 [1-5+2*7 1-6+2-8 [19 22.
3 47 8 3.5+4.7 3.6+4.8 43 50

EXAMPLE 5 Multiplying A` times A produces the "identity matrix" 0 1

Sb2 -bl 
alb2- a2bl

--A a2 a, a, b, 0
A-'A =

D a2 b2

-a2bi + ab2l1
D L 1

This identity matrix is denoted by I. It has l's on the diagonal and O's off the diagonal.
It acts like the number 1. Every vector satisfies Iu = u.

The next section moves to three equations. The algebra gets more complicated (and
4 by 4 is worse). It is not easy to write out A-'. So we stay longer with the 2 by 2
formulas, where each step can be checked. Multiplying Au = d by the inverse matrix
gives A - 1Au = A - 'd-and the left side is Iu = u.

os 01
in 01 [ sin 0

cos 01

Fig. 11.18 Rotate v forward into Av. Rotate d backward into A-'d.

430

EXAMPLE 4

(10)

(11)

:iJ (Inverse matrix and identity atrix) AA-' =I and A-A =I and Iu= u:

Nt A= t plA-c= [e f [, , , d W t. (12)acd c a 0 1 y

Note the placement of a, b, c, d. With these letters D is ad - bc.

v= 0l
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cos 8 -sin 8 
rotates every v to Av, through the angle 8. 

[.in 8 cos e ] 
Question 1 Where is the vector v = 1:l rotated to? 

L J 

Question 2 What is A- '? 

Question 3 Which vector u is rotated into d = [:I ? 

cos 8 -sin 8 
Solution 1 v rotates into Av = 

[ [;Icos 0 sin 81 = [['in 81 
Solution .3 If Au = d then u = A- ld = 

-sin 8 cos 8 cos 8 

Historical note I was amazed to learn that it was Leibniz (again!) who proposed the 
notation we use for matrices. The entry in row i and column j is aij. The identity 
matrix has a l l  = a,, = 1 and a,, = a,, = 0. This is in a linear algebra book by Charles 
Dodgson-better known to the world as Lewis Carroll, the author of Alice in 
Wonderland. I regret to say that he preferred his own notation iu instead of aij. 
"I have turned the symbol toward the left, to avoid all chance of confusion with 5. " 
It drove his typesetter mad. 

PROJECTION ONTO A PLANE = LEAST SQUARES FllllNG BY A LINE 

We close with a genuine application. It starts with three-dimensional vectors a, b, d 
and leads to a 2 by 2 system. One good feature: a, b, d can be n-dimensional with no 
change in the algebra. In practice that happens. Second good feature: There is a 
calculus problem in the background. The example is tofit  points by a straight line. 

There are three ways to state the problem, and they look different: 

1. Solve xa + yb = d as well as possible (three equations, two unknowns x and y). 
2. Project the vector d onto the plane of the vectors a and b. 
3. Finld the closest straight line ("least squares") to three given points. 

Figure 11.19 shows a three-dimensional vector d above the plane of a and b. Its 
projection onto the plane is p = xa + yb. The numbers x and y are unknown, and 
our goal is to find them. The calculation will use the dot product, which is always 
the key to right angles. 

The diflerence d - p is the "error." There has to be an error, because no combination 
of a and b can produce d exactly. (Otherwise d is in the plane.) The projection p is 
the closest point to d, and it is governed by one fundamental law: The error is 
perpendicular to the plane. That makes the error perpendicular to both vectors a 
and b: 

a * ( x a + y b - d ) = O  and b - (xa+yb-d )=O.  (13) 
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Rewrite those as two equations for the two unknown numbers x and y: 

(a a)x + (a b)y = a d 

(b a)x + (b b)y = b d. (14) 

These are the famous normal equations in statistics, to compute x and y and p. 

EXAMPLE 7 For a = (1, 1, 1) and b = (l,2, 3) and d = (0, 5,4), solve equation (14): 

3x+ 6y= 9 x =  -1 
gives SO p = -a + 2b = (1, 3,5) = projection. 

6x + 14y = 22 y =  2 

Notice the three equations that we are not solving (we can't): xa + yb = d is 

x +  y=O 

x + 2y = 5 with the 3 by 2 matrix A = 

x + 3 y = 4  

For d = (0, 5,4) there is no solution; d is not in the plane of a and b. For p = (1,3, 5) 
there is a solution, x = - 1 and y = 2. The vector p is in the plane. The error d - p 
is (- 1,2, - 1). This error is perpendicular to the columns (1, 1, 1) and ( l ,2,  3), so it is 
perpendicular to their plane. 

SAME EXAMPLE (written as a line-fitting problem) Fit the points (1,O) and (2, 5) and 
(3,4) as closely as possible ("least squares") by a straight line. 

Two points determine a line. The example asks the line f = x + yt to go through three 
points. That gives the three equations in (IS), which can't be solved with two un- 
knowns. We have to settle for the closest line, drawn in Figure 11.19b. This line is 
computed again below, by calculus. 

Notice that the closest line has heights 1, 3, 5 where the data points have heights 
0,5,4. Those are the numbers in p and d! The heights 1 ,3 ,5  fit onto a line; the heights 
0, 5 ,4  do not. In the first figure, p = (1, 3, 5) is in the plane and d = (0, 5,4) is not. 
Vectors in the plane lead to heights that lie on a line. 

Notice another coincidence. The coefficients x = - 1 and y = 2 give the projection 
-a  + 2b. They also give the closest line f = - 1 + 2t. All numbers appear in both 
figures. 

closest line f = -1 k l ;  : 2  

Fig. 11.19 Projection onto plane is (1, 3, 5) with coefficients -1, 2. Closest line has heights 
1, 3, 5 with coefficients -1, 2. Error in both pictures is -1, 2, -1. 
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Remark Finding the closest line is a calculus problem: Minimize a sum of squares.
The numbers x and y that minimize E give the least squares solution:

E(x, y) = (x + y - 0)2 + (x + 2y - 5)2 + (x + 3y - 4)2. (16)

Those are the three errors in equation (15), squared and added. They are also the
three errors in the straight line fit, between the line and the data points. The projection
minimizes the error (by geometry), the normal equations (14) minimize the error (by
algebra), and now calculus minimizes the error by setting the derivatives of E to zero.

The new feature is this: E depends on two variables x and y. Therefore E has two
derivatives. They both have to be zero at the minimum. That gives two equations for
x and y:

x derivative of E is zero: 2(x + y) + 2(x + 2y - 5) + 2(x + 3y - 4) = 0

y derivative of E is zero: 2(x + y) + 2(x + 2y - 5)(2) + 2(x + 3y - 4)(3) = 0.

When we divide by 2, those are the normal equations 3x + 6y = 9 and 6x + 14y =
22. The minimizing x and y from calculus are the same numbers -1 and 2.

The x derivative treats y as a constant. The y derivative treats x as a constant.
These are partial derivatives. This calculus approach to least squares is in Chapter 13,
as an important application of partial derivatives.

We now summarize the least squares problem-to find the closest line to n data
points. In practice n may be 1000 instead of 3. The points have horizontal coordinates
bl, b2 , ... , b,. The vertical coordinates are dl, d 2 , ... , d.. These vectors b and d,
together with a = (1, 1, ... , 1), determine a projection-the combination p = xa + yb
that is closest to d. This problem is the same in n dimensions-the error d - p is
perpendicular to a and b. That is still tested by dot products, p a = d a and p b =
d - b, which give the normal equations for x and y:

(a . a)x + (a . b)y = a . d

(b . a)x + (b " b)y = b . d

(n) x + (Xbi)y = =di

(Eb,)x + (Ibý)y = Ebid,.
(17)

44K The least squares problem projects d onto the plane of a and b. The
projection is p = xa + yb, i n dimensions. The closest line is f = x + t, in two
dimensions. The normal equations (17) give the best x and y.

11.4 EXERCISES
Read-through questions

The equations 3x + y = 8 and x + y = 6 combine into the vec-
tor equation x a + y b = = d. The left side is
Au, with coefficient matrix A = d and unknown vector
u = e . The determinant of A is f , so this problem
is not g . The row picture shows two intersecting h
The column picture shows xa + yb = d, where a = I and
b = i . The inverse matrix is A- = k . The solution
is u= A-'d= I

A matrix-vector multiplication produces a vector of dot
m from the rows, and also a combination of the n

] [uL, [a b]L , 1 I [
B L L 1-

If the entries are a, b, c, d, the determinant is D = o . A-
is [ p ] divided by D. Cramer's Rule shows components
of u = A- 'd as ratios of determinants: x = q /D and y =

r /D.

433
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A matrix-matrix multiplication MV yields a matrix of dot 
products, from the rows of s and the columns of t : 

The last line contains the u matrix, denoted by I. It has 
the property that IA = AI = v for every matrix A, and 
Iu = w for every vector u. The inverse matrix satisfies 
A- 'A = x . Then Au = d is solved by multiplying both 
sides by v ,to give u = z . There is no inverse matrix 
when A . 

The combination xa + yb is the projection of d when the 
error B is perpendicular to C and D . If a = 

(1, 1, I), b = (1, 2, 3), and d = (0, 8, 4), the equations for x and 
y are E . Solving them also gives the closest F to the 
data points (1, O), G , and (3,4). The solution is x = 0, y = 
2, which means the best line is H . The projection is 
Oa + 2b= I . The three error components are J . 
Check perpendicularity: K = 0 and = 0.. Applying 
calculus to this problem, x and y minimize the sum of squares 
E =  M . 

In 1-8 find the point (x, y) where the two lines intersect (if they 
do). Also show how the right side is a combination of the 
columns on the left side (if it is). Also find the determinant D. 

x + y = 7  2 2 x + y = 1 1  
x - y = 3  x + y = 6  

3x- y = 8  4 x + 2 y = 3  
x-3y=O 2 x + 4 y = 7  

2x-4y=O 6 l O x + y = l  
x - 2 y = o  x + y = l  

ax + by = 0 8 a x + b y = l  
2ax + 2by = 2 cx + dy = 1 

Solve Problem 3 by Cramer's Rule. 

Try to solve Problem 4 by Cramer's Rule. 

What are the ratios for Cramer's Rule in Problem 5? 

If A = I show how Cramer's Rule solves Au = d. 

Draw the row picture and column picture for Problem 1. 

Draw the row and column pictures for Problem 6. 

.Find A- ' in Problem 1. 

1.8 Try Cramer's Rule when there is no solution or infinitely 
many: 

3x+ y = o  3x+ y = l  
or 

6 x + 2 y = 2  6x+2y=2.  

19 Au = d is singular when the columns of A are . 
A solution exists if the right side d is . In this solvable 
case the number of solutions is 

20 The equations x -y = dl and 9x -9y = d2 can be solved 
if 

21 Suppose x = $ billion people live in the U.S. and y = 5 
billion live outside. If 4 per cent of those inside move out and 
2 per cent of those outside move in, find the populations dl 
inside and d2 outside after the move. Express this as a matrix 
multiplication Au = d (and find the matrix). 

22 In Problem 21 what is special about a l  + a2 and bl + b2 
(the sums down the columns of A)? Explain why dl + d2 equ-
als x + y. 

23 With the same percentages moving, suppose dl = 0.58 bil- 
lion are inside and d2 = 4.92 billion are outside at the end. Set 
up and solve two equations for the original populations x 
and y. 

24 What is the determinant of A in Problems 21-23? What 
is A- '? Check that A- 'A = I. 

25 The equations ax + y = 0, x + ay = 0 have the solution 
x = y = 0. For which two values of a are there other solutions 
(and what are the other solutions)? 

26 The equations ax + by = 0, cx + dy = 0 have the solution 
x = y = 0. There are other solutions if the two lines are 

. This happens if a, b, c, d satisfy . 
27 Find the determinant and inverse of A = [i 21. Do the 
same for 2A, A-', -A, and I. 

28 Show that the determinant of A-' is l/det A: 

d/(ad -bc) -b/(ad -bc)
A- '  = I-c/(ad -bc) a/(ad -bc) 

29 Compute AB and BA and also BC and CB: 

Verify the associative law: AB times C equals A times BC. 

30 (a) Find the determinants of A, B, AB, and BA above. 
(b) Propose a law for the determinant of BC and test it. 

Find A-' in Problem 8 if ad -bc = 1. 
e 

31 For A = [: :] and B = [ f] write out AB andA 2 by 2 system is singular when the two lines in the row 
picture . This system is still solvable if one equation g h 
is a of the other equation. In that case the two lines factor its determinant into (ad -bc)(eh -fg). Therefore 
are and the number of solutions is det(AB) = (det A)(det B). 
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32 Usually det (A + B) does not equal det A + det B. Find 39 Plot the three data points (-1, 2), (0, 6), (1,4) in a plane. 
examples of inequality and equality. Draw the straight line x + yt with the same x and y as in 

Problem 38. Locate the three errors up or down from the data 
33 Find the inverses, and check A- 'A = I and BB- ' = I, for points and compare with Problem 38. 

2 2 '  ' 40 Solve equation (14) to find the combination xa + yb of '1 '1. 
A=[' 0 2 

and B=[O a = (1, 1, 1) and b = (-1, 1, 2) that is closest to d = (1, 1, 3). 
Draw the corresponding straight line for the data points 

34 In Problem 33 compute AB and the inverse of AB. Check (-1, I), (1, I), and (2, 3). What is the vector of three errors and 

that this inverse equals B- ' times A- '. what is it perpendicular to? 

41 Under what condition on dl,  d,, d3 do the three points 35 The matrix product ABB- 'A- ' equals the mat-
rix. Therefore the inverse of AB is . Important: The (0, dl), (1, d,), (2, d3) lie on a line? 

associative law in Problem 29 allows you to multiply BB-' 42 Find the matrices that reverse x and y and project: 
first. 

36 The matrix multiplication C -'B - 'A- 'ABC yields the 
matrix. Therefore the inverse of ABC is 

37 The equations x + 2y + 32 and 4x + 5y + cz = 0 always [:: ::]projects u onto the 45' line. have a nonzero solution. The vector u = (x, y, z) is required 43 Multiplying by P = 

to be to v = (1, 2, 3) and w = (4, 5, c). So choose u = 
(a) Find the projection Pu of u = [;I. 

38 Find the combination p = xa + yb of the vectors a = 
(b) Why does P times P equal P? 

(1, 1, 1) and b = (-1, 0, 1) that comes closest to d = (2, 6,4). (c) Does P- '  exist? What vectors give Pu = O? 

(a) Solve the normal equations (14) for x and y. (b) Check that 44 Suppose u is not the zero vector but Au = 0. Then A - '  
the error d -p is perpendicular to a and b. can't exist: It would multiply and produce u. 

11.5 Linear Algebra 

This section moves from two to three dimensions. There are three unknowns x, y, z 
and also three equations. This is a t  the crossover point between formulas and 
algorithms-it is real linear algebra. The formulas give a direct solution using det- 
erminants. The algorithms use elimination and the numbers x, y, z appear at  the 
end. In practice that end result comes quickly. Computers solve linear equations by 
elimination. 

The situation for a nonlinear equation is similar. Quadratic equations 
ax2 + bx + c = 0 are solved by a formula. Cubic equations are solved by Newton's 
method (even though a formula exists). For equations involving x or x lo, algorithms 
take over completely. 

Since we are at  the crossover point, we look both ways. This section has a lot to 
do, in mixing geometry, determinants, and 3 by 3 matrices: 

1. The row picture: three planes intersect at  the solution 
2. The column picture: a vector equation combines the columns 
3. The formulas: determinants and Cramer's Rule 
4. Matrix multiplication and A -' 
5. The algorithm: Gaussian elimination. 

Part of our goal is three-dimensional calculus. Another part is n-dimensional algebra. 
And a third possibility is that you may not take mathematics next year. If that 
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happens, I hope you will use mathematics. Linear equations are so basic and impor-
tant, in such a variety of applications, that the effort in this section is worth making.

An example is needed. It is convenient and realistic if the matrix contains zeros.
Most equations in practice are fairly simple-a thousand equations each with 990
zeros would be very reasonable. Here are three equations in three unknowns:

x+ y = 1

x + 2z = 0 (1)

- 2y + 2z = -4.

In matrix-vector form, the unknown u has components x, y, z. The right sides 1, 0, - 4
go into d. The nine coefficients, including three zeros, enter the matrix A:

1 1 0 x 1
1 0 2 = 0 or Au=d. (2)
0 -2 2 z -4

The goal is to understand that system geometrically, and then solve it.

THE ROW PICTURE: INTERSECTING PLANES

Start with the first equation x + y = 1. In the xy plane that produces a line. In three
dimensions it is a plane. It has the usual form ax + by + cz = d, except that c happens
to be zero. The plane is easy to visualize (Figure 11.20a), because it cuts straight down
through the line. The equation x + y = 1 allows z to have any value, so the graph
includes all points above and below the line.

The second equation x + 2z = 0 gives a second plane, which goes through the
origin. When the right side is zero, the point (0, 0, 0) satisfies the equation. This time y
is absent from the equation, so the plane contains the whole y axis. All points (0, y, 0)
meet the requirement x + 2z = 0. The normal vector to the plane is N = i + 2k. The
plane cuts across, rather than down, in 11.20b.

Before the third equation we combine the first two. The intersection of two planes
is a line. In three-dimensional space, two equations (not one) describe a line. The
points on the line have to satisfy x + y = 1 and also x + 2z = 0. A convenient point
is P = (0, 1, 0). Another point is Q = (-1, 2, -). The line through P and Q extends out
in both directions.

The solution is on that line. The third plane decides where.

z
x = -2,

+y= 1

x

ution

.=-4

intersect
line of fi
two plar

P

Fig. 11.20 First plane, second plane, intersection line meets third plane at solution.

xX--
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The third equation - 2y + 22 = - 4 gives the third plane-which misses the origin 
because the right side is not zero. What is important is the point where the three 
planes meet. The intersection line of the first two planes crosses the third plane. 
We used determinants (but elimination is better) to find x = - 2, y = 3, z = 1. This 
solution satisfies the three equations and lies on the three planes. 

A brief comment on 4 by 4 systems. The first equation might be x + y + z - t = 0. 
It represents a three-dimensional "hyperplane" in four-dimensional space. (In physics 
this is space-time.) The second equation gives a second hyperplane, and its intersection 
with the first one is two-dimensional. The third equation (third hyperplane) reduces 
the intersection to a line. The fourth hyperplane meets that line at a point, which is 
the solution. It satisfies the four equations and lies on the four hyperplanes. In this 
course three dimensions are enough. 

COLUMN PICTURE: COMBINATION OF COLUMN VECTORS 

There is an extremely important way to rewrite our three equations. In (1) they were 
separate, in (2) they went into a matrix. Now they become a vector equation: 

The columns of the matrix are multiplied by x, y, z. That is a special way to see matrix- 
vector multiplication: Au is a combination of the columns of A. We are looking for 
the numbers x, y, z so that the combination produces the right side d. 

The column vectors a, b, c are shown in Figure 11.21a. The vector equation is 
xa + yb + zc = d. The combination that solves this equation must again be x = - 2, 
y = 3, z = 1. That agrees with the intersection point of the three planes in the row 
picture. 

1 { a, b, c in 
ney c,', same plane 

d not in that plane: 
no solution 

O =  l c+2b-2a  

Fig. 11.21 Columns combine to give d. Columns combine to give zero (singular case). 

THE DETERMINANT AND THE INVERSE MATRIX 

For a 3 by 3 determinant, the section on cross products gave two formulas. One was 
the triple product a (b x c). The other wrote out the six terms: 

det A = a (b x c) = al(b2c3 - b3c2) + a2(b3c, - blc3) + a3(b,cz - b2cl). 
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Geometrically this is the volume of a box. The columns a, b, c are the edges going out 
from the origin. In our example the determinant and volume are 2: 

A slight dishonesty is present in that calculation, and will be admitted now. In 
Section 1 1.3 the vectors A, B, C were rows. In this section a, b, c are columns. It doesn't 
matter, because the determinant is the same either way. Any matrix can be 
"transposedw-exchanging rows for columns-without altering the determinant. The 
six terms (alb2c3 is the first) may come in a different order, but they are the same six 
terms. Here four of those terms are zero, because of the zeros in the matrix. The sum 
of all six terms is D = det A = 2. 

Since D is not zero, the equations can be solved. The three planes meet at a point. 
The column vectors a, b, c produce a genuine box, and are not flattened into the same 
plane (with zero volume). The solution involves dividing by D-which is only possible 
if D = det A is not zero. 

I 14L When the determinant D is not zero, A bas an inverse: AA-' = A-'A = 
I. Then the equations Au = d have one and only one solution u = A - 'd. I 

The 3 by 3 identity matrix I is at the end of equation (5). Always Iu = u. 
We now compute A-', first with letters and then with numbers. The neatest 

formula uses cross products of the columns of A-it is special for 3 by 3 matrices. 

r b x c  i - 1 a I. (4) Every entry is divided by D: The inverse matrix is A- ' - 
D 

To test this formula, multiply by A. Matrix multiplication produces a matrix of dot 
products-from the rows of the first matrix and the columns of the second, A- 'A = I: 

a m ( b x c )  b e ( b x c )  c a ( b x c )  1 0 0  

D 
a e ( c x a )  b e ( c x a )  c g ( c x a )  

a x b  a m ( a x  b) b 0 ( a x  b) c m ( a x  b) 

On the right side, six of the triple products are zero. They are the off-diagonals like 
b (b x c), which contain the same vector twice. Since b x c is perpendicular to b, this 
triple product is zero. The same is true of the others, like a (a x b) = 0. That is the 
volume of a box with two identical sides. The six off-diagonal zeros are the volumes 
of completely flattened boxes. 

On the main diagonal the triple products equal D. The order of vectors can be abc 
or bca or cab, and the volume of the box stays the same. Dividing by this number D, 
which is placed outside for that purpose, gives the 1's in the identity matrix I. 

Now we change to numbers. The goal is to find A-' and to test it. 
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That comes from the formula, and it absolutely has to be checked. Do not fail to 
multiply A-' times A (or A times A- '). Matrix multiplication is much easier than 
the formula for A-'. We highlight row 3 times column 1, with dot product zero: 

Remark on A- ' Inverting a matrix requires D # 0. We divide by D = det A. The 
cross products b x c and c x a and a x b give A-' in a neat form, but errors are 
easy. We prefer to avoid writing i, j, k. There are nine 2 by 2 determinants to be 
calculated, and here is A-' in full-containing the nine "cofcretors~' divided by D: 

Important: The first row of A-' does not use the first column of A, except in 1/D. 
In other words, b x c does not involve a. Here are the 2 by 2 determinants that 
produce 4, -2, 2-which is divided by D = 2 in the top row of A-': 

The second highlighted determinant looks like + 2 not -2. But the sign matrix on 
the right assigns a minus to that position in A-'. We reverse the sign of blc3 - b3cl, 
to find the cofactor b3c1 - blc3 in the top row of (6). 

To repeat: For a row of A-I, cross out the corresponding column of A. Find the three 
2 by 2 determinants, use the sign matrix, and divide by D. 

The multiplication BB-I = I checks the arithmetic. Notice how : in B leads to a 
zero in the top row of B-'. To find row 1, column 3 of B-' we ignore column 1 and 
row 3 of B. (Also: the inverse of a triangular matrix is triangular.) The minus signs 
come from the sign matrix. 

THE SOLUTION u =A- 'd 

The purpose of A-' is to solve the equation Au = d. Multiplying by A-' produces 
Iu = A-'d. The matrix becomes the identity, Iu equals u, and the solution is 
immediate: 
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By writing those components x, y, z as ratios ofdeterminants, we have Cramer's Rule: 

Id b cl The solution is x = -- la d cl la b 4 y=- z=- 
la b cl' }a b cl' la b el' (10) 

The right side d replaces, in turn, columns a and b and c. All denominators are D = 

a (b x c). The numerator of x is the determinant d (b x c)  in (9). The second numera- 
tor agrees with the second component d (c x a), because the cyclic order is correct. 
The third determinant with columns abd equals the triple product d (a x b) in A -  'u. 
Thus (10) is the same as (9). 

EXAMPLE A: Multiply by A-'  to find the known solution x = - 2, y = 3, z = 1: 

EXAMPLE B: 

"= B - ' d =  

EXAMPLE C: 

Multiply by B-' to solve Bu = d when d is the column (6, 5, 4): 

Put d = (6, 5,4) in each column of B. Cramer's Rule gives u = (1, 1,4): 

This rule fills the page with determinants. Those are good ones to check by eye, 
without writing down the six terms (three + and three -). 

The formulas for A-' are honored chiefly in their absence. They are not used by 
the computer, even though the algebra is in some ways beautiful. In big calculations, 
the computer never finds A -  '-just the solution. 

We now look at the singular case D = 0. Geometry-algebra-algorithm must all 
break down. After that is the algorithm: Gaussian elimination. 

THE SINGULAR CASE 

Changing one entry of a matrix can make the determinant zero. The triple product 
a *(b x c), which is also the volume, becomes D = 0. The box is flattened and the 
matrix is singular. That happens in our example when the lower right entry is changed 
from 2 to 4: 

S = 1 1 0 2 has determinant D = 0. I 
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This does more than change the inverse. It destroys the inverse. We can no longer 
divide by D. There is no S - '. 

What happens to the row picture and column picture? For 2 by 2 systems, the 
singular case had two parallel lines. Now the row picture has three planes, which 
need not be parallel. Here the planes are not parallel. Their normal vectors are the 
rows of S, which go in different directions. But somehow the planes fail to go through 
a common point. 

What happens is more subtle. The intersection line from two planes misses the 
third plane. The line is parallel to the plane and stays above it (Figure 11.22a). When 
all three planes are drawn, they form an open tunnel. The picture tells more than the 
numbers, about how three planes can fail to meet. The third figure shows an end 
view, where the planes go directly into the page. Each pair meets in a line, but those 
lines don't meet in a point. 

Fig. 11.22 The row picture in the singular case: no intersection point, no solution. 

When two planes are parallel, the determinant is again zero. One row of the matrix 
is a multiple of another row. The extreme case has all three planes parallel-as in a 
matrix with nine 1's. 

The column picture must also break down. In the 2 by 2 failure (previous section), 
the columns were on the same line. Now the three columns are in the same plane. The 
combinations of those columns produce d only if it happens to lie in that particular 
plane. Most vectors d will be outside the plane, so most singular systems have no 
solution. 

When the determinant is zero, Au = d has no solution or infinitely many. 

THE ELIMINATION ALGORITHM 

Go back to the 3 by 3 example Au = d. If you were given those equations, you would 
never think of determinants. You would-quite correctly-start with the first equa- 
tion. It gives x = 1 -y, which goes into the next equation to eliminate x: 

Stop there for a minute. On the right is a 2 by 2 system for y and z .  The first equation 
and first unknown are eliminated-exactly what we want. But that step was not 
organized in the best way, because a "1" ended up on the left side. Constants should 
stay on the right side-the pattern should be preserved. It is better to take the same 
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step by subtracting the f is t  equation from the second: 

Same equations, better organization. Now look at the corner term -y. Its coefficient 
-1 is the secondpivot. (The first pivot was +1, the coefficient of x in the first corner.) 
We are ready for the next elimination step: 

Plan: Subtract a multiple of the "pivot equation" from the equation below it. 
Goal: To produce a zero below the pivot, so y is eliminated. 

Method: Subtract 2 times the pivot equation to cancel -2y. 

The answer comes by back substitution. Equation (12) gives z = 1. Then equation (1 1) 
gives y = 3. Then the first equation gives x = - 2. This is much quicker than determi- 
nants. You may ask: Why use Cramer's Rule? Good question. 

With numbers elimination is better. It is faster and also safer. (To check against 
error, substitute -2, 3, 1 into the original equations.) The algorithm reaches the 
answer without the determinant and without the inverse. Calculations with letters use 
det A and A - '. 

Here are the steps in a definite order (top to bottom): 

Subtract a multiple of equation 1 to produce Ox in equation 2 
Subtract a multiple of equation 1 to produce Ox in equation 3 
Subtract a multiple of equation 2 (new) to produce Oy in equation 3. 

EXAMPLE (notice the zeros appearing under the pivots): 

Elimination leads to a triangular system. The coefficients below the diagonal are zero. 
First z = 2, then y = 1, then x = - 2. Back substitution solves triangular systems (fast). 

As a final example, try the singular case Su = d when the corner entry is changed 
from 2 to 4. With D = 0, there is no inverse matrix S - l. Elimination also fails, by 
reaching an impossible equation 0 = - 2: 

The three planes do not meet at a point-a fact that was not obvious at the start. 
Algebra discovers this fact from D = 0. Elimination discovers it from 0 = -2. The 
chapter is ending at the point where my linear algebra book begins. 
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One final comment. In actual computing, you will use a code written by profession- 
als. The steps will be the same as above. A multiple of equation 1 is subtracted from 
each equation below it, to eliminate the first unknown x. With one fewer unknown 
and equation, elimination starts again. (A parallel computer executes many steps at 
once.) Extra instructions are included to reduce roundoff error. You only see the 
result! Hut it is more satisfying to know what the computer is doing. 

In the end, solving linear equations is the key step in solving nonlinear equations. 
The central idea of differential calculus is to linearize near a point. 

11.5 EXERCISES 

Read-through questions 

Three equations in three unknowns can be written as Au = 

d. The a u has components x, y, z and A is a b . The 
row picture has a c for each equation. The first two 
planes intersect in a d , and all three planes intersect in 
a e , which is f -. The column picture starts with 
vectors a, b, c from the columns of g and combines them 
to produce h . The vector equation is i = d. 

The determinant of A i.s the triple product i . This is 
the volume of a box, whose edges from the origin are k . 
If det A = I then tht: system is m . Otherwise there 
is an n matrix such that A-'A = 0 (the P mat- 
rix). In this case the solution to Au = d is u = q . 

The rows of A- ' are the cross products b x c, r , 
s , divided by D. The entries of A-' are 2 by 2 t , 

divided by D. The upper left entry equals u . The 2 by 2 
determinants needed for a row of A-' do not use the corre- 
sponding v of A. 

The solution is u = A-'d. Its first component x is a ratio 
of determinants, Id bcl divided by w . Cramer's Rule 
breaks down when det A = x . Then the columns a, b, c 
lie in the same Y . There is no solution to xa + yb + zc = 
d, if d is not on that 2: . In a singular row picture, the 
intersection of planes 1 and 2 is A to the third plane. 

In practice u is computed by B . The algorithm starts 
by subtracting a multiple of row 1 to eliminate x from c . 
If the first two equations are x - y = 1 and 3x + z = 7, this 
elimination step leaves D . Similarly x is eliminated from 
the third equation, and then E is eliminated. The equ- 
ations are solved by back F . When the system has no 
solution, we reach an im.possible equation like G . The 
example x - y = 1,3x + z = 7 has no solution if the third equ- 
ation is H . 

Rewrite 1-4 as matrix equations Au = d (do not solve). 

1 d = (0, 0, 8) is a combination of a = (1, 2, 0) and b = (2, 3, 2) 
and c = (2, 5, 2). 

2 The planes x + y = 0, x + y + z = 1, and y + z = 0 intersect 
at u = (x, y, z). 

3 The point u = (x, A z) is on the planes x = y, y = z, 
x - z = l .  

4 A combination of a = (1, 0, 0) and b = (0, 2, 0) and c = 

(0, 0, 3) equals d = (5, 2, 0). 

5 Show that Problem 3 has no solution in two ways: find 
the determinant of A, and combine the equations to produce 
o =  1. 

6 Solve Problem 2 in two ways: by inspiration and Cramer's 
Rule. 

7 Solve Problem 4 in two ways: by inspection and by com- 
puting the determinant and inverse of the diagonal matrix 

8 Solve the three equations of Problem 1 by elimination. 

9 The vectors b and c lie in a plane which is perpendicular 
to the vector . In case the vector a also lies in that 
plane, it is also perpendicular and a = 0. The 

of the matrix with columns in a plane is . 

10 The plane a, x + b ,  y + c1 z = dl  is perpendicular to its 
normal vector N, = . The plane a2x + b2 y + c2 z = 

d2 is perpendicular to N 2  = . The planes meet in a 
line that is perpendicular to both vectors, so the line is parallel 
to their product. If this line is also parallel to the 
third plane and perpendicular to N,, the system is . 
The matrix has no , which happens when 
(N1 x N 2 ) * N 3  =O. 

Problems 11-24 use the matrices A, B, C. 
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11 Find the determinants IAl, IBI, ICI. Since A is triangular, 
its determinant is the product . 

12 Compute the cross products of each pair of columns in B 
(three cross products). 

13 Compute the inverses of A and B above. Check that 
A-'A = I and B-'B = I. 

. With this right side d, why 

is u the first column of the inverse? 

15 Suppose all three columns of a matrix add to zero, as in 
C above. The dot product of each column with v = (1, 1, 1) is 

. All three columns lie in the same . The 
determinant of C must be . 

16 Find a nonzero solution to Cu =0. Find all solutions to 
Cu = 0. 

17 Choose any right side d that is perpendicular to v = 

(1, 1, 1) and solve Cu =d. Then find a second solution. 

18 Choose any right side d that is not perpendicular to v = 

(1, 1, 1). Show by elimination (reach an impossible equation) 
that Cu =d has no solution. 

19 Compute the matrix product AB and then its determinant. 
How is det AB related to det A and det B? 

20 Compute the matrix products BC and CB. All columns of 
CB add to , and its determinant is . 

21 Add A and C by adding each entry of A to the corre- 
sponding entry of C. Check whether the determinant of A + C 
equals det A + det C. 

22 Compute 2A by multiplying each entry of A by 2. The 
determinant of 2A equals times the determinant of 
A. 

23 Which four entries of A give the upper left corner entry p 
of A-', after dividing by D =det A? Which four entries of A 
give the entry q in row 1, column 2 of A-'? Find p and q. 

24 The 2 by 2 determinants from the first two rows of B are 
-1 (from columns 2, 3) and -2 (from columns 1, 3) and 

(from columns 1, 2). These numbers go into the 
third of B- ',after dividing by and chang- 
ing the sign of . 

27 Find the determinants of these four permutation matrices: 

and QP = . Multiply u = (x, y, z) by each permuta- 
tion to find Pu, Qu, PQu, and QPu. 

28 Find all six of the 3 by 3 permutation matrices (including 
I), with a single 1 in each row and column. Which of them 
are "even" (determinant 1)and which are "odd" (determinant 
-I)? 

29 How many 2 by 2 permutation matrices are there, includ- 
ing I?  How many 4 by 4? 

30 Multiply any matrix A by the permutation matrix P and 
explain how PA is related to A. In the opposite order explain 
how AP is related to A. 

31 Eliminate x from the last two equations by subtracting 
the first equation. Then eliminate y from the new third equa- 
tion by using the new second equation: 

x +  y +  z = 2  x + y  = 1  

(a) x + 3 y + 3 z = 0  (b) x +  z = 3  

x + 3 y + 7 z = 2  y + z = 5 .  

After elimination solve for 2, y, x (back substitution). 

32 By elimination and back substitution solve 

x + 2 y + 2 z = o  x - y  = 1  

(a) 2 x + 3 y + 5 z = 0  (b) x - 2 = 4  

2y + 22 = 8 y - z = 7 .  

33 Eliminate x from equation 2 by using equation 1: 

Why can't the new second equation eliminate y from the third 
equation? Is there a solution or is the system singular? 
Note: If elimination creates a zero in the "pivot position," 
try to exchange that pivot equation with an equation below 
it. Elimination succeeds when there is a full set of pivots. 

34 The pivots in Problem 32a are 1, -1, and 4. Circle those 
as they appear along the diagonal in elimination. Check that 
the product of the pivots equals the determinant. (This is how 
determinants are computed.) 

35 Find the pivots and determinants in Problem 31. 25 Why does every inverse matrix A- ' have an inverse? 

26 From the multiplication ABB- 'A- ' = I it follows that r'the inverse of AB is . The separate inverses come in 36 Find the inverse of A = 0 1 O l  and also of B =1 
order. If you put on socks and then shoes, the 

inverse begins by taking off . 
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37 The symbol aij stands for the entry in row i, column j. 39 Compute these determinants. The 2 by 2 matrix is invert- 
Find al and a,, in Problem 36. The formula Zaiibikgives ible if .The 3 by 3 matrix (is)@ not) invertible. 
the entry in which row and column of the matrix product 
AB? 

38 Write down a 3 by 3 singular matrix S in which no two .=rows are parallel. Find a combination of rows 1 and 2 that is = - + Jparallel to row 3. Find a combination of columns 1and 2 that 
is parallel to column 3. Find a nonzero solution to Su =0. -
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C H A P T E R  12 


Motion Along a Curve 

I [ 12.1 The Position Vector I-, 


This chapter is about "vector functions." The vector 2i +4j + 8k is constant. The 
vector R(t) = ti + t2j+ t3k is moving. It is a function of the parameter t, which often 
represents time. At each time t, the position vector R(t) locates the moving body: 

position vector =R(t) =x(t)i + y(t)j + z(t)k. (1) 

Our example has x = t, y = t2, z = t3. As t varies, these points trace out a curve in 
space. The parameter t tells when the body passes each point on the curve. The 
constant vector 2i +4j + 8k is the position vector R(2) at the instant t =2. 

What are the questions to be asked? Every student of calculus knows the first 
question: Find the deriuatiue. If something moves, the Navy salutes it and we differen- 
tiate it. At each instant, the body moving along the curve has a speed and a direction. 
This information is contained in another vector function-the velocity vector v(t) 
which is the derivative of R(t): 

Since i, j, k are fixed vectors, their derivatives are zero. In polar coordinates i and j 
are replaced by moving vectors. Then the velocity v has more terms from the product 
rule (Section 12.4). 

Two important cases are uniform motion along a line and around a circle. We study 
those motions in detail (v =constant on line, v = tangent to circle). This section also 
finds the speed and distance and acceleration for any motion R(t). 

Equation (2) is the computing rulefor the velocity dR/dt. It is not the definition of 
dR/dt, which goes back to basics and does not depend on coordinates: 

dR AR 
lim 

R(t + At) -R(t)- lim -= 
dt a t + o  At A t + O  At 

We repeat: R is a vector so AR is a vector so dR/dt is a vector. All three vectors are 
in Figure 12.1 (t is not a vector!). This figure reveals the key fact about the geometry: 

446 The velocity v =dR/dt is tangent to the curve. 
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The vector AR goes from one point on the curve to a nearby point. Dividing by 
At changes its length, not its direction. That direction lines up with the tangent to 
the curve, as the points come closer. 

EXAMPLE I R(t) = ti + t2j+ t3k v(t) = i + 2tj + 3t2k 

This curve swings upward as t increases. When t = 0 the velocity is v = i. The tangent 
is along the x axis, since the j and k components are zero. When t = 1 the velocity is 
i + 2j + 3k, and the curve is climbing. 

For the shadow on the xy plane, drop the k component. Position on the shadow 
is ti + t2j. Velocity along the shadow is i + 2tj. The shadow is a plane curve. 

,/-. The speed along the line is ivl= 

Fig. 12.1 Position vector R, change AR, Fig. 12.2 Equations of a line, with and 
velocity dR/dt. without the parameter t. 

EXAMPLE 2 Uniform motion in a straight line: the velocity vector v is constant. 

The speed and direction don't change. The position vector moves with dR/dt = v: 

R(t) = R, + tv (R, fixed, v fixed, t varying) (3) 

That is the equation of a line in vector form. Certainly dR/dt = v. The starting point 
R, = x,i + yd + zok is given. The velocity v = v1 i + v2j + v3k is also given. Separating 
the x, y and z components, equation (3) for a line is 

line with parameter: x = xo + tul , y = yo + tv,, z = z, + tv, . (4) 

The direction of the line is the unit 
vector v/lvl. We have three equations for x, y, z, and eliminating t leaves two equations. 
The parameter t equals (x -xo)/vl from equation (4). It also equals (y -y0)/v2and 
(z -zO)iv3.SOthese ratios equal each other, and t is gone: 

line without parameter: x-xo y-yo 2-2,-- ---- -. 
01 v2 v3 

(5 )  

An example is x = y/2 = z/3. In this case (x,, yo, z,) = (0, 0, 0)-the line goes through 
the origin. Another point on the line is (x, y, z) = (2 ,4  6). Because t is gone, we cannot 
say when we reach that point and how fast we are going. The equations x/4 = y/8 = 
2/12 give the same line. Without t we can't know the velocity v = dR/dt. 

EXAMPLE 3 Find an equation for the line through P = (0,2, 1) and Q = (1,3,3). 

Solution We have choices! R, can go to any point on the line. The velocity v can 
be any multiple of the vector from P to Q. The decision on R, controls where we 
start, and v controls our speed. 

The vector from P to Q is i + j + 2k. Those numbers 1,1,2 come from subtracting 
0,2, 1 from 1,3,3. We choose this vector i + j + 2k as a first v, and double it for a 
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second v. We choose the vector R, = P as a first start and R, = Q as a second start. 
Here are two different expressions for the same line-they are P + tv and Q + t(2v): 

The vector R(t) gives x = t, y = 2 + t, z = 1 + 2t. The vector R* is at  a different point 
on the same line at the same time: x* = 1 + 2t, y* = 3 + 2t, z* = 3 + 4t. 

If I pick t = 1 in R and t = 0 in R*, the point is (1,3,3). We arrive there at different 
times. You are seeing how parameters work, to tell "where" and also "when." If t 
goes from - GO to + GO, all points on one line are also on the other line. The path is 
the same, but the "twins" are going at different speeds. 

Question 1 When do  these twins meet? When does R(t) = R*(t)? 
Answer They meet at t = - 1, when R = R* = - i + j - k. 

Question 2 What is an equation for the segment between P and Q (not beyond)? 
Answer In the equation for R(t), let t go from 0 to 1 (not beyond): 

x = t y = 2 + t z = 1 + 2t [0 < t < 1 for segment]. (6) 

At t = 0 we start from P = (0,2, 1). At t = 1 we reach Q = (1, 3, 3). 

Question 3 What is an equation for the line without the parameter t? 
Answer Solve equations (6) for t or use (5): x / l  = (y - 2)/1 = (z - 1)/2. 

Question 4 Which point on the line is closest to the origin? 
Answer The derivative of x2 + y2 + z2 = t2 + (2 + t)2 + (1 + 2t)2 is 8 + 8t. This deriv- 
ative is zero at t = - I .  So the closest point is (- 1, 1, - 1). 

Question 5 Where does the line meet the plane x + y + z = 1 I? 
Answer Equation (6) gives x + y + z = 3 + 4t = 11. So t = 2. The meeting point is 
x = t = 2 ,  y = t + 2 = 4 , z = l + 2 t = 5 .  

Question 6 What line goes through (3, 1, 1) perpendicular to the plane x - y - z = 1 ? 
Answer The normal vector to the plane is N = i - j - k. That is v. The position 
vector to (3, 1, 1) is R, = 3i + j + k. Then R = R, + tv. 

COMPARING LINES AND PLANES 

A line has one parameter or two equations. We give the starting point and velocity: 
(x, y, z) = (x,, yo, z, ) + t(v, , v2, v,). That tells directly which points are on the line. 
Or  we eliminate t to find the two equations in (5). 

A plane has one equation or two parameters! The equation is ax + by + cz = d. 
That tells us indirectly which points are on the plane. (Instead of knowing x, y, z ,  we 
know the equation they satisfy. Instead of directions v and w in the plane, we are 
told the perpendicular direction N =(a,  b, c).) With parameters, the line contains 
R, + tv and the plane contains R, + tv + sw. A plane looks worse with parameters 
(t and s), a line looks better. 

Questions 5 and 6 connected lines to planes. Here are two more. See Problems 
4 1 -44: 

Question 7 When is the line R, + tv parallel to the plane? When is it perpendicular? 
Answer The test is v N = 0. The test is v x N = 0. 

EXAMPLE 4 Find the plane containing Po = ( I ,  2, 1 )  and the line of points 
(1,0,0) + t(2,0, - 1). That vector v will be in the plane. 
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Solution The vector v = 2i -k goes along the line. The vector w = 2j + k goes from 
(1,0,O) to (1,2, 1). Their cross product is 

The plane 2x -2y + 42 = 2 has this normal N and contains the point (1,2,1). 

SPEED, DIRECTION, DISIANCE, ACCELERATION 

We go back to the curve traced out by R(t). The derivative v(t) = dR/dt is the velocity 
vector along that curve. The speed is the magnitude of v: 

speed = Ivl= J(dx/dt)' + (dyldt)' + (dzldt)'. (7) 

The direction of the velocity vector is v/lvl. This is a unit vector, since v is divided by 
its length. The unit tangent vector v/lvl is denoted by T. 

The tangent vector is constant for lines. It changes direction for curves. 

EXAMPLE 5 (important) Find v and (v(and T for steady motion around a circle: 

x = r cos a t ,  y = r sin a t ,  z = 0. 

Solution The position vector is R = r cos wt i + r sin wt j. The velocity is 

v = dR/dt = -wr sin wt i + wr cos wt j (tangent, not unit tangent) 

The speed is the radius r times the angular velocity w: 

~ v l =,/(-or sin cot)' + (wr cos wt12 = wr. 

The unit tangent vector is v divided by Ivl: 

T =  -sin wt i+cos wt j (length 1 since sin2wt + cos2wt= 1). 

Think next about the distance traveled. Distance along a curve is always denoted 
by s (called arc length). I don't know why we use s-certainly not as the initial for 
speed. In fact speed is distance divided by time. The ratio s/t gives average speed; 
dsldt is instantaneous speed. We are back to Chapter 1 and Section 8.3, the relation 
of speed to distance: 

speed lv( = dsldt distance s = 1(dsldt) dt = 1lv(t)l dt. 

Notice that (vl and s and t are scalars. The direction vector is T: 

T=-=----
v dR/dt - dR -unit tangent vector. 
Ivl dsldt ds 

In Figure 12.3, the chord length (straight) is (ARI. The arc length (curved) is As. As 
AR and As approach zero, the ratio JAR/Asl approaches (TI= 1. 

Think finally about the acceleration vector a(t). It is the rate of change of velocity 
(not the rate of change of speed): 
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ort 
r cos o t  
r sin a t  sin t ,  z = t 

Fig. 12.3 Steady motion around a circle. Half turn up a helix. 

For steady motion along a line, as in x = t, y = 2 + t, z = 1 + 2t, there is no accelera- 
tion. The second derivatives are all zero. For steady motion around a circle, there is 
acceleration. In driving a car, you accelerate with the gas pedal or the brake. You 
also accelerate by turning the wheel. It is the velocity vector that changes, nat the 
speed. 

EXAMPLE 6 Find the distance s(t) and acceleration a(t) for circular motion. 

Solution The speed in Example 5 is dsldt = or.  After integrating, the distance is s = 
art .  At time t we have gone through an angle of cut. The radius is r, so the distance 
traveled agrees with ot times r. Note that the dimension of w is l/time. (Angles are 
dimensionless.) At time t = 2n/w we have gone once around the circle-to s = 2nr 
not back to s = 0. 

The acceleration is a = d2R/dt2. Remember R = r cos wt i + r sin a t  j: 

a(t) = -w2r cos wt i -w2r sin wt j. (10) 

That direction is opposite to R. This is a special motion, with no action on the gas 
pedal or the brake. All the acceleration is from turning. The magnitude is la1 = w2r, 
with the correct dimension of distance/(timeJ2. 

EXAMPLE 7 Find v and s and a around the helix R = cos t i + sin t j + t k. 

Solution The velocity is v = - sin t i + cos t j + k. The speed is 

ds/dt = Ivl= Jsin2t + cos2t + 1 = & (constant). 

Then distance is s = f i  t. At time t = n, a half turn is complete. The distance along 
the shadow is n (a half circle). The distance along the helix is 8n, because of its 
45" slope. 

The unit tangent vector is velocity/speed, and the acceleration is dvldt: 

T = ( - s i n t i + c o s t j + k ) / &  a = - c o s t i - s i n t j .  

EXAMPLE 8 Find v and s and a around the ellipse x = cos t, y = 2 sin t, z = 0. 

Solution Take derivatives: v = -sin t i + 2 cos t j and lv( = Jsin2t + 4 cos2t. This is 
the speed dsldt. For the distance s, something bad happens (or something normal). 
The speed is not simplified by sin2t + cos2t = 1. We cannot integrate dsldt to find a 
formula for s. The square root defeats us. 

The acceleration -cos t i -2 sin t j still points to the center. This is not the Earth 
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going around the sun. The path is an ellipse but the speed is wrong. See Section 12.4
(the pound note) for a terrible error in the position of the sun.

12A The basic formulas for motion along a curve are

dR dv ds v dR/dt dR
dt dt dt jvj ds/dt ds

Suppose we know the acceleration a(t) and the initial velocity vo and position Ro.
Then v(t) and R(t) are also known. We integrate each component:

a(t) = constant : v(t) = vo + at - R(t) = Ro + vt + -at 2

a(t) = cos t k = v(t) = v0 + sin t k= R(t) = R0 + Vot - cos t k.

THE CURVE OF A BASEBALL

There is a nice discussion of curve balls in the calculus book by Edwards and Penney.
We summarize it here (optionally). The ball leaves the pitcher's hand five feet off the
ground: Ro = Oi + Oj + 5k. The initial velocity is vo = 120i - 2j + 2k (120 ft/sec is more
than 80 miles per hour). The acceleration is - 32k from gravity, plus a new term from
spin. If the spin is around the z axis, and the ball goes along the x axis, then this
acceleration is in the y direction. (It comes from the cross product k x i-there is a
pressure difference on the sides of the ball.) A good pitcher can achieve a = 16j - 32k.
The batter integrates as fast as he can:

v(t) = vo + at = 120i + (-2 + 16t)j + (2 - 32t)k

R(t) = Ro + vot + ½at2 = 120t i + (-2t + 8t2)j + (5 + 2t - 16t 2)k.

Notice the t2. The effect of spin is small at first, then suddenly bigger (as every batter
knows). So is the effect of gravity-the ball starts to dive. At t = -, the i component
is 60 feet and the ball reaches the batter. The j component is 1 foot and the k
component is 2 feet-the curve goes low over the outside corner.

At t = 1, when the batter saw the ball halfway, the j component was zero. It looked
as if it was coming right over the plate.

x=30 z=5.5 x = 0z = 5

A <=60 z=2 =2

1 1
t=- 2 y= 1 t= 4 y=0 t=0 y=0

Fig. 12.4 A curve ball approaches home plate. Halfway it is on line.

12.1 EXERCISES

Read-through questions where s measures the a. Then s = S h . The tangent
vector is in the same direction as the I , but T is a .The position vector a along the curve changes with the vector is in the same direction a the but T is a

parameter t. The velocity is b . The acceleration is c
'If the position is i + tj + t2k, then v = d and a = e . Steady motion along a line has a = m . If the line is x =
In that example the speed is Ivi = f . This equals ds/dt, y = z, the unit tangent vector is T = n . If the speed is
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Iv( = fi,the velocity vector is v = o . If the initial posi- 
tion is (1, 0, O), the position vector is R(t) = P . The general 
equation of a line is x = xo + tv,, y = q , z = r . In 
vector notation this is R(t) = s . Eliminating t leaves the 
equations (x -xo)/v, = (y -yo)/v2= t . A line in space 
needs u equations where a plane needs v . A line has 
one parameter where a plane has w . The line from Ro = 
(1,0,O) to (2,2,2) with lvl= 3 is R(t) = x . 

Steady motion around a circle (radius r, angular velocity 
o)has x = Y ,y = z ,z =0. The velo.city is v = A . 
The speed is Ivl= B 

has magnitude D 

upward motion R = 
motion around a F 

. The acceleration is a = C ,which 
and direction E . Combining 

tk with this circular motion produces 
. Then v = G and Ivl= H . 

1 Sketch the curve with parametric equations x = t, y = t3. 
Find the velocity vector and the speed at t = 1. 

2 Sketch the path with parametric equations x = 1 + t, y = 
1 - t. Find the xy equation of the path and the speed along it. 

3 On the circle x = cos t, y = sin t explain by the chain rule 
and then by geometry why dyldx = -cot t. 

4 Locate the highest point on the curve x = 6t, y = 6t - t2. 
This curve is a , What is the acceleration a? 

5 Find the velocity vector and the xy equation of the tangent 
line to x = et, y = e-' at t = 0. What is the xy equation of the 
curve? 

6 Describe the shapes of these curves: (a) x = 2', y = 4'; (b) 
x = 4', y = 8'; (c) x = 4', y = 4t. 

Note: Tojnd "parametric equations" is tojnd x(t), y(t), and 
possibly z(t). 

7 Find parametric equations for the line through P = 
(1,2,4) and Q = (5,5,4). Probably your speed is 5; change the 
equations so the speed is 10. Probably your Ro is P; change 
the start to Q. 

8 Find an equation for any one plane that is perpendicular 
to the line in Problem 7. Also find equations for any one line 
that is perpendicular. 

9 On a straight line from (2,3,4) with velocity v = i -k, the 
position vector is R(t) = . If the velocity vector is 
changed to ti - tk, then R(t) = . The path is still 

10 Find parametric equations for steady motion from P = 
(3, 1, -2) at t = 0 on a line to Q = (0,0,O) at t = 3. What is 
the speed? Change parameters so the speed is et. 

11 The equations x - 1 = g y  -2) = %z-2) describe a 
. The same path is given parametrically by x = 1 + t, 

Y = , z = - . The same path is also given by 
x = 1 + 2 t , y =  , z =  

12 Find parametric equations to go around the unit circle 

with speed e' starting from x = 1, y = 0. When is the circle 
completed? 

13 The path x = 2y = 32 = 6t is a traveled with 
speed . If t is restricted by t 2 1 the path starts at 

. If t is restricted by 0 Q t d 1 the path is a . 
14 Find the closest point to the origin on the line x = 1 + t, 
y = 2 - t. When and where does it cross the 45" line through 
the origin? Find the equation of a line it never crosses. 

15 (a) How far apart are the two parallel lines x = y and 
x = y + l? (b) How far is the point x = t, y = t from the point 
x = t, y = t + I? (c) What is the closest distance if their speeds 
are different: x = t, y = t and x ='2t, y = 2t + l? 

16 Which vectors follow the same path as R = ti + t2j? The 
speed along the path may be different. 

(a)2ti+2t2j (b)2ti+4t2j (c) - t i + t 2 j  (d) t3 i+t6j  

17 Find a parametric form for the straight line y = mx + b. 

18 The line x = 1 + u,t, y = 2 + v2t passes through the origin 
provided u, + v2 = 0. This line crosses the 
45" line y = x unless ul  + u2 = 0. 

19 Find the velocity v and speed Ivl and tangent vector T 
for these motions: (a) R = ti + t - 'j (b) R = t cos t i + t sin t j 
(c)R = (t + 1)i + (2t + 1)j+ (2t + 2)k. 

20 If the velocity dxldt i + dyldt j is always perpendicular to 
the position vector xi + yj, show from their dot product that 
x2 + y2 is constant. The point stays on a circle. 

21 Find two paths R(t) with the same v = cos t i + sin t j. Find 
a third path with a different v but the same acceleration. 

22 If the acceleration is a constant vector, the path must be 
. If the path is a straight line, the acceleration vector 

must be . 

23 Find the minimum and maximum speed if x = t + cos t, 
y = t -sin t. Show that la1 is constant but not a .  The point is 
going around a circle while the center is moving on what line? 

24 Find x(t), y(t) so that the point goes around the circle 
(x- + ( ~ - 3 ) ~= 4  with speed 1. 

25 A ball that is circling with x = cos 2t, y = sin 2t flies off on 
a tangent at t = 48.  Find its departure point and its position at 
a later time t (linear motion; compute its constant velocity v). 

26 Why is la1 generally different from d2s/dt2? Give an 
example of the difference, and an example where they are 
equal. 

27 Change t so that the speed along the helix R =  
cos t i +sin t j + t k is 1 instead of $. Call the new 
parameter s. 

28 Find the speed dsldt on the line x = 1 + 6t, y = 2 + 3t, 
z = 2t. Integrate to find the length s from (1,2,0) to 
(1 3,8,4). Check by using 122 + 62+ 42. 
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29 Find v and Ivl and a for the curve x = tan t, y = sec t. What 40 Two particles are racing from (I, 0) to (0,l). One follows 
is this curve? At what time does it go to infinity, and along x = cos t, y = sin t, the other follows x = 1 + v l  t, y = v2 t. 
what line? Choose vl and v2 so that the second particle goes slower but 

30 Construct parametric equations for travel on a helix with wins. 

speed t. 41 Two lines in space are given by R(t) = P + tv and R(t) = 
Q + tw. Four The lines are parallel or the same 31 Suppose the unit tangent vector T(t) is the derivative of 

R(t). What does that say about the speed? Give a noncircular or intersecting or skew. Decide which is which based on the 
vectors v and w and u = Q - P (which goes between the lines): example. 

(a) The lines are parallel if .are parallel. 
32 For travel on the path y = f(x), with no parameter, it is (b) The lines are the same if are parallel. 
impossible to find the but still possible to find the 

at each point of the path. (c) The lines intersect if are not parallel but 
lie in the same plane. 

Find x(t) and y(t) .for paths 33-36. 

33 Around the square bounded by x = 0, x = 1, y = 0, y = 1, 
with speed 2. The formulas have four parts. 

34 Around the unit circle with speed e-'. Do you get all the 
way around? 

35 Around a circle of radius 4 with acceleration la1 = 1. 

36 Up and down the y axis with constant acceleration -j, 
returning to (0,O) at t = 10. 

37 True (with reason) or false (with example): 
(a) If (RI = 1 for all t then Ivl= constant. 
(b) If a = 0 then R = constant. 
(c) If v v = constant then v a = 0. 
(d) If v R = 0 then R R = constant. 
(e) There is no path with v =a. 

38 Find the position vector to the shadow of ti + t2j + t3k on 
the xz plane. Is the curve ever parallel to the line x = y = z? 

39 On the ellipse x = a cos t, y = b sin t, the angle 8 from the 
center is not the same as t because . 

(d) The lines are skew if the triple product u (v x w) is 

42 If the lines are skew (not in the same plane), find a formula 
based on u, v, w for the distance between them. The vector u 
may not be perpendicular to the two lines, so project it onto 
a vector that is. 

43 The distance from Q to the line P + tv is the projection of 
u = Q - P perpendicular to v. How far is Q = (9,4,5) from 
the line x = 1 + t, y = 1 + 2t, z = 3 + 2t? 

44 Solve Problem 43 by calculus: substitute for x, y, z in 
(x - 9)2 + (y - 4)2 + (Z - 5)2 and minimize. Which (x, y, z) on 
the line is closest to (9,4,5)? 

45 Practice with parameters, starting from x = F(t), y = G(t). 
(a) The mirror image across the 45" line is x = , 
Y=-- 
(b) Write the curve x = t 3, y = t as y = f (x). 
(c) Why can't x = t ', y = t be written as y = f(x)? 
(d) If F is invertible then t = F -'(x) and y = (XI. 

46 From 12:OO to 1:00 a snail crawls steadily out the minute 
hand (one meter in one hour). Find its position at time t 
starting from (0,O). 

The previous section started with R(t). From this position vector we computed v and 
a. Now we find R(t) itself, from more basic information. The laws of physics govern 
projectiles, and the motion of a wheel produces a cycloid (which enters problems in 
robotics). The projectiles fly without friction, so the only force is gravity. 

These motions occur in a plane. The two components of position will be x (across) 
and y (up). A projectile moves as t changes, so we look for x(t) and y(t). We are 
shooting a basketball or  firing a gun or peacefully watering the lawn, and we have 
to aim in the right direction (not directly a t  the target). If the hose delivers water at  
10 meters/second, can you reach the car 12 meters away? 
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The usual initial position is (0,O). Some flights start higher, at (0, h). The initial 
velocity is (v, cos a, v,  sin a), where v, is the speed and a is the angle with the 
horizontal. The acceleration from gravity is purely vertical: d 2y/dt2 = -g. SO the 
horizontal velocity stays at its initial value. The upward velocity decreases by -gt: 

dxldt = v, cos a, dyldt = vo sin a -gt. 

The horizontal distance x(t) is steadily increasing. The height y(t) increases and then 
decreases. To find the position, integrate the velocities (for a high start add h to y): 

The projectile path is x(t) = (v, cos a)t ,y(t) = (vo sin a)t - igt2. (1) 

This path is a parabola. But it is not written as y = ax2+ bx + c. It could be, if we 
eliminated t. Then we would lose track of time. The parabola is y(x), with no param- 
eter, where we have x(t) and y(t). 

Basic question: Where does the projectile hit the ground? For the parabola, we solve 
y(x) = 0. That gives the position x. For the projectile we solve y(t) = 0. That gives the 
time it hits the ground, not the place. If that time is T, then x(T) gives the place. 

The information is there. It takes two steps instead of one, but we learn more. 

EXAMPLE 1 Water leaves the hose at 10 meters/second (this is v,). It starts up at the 
angle a. Find the time T when y is zero again, and find where the projectile lands. 

Solution The flight ends when y = (10 sin a)T - igT2 = 0. The flight time is T = 
(20 sin a)/g. At that time, the horizontal distance is 

x(T) = (10 cos a)T = (200 cos a sin a)/g. This is the range R. 

The projectile (or water from the hose) hits the ground at x = R. To simplify, replace 
200 cos a sin a by 100 sin 2a. Since g = 9.8 meters/sec2, we can't reach the car: 

The range R = (100 sin 2~)/9.8 is at most 10019.8. This is less than 12. 

The range is greatest when sin 2a = I (a is 45"). To reach 12 meters we could stand 
on a ladder (Problem 14). To hit a baseball against air resistance, the best angle is 
nearer to 35".Figure 12.5 shows symmetric parabolas (no air resistance) and unsym- 
metric flight paths that drop more steeply. 

(128 The flight time T and the horkzontaf range R = x(T) are reached when 
y = 0,which means (uo sin a)T =igT2: 

I T = (Zq sin cc)/g and R = (vo cos u)T =(0; sin 2aMg. 

height = (v,,sin c ~ ) ~ / 2 , ?  

time T = (20" sin a ) / g  \ 
range R = (v02sin 2 a ) l g  L 

DISTANCE IN FEET 

Fig. 12.5 Equal range R, different times T.Baseballs hit at 35" with increasing vo.  The dots 
are at half-seconds (from The Physics of Baseball by Robert Adair: Harper and Row 1990). 

I 
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EXAMPLE 2 What are the correct angles a for a given range R and given v,? 

Solution The range is R = (vi sin 2a)lg. This determines the sine of 2a-but two 
angles can have the same sine. We might find 2a = 60" or 120". The starting angles 
a = 30" and a = 60" in Figure 12.5 give the same sin 2a and the same range R. The 
flight times contain sin a and are different. 

By calculus, the maximum height occurs when dyldt = 0. Then vo sin a =gt, which 
means that t = (v, sin ix)/g. This is half of the total flight time T-the time going up 
equals the time coming down. The value of y at this halfway time t =fT is 

ymx= (v, sin a)(v, sin a)/g -fg(vo sin ~ j g ) ~  = (v, sin ~ ) ~ / 2 g .  (2) 

EXAMPLE 3 If a ski jumper goes 90 meters down a 30" slope, after taking off at 28 
meterslsecond, find equations for the flight time and the ramp angle a. 

Solution The jumper lands at the point x = 90 cos 30°, y = -90 sin 30" (minus sign 
for obvious reasons). The basic equation (2) is x = (28 cos a)t, y = (28 sin a)t -fgt 2. 

Those are two equations for a and t. Note that t is not T, the flight time to y =0. 

Conclusion The position of a projectile involves three parameters vo, a, and t. Three 
pieces of information determine theflight (almost). The reason for the word almost is 
the presence of sin a and cos a. Some flight requirements cannot be met (reaching a 
car at 12 meters). Other requirements can be met in two ways (when the car is close). 
The equation sin ct = c is more likely to have no solution or two solutions than exactly 
one solution. 

Watch for the three pieces of information in each problem. When a football starts 
at v, = 20 meterslsecond and hits the ground at x = 40 meters, the third fact is 

. This is like a lawyer who is asked the fee and says $1000 for three questions. 
"Isn't that steep?" says the client. "Yes," says the lawyer, "now what's your last 
question?" 

A projectile's path is a parabola. To compute it, eliminate t from the equations for x 
and y. Problem 5 finds y = ax2 + bx, a parabola through the origin. The path of a 
point on a wheel seems equally simple, but eliminating t is virtually impossible. The 
cycloid is a curve that really needs and uses a parameter. 

To trace out a cycloid, roll a circle of radius a along the x axis. Watch the point 
that starts at the bottom of the circle. It comes back to the bottom at x = 2na, after 
a complete turn of the circle. The path in between is shown in Figure 12.6. After a 
century of looking for the xy equation, a series of great scientists (Galileo, Christopher 
Wren, Huygens, Bernoulli, even Newton and l'H6pital) found the right way to study 
a cycloid-by introducing a parameter. We will call it 8; it could also be t. 

Fig. 12.6 Path of P on a rolling circle is a cycloid. Fastest slide to Q. 
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The parameter is the angle 0 through which the circle turns. (This angle is not at 
the origin, like 0 in polar coordinates.) The circle rolls a distance a0, radius times 
angle, along the x axis. So the center of the circle is at x =a0, y =a. To account for 
the segment CP, subtract a sin 0 from x and a cos 0 from y: 

The point P has x =a(0 - sin 0) and y =a(l -cos 0). (3) 

At 0 =0 the position is (0,O). At 0 =271 the position is (271a, 0). In between, the slope 
of the cycloid comes from the chain rule: 

dy dyld0 a sin 0 
dx - dxld0 - a(l -cos 0)' 

This is infinite at 0 =0. The point on the circle starts straight upward and the cycloid 
has a cusp. Note how all calculations use the parameter 0. We go quickly: 

Question 1 Find the area under one arch of the cycloid (0 =0 to 0 =27c). 
Answer The area is 1y dx =1;" a(l -cos 0)a(l -cos @dB. This equals 37ca2. 

Question 2 Find the length of the arch, using ds =J ( d x / d ~ ) ~+ (dy/d6)2 do. 
Answer 1ds =5:" a&- cos o ) ~  + (sin el2 =Jina J E T E G 3  d0. 
Now substitute 1 -cos 0 =2 sin2 $6. The square root is 2 sin 40. The length is 8a. 

Question 3 If the cycloid is turned over (y is downward), find the time to slide to 
the bottom. The slider starts with v =0 at y =0. 
Answer Kinetic plus potential energy is f mv2-mgy =0 (it starts from zero and 
can't change). So the speed is v =fi.This is dsldt and we know ds: 

" a 2 2 cos 0 do
sliding time = I d t  =jL&= lo 

2ga(l - cos 0) 

n&
Check dimensions: a =distance, g =di~tance/(time)~, = time. That is the short- 
est sliding time for any curve. The cycloid solves the "brachistochrone problem," 
which minimizes the time down curves from 0 to Q (Figure 12.6). You might think 
a straight path would be quicker-it is certainly shorter. A straight line has the 
equation x =71~12, so the sliding time is 

J d t = ~ d s / & = J r  J m d y / & = & Z Z J & .  ( 5 )  

This is larger than the cycloid time a&. It is better to start out vertically and pick 
up speed early, even if the path is longer. 

Instead of publishing his solution, John Bernoulli turned this problem into an 
international challenge: Prove that the cycloid gives the fastest slide. Most mathemati- 
cians couldn't do it. The problem reached Isaac Newton (this was later in his life). 
As you would expect, Newton solved it. For some reason he sent back his proof with 
no name. But when Bernoulli received the answer, he was not fooled for a moment: 
"I recognize the lion by his claws." 

What is also amazing is a further property of the cycloid: The time to Q is the same 
ifyou begin anywhere along the path. Starting from rest at P instead of 0 ,  the bottom 
is reached at the same time. This time Bernoulli got carried away: "You will be 
petrified with astonishment when I say...". 

There are other beautiful curves, closely related to the cycloid. For an epicycloid, 
the circle rolls around the outside of another circle. For a hypocycloid, the rolling 
circle is inside the fixed circle. The astroid is the special case with radii in the ratio 1 
to 4. It is the curved star in Problem 34, where x = a cos36 and y = a sin30. 
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The cycloid even solves the old puzzle: What  point moves backward when a train 
starts jbrward? The train wheels have a flange that extends below the track, and 
dxldt <: 0 at the bottom of the flange. 

12.2 

Read-through questions 

A projectile starts with speed vo and angle a. At time t its 
velocity is dxldt = a , dyldt = b (the downward 
acceleration is g). Starting from (0, O), the position at time t 
i s x =  c , y =  d .Thefl ightt imebacktoy=OisT= 

e . At that time the horizontal range is R = f . The 
flight path is a g . 

The three quantities v,, h , i determine the pro- 
jectile's motion. Knowing vo and the position of the target, 
we (can) (cannot) solve for a. Knowing a and the position of 
the target, we (can) (cannot) solve for 0,. 

A i is traced out by a point on a rolling circle. If the 
radius is a and the turning angle is 0, the center of the circle 
is at x = k , y =  I . The point is at x = m , y =  

n , starting from (0,O). It travels a distance 0 in a 
full turn of the circle. Tlhe curve has a P at the end of 
every turn. An upside-dlown cycloid gives the slide 
between two points. 

Problems 1-18 and 41 are about projectiles 

1 Find the time of fligh~t T, the range R, and the maximum 
height Y of a projectile with v, = 16 ftlsec and 

(a) a = 30" (b) a =: 60" (c) a = 90". 

2 If vo = 32 ft/sec and ithe projectile returns to the ground 
at T = 1, find the angle a and the range R. 

3 A ball is thrown at 610" with vo = 20 meterslsec to clear a 
wall 2 meters high. How far away is the wall? 

4 If v(0) = 3i + 3j find v(t), v(l), v(2) and R(t), R(l), R(2). 

5 (a) Eliminate t from x: = t, y = t - i t  to find the xy equa- 
tion of the path. At what x is y = O? 
(b) Do the same for ainy vo and a. 

6 Find the angle a for a ball kicked at 30 meters/second if 
it clears 6 meters traveling horizontally. 

7 How far out does a stone hit the water h feet below, start- 
ing with velocity u, at angle cr = O? 

8 How far out does the: same stone go, starting at angle a? 
Find an equation for the angle that maximizes the range. 

9 A ball starting from (0,O) passes through (5,2) after 2 
seconds. Find v, and a. (:The units are meters.) 

*10 With x and y from equation (I), show that 

EXERCISES 

If a fire is at height H and the water velocity is v,, how far 
can the fireman put the hose back from the fire? (The parabola 
in this problem is the "envelope" enclosing all possible paths.) 

11 Estimate the initial speed of a 100-meter golf shot hit at 
a = 45". Is the true uo larger or smaller, when air friction is 
included? 

12 T = 2vo(sin a)/g is in seconds and R = (vi sin 2a)lg is in 
meters if vo and g are in . 
13 (a) What is the greatest height a ball can be thrown? Aim 

straight up with v, = 28 meterslsec. 

14 If a baseball goes 100 miles per hour for 60 feet, how long 
does it take (in seconds) and how far does it fall from gravity 
(in feet)? Use ig t  '. 
15 If you double v,, what happens to the range and maxi- 
mum height? If you change the angle by da, what happens to 
those numbers? 

16 At what point on the path is the speed of the projectile 
(a) least (b) greatest? 

17 If the hose with vo = lOm/sec is at a 45" angle, x reaches 
12 meters when t = and y = . From a lad- 
der of height the water will reach the car (12 meters). 

18 Describe the two trajectories a golf ball can take to land 
right in the hole, if it starts with a large known velocity v,. 
In reality (with air resistance) which of those shots would fall 
closer? 

Problems 19-34 are about cycloids and related curves 

19 Find the unit tangent vector T to the cycloid. Also find 
the speed at 0 = 0 and 0 = n, if the wheel turns at d0ldt = 1. 

20 The slope of the cycloid is infinite at 0 = 0: 

dy dyld0 sin 0 
dx - dxld0 - 1 -cos 0' 

By whose rule? Estimate the slope at 0 =& and 0 = -&. 
Where does the slope equal one? 

21 Show that the tangent to the cycloid at P in Figure 12.6a 
goes through x = a0, y = 2a. Where is this point on the rolling 
circle? 

22 For a trochoid, the point P is a distance d from the center 

4 
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of the rolling circle. Redraw Figure l2.6b to find x =  
aO-dsin 8 and y =  

23 If a circle of radius a rolls inside a circle of radius 2a, show 
that one point on the small circle goes across on a straight 
line. 

24 Find dZy/dxZ for the cycloid, which is concave 

25 If dO/dt =c, find the velocities dx/dt and dy/dt along the 
cycloid. Where is dxldt greatest and where is dy/dt greatest? 

26 Experiment with graphs of x =a cos 8 +b sin 8, y = 

c cos 8 + d sin 8 using a computer. What kind of curves are 
they? Why are they closed? 

27 A stone in a bicycle tire goes along a cycloid. Find equ- 
ations for the stone's path if it flies off at the top (a projectile). 

28 Draw curves on a computer with x =a cos 9 + b cos 38 
and y =c sin 8 + d sin 38. Is there a limit to the number of 
loops? 

29 When a penny rolls completely around another penny, the 
head makes turns. When it rolls inside a circle four 
times larger (for the astroid), the head makes turns. 

30 Display the cycloid family with computer graphics: 
(a) cycloid 
(b)epicycloid x = C cos 8 -cos C8, y = C sin 8 + sin C8 
(c) hypocycloid x =c cos 8 + cos c0, y =c sin 8 -sin c9 
(d)astroid (c = 3) 
(e) deltoid (c =2). 

31 If one arch of the cycloid is revolved around the x axis, 
find the surface area and volume. 

32 For a hypocycloid the fixed circle has radius c + 1 and the 
circle rolling inside has radius 1. There are c + 1 cusps if c is 
an integer. How many cusps (use computer graphics if pos- 
sible) for c = 1/2? c = 3/2? c = f i What curve for c = I? 

33 When a string is unwound from a circle find x(8) and y(8) 
for point P. Its path is the "involute"of the circle. 

34 For the point P on the astroid, explain why x = 

3 cos 8 +cos 38 and y = 3 sin 0 -sin 39. The angle in the 
figure is 39 because both circular arcs have length . 
Convert to x =4 cos30, y =4 sin30 by triple-angle formulas. 

38 

35 Find the area inside the astroid. 

36 Explain why x =2a cot 0 and y = 2a sin28 for the point P 
on the witch of Agnesi. Eliminate 0 to find the xy equation. 
Note: Maria Agnesi wrote the first three-semester calculus 
text (l'H6pital didn't do integral calculus). The word "witch" 
is a total mistranslation, nothing to do with her or the curve. 

37 For a cardioid the radius C - 1 of the fixed circle equals 
the radius 1 of the circle rolling outside (epicycloid with C = 
2). (a) The coordinates of P are x = - 1 +2 cos 8 -cos 28, 
Y=- . (b) The double-angle formulas yield x = 
~ c o s ~ ( ~ - c o s ~ ) , ~ =  . ( c ) x 2 + y z =  so its 
square root is r = 

38 Explain the last two steps in equation (5) for the sliding 
time down a straight path. 

39 On an upside-down cycloid the slider takes the same time 
T to reach bottom wherever it starts. Starting at 0 = a, write 
1 -cos O =2 sinZ 912 and 1 -cos a =2 sinZ a12 to show that 

40 Suppose a heavy weight is attached to the top of the roll- 
ing circle. What is the path of the weight? 

41 The wall in Fenway Park is 37 feet high and 3 15 feet from 
home plate. A baseball hit 3 feet above the ground at r = 
22.5" will just go over if tl, = . The time to reach the 
wall is 
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A driver produces acceleration three ways-by the gas pedal, the brake, and steering 
wheel. The first two change the speed. Turning the wheel changes the direction. All 
three change the velocity (they give acceleration). For steady motion around a circle, 
the change is from steering-the acceleration dvldt points to the center. We now 
look at motion along other curves, to separate change in the speed Ivl from change 
in the direction T. 

The direction of motion is T = vllvl. It depends on the path but not the speed 
(because we divide by Ivl). For turning we measure two things: 

1. How fast T turns: this will be the curvature K (kappa). 
2. Which direction T turns: this will be the normal vector N. 

K and N depend, like s and T, only on the shape of the curve. Replacing t by 2t or 
t2  leaves them unchanged. For a circle we give the answers in advance. The normal 
vector N points to the center. The curvature K is llradius. 

A smaller turning circle means a larger curvature K: more bending.. 

The curvature K is change in direction (dTI divided by change in position Idsl. There 
are three formulas for rc-a direct one for graphs y(x), a brutal but valuable one for 
any parametric curve (x(t), y(t)), and a neat formula that uses the vectors v and a. We 
begin with the definition and the neat formula. 

DEFINITION K = ldT/ds) FORMULA rc = lv x al/lvI3 (1) 

The definition does not involve the parameter t-but the calculations do. The posi- 
tion vector R(t) yields v = dR/dt and a = dvldt. If t is changed to 2t, the velocity v is 
doubled and r is multiplied by 4. Then lv x a1 and lv13 are multiplied by 8, and their 
ratio K is unchanged. 

Proof of formula (1) Start from v = JvlT and compute its derivative a: 

dlvl dT a = - T + Ivl - by the product rule. 
dt dt 

Now take the cross product with v = IvJT. Remember that T x T = 0: 

We know that IT1 = 1. Equation (4) will show that T is perpendicular to dTldt. So 
Iv x a1 is the first length Ivl times the second length Ivl IdTIdtl. The factor sin 8 in the 
length of a cross product is 1 from the 90" angle. In other words 

The chain rule brings the extra Ids/dt( = Ivl into the denominator. 

Before any examples, we show that dT/dt is perpendicular to T. The reason is that 
T is a unit vector. Differentiate both sides of T T = 1: 
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That proof used the product rule U ' * V  + U *V' for the derivative of U * V  
(Problem 23, with U = V = T). Think of the vector T moving around the unit sphere. 
To keep a constant length (T + d T) (T + dT) = 1, we need 2T dT = 0. Movement 
dT is perpendicular to radius vector T. 

Our first examples will be plane curves. The position vector R(t) has components 
x(t) and y(t) but no z(t). Look at the components of v and a and v x a (x' means 
dxldt): 

R x(t) YO) 0 

v ~ ' ( 0  Y'@) 0 1.1 = J I 
a xt'(t) y"(t) 0 (x'y" - y'x"1 

K =  
v x a 0 0 x'y" - y'x" ((x')~ + 

Equation (5) is the brutal but valuable formula for K .  Apply it to movement around 
a circle. We should find K = llradius a: 

EXAMPLE 1 When x = a cos wt and y = a sin wt we substitute x', y', x", y" into (5): 

(- wa sin cot)(- w2a sin cot) - (wa cos cot)(- w2a cos a t )  03a2 
I C =  - - 

[(ma sin + (ma cos ~ t ) ~ ] ~ / ~  [ w 2 a 2 ~  312' 

This is 03a2/w3a3 and w cancels. The speed makes no difference to K = lla. 

The third formula for K applies to an ordinary plane curve given by y(x). The 
parameter t is x! You see the square root in the speed Ivl= dsldx: 

In practice this is the most popular formula for K .  The most popular approximation 
is id 2y/dx21. (The denominator is omitted.) For the bending of a beam, the nonlinear 
equation uses IC and the linear equation uses d2y /d~2 .  We can see the difference for 
a parabola: 

EXAMPLE 2 The curvature of y = +x2 is IC = ly"l/(l + (y')2)312 = 1/(1 + x ~ ) ~ / ~ .  

Fig. 12.7 Normal N divided by curvature K for circle and parabola and unit helix. 
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The approximation is y" = 1. This agrees with K at x =0, where the parabola turns 
the corner. But for large x, the curvature approaches zero. Far out on the parabola, 
we go a long way for a small change in direction. 

The parabola y = -fx2,  opening down, has the same u. Now try a space curve. 

EXAMPLE 3 Find the curvature of the unit helix R = cos t i + sin t j + tk. 

Take the cross product of v = -sin t i + cos t j + k and a = -cos t i -sin t j: 

i j k 

v x a =  -sint cost  1 =s in t i - cos t j+k .  

-cost -sint 0 

This cross product has length d.Also the speed is (v( = Jsin2t + cos2t+ 1 = f i  
K = I V  x al/lv13= =f. 

Compare with a unit circle. Without the climbing term tk, the curvature would be 1. 
Because of climbing, each turn of the helix is longer and K = f .  

That makes one think: Is the helix twice as long as the circle? No. The length of a 
turn is only increased by lvl = $. The other $ is because the tangent T slopes 
upward. The shadow in the base turns a full 360°, but T turns less. 

THE NORMAL VECTOR N 

The discussion is bringing us to an important vector. Where K measures the rate of 
turning, the unit vector N gives the direction of turning. N is perpendicular to T, and 
in the plane that leaves practically no choice. Turn left or right. For a space curve, 
follow dT.Remember equation (4), which makes dT perpendicular to T. 

The normal vector N is a unit vector along dT/dt. It is perpendicular to T: 

dT/ds 1 dT
DEFINITION N = ---- FORMULA N=-

dT/dt 
IdTldsl - K ds (dT/dt(' (7) 

EXAMPLE 4 Find the normal vector N for the same helix R =cos t i + sin t j + tk. 

Solution Copy v from Example 3, divide by (v(, and compute dTldt: 

T = v/lv(= (-sin t i + cos t j + k) / f i  and dT/dt = (- cos t i - sin t j)/& 

To change dT/dt into a unit vector, cancel the a.The normal vector is N = 
-cos t i -sin t j. It is perpendicular to T. Since the k component is zero, N is hori- 

zontal. The tangent T slopes up at 45"-it goes around the circle at that latitude. 
The normal N is tangent to this circle (N is tangent to the path of the tangent!). 
So N stays horizontal as the helix climbs. 

There is also a third direction, perpendicular to T and N. It is the binormal vector 
B = T x N, computed in Problems 25-30. The unit vectors T, N, B provide the 
natural coordinate system for the path-along the curve, in the plane of the curve, 
and out of that plane. The theory is beautiful but the computations are not often 
done-we stop here. 
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TANGENTIAL AND NORMAL COMPONENTS OF ACCELERATION 

May I return a last time to the gas pedal and brake and steering wheel? The first 
two give acceleration along T. Turning gives acceleration along N. The rate of turning 
(curvature K) and the direction N are established. We now ask about the force 
required. Newton's Law is F = ma, so we need the acceleration a-especially its 
component along T and its component along N. 

The acceleration is a = 7T + K - N.
dt 

For a straight path, d2s/dt2 is the only acceleration-the ordinary second derivative. 
The term ~ ( d s l d t ) ~  is the acceleration in turning. Both have the dimension of length/ 
(time)2. 

The force to steer around a corner depends on curvature and speed-as all drivers 
know. Acceleration is the derivative of v = lvlT = (ds/dt)T: 

d2s d s d T  d2s d s d T d sa=-T+--=-T+-- -
dt2 dt dt dt2 dt ds dt' 

That last term is ~ ( d s l d t ) ~ ~ ,  since dT/ds = KN by formula (7). So (8) is proved. 

EXAMPLE 5 A fixed speed dsldt = 1 gives d2s/dt2 = 0. The only acceleration is KN. 

EXAMPLE 6 Find the components of a for circular speed-up R(t) = cos t 2  i + sin t 2  j. 

Without stopping to think, compute dR/dt = v and dsldt = Ivl and v/lvl= T: 

The derivative of dsldt = Ivl is d2s/dt2 = 2. The derivative of v is a: 

a =  - 2  sin t 2  i + 2  cos t 2  j -4 t2  cos t 2  i -4 t2  sin t 2 j .  

In the first terms of a we see 2T. In the last terms we must be seeing K ~ v ~ ~ N .  Certainly 
lv12=4t2 and K = 1, because the circle has radius 1. Thus a = 2T + 4 t 2 ~has the 
tangential component 2 and normal component 4t2-acceleration along the circle 
and in to the center. 

Table of Formulas 2a, 
v = dRldt a = dvldt N ~ $ > ~ 
)vl= dsldt T = vllvl = ldR/dsl 

accelerate 
Curvature K = IdTldsl = Jvx a l / l ~ ( ~  

lx'ytt-y'xttl -Plane curves K = 
((x!)~+ (yf)2)3'2-

1 dT dT/dt
Normal vector N = -- = -

K ds IdTldtl dt' 

+ K I V ~ ~ N  Fig. 12.8 Components of a as car turns corner Acceleration a = (d 2s/dt 2 ) ~  
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12.3 EXERCISES 

Read-through questions 

The curvature tells how fast the curve a . For a circle of 
radius a, the direction changes by 2n in a distance b , so 
K = c . For a plane curve y = f (x) the formula is K = Iy"l/ 

d . The curvature of y := sin x i's e . At a point where 
y" = 0 (an f point) the curve is momentarily straight and 
K = g . For a space curve K = Iv x all h . 

The normal vector N is perpendicular to i . It is a 
i vector along the derivative of T, so N = k . For 

motion around a circle N points I . Up a helix N also 
points m . Moving at unit speed on any curve, the time t 
is the same as the n s. Then Ivl= 0 and d 2s/dt = 

P and a is in the direction of q . 

Acceleration equals r T + s N. At unit speed 
around a unit circle, those components are t . An 
astronaut who spins once a second in a radius of one meter 
has la1 = t~ meters/sec'!, which is about v g. 

Compute the curvature K in Problems 1-8. 

y = ex 

y = In x (where is K largest?) 

x = 2 cos t, y = 2 sin t 

x=cos  t2, y=s in  t 2  

~ = l + t ~ , ~ = 3 t ~ ( t h e p a t h i s a  ). 

x = cos3t, y = sin3t 

r = O = t  (so x = t  cos t, y =  ) 

x = t, y = In cos t 

Find T and N in Problem 4. 

Show that N = sin t i 1- cos t j in Problem 6. 

Compute T and N in Problem 8. 

Find the speed Ivl and curvature K of a projectile: 

x = (u, cos a)t, y = (v,  sin a)t - i g t  2. 

Find T and Ivl and K for the helix R = 3 cos t i 
+ 3 sin t j + 4t k. H ~ W  much longer is a turn of the helix than 
the corresponding circle? What is the upward slope of T? 

14 When K = 0 the path is a , This happens when v 
and a are . Then v x a =  . 

15 Find the curvature of a cycloid x = a(t - sin t), y = 

a(l - cos t). 

16 If all points of a curve are moved twice as far from the 
origin (x + 2x, y -+ 2y), what happens to K? What happens 
to N? 

17 Find K and N at 8 = n for the hypocycloid x = 

~ C O S  O+c0~48 ,  y =4sin8-sin48.  

18 From v = lvlT and a in equation (8), derive K = Iv x al/lvI3. 

19 From a point on the curve, go along the vector N/K to 
find the center of curvature. Locate this center for the point 
(I, 0) on the circle x = cos t, y = sin t and the ellipse x = cos t, 
y = 2 sin t and the parabola y = *(x2 - 1). The path of the 
center of curvature is the "euolute" of the curve. 

20 Which of these depend only on the shape of the curve, 
and which depend also on the speed? v, T, Ivl, s, IC, a, N, B. 

21 A plane curve through (0,O) and (2,O) with constant cur- 
vature K is the circular arc . For which K is there no 
such curve? 

22 Sketch a smooth curve going through (0, O), (1, -I), and 
(2,O). Somewhere d2y/dx2 is at least . Somewhere 
the curvature is at least . (Proof is for instructors 
only.) 

23 For plane vectors, the ordinary product rule applied to 
U1 Vl + U ,  V2 shows that (U V)' = U' V + 
24 If v is perpendicular to a, prove that the speed is constant. 
True or false: The path is a circle. 

Problems 25-30 work with the T-N-B system-along the 
curve, in the plane of the curve, perpendicular to that plane. 

25 Compute B = T x N for the helix R = cos t i + sin t j + tk 
in Examples 3-4. 

26 Using Problem 23, differentiate B . T = 0 and B B = 1 to 
show that B' is perpendicular to T and B. So dB/ds = - zN 
for some number z called the torsion. 

27 Compute the torsion z = ldB/dsl for the helix in 
Problem 25. 

28 Find B = T x N for the curve x = 1, y = t, z = t2. 

29 A circle lies in the xy plane. Its normal N lies 
and B = and z = (dB/dsl= . 

30 The Serret-Frenet formulas are dTlds = KN, dN/ds = 

- KT + zB, dBlds = - zN. We know the first and third. 
Differentiate N = - T x B to find the second. 

31 The angle 9 from the x axis to the tangent line is 8 = 

tan-'(dyldx), when dyldx is the slope of the curve. 
(a) Compute d8ldx. 
(b) Divide by dsldx = (1 + ( d y / d ~ ) ~ ) ' / ~  to show that IdO/dsl 
is IC in equation (5). Curvature is change in direction Id81 
divided by change in position Ids[. 

32 If the tangent direction is at angle 8 then T =  
cos 9 i + sin 19 j. In Problem 31 IdO/dsl agreed with K = IdTldsl 
because ldTld8l = . 
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In 33-37 find the T and N components of acceleration. 36 x = et cos t, y = et sin t, z = 0 (spiral) 

33 x = 5 cos at,  y = 5 sin at,  z = 0 (circle) 

34 x = 1 + t, y = 1 + 2t, z = 1 + 3t (line) 

37 x =  1, y=t,  z=t2 .  

38 For the spiral in 36, show that the angle between R and 
a (position and acceleration) is constant. Find the angle. 

35 x = t cos t, y = t sin t, z = 0 (spiral) 39 Find the curvature of a polar curve r = F(0) .  

12.4 Polar Coordinates and Planetary Motion 

This section has a general purpose-to do vector calculus in polar coordinates. It 
also has a specific purpose- to study central forces and the motion of planets. The 
main gravitational force on a planet is from the sun. It is a central force, because it 
comes from the sun at the center. Polar coordinates are natural, so the two purposes 
go together. 

You may feel that the planets are too old for this course. But Kepler's laws are 
more than theorems, they are something special in the history of mankind-"the 
greatest scientific discovery of all time." If we can recapture that glory we should do 
it. Part of the greatness is in the difficulty-Kepler was working sixty years before 
Newton discovered calculus. From pages of observations, and some terrific guesses, 
a theory was born. We will try to preserve the greatness without the difficulty, and 
show how elliptic orbits come from calculus. The first conclusion is quick. 

Motion in a central force #eld always stays in a plane. 

F is a multiple of the vector R from the origin (central force). F also equals ma 
(Newton's Law). Therefore R and a are in the same direction and R x a = 0. Then 
R x v has zero derivative and is constant: 

d 
by the product rule: -(R x v ) = v  x v + R x a=O+O. 

dt ( 1 )  

R x v is a constant vector H. So R stays in the plane perpendicular to H. 

How does a planet move in that plane? We turn to polar coordinates. At each 
point except the origin (where the sun is), u, is the unit vector ointing outward. It is 
the position vector R divided by its length r (which is ~ d j :  

u, = R/r = (xi + yj)/r = cos 8 i + sin 8 j. (2) 

That is a unit vector because cos28 + sin28 = 1. It goes out from the center. 
Figure 12.9 shows u, and the second unit vector u, at a 90" angle: 

The dot product is u, u, = 0. The subscripts r and 8 indicate direction (not derivative). 

Question 1: How do u, and ue change as r changes (out a ray)? They don't. 

Question 2: How do u, and u, change as 8 changes? Take the derivative: 

duJd8 = -sin 8 i + cos 8 j = ue 

du,/d8 = - cos 8 i - sin 8 j = - u,. 
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Fig. 12.9 u, is outward, uo is around the center. Components of v and a in those directions. 

Since u, = Rlr, one formula is simple: The position vector is R = ru,. For its derivative 
v = dR/dt, use the chain rule du,/dt = (dur/d8)(d8/dt)= (dO/dt)u,: 

d dr d8
The velocity is v = -(ru,) = -u, + r -u, .

dt dt dt 

The outward speed is drldt. The circular speed is r dO/dt. The sum of squares is lvI2. 
Return one more time to steady motion around a circle, say r = 3 and 8 = 2t. The 

velocity is v = h e ,  all circular. The acceleration is -124, all inward. For circles u, 
is the tangent vector T. But the unit vector u, points outward and N points inward- 
the way the curve turns. 

Now we tackle acceleration for any motion in polar coordinates. There can be 
speedup in r and speedup in 8 (also change of direction). Differentiate v in (5) by the 
product rule: 

For du,/dt and due/dt, multiply equation (4) by d8ldt. Then all terms contain u, or u,. 
The formula for a is famous but not popular (except it got us to the moon): 

In the steady motion with r = 3 and 8 = 2t, only one acceleration term is nonzero: 
a = - 12u,. Formula (6) can be memorized (maybe). Problem 14 gives a new way to 
reach it, using reie. 

EXAMPLE 1 Find R and v and a for speedup 8 = t2  around the circle r = 1. 

Solution The position vector is R = u,. Then v and a come from (5-6): 

This question and answer were also in Example 6 of the previous section. The acceler- 
ation was 2T + 4t2N. Notice again that T = u, and N = -u,, going round the circle. 

EXAMPLE 2 Find R and v and Ivl and a for the spiral motion r = 3t, 8 = 2t. 

Solution The position vector is R = 3t u,. Equation (5) gives velocity and speed: 

v = 3 4  + 6tu, and ivl= Jm. 
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The motion goes out and also around. From (6) the acceleration is -12t u, + 12ue. 
The same answers would come more slowly from R = 3t cos 2t i + 3t sin 2t j. 

This example uses polar coordinates, but the motion is not circular. One of Kepler's 
inspirations, after many struggles, was to get away from circles. 

KEPLER'S LAWS 

You may know that before Newton and Leibniz and calculus and polar coordinates, 
Johannes Kepler discovered three laws of planetary motion. He was the court mathe- 
matician to the Holy Roman Emperor, who mostly wanted predictions of wars. 
Kepler also determined the date of every Easter-no small problem. His triumph 
was to discover patterns in the observations made by astronomers (especially by 
Tycho Brahe). Galileo and Copernicus expected circles, but Kepler found ellipses. 

Law 1: Each planet travels in an ellipse with one focus at the sun. 

Law 2: The vector from sun to planet sweeps out area at a steady rate: dA/dt = 
constant. 

Law 3: The length of the planet's year is T = ka3I2, where a = maximum distance 
from the center (not the sun) and k = 2n/@ is the same for all planets. 

With calculus the proof of these laws is a thousand times quicker. But Law 2 is the 
only easy one. The sun exerts a central force. Equation (I) gave R x v = H = constant 
for central forces. Replace R by ru, and replace v by equation (5): 

This vector H is constant, so its length h = r2dO/dt is constant. In polar coordinates, 
the area is dA =$r2d0. This area dA is swept out by the planet (Figure 12.10), and 
we have proved Law 2: 

dA/dt = i r 2  d01dt = i h = constant. (8) 

Near the sun r is small. So d0ldt is big and planets go around faster. 

Fig. 12.10 The planet is on an ellipse with the sun at a focus. Note a, b, c, q. 

Now for Law 1, about ellipses. We are aiming for 1 /r = C -D cos 0, which is the 
polar coordinate equation of an ellipse. It is easier to write q than llr, and find an 
equation for q. The equation we will reach is d 'q/d02 + q = C. The desired q = 
C -D cos 0 solves that equation (check this), and gives us Kepler's ellipse. 
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The first step is to connect dr/dt to dqlde by the chain rule: 

Notice especially dB/dt =h/r2=hq2. What we really want are second derivatives: 

After this trick of introducing q, we are ready for physics. The planet obeys Newton's 
Law F =ma, and the central force F is the sun's gravity: 

That right side is the u, component of a in (6). Change r to l/q and change dB/dt to 
hq2. The preparation in (10) allows us to rewrite d2r/dt2 in equation (11). That 
equation becomes 

Dividing by -h2q2 gives what we hoped for-the simple equation for q: 

d 'q/dB2 +q = G M / ~ ~= C (a constant). (12) 

The solution is q = C -D cos 8. Section 9.3 gave this polar equation for an ellipse or 
parabola or hyperbola. To be sure it is an ellipse, an astronomer computes C and D 
from the sun's mass M and the constant G and the earth's position and velocity. The 
main point is that C >D. Then q is never zero and r is never infinite. Hyperbolas and 
parabolas are ruled out, and the orbit in Figure 12.10 must be an ellipse.? 

Astronomy is really impressive. You should visit the Greenwich Observatory in 
London, to see how Halley watched his comet. He amazed the world by predicting 
the day it would return. Also the discovery of Neptune was pure mathematics- 
the path of Uranus was not accounted for by the sun and known planets. LeVerrier 
computed a point in the sky and asked a Berlin astronomer to look. Sure enough 
Neptune was there. 

Recently one more problem was solved-to explain the gap in the asteroids around 
Jupiter. The reason is "chaos"-the three-body problem goes unstable and an 
asteroid won't stay in that orbit. We have come a long way from circles. 

Department of Royal Mistakes The last pound note issued by the Royal Mint 
showed Newton looking up from his great book Principia Mathematica. He is not 
smiling and we can see why. The artist put the sun at the center! Newton has just 
proved it is at the focus. True, the focus is marked S and the planet is P. But those 
rays at the center brought untold headaches to the Mint-the note is out of circula- 
tion. I gave an antique dealer three pounds for it (in coins). 

Kepler's third law gives the time T to go around the ellipse-the planet's year. 
What is special in the formula is a3Iz-and for Kepler himself, the 15th of May 1618 
was unforgettable: "the right ratio outfought the darkness of my mind, by the great 
proof afforded by my labor of seventeen years on Brahe's observations." The second 

?An amateur sees the planet come around again, and votes for an ellipse. 
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law dA/dt = 1h is the key, plus two facts about an ellipse-its area nab and the height

b2/a above the sun:
'oj dA 1 22rab

1. The area A = -- dt = - hT must equal n7ab, so T=
0 dt 2 h

2. The distance r = 1/C at 0 = r/2 must equal b2/a, so b = a.C.

The height b2/a is in Figure 12.10 and Problems 25-26. The constant C = GM/h2 is

in equation (12). Put them together to find the period:

27zab 27ra a 2 3/2
T= - - a3/2.

h h C GM
(13)

To think of Kepler guessing a 3/ 2 is amazing. To think of Newton proving Kepler's

laws by calculus is also wonderful--because we can do it too.

EXAMPLE 3 When a satellite goes around in a circle, find the time T.

Let r be the radius and ca be the angular velocity. The time for a complete circle

(angle 2in) is T = 27t/w. The acceleration is GM/r2 from gravity, and it is also ro 2 for

circular motion. Therefore Kepler is proved right:

rw)2 = GM/r2 So GM= = T = 27r/w = 2nr 3/2/ GM.

12.4 EXERCISES

Read-through questions

A central force points toward a . Then R x d2R/dt2 = 0
because b . Therefore R x dR/dt is a c (called H).

In polar coordinates, the outward unit vector is u,=
cos 8 i + d . Rotated by 90' this becomes us = e .The
position vector R is the distance r times f . The velocity

v = dR/dt is g u, + h u0. For steady motion around

the circle r = 5 with 0 = 4t, v is I and Ivl is I and a
is k

For motion under a circular force, r2 times I is con-
stant. Dividing by 2 gives Kepler's second law dA/dt = m
The first law says that the orbit is an n with the sun at

o . The polar equation for a conic section is p =

C - D cos 0. Using F = ma we found q0e + q = C. So the
path is a conic section; it must be an ellipse because r

The properties of an ellipse lead to the period T= s
which is Kepler's third law.

468
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1 Find the unit vectors u, and u, at the point (0,2). The u, 
and ue components of v = i + j at that point are . 
2 F i n d u r a n d u , a t ( 3 , 3 ) . I f v = i + j t h e n v =  u,. 

Equation (5) gives dr/dt = and d0/dt = . 
3 At the point (1,2), velocities in the direction will 

give dr/dt = 0. Velocities in the direction will give 
d0ldt = 0. 

4 Traveling on the cardioid r = 1 - cos 0 with d0/dt = 2, 
what is v? How long to go around the cardioid (no integration 
involved)? 

5 If r = e e  and 8=3t,  find vand a when t=1 .  

6 If r = 1 and 0 = sin t, describe the path and find v and a 
from equations (5-6). Where is the velocity zero? 

7 (important) R = 4 cos 5t i + 4 sin 5t j = 4u, travels on a 
circle of radius 4 with 0 = 5t and speed 20. Find the compo- 
nents of v and a in three systems: i and j, T and N, u, and u,. 

8 When is the circle r = 4 completed, if the speed is 8t? Find 
v and a at the return to the starting point (4,O). 

9 The ~e component of acceleration is = 0 for a 
central force, which is in the direction of . Then 
r2d0/dt is constant (new proof) because its derivative is r times 

10 If r2d0/dt = 2 for travel up the line x = 1, draw a triangle 
to show that r = sec 0 and integrate to find the time to reach 
(1, 1). 

11 A satellite is r = 10,000 km from the center of the Earth, 
traveling perpendicular to the radius vector at 4 kmlsec. Find 
d0ldt and h . 
12 From lu,l= 1, it follows that du,/dr and du,/d0 are 

to u, (Section 12.3). In fact du,/dr is and 
dur/dO is . 

13 Momentum is mv and its derivative is ma = force. Angular 
momentum is mH = mR x v and its derivative is - - 

torque. Angular momentum is constant under a central force 
because the is zero. 

14 To find (and remember) v and a in polar coordinates, start 
with the complex number reie and take its derivatives: 

Key idea: The coefficients of eie and ieie are the u, and ue 
components of R, v, a: 

(a) Fill in the five terms from the derivative of dR/dt 
(b) Convert eie to u, and ieie to ue to find a 

(c) Compare R, v, a with formulas (5-6) 
(d) (for instructors only) Why does this method work? 

Note how eie = cos 0 + i sin 0 corresponds to u, = cos 0 i 
+sin 0 j. This is one place where electrical engineers are 
allowed to write j instead of i for fi. 
15 If the period is T find from (1 3) a formula for the distance 
a. 

16 To stay above New York what should be the period of a 
satellite? What should be its distance a from the center of the 
Earth? 

17 From T and a find a formula for the mass M. 

18 If the moon has a period of 28 days at an average distance 
of a = 380,000 km, estimate the mass of the 

19 The Earth takes 3656 days to go around the sun at a 
distance a x 93 million miles x 150 million kilometers. Find 
the mass of the sun. 

20 True or false: 

(a) The paths of all comets are ellipses. 
(b) A planet in a circular orbit has constant speed. 
(c) Orbits in central force fields are conic sections. 

21 x 2 lo7 in what units, based on the Earth's mass 
M = 6 kg and the constant G = 6.67 lo-" Nm2/kg2? 
A force of one kg meter/sec2 is a Newton N. 

22 If a satellite circles the Earth at 9000 km from the center, 
estimate its period T in seconds. 

23 The Viking 2 orbiter around Mars had a period of about 
10,000 seconds. If the mass of Mars is M = 6.4 kg, what 
was the value of a? 

24 Convert l/r = C - D cos 0, or 1 = Cr - Dx, into the xy 
equation of an ellipse. 

25 The distances a and c on the ellipse give the constants 
in r = 1/(C - D cos 0). Substitute 0 = 0 and 0 = .n as in 
Figure 1 2.1 0 to find D = c/(a2 - c2) and C = a/(a2 - c2) = 

a/ b2. 

26 Show that x =  -c, y =  b2/a lies on the ellipse 
x2/a2 + y2/b2 = 1. Thus y is the height 1/C above the sun in 
Figure 12.10. The distance from the sun to the center has c2 = 
a2 - b2. 

27 The point x = a cos 2nt/T, y = b sin 2ntlT travels around 
an ellipse centered at (0,O) and returns at time T. By symmetry 
it sweeps out area at the same rate at both ends of the major 
axis. Why does this break Kepler's second law? 

28 If a central force is F =  -ma(r)u,, explain why 
d 'r/dt - r(d0/dt)2 = - a@). What is a(r) for gravity? 
Equation (12) for q = l /r  leads to qee + q = r2a(r). 

29 When F = 0 the body should travel in a straight 
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The equation q,, + q = 0 allows q = cos 8, in which case the 
path l / r  =cos 8 is . Extra credit: Mark off equal 
distances on a line, connect them to the sun, and explain why 
the triangles have equal area. So dA/dt is still constant. 

30 The strong nuclear force increases with distance, a(r) = r. 
It binds quarks so tightly that up to now no top quarks have 
been seen (reliably). Problem 28 gives q,, + q = l/q3. 

(a) Multiply by q, and integrate to find i q i  + i q 2  = 

+ C .  
*(b) Integrate again (with tables) after setting u = q2, u, = 

2qq,. 

31 The path of a quark in 30(b) can be written as 
r2(A + B cos 28) = 1. Show that this is the same as the ellipse 
( A  + B)x2 + (A - B)y2 = 1 with the origin at the center. The 
nucleus is not at a focus, and the pound note is correct for 
Newton watching quarks. (Quantum mechanics not 
accounted for.) 

32 When will Halley's comet appear again? It disappeared in 

1986 and its mean distance to the sun (average of a + c and 
a - c) is a = 1.6 lo9 kilometers. 

33 You are walking at 2 feetlsecond toward the center of a 
merry-go-round that turns once every ten seconds. Starting 
from r = 20,8 = 0 find r(t), 8(t), v(t), a(t) and the length of your 
path to the center. 

34 From Kepler's laws r = 1/(C - D cos 8) and r2d8/dt = h, 
show that 

1. dr/dt = - Dh sin 0 2. d 2 d 2  = ( - C)h2/r2 

When Newton reached 3, he knew that Kepler's laws required 
a central force of Ch2/r2. This is his inverse square law. Then 
he went backwards, in our equations (8-12), to show that this 
force yields Kepler's laws. 

35 How long is our year? The Earth's orbit has a =  
149.57 lo6 kilometers. 
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C H A P T E R  13 

Partial Derivatives 

This chapter is at the center of multidimensional calculus. Other chapters and other 
topics may be optional; this chapter and these topics are required. We are back to 
the basic idea of calculus-the derivative. There is a functionf, the variables move a 
little bit, and f moves. The question is how much f moves and how fast. Chapters 

. 1-4 answered this question for f(x), a function of one variable. Now we have f(x, y) 
orf(x, y, z)-with two or three or more variables that move independently. As x and 
y change,f changes. The fundamental problem of differential calculus is to connect 
Ax and Ay to Af. 

Calculus solves that problem in the limit. It connects dx and dy to df. In using this 
language I am building on the work already done. You know that dfldx is the limit 
of AflAx. Calculus computes the rate of change-which is the slope of the tangent 
line. The goal is to extend those ideas to 

fix, y) =x2 -y2 o r  f(x, y) =Jm or f(x, y, z)=2x + 3y +42. 

These functions have graphs, they have derivatives, and they must have tangents. 
The heart of this chapter is summarized in six lines. The subject is diflerential 

calculus-small changes in a short time. Still to come is integral calculus-adding 
up those small changes. We give the words and symbols for f(x, y), matched with the 
words and symbols for f(x). Please use this summary as a guide, to know where 
calculus is going. 

Curve y =f(x) vs. Surface z =f(x, y) 

df becomes two partial derivatives -af and -af 
d~ ax ay 

- becomes four second derivatives ----d2{ a2f a2f a2f a2f 
dx ax2' axayY a y a i  ay2 

Af % AX becomes the linear approximation Af % 9AX + a f ~ ~ 
dx  ax ay 

tangent line becomes the tangent plane z - z, =a f ( x-x,) +a f ( y  -yo)
ax ay 

dy - dy dx dz az'ax a~ dy---- becomes the chain rule -= --+--
dt d~ dt dt a~ dt a~ dt 

-df =0 becomes two maximum-minimum equations -af =0 and af =0.
dx dx a~ 



13 Partial Derivatives

13.1 Surfaces and Level Curves

The graph of y =f(x) is a curve in the xy plane. There are two variables-x is
independent and free, y is dependent on x. Above x on the base line is the point (x, y)
on the curve. The curve can be displayed on a two-dimensional printed page.

The graph of z =f(x, y) is a surface in xyz space. There are three variables-x and
y are independent, z is dependent. Above (x, y) in the base plane is the point (x, y, z)
on the surface (Figure 13.1). Since the printed page remains two-dimensional, we
shade or color or project the surface. The eyes are extremely good at converting two-
dimensional images into three-dimensional understanding--they get a lot of practice.
The mathematical part of our brain also has something new to work on-two partial
derivatives.

This section uses examples and figures to illustrate surfaces and their level curves.
The next section is also short. Then the work begins.

EXAMPLE I Describe the surface and the level curves for z =f(x, y) = x2 + y2.

The surface is a cone. Reason: x2 + y2 is the distance in the base plane from (0, 0)
to (x, y). When we go out a distance 5 in the base plane, we go up the same distance
5 to the surface. The cone climbs with slope 1. The distance out to (x, y) equals the
distance up to z (this is a 450 cone).

The level curves are circles. At height 5, the cone contains a circle of points-all
at the same "level" on the surface. The plane z = 5 meets the surface z = x2 + y2 at
those points (Figure 13.1b). The circle below them (in the base plane) is the level
curve.

DEFINITION A level curve or contour line of z =f(x, y) contains all points (x, y) that
share the same valuef(x, y) = c. Above those points, the surface is at the height z = c.

There are different level curves for different c. To see the curve for c = 2, cut
through the surface with the horizontal plane z = 2. The plane meets the surface
above the points where f(x, y) = 2. The level curve in the base plane has the equation
f(x, y) = 2. Above it are all the points at "level 2" or "level c" on the surface.

Every curve f(x, y) = c is labeled by its constant c. This produces a contour map
(the base plane is full of curves). For the cone, the level curves are given by
.x 2 + y2 = c, and the contour map consists of circles of radius c.

Question What are the level curves of z =f(x, y) = x2 + y2?
Answer Still circles. But the surface is not a cone (it bends up like a parabola). The
circle of radius 3 is the level curve x2 + y2 = 9. On the surface above, the height is 9.

z= 'x 2 +y2

p

Y

5- base plane .-

Fig. 13.1 The surface for z =f(x, y) = x2 + y 2 is a cone. The level curves are circles.
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13.1 Surfaces and Level Curves

EXAMPLE 2 For the linear function f(x, y) = 2x + y, the surface is a plane. Its level
curves are straight lines. The surface z = 2x + y meets the plane z = c in the line
2x + y = c. That line is above the base plane when c is positive, and below when c is
negative. The contour lines are in the base plane. Figure 13.2b labels these parallel
lines according to their height in the surface.

Question If the level curves are all straight lines, must they be parallel?
Answer No. The surface z = y/x has level curves y/x = c. Those lines y = cx swing
around the origin, as the surface climbs like a spiral playground slide.

y

x

\2x+y=1\2x+y=2 y = 1 2 3
x

Fig. 13.2 A plane has parallel level lines. The spiral slide z = y/x has lines y/x = c.

EXAMPLE 3 The weather map shows contour lines of the temperature function. Each
level curve connects points at a constant temperature. One line runs from Seattle to
Omaha to Cincinnati to Washington. In winter it is painful even to think about the
line through L.A. and Texas and Florida. USA Today separates the contours by
color, which is better. We had never seen a map of universities.

Fig. 13.3 The temperature at many U.S. and Canadian universities. Mt. Monadnock in New Hampshire is said to be the most
climbed mountain (except Fuji?) at 125,000/year. Contour lines every 6 meters.
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13 Pattial Derhrcttiwes 

Question From a contour map, how do you find the highest point? 
Answer The level curves form loops around the maximum point. As c increases the 
loops become tighter. Similarly the curves squeeze to the lowest point as c decreases. 

EXAMPLE 4 A contour map of a mountain may be the best example of all. Normally 
the level curves are separated by 100 feet in height. On a steep trail those curves are 
bunched together-the trail climbs quickly. In a flat region the contour lines are far 
apart. Water runs perpendicular to the level curves. On my map of New Hampshire 
that is true of creeks but looks doubtful for rivers. 

Question Which direction in the base plane is uphill on the surface? 
Answer The steepest direction is perpendicular to the level curves. This is important. 
Proof to come. 

EXAMPLE 5 In economics x2y is a utility function and x2y = c is an indiference c u m .  

The utility function x2y gives the value of x hours awake and y hours asleep. Two 
hours awake and fifteen minutes asleep have the value f = (22)(4). This is the same as 
one hour of each: f= (12)(1). Those lie on the same level curve in Figure 13.4a. We 
are indifferent, and willing to exchange any two points on a level curve. 

The indifference curve is "convex." We prefer the average of any two points. The 
line between two points is up on higher level curves. 

Figure 13.4b shows an extreme case. The level curves are straight lines 4x  + y = c.  
Four quarters are freely substituted for one dollar. The value is f = 4x + y dollars. 

Figure 13.4~ shows the other extreme. Extra left shoes or extra right shoes are 
useless. The value (or utility) is the smaller of x and y. That counts pairs of shoes. 

asleep y quarters right shoes 

Ihours ; ; ; * left 
awake shoes1 2 

Fig. 13.4 Utility functions x2y, 4x +y, min(x, y). Convex, straight substitution, complements. 

13.1 EXERCISES 

Read-through questions 

The graph of z =Ax, y) is a a in b -dimensional For z =f(x, y) =x2 -y2, the equation for a level curve is 
space. The c curve f(x, y) = 7 lies down in the base plane. I . This curve is a i . For z =x -y the curves are 
Above this level curve are all points at height d in the k . Level curves never cross because I . They crowd 
surface. The z =7 cuts through the surface at those together when the surface is m . The curves tighten to a 
points. The level curves f(x, y) = f are drawn in the xy point when n . The steepest direction on a mountain is 
plane and labeled by g . The family of labeled curves is 0 to the P . 
a h map. 
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1 Draw the surface z =f(x, y) for these four functions: 

fl=Jpf 2 = 2 - J Z 7  

f3=2-&x2+y2) f4= 1 +e-X2-y2 

2 The level curves of all four functions are . They 
enclose the maximum at . Draw the four curves 
flx, y) = 1and rank them by increasing radius. 

3 Set y =0 and compute the x derivative of each function 
at x = 2. Which mountain is flattest and which is steepest at 
that point? 

4 Set y = 1 and compute the x derivative of each function 
at x =  1. 

For f5 to f10 draw the level curves f =0, 1,2. Alsof = -4. 

11 Suppose the level curves are parallel straight lines. Does 
the surface have to be a plane? 

12 Construct a function whnse level curve f =0 is in two 
separate pieces. 

13 Construct a function for which f =0 is a circle and f = 1 
is not. 

14 Find a function for which f =0 has infinitely many pieces. 

15 Draw the contour map for f =xy with level curves f = 
-2, -1,0, 1, 2. Describe the surface. 

16 Find a function f(x, y) whose level curve f =0 consists of 
a circle and all points inside it. 

Draw two level curves in 17-20. Are they ellipses, parabolas, 
or hyperbolas? Write r -2x =c as =c + 2x 
before squaring both sides. 

21 The level curves of f=(y -2)/(x-1) are 
through the point (1, 2) except that this point is not 

22 Sketch a map of the US with lines of constant temperature 
(isotherms) based on today's paper. 

23 (a) The contour lines of z =x2 + y2 -2x -2y are circles 
around the point ,where z is a minimum. 
(b)The contour lines of f = are the circles 
x2 +Y2 =c + 1 on which f =c. 

24 Draw a contour map of any state or country (lines of 
constant height above sea level). Florida may be too flat. 

25 The graph of w =F(x, y, z) is a -dimensional sur- 
face in xyzw space. Its level sets F(x, y, z) =c are 
dimensional surfaces in xyz space. For w =x -2y +z those 
level sets are . For w =x2 +Y2 +z2 those level sets 
are 

26 The surface x2 +y2 -z2= - 1 is in Figure 13.8. There is 
empty space when z2 is smaller than 1 because 

27 The level sets of F =x2+y2+ qz2 look like footballs 
when q is , like basketballs when q is , 
and like frisbees when q is 

28 Let T(x, y) be the driving time from your home at (0,O) 
to nearby towns at (x, y). Draw the level curves. 

29 (a) The level curves offlx, y) =sin(x -y) are 
(b)The level curves of g(x, y) =sin(x2-y2) are 
(c) The level curves of h(x, y) =sin(x-y2) are 

30 Prove that if xly, = 1 and x2y2 = 1 then their average 
x =gx l  + x2), y =gy,  +y2) has xy 2 1. The function f =xy 
has convex level curves (hyperbolas). 

31 The hours in a day are limited by x + y =24. Write x2y 
as x2(24 -x) and maximize to find the optimal number of 
hours to stay awake. 

32 Near x = 16 draw the level curve x2y =2048 and the line 
x +y =24. Show that the curve is convex and the line is 
tangent. 

33 The surface z =4x + y is a . The surface z = 
min(x, y) is formed from two . We are willing to 
exchange 6 left and 2 right shoes for 2 left and 4 right shoes 
but better is the average 

34 Draw a contour map of the top of your shoe. 

Partial Derivatives 

The central idea of differential calculus is the derivative. A change in x produces a 
change in$ The ratio Af/Ax approaches the derivative, or slope, or rate of change. 
What to do iff depends on both x and y? 

The new idea is to vary x and y one at a timk. First, only x moves. If the function 
is x + xy, then Af is Ax + yAx. The ratio Af/Ax is 1+ y. The "x derivative" of x + xy 
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is 1 + y. For all functions the method is the same: Keep y constant, change x, take the 
firnit of AflAx: 

df(x, y) = lim -= lim f(x + Ax, Y) -f (x, Y)DEFINITION Af 
ax A X - O A X  AX-o Ax 

On the left is a new symbol af/dx. It signals that only x is allowed to vary-afpx is 
a partial derivative. The different form a of the same letter (still say "d") is a reminder 
that x is not the only variable. Another variable y is present but not moving. 

Do not treat y as zero! Treat it as a constant, like 6. Its x derivative is zero. 
If f(x) = sin 6x then dfldx = 6 cos 6x. If f(x, y) = sin xy then af/ax = y cos xy. 

Spoken aloud, af/ax is still "d f d x." It is a function of x and y. When more is 
needed, call it "the partial off with respect to x." The symbol f '  is no longer available, 
since it gives no special indication about x. Its replacement fx is pronounced "fx" or 
"fsub x," which is shorter than af/ax and means the same thing. 

We may also want to indicate the point (x,, yo) where the derivative is computed: 

EXAMPLE 2 f(x, y) = sin 2x cos y fx = 2 cos 2x cos y (cos y is constant for a/dx) 

The particular point (x,, yo) is (0,O). The height of the surface is f(0,O) = 0. 
The slope in the x direction is fx = 2. At a different point x, = n, yo = n we find 
fx(n, n) = - 2. 

Now keep x constant and vary y. The ratio Af/Ay approaches aflay: 

f,(x, y) = lim f= lim f(x, Y + BY) -f(x, Y) 
AY+O Ay A ~ + O  AY 

This is the slope in the y direction. Please realize that a surface can go up in the x 
direction and down in the y direction. The plane f(x, y) = 3x - 4y has fx = 3 (up) and 
f ,= - 4 (down). We will soon ask what happens in the 45" direction. 

The x derivative of ,/xZ+y'is really one-variable calculus, because y is constant. 
The exponent drops from 4to -i,and there is 2x from the chain rule. This distance 
function has the curious derivative af/ax = xlf. 

The graph is a cone. Above the point (0,2) the height is ,/-= 2. The 
partial derivatives are fx = 012 and f, = 212. At that point, Figure13.5 climbs in the 
y direction. It is level in the x direction. An actual step Ax will increase O2 + 22 to 
AX)^ + 22. But this change is of order (Ax)2 and the x derivative is zero. 

Figure 13.5 is rather important. It shows how af@x and af/dy are the ordinary 
derivatives of f(x, yo) and f(x,, y). It is natural to call these partial functions. The first 
has y fixed at yo while x varies. The second has x fixed at xo while y varies. Their 
graphs are cross sections down the surface-cut out by the vertical planes y = yo and 
x = x,. Remember that the level curve is cut out by the horizontal plane z = c. 
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2 f(Oy) =-0 2 +y 2

f(x, 2)= 4x2 +2 2

• X

Fig. 13.5 Partial functions x• + 22 and /02 y2 of the distance functionf= / + y2.

The limits of Af/Ax and Af/Ay are computed as always. With partial functions
we are back to a single variable. The partial derivative is the ordinary derivative of a
partial function (constant y or constant x). For the cone, af/ay exists at all points
except (0, 0). The figure shows how the cross section down the middle of the cone
produces the absolute value function:f(0, y) = lyl. It has one-sided derivatives but not
a two-sided derivative.

Similarly Of/ax will not exist at the sharp point of the cone. We develop the idea
of a continuous function f(x, y) as needed (the definition is in the exercises). Each
partial derivative involves one direction, but limits and continuity involve all direc-
tions. The distance function is continuous at (0, 0), where it is not differentiable.

EXAMPLE 4 f(x, y) = y 2 af/Ox = - 2x Of/ay = 2y

Move in the x direction from (1, 3). Then y 2 - x 2 has the partial function 9 - x 2 .
With y fixed at 3, a parabola opens downward. In the y direction (along x = 1) the
partial function y2 - 1 opens upward. The surface in Figure 13.6 is called a hyperbolic
paraboloid, because the level curves y 2 -_ 2 = c are hyperbolas. Most people call it a
saddle, and the special point at the origin is a saddle point.

The origin is special for y2 - x 2 because both derivatives are zero. The bottom of
the y parabola at (0, 0) is the top of the x parabola. The surface is momentarily flat in
all directions. It is the top of a hill and the bottom of a mountain range at the same

0 1 =2 _ 2 1 0

f= y2_ x2

y

-1

-l

01 1 0

Fig. 13.6 A saddle function, its partial functions, and its level curves.

0 
1 

1 
0
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time. A saddle point is neither a maximum nor a minimum, although both derivatives 
are zero. 

Note Do not think that f(x, y) must contain y2 and x2 to have a saddle point. The 
function 2xy does just as well. The level curves 2xy = c are still hyperbolas. The 
partial functions 2xyo and 2xoy now give straight lines-which is remarkable. Along 
the 45" line x = y, the function is 2x2 and climbing. Along the -45" line x = - y, 
the function is -2x2 and falling. The graph of 2xy is Figure 13.6 rotated by 45". 

EXAMPLES 5-6 f(x, y, z) = x2 + y2 + z2 P(T, V) = nRT/V 

Example 5 shows more variables. Example 6 shows that the variables may not be 
named x and y. Also, the function may not be named f! Pressure and temperature 
and volume are P and T and V. The letters change but nothing else: 

aP/aT = nR/V dP/aV = - ~ R T / V ~  (note the derivative of 1/V). 

There is no dP/aR because R is a constant from chemistry-not a variable. 
Physics produces six variables for a moving body-the coordinates x, y, z and the 

momenta p,, p,, p,. Economics and the social sciences do better than that. If there 
are 26 products there are 26 variables-sometimes 52, to show prices as well as 
amounts. The profit can be a complicated function of these variables. The partial 
derivatives are the marginalprofits, as one of the 52 variables is changed. A spreadsheet 
shows the 52 values and the effect of a change. An infinitesimal spreadsheet shows 
the derivative. 

SECOND DERIVATIVE 

Genius is not essential, to move to second derivatives. The only difficulty is that two 
first derivatives f, and f , lead to four second derivatives fxx and fxy and f ,and f,. 
(Two subscripts: f,, is the x derivative of the x derivative. Other notations are 
d2 flax2 and a2f/axdy and a*flayax and d2flay2.) Fortunately fxy equals f,, as we 
see first by example. 

EXAMPLE 7 f = x/y has f, = l/y, which has fxx = 0 and f, = - l/y2. 

The function x/y is linear in x (which explains fxx = 0). Its y derivative isf, = - xly2. 
This has the x derivative f,,, = - l/y2. The mixed derivatives fxy and fyx are equal. 

In the pure y direction, the second derivative isf, = 2x/y3. One-variable calculus 
is sufficient for all these derivatives, because only one variable is moving. 

EXAMPLE 8 f = 4x2 + 3xy + y2 has f, = 8x + 3y and f ,= 3x + 2y. 

Both "cross derivatives" f,, andf,, equal 3. The second derivative in the x direction 
is a2f/ax2 = 8 or fxx = 8. Thus "fx x" is "d second f d x squared." Similarly 
a2flay2 = 2. The only change is from d to a. 

Iff(x, y) has continuous second derivatives then f,, =&,. Problem 43 sketches a proof 
based on the Mean Value Theorem. For third derivatives almost any example shows 
that f,, =fxyx =f,, is different from fyyx =fyxy =fxyy . 
Question How do you plot a space curve x(t), y(t), z(t) in a plane? One way is to look 
parallel to the direction (1, 1, 1). On your XY screen, plot X = (y - x ) / d  and 
Y = (22 - x -y)/$. The line x = y = z goes to the point (0, O)! 



How do you graph a surface z =f(x, y)? Use the same X and Y. Fix x and let y 
vary, for curves one way in the surface. Then fix y and vary x, for the other partial 
function. For a parametric surface like x = (2 + v sin i u )  cos u, y = (2 + v sin fu) sin u, 
z = v cos iu,vary u and then u. Dick Williamson showed how this draws a one-sided 
"Mobius strip." 

13.2 
Read-through questions 

The he derivative a f / a ~  comes from fixing band 
moving c . It is the limit of d . Iff = e2, sin y then 
af/ax = and a f / a ~= Iff  = (x2+ y2)'12 thenfx = 

cr and f ,= h . At (x,, yo) the partial derivative f, is 
the ordinary derivative of the I function Ax, yo). Simi- 
larlyf, comes from f( 1 ). Those functions are cut out by 
vertical planes x = xo and k , while the level curves are 
cut out by I planes. 

The four second derivatives are f,,, m , n , o . 
For f = xy they are P . For f = cos 2x cos 3y they are 

q . In those examples the derivatives r and s 
are the same. That is always true when the second derivatives 
are f . At the origin, cos 2x cos 3y is curving u in 
the x and y directions, while xy goes v in the 45" direc- 
tion and w in the -45" direction. 

Find aflax and af/ay for the functions in 1-12. 

3 x3y2-x2-ey 4 ~ e " + ~  

5 (x + Y)/(x-Y) 6 1 / J M  

11 tan-'(ylx) 12 ln(xy) 

Computefxx,fx, =A,, and&, for the functions in 13-20. 

19 cos ax cos by 20 l/(x + iy) 

EXERCISES 
25 xl"' Why does this equal tl""? 26 cos x 

27 Verify f,, =fyx for f = xmyn. If fxy = 0 then fx does not 
depend on and& is independent of . The 
function must have the form f(x, y) = G(x)+ 
28 In tmns of 0, computef, and.& forf (x, Y) = J: aft) tit. First 
vary x. Then vary Y. 

29 Compute af/ax for f = IT v(t)dt. Keep y constant. 

30 What is f (x, y) = 1: dtlt and what are fx and fy? 

31 Calculate all eight third derivatives fxXx, fxxy, ... off = 
x3y3. HOW many are different? 

32-35,
equation. 

,.hoosc g(y) so that f(x,Y)= ecxdy) the 

32 f x + f y = O  33 fx= 7& 

35 fxx  = 4fyy 

36 Show that t - '12e-x214tsatisfies the heat equation f;=f,, . 
Thisflx, t) is the temperature at position x and time t due to 
a point source of heat at x = 0, t = 0. 

37 The equation for heat flow in the xy plane isf, =f,, +hY. 
Show thatflx, y, t) = e-2t sin x sin y is a solution. What expo- 
nent in f = e- sin 2x sin 3y gives a solution? 

38 Find solutions Ax, y) = e- sin mx cos ny of the heat 
equation /, =/, +f,. Show that t - 'e-x214re-"214ris also a 
solution. 

39 The basic wave equation is f,,=f,,. Verify that flx, t) = 
sin(x + t) and f(x, t) = sin(x - t) are solutions. Draw both 
graphs at t = 4 4 .  Which wave moved to the left and which 
moved to the right? 

40 Continuing 39, the peaks of the waves moved a distance 
Ax = in the time step At = 1114. The wave velocity 
is AxlAt = 

Find the domain and range (all inputs and outputs) for the 
functions 21-26. Then compute fx, fy ,fz,f;. 41 Which of these satisfy the wave equation f;,= c2 fxx? 

sin(x -ct), COS(X+ ct), ex-ect, ex cos ct. 

23 (Y -x)l(z - t) 24 In(x + t) 42 Suppose aflat = afjax. show that a2flat2 = a2flax2. 
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43 The proof of fxy =fy, studies f(x, y) in a small rectangle. 
The top-bottom difference is g(x) =f(x, B) -f(x, A). The 
difference at the corners 1, 2, 3, 4 is: 

Q = Cf4 -f31 -C f 2  -f1l 
=g(b)-g(a) (definition of g) 

=(b -a)g,(c) (Mean Value Theorem) 

=(6 -a)(B -A) fxy(c, C) (MVT again) 
(a) The right-left difference is h(y) =f(b, y) -f(a, y). The 
same Q is h(B) -h(A). Change the steps to reach Q = 

(B -A)@-alfyxk*, C*). 
(b)The two forms of Q make fxy at (c, C) equal to f,, at 
(c*, C*). Shrink the rectangle toward (a, A). What assump- 
tion yields fxy =fy, at that typical point? 

44 Find df/dx and dfldy where they exist, based on equations 
(1) and (2). 

(a)f=lxyl (b)f=xZ+y2 ifx#O, f = O i f x = O  

Questions 45-52 are about limits in two dimensions. 

45 Complete these four correct dejinitions of limit: 1 The 
points (xn, yn) approach the point (a, b) if xn converges to a 
and 2 For any circle around (a, b), the points (x,, y,) 
eventually go the circle and stay . 3 The 

distance from (x,, yn) to (a, b) is and it approaches 
4 For any E > 0 there is an N such that the distance 
<E for all n > . 

46 Find (x,, y2) and (x,, y,) and the limit (a, b) if it exists. 
Start from (x,, yo) = (1, 0). 

(a) (xn, yn) =(lib + I), nl(n + 1)) 
(b)(xn, yn) =(xn-l, yn-1) 
(c) ( x n , ~ n ) = ( ~ n - l , ~ n - l )  

47 (Limit of f(x, y)) 1 Informal definition: the numbers 
f(x,, yn) approach L when the points (x,, y,) approach (a, b). 
2 Epsilon-delta dejinition: For each E > 0 there is a 6 >0 such 
that I f(x, y) -LI is less than when the distance from 
(x, Y) to (a, b) is . The value off at (a, b) is not 
involved. 

48 Write down the limit L as (x, y) +(a, b). At which points 
(a, b) does f(x, y) have no limit? 

(a)f(x, Y) =JW (b)f(x, Y) = XIY 
( 4  f b ,  Y) = ll(x + Y) (d)f(x, Y) = xyl(xZ+ y2) 

In (d) find the limit at (0,O) along the line y = mx. The limit 
changes with m, so L does not exist at (0,O). Same for xly. 

49 Dejinition of continuity: f(x, y) is continuous at (a, b) if 
f(a, b) is defined and f(x, y) approaches the limit as 
(x, y) approaches (a, b). Construct a function that is not con- 
tinuous at (1, 2). 

50 Show that xZy/(x4+ yZ)-+0 along every straight line 
y = mx to the origin. But traveling down the parabola y = xZ, 
the ratio equals 

51 Can you define f(0,O) so that f(x, y) is continuous at (0, O)? 

(a)f =  1x1+ Iy- 11 (b) f = ( l  + x ) ~  (c) f = ~ ' + ~ .  

52 Which functions zero as (x, Y) -* (0, O) and 

(a) 
xy2 

(b) 
x~~~ 

(c) 
xmyn-13.3 Tangent Planes and Linear Approximations 

Over a short range, a smooth curve y =f(x) is almost straight. The curve changes 
direction, but the tangent line y - yo =f '(xo)(x - xo) keeps the same slope forever. 
The tangent line immediately gives the linear approximation to y=f(x): 
Y = Yo +f'(xo)(x - xo). 

What happens with two variables? The function is z =f(x, y), and its graph is a 
surface. We are at a point on that surface, and we are near-sighted. We don't see far 
away. The surface may curve out of sight at the horizon, or it may be a bowl or a 
saddle. To our myopic vision, the surface looks flat. We believe we are on a plane 
(not necessarily horizontal), and we want the equation of this tangent plane. 
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Notation The basepoint has coordinates x0 and Yo. The height on the surface is
zo =f(xo, Yo). Other letters are possible: the point can be (a, b) with height w. The
subscript o indicates the value of x or y or z or 8f/Ox or aflay at the point.

With one variable the tangent line has slope df/dx. With two variables there
are two derivatives df/8x and Of/Oy. At the particular point, they are (af/ax)o and
(af/ay)o. Those are the slopes of the tangent plane. Its equation is the key to this
chapter:

EXAMPLE 1 Find the tangent plane to z = 14 - x 2 - y2 at (xo, Yo, zo) = (1, 2, 9).

Solution The derivatives are af/ax = - 2x and Ofl/y = - 2y. When x = 1 and y = 2
those are (af/ax)o = - 2 and (df/ay)o = - 4. The equation of the tangent plane is

z - 9 = - 2(x - 1)- 4(y - 2) or z+2x+4y= 19.

This z(x, y) has derivatives - 2 and - 4, just like the surface. So the plane is tangent.
The normal vector N has components -2, -4, -1. The equation of the normal

line is (x, y, z) = (1, 2, 9) + t(- 2, - 4, - 1). Starting from (1, 2, 9) the line goes out along
N-perpendicular to the plane and the surface.

Fig. 13.7 The tangent plane contains the x and y tangent lines, perpendicular to N.

Figure 13.7 shows more detail about the tangent plane. The dotted lines are the x
and y tangent lines. They lie in the plane. All tangent lines lie in the tangent plane!
These particular lines are tangent to the "partial functions"--where y is fixed at Yo =
2 or x is fixed at x0 = 1. The plane is balancing on the surface and touching at the
tangent point.

More is true. In the surface, every curve through the point is tangent to the plane.
Geometrically, the curve goes up to the point and "kisses" the plane.t The tangent
T to the curve and the normal N to the surface are perpendicular: T . N = 0.

tA safer word is "osculate." At saddle points the plane is kissed from both sides.
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43A The tangent plane at (xo, Yo, zo) has the same slopes as the surface z =
f(x, y). The equation of the tangent plane (a linear equation) is

z - zo = (x - Xo) + A y - (yo). (1)

The normal vector N to that plane has components (af/ax)0 , (0f/ly)o, -1.

N =
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EXAMPLE 2 Find the tangent plane to the sphere z 2 = 14 - x
2 - y 2 at (1, 2, 3).

Solution Instead of z = 14 - x2 - y 2 we have z = 14- x 2 - y 2 . At xo = 1, yo = 2
the height is now zo = 3. The surface is a sphere with radius 1/4. The only trouble
from the square root is its derivatives:

1z - =2 2  2(- 2x) a z _ (- 2y)
ax ax 114 - x2 - y2  

-y /14- 2 - y 2

At (1, 2) those slopes are - 4 and - S. The equation of the tangent plane is linear:
z - 3 = - ½(x - 1) - 1(y - 2). I cannot resist improving the equation, by multiplying
through by 3 and moving all terms to the left side:

tangent plane to sphere: l(x - 1) + 2(y - 2) + 3(z - 3) = 0. (4)

If mathematics is the "science of patterns," equation (4) is a prime candidate for study.
The numbers 1, 2, 3 appear twice. The coordinates are (xo, Yo, zo) = (1, 2, 3). The
normal vector is ii + 2j + 3k. The tangent equation is lx + 2y + 3z = 14. None of this
can be an accident, but the square root of 14 - x 2 - y2 made a simple pattern look
complicated.

This square root is not necessary. Calculus offers a direct way to find dz/dx-
implicit differentiation. Just differentiate every term as it stands:

2 y2 Z2 = 14 leads to 2x + 2z az/ax = 0 and 2y + 2z az/ay = 0. (5)

Canceling the 2's, the derivatives on a sphere are - x/z and - y/z. Those are the same
as in (3). The equation for the tangent plane has an extremely symmetric form:

Z - Zo = (x - xo)- (y - yo) or xo(x - xo) + yo(y - yo) + zo(z - zo)= O. (6)
Z0  Z 0

Reading off N = xoi + yoj + zok from the last equation, calculus proves something
we already knew: The normal vector to a sphere points outward along the radius.

Z \

x

oj - z0ok N = x0i + y(

Y

x2 + y2 _ 2 = 1 X +y 2 z2 = -1

Fig. 13.8 Tangent plane and normal N for a sphere. Hyperboloids of 1 and 2 sheets.

THE TANGENT PLANE TO F(x, y, z)= c

The sphere suggests a question that is important for other surfaces. Suppose the
equation is F(x, y, z) = c instead of z =f(x, y). Can the partial derivatives and tangent
plane be found directly from F?

The answer is yes. It is not necessary to solve first for z. The derivatives of F,

r
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computed at (xo, Yo, zo), give a second formula for the tangent plane and normal
vector.

Notice how this includes the original case z =f(x, y). The function F becomes
f(x, y) - z. Its partial derivatives are Of/Ox and Of/Oy and -1. (The -1 is from the
derivative of - z.) Then equation (7) is the same as our original tangent equation (1).

EXAMPLE 3 The surface F = x2 + y 2 - z2 = c is a hyperboloid. Find its tangent plane.

Solution The partial derivatives are Fx = 2x, F, = 2y, Fz = - 2z. Equation (7) is

tangent plane: 2xo(x - xo) + 2 yo(y - Yo) - 2zo(z - zo)= 0. (8)

We can cancel the 2's. The normal vector is N = x0i + yoj - z0k. For c > 0 this
hyperboloid has one sheet (Figure 13.8). For c = 0 it is a cone and for c < 0 it breaks
into two sheets (Problem 13.1.26).

DIFFERENTIALS

Come back to the linear equation z - zo = (Oz/Ox)0(x - x0) + (Oz/Oy)o(y - Yo) for the
tangent plane. That may be the most important formula in this chapter. Move along
the tangent plane instead of the curved surface. Movements in the plane are dx and
dy and dz-while Ax and Ay and Az are movements in the surface. The d's are
governed by the tangent equation- the A's are governed by z =f(x, y). In Chapter 2
the d's were differentials along the tangent line:

dy = (dy/dx)dx (straight line) and Ay, (dy/dx)Ax (on the curve). (9)

Now y is independent like x. The dependent variable is z. The idea is the same. The
distances x - x0 and y - yo and z - zo (on the tangent plane) are dx and dy and dz.
The equation of the plane is

dz = (Oz/Ox) 0dx + (Oz/Oy)ody or df=fxdx +fdy. (10)

This is the total differential. All letters dz and df and dw can be used, but Oz and Of
are not used. Differentials suggest small movements in x and y; then dz is the resulting
movement in z. On the tangent plane, equation (10) holds exactly.

A "centering transform" has put x0, Yo, zo at the center of coordinates. Then the
"zoom transform" stretches the surface into its tangent plane.

EXAMPLE 4 The area of a triangle is A = lab sin 0. Find the total differential dA.

Solution The base has length b and the sloping side has length a. The angle between
them is 0. You may prefer A = ½bh, where h is the perpendicular height a sin 0. Either
way we need the partial derivatives. If A = ½ab sin 0, then

OA 1 OA 1 dA 1
-b sin0 - a sin 6 - ab cos 0. (11)

Oa 2 Ob 2 06 2

13B The tangent plane to the surface F(x, y, z)= c has the linear equation

(OF (x - X0) + ( (7 -F ) + OF (z - ) = 0 (7)

The normal vector is N = a- + ( i j + ( k.(Tx o ayo (Tzo
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These lead immediately to the total differential dA (like a product rule):

(dAd (DAN (DAN 1 1 1
dA = Ida + I db + dO= b sin 0 da + ± a sin 8 db + -ab cos 8 dO.

\Da/ \b 00 2 2 2

EXAMPLE 5 The volume of a cylinder is V = nr2 h. Decide whether V is more sensitive
to a change from r = 1.0 to r = 1.1 or from h = 1.0 to h = 1.1.

Solution The partial derivatives are V/Or = 2n7rh and DV/ah = irr2 . They measure
the sensitivity to change. Physically, they are the side area and base area of the
cylinder. The volume differential dV comes from a shell around the side plus a layer
on top:

dV = shell + layer = 2nrh dr + rr2dh. (12)

Starting from r = h = 1, that differential is dV= 2rndr + 7rdh. With dr = dh = .1, the
shell volume is .21t and the layer volume is only .17r. So V is sensitive to dr.

For a short cylinder like a penny, the layer has greater volume. Vis more sensitive
to dh. In our case V= rTr2h increases from n(1)3 to ~n(1.1)3 . Compare AV to dV:

AV= n(1.1) 3 - 7(1) 3 = .3317r and dV= 27r(.1)+ 7n(.1)= .3007r.

The difference is AV- dV= .0317. The shell and layer missed a small volume in
Figure 13.9, just above the shell and around the layer. The mistake is of order
(dr)2 + (dh)2 . For V= 7rr 2 h, the differential dV= 27rrh dr + 7rr 2dh is a linear approxima-
tion to the true change A V. We now explain that properly.

LINEAR APPROXIMATION

Tangents lead immediately to linear approximations. That is true of tangent planes as
it was of tangent lines. The plane stays close to the surface, as the line stayed close
to the curve. Linear functions are simpler than f(x) or f(x, y) or F(x, y, z). All we
need are first derivatives at the point. Then the approximation is good near the point.

This key idea of calculus is already present in differentials. On the plane, df equals
fxdx +fydy. On the curved surface that is a linear approximation to Af:

43C The linear approximation to f(x, y) near the point (xo, Yo) is

f(x, y) ýf(xo, Yo) + ( (x - Xo) + ( y(y - Yo). (13)

In other words Af fxAx +fAy, as proved in Problem 24. The right side of (13)
is a linear function fL(x, y). At (xo, yo), the functions f and fL have the same slopes.
Then f(x, y) curves away fromfL with an error of "second order:"

If(x, y) -fL(x, Y)I < M[(x - Xo) 2 + (y - yo) 2]. (14)

This assumes thatfx,,,fx, and fy are continuous and bounded by M along the line
from (xo, Yo) to (x, y). Example 3 of Section 13.5 shows that If,,I < 2M along that line.
A factor ½ comes from equation 3.8.12, for the error f-fL with one variable.

For the volume of a cylinder, r and h went from 1.0 to 1.1. The second derivatives
of V = lrr 2h are V, , = 27rh and Vh = 27rr and Vhh = 0. They are below M = 2.27r. Then
(14) gives the error bound 2.27r(.1 2 + .12) = .0447r, not far above the actual error .03 17r.
The main point is that the error in linear approximation comes from the quadratic
terms-those are the first terms to be ignored by fL.
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layer dh 
area nr2  

shell dr 
area 2nrh 

Fig. 13.9 Shiell plus layer gives dV= .300n. Fig. 13.10 Quantity Q and price P move with the lines. 
Including top ring gives A V = .33 In. 

EXAMPLE 6 Find a-linear approximation to the distance function r = ,/=. 
Solution The partial derivatives are x/r and ylr. Then Ar z(x/r)Ax + (y/r)Ay. 

z ,/mFor (x, y, r) near (1, 2, &): ,,/= + (x - I)/& + 2(y - 2)/fi .  

If y is fixed at 2, this is a one-variable approximation to d m .If x is fixed at 1, 
it is a linear approximation in y. Moving both variables, you might think dr would 
involve dx and dy in a square root. It doesn't. Distance involves x and y in a square 
root, but: change of distance is linear in Ax and Ay-to a first approximation. 

There is a rough point at x = 0, y = 0. Any movement from (0,O) gives Ar = 

Jmk(Ay)2. The square root has returned. The reason is that the partial deriva- 
tives x/r and y/r are not continuous at (0,O). The cone has a sharp point with no 
tangent plane. Linear approximation breaks down. 

The next example shows how to approximate Az from Ax and Ay, when the 
equation is F(x, y, z) = c. We use the implicit derivatives in (7) instead of the explicit 
derivatives in (1). The idea is the same: Look at the tangent equation as a way to 
find Az, instead of an equation for z. Here is Example 6 with new letters. 

EXAMPLE 7 From F = - x2 - y2 + z2 = 0 find a linear approximation to Az 

Solution (implicit derivatives) Use the derivatives of F: -2xAx - 2yAy + 2zAz z 0. 
Then solve for Az, which gives Az z (x/z)Ax + (y/z)Ay-the same as Example 6. 

EXAMPLE 8 How does the equilibrium price change when the supply curve changes? 

The equilibrium price is at the intersection of the supply and demand curves 
(supply =: demand). As the price p rises, the demand q drops (the slope is - .2): 

demand line DD: p = - .2q + 40. (15) 
The supply (also q) goes up with the price. The slope s is positive (here s = .4): 

supply line SS: p = sq + t = .4q + 10. 

Those lines are in Figure 13.10. They meet at the equilibrium price P = $30. The 
quantity Q = 50 is available at P (on SS) and demanded at P (on DD). So it is sold. 

Where do partial derivatives come in? The reality is that those lines DD and SS 
are not fixed for all time. Technology changes, and competition changes, and the 
value of money changes. Therefore the lines move. Therefore the crossing point (Q, P) 
also moves. Please recognize that derivatives are hiding in those sentences. 
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Main point: The equilibrium price P is a function of s and t. Reducing s by better 
technology lowers the supply line to p = .3q + 10. The demand line has not changed. 
The customer is as eager or stingy as ever. But the price P and quantity Q are 
different. The new equilibrium is at Q = 60 and P = $28, where the new line XX 
crosses DD. 

If the technology is expensive, the supplier will raise t when reducing s. Line YY 
is p = .3q + 20. That gives a higher equilibrium P = $32 at a lower quantity Q = 40-
the demand was too weak for the technology. 

Calculus question Find dP/ds and aP/at. The difficulty is that P is not given as 
a function of s and t. So take implicit derivatives of the supply = demand equations: 

supply = demand: P = - .2Q + 40 = sQ + t (16) 

s derivative: P, = - .2Q, = sQ, + Q (note t, = 0) 

t derivative: P, = - .2Q, = sQ, + 1 (note t, = 1) 

Now substitute s = .4, t = 10, P = 30, Q = 50. That is the starting point, around which 
we are finding a linear approximation. The last two equations give P, = 5013 and 
P, = 113 (Problem 25). The linear approximation is 

Comment This example turned out to be subtle (so is economics). I hesitated before 
including it. The equations are linear and their derivatives are easy, but something 
in the problem is hard-there is no explicit formula for P. The function P(s, t) is not 
known. Instead of a point on a surface, we are following the intersection of two lines. 
The solution changes as the equation changes. The derivative of the solution comes from 
the derivative of the equation. 

Summary The foundation of this section is equation (1) for the tangent plane. Every- 
thing builds on that-total differential, linear approximation, sensitivity to small 
change. Later sections go on to the chain rule and "directional derivatives" and 
"gradients." The central idea of differential calculus is Af zf,Ax +f,,Ay. 

N W O N ' S  METHOD F O R  MI0 EQUATIONS 

Linear approximation is used to solve equations. To find out where a function is zero, 
look first to see where its approximation is zero. To find out where a graph crosses 
the xy plane, look to see where its tangent plane crosses. 

Remember Newton's method for f(x) = 0. The current guess is x,. Around that 
point, f(x) is close to f(x,) + (x - x,)f'(x,). This is zero at the next guess x,,, = 
x, -f(x,)/f'(x,). That is where the tangent line crosses the x axis. 

With two variables the idea is the same- but two unknowns x and y require two 
equations. We solve g(x, y) = 0 and h(x, y) = 0. Both functions have linear approxi- 
mations that start from the current point (x,, y,)-where derivatives are computed: 

The natural idea is to set these approximations to zero. That gives linear equations 
for x - x, and y - y,. Those are the steps Ax and Ay that take us to the next guess 
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in Newton's method:

EXAMPLE 9 g = x 3 - y = 0 and h = y3 - x = 0 have 3 solutions (1, 1), (0, 0), (-1, -1).

I will start at different points (xo, yo). The next guess is x, = xo + Ax, yl = Yo + Ay.
It is of extreme interest to know which solution Newton's method will choose-if it
converges at all. I made three small experiments.

1. Suppose (xo, yo) = (2, 1). At that point g = 2 - 1 = 7 and h = 13 - 2 = -1. The
derivatives are gx = 3x2 = 12, gy = - 1, hx = - 1, hy = 3y 2 = 3. The steps Ax and Ay
come from solving (19):

12Ax - Ay= -7 Ax = - 4/7 x = xo + Ax= 10/7

-Ax+3Ay= +1 Ay= + 1/7 = yo + Ay= 8/7.

This new point (10/7, 8/7) is closer to the solution at (1, 1). The next point is (1.1,
1.05) and convergence is clear. Soon convergence is fast.

2. Start at (xo, Yo) = (½, 0). There we find g = 1/8 and h = - 1/2:

(3/4)Ax - Ay= -1/8 Ax = - 1/2 x = xo + =Ax =0

- Ax + OAy= + 1/2 Ay = + 1/4 y, = yo + Ay = - 1/4.

Newton has jumped from (½, 0) on the x axis to (0, - f) on the y axis. The next step
goes to (1/32, 0), back on the x axis. We are in the "basin of attraction" of (0, 0).

3. Now start further out the axis at (1, 0), where g = 1 and h = - 1:

3Ax- Ay= -1 Ax= -1 x= xo+Ax=0O

-Ax+OAy= +1 Ay=-2 yl=yo+Ay=-2.

Newton moves from (1, 0) to (0, -2) to (16, 0). Convergence breaks down-the
method blows up. This danger is ever-present, when we start far from a solution.

Please recognize that even a small computer will uncover amazing patterns. It can
start from hundreds of points (xo, Yo), and follow Newton's method. Each solution
has a basin of attraction, containing all (xo, Yo) leading to that solution. There is also
a basin leading to infinity. The basins in Figure 13.11 are completely mixed together-
a color figure shows them asfractals. The most extreme behavior is on the borderline
between basins, when Newton can't decide which way to go. Frequently we see chaos.

Chaos is irregular movement that follows a definite rule. Newton's method deter-
mines an iteration from each point (x,, y,) to the next. In scientific problems it
normally converges to the solution we want. (We start close enough.) But the com-
puter makes it posible to study iterations from faraway points. This has created a
new part of mathematics-so new that any experiments you do are likely to be
original.

13D Newton's method to solve g(x, y)= 0 and h(x, y)= 0 has linear equations
for the steps Ax and Ay that go from (xe, yJ) to (x, + 1, y,, +1)

Ax + Ay= -g(x, y.) and Ax + Ay= - h(x., yJ). (19)ax sy (ax _y _
•/ 3D•
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Fig. 13.11 The basins of attraction to (1, 1), (0, 0), (-1, -1), and infinity.

13.3 EXERCISES
Read-through questions

The tangent line to y =f(x) is y - Yo = a . The tangent
plane to w =f(x, y) is w - wo = b . The normal vector is
N= c . For w = x3 + y3 the tangent equation at (1, 1, 2)
is d . The normal vector is N = .For a sphere, the
direction of N is f

The surface given implicitly by F(x, y, z) = c has tangent
equation (OF/Ox)o(x - xo) + g . For xyz = 6 at (1, 2, 3)
the tangent plane is h . On that plane the differentials
satisfy I dx + i dy + k dz = 0. The differential
of z =f(x, y) is dz = I . This holds exactly on the tangent
plane, while Az m m holds approximately on the n
The height z = 3x + 7y is more sensitive to a change in 0
than in x, because the partial derivative P is larger than

The linear approximation to f(x, y) is f(xo, Yo) + r
This is the same as Af s Ax + t Ay. The error is
of order u . For f= sin xy the linear approximation
around (0, 0) is fL = v . We are moving along the w
instead of the x . When the equation is given as
F(x, y, z) = c, the linear approximation is Y Ax +

z Ay + A Az = 0.

Newton's method solves g(x, y)= 0 and h(x, y)= 0 by a
B approximation. Starting from x,, y, the equations are

replaced by c and D . The steps Ax and Ay go to the

next point E . Each solution has a basin of F. Those
basins are likely to be G

In 1-8 find the tangent plane and the normal vector at P.

1 z= 2 +y 2, P = (0, 1, 1)

2 x+y+z=17, P=(3, 4, 10)

3 z = x/y, P = (6, 3, 2)

4 z = ex + 2, P = (0, 0, 1)

5 X2 + y2 + Z2 = 6, P = (1, 2, 1)

6 x 2 + y2 + 2Z2 = 7, P = (1, 2, 1)

7 z = x y, P = (1, 1, 1)

8 V = r 2 h, P= (2, 2, 87x).

9 Show that the tangent plane to z 2 -_x2 
-y 2 =0 goes

through the origin and makes a 450 angle with the z axis.

10 The planes z = x + 4y and z = 2x + 3y meet at (1, 1, 5).
The whole line of intersection is (x, y, z) = (1, 1, 5) + vt.
Find v= N1 x N 2.

11 If z = 3x - 2y find dz from dx and dy. If z = x31y 2 find dz
from dx and dy at xo = 1, yo = 1. If x moves to 1.02 and y
moves to 1.03, find the approximate dz and exact Az for both
functions. The first surface is the to the second
surface.

13 Partial Derivatives

Section 3.7 found chaos when trying to solve x
2 + 1 = 0. But don't think Newton's

method is a failure. On the contrary, it is the best method to solve nonlinear equations.
The error is squared as the algorithm converges, because linear approximations have
errors of order (Ax) 2 + (Ay) 2 . Each step doubles the number of correct digits, near
the solution. The example shows why it is important to be near.
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12 The surfaces z =x2 + 41y and z = 2x + 3y2 meet at (1, 1, 5). 
Find the normals N, and N, and also v = N, x N,. The line 
in this direction v is tangent to what curve? 

13 The normal N to the surface F(x, y, z) =0 has components 
F,, F,, F,. The normal line has x =xo + Fxt, y =yo + F,t, 
z =  . For the surface xyz -24 =0, find the tangent 
plane and normal line at (4, 2, 3). 

14 For the surface x2y2 -- z =0, the normal line at (1, 2,4) 
h a s x =  , y =  , z =  . 

15 For the sphere x2 + y'' + z2 =9, find the equation of the 
tangent plane through (2, 1,2). Also find the equation of the 
normal line and show that it goes through (O,0,0). 

16 If the normal line at every point on F(x, y, z) = 0 goes 
through (0, 0, 0), show that Fx=cx, F, =cy, F, =cz. The sur- 
face must be a sphere. 

17 For w = xy near (x,, y,,), the linear approximation is dw = 
. This looks like the rule for derivatives. 

The difference between Aw =xy -xoyo and this approxima- 
tion is . 

18 Iff =xyz (3 independent variables) what is df? 

19 You invest P = $4000 at R = 8% to make I = $320 per 
year. If the numbers chan,ge by dP and dR what is dl? If the 
rate drops by dR = .002 (to 7.8%) what change dP keeps d l  = 

O? Find the exact interest I after those changes in R and P. 

20 Resistances R, and R:! have parallel resistance R, where 
1/R = 1/R, + 1/R2. Is R more sensitive to AR, or AR, if R, = 

1 and R, = 2? 

(a) If your batting average is A = (25 hits)/(100 at bats) = 

.250, compute the increase (to 261101) with a hit and the 
decrease (to 251101) w:ith an out. 
(b) If A =xly then dA == dx + dy. A hit 
(dx =dy = 1) gives dA = (1 -A)/y. An out (dy = 1) gives 
dA = -Aly. So at A ==.250 a hit has times the 
effect of an out. 

(a) 2 hits and 3 outs (dx =2, dy = 5) will raise your average 
(dA > 0) provided A is less than . 
(b)A player batting A = .500 with y =400 at bats needs 
dx = hits to raise his average to .505. 

If x and y change by Ax and Ay, find the approximate 
change A0 in the angle 8 == tan - '(y/x). 

24 The Fundamental Lernma behind equation (13) writes 
Af =aAx + bAy. The Lernma says that a +fx(xo, yo) and 
b +fy(xo, yo) when Ax +0 and Ay +0. The proof takes A.x 
first and then Ay: 

(l)f(xo + Ax, yo) -f(x,, yo) = Axfx(c, yo) where c is 
between and (by which theorem?) 

(2)f(xo + Ax, Yo + AY) --f(x0 + Ax, yo) =Ayf,(xo + Ax, C )  
where C is between and . 

(3) a = f x k  yo -+fx(xo,YO) provided fx 

(4) b =fy(xo+ Ax, C) -+fy(xo, yo) provided f, is . 

25 If the supplier reduces s, Figure 13.10 shows that P 
decreases and Q . 

(a) Find P, = 5013 and P, = 113 in the economics equation 
(17) by solving the equations above it for Q, and Q,. 
(b) What is the linear approximation to Q around s = .4, 
t = 10, P = 30, Q = 50? 

26 Solve the equations P = -.2Q + 40 and P = sQ + t for P 
and Q. Then find aP/as and aP/dt explicitly. At the same 
s, t, P, Q check 5013 and 113. 

27 If the supply =demand equation (16) changes to P = 
s Q + t = - Q + 5 0 ,  find P, and P, at s =  1, t =  10. 

28 To find out how the roots of x2 + bx + c =0 vary with b, 
take partial derivatives of the equation with respect to 

. Compare axlab with ax/ac to show that a root at 
x =2 is more sensitive to b. 

29 Find the tangent planes to z =xy and z =x2 -y2 at x = 

2, y = 1. Find the Newton point where those planes meet the 
xy plane (set z = 0 in the tangent equations). 

30 (a) To solve g(x, y) =0 and h(x, y) =0 is to find the meeting 
point of three surfaces: z =g(x, y) and z =h(x, y) and 

(b) Newton finds the meeting point of three planes: the 
tangent plane to the graph of g, , and . 

Problems 31-36 go further with Newton's method for g = 

x3-y and h = Y3 -X. This is Example 9 with solutions (1, I), 
(0, 01, (-1, -1). 

31 Start from xo = 1, yo = 1 and find Ax and Ay. Where are 
x, and y,, and what line is Newton's method moving on? 

32 Start from (3,i) and find the next point. This is in the 
basin of attraction of which solution? 

33 Starting from (a, -a) find Ay which is also -Ax. Newton 
goes toward (0, 0). But can you find the sharp point in 
Figure 13.11 where the lemon meets the spade? 

34 Starting from (a, 0) show that Newton's method goes to 
(0, -2a3) and find the next point (x,, y,). Which numbers a 
lead to convergence? Which special number a leads to a cycle, 
in which (x2, y2) is the same as the starting point (a, O)? 

35 Show that x3 =y, y3 =x has exactly three solutions. 

36 Locate a point from which Newton's method diverges. 

37 Apply Newton's method to a linear problem: g = 

x + 2y -5 = 0, h = 3x - 3 =0. From any starting point show 
that (x,, y,) is the exact solution (convergence in one step). 

-*is 
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38 The complex equation (x + i ~ ) ~= 1 contains two real equ- 41 The matrix in Newton's method is the Jacobian: 
ations, x3 -3xy2 = 1 from the real part and 3x2y -y3 = 0 
from the imaginary part. Search by computer for the basins 
of attraction of the three solutions (1, O), (- 112, f i /2) ,  and 
(- 112, -&2)-which give the cube roots of 1. Find J and Ax and Ay for g = ex-1, h = eY+ x. 

42 Find the Jacobian matrix at (1, 1) when g = x2 + y2 and 
39 In Newton's method the new guess comes from (x,, y,) by h = xy. This matrix is and Newton's method fails. 
an iteration: x, + ,= G(x,, y,) and y, + = H(x,, y,). What are The graphs of g and h have tangent planes. 
G and H f o r g = x 2 - y = O ,  h=x-y=O?  First find Ax and 43 Solve g =x2 -y2 + 1 = 0 and h = 2xy = 0 by Newton's 
Ay; then x, + Ax gives G and y, + Ay gives H. method from three starting points: (0, 2) and (- 1, 1) and (2,O). 

Take ten steps by computer or one by hand. The solution 
40 In Problem 39 find the basins of attraction of the solution (0, 1) attracts when yo > 0. If yo = 0 you should find the chaos 
(0, 0) and (1, 1). iteration x, + = 4(xn-xn- I). 

13.4 Directional Derivatives and Gradients 

As x changes, we know how f(x, y) changes. The partial derivative dfldx treats y as 
constant. Similarly df/dy keeps x constant, and gives the slope in the y direction. But 
east-west and north-south are not the only directions to move. We could go along a 
45" line, where Ax = Ay. In principle, before we draw axes, no direction is preferred. 
The graph is a surface with slopes in all directions. 

On that surface, calculus looks for the rate of change (or the slope). There is a 
directional derivative, whatever the direction. In the 45" case we are inclined to divide 
Af by Ax, but we would be wrong. 

Let me state the problem. We are given f(x, y) around a point P = (x,, yo). We are 
also given a direction u (a unit vector). There must be a natural definition of D,f-
the derivative off in the direction u. To compute this slope at P, we need a formula. 
Preferably the formula is based on df/dx and dfldy, which we already know. 

Note that the 45" direction has u = i/$ + j/$. The square root of 2 is going to 
enter the derivative. This shows that dividing Af by Ax is wrong. We should divide 
by the step length As. 

EXAMPLE 1 Stay on the surface z = xy. When (x, y) moves a distance As in the 45" 
direction from (1, I), what is Az/As? 

Solution The step is As times the unit vector u. Starting from x = y = 1 the step 
ends at x = y = 1 + AS/$. (The components of "As are AS/$.) Then z = xy is 

r = (1 + ~ s / f i ) ~= 1 + $AS + %As)', which means Az = $AS + $(As)2. 

The ratio AzlAs approaches fi as As + 0. That is the slope in the 45" direction. 

DEFINITION The derivative off'in the direction u at the point P is D,f (P ) :  

The step from P = (x,, yo) has length As. It takes us to (x, + ulAs, yo + u2As). We 
compute the change Af and divide by As. But formula (2) below saves time. 
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The x direction is u = (1, 0). Then uAs is (As, 0) and we recover af/ax:

Af f(xo + As, Yo) -f(xo, Yo) approaches D(1, 0)f
As As ax

Similarly Df= aflay, when u = (0, 1) is in the y direction. What is D,f when u=
(0, -1)? That is the negative y direction, so Df= - aflay.

CALCULATING THE DIRECTIONAL DERIVATIVE

D,f is the slope of the surface z =f(x, y) in the direction u. How do you compute it?
From af/ax and af/ay, in two special directions, there is a quick way to find Df in
all directions. Remember that u is a unit vector.

13E The directional derivative D,f in the direction u = (u1 , u2) equals

af ,fDf= - ua + - u 2. (2)

The reasoning goes back to the linear approximation of Af:
Af4Ax+f f

Af " Ax + Ay= ulAs+ u2 As.ax ay ax ay
Divide by As and let As approach zero. Formula (2) is the limit of Af/As, as the
approximation becomes exact. A more careful argument guarantees this limit pro-
vided f and fy are continuous at the basepoint (xo, Yo).

Main point: Slopes in all directions are known from slopes in two directions.

EXAMPLE 1 (repeated) f= xy and P = (1, 1) and u = (1/,i, 1//-2). Find Df(P).

The derivatives f = y and fy = x equal 1 at P. The 450 derivative is

D.f(P) =fuI +fyu 2 = 1(1/./) + 1(1//2) = /2 as before.

EXAMPLE 2 The linear function f= 3x + y + 1 has slope Df= 3u, + u2 .

The x direction is u = (1, 0), and D.f= 3. That is af/ax. In the y direction Df= 1.
Two other directions are special--along the level lines off(x, y) and perpendicular:

Level direction: D.f is zero because f is constant

Steepest direction: D.f is as large as possible (with u2 + u2 = 1).

To find those directions, look at D,f= 3u, + u2 . The level direction has 3u, + u2 = 0.
Then u is proportional to (1, - 3). Changing x by 1 and y by - 3 produces no change
in f= 3x + y + 1.

In the steepest direction u is proportional to (3, 1). Note the partial derivatives
f = 3 and fy = 1. The dot product of (3, 1) and (1, -3) is zero-steepest direction
is perpendicular to level direction. To make (3, 1) a unit vector, divide by 1/0.

Steepest climb: D,f= 3(3/_0) + l(1//10) = 10//10 = /10

Steepest descent: Reverse to u= (-3//10, -1//10) and Df= -/10.

The contour lines around a mountain follow Df= 0. The creeks are perpendicular.
On a plane like f= 3x + y + 1, those directions stay the same at all points
(Figure 13.12). On a mountain the steepest direction changes as the slopes change.



13 Partial Derivatives

, = 'A Y _ i level

y

steep
Du

3U 1 t U2 -U

direction
O, I/'1-0)

ion
n

Fig. 13.12 Steepest direction is along the gradient. Level direction is perpendicular.

THE GRADIENT VECTOR

Look again at ful +fu 2 , which is the directional derivative Duf. This is the dot
product of two vectors. One vector is u = (u1 , u2), which sets the direction. The other
vector is (f,,f,), which comes from the function. This second vector is the gradient.

af aT
DEFINITION The gradient off(x, y) is the vector whose components are and .

ax Oy
8af 83ff kfgrad f f=Vf i + j add k in three dimensions .

The space-saving symbol V is read as "grad." In Chapter 15 it becomes "del."
For the linear function 3x + y + 1, the gradient is the constant vector (3, 1). It is

the way to climb the plane. For the nonlinear function x 2 + xy, the gradient is the
non-constant vector (2x + y, x). Notice that gradf shares the two derivatives in N =
(f£,fy, -1). But the gradient is not the normal vector. N is in three dimensions,
pointing away from the surface z =f(x, y). The gradient vector is in the xy plane! The
gradient tells which way on the surface is up, but it does that from down in the base.

The level curve is also in the xy plane, perpendicular to the gradient. The contour
map is a projection on the base plane of what the hiker sees on the mountain. The
vector grad f tells the direction of climb, and its length Igradfl gives the steepness.

The example f= 3x + y + 1 had grad f= (3, 1). Its steepest slope was in the direc-
tion u = (3, 1)/!10. The maximum slope was F10. That is Igradf I = S + 1.

Important point: The maximum of (grad f) * u is the length Igradf 1. In nonlinear
examples, the gradient and steepest direction and slope will vary. But look at one
particular point in Figure 13.13. Near that point, and near any point, the linear
picture takes over.

On the graph off, the special vectors are the level direction L = (fy, -fx, 0) and
the uphill direction U = (,,f x +f 2) and the normal N = (f,fy, - 1). Problem 18
checks that those are perpendicular.

492

13F The directional derivative is Df= (grad f) u. The level direction is per-
pendicular to gradf, since D,f= 0. The slope Df is largest when u is parallel to
gradf. That maximum slope is the length Igradfl = Xf +fy:

grad f Igradf 12
for u grad f the slope is (gradf)u- gradf Igradfl.

Igrad fl jgradfl

| |

,n lr
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EXAMPLE 3 The gradient of f(x, y) = (14 - x2 - y2)/3 is Vf = (- 2x13, -2~13). 

On the surface, the normal vector is N = (- 2x13, -2~13,-1). At the point (1,2, 3), 
this perpendicular is N = (- 213, -413, -1). At the point (1, 2) down in the base, 
the gradient is (- 213, -413). The length of grad f is the slo e ,/%/3. 

Probably a hiker does not go straight up. A "grade" of &/3 is fairly steep (almost 
150%). To estimate the slope in other directions, measure the distance along the path 
between two contour lines. If Af = 1 in a distance As = 3 the slope is about 113. This 
calculation is not exact until the limit of AflAs, which is DJ 

vel 

Fig. 13.13 N perpendicular to surface and grad f perpendicular to level line (in the base). 

EXAMPLE 4 The gradient of f(x, y, z) = xy + yz + xz has three components. 

The pattern extends from f(x, y) to f(x, y, z). The gradient is now the three-dimensional 
vector ( j ; ,  fy ,f,). For this function grad f is (y + z, x + z, x + y). To draw the graph 
of w =f(x, y, z) would require a four-dimensional picture, with axes in the xyzw 
directions. 

Notice: the dimensions. The graph is a 3-dimensional "surface" in 4-dimensional 
space. The gradient is down below in the 3-dimensional base. The level sets off come 
from xy -tyz + zx = c-they are 2-dimensional. The gradient is perpendicular to that 
level set (still down in 3 dimensions). The gradient is not N! The normal vector is 
(fx ,fy ,fz :, -I), perpendicular to the surface up in 4-dimensional space. 

EXAMPLE!5 Find grad z when z(x, y) is given implicitly: F(x, y, z) = x2+ y2-z2= 0. 

z = fJm.In this case we find The derivatives are & and 
fy/,/? + y2, which go into grad z. But the point is this: To find that gradient faster, 
differentiate F(x, y, z) as it stands. Then divide by F,:  

The gradient is (- Fx/Fz, -Fy/F,). Those derivatives are evaluated at (xo, yo). The 
computation does not need the explicit function z =f(x, y): 

F = x2 + y2 - z2 =. Fx = 2x, Fy = 2y, Fz = - 2z grad z = (xlz, ylz). 

To go uphill on the cone, move in. the direction (xlz, ylz). That gradient direction 
goes radially outward. The steepness of the cone is the length of the gradient vector: 

lgrad zl = J(x/z)~+ ( y l ~ ) ~= 1 because z2 = x2 + y2 on the cone. 
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DERIVATIVES ALONG CURVED PATHS 

On a straight path the derivative off is D, f = (grad f )  u. What is the derivative on 
a curved path? The path direction u is the tangent vector T. So replace u by T, which 
gives the "direction" of the curve. 

The path is given by the position vector R(t) = x(t)i + y(t)j. The velocity is v = 

(dx/dt)i + (dy/dt)j. The tangent vector is T = vllvl. Notice the choice-to move at any 
speed (with v) or to go at unit speed (with T). There is the same choice for the 
derivative of.f(x, y) along this curve: 

df afdx af dy rateofchange --(gradf)*v=--+-- 
dt ax dt ay dt 

df af dx af dy slope -=(gradf)*T=--+--  
ds ax ds ay ds 

The first involves time. If we move faster, dfldt increases. The second involves distance. 
If we move a distance ds, at any speed, the function changes by df. So the slope in 
that direction is dflds. Chapter 1 introduced velocity as dfldt and slope as dyldx and 
mixed them up. Finally we see the difference. 

Uniform motion on a straight line has R = R, + vt. The velocity v is constant. The 
direction T = u = vllvl is also constant. The directional derivative is (grad f )  u, but 
the rate of change is (grad f )  v. 

Equations (4) and (5) look like chain rules. They are chain rules. The next section 
extends dfldt = (df/dx)(dx/dt) to more variables, proving (4) and (5). Here we focus 
on the meaning: dflds is the derivative off in the direction u = T along the curve. 

EXAMPLE 7 Find dfldt and dflds for f = r. The curve is x = t2, y = t in Figure 13.14a. 

Solution The velocity along the curve is v = 2ti + j. At the typical point t = 1 it is 
v = 2i + j. The unit tangent is T = v/&. The gradient is a unit vector i l f i  + j / f i  
pointing outward, when f (x, y) is the distance r from the center. The dot product 
with v is dfldt = 3 / d .  The dot product with T is dflds = 3 / a .  

When we slow down to speed 1 (with T), the changes in f(x, y) slow down too. 

EXAMPLE 8 Find dflds for f = xy along the circular path x = cos t, y = sin t. 

First take a direct approach. On the circle, xy equals (cos t)(sin t). Its derivative comes 
from the product rule: dfldt = cos2t - sin2t. Normally this is different from dflds, 
because the time t need not equal the arc length s. There is a speed factor dsldt to 
divide by-but here the speed is 1. (A circle of length s = 271 is completed at t = 2n.) 
Thus the slope dflds along the roller-coaster in Figure 13.14 is cos2t - sin2t. 

A 

D =  

distance 
to (xo, yo) 

Fig. 13.14 The distance f = r changes along the curve. The slope of the roller-coaster is 
(grad f )  T. The distance D from (x,, y o )  has grad D = unit vector. 
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The second approach uses the vectors grad f and T. The gradient off = xy is 
(y, x) = (sin t, cos t). The unit tangent vector to the path is T = (- sin t, cos t). Their 
dot product is the same dflds: 

slope along path = (grad f )  T = - sin2t + cos2t. 

GRADIENTS WITHOUT COORDINAJES 

This section ends with a little "philosophy." What is the coordinate-free dejnition of 
the gradient? Up to now, grad f = (fx, f,,) depended totally on the choice of x and y 
axes. But the steepness of a surface is independent of the axes. Those are added later, 
to help us compute. 

The steepness dflds involves only f and the direction, nothing else. The gradient 
should be a "tensorw-its meaning does not depend on the coordinate system. The 
gradient has different formulas in different systems (xy or re or . . .), but the direction 
and length of grad f are determined by dflds-without any axes: 

The drrection of grad f is the one in which dflds is largest. 
The length Igrad f 1 is that largest slope. 

The key equation is (change in f )  x (gradient off) (change in position). That is another 
way to write Af x fxAx +@y. It is the multivariable form-we used two variables- 
of the basic linear approximation Ay x (dy/dx)Ax. 

EXAMPLE 9 D(x, y) = distance from (x, y) to (x,, yo). Without derivatives prove 
lgrad Dl = 1. The graph of D(x, y) is a cone with slope 1 and sharp point (x,, yo). 

First question In which direction does the distance D(x, y) increase fastest? 
Answer Going directly away from (x,, yo). Therefore this is the direction of grad D. 

Second question How quickly does D increase in that steepest direction? 
~nswer A step of length As increases D by As. Therefore ]grad Dl = AslAs = 1. 

Conclusion grad D is a unit vector. The derivatives of D in Problem 48 are 
(x - xo)/D and (y - yo)/D. The sum of their squares is 1, because (x - x,)~ + 
(y - yo)* equals D ~ .  

13.4 EXERCISES 
Read-through questions The gradient of f(x, y, z) is s . This is different from the 

gradient on the surface F(x, y, z) = 0, which is -(F,/F,)i + D, f gives the rate of change of a in the direction b . 
t . Traveling with velocity v on a curved path, the rate It can be computed from the two derivatives c in the - 

of change off is dfldt = u . When the tangent direction 
special directions d . In terms of u,, u2 the formula is 

is T, the slope off is dflds = v . In a straight direction u, ' D, f = e . This is a f product of u with the vector 
g , which is called the h . For the linear function f = 

dflds is the same as w . 

ax + by, the gradient is gradf = 1 and the directional Compute then Du f = (grad f )  . u, then Du f at PP. 
derivative is D, f = i k . 

1 f(x, y) = x2 - y2 The gradient Vf = (fx,f,) is not a vector in I dimen- u = (&2, 112) P = (1, 0) 

sions, it is a vector in the m . It is perpendicular to the 2 f(x, y) = 3x + 4y + 7 u = (315, 415) P = (0, 7112) 
n lines. It points in the direction of o climb. Its 3 f(x, y) = ex cos y 

magnitude Igrad f ( is P . For f = x2 + y2 the gradient 
points q and the slope in that steepest direction is r . 4 f(x, Y)=Y'O u=(O, -1) P = ( l ,  -1) 



5 f(x, y) = distance to (0, 3) u = (1, 0) P = (1, 1) 

Find grad f = (f,, fy, f,) for the functions 6 8  from physics. 

6 1/Jx2 + y2 + z2 (point source at the origin) 

7 ln(x2 + y2) (line source along z axis) 

8 l/J(x - + y2 + z2 - l/J(x + + y2 + z2 (dipole) 

9 For f = 3x2 + 2y2 find the steepest direction and the level 
direction at (1,2). Compute D, f in those directions. 

10 Example 2 claimed that f = 3x + y + 1 has steepest slope 
Maximize Duf = 3u1 + u2 = 3ul +,/-. 

11 True or false, when f(x, y) is any smooth function: 
(a) There is a direction u at P in which D, f = 0. 
(b) There is a direction u in which D, f = gradf: 
(c) There is a direction u in which D, f = 1. 
(d) The gradient of f(x)g(x) equals g grad f + f grad g. 

12 What is the gradient of f(x)? (One component only.) What 
are the two possible directions u and the derivatives Du f ?  
What is the normal vector N to the curve y=f(x)? (Two 
components.) 

In 13-16 find the direction u in which f increases fastest at P = 

(1, 2). How fast? 

13 f(x, y) = ax + by 14 f(x, y) = smaller of 2x and y 

15 f(x, y) = ex-Y 16 fix, y) = J5 - x2 - y2 (careful) 

17 (Looking ahead) At a point where f(x, y) is a maximum, 
what is grad f ?  Describe the level curve containing the maxi- 
mum point (x, y). 

18 (a) Check by dot products that the normal and uphill and 
level directions on the graph are perpendicular: N = 

(fxyfy, - 1 ) J  =(fx,fy,fx2 +f:W =(fy, -fx, 0). 
(b) N is to the tangent plane, U and L are 

to the tangent plane. 
(c) The gradient is the xy projection of and also 
of . The projection of L points along the 

19 Compute the N, U, L vectors for f = 1 - x + y and draw 
them at a point on the flat surface. 

20 Compute N, U, L for x2 + y2 - z2 = 0 and draw them at 
a typical point on the cone. 

With gravity in the negative z direction, in what direction - U 
will water flow down the roofs 21-24? 

21 z = 2x (flat roof) 22 z = 4x - 3y (flat roof) 

23 z = ,/- (sphere) 24 z = - ,/= (cone) 

25 Choose two functions f(x, y) that depend only on x + 2y. 
Their gradients at (1, 1) are in the direction . Their 
level curves are 

26 The level curve off = y/x through (1, 1) is . The 
direction of the gradient must be . Check grad f. 

27 Grad f is perpendicular to 2i + j with length 1, and grad g 
is parallel to 2i + j with length 5. Find gradf, grad g,f, and g. 

28 True or false: 
(a) If we know gradf, we know f: 
(b) The line x = y = - z is perpendicular to the plane z = 

x + y. 
(c) The gradient of z = x + y lies along that line. 

29 Write down the level direction u for 8 = tan-'(ylx) at the 
point (3,4). Then compute grad 8 and check DUB = 0. 

30 On a circle around the origin, distance is As = rAO. Then 
dO/ds= llr. Verify by computing grad 8 and T and 
(grad 8) T. 

31 At the point (2, 1,6) on the mountain z = 9 - x - y2, 
which way is up? On the roof z = x + 2y + 2, which way is 
down? The roof is to the mountain. 

32 Around the point (1, -2) the temperature T= e-"*-y2 has 
AT z AX + Ay. In what direction u does 
it get hot fastest? 

33 Figure A shows level curves of z = f(x, y). 
(a) Estimate the direction and length of grad f at P, Q, R. 
(b) Locate two points where grad f is parallel to i + j. 
(c) Where is Igrad f ( largest? Where is it smallest? 
(d) What is your estimate of z,,, on this figure? 
(e) On the straight line from P to R, describe z and esti- 
mate its maximum. 
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34 A quadratic function ax2 + by2 + cx + dy has the gradi- 
ents shown in Figure B. Estimate a, b, c, d and sketch two 
level curves. 

35 The level curves of f(x, y) are circles around (1, 1). The 
curve f = c has radius 2c. What is f?  What is grad f at (0, O)? 

36 Suppose grad f is tangent to the hyperbolas xy = constant 
in Figure C. Draw three level curves off(x, y). Is lgrad f 1 larger 
at P or Q? Is lgrad f 1 constant along the hyperbolas? Choose 
a function that could bef: x2 + y2, x2 - y2, xy, x2y2. 

37 Repeat Problem 36, if grad f is perpendicular to the hyper- 
bolas in Figure C. 

38 Iff = 0, 1, 2 at the points (0, I), (1, O), (2, I), estimate grad f 
by assuming f = Ax + By + C. 

39 What functions have the following gradients? 

(a) (2x + y, x) (b) (ex - Y, - ex- Y, (c) ( y, - x) (careful) 

40 Draw level curves of f(x, y) if grad f = (y, x). 

In 41-46 find the velocity v and the tangent vector T. Then 
compute the rate of change df/dt = grad f v and the slope 
df/ds = grad f T. 

42 f = x  x = cos 2t y = sin 2t 

43 f = x 2 - y 2  x = x o + 2 t  y = y o + 3 t  

44 f = x y  x = t 2 + 1  y = 3  

45 f= ln  xyz x = e' y = e2' = e-' 

46 f=2x2+3y2+z2 x = t  y = t 2  Z=t3 

47 (a) Find df/ds and df/dt for the roller-coaster f = xy along 
the path x = cos 2t, y = sin 2t. (b) Change to f = x2 + y2 and 
explain why the slope is zero. 

48 The distance D from (x, y) to (1, 2) has D2 = 

(x - + (y - 2)2. Show that aD/ax = (X - l)/D and dD/ay = 
(y - 2)/D and [grad Dl = 1. The graph of D(x, y) is a 
with its vertex at . 
49 Iff = 1 and grad f = (2, 3) at the point (4, 5), find the tan- 
gent plane at (4, 5). Iff is a linear function, find f(x, y). 

50 Define the derivative of f(x, y) in the direction u = (ul, u2) 
at the point P = (x,, yo). What is Af (approximately)? What 
is D, f (exactly)? 

51 The slope off along a level curve is dflds = = 0. 
This says that grad f is perpendicular to the vector 
in the level direction. 

13.5 The Chain Rule 

Calculus goes back and forth between solving problems and getting ready for harder 
problems. The first is "application," the second looks like "theory." If we minimize f 
to save time or money or energy, that is an application. If we don't take derivatives 
to find the minimum-maybe because f is a function of other functions, and we don't 
have a chain rule-then it is time for more theory. The chain rule is a fundamental 
working tool, because f(g(x)) appears all the time in applications. So do f(g(x, y)) and 
f(x(t), y(t)) and worse. We have to know their derivatives. Otherwise calculus can't 
continue with the applications. 

You may instinctively say: Don't bother with the theory, just teach me the formulas. 
That is not possible. You now regard the derivative of sin 2x as a trivial problem, 
unworthy of an answer. That was not always so. Before the chain rule, the slopes of 
sin 2x and sin x2 and sin2x2 were hard to compute from Af/Ax. We are now at the 
same point for f(x, y). We know the meaning of dfldx, but iff = r tan B and x = r cos 8 
and y = r sin 8, we need a way to compute afldx. A little theory is unavoidable, if the 
problem-solving part of calculus is to keep going. 

To repeat: The chain rule applies to a function of a function. In one variable that 
was f(g(x)). With two variables there are more possibilities: 

1. f ( ~ )  withz=g(x,y) Find df/dx and afldy 

2. f(x, y) with x = x(t), y = y(t) Find dfldt 

3. f(x, y) with x = x(t, u), y = y(t, u) Find dfldt and afldu 
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All derivatives are assumed continuous. More exactly, the input derivatives like 
ag/ax and dxldt and dx/au are continuous. Then the output derivatives like af/ax 
and dfldt and df/au will be continuous from the chain rule. We avoid points like 
r =0 in polar coordinates-where ar/dx = x/r  has a division by zero. 

A Typical Problem Start with a function of x and y, for example x times y. Thus 
f(x,  y) = xy. Change x to r cos 8 and y to r sin 8. The function becomes (rcos 8) times 
(r sin 8). We want its derivatives with respect to r and 8. First we have to decide on 
its name. 

To be correct, we should not reuse the letter5 The new function can be F :  

f(x,  y) = x y  f(r cos 8, r sin 8)= (r cos 8)(rsin 8)= F(r, 8). 

W h y  not call it f(r, 8)? Because strictly speaking that is r times 8! If we follow the 
rules, then f (x ,  y) is xy  and f(r, 8) should be re. The new function F does the right 
thing-it multiplies (r cos 8)(rsin 8). But in many cases, the rules get bent and the 
letter F is changed back to 5 

This crime has already occurred. The end of the last page ought to say dFlat. 
Instead the printer put dfldt. The purpose of the chain rule is to find derivatives in 
the new variables t and u (or r and 8). In our example we want the derivative of F 
with respect to r. Here is the chain rule: 

d~ - d f a x  +g? = (y)(cos 8) + (x)(sin 8) = 2r sin 8 cos 8. 
dr dx ar dyer 

I substituted r sin 8 and r cos 8 for y and x. You immediately check the answer: 
F(r, 8) = r2 cos 8 sin 8 does lead to ZF/dr = 2r cos 8 sin 8. The derivative is correct. 
The only incorrect thing-but we do it anyway-is to write f instead of F. 

af af ax af ay Question What is -? Answer It is --+ --.ae ax ae ay ae 
THE DERIVATIVES OF f(g(x, y)) 

Here g depends on x and y, and f depends on g. Suppose x moves by dx, while y 
stays constant. Then g moves by dg = (ag/ax)dx.When g changes, f also changes: 
df = (df/dg)dg.Now substitute for dg to make the chain: df = (df/dg)(ag/dx)dx.This 
is the first rule: 

J 


8f df dg ?f dfag13G Clcaoir rulefovf(g(x,y)): -= -- and -=--
dx dgdic a~ dg ad* (11 

EXAMPLE 1 Every f ( x  + cy) satisfies the l-way wave equation df/ay = c af/ax. 

The inside function is g = x + cy. The outside function can be anything, g2 or sin g 
or eg. The composite function is ( x  + cy)2 or sin(x + cy) or ex+cy. In each separate 
case we could check that df/dy = c dfldx. The chain rule produces this equation in 
all cases at once, from aglax = 1 and i?g/ay= c: 

This is important: af/ay = c afldx is our first example of a partial dierential equation. 
The unknown f (x ,  y) has two variables. Two partial derivatives enter the equation. 
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Up to now we have worked with dyldt and ordinary di$ercntial equations. The 
independent variable was time or space (and only one dimension in space). For partial 
differential equations the variables are time and space (possibly several dimensions 
in space). The great equations of mathematical physics-heat equation, wave equa- 
tion, Laplace's equation-are partial differential equations. 

Notice how the chain rule applies to f = sin xy. Its x derivative is y cos xy. A patient 
reader would check that f is sing and g is xy and f, is &g,. Probably you are not 
so patient-you know the derivative of sin xy. Therefore we pass quickly to the next 
chain rule. Its outside function depends on two inside functions, and each of those 
depends on t. We want dfldt. 

THE DERIVATIVE OF f(x(t), y(t)) 

Before the formula, here is the idea. Suppose t changes by At. That affects x and y; 
they change by Ax and Ay. There is a domino effect onfi it changes by A$ Tracing 
backwards, 

af dx d~A f z d f ~ x + - A y  and Ax=-At and Ayz-At.
ax dy dt dt 

Substitute the last two into the first, connecting Af to At. Then let At -,0: 

This is close to the one-variable rule dzldx = (dz/dy)(dy/dx). There we could "cancel" 
dy. (We actually canceled Ay in (Az/Ay)(Ay/Ax), and then approached the limit.) 
Now At affects Af in two ways, through x and through y. The chain rule has two 
terms. If we cancel in (af/ax)(dx/dt) we only get one of the terms! 

We mention again that the true name for f(x(t), y(t)) is F(t) not f(t). For f(x, y, z) 
the rule has three terms: fxx, +fyyt +fiz, isf, (or better dF/dt). 

EXAMPLE 2 How quickly does the temperature change when you drive to Florida? 

Suppose the Midwest is at 30°F and Florida is at 80°F. Going 1000 miles south 
increases the temperature f(x, y) by 50°, or .05 degrees per mile. Driving straight south 
at 70 miles per hour, the rate of increase is (.05)(70) = 3.5 degrees per hour. Note how 
(degreeslmile) times (miles/hour)equals (degrees/hour). That is the ordinary chain rule 
(df/dx)(dx/dt) = (df/dt)- there is no y variable going south. 

If the road goes southeast, the temperature is f = 30 + .05x + .Oly. Now x(t) is 
distance south and y(t) is distance east. What is dfldt if the speed is still 70? 

Solution -= - - + --- 70df af dx af dy - .05-+ .01-
70 

z 3 degrees/hour.
dt ax dt ay dt Ji Ji 

In reality there is another term. The temperature also depends directly on t, because 
of night and day. The factor cos(2?ct/24) has a period of 24 hours, and it brings an 
extra term into the chain rule: 

df af dx af dy af
For f(x, y, t) the chain rule is -= - - +--+-.

dt ax dt ay dt at 

This is the total derivative dfldt, from all causes. Changes in x, y, t all affect J The 
partial derivative af/dt is only one part of dfldt. (Note that dtldt = 1.) If night and 
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day add 12 cos(2nt/24) tof, the extra term is df/at = - n sin(2nt124). At nightfall that 
is -n degrees per hour. You have to drive faster than 70 mph to get warm. 

SECOND DERIVATIVES 

What is d2 f/dt2? We need the derivative of (4), which is painful. It is like acceleration 
in Chapter 12, with many terms. So start with movement in a straight line. 

Suppose x = xo + t cos 9 and y =yo + t sin 9. We are moving at the fixed angle 9, 
with speed 1. The derivatives are x, = cos 9 and y, = sin 9 and cos29 + sin29= 1. Then 
dfldt is immediate from the chain rule: 

f, =fxx, +fyyt=fx cos 9 +f, sin 9. 

For the second derivative f,,, apply this rule to f,. Then f,, is 

cos 9 + (f,), sin 9 = (fxx cos 9 +Ax sin 9) cos 9 + (f, cos 9 +fyy sin 9) sin 9. 

Collect terms: f,,=fxx cos26+ 2fxycos 6 sin 6 +fYy sin26. (6) 

In polar coordinates change t to r. When we move in the r direction, 9 is fixed. 
Equation (6) givesf, from fxx, fxy, fyy. Second derivatives on curved paths (with new 
terms from the curving) are saved for the exercises. 

EXAMPLE 3 If fxx, fxy, fyy are all continuous and bounded by M, find a bound onf;,. 
This is the second derivative along any line. 

Solution Equation (6) gives I f , l  < M cos26 + M sin 29 + M sin29 < 2M. This upper 
bound 2M was needed in equation 13.3.14, for the error in linear approximation. 

THE DERIVATIVES OF f(x(t, u), y(t, u)) 

Suppose there are two inside functions x and y, each depending on t and u. When t 
moves, x and y both move: dx = x,dt and dy = y,dt. Then dx and dy force a change 
inf df =fxdx +fydy. The chain rule for af/& is no surprise: 

af ax af ay
131 Chain rule for f(x(t, u), y(t, u)): -af = --+--

at ax at ay a t '  (7) 

This rule has a/at instead of dldt, because of the extra variable u. The symbols remind 
us that u is constant. Similarly t is constant while u moves, and there is a second 
chain rule for aflau: fu =fxxu +f,yu. 

EXAMPLE 4 In polar coordinates findf, andf,,. Start from f(x, y) =f(r cos 9, r sin 9). 

The chain rule uses the 6 derivatives of x and y: 

a'---- ax +--- (z)
- a af ay - (- r sin 9) + ($)~(r cos 0).
89 ax 89 ay 89 

The second 9 derivative is harder, because (8) has four terms that depend on 6. Apply 
the chain rule to the first term af/ax. It is a function of x and y, and x and y are 
functions of 9: "(32(212+ "(3= 9=fxX(- r sin 9) +fxy(r cos 9). ae ax ax ax a6 ay ax ae 
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The 8 derivative of af/dy is similar. So apply the product rule to (8): 

= [fxx(- r sin 8) +fx,(r cos 8)] (- r sin 8) +fx(- r cos 8) 

+ [fYx(- r sin 8) +fyy(rcos 8)](r cos 8) +f,(- r sin 8). (9) 

This formula is not attractive. In mathematics, a messy formula is almost always a 
signal of asking the wrong question. In fact the combination f,, +f,, is much more 
special thian the separate derivatives. We might hope the same forf,, +f,,, but dimen- 
sionally that is impossible-since r is a length and 8 is an angle. The dimensions of 
f,, andf,, are matched byf,, andf,/r and f,,/r2. We could even hope that 

1 1 
f x x  +f,, =f,r  + ;f,+ 

This equation is true. Add (5) + (6) + (9) with t changed to r. Laplace's equation 
fxx +&, = 0 is now expressed in polar coordinates: f,, +f,/r +f,,/r2 = 0. 

A PARADOX 

Before leiaving polar coordinates there is one more question. It goes back to drldx, 
which wals practically the first example of partial derivatives: 

My problem is this. We know that x is r cos 8. So x/r on the right side is cos 8. On 
the other hand r is xlcos 8. So &-/ax is also l/cos 8. How can drldx lead to cos 8 one 
way and l/cos 8 the other way? 

I will admit that this cost me a sleepless night. There must be an explanation- 
we cannot end with cos 8 = l/cos 8. This paradox brings a new respect for partial 
derivatives. May I tell you what I finally noticed? You could cover up the next 
paragraph and think about the puzzle first. 

The key to partial derivatives is to ask: Which variable is held constant? In 
equation (1 1), y is constant. But when r = xlcos 8 gave &/ax = l/cos 8 ,8  was constant. 
In both cases we change x and look at the effect on r. The movement is on a horizontal 
line (constant y) or on a radial line (constant 8). Figure 13.15 shows the difference. 

Remark This example shows that drldx is different from l/(dx/ar). The neat formula 
(dr/dx)(dx/dr)= 1 is not generally true. May I tell you what takes its place? We have 
to includle (dr/dy)(ay/dr). With two variables xy and two variables re, we need 2 by 
2 matrices! Section 14.4 gives the details: 

,. / - :r ar = ax cos u I / d.r 

Fig. 13.15 dr = dx cos 0 when y is constant, dr = dxlcos 8 when 0 is constant. 



13 Partial Deriwthres 

NON-INDEPENDENT VARIABLES 

This paradox points to a serious problem. In computing partial derivatives off(x, y, z), 
we assumed that x, y, z were independent. Up to now, x could move while y and z 
were fixed. In physics and chemistry and economics that may not be possible. If there 
is a relation between x, y, z, then x can't move by itself. 

EXAMPLE 5 The gas law PV = nRT relates pressure to volume and temperature. 
P, V, T are not independent. What is the meaning of dV/aP? Does it equal l/(dP/aV)? 

Those questions have no answers, until we say what is held constant. In the paradox, 
&/ax had one meaning for fixed y and another meaning for fixed 8. To inrlicate what 
is held constant, use an extra subscript (not denoting a derivative): 

(af/aP), has constant volume and (af/aP), has constant temperature. The usual 
af/dP has both V and T constant. But then the gas law won't let us change P. 

EXAMPLE 6 Let f = 3x + 2y + Z. Compute af/ax on the plane z = 4x + y. 

Solution 1 Think of x and y as independent. Replace z by 4x + y: 

f =  3x + 2~ + ( 4 ~+ y) so (af/ax), = 7. 

Solution 2 Keep x and y independent. Deal with z by the chain rule: 

(aflax), = aflax + (aflaz)(az/ax)= 3 + (I)(+ = 7. 

Solution 3 (di$evnt) Make x and z independent. Then y = z - 4x: 

Without a subscript, af/ax means: Take the x derivative the usual way. The answer 
is af/ax = 3, when y and z don't move. But on the plane z = 4x + y, one of them must 
move! 3 is only part of the total answer, which is (aflax), = 7 or (af/ax), = -5. 

Here is the geometrical meaning. We are on the plane z = 4x + y. The derivative 
(afldx),, moves x but not y. To stay on the plane, dz is 4dx. The change in f =  
3 ~ + 2 y + z i s d f = 3 d x + O + d z = 7 d x .  

EXAMPLE 7 On the world line x2 + y2 + z2= t2 find (af/dy),,, for f= xyzt. 

The subscripts x, z mean that x and z are fixed. The chain rule skips af/dx and 
aflaz : 

(af1a~)X.z= aflay + (aflat)(at/ay)= xzt + (xyz)(y/t). Why ylt? 

EXAMPLE 8 From the law PV = T, compute the product (aP/aV),(aV,/aT),(aT/aP),. 

Any intelligent person cancels aV's, aT's, and aP's to get 1. The right answer is -1: 

(a la v), = -TIv2 (av,aT), = 1/P (aTIaP), = v. 

The product is -TIPV. This is -1 not + l! The chain rule is tricky (Problem 42). 

EXAMPLE 9 Implicit differentiation was used in Chapter 4. The chain rule explains it: 

If F(x, y) = 0 then F, + Fyyx= 0 so dyldx = - Fx/Fy. (13) 
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13.5 EXERCISES 

Read-through questions 

The chain rule applies to a function of a a . The x deriva- 
tive of f(g(x, y)) is dflax = . b . The y derivative is dfldy = 

. The example f = (x + y)" has g = d . Because 
dgldx = dgldy we know ithat e = f . This g 

differential equation is satiisfied by any function of x + y. 

Along a path, the derivaiive of f(x(t), y(t)) is dfldt = h . 
The derivative of f(x(t), y(r:), z(t)) is i . Iff = xy then the 
chain rule gives dfldt = i . That is the same as the k 

rule! When x = ult and y I= u2t the path is I . The chain 
rule for f(x, y) gives dfldt == m . That is the n deriva-
tive DJ 

The chain rule for f(x(t, u), y(t, u)) is df/at = 0 . We 
don't write dfldt because P . If x = r cos 0 and y = r sin 0, 
the variables t, u change to q . In this case afldr = 

r and df/d8= s .. That connects the derivatives in 
+ and u coordinates. The difference between 

&/ax = x/r and drldx = l/cos 0 is because v is constant 
in the first and w is c'onstant in the second. 

With a relation like xyz = 1, the three variables are x 
independent. The derivatives (afldx), and (dflax), and (af/ax) 
mean Y and z and A . For f =  x2 + y2 + z2 with 
xyz = 1, we compute (afldx), from the chain rule B . In 
that rule dz/dx = c from the relation xyz = 1. 

Findf, and& in Problems '1-4. What equation connects them? 

1 f(x, y) = sin(x + cy) 2 f(x, y) = (ax + by)'' 

3 f(x, y) = ex+7y 4 f(x, Y) = In(x + 7 ~ )  

5 Find both terms in the: t derivative of (g(x(t), ~ ( t ) ) ~ .  

6 Iff(x, y) = xy and x = ul(t) and y = v(t), what is dfldt? Prob- 
ably all other rules for deriivatives follow from the chain rule. 

7 The step function f(x) is zero for x < 0 and one for x > 0. 
Graph f(x) and g(x) =f(x -t2) and h(x) =f(x + 4). If f(x + 2t) 
represents a wall of water (a tidal wave), which way is it 
moving and how fast? 

8 The wave equation is J;, = c2 f,,. (a) Show that (x + ct)" is 
a solution. (b) Find C different from c so that (x + Ct)" is also 
a solution. 

9 Iff = sin(x - t), draw two lines in the xt plane along which 
f =0. Between those lines sketch a sine wave. Skiing on top 
of the sine wave, what is your speed dxldt? 

10 If you float at x = 0 in Problem 9, do you go up first or 
down first? At time t = 4 what is your height and upward 
velocity? 

11 Laplace's equation is fx, +fyy = 0. Show from the chain 
rule that any function f(x + iy) satisfies this equation if i2 = 

- 1. Check that f =(x + i !~)~and its real part and 
its imaginary part all satisfy Laplace's equation. 

12 Equation (10) gave the polar formf, +J/r +fee/r2 =0 of 
Laplace's equation. (a) Check that f = r2e2" and its real part 
r2 cos 28 and its imaginary part r2 sin 28 all satisfy Laplace's 
equation. (b) Show from the chain rule that any function f(reie) 
satisfies this equation if i2 = - 1. 

In Problems 13-18 find dfldt from the chain rule (3). 

17 f = ln(x + y), x = et, y = et 

19 If a cone grows in height by dhldt = 1 and in radius by 
drldt = 2, starting from zero, how fast is its volume growing 
at t = 3? 

20 If a rocket has speed dxldt = 6 down range and dyldt = 

2t upward, how fast is it moving away from the launch point 
at (0, O)? How fast is the angle 8 changing, if tan 8 =ylx? 

21 If a train approaches a crossing at 60 mph and a car 
approaches (at right angles) at 45 mph, how fast are they 
coming together? (a) Assume they are both 90 miles from the 
crossing. (b) Assume they are going to hit. 

22 In Example 2 does the temperature increase faster if you 
drive due south at 70 mph or southeast at 80 mph? 

23 On the line x = u,t, y = u2t, z = u,t, what combination of 
f,,f,, f, gives dfldt? This is the directional derivative in 3D. 

24 On the same line x = u, t, y = u2t, z = u3t, find a formula 
for d f/dt 2. Apply it to f = xyz. 

25 For f(x, y, t) = x + y + t find afldt and dfldt when x = 2t 
and y = 3t. Explain the difference. 

26 ~f z = (X+ y)2 then x = Jr -y. Does (a~jax)(axja~)  = I? 

27 Suppose x, = t and y, = 2t, not constant as in (5-6). For 
f(x, y)  find f, and f,,. The answer involves fx ,fy ,fxx ,fxy ,fyy. 
28 Suppose x, = t and y, = t 2. For f = (x + y)3 findf, and then 
f,,from the chain rule. 

29 Derive d f p  = (afldx) cos 0 + (afldy) sin 8 from the chain 
rule. Why do we take ax/& as cos 8 and not l/cos O? 

30 Compute f,, for f(x, y) = (ax + by + c)". If x = t and y = 

t computef,,. True or false: (af/dx)(ax/at) = afpt. 

31 Show that a2r/dx2 = y2/r3 in two ways: 
(1) Find the x derivative of drldx = x/Jm 
(2) Find the x derivative of drldx = xlr by the chain rule. 
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32 Reversing x and y in Problem 31 gives ryy = x2/r3. But 41 Forf = ax + by on the plane z = 3x + 5y, find (a flax), and 
show that r, = -xy/r3. (aflax), and (aflaz),. 

33 If sin z = x + y find (az/ax), in two ways: 42 The gas law in physics is PV = nRT or a more general 

(1)Write z = sin- '(x + y) and compute its derivative. relation F(P, T) = 0. Show that the three derivatives in 
Example 8 still multiply to give -1. First find (aP/aV), from 

(2)Take x derivatives of sin z = x + y. Verify that these aF/av + (aFIaP)(aP/av), = 0.
answers, explicit and implicit, are equal. 

43 If Problem 42 changes to four variables related by 
34 By direct computation find f, and f,, and f,, for F(x, y, z, t) = 0, what is the corresponding product of four 
f =  JW. derivatives? 
35 Find a formula for a2f/arae in terms of the x and y deriva- 44 Suppose x = t + u and y = tu. Find the t and u derivatives 
tives of f(x, y). offlx, y). Check when f(x, y) = x2-2y. 
36 Suppose z =f(x, y) is solved for x to give x =g(y, z). Is it 45 (a) For f = r2 sin28 find f, and f,. 
true that az/ax = l/(ax/az)? Test on examples. 

(b) For f = x2 + y2 findf, andf,. 
37 Suppose z = e", and therefore x = (In z)/y. Is it true or not 

46 On the curve sin x + sin y = 0, find dy/dx and d 2 y / d ~ 2
that (az/ax) = i/(ax/az)? implicit differentiation. 

by 

38 If x = x(t, u, v) and y = y(t, u, v) and z = z(t, u, v), find the t 
47 (horrible) Suppose f,, +f,, = 0. If x = u + v and y = u -v

derivative offlx, y, z). and f(x, y) =g(u, v), find g, and g,. Show that g,, + g,, = 0. 
39 The t derivative of f(x(t, u), y(t, u)) is in equation (7). What 

48 A function has constant returns to scale if f(cx, cy) = 
is frt? cf(x, y)  When x and y are doubled so are f = 
40 (a) For f = x2 + y2 + z2 compute af/ax (no subscript, and f = f i.In economics, input/output is constant. In 

x, y, z all independent). mathematics f is homogeneous of degree one. 
(b) When there is a further relation z = x2 + y2, use it to Prove that x af/ax + y if/ay =f(x, y), by computing the c 
remove z and compute (aflax),. derivative at c = 1. Test this equation on the two examples 

(c) Compute (aflax), using the chain rule (af/dx)+ and find a third example. 

(aflaz)(azlax). 49 True or false: The directional derivative of f(r, 8) in the 
(d) Why doesn't that chain rule contain (af/ay)(ay/ax)? direction of u, is af/a8. 

The outstanding equation of differential calculus is also the simplest: dfldx = 0. The 
slope is zero and the tangent line is horizontal. Most likely we are at the top or 
bottom of the graph-a maximum or a minimum. This is the point that the engineer 
or manager or scientist or investor is looking for-maximum stress or production 
or velocity or profit. With more variables in f(x, y) and f(x, y, z), the problem becomes 
more realistic. The question still is: How to locate the maximum and minimum? 

The answer is in the partial derivatives. When the graph is level, they are zero. 
Deriving the equations f, = 0 and f,= 0 is pure mathematics and pure pleasure. 
Applying them is the serious part. We watch out for saddle points, and also for a 
minimum at a boundary point-this section takes extra time. Remember the steps 
for f(x) in one-variable calculus: 

1. The leading candidates are stationary points (where dfldx = 0). 
2. The other candidates are rough points (no derivative) and endpoints (a or b). 
3. Maximum vs. minimum is decided by the sign of the second derivative. 

In two dimensions, a stationary point requires af/dx = 0 and df/ay = 0. The tangent 
line becomes a tangent plane. The endpoints a and b are replaced by a boundary 
curve. In practice boundaries contain about 40% of the minima and 80% of the work. 
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Finally there are three second derivatives fxx,fxy, and fy,. They tell how the graph
bends away from the tangent plane-up at a minimum, down at a maximum, both
ways at a saddle point. This will be determined by comparing (fxx)(fyy) with (fx) 2 .

STATIONARY POINT -+ HORIZONTAL TANGENT -- ZERO DERIVATIVES

Supposef has a minimum at the point (xo, Yo). This may be an absolute minimum or
only a local minimum. In both casesf(xo, yo) <f(x, y) near the point. For an absolute
minimum, this inequality holds wherever f is defined. For a local minimum, the
inequality can fail far away from (xo, yo). The bottom of your foot is an absolute
minimum, the end of your finger is a local minimum.

We assume for now that (xo, Yo) is an interior point of the domain off. At a
boundary point, we cannot expect a horizontal tangent and zero derivatives.

Main conclusion: At a minimum or maximum (absolute or local) a nonzero deriva-
tive is impossible. The tangent plane would tilt. In some direction f would decrease.
Note that the minimum point is (xo, yo), and the minimum value is f(xo, yo).

13J If derivatives exist at an interior minimum or maximum, they are zero:

Of/lx = 0 and Oflay = 0 (together this is grad f= 0). (1)

For a function f(x, y, z) of three variables, add the third equation af/az = 0.

The reasoning goes back to the one-variable case. That is because we look along the
lines x = x0 and y = Yo. The minimum off(x, y) is at the point where the lines meet.
So this is also the minimum along each line separately.

Moving in the x direction along y = yo, we find Of/Ox = 0. Moving in the y direction,
Of/Oy = 0 at the same point. The slope in every direction is zero. In other words
grad f= 0.

Graphically, (xo, Yo) is the low point of the surface z =f(x, y). Both cross sections
in Figure 13.16 touch bottom. The phrase "if derivatives exist" rules out the vertex
of a cone, which is a rough point. The absolute value f= IxI has a minimum without
df/dx = 0, and so does the distance f= r. The rough point is (0, 0).

1
y fixed at -

. _ - /-2
= x+ y + -- + 1 + •

- - -. - -.... - , x fixed at

I /

I /

/1 1
'(Xo, Yo) = (-,--)

Fig. 13.16 af/Ox = 0 and afl/y = 0 at the minimum. Quadratic f has linear derivatives.

EXAMPLE 1 Minimize the quadratic f(x, y) = x 2 + xy + y 2 - x - y + 1.

To locate the minimum (or maximum), set f = 0 and fy = 0:

and f= x+2y-1=0.
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x

3

,3 .

fx=2x+y - 1 =0
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Notice what's important: There are two equations for two unknowns x and y. Since f 
is quadratic, the equations are linear. Their solution is xo = 3 , yo = $ (the stationary 
point). This is actually a minimum, but to prove that you need to read further. 

The constant 1 affects the minimum value f = :-but not the minimum point. The 
graph shifts up by 1. The linear terms -x - y affect fx andfy . They move the minimum 
away from (0,O). The quadratic part x2 + xy + y2 makes the surface curve upwards. 
Without that curving part, a plane has its minimum and maximum at boundary 
points. 

EXAMPLE 2 (Steiner's problem) Find the point that is nearest to three given points. 

This example is worth your attention. We are locating an airport close to three cities. 
Or we are choosing a house close to three jobs. The problem is to get as near as 
possible to the corners of a triangle. The best point depends on the meaning of "near." 

The distance to the first corner (x, , y,) is dl = ,/(x - x,), + (y - y,),. The dis- 
tances to the other corners (x,, y,) and (x,, y,) are d; and d,. Depending on whether 
cost equals (distance) or (di~tance)~ our problem will be: or (di~tance)~, 

Minimize d , + d , + d ,  or d : + d i + d :  oreven d ~ + d ~ + d ~  

The second problem is the easiest, when d: and d t  and di are quadratics: 

a ~ j a x = 2 ~ ~ - x l + x - x 2 + x - x 3 ~ = ~a f / a y = 2 [ y - y l + y - y 2 + y - y 3 1 = o .  

Solving iflax = 0 gives x = i ( x l  + x, + x,). Then af/dy = 0 gives y = i (y ,  + y, + y,). 
The best point is the centroid of the triangle (Figure 13.17a). It is the nearest point 
to the corners when the cost is (distance),. Note how squaring makes the derivatives 
linear. Least squares dominates an enormous part of applied mathematics. 

U3 


Fig. 13.17 The centroid minimizes d :  + d $ + d 3 .  The Steiner point minimizes dl  + d2 + d3 

The real "Steiner problem" is to minimize f(x, y) = dl + d, + d, . We are laying down 
roads from the corners, with cost proportional to length. The equations f,= 0 and 
f ,= 0 look complicated because of square roots. But the nearest point in 
Figure 13.17b has a remarkable property, which you will appreciate. 

Calculus takes derivatives of d :  = (x - xl), + (y - y,),. The x derivative leaves 
2dl(ddl/dx)= 2(x - x,). Divide both sides by 2d1: 

adl - x - x, 
and --- Y - Y l  

(3) 
ad1 - Y - Y l  so grad dl = ( T 7  

x-Xl j;).
dx dl 8~ dl 

This gradient is a unit vector. The sum of (x - ~ , ) ~ / d :and (y - yJ2/d: is d:/d: = 1. 
This was already in Section 13.4: Distance increases with slope 1 away from the 
center. The gradient of dl (call it u,) is a unit vector from the center point (x,, y,). 
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Similarly the gradients of d, and d, are unit vectors u2 and u3. They point directly 
away from the other corners of the triangle. The total cost is f(x, y) = dl + d ,  + d3, 
so we add the gradients. The equations f, = 0 and f, = 0 combine into the vector 
equation 

grad f = u, + u2 + u3 = 0 at the minimum. 

The three unit vectors add to zero! Moving away from one corner brings us closer to 
another. The nearest point to the three corners is where those movements cancel. 
This is the meaning of "grad f = 0 at the minimum." 

It is unusual for three unit vectors to add to zero-this can only happen in one 
way. The three directions must form angles of 120". The best point has this property, 
which is .repeated in Figure 13.18a. The unit vectors cancel each other. At the "Steiner 
point," the roads to the corners make 120" angles. This optimal point solves the 
problem,, except for one more possibility. 

- - I - - - - - -

,(x ,y)  has rough point> 
u2 

angle > 120" 

'"3 n . = o d, 

Fig. 13.181 Gradients ul + u2 + u, =0 for 120" angles. Corner wins at wide angle. Four 
corners. In this case two branchpoints are better-still 120". 

The other possibility is a minimum at a rough point. The graph of the distance 
function d,(x, y) is a cone. It has a sharp point at the center (x,, y,). All three corners 
of the triangle are rough points for dl + d, + d,, so all of them are possible minimizers. 

Suppo,se the angle at a corner exceeds 120". Then there is no Steiner point. Inside 
the triangle, the angle would become even wider. The best point must be a rough 
point-one of the corners. The winner is the corner with the wide angle. In the figure 
that mea.ns dl = 0. Then the sum d, + d, comes from the two shortest edges. 

sum mar.^ The solution is at a 120" point or a wide-angle corner. That is the theory. 
The real problem is to compute the Steiner point-which I hope you will do. 

Remark 1 Steiner's problem for four points is surprising. We don't minimize 
dl + d24- d3 + d4-there is a better problem. Connect the four points with roads, 
minimizing their total length, and allow the roads to branch. A typical solution is in 
Figure 1 . 3 . 1 8 ~ .The angles at the branch points are 120". There are at most two branch 
points (two less than the number of corners). 

Remark 2 For other powers p, the cost is + (d2)P+ (d3)P. The x derivative is 

The key equations are still dfldx = 0 and df/ay = 0. Solving them requires a computer 
and an algorithm. To share the work fairly, I will supply the algorithm (Newton's 
method) if you supply the computer. Seriously, this is a terrific example. It is typical 
of real problems-we know dfldx and dflay but not the point where they are zero. 
You can calculate that nearest point, which changes as p changes. You can also 
discover new mathematics, about how that point moves. I will collect all replies I 
receive tlo Problems 38 and 39. 
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MINIMUM OR MAXIMUM ON THE BOUNDARY 

Steiner's problem had no boundaries. The roads could go anywhere. But most appli- 
cations have restrictions on x and y, like x 3 0 or y d 0 or x2 + y2 2 1. The minimum 
with these restrictions is probably higher than the absolute minimum. There are three 
possibilities: 

(1) stationary point fx = 0, fy = 0 (2) rough point (3) boundary point 

That third possibility requires us to maximize or minimize f(x, y) along the boundary. 

EXAMPLE 3 Minimize f(x, y) = x2 + xy + y2 - x - y + 1 in the halfplane x 2 0. 

The minimum in Example 1 was 3 .  It occurred at x, = 3, yo = 3 .  This point is still 
allowed. It satisfies the restriction x 3 0. So the minimum is not moved. 

EXAMPLE 4 Minimize the same f (x, y) restricted to the lower halfplane y < 0. 

Now the absolute minimum at (3, i)is not allowed. There are no rough points. We 
look for a minimum on the boundary line y = 0 in Figure 13.19a. Set y = 0, so f 
depends only on x. Then choose the best x: 

f(x, 0) = x2 + 0 - x - 0 + 1 and fx = 2x - 1 = 0. 

The minimum is at x = and y = 0, where f = 2. This is up from 5. 

Fig. 13.19 The boundaries y = 0 and x2 + y2 = 1 contain the minimum points. 

EXAMPLE 5 Minimize the same f(x, y) on or outside the circle x2 + y2 = 1. 

One possibility is fx = 0 and f,,= 0. But this is at (i,k), inside the circle. The other 
possibility is a minimum at a boundary point, on the circle. 

To follow this boundary we can set y = Jm.The function f gets complicated, 
and dfldx is worse. There is a way to avoid square roots: Set x = cos t and y = sin t. 
Then f = x2 + xy + y2 - x - y + 1 is a function of the angle t: 

f(t) = 1 + cos t sin t - cos t - sin t + 1 

dfldt = cos2t- sin2t+ sin t - cos t = (cos t - sin t)(cos t + sin t - 1). 

Now dfldt = 0 locates a minimum or maximum along the boundary. The first factor 
(cos t - sin t )  is zero when x = y. The second factor is zero when cos t + sin t = 1, or 
x + y = 1. Those points on the circle are the candidates. Problem 24 sorts them out, 
and Section 13.7 finds the minimum in a new way-using "Lagrange multipliers." 
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Minimization on a boundary is a serious problem-it gets difficult quickly-and
multipliers are ultimately the best solution.

MAXIMUM VS. MINIMUM VS. SADDLE POINT

How to separate the maximum from the minimum? When possible, try all candidates
and decide. Computef at every stationary point and other critical point (maybe also
out at infinity), and compare. Calculus offers another approach, based on second
derivatives.

With one variable the second derivative test was simple: fxx > 0 at a minimum,
fxx = 0 at an inflection point, fxx < 0 at a maximum. This is a local test, which may
not give a global answer. But it decides whether the slope is increasing (bottom of
the graph) or decreasing (top of the graph). We now find a similar test for f(x, y).

The new test involves all three second derivatives. It applies where fx = 0 and
f, = 0. The tangent plane is horizontal. We ask whether the graph off goes above or
below that plane. The tests fxx > 0 and fy, > 0 guarantee a minimum in the x and y
directions, but there are other directions.

EXAMPLE 6 f(x, y) = x2 + lOxy + y2 has fxx = 2, fx = 10, fyy, = 2 (minimum or not?)

All second derivatives are positive-but wait and see. The stationary point is (0, 0),
where af/ax and aflay are both zero. Our function is the sum of x2 + y2, which goes
upward, and 10xy which has a saddle. The second derivatives must decide whether
x2 + y2 or lOxy is stronger.

Along the x axis, where y = 0 and f= x2, our point is at the bottom. The minimum
in the x direction is at (0, 0). Similarly for the y direction. But (0, 0) is not a minimum
point for the whole function, because of lOxy.

Try x = 1, y = - 1. Then f= 1 - 10 + 1, which is negative. The graph goes below
the xy plane in that direction. The stationary point at x = y = 0 is a saddle point.

f= -x 2 -_ y2

f- X2 + y

a>O ac>b2

a.. y -0 Y

f= -x
2 + y 2

y

x x a<O ac>b2  x ac<b 2

Fig. 13.20 Minimum, maximum, saddle point based on the signs of a and ac - b2 .

EXAMPLE 7 f(x, y) = x 2 + xy + y2 has fxx = 2, fx, = 1, fyy = 2 (minimum or not?)

The second derivatives 2, 1, 2 are again positive. The graph curves up in the x and y
directions. But there is a big difference from Example 6: fx, is reduced from 10 to 1.
It is the size of fx (not its sign!) that makes the difference. The extra terms - x - y + 4
in Example 1 moved the stationary point to (-, -). The second derivatives are still
2, 1, 2, and they pass the test for a minimum:

13K At (0, 0) the quadratic function f(x, y)= ax2 + 2bxy + cy2 has a

a>0 a<0

ac > b2 ac > b2

509
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For a direct proof, split f(x, y) into two parts by "completing the square:"

ax2 + 2bxy + cy2 = a x+ y + ac - b2

a a

That algebra can be checked (notice the 2b). It is the conclusion that's important:

if a > 0 and ac > b2 , both parts are positive: minimum at (0, 0)

if a < 0 and ac > b2 , both parts are negative: maximum at (0, 0)

if ac < b2 , the parts have opposite signs: saddle point at (0, 0).

Since the test involves the square of b, its sign has no importance. Example 6 had
b = 5 and a saddle point. Example 7 had b = 1 and a minimum. Reversing to
- x2 - xy - y2 yields a maximum. So does - x 2 + xy - y2

Now comes the final step, from ax 2 + 2bxy + cy 2 to a general functionf(x, y). For
all functions, quadratics or not, it is the second order terms that we test.

EXAMPLE 8 f(x, y) = ex - x - cos y has a stationary point at x = 0, y = 0.

The first derivatives are ex - 1 and sin y, both zero. The second derivatives are fxx
ex = 1 and fry = cos y = 1 and fxy = 0. We only use the derivatives at the stationary
point. The first derivatives are zero, so the second order terms come to the front in
the series for ex - x - cos y:

(1 + x + ½x2  ... _ 2 ... 2 2 + higher order terms. (7)

There is a minimum at the origin. The quadratic part ½x2 + ½y 2 goes upward. The x3

and y 4 terms are too small to protest. Eventually those terms get large, but near a
stationary point it is the quadratic that counts. We didn't need the whole series,
because from fxx =f,, = 1 and fxy = 0 we knew it would start with ½x 2 + ½y2.

13L The test in 43K applies to the second derivatives a =fxx, b =fx,, c =fy
of any f(x, y) at any stationary point. At all points the test decides whether the
graph is concave up, concave down, or "indefinite."

EXAMPLE 9 f(x, y) = exy has fx = yexy and f, = xexy. The stationary point is (0, 0).

The second derivatives at that point are a =fxx = 0, b =fxy = 1, and c =fy, = 0. The
test b2 > ac makes this a saddle point. Look at the infinite series:

exY = 1 + xy + x 2y 2 + ...

No linear term becausefx =f, = 0: The origin is a stationary point. No x 2 or y2 term
(only xy): The stationary point is a saddle point.

At x = 2, y = - 2 we find fxxfry > (fxy) 2 . The graph is concave up at that point-
but it's not a minimum since the first derivatives are not zero.

The series begins with the constant term-not important. Then come the linear
terms-extremely important. Those terms are decided by first derivatives, and they
give the tangent plane. It is only at stationary points-when the linear part disappears
and the tangent plane is horizontal-that second derivatives take over. Around any
basepoint, these constant-linear-quadratic terms are the start of the Taylor series.
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THE TAYLOR SERIES

We now put together the whole infinite series. It is a "Taylor series"-which means
it is a power series that matches all derivatives off (at the basepoint). For one
variable, the powers were x" when the basepoint was 0. For two variables, the
powers are x" times y' when the basepoint is (0, 0). Chapter 10 multiplied the nth
derivative d"f/dx n by xl/n! Now every mixed derivative (d/dx)"(d/8y)mf(x, y) is computed
at the basepoint (subscript o).

We multiply those numbers by x"ym/n!m! to match each derivative of f(x, y):

The first three terms are the linear approximation to f(x, y). They give the tangent
plane at the basepoint. The x2 term has n = 2 and m = 0, so n!m! = 2. The xy term
has n = m = 1, and n!m! = 1. The quadratic part -ax 2 + 2bxy + cy2 ) is in control when
the linear part is zero.

EXAMPLE 10 All derivatives of ex+Y equal one at the origin. The Taylor series is

x2 y2 nm
ex + Y= 1 +x + - + xy+ - +2 2 n!m!

This happens to have ac = b2, the special case that was omitted in 13M and 43N.
It is the two-dimensional version of an inflection point. The second derivatives fail to
decide the concavity. When fxxfy, = (fxy) 2, the decision is passed up to the higher
derivatives. But in ordinary practice, the Taylor series is stopped after the quadratics.

If the basepoint moves to (xo, Yo), the powers become (x - xo)"(y - yo)m"-and all
derivatives are computed at this new basepoint.

Final question: How would you compute a minimum numerically? One good way is
to solve fx = 0 and fy = 0. These are the functions g and h of Newton's method
(Section 13.3). At the current point (x,, yn), the derivatives of g =fx and h =f, give
linear equations for the steps Ax and Ay. Then the next point x,. 1 = x, + Ax, y,, + =
y, + Ay comes from those steps. The input is (x,, y,), the output is the new point,
and the linear equations are

(gx)Ax + (gy)Ay = - g(xn, y,) (fxx)Ax + (fxy)Ay = -fx(xn, y,,)
or (5)

(hx)Ax + (hy)Ay = - h(x,, y,) (fxy)Ax + (fyy)Ay = -fy(Xn, y,).

When the second derivatives of f are available, use Newton's method.
When the problem is too complicated to go beyond first derivatives, here is an

alternative-steepest descent. The goal is to move down the graph of f(x, y), like a
boulder rolling down a mountain. The steepest direction at any point is given by the
gradient, with a minus sign to go down instead of up. So move in the direction Ax =
- s af/ax and Ay = - s aflay.

13M When the basepoint is (0, 0), the Taylor series is a double sum 1ya,,mxp.
The term anmxnym has the same mixed derivative at (0, 0) asf(x, y). The series is

f + fý + X ( a2 f- + y2 (a2..f(O, 0) + x 2+ +y ax)yo 2 o t

n+ M>2 n!m! \dx"~~o

The derivatives of this series agree with the derivatives off(x, y) at the basepoint.



13 Partial Derivatives 

The question is: How far to move? Like a boulder, a steep start may not aim 
directly toward the minimum. The stepsize s is monitored, to end the step when the 
function f starts upward again (Problem 54). At the end of each step, compute first 
derivatives and start again in the new steepest direction. 

Read-through questions 

A minimum occurs at a a 
b point (no derivative) 

x2-xy + 2y has fx = d 

point is x = f , y = 

because f decreases when h 

13.6 

point (where fx =f, = 0) or a 
or a c point. Since f = 

and f, = e , the stationary 
. This is not a minimum, 
. 

The minimum of d = (x -x , ) ~+ (y -Y , ) ~occurs at the 
rough point 1 . The graph of d is a i and grad d 
is a k vector that points I . The graph off = lxyl 
touches bottom along the lines m . Those are "rough 
lines" because the derivative n . The maximum of d and 
f must occur on the 0 of the allowed region because it 
doesn't occur P . 

When the boundary curve is x =x(t), y = y(t), the derivative 
of f(x, y) along the boundary is 
x2 + 2y2 and the boundary is x = 

r . It is zero at the points 
t and the minimum is at 

an absolute minimum at v . 

q (chain rule). Iff  = 

cos t, y = sin t, then df/dt = 

s . The maximum is at 
u . Inside the circle f has 

To separate maximum from minimum from w , com-
pute the x derivatives at a Y point. The tests for a 
minimum are 2 . The tests for a maximum are A . In 
case ac < B or fxx f,, < C , we have a D . At all 
points these tests decide between concave up and E and 
"indefinite." For f = 8x2-6xy + y2, the origin is a F .The 
signs off at (1, 0) and (1, 3) are G . 

The Taylor series for f(x, y) begins with the six terms H . 
The coefficient of xnym is I . To find a stationary point 
numerically, use J or K . 

Find all stationary points (fx =f, = 0) in 1-16. Separate mini- 
mum from maximum from saddle point. Test 13K applies to 
a =fxx, b =fx,, c =f,,. 

1 x2 + 2xy+ 3y2 2 x y - x + y  

3 x2 + 4xy + 3 ~ '-6x - 12y 4 x2 - y2 + 4y 

5 x~~~- x  6 xeY-ex 

7 -x2 + 2xy - 3y2 8 (x + y)2+ (X + 2y - 6)2 

9 X ~ + ~ ~ + Z ~ - ~ Z10 (x+y)(x+2y-6)  

11 ( x - Y ) ~  12 (1 + x2)/(1+ y2) 

-(x + 2 ~ ) ~  14 sin x -cos y 13 (x + Y ) ~  

EXERCISES 

17 A rectangle has sides on the x and y axes and a corner on 
the line x + 3y = 12. Find its maximum area. 

18 A box has a corner at (0, 0, 0) and all edges parallel to the 
axes. If the opposite corner (x, y, z )  is on the plane 
3x + 2y + z = 1, what position gives maximum volume? Show 
first that the problem maximizes xy -3x2y-2xy2. 

19 (Straight line fit, Section 11.4) Find x and y to minimize 
the error 

E = (x + Y)2+ (X+ 2y - 5)2+ (x + 3y -4)2. 

Show that this gives a minimum not a saddle point. 

20 (Least squares) What numbers x, y come closest to satisfy- 
ing the three equations x -y = 1, 2x + y = - 1, x + 2y = l? 
Square and add the errors, (x -y - + + 

. Then minimize. 

21 Minimize f =x2 + xy + y2 -x -y restricted by 

(a)x 6 0 (b)Y 3 1 (c) x 6 0 and y 3 1. 

22 Minimize f =x2 + y2 + 2x + 4y in the regions 

(a) all x, Y (b) y 30 (c) x 30, y 30 

23 Maximize and minimize f = x + f i y  on the circle x = 

cos t ,  y = sin t. 

24 Example 5 followed f =x2 + xy + y2 -x -y + 1 around 
the circle x2 + Y2 = 1. The four stationary points have x =y 
or x + y = 1. Compute f at those points and locate the 
minimum. 

25 (a) Maximize f =ax + by on the circle x2 + y2 = 1. 
(b) Minimize x2 + y2 on the line ax + by = 1. 

26 For f(x, y) = ax4 -xy +$y4, what are the equations fx = 

0 and f, =O? What are their solutions? What is fmi,? 

27 Choose c >0 so that f = x2 + xy + cy2 has a saddle point 
at (0,O). Note that f > 0 on the lines x = 0 and y =0 and y = 

x and y = -x, so checking four directions does not confirm 
a minimum. 

Problems 28-42 minimize the Steiner distance f = dl + d2 + d3 
and related functions. A computer is needed for 33 and 36-39. 

28 Draw the triangle with corners at (0, O), (1, I), and (1, -1). 
By symmetry the Steiner point will be on the x axis. Write 
down the distances d l ,  d2, d3 to (x, 0) and find the x that 
minimizes dl  + d2 + d,. Check the 120" angles. 
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29 Suppose three unit vectors add to zero. Prove that the 
angles between them must be 120". 

30 In three dimensions, Steiner minimizes the total distance 
Ax, y, z) =dl + d2+ d3+ d, from four points. Show that 
grad dl is still a unit vector (in which direction?) At what 
angles do four unit vectors add to zero? 

31 With four points in a plane, the Steiner problem allows 
branches (Figure 13.18~). Find the shortest network connect- 
ing the corners of a rectangle, if the side lengths are (a) 1 and 
2 (b) 1 and 1 (two solutions for a square) (c) 1 and 0.1. 

32 Show that a Steiner point (120" angles) can never be out- 
side the triangle. 

33 Write a program to minimize f(x, y) = dl + d2 + d3 by 
Newton's method in equation (5). Fix two corners at (0, O), 
(3, O), vary the third from (1, 1) to (2, 1) to (3, 1) to (4, l), and 
compute Steiner points. 

34 Suppose one side of the triangle goes from (- 1,0) to (1,O). 
Above that side are points from which the lines to (- 1, 0) and 
(1, 0) meet at a 120" angle. Those points lie on a circular arc- 
draw it and find its center and its radius. 

35 Continuing Problem 34, there are circular arcs for all three 
sides of the triangle. On the arcs, every point sees one side of 
the triangle at a 120" angle. Where is the Steiner point? 
(Sketch three sides with their arcs.) 

36 Invent an algorithm to converge to the Steiner point based 
on Problem 35. Test it on the triangles of Problem 33. 

37 Write a code to minimize f =d: +d: +d: by solving f, =0 
and fy =0. Use Newton's method in equation (5). 

38 Extend the code to allow all powers p 2 1, not only p = 

4. Follow the minimizing point from the centroid at p = 2 to 
the Steiner point at p = 1 (try p = 1.8, 1.6, 1.4, 1.2). 

39 Follow the minimizing point with your code as p increases: 
p = 2, p = 4, p = 8, p = 16. Guess the limit at p = rn and test 
whether it is equally distant from the three corners. 

40 At p = co we are making the largest of the distances 
dl ,  d2, d, as small as possible. The best point for a 1, 1, f i  
right triangle is . 

41 Suppose the road from corner 1 is wider than the others, 
and the total cost is f(x, y) = f i dl + d2 + d,. Find the gradi- 
ent off and the angles at which the best roads meet. 

42 Solve Steiner's problem for two points. Where is d ,  + d2 
a minimum? Solve also for three points if only the three 
corners are allowed. 

Find all derivatives at (0,0). Construct the Taylor series: 

45 f(x, y) = In(1- xy) 

Find f,, fy, f,,, fxy,fyy at the basepoint. Write the quadratic 
approximation to f(x, y) - the Taylor series through second- 
order terms: 

50 The Taylor series around (x, y) is also written with steps 
hand k:Jx + h, y +  k)=f(x,y)+ h + k + 
3h2- +hk + --..Fill in those four blanks. 

51 Find lines along which f(x, y) is constant (these functions 
havef,, fyy =faor ac = b2): 

(a)f = x2 -4xy + 4y2 (b)f = eXeY 

52 For f(x, y, z) the first three terms after f(O, 0,0) in the Tay- 
lor series are . The next six terms are 

53 (a) For the error f -f, in linear approximation, the Taylor 
series at (0, 0) starts with the quadratic terms 
(b)The graph off goes up from its tangent plane (and 
f > f d  if- . Then f is concave upward. 
(c) For (0,O) to be a minimum we also need 

54 The gradient of x2 + 2y2 at the point (1, 1) is (2,4). 
Steepest descent is along the line x = 1 -2s, y = 1 -4s (minus 
sign to go downward). Minimize x2 + 2y2 with respect to the 
stepsize s. That locates the next point , where 
steepest descent begins again. 

55 Newton's method minimizes x2 + 2y2 in one step. Starting 
at (xo, yo) = (1, I), find AX and Ay from equation (5). 

56 Iff,, +f,, = 0, show that f(x, y) cannot have an interior 
maximum or minimum (only saddle points). 

57 The value of x theorems and y exercises is f = x2y (maybe). 
The most that a student or author can deal with is 4x + y = 
12. Substitute y = 12 -4x and maximize5 Show that the line 
4x + y = 12 is tangent to the level curve x2y =f,,,. 

58 The desirability of x houses and y yachts is f(x, y). The 
constraint px + qy = k limits the money available. The cost of 
a house is , the cost of a yacht is . Substi-
tute y = (k -px)/q into f(x, y) = F(x) and use the chain rule 
for dF/dx. Show that the slope -f,& at the best x is -p/q. 

59 At the farthest point in a baseball field, explain why the 
fence is perpendicular to the line from home plate. Assume 
it is not a rough point (corner) or endpoint (foul line). 
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13.7 Constraints and Lagrange Multipliers 

This section faces up to a practical problem. We often minimize one function f(x, y) 
while another function g(x, y) is fixed. There is a constraint on x and y, given by 
g(x, y) = k. This restricts the material available or the funds available or the energy 
available. With this constraint, the problem is to do the best possible (f,,, or fmin). 

At the absolute minimum off(x, y), the requirement g(x, y) = k is probably violated. 
In that case the minimum point is not allowed. We cannot use f, = 0 and f,,= O-
those equations don't account for g. 

Step 1 Find equations for the constrained minimum or constrained maximum. They 
will involve f, andf,, and also g, and g,, which give local information about f and g. 
To see the equations, look at two examples. 

EXAMPLE 1 Minimizef = x2 + y2 subject to the constraint g = 2x + y = k. 

Trial runs The constraint allows x = 0, y = k, where f = k2. Also ($k, 0) satisfies the 
constraint, and f = $k2 is smaller. Also x = y = $k gives f = $k2 (best so far). 

Idea of solution Look at the level curves of f(x, y) in Figure 13.21. They are circles 
x2 + y2 = C. When c is small, the circles do not touch the line 2x + y = k. There are 
no points that satisfy the constraint, when c is too small. Now increase c. 

Eventually the growing circles x2 + y2 = c will just touch the line x + 2y = k. The 
point where they touch is the winner. It gives the smallest value of c that can be 
achieved on the line. The touching point is (xmin, ymi,), and the value of c is fmin. 

What equation describes that point? When the circle touches the line, they are 
tangent. They have the same slope. The perpendiculars to the circle and he line go in 
the same direction. That is the key fact, which you see in Figure 13.21a.The direction 
perpendicular to f = c is given by grad f = (f,, f,). The direction perpendicular to g = 
k is given by grad g = (g,, g,). The key equation says that those two vectors are 
parallel. One gradient vector is a multiple of the other gradient vector, with a multi- 
plier A (called lambda) that is unknown: 

I 13N At the minimum of f(x,  y) subject to gjx, y) = k, the gradient off  is 
parallel to the gradient of g-with an unknown number A as the multiplier: 

Step 2 There are now three unknowns x, y, A. There are also three equations: 

In the third equation, substitute 2A for 2x and fi. for y. Then 2x + y equals 3). 
equals k. Knowing = $k, go back to the first two equations for x, y, and fmin: 

The winning point (xmin, ymin) is ($k,  f k). It minimizes the "distance squared," 
f = x2 + y2 = 3k2, from the origin to the line. 
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Question What is the meaning of the Lagrange multiplier A? 

Mysterious answer The derivative of *k2 is $k, which equals A. The multipler 
A is the devivative of fmin with respect to k. Move the line by Ak, and fmin changes by 
about AAk. Thus the Lagrange multiplier measures the sensitivity to k. 

Pronounce his name "Lagronge" or better "Lagrongh" as if you are French. 

If =fmin 

Fig. 13.21 Circlesf = c tangent to line g = k and ellipse g = 4: parallel gradients. 

EXAMPLE 2 Maximize and minimize f = x2+ y2 on the ellipse g = (x -1)' + 44' = 4. 

Idea and equations The circles x2 + y2 = c grow until they touch the ellipse. The 
touching point is (x,,,, ymi,) and that smallest value of c is fmin. As the circles grow 
they cut through the ellipse. Finally there is a point (x,,,, y,,,) where the last circle 
touches. That largest value of c is f,,, . 

The minimum and maximum are described by the same rule: the circle is tangent 
to the ellipse (Figure 13.21b). The perpendiculars go in the same direction. Therefore 
(fx, 4)is a multiple of (g,, gy), and the unknown multiplier is A: 

Solution The second equation allows two possibilities: y = 0 or A = a. Following up 
y = 0, the last equation gives (x - 1)' = 4. Thus x = 3 or x = - 1. Then the first 
equation gives A = 312 or A = 112. The values of f are x2 + y2 = 3' + 0' = 9 and 
~ ~ + ~ ~ = ( - 1 ) ~ + 0 ~ =1. 

Now follow A = 114. The first equation yields x = - 113. Then the last equation 
requires y2 = 5/9. Since x2 = 119 we find x2 + y2 = 619 = 213. This is f,,,. 

Conclusion The equations (3) have four solutions, at which the circle and ellipse 
are tangent. The four points are (3, O), (- 1, O), (- 113, &3), and (- 113, -&3). The 
four values off are 9, 1,3,3. 

Summary The three equations are fx = Agx and fy = Ag,, and g = k. The unknowns 
are x, y, and A. There is no absolute system for solving the equations (unless they are 
linear; then use elimination or Cramer's Rule). Often the first two equations yield x 
and y in terms of A, and substituting into g = k gives an equation for A. 

At the minimum, the level curve f(x, y) = c is tangent to the constraint curve 
g(x, y) = k. If that constraint curve is given parametrically by x(t) and y(t), then 
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minimizing f(x(t), y(t)) uses the chain rule: 

df - af dx af dy ---- + - - = 0 or (grad f )  (tangent to curve) = 0. 
dt ax dt dy dt 

This is the calculus proof that grad f is perpendicular to the curve. Thus grad f is 
parallel to grad g. This means ( fx , f ,) = A(g, , gy)- 

We have lost f, = 0 and fy = 0. But a new function L has three zero derivatives: 

I 130 The Lagrange function is y x ,  y, A) = f(x, y) - I(g(x, y) - k). Its three 
derivatives are L, = L, = LA = 0 at the solution: 

Note that dL/aA = 0 automatically produces g = k. The constraint is "built in" to L. 
Lagrange has included a term A(g - k), which is destined to be zero-but its derivatives 
are absolutely needed in the equations! At the solution, g = k and L =  f and 
a ~ / a k  = A. 

What is important is fx = Ag, andf, = Agy, coming from L, = Ly = 0. In words: The 
constraint g = k forces dg = g,dx + gydy = 0. This restricts the movements dx and dy. 
They must keep to the curve. The equations say that df = fxdx + fydy is equal to Adg. 
Thus df is zero in the aElowed direction-which is the key point. 

MAXIMUM AND MINIMUM WITH TWO CONSTRAINTS 

The whole subject of min(max)imization is called optimization. Its applications to 
business decisions make up operations research. The special case of linear functions 
is always important -in this part of mathematics it is called linear programming. A 
book about those subjects won't fit inside a calculus book, but we can take one more 
step-to allow a second constraint. 

The function to minimize or maximize is now f(x, y, z). The constraints are 
g(x, y, z) = k, and h(x, y, z) = k,. The multipliers are A, and A,. We need at least three 
variables x, y, z because two constraints would completely determine x and y. 

13P To minimize f(x, y, z) subject to g(x, y, z) = k, and h(x, y, z) = k2 , solve five 
equations for x, y, z, A,, 2,. Combine g = k, and h = k2 with I 

Figure 13.22a shows the geometry behind these equations. For convenience f is 
x2 + y2 + z2, SO we are minimizing distance (squared). The constraints g = x + y + z = 
9 and h = x + 2y + 32 = 20 are linear-their graphs are planes. The constraints keep 
(x, y, z) on both planes-and therefore on the line where they meet. We are finding 
the squared distance from (0, 0, 0) to a line. 

What equation do we solve? The level surfaces x2 + y2 + z2 = c are spheres. They 
grow as c increases. The first sphere to touch the line is tangent to it. That touching 
point gives the solution (the smallest c). All three vectors gradf, grad g, grad h are 
perpendicular to the line: 

line tangent to sphere => grad f perpendicular to line 

line in both planes grad g and grad h perpendicular to line. 
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Thus gradf, grad g, grad h are in the same plane-perpendicular to the line. With 
three vectors in a plane, grad f is a combination of grad g and grad h: 

This is the key equation (5). It applies to curved surfaces as well as planes. 

EXAMPLE 3 Minimize x2 + y2 + z2 when x + y + z = 9 and x + 2y + 32 = 20. 

In Figure 13.22b, the normals to those planes are grad g = (1, 1, 1) and grad h = 
(1, 2, 3). The gradient off = x2 + y2 + z2 is (2x, 2y, 22). The equations (5)-(6) are 

Substitute these x, y, z into the other two equations g = x + y + z = 9 and h = 20: 

A 1 + A 2  Al+2A2 A1+3A2 A l + A 2  Al+2A2+ -------+ --------- 9 and -+ 2-------+ 3-=A1+3A2 
20. 

2 2 2 2 2 2 

After multiplying by 2, these simplify to 3A1 + 6A2= 18 and 61, + 14A2= 40. The 
solutions are A, = 2 and A, = 2. Now the previous equations give (x, y, z) = (2,3,4). 

The Lagrange function with two constraints is y x ,  y, z, A,, A,) = 

f -A,(g - kl) -A2(h- k,). Its five derivatives are zero-those are our five equations. 
Lagrange has increased the number of unknowns from 3 to 5, by adding A, and A,. 
The best point (2, 3,4) gives f,, = 29. The 2 s  give af/ak-the sensitivity to changes 
in 9 and 20. 

grad h 

plane 

Fig. 13.22 Perpendicular vector grad f is a combination R ,  grad g + & grad h. 

INEQUALITY CONSTRAINTS 

In practice, applications involve inequalities as well as equations. The constraints 
might be g < k and h 2 0. The first means: It is not required to use the whole resource 
k, but you cannot use more. The second means: h measures a quantity that cannot 
be negative. At the minimum point, the multipliers must satisfy the same inequalities: 
R1 ,< 0 and A2 3 0.There are inequalities on the A's when there are inequalities in the 
constraints. 

Brief reasoning: With g < k the minimum can be on or inside the constraint curve. 
Inside the curve, where g < k, we are free to move in all directions. The constraint is 
not really constraining. This brings back f, = 0 and f, = 0 and 3, = 0-an ordinary 
minimum. On the curve, where g = k constrains the minimum from going lower, we 
have 1"< 0. We don't know in advance which to expect. 
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For 100 constraints gi <k,, there are 100 A's. Some A's are zero (when gi < k,) and 
some are nonzero (when gi = k,). It is those 2''' possibilities that make optimization 
interesting. In linear programming with two variables, the constraints are x 0, y 0: 

The constraint g = 4 is an equation, h and H yield inequalities. Each has its own 
Lagrange multiplier-and the inequalities require A, 2 0 and A,>  0. The derivatives 
off, g, h, H are no problem to compute: 

Those equations make A, larger than A,. Therefore A, > 0, which means that the 
constraint on H must be an equation. (Inequality for the multiplier means equality 
for the constraint.) In other words H = y = 0. Then x + y = 4 leads to x = 4. The 
solution is at (xmin, ymin) = (4, O), where fmin = 20. 

At this minimum, h = x = 4 is above zero. The multiplier for the constraint h 2 0 
must be A, = 0. Then the first equation gives 2, = 5. As always, the multiplier mea- 
sures sensitivity. When g = 4 is increased by Ak, the cost fmin = 20 is increased by 
5Ak. In economics 2, = 5 is called a shadow price-it is the cost of increasing the 
constraint. 

Behind this example is a nice problem in geometry. The constraint curve x +y =4 
is a line. The inequalities x 2 0 and y 2 0 leave a piece of that line-from P to Q in 
Figure 13.23. The level curves f = 5x + 6y = c move out as c increases, until they 
touch the line. Thefivst touching point is Q = (4,O), which is the solution. It is always 
an endpoint-or a corner of the triangle PQR. It gives the smallest cost fmin, which 
is c = 20. 

5s + 6y = c 
c too small 

. = R  

Fig. 13.23 Linear programming: f and g are linear, inequalities cut off x and y. 

13.7 EXERCISES 

Read-t hrough questions 

A restriction g(x, y) =k is called a a . The minimizing fmi, is f to the constraint curve g = k. The number E. 
equations for f (x ,  y) subject to g = k are b . The number turns out to be the derivative of s with respect to h . 
A is the Lagrange c . Geometrically, grad f is d to The Lagrange function is L = i and the three equations 
grad g at the minimum. That is because the e curve f = for x, y, j.are i and k and 1 . 
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To minimize f = x2 - y subject to g = x - y = 0, the three 
equations for x, y, d are m . The solution is n . In this 
example the curve f(x, y) =fmin = 0 is a P which is 

q to the line g = 0 at (xmin, ymin). 

With two constraints g(x, y, z) = kl and h(x, y, z) = k2 there 
are r multipliers. The five unknowns are s . The five 
equations are f . The level surface f = fmin is u to the 
curve where g = k, and h = k2. Then grad f is v to this 
curve, and so are grad g and w . Thus x is a combina- 
tion of grad g and v . With nine variables and six con- 
straints, there will be' 2 multipliers and eventually A 

equations. If a constraint is an B g < k, then its multiplier 
must satisfy A ,< 0 at a minimum. 

1 Example 1 minimized f = x2 + y2 subject to 2x + y = k. 
Solve the constraint equation for y = k - 2x, substitute into 
f, and minimize this function of x. The minimum is at (x, y) = 

, where f = . 
Note: This direct approach reduces to one unknown x. 
Lagrange increases to x, y, A. But Lagrange is better when the 
first step of solving for y is difficult or impossible. 

Minimize and maximize f(x, y) in 2-6. Find x, y, and A. 

2 f=x2y with g = x 2  +y2 = 1 

6 f = x + y with g = x1i3y2I3 = k. With x = capital and y = 
labor, g is a Cobb-Douglas function in economics. Draw two 
of its level curves. 

7 Find the point on the circle x2 + y2 = 13 where f = 2x - 3y 
is a maximum. Explain the answer. 

8 Maximize ax + by + cz subject to x2 + y2 + z2 = k2. Write 
your answer as the Schwarz inequality for dot products: 
(a, b, c) (x, Y, z) < - k. 

9 Find the plane z =ax +by + c that best fits the points 
(x, y, Z) = (0, 0, l), (1,0, O), (1, 1, 2), (0, 1, 2). The answer a, b, c 
minimizes the sum of (z - ax - by - c ) ~  at the four points. 

10 The base of a triangle is the top of a rectangle (5 sides, 
combined area = 1). What dimensions minimize the distance 
around? 

11 Draw the hyperbola xy = - 1 touching the circle g = 
x2 + y2 = 2. The minimum off = xy on the circle is reached 
at the points . The equations f, = Agx and f ,  = dgY 
are satisfied at those points with A =  . 
12 Find the maximum off = xy on the circle g = x2 + y2 = 2 
by solving f, = ilg, and f, = Ag, and substituting x and y into 
J: Draw the level curve f = fmax that touches the circle. 

13 Draw the level curves off = x2 + y2 with a closed curve C 
across them to represent g(x, y) = k. Mark a point where C 
crosses a level curve. Why is that point not a minimum off 
on C? Mark a point where C is tangent to a level curve. Is 
that the minimum off on C? 

14 On the circle g = x2 + y2 = 1, Example 5 of 13.6 mini- 
mized f = xy - x - y. (a) Set up the three Lagrange equations 
for x, y, A. (b) The first two equations give x = y = 
(c) There is another solution for the special value A = - 4, 
when the equations become . This is easy to miss 
but it gives fmin = - 1 at the point 

Problems 15-18 develop the theory of Lagrange multipliers. 

15 (Sensitivity) Certainly L = f - d(g - k) has aL/ak = A. 
Since L = fmin and g = k at the minimum point, this seems to 
prove the key formula dfmin/dk = A. But xmin, ymin, A, and fmin 

all change with k. We need the total derivative of L(x, y, 1, k): 

Equation (1) at the minimum point should now yield the 
sensitivity formula dfmin/dk = 1. 

16 (Theory behind A) When g(x, y) = k is solved for y, it 
gives a curve y = R(x). Then minimizing f(x, y) along this 
curve yields 

af ; af dR ag agdR - -0,-+--=o. 
ax ay dx ax ay 

Those come from the rule: dfldx = 0 at the mini- , 

mum and dgldx = 0 along the curve because g = 
Multiplying the second equation by A= (af/ay)/(ag/ay) and 
subtracting from the first gives = 0. ~ l s o  aflay = 
laglay. These are the equations (1) for x, y, 1. 

17 (Example of failure) A =f,/gy breaks down if g,, = 0 at the 
minimum point. 

(a) g = x2 - y3 = 0 does not allow negative y because 

(b) When g = 0 the minimum off = x2 + y is at the point 

(c) At that point f ,  = AgY becomes which is 
impossible. 
(d) Draw the pointed curve g = 0 to see why it is not tan- 
gent to a level curve of5 

18 (No maximum) Find a point on the line g = x + y = 1 
where f(x, y) = 2x + y is greater than 100 (or 1000). Write out 
grad f = A grad g to see that there is no solution. 

19 Find the minimum of f = x2 + 2y2 + z2 if (x, y, Z) is 
restricted to the planes g = x + y + z = 0 and h = x - z = 1. 

20 (a) Find by Lagrange multipliers the volume V = xyz of 
the largest box with sides adding up to x + y + z = k. (b) 
Check that A = dVmax/dk. (c) United Airlines accepts baggage 
with x + y + z = 108". If it changes to 1 1 I", approximately 
how much (by A) and exactly how much does V,,, increase? 
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21 The planes x =0 and y =0 intersect in the line x =y =0, 
which is the z axis. Write down a vector perpendicular to the 
plane x =0 and a vector perpendicular to the plane y =0. 
Find A, times the first vector plus 1, times the second. This 
combination is perpendicular to the line . 
22 Minimizef =x2 +y2 + z2 on the plane ax + by + cz =d-
one constraint and one multi lier. Compare fmin with the 
distance formula J- in Section 11.2. 

23 At the absolute minimum of flx, y), the derivatives 
are zero. If this point happens to fall on the curve 

g(x, y) =k then the equations f, =AgX and fy =AgY hold with 
A =  . 

Problems 24-33 allow inequality constraints, optional but good. 

24 Find the minimum off = 3x + 5y with the constraints g = 
x +2y =4 and h =x 2 0 and H =y 30, using equations like 
(7). Which multiplier is zero? 

25 Figure 13.23 shows the constraint plane g =x +y + z = 1 
chopped off by the inequalities x 2 0, y $0, z >, 0. What are 
the three "endpoints" of this triangle? Find the minimum and 
maximum off =4x -2y + 5z on the triangle, by testing f at 
the endpoints. 

26 With an inequality constraint g <k, the multiplier at the 
minimum satisfies A <0. If k is increased, fmin goes down (since 
=dfmin/dk). Explain the reasoning: By increasing k, (more) 

(fewer) points satisfy the constraints. Therefore (more) (fewer) 
points are available to minimize f: Therefore fmin goes (up) 
(down). 

27 With an inequality constraint g <k, the multiplier at a 
maximum point satisfies A >,0. Change the reasoning in 26. 

28 When the constraint h 2 k is a strict inequality h > k at 
the minimum, the multiplier is A =  0. Explain the reasoning: 
For a small increase in k, the same minimizer is still available 
(since h > k leaves room to move). Therefore fmin is 
(changed)(unchanged), and A =dfmin/dk is . 

29 Minimize f =x2 +y2 subject to the inequality constraint 
x +y <4. The minimum is obviously at , where f, 
and f, are zero. The multiplier is A = . A small 
change from 4 will leave fmin = so the sensitivity 
dfmi,/dk still equals A. 

30 Minimizef =x2 +y2 subject to the inequality constraint 
x +y $4. Now the minimum is at and the multi- 
plier is A = andfmin =-. A small change to 
4 +dk changes fmin by what multiple of dk? 

31 Minimizef=5~+6ywithg=x+y=4andh=xbOand 
H = y  <0. Now A, < O  and the sign change destroys 
Example 4. Show that equation (7) has no solution, and 
choose x, y to make 5x + 6y < - 1000. 

32 Minimizef =2x + 3y +42subject to g =x +y + z = 1 and 
x, y, z 2 0. These constraints have multipliers A,> 0, A3 2 0, 
I ,  2 0. The equations are 2 =A, + i 2 ,  , and 4 = 

A, + A,. Explain why A, >0 and A, >0 and fmin =2. 

33 A wire 4 0  long is used to enclose one or two squares 
(side x and side y). Maximize the total area x2 + y2 subject to 
x 2 0 ,  y$0,4x+4y=40.  
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C H A P T E R  14 

Multiple Integrals 

14.1 Double Integrals 4 

This chapter shows how to integrate functions of two or more variables. First, a 
double integral is defined as the limit of sums. Second, we find a fast way to compute 
it. The key idea is to replace a double integral by two ordinary "single" integrals. 

The double integral Sf f(x, y)dy dx starts with 1f(x, y)dy. For each fixed x we integ- 
rate with respect to y. The answer depends on x. Now integrate again, this time with 
respect to x. The limits of integration need care and attention! Frequently those limits 
on y and x are the hardest part. 

Why bother with sums and limits in the first place? Two reasons. There has to be 
a definition and a computation to fall back on, when the single integrals are difficult 
or impossible. And also-this we emphasize-multiple integrals represent more than 
area and volume. Those words and the pictures that go with them are the easiest to 
understand. You can almost see the volume as a "sum of slices" or a "double sum of 
thin sticks." The true applications are mostly to other things, but the central idea is 
always the same: Add up small pieces and take limits. 

We begin with the area of R and the volume of by double integrals. 

A LIMIT OF SUMS 

The graph of z =f(x, y) is a curved surface above the xy plane. At the point (x, y) in 
the plane, the height of the surface is z. (The surface is above the xy plane only when 
z is positive. Volumes below the plane come with minus signs, like areas below the 
x axis.) We begin by choosing a positive function-for example z = 1+ x2 + y2. 

The base of our solid is a region R in the xy plane. That region will be chopped 
into small rectangles (sides Ax and Ay). When R itself is the rectangle 0d x < 1, 
0< y < 2, the small pieces fit perfectly. For a triangle or a circle, the rectangles miss 
part of R. But they do fit in the limit, and any region with a piecewise smooth 
boundary will be acceptable. 

Question What is the volume above R and below the graph of z =Ax, y)? 
Answer It is a double integral-the integral of f(x, y) over R. To reach it we begin 
with a sum, as suggested by Figure 14.1. 
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area AA 

Fig. 14.1 Base R cut into small pieces AA. Solid V cut into thin sticks AV = z A A. 

For single integrals, the interval [a, b] is divided into short pieces of length Ax. 
For double integrals, R is divided into small rectangles of area AA = (Ax)(Ay). Above 
the ith rectangle is a "thin stick" with small volume. That volume is the base area 
AA times the height above it-except that this height z =f(x, y) varies from point to 
point. Therefore we select a point (xi, y,) in the ith rectangle, and compute the volume 
from the height above that point: 

volume of one stick =f(xi, yi)AA volume of all sticks = 1f(xi, yi)AA. 

This is the crucial step for any integral-to see it as a sum of small pieces. 
Now take limits: Ax -+ 0 and Ay -+ 0. The height z =f(x, y) is nearly constant over 

each rectangle. (We assume that f is a continuous function.) The sum approaches a 
limit, which depends only on the base R and the surface above it. The limit is the 
volume of the solid, and it is the double integral of f(x, y) over R: 

J J Rf(x, y) dA = lim 1f(xi, yi)AA. 
A x  -t 0 
Ay+O 

To repeat: The limit is the same for all choices of the rectangles and the points (xi, yi). 
The rectangles will not fit exactly into R, if that base area is curved. The heights are 
not exact, if the surface z =f(x, y) is also curved. But the errors on the sides and top, 
where the pieces don't fit and the heights are wrong, approach zero. Those errors are 
the volume of the "icing" around the solid, which gets thinner as Ax -+ 0 and Ay -+ 0. 
A careful proof takes more space than we are willing to give. But the properties of 
the integral need and deserve attention: 

1. Linearity: jj(f + g)dA = jj f d~ + j j g  dA 

2. Constant comes outside: jj cf(x, y)dA = c jj f(x, y)dA 

3. R splits into S and T(not overlapping): ]jf d~ = jj f d ~+ jj f d ~ .  
R S T 

In 1 the volume under f + g has two parts. The "thin sticks" of height f + g split into 
thin sticks under f and under g. In 2 the whole volume is stretched upward by c. In 
3 the volumes are side by side. As with single integrals, these properties help in 
computations. 

By writing dA, we allow shapes other than rectangles. Polar coordinates have an 
extra factor r in dA = r dr do. By writing dx dy, we choose rectangular coordinates 
and prepare for the splitting that comes now. 
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SPLITTING A DOUBLE INTEGRAL INTO TWO SINGLE INTEGRALS

The double integral JSf(x, y)dy dx will now be reduced to single integrals in y and
then x. (Or vice versa. Our first integral could equally well be ff(x, y)dx.) Chapter 8
described the same idea for solids of revolution. First came the area of a slice, which
is a single integral. Then came a second integral to add up the slices. For solids
formed by revolving a curve, all slices are circular disks-now we expect other shapes.

Figure 14.2 shows a slice of area A(x). It cuts through the solid at a fixed value of
x. The cut starts at y = c on one side of R, and ends at y = d on the other side. This
particular example goes from y = 0 to y = 2 (R is a rectangle). The area of a slice is
the y integral of f(x, y). Remember that x is fixed and y goes from c to d:

A(x) = area of slice = f(x, y)dy (the answer is a function of x).

EXAMPLE 1 A = (1 + x2 + y2)dy =[y + x2y+ - 2 2x2 8
y= 0 13 = =O 3

This is the reverse of a partial derivative! The integral of x2dy, with x constant, is
x2y. This "partial integral" is actually called an inner integral. After substituting the
limits y = 2 and y = 0 and subtracting, we have the area A(x) = 2 + 2x 2 + 1. Now the
outer integral adds slices to find the volume f A(x) dx. The answer is a number:

S8) [ 2x3  81' 2 8 16
volume = 2 + 2 x2 + dx= 2x + ~ + 8x = 2+ - + 8-

=o 3 = 3 3 3 3 3

nelgnt
f(x, y)

fix.

z

x x ix y

Fig. 14.2 A slice of V at a fixed x has area A(x) = ff(x, y)dy.

To complete this example, check the volume when the x integral comes first:

inner integral = (1 + x y2)dx =x x + y2 = +2
x=0 3 x=0 3

S4 1 y2 8 8 16

outer integral - + y2 dy = y+ 1-y3]Y =2 = 8 163 3 3 Y=O 3 3 3
The fact that double integrals can be split into single integrals is Fubini's Theorem.

14A If f(x, y) is continuous on the rectangle R, then

Sf(x, y)dA = [ f(x, y)dy dx = d [b f(x, y)dx dy. (2)

1-----7:.
I
I
I
I
I
I
~
I
I
I
I

II I I I I
Iin I I I I
II 1\ I I I I
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The inner integrals are the cross-sectional areas A(x) and a(y) of the slices. The outer
integrals add up the volumes A(x)dx and a(y)dy. Notice the reversing of limits.

Normally the brackets in (2) are omitted. When the y integral is first, dy is written
inside dx. The limits on y are inside too. I strongly recommend that you compute the
inner integral on one line and the outer integral on a separate line.

EXAMPLE 2 Find the volume below the plane z = x - 2y and above the base
triangle R.

The triangle R has sides on the x and y axes and the line x + y = 1. The strips in the
y direction have varying lengths. (So do the strips in the x direction.) This is the main
point of the example-the base is not a rectangle. The upper limit on the inner
integral changes as x changes. The top of the triangle is at y = 1 - x.

Figure 14.3 shows the strips. The region should always be drawn (except for
rectangles). Without a figure the limits are hard to find. A sketch of R makes it easy:

y goes from c = 0 to d = 1 - x. Then x goes from a = 0 to b = 1.

The inner integral has variable limits and the outer integral has constant limits:

inner: Y (x - 2y)dy= [xy y2 x - X)(1 - ) 2  -1+ 3x -2x 2

y=0

3 2 = 3 2 1
outer: (- + 3x - 2x2)dx= - x + x2  31 3 2 1

x=o 2 3  o 2 3 6

The volume is negative. Most of the solid is below the xy plane. To check the answer
- 6, do the x integral first: x goes from 0 to 1 - y. Then y goes from 0 to 1.

-Y I 1-Y 1 1 5
inner: (x - 2y)dx = [x2 - 2xy 2(1 - y) - 2(1 - y)y= - 3y + 2

( 1 5 1 3 5 3 1 3 5 1

-=2 2 6 o 2 2 6 6 2

Same answer, very probably right. The next example computes ff 1 dx dy = area of R.

EXAMPLE 3 The area of R is dy dx and also dx dy.
x=0 y=0 y=0 x=0

The first has vertical strips. The inner integral equals 1 - x. Then the outer integral
(of 1 - x) has limits 0 and 1, and the area is ½. It is like an indefinite integral inside
a definite integral.

y=4

y=l

x 0

Y

3

2

1

x

1 r=2

Fig. 14.3 Thin sticks above and below (Example 2). Reversed order (Examples 3 and 4).

y=4
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EXAMPLE 4 Reverse the order of integration in 

Solution Draw a figure! The inner integral goes from the parabola y = x2 up to 
the straight line y = 2x. This gives vertical strips. The strips sit side by side between 
x = 0 and x = 2. They stop where 2x equals x2, and the line meets the parabola. 

The problem is to put the x integral first. It goes along horizontal strips. On each 
line y = constant, we need the entry value of x and the exit value of x. From the figure, 
x goes from )y to &.Those are the inner limits. Pay attention also to the outer 
limits, because they now apply to y. The region starts at y = 0 and ends at y = 4. 
No charlge in the integrand x3-that is the height of the solid: 

x3dy dx is reversed to (3) 

EXAMPLE 5 Find the volume bounded by the planes x = 0, y = 0, z = 0, and 
2x + y 4-z = 4. 

Solutiorr The solid is a tetrahedron (four sides). It goes from z = 0 (the xy plane) up 
to the plane 2x + y + z = 4. On that plane z = 4 - 2x - y. This is the height function 
f(x, y) to be integrated. 

Figure 14.4 shows the base R. To find its sides, set z = 0. The sides of R are the 
lines x == 0 and y = 0 and 2x + y = 4. Taking vertical strips, dy is inner: 

4 - 2 x  

inner: 1,= o  

outer: S' 
1

Questbn What is the meaning of the inner integral -(4 - 2 ~ ) ~
2 

16
Answer The first is A(x), the area of the slice. - is the solid volume. 

3 

Question What if the inner integral f(x, y)dy has limits that depend on y? 
Answer It can't. Those limits must be wrong. Find them again. 

density p = y 

Fig. 114.4 Tetrahedron in Example 5, semicircle in Example 6, triangle in Example 7. 

EXAMPLE 6 Find the mass in a semicircle 0 < y < ,/I - x2 if the density is p = y. 

This is a. new application of double integrals. The total mass is a sum of small masses 
(p times AA) in rectangles of area AA. The rectangles don't fit perfectly inside the 
semicircle R, and the density is not constant in each rectangle-but those problems 
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disappear in the limit. We are left with a double integral: 

Set p = y. Figure 14.4 shows the limits on x and y (try both d y  d x  and d x  dy):  

JF? V ' F j i  
m a s s M = j l  Iyz0 y d y d x  andalso M = I 1  j y d x d y .  

x =  -1 y=o -Ji--;+ 

The first inner integral is iy2.Substituting the limits gives g 1  -- x2) . The outer integral 
of $(1 - x 2 )  yields the total mass M = 3. 

The second inner integral is x y .  Substituting the limits on x gives . Then 
the outer integral is - $(I - y2)312.Substituting y = 1 and y = 0 yields M = . 
Remark This same calculation also produces the moment around the x axis, when 
the density is p = 1. The factor y is the distance to the x axis. The moment is M x  = 

y d A  = 5.Dividing by the area of the semicircle (which is 4 2 ) locates the centroid: 
2 = 0 by symmetry and 

moment - 213 - 4 y = height of centroid = -----
area 7112 37~' ( 5 )  

This is the "average height" of points inside the semicircle, found earlier in 8.5. 

EXAMPLE 7 Integrate 1::; 1:::
 cos x 2 d x  d y  avoiding the impossible cos x 2  d x .  

This is a famous example where reversing the order makes the calculation possible. 
The base R is the triangle in Figure 14.4 (note that x goes from y to 1). In the opposite 
order y goes from 0 to x. Then I cos x 2 d y  = x cos x2 contains the factor x that we 
need: 

outer integral: x cos x 2 d x  = [f sin x2]A  = $ sin 1. 
0 

14.1 EXERCISES 
Read-through questions (inner) limits on x are u . Now the strip is v and the 

outer integral is w . When the density is p(x, y), the total The double integral IS, f ( x ,  y)dA gives the volume between R 
mass in the region R is SS x . The moments are M y= and a . The base is first cut into small b of area A A.  

The volume above the ith piece is approximately c . The 
Y and M x  = z . The centroid has 2 = M,/M. 

limit of the sum d is the volume integral. Three properties 
of double integrals are e (linearity) and f and 

Compute the double integrals 1-4 by two integrations. 
9. 


If R is the rectangle 0 < x < 4,4  < y < 6,  the integral Sf x dA 
can be computed two ways. One is SSx dy dx, when the P O  

inner integral is h 1: = i . ~h~ outer integral gives 
2 c2' je 

r 2 d i  dy and j 1  jx: y2dx dy 

1; = k . When the x integral comes first it equals 2xy dx dy and 
y = 2  x = ll x dx = I 1, = m . Then the y integral equals 

n . This is the volume between o (describe V). 
and j121; dy dx / (x  + y)l

The area of R is jl P dy dx. When R is the triangle 
between x = 0, y = 2x, and y = 1, the inner limits on y are 
s . This is the length of a r strip. The (outer) limits 4 jol j: yexydx dy and j:on x are s . The area is t . In the opposite order, the 1 

I 
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In 5-10, draw the region and compute the area. 

In 11-16 reverse the order of integration (and find the new 
limits) in 5-10 respectively. 

In 17-24 find the limits on II dy dx and Jjdx dy. Draw R and 
compute its area. 

17 R = triangle inside the lines x =0, y = 1, y =2x. 

18 R = triangle inside the lines x = - 1, y =0, x +y =0. 

19 R = triangle inside the lines y =x, y = -x, y = 3. 

20 R = triangle inside the lines y =x, y =2x, y =4. 

21 R = triangle with vertices (0, O), (4,4), (4, 8). 

22 R = triangle with vertices (0, O), (-2, -I), (1, -2). 

23 R = triangle with vertices (0, O), (2, O), (1, b). Here b > 0. 

*24 R = triangle with vertices (0, 0), (a, b), (c, d). The sides are 
y =bxla, y =dxlc, and y =b +(x -a)(d -b)/(c-a). Find 
~ = J j ' d y d x  whenO<a<c, O < d < b .  

25 Evaluate Cjl a2f/axay dr a. 

26 Evaluate 1; 1; af/dx dx dy. 

In 27-28, divide the unit square R into triangles S and T and 
verify jJRf d~ =JJs f d~ +11, f d ~ .  

29 The area under y =f(x) is a single integral from a to b or 
a double integral ( jnd  the limits): 

f(x) dx = 1 dy dx. lab ll 


30 Find the limits and the area under y = 1 -x2: 

(1 -x2) dx and 1l1 dx dy (reversed from 29). 

31 A city inside the circle x2 +y2 = 100 has population den- 
sity p(x, y) = 10(100-x2 -y2). Integrate to find its pop- 
ulation. 

32 Find the volume bounded by the planes x =0, y =0, 
z=0,  and a x +  by+cz= 1. 

In 33-34 the rectangle with corners (1, I), (1, 3), (2, I), (2, 3) has 
density p(x, y) =x2. The moments are M y  =Jlxp dA and 
Mx =II YP dA- 

33 Find the mass. 34 Find the center of mass. 

In 35-36 the region is a circular wedge of radius 1 between the 
lines y =x and y = -x. 

35 Find the area. 36 Find the centroid (2,j ) .  

37 Write a program to compute IAItf(x, y)dx dy by the mid- 
point rule (midpoints of n2 small squares). Which f(x, y) are 
integrated exactly by your program? 

38 Apply the midpoint code to integrate x2 and xy and y2. 
The errors decrease like what power of Ax =Ay = 1/n? 

Use the program to compute the volume under f(x, y) in 39-42. 
Check by integrating exactly or doubling n. 

39 flx, y) = 3x +4y + 5 40 f(x, y) = 1/J= 
41 f(x, y) =xY 42 flx, y) =ex sin ny 

43 In which order is xydx dy = xYdy dx easier to integ- 
rate over the square 0 <x < 1,0 <y < l ?  By reversing order, 
integrate (x- l)/ln x from 0 to 1-its antiderivative is 
unknown. 

44 Explain in your own words the definition of the 
double integral of f(x, y) over the region R. 

45 x yiAA might not approach y dA if we only know that 
A A +0. In the square 0<x, y < 1, take rectangles of sides 
Ax and 1 (not Ax and Ay). If (xi, yi) is a point in the rectangle 
where yi= 1, then x y i A A =  . But j JydA= 

14.2 Change to Better Coordinates 

You don't go far with double integrals before wanting to change variables. Many 
regions simply do not fit with the x and y axes. Two examples are in Figure 14.5, 
a tilted square and a ring. Those are excellent shapes-in the right coordinates. 
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We have to be able to answer basic questions like these: 

Find the area !.I dA and moment x dA and moment of inertia SS x2 dA. [.I 

The problem is: What is dA? We are leaving the xy variables where dA = dx dy. 

The reason for changing is this: The limits of integration in the y direction are 
miserable. I don't know them and I don't want to know them. For every x we would 
need the entry point P of the line x = constant, and the exit point Q. The heights of 
P and Q are the limits on Jdy, the inner integral. The geometry of the square and 
ring are totally missed, if we stick rigidly to x and y. 

Fig. 14.5 Unit square turned through angle a. Ring with radii 4 and 5. 

Which coordinates are better? Any sensible person agrees that the area of the tilted 
square is 1. "Just turn it and the area is obvious." But that sensible person may not 
know the moment or the center of gravity or the moment of inertia. So we actually 
have to do the turning. 

The new coordinates u and v are in Figure 14.6a. The limits of integration on v are 
0 and 1. So are the limits on u. But when you change variables, you don't just change 
limits. Two other changes come with new variables: 

1. The small area dA = dx dy becomes dA = du dv. 
2. The integral of x becomes the integral of . 

Substituting u = in a single integral, we make the same changes. Limits x = 0 and 
x = 4 become u = 0 and u = 2. Since x is u2, dx is 2u du. The purpose of the change 
is to find an antiderivative. For double integrals, the usual purpose is to improve the 
limits-but we have to accept the whole package. 

To turn the square, there are formulas connecting x and y to u and 1.1. The geometry 
is clear-rotate axes by x-but it has to be converted into algebra: 

u = s cos x + j. sin x x = u cos x - c sin x 

r = -s sin x + j9cos x 
and in reverse 

y = u sin x + c cos X. 
( 1 )  

Figure 14.6 shows the rotation. As points move, the whole square turns. A good way 
to remember equation (1) is to follow the corners as they become (1,O) and (0, 1). 

The change from JJ x dA to Jl du dl: is partly decided by equation (1). It 
gives x as a function of u and v.  We also need dA. For a pure rotation the first guess 
is correct: The area dx dy equals the area du dv. For most changes of variable this is 
false. The general formula for dA comes after the examples. 
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= cosa, = s ina  goes to u = I ,  v = o( Z  I 

Fig. 14.6 Change of coordinates-axes turned by cr. For rotation dA is du dv. 

EXAMPLE I Find jj dA and jj x dA and 2 and also jj x2 dA for the tilted square. 

Solution The area of the square is 5; SA du dv = 1. Notice the good limits. Then 

J j x d ~ = j A j ; ( ~cos a -  v sin a)du d v = &  cos a - &  sin a. (2) 

This is the moment around the y axis. The factors $ come from &u2 and iv2.  The x 
coordinate of the center of gravity is 

. = j! x d~ ,/ !!d~ = (' cos r - i sin r ) / l .  

Similarly the integral of y leads to j . The answer is no mystery-the point (2, j )  is 
at the center of the square! Substituting x = u cos a - v sin a made x dA look worse, 
but the limits 0 and 1 are much better. 

The moment of inertia I ,  around the y axis is also simplified: 

cos2a cos a sin a +-sin2aj j ,  lo1
I1= (u cos a - v sin aydu dv = -
3 

-
2 3 .  (3) 

You know this next fact but I will write it anyway: The answers don't contain u or v. 
Those are dummy variables like x and y. The answers do contain a, because the 
square has turned. (The area is fixed at 1.) The moment of inertia I, = jj y2 dA is the 
same as equation (3) but with all plus signs. 

Question The sum I ,  + I ,  simplifies to 5 (a constant). Why no dependence on a? 
Answer I ,  + I ,  equals I,. This moment of inertia around (0,O) is unchanged by 
rotation. We are turning the square around one of its corners. 

CHANGE TO POLAR COORDINATES 

The next change is to I. and 0. A small area becomes dA = r dr d0 (definitely not dr do). 
Area always comes from multiplying two lengths, and d0 is not a length. Figure 14.7 
shows the crucial region-a "polar rectangle" cut out by rays and circles. Its area 
AA is found in two ways, both leading to r dr do: 

(Approximate) The straight sides have length Ar. The circular arcs are 
ci'ose to rA0. The angles are 90". So AA is close to (Ar)(rAO). 

(Exact) A wedge has area ir2AB. The difference between wedges is AA: 
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The exact method places r dead center (see figure). The approximation says: Forget
the change in rAO as you move outward. Keep only the first-order terms.

A third method is coming, which requires no picture and no geometry. Calculus
always has a third method! The change of variables x = r cos 0, y = r sin 0 will go
into a general formula for dA, and out will come the area r dr dO.

2x

-x

r
'4 5

Fig. 14.7 Ring and polar rectangle in xy and rO, with stretching factor r = 4.5.

EXAMPLE 2 Find the area and center of gravity of the ring. Also find fJx 2dA.

Solution The limits on r are 4 and 5. The limits on 0 are 0 and 2in. Polar coordinates
are perfect for a ring. Compared with limits like x = ,25- y2, the change to r dr dO
is a small price to pay:

2 a 5
area= f fr drdO=2[r2]r = n52-7r42= 9-.

04

The 0 integral is 27r (full circle). Actually the ring is a giant polar rectangle. We could
have used the exact formula r Ar AO, with AO = 27r and Ar = 5 - 4. When the radius
r is centered at 4.5, the product r Ar AO is (4.5)(1)(27r) = 97r as above.

Since the ring is symmetric around (0, 0), the integral of x dA must be zero:

2n 5
j x dA = f J (r cos O)r dr dO = jr [sin ]"=O0.
R 04

Notice r cos 0 from x-the other r is from dA. The moment of inertia is

2n 5 27c

JJ x2dA= J r2cos20 r dr dO= •ir 4 J cos2 0 dB = 4(5 - 4')n.
R 0 4 0

This 0 integral is in not 2·n, because the average of cos20 is ½ not 1.
For reference here are the moments of inertia when the density is p(x, y):

I, = f x 2p dA Ix = ffy 2p dA Io = fir2p dA = polar moment = Ix + I,. (4)

EXAMPLE 3 Find masses and moments for semicircular plates: p = 1 and p = 1 - r.

Solution The semicircles in Figure 14.8 have r = 1. The angle goes from 0 to 7r
(the upper half-circle). Polar coordinates are best. The mass is the integral of the
density p:

M = r dr dO = ()(7r) and M= S J(1 - r)r dr dO= ()(r).
O 0 0 0

530

r



14.2 Change to Better Coordinates 531

The first mass 7r/2 equals the area (because p = 1). The second mass 1r/6 is smaller
(because p < 1). Integrating p = 1 is the same as finding a volume when the height is
z = 1 (part of a cylinder). Integrating p = 1 - r is the same as finding a volume when
the height is z = 1 - r (part of a cone). Volumes of cones have the extra factor ½.

The center of gravity involves the moment Mx = JJyp dA. The distance from the
x axis is y, the mass of a small piece is p dA, integrate to add mass times distance.
Polar coordinates are still best, with y = r sin 0. Again p = 1 and p = 1 - r:

•ydA=f frsinOrdrdO= J y(1 - r) dA=fr rsinO(1-r)rdrdO= .
O 0 0 0

The height of the center of gravity is 3 = Mx/M = moment divided by mass:

2/3 4 1/6 1
y=- =- when p =1 y when p = 1 - r.

7r/2 37w 7t/6 wn

it

r= 1 -2 -1 1 2

Fig. 14.8 Semicircles with density piled above them. Fig. 14.9 Bell-shaped curve.

Question Compare y for p = 1 and p = other positive constants and p = 1 - r.
Answer Any constant p gives 3 = 4/37r. Since 1 - r is dense at r = 0, j drops to 1/in.

Question How is Y = 4/37t related to the "average" of y in the semicircle?
Answer They are identical. This is the point of 3. Divide the integral by the area:

The average value of a function is Jf f(x, y)dA / Jf dA. (5)

The integral off is divided by the integral of 1 (the area). In one dimension fa v(x) dx
was divided by fb 1 dx (the length b - a). That gave the average value of v(x) in
Section 5.6. Equation (5) is the same idea forf(x, y).

EXAMPLE 4 Compute A= e-X2dx = i/ from A 2 = -X2dx -e dy = 7r.

A is the area under a "bell-shaped curve"-see Figure 14.9. This is the most important
definite integral in the study of probability. It is difficult because a factor 2x is not
present. Integrating 2xe -

X2 gives -e -
X2, but integrating e-x 2 is impossible--except

approximately by a computer. How can we hope to show that A is exactly /-?
The trick is to go from an area integral A to a volume integral A2. This is unusual

(and hard to like), but the end justifies the means:

A2 = e 2ey 2dy dx = e-`2r dr dO. (6)
-o y= -- 0 =0 r=0

The double integrals cover the whole plane. The r2 comes from x2 + y2, and the
key factor r appears in polar coordinates. It is now possible to substitute u = r2.
The r integral is -if e-udu= -. The 0 integral is 21t. The double integral is (½)(21t).
Therefore A 2 = ir and the single integral is A = t/.

r=l

I
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EXAMPLE 5 Apply Example 4 to the "normal distribution" p(x) = ~ - X ' I ~ / , / % .  

Section 8.4 discussed probability. It emphasized the importance of this particular p(x). 
At that time we could not verify that 1p(x)dx = 1. Now we can: 

e-'2/2dx= -I" e - ~ ' d ~x = f iy  yields I!m J;; = 1 .  (7)Jz;; 
- m  - m  

Question Why include the 2's in p(x)? The integral of e-"'/& also equals 1. 

Answer With the 2's the bbvariance"is 1x2p(x) dx  = 1 .  This is a convenient number. 

CHANGE TO OTHER COORDINATES 

A third method was promised, to find r dr d0 without a picture and without geometry. 
The method works directly from x = r cos 0 and y = r sin 0 .  It also finds the 1 in 
du du, after a rotation of axes. Most important, this new method finds the factor J in 
the area d A  = J du dv, for any change of variables. The change is from xy  to uv. 

For single integrals, the "stretching factor" J between the original dx and the new 
du is (not surprisingly) the ratio dxldu. Where we have dx,  we write (dx/du)du.Where 
we have (du/dx)dx,we write du. That was the idea of substitutions-the main way 
to simplify integrals. 

For double integrals the stretching factor appears in the area: dx dy  becomes 
IJI du do. The old and new variables are related by x = x(u, v )  and y = y(u, 0).  The point 
with coordinates u and v comes from the point with coordinates x and y.  A whole 
region S, full of points in the uu plane, comes from the region R full of corresponding 
points in the xy  plane. A small piece with area IJI du dv comes from a small piece with 
area d x  dy .  The formula for J is a two-dimensional version of dxldu. 

1 148 The stretching factor for area is the 2 by 2 Jacobian dktermiccnf J(u, v): 

I An integral over R in the xy plane becomes an integral over S in the uv plane: 

The determinant J is often written a(x, y)/d(u, v), as a reminder that this stretching 
factor is like dxldu. W e  require J # 0 .  That keeps the stretching and shrinking under 
control. 

You naturally ask: Why take the absolute value IJI in equation (9)? Good 
question-it wasn't done for single integrals. The reason is in the limits of integration. 
The single integral dx is '(- du) after changing x to -u. W e  keep the minus sign 
and allow single integrals to run backward. Double integrals could too, but normally 
they go left to right and down to up. We use the absolute value IJI and run forward. 

EXAMPLE 6 Polar coordinates have x = u cos v = r cos 6 and y = u sin v = r sin 8. 

cos 6 - r sin 8 
With no geometry: = r .  (10)

sin 8 r cos 8 
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EXAMPLE 7 Find J for the linear change to x = au + bv and y = cu + dv. 

dxldu dxldv a b 
Ordinary determinant: J = i y / d v c  d = a d b c *  (1 1) 

Why make this simple change, in which a, b, c, d are all constant? It straightens 
parallelograms into squares (and rotates those squares). Figure 14.10 is typical. 

Common sense indicated J = 1 for pure rotation-no change in area. Now J = 1 
comes from equations (1) and (1I), because ad - bc is cos2a + sin2a. 

' In pralctice, xy rectangles generally go into uv rectangles. The sides can be curved 
(as in po~lar rectangles) but the angles are often 90". The change is "orthogonal." The 
next example has angles that are not 90°, and J still gives the answer. 

Fig. 14.10 Change from xy to uv has J =4. Fig. 14.11 Curved areas are also 
d A  = lJldu dv. 

EXAMPLE 8 Find the area of R in Figure 14.10. Also compute jj exdx dy. 
R 

Solution The figure shows x = 3u + $I and y = i u  + 3v. The determinant is 

The area of the xy parallelogram becomes an integral over the uv square: 

The square has area 9, the parallelogram has area 3. I don't know if J = 3 is a 
stretching factor or a shrinking factor. The other integral jj exdx dy is 

Main point: The change to u and v makes the limits easy (just 0 and 3). 

Why 1s the stretching factor J a determinant? With straight sides, this goes back to 
Section 11.3 on vectors. The area of a parallelogram is a determinant. Here the sides 
are curved, but that only produces ( d ~ ) ~  which we ignore. and ( d ~ ) ~ ,  

A cha.nge du gives one side of Figure 14.11-it is (dxldu i + dyldu j)du. Side 2 is 
(dxldvi -t dyldv j)dv. The curving comes from second derivatives. The area (the cross 
product of the sides) is 1 J ldu dv. 
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Final remark I can't resist looking at the change in the reverse direction. Now the 
rectangle is in xy and the parallelogram is in uu. In all formulas, exchange x for u 

This is exactly like duldx = l/(dx/du).It is the derivative of the inverse function. 
The product of slopes is 1-stretch out, shrink back. From xy to uv we have 2 by 2 
matrices, and the identity matrix I takes the place of 1: 

The first row times the first column is (ax/a~)(au/ax)+ (ax/av)(av/ax)= axlax = 1. 
+ (ax/a~)(av/dy)The first row times the second column is ( d ~ / a ~ ) ( a ~ / d y )  = axlay = 0. 

The matrices are inverses of each other. The determinants of a matrix and its inverse 
obey our rule: old J times new J = 1. Those J's cannot be zero, just as dxldu and 
duldx were not zero. (Inverse functions increase steadily or decrease steadily.) 

In two dimensions, an area dx dy goes to J du dv and comes back to dx dy. 

14.2 EXERCISES 

Read-through questions 

We change variables to improve the a of integration. 
The disk x2 + y2 6 9 becomes the rectangle 0 6 r 6 b , 
0 6 0 < c . he inner limits on j j  dy dx are = + d . 
In polar coordinates this area integral becomes e = 

f 

A polar rectangle has sides dr and g . Two sides are 
not h but the angles are still i . The area between 
the circles r = 1 and r = 3 and the rays 0 =0 and 0 = 4 4  is 

I . The integral S I X  dy dx changes to k . This is 
the I around the m axis. Then .f is the ratio n . 
This is the x coordinate of the 0 , and it is the P 

value of x. 

In a rotation through a, the point that reaches (u, v) starts 
at x = u cos sc - v sin a, y = q .A rectangle in the uv plane 
comes from a r in xy. The areas are s so the stretch- 
ing factor is J = t . This is the determinant of the matrix 

u containing cos a and sin a. The moment of inertia 
j j  x2dx dy changes to j j  v du dv. 

For single integrals dx changes to w du. For double 
integrals dx dy changes to Jdu dv with J = x . The 
stretching factor J is the determinant of the 2 by 2 matrix 

Y . The functions x(u, v) and y(u, v) connect an xy region 
R to a uv region S, and SIR dx dy = j j ,  =area of A . 
For polar coordinates x = B , y = c . For x = u, y = 

u +4v the 2 by 2 determinant is J = D . A square in the 
uu plane comes from a E in xy. In the opposite direction 
the change has u =x and u =i(y -x)  and a new J = F . 
This J is constant because this change of variables is G . 

In 1-12 R is a pie-shaped wedge: 0 6 r 6 1 and n/4 6 0 d 37114. 

1 What is the area of R? Check by integration in polar 
coordinates. 

2 Find limits on j j  dy dx to yield the area of R, and integ- 
rate. Extra credit: Find limits on j j  dx dy. 

3 Equation (1) with a =4 4  rotates R into the uu region S = 
. Find limits on du dv. 

4 Compute the centroid height j of R by changing j j  y dx dy 
to polar coordinates. Divide by the area of R. 

5 The region R has 2 =0 because . After rotation 
through r =4 4 ,  the centroid (2, j )  of R becomes the centroid 

of S. 

6 Find the centroid of any wedge 0 6 r 6 a, 0 6 O < b. 

7 Suppose R* is the wedge R moved up so that the sharp 
point is at x =0, y = 1 .  

(a) Find limits on j j  dy dx to integrate over R*. 
(b) With x* =x and y* =y - 1 ,  the xy region R* corres-
ponds to what region in the x*y* plane? 
(c) After that change dx dy equals dx*dy*. 

8 Find limits on f j  r dr dO to integrate over R* in Problem 7. 

9 The right coordinates for R* are r* and O*, with x = 
r* cos O* and y = r* sin O* + 1. 

(a) Show that J = r* so dA = r*dr*dO*. 
(b)Find limits on SSr*dr*dO* to integrate over R*. 
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10 If the centroid of R is (0, j), the centroid of R* is 
The centroid of the circle with radius 3 and center (1, 2) is 

. The centroid of the upper half of that circle is 

11 The moments of inertia I,, I,, I. of the original wedge R 
are . 
12 The moments of inertia I,, I,, I, of the shifted wedge R* 
are . 

Problems 13-16 change four-sided regions to squares. 

13 R has straight sides y = 2x, x = 1, y = 1 + 2x, x =0. Locate 
its four corners and draw R. Find its area by geometry. 

14 Choose a, b, c, d so that the change x = au + bu, y = 
cu + dv takes the previous R into S, the unit square 0 < u < 1, 
0 < v < 1. From the stretching factor J = ad -bc find the area 
of R. 

15 The region R has straight sides x =0, x = 1, y =0, y = 
2x + 3. Choose a, b, c so that x = u and y = au + bv + cuv 
change R to the unit square S. 

16 A nonlinear term uv was needed in Problem 15. Which 
regions R could change to the square S with a linear x = 
au+ bv, y=cu +dv? 

Draw the xy region R that corresponds in 17-22 to the uv 
square S with corners (0, O), (1, O), (0, I), (1, 1). Locate the 
corners of R and then its sides (like a jigsaw puzzle). 

22 x = u cos v, y =u sin v (only three corners) 

23 In Problems 17 and 19, compute J from equation (8). Then 
find the area of R from j J s l ~ ~ d u  do. 

24 In 18 and 20, find J = d(x, y)/a(u, v) and the area of R. 

25 If R lies between x =0 and x = 1 under the graph of y = 
f(x) >0, then x =u, y = vf(u) takes R to the unit square S. 
Locate the corners of R and the point corresponding to 
u =4, v = 1. Compute J to prove what we know: 

area of R = f(x)dx =JiJ: J du dv. 

26 From r = ,/=and 8= tan- '(ylx), compute &/ax, 
arlay, a0/ax, a0/ay, and the determinant J = a(r, 0)p(x, y). 
How is this J related to the factor r = a(x, y)p(r, 0) that enters 
r dr dB? 

27 Example 4 integrated e-,' from 0 to m (answer &). Also 
B =ji e-"'dx leads to B2 = jie-x2dx lie-y2dy. Change this 
double integral over the unit square to r and 0- and find 
the limits on r that make exact integration impossible. 

28 Integrate by parts to prove that the standard normal 
distribution p(x) = e - " I 2 / p  has 02= 1". x2p(x)dx= I .  

29 Find the average distance from a point on a circle to the 
points inside. Suggestion: Let (0,O) be the point and let 
0 < r < 2a cos 0,0 < 0 < n be the circle (radius a). The distance 
is r, so the average distance is ? =jj 1jj 
30 Draw the region R: 0< x < 1, 0 < y < m and describe it 
with polar coordinates (limits on r and 0). Integrate 
jjR(x2+ y2)-312dx dy in polar coordinates. 

31 Using polar coordinates, find the volume under z = 
x2 + y2 above the unit disk x2 + y2 < 1. 

32 The end of Example 1 stated the moment of inertia 
J j y 2 d ~ .Check that integration. 

33 In the square -1 < x < 2, -2 <y < 1, where could you 
distribute a unit mass (with jj p dxdy = 1) to maximize 

(a) jjx2p dA (b) jjy2p dA (c) jjr2p dA? 

34 True or false, with a reason: 
(a) If the uv region S corresponds to the xy region R, then 
area of S =area of R. 
(b)jlx dA <jjx2dA 
(c) The average value off(x, y) is jj f(x, y)dA 
(d)I?, xe-"dx = 0 
(e) A polar rectangle has the same area as a straight-sided 
region with the same corners. 

35 Find the mass of the tilted square in Example 1 if the 
density is p = xy. 

36 Find the mass of the ring in Example 2 if the density is 
p =x2 + y2. This is the same as which moment of inertia with 
which density? 

37 Find the polar moment of inertia I, of the ring in 
Example 2 if the density is p =x2 + y2. 

38 Give the following statement an appropriate name: 
IlRf(x, y)dA =f(P) times (area of R), where P is a point in R. 
Which point P makes this correct for f =x and f = y? 

39 Find the xy coordinates of the top point in Figure 14.6a 
and check that it goes to (u, u) = (1, 1). 
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14.3 Triple Integrals

At this point in the book, I feel I can speak to you directly. You can guess what triple
integrals are like. Instead of a small interval or a small rectangle, there is a small box.
Instead of length dx or area dx dy, the box has volume dV= dx dy dz. That is length
times width times height. The goal is to put small boxes together (by integration).
The main problem will be to discover the correct limits on x, y, z.

We could dream up more and more complicated regions in three-dimensional
space. But I don't think you can see the method clearly without seeing the region
clearly. In practice six shapes are the most important:

box prism cylinder cone tetrahedron sphere.

The box is easiest and the sphere may be the hardest (but no problem in spherical
coordinates). Circular cylinders and cones fall in the middle, where xyz coordinates
are possible but rOz are the best. I start with the box and prism and xyz.

EXAMPLE 1 By triple integrals find the volume of a box and a prism (Figure 14.12).
1 3 2 1 3 -3z 2

JJ dV= j f f dx dy dz and ff dV= j l dx dy dz
box z=0 y=O x=O prism z=0 y=O x=0

The inner integral for both is S dx = 2. Lines in the x direction have length 2, cutting
through the box and the prism. The middle integrals show the limits on y (since dy
comes second):

3 3-3z
f 2dy=6 and S 2dy=6-6z.

y=- y=-

After two integrations these are areas. The first area 6 is for a plane section through
the box. The second area 6 - 6z is cut through the prism. The shaded rectangle goes
from y = 0 to y = 3 - 3z-we needed and used the equation y + 3z = 3 for the bound-
ary of the prism. At this point z is still constant! But the area depends on z, because
the prism gets thinner going upwards. The base area is 6 - 6z = 6, the top area is
6 - 6z = 0.

The outer integral multiplies those areas by dz, to give the volume of slices. They
are horizontal slices because z came last. Integration adds up the slices to find the
total volume:

box volume = 6 dz = 6 prism volume= (6- 6z)dz = 6z - 3z2] =3.
z=0 z=0

The box volume 2 3 - 1 didn't need calculus. The prism is half of the box, so its
volume was sure to be 3-but it is satisfying to see how 6z - 3z2 gives the answer.
Our purpose is to see how a triple integral works.

x x x

Fig. 14.12 Box with sides 2, 3, 1. The prism is half of the box: volume S(6 - 6z)dz or I J dx.

2
2 dx

Y
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Question Find the prism volume in the order dz dy dx  (six orders are possible). 

To find those limits on the z integral, follow a line in the z direction. It enters 
the prism at z = 0 and exits at the sloping face y + 32 = 3. That gives the upper limit 
z = (3 -y)/3. It is the height of a thin stick as in Section 14.1. This section writes out 
j dz for the height, but a quicker solution starts at the double integral. 

What is the number 1 in the last integral? It is the area of a vertical slice, cut by a 
plane x = constant. The outer integral adds up slices. 

x, y, z) dV is computed from three single integrals 

That step cannot be taken in silence-some basic calculus is involved. The triple 
integral is the limit of xfiAV, a sum over small boxes of volume AV. Herefi is any 
value of f(x, y, z) in the ith box. (In the limit, the boxes fit a curved region.) Now take 
those boxes in a certain order. Put them into lines in the x direction and put the lines 
of boxes into planes. The lines lead to the inner x integral, whose answer depends on 
y and z. The y integral combines the lines into planes. Finally the outer integral 
accounts for all planes and all boxes. 

Example 2 is important because it displays more possibilities than a box or prism. 

EXAMPLE 2 Find the volume of a tetrahedron (4-sided pyramid). Locate (2,j,5). 

Solution A tetrahedron has four flat faces, all triangles. The fourth face in 
Figure 14.13 is on the plane x + y + z = 1. A line in the x direction enters at x = 0 
and exits at x = 1 - y - z. (The length depends on y and z. The equation of the 
boundary plane gives x.) Then those lines are put into plane slices by the y integral: 

What is this number i(1 - z ) ~ ?It is the area at  height z. The plane at that height 
slices out a right triangle, whose legs have length 1 - z. The area is correct, but look 
at the limits of integration. If x goes to 1 - y - z, why does y go to 1 - z? Reason: 
We are assembling lines, not points. The figure shows a line at every y up to 1 - z. 

Fig. 14.13 Lines end at plane x + y + z = 1. Triangles end at edge y + z = 1. The average 
height is Z = jjjz d v/JS~d V. 
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Adding the slices gives the volume: t ( l  - z)ldz = [&z - I)~];= 9 .  This agrees 
with $(base times height), the volume of a pyramid. 

The height t of the centroid is "z,,~,,~." We compute rjr z dV and divide by the 
volume. Each horizontal slice is multiplied by its height z, and the limits of integration 
don't change: 

This is quick because z is constant in the x and y integrals. Each triangular slice 
contributes z times its area i(1 - z ) ~times dz. Then the z integral gives the moment 
1/24. To find the average height, divide 1/24 by the volume: 

JJJ z d v  - 1/24 - 1 
Z = height of centroid = -----JJJ dl/ 116 4'  

By symmetry 2 = 4 and y' = 4. The centroid is the point (4, $, a). Compare that with 
(i,)), the centroid of the standard right triangle. Compare also with f, the center of 
the unit interval. There must be a five-sided region in four dimensions centered at 
1 1 1 1 


( 3 9  3 9  3 9  5 ) .  

For area and volume we meet another pattern. Length of standard interval is 1, 
area of standard triangle is 4,volume of standard tetrahedron is 4, hypervolume in 
four dimensions must be . The interval reaches the point x = 1, the triangle 
reaches the line x + y = 1, the tetrahedron reaches the plane x + y + z = 1. The four- 
dimensional region stops at the hyperplane = 1. 

EXAMPLE 3 Find the volume JjJ dx dy dz inside the unit sphere x2 + y2 + z2 = 1. 

First question: What are the limits on x? If a needle goes through the sphere in the 
x direction, where does it enter and leave? Moving in the x direction, the numbers y 
and z stay constant. The inner integral deals only with x. The smallest and largest x 
are at the boundary where x2 + y2 + z2 = 1. This equation does the work-we solve 
it for x. Look at the limits on the x integral: 

The limits on y are -d m  and +,/-.
 You can use algebra on the boundary 
equation x2 + y2 + z2 = 1. But notice that x is gone! We want the smallest and largest 
y, for each z. It helps very much to draw the plane at height z, slicing through the 
sphere in Figure 14.14. The slice is a circle of radius r = ,/=. So the area is 
xr2, which must come from the y integral: 

I admit that I didn't integrate. Is it cheating to use the formula xr2? I don't think so. 
Mathematics is hard enough, and we don't have to work blindfolded. The goal is 
understanding, and if you know the area then use it. Of course the integral of Jwcan be done if necessary-use Section 7.2. 

The triple integral is down to a single integral. We went from one needle to a circle 
of needles and now to a sphere of needles. The volume is a sum of slices of area 
n(1 - z2). The South Pole is at z = -1, the North Pole is at z = + 1, and the integral 
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is the volume 47r/3 inside the unit sphere:

n -(1 -z2)dz = z - z3) 1 = 4 - 71. (3)

Question 1 A cone also has circular slices. How is the last integral changed?
Answer The slices of a cone have radius 1 - z. Integrate (1 - z)2 not - z 2 .

Question 2 How does this compare with a circular cylinder (height 1, radius 1)?
Answer Now all slices have radius 1. Above z = 0, a cylinder has volume 7c and a
half-sphere has volume 2i and a cone has volume ½I.

For solids with equal surface area, the sphere has largest volume.

Question 3 What is the average height z in the cone and half-sphere and cylinder?

Af z(slice area)dz _ 1 3 1
Answer z = and - and -.f (slice area)dz 4 8 2

z=_1 z=1
X = - N I - -

= Cy=- ýi-I

y y=b

dx=adu dy=bdv dz=cdw

Fig. 14.14 J dx = length of needle, Jf dx dy = area of slice. Ellipsoid is a stretched sphere.

EXAMPLE 4 Find the volume JJJ dx dy dz inside the ellipsoid x 2/a2 + y 2 /b2 +Z 2/c2 
= 1

The limits on x are now + 1 - y2/b 2 - z 2 /c 2 . The algebra looks terrible. The geom-
etry is better-all slices are ellipses. A change of variable is absolutely the best.

Introduce u = x/a and v = y/b and w = z/c. Then the outer boundary becomes
u2 + v2 + w2 = 1. In these new variables the shape is a sphere. The triple integral for
a sphere is fff du dv dw = 47r/3. But what volume dV in xyz space corresponds to a
small box with sides du and dv and dw?

Every uvw box comes from an xyz box. The box is stretched with no bending or
twisting. Since u is x/a, the length dx is a du. Similarly dy = b dv and dz = c dw. The
volume of the xyz box (Figure 14.14) is dx dy dz = (abc) du dv dw. The stretching factor
J = abc is a constant, and the volume of the ellipsoid is

bad limits better limits 4715ff dx dy dz = f f (abc) du dv dw - abc. (4)
ellipsoid sphere 3

You realize that this is special-other volumes are much more complicated. The
sphere and ellipsoid are curved, but the small xyz boxes are straight. The next section
introduces spherical coordinates, and we can finally write "good limits." But then we
need a different J.

- 2
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14.3 EXERCISES 

Read-through questions 

Six important solid shapes are a . The integral 
dx dy dz adds the volume b of small c . For com- 

putation it becomes d single integrals. The inner integral 
jdx is the e of a line through the solid. The variables 

f and g are held constant. The double integral 
dx dy is the h of a slice, with i held constant. 

Then the z integral adds up the volumes of I . 

If the solid region V is bounded by the planes x =0, y = 0, 
z =0, and x + 2y + 32 = 1, the limits on the inner x integral 
are k . The limits on y are I . The limits on z are 

m . In the new variables u = x, u =2y, w =32, the equation 
of the outer boundary is n . The volume of the tetrahe- 
dron in uuw space is 0 . From dx =du and dy = du/2 and 
dz = P , the volume of an xyz box is dx dydz = 

q du du dw. So the volume of V is r . 

To find the average height 5 in V we compute s I t . 
To find the total mass in V if the density is p = ez we compute 
the integral u . To find the average density we compute 

v 1 w . In the order jjj dz dx dy the limits on the inner 
integral can depend on x . The limits on the middle integ- 
ral can depend on Y . The outer limits for the ellipsoid 
x2 + 2y2+ 3z2Q 8 are z . 

1 For the solid region 0 <x < y < z < 1, find the limits in 
jjj dx dy dz and compute the volume. 

2 Reverse the order in Problem 1 to 111dz dy dx and find 
the limits of integration. The four faces of this tetrahedron 
are the planes x = 0 and y = x and 

3 This tetrahedron and five others like it fill the unit cube. 
Change the inequalities in Problem 1 to describe the other five. 

4 Find the centroid (2,j, Z) in Problem 1. 

Find the limits of integration in jfl dx dy dz and the volume of 
solids 5-16. Draw a very rough picture. 

5 A cube with sides of length 2, centered at (O,0, 0). 

6 Half of that cube, the box above the xy plane. 

7 Part of the same cube, the prism above the plane z =y. 

8 Part of the same cube, above z = y and z =0. 

9 Part of the same cube, above z = x and below z = y. 

10 Part of the same cube, where x <y < z. What shape is 
this? 

11 The tetrahedron bounded by planes x = 0, y =0, z =0, 
a n d x + y + 2 z = 2 .  

12 The tetrahedron with corners (0, 0, O), (2, 0, O), (0, 4, O), 
(0, 0, 4). First find the plane through the last three corners. 

13 The part of the tetrahedron in Problem 11 below z =4. 
14 The tetrahedron in Problem 12 with its top sliced off by 
the plane z = 1. 

15 The volume above z =0 below the cone =1 -z. 

"16 The tetrahedron in Problem 12, after it falls across the 
x axis onto the xy plane. 

In 17-20 find the limits in jjj dx dy dz or jjj dz dy dx. Compute 
the volume. 

17 A circular cylinder with height 6 and base x2 + y2 < 1. 

18 The part of that cylinder below the plane z =x. Watch the 
base. Draw a picture. 

19 The volume shared by the cube (Problem 5) and cylinder. 

20 The same cylinder lying along the x axis. 

21 A cube is inscribed in a sphere: radius 1, both centers at 
(0,0,O). What is the volume of the cube? 

22 Find the volume and the centroid of the region bounded 
by x =0, y =0, z = 0, and x/a + y/b + z/c = 1. 

23 Find the volume and centroid of the solid 
O < Z < ~ - X ~ - ~ ~ .  

24 Based on the text, what is the volume inside 
x2 + 4y2+ 9z2= 16? What is the "hypervolume" of the 
4-dimensional pyramid that stops at x + y + z + w = l? 

25 Find the partial derivatives aI/ax, allay, a21/dy az of 

26 Define the average value of f(x, y, z) in a solid V 

27 Find the moment of inertia jSj l2 d V of the cube 1x1 d 1, 
ly(6 1, lzl< 1 when 1 is the distance to 
(a)the x axis (b) the edge y =z = 1 (c) the diagonal x =y = z. 

28 Add upper limits to produce the volume of a unit cube 
from small cubes: V = 1 1 x AX)^ = 1. 

i = 1  j = 1  k = l  

3/Ax 2/Ax j 

*29 Find the limit as Ax 4 0 of 1 1 AX)^.
i = 1  j = l  k = l  

30 The midpoint rule for an integral over the unit cube 
chooses the center value f(3, 3, 4). Which functions f= xmynzP 
are integrated correctly? 

31 The trapezoidal rule estimates ji 1; f(x, y, z) dx dy dz 
as 4 times the sum of f(x, y, z) at 8 corners. This correctly 
integrates xm ynzP for which m, n, p? 

32 Propose a 27-point "Simpson's Rule" for integration over 
a cube. If many small cubes fill a large box, why are there 
only 8 new points per cube? 
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El 14.4 Cylindrical and Spherical Coordinates

Cylindrical coordinates are good for describing solids that are symmetric around an
axis. The solid is three-dimensional, so there are three coordinates r, 0, z:

r: out from the axis 0: around the axis z: along the axis.

This is a mixture of polar coordinates rO in a plane, plus z upward. You will not find
rOz difficult to work with. Start with a cylinder centered on the z axis:

solid cylinder: 0 < r < 1 flat bottom and top: 0 < z < 3 half-cylinder: 0 0 < 7E

Integration over this half-cylinder is J. f Jf ? dr dO dz. These limits on r, 0, z are
especially simple. Two other axially symmetric solids are almost as convenient:

cone: integrate to r + z = 1 sphere: integrate to r2 + z 2 = R 2

I would not use cylindrical coordinates for a box. Or a tetrahedron.
The integral needs one thing more-the volume dV. The movements dr and dO

and dz give a "curved box" in xyz space, drawn in Figure 14.15c. The base is a polar
rectangle, with area r dr dO. The new part is the height dz. The volume of the curved
box is r dr dO dz. Then r goes in the blank space in the triple integral-the stretching
factor is J = r. There are six orders of integration (we give two):

volume =f f r dr dO dz = f r dr dz dO.

0 = i/2
(y axis)

cos 0
sin 0

0 = 0 (x axis)

Fig. 14.15 Cylindrical coordinates for a point and a half-cylinder. Small volume r dr dO dz.

EXAMPLE 1 (Volume of the half-cylinder). The integral of r dr from 0 to 1 is -. The
0 integral is 7r and the z integral is 3. The volume is 3xr/2.

EXAMPLE 2 The surface r = 1 - z encloses the cone in Figure 14.16. Find its volume.

First solution Since r goes out to 1 - z, the integral of r dr is ½(1 - z)2. The 0 integral
is 27n (a full rotation). Stop there for a moment.

We have reached ff r dr dO = ½(1 - z)2 27r. This is the area of a slice at height z. The
slice is a circle, its radius is 1 - z, its area is 7r(1 - z)2. The z integral adds those slices
to give 7t/3. That is correct, but it is not the only way to compute the volume.

z) dz

/do
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Second solution Do the z and 8 integrals first. Since z goes up to 1 - r, and 8 goes 
around to 2n, those integrals produce jj r dz d8 = r(l - r)2n. Stop again-this must 
be the area of something. 

After the z and 8 integrals we have a shell at radius r. The height is 1 - r (the outer 
shells are shorter). This height times 2nr gives the area around the shell. The choice 
betweeen shells and slices is exactly as in Chapter 8. Diflerent orders of integration 
give dfferent ways to cut up the solid. 

The volume of the shell is area times thickness dr. The volume of the complete 
cone is the integral of shell volumes: 1; r(1 - r)2n dr = 4 3 .  

Third solution Do the r and z integrals first: jj r dr dz = A. Then the 8 integral is 
1 dB, which gives times 2n. This is the volume n/3-but what is & dB? 

The third cone is cut into wedges. The volume of a wedge is & dB. It is quite common 
to do the 8 integral last, especially when it just multiplies by 271. It is not so common 
to think of wedges. 

Question Is the volume d8 equal to an area & times a thickness dB? 
Answer No! The triangle in the third cone has area 9 not &. Thickness is never do. 

Fig. 14.46 A cone cut three ways: slice at height z, shell at radius r, wedge at angle 0. 

This cone is typical of a solid of revolution. The axis is in the z direction. The 8 
integral yields 271, whether it comes first, second, or third. The r integral goes out to 
a radius f(z), which is 1 for the cylinder and 1 - z for the cone. The integral SJ r dr d8 
is n ( f (~ ) )~area of circular slice. This leaves the z integral jn(f(z))'dz. That is our = 
old volume formula 1~( f (x ) )~dxfrom Chapter 8, where the slices were cut through 
the x axis. 

EXAMPLE 3 The moment of inertia around the z axis is jjj r3dr d8 dz. The extra r2 
is (distance to axis)2. For the cone this triple integral is n/ 10. 

EXAMPLE 4 The moment around the z axis is Jjjr2 dr d8 dz. For the cone this is ~ 1 6 .  
The average distance 7 is (moment)/(volume) = (n/6)/(n/3)=f . 

EXAMPLE 5 A sphere of radius R has the boundary r2 + z2 = R2, in cylindrical 
coordinates. The outer limit on the r integral is Jm.That is not acceptable in 
difficult problems. To avoid it we now change to coordinates that are natural for a 
sphere. 
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SPHERICAL COORDINATES 

The Earth is a solid sphere (or near enough). On its surface we use two coordinates- 
latitude and longitude. To dig inward or fly outward, there is a third coordinate- 
the distance p from the center. This Greek letter rho replaces r to avoid confusion 
with cylindrical coordinates. Where r is measured from the z axis, p is measured from 
the origin. Thus r2 = x2 + y2 and p2 = x2 + y2 + z2. 

The angle 8 is the same as before. It goes from 0 to 211. It is the longitude, which 
increases as you travel east around the Equator. 

The angle 4 is new. It equals 0at the North Pole and n (not 2n) at the South Pole. 
It is the polar angle, measured down from the z axis. The Equator has a latitude of 
0but a polar angle of n/2 (halfway down). Here are some typical shapes: 

solid sphere (or ball): 0 < p < R surface of sphere: p = R 

upper half-sphere: 0 < + f 4 2  eastern half-sphere: 0 < 8 6 n 

North Pole 4 = 0 

Y 

sin 0cos 8 \ Equator 1 

South Pole (I = n 

Fig. 14.17 Spherical coordinates p40. The volume d V  = p2 sin 4 dp d$ d0 of a spherical box. 

The angle 4 is constant on a cone from the origin. It cuts the surface in a circle 
(Figure 14.17b), but not a great circle. The angle 8 is constant along a half-circle 
from pole to pole. The distance p is constant on each inner sphere, starting at the 
center p = 0 and moving out to p = R. 

In spherical coordinates the volume integral is JJJp2sin + dp d 4  dB. To explain that 
surprising factor J = p2 sin 4 ,  start with x = r cos 8 and y = r sin 0. In spherical coor- 
dinates r is p sin + and z is p cos $--see the triangle in the figure. So substitute 
p sin 4 for r: 

x = p sin 4 cos 8, y = p sin + sin 8, z = p cos 4. (1) 

Remember those two steps, p 4 9  to r8z to x y z .  We check that x2 + y2 + z2 = p2: 

The volume integral is explained by Figure 14.17~. That shows a "spherical box" 
with right angles and curved edges. Two edges are dp and pd4.  The third edge is 
horizontal. The usual rd8 becomes p sin 4 do. Multiplying those lengths gives d V. 

The volume of the box is dV = p2 sin + dp d+ do. This is a distance cubed, from p2dp. 
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EXAMPLE 6 A solid ball of radius R has known volume V = 4 7 ~ ~ ~ .Notice the limits: 

Question What is the volume above the cone in Figure l4.l7? 
Answer The 4 integral stops at [- cos 41:'~ = i.The volume is (4R3)(+)(2n). 

EXAMPLE 7 The surface area of a sphere is A = 47rR2. Forget the p integral: 

After those examples from geometry, here is the real thing from science. I want to 
compute one of the most important triple integrals in physics-"the gravitational 
attraction of a solid sphere." For some reason Isaac Newton had trouble with this 
integral. He refused to publish his masterpiece on astronomy until he had solved it. 
I think he didn't use spherical coordinates-and the integral is not easy even now. 

The answer that Newton finally found is beautiful. The sphere acts as if all its mass 
were concentrated at the center. At an outside point (O,0, D), the force of gravity is 
proportional to 1/D2. The force from a uniform solid sphere equals the force from a 
point mass, at every outside point P. That is exactly what Newton wanted and 
needed, to explain the solar system and to prove Kepler's laws. 

Here is the difficulty. Some parts of the sphere are closer than D, some parts are 
farther away. The actual distance q, from the outside point P to a typical inside point, 
is shown in Figure 14.18. The average distance q to all points in the sphere is not D. 
But what Newton needed was a different average, and by good luck or some divine 
calculus it works perfectly: The average of l/q is 1/D. This gives the potential energy: 

1
potential at point P = 1j 1 - d V = 

volume of sphere 

sphere q D 

A small volume d V at the distance q contributes d V/y to the potential (Section 8.6, 
with density 1). The integral adds the contributions from the whole sphere. Equation 
(2) says that the potential at r = D is not changed when the sphere is squeezed to 
the center. The potential equals the whole volume divided by the single distance D. 

Important point: The average of l/q is 1/D and not l/q. The average of i and is 
not 3 .  Smaller point: I wrote "sphere" where I should have written "ball." The 
sphere is solid: 0 < p < R, 0 <q5 < n,0 < 8 < 2n. 

What about the force? For the small volume it is proportional to d v/q2 (this is the 
inverse square law). But force is a vector, pulling the outside point toward dV-not 
toward the center of the sphere. The figure shows the geometry and the symmetry. 
We want the z component of the force. (By symmetry the overall x and y components 
are zero.) The angle between the force vector and the z axis is a, so for the z component 
we multiply by cos a. The total force comes from the integral that Newton discovered: 

cos x
force at point P = jjj -dV= 

volume of sphere 
(3)

sphere q2 D2 

1 will compute the integral (2) and leave you the privilege of solving (3). 1 mean that 
word seriously. If you have come this far, you deserve the pleasure of doing what at 
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Fig. 14.18 Distance q from outside point to inside point. Distances q and Q to surface. 

one time only Isaac Newton could do. Problem 26 offers a suggestion (just the law 
of cosines) but the integral is yours. 

The law of cosines also helps with (2). For the triangle in the figure it gives q2 = 
D2 - 2pD cos 4 + p2. Call this whole quantity u. We do the surface integral first 
(d) and dB with p fixed). Then q2 = u and q = & and du = 2pD sin 4 d): 

271 came from the 0 integral. The integral of du/& is 2&. Since cos 4 = - 1 at the 
upper limit, u is D2 + 2pD + P2. The square root of u is D + p. At the lower limit 
cos )= + 1 and u = D2 - 2pD + p2. This is another perfect square-its square root 
is D - p. The surface integral (4) with fixed p is 

=4aR3/D. This proves formula (2):Last comes the p integral: 4 n p 2 d p / ~  
potential equals volume of the sphere divided by D. 

Note 1 Physicists are also happy about equation (5). The average of l/q is 1/D not 
only over the solid sphere but over each spherical shell of area 4ap2. The shells can 
have different densities, as they do in the Earth, and still Newton is correct. This also 
applies to the force integral (3)-each separate shell acts as if its mass were concen- 
trated at the center. Then the final p integral yields this property for the solid sphere. 

Note 2 Physicists also know that force is minus the derivative of potential. The 
derivative of (2) with respect to D produces the force integral (3). Problem 27 explains 
this shortcut to equation (3). 

EXAMPLE 8 Everywhere inside a hollow sphere the force of gravity is zero. 

When D is smaller than p, the lower limit & in the integral (4) changes from D - p 
to p -D. That way the square root stays positive. This changes the answer in (5) to 
4np2/p, so the potential no longer depends on D. The potential is constant inside the 
hollow shell. Since the force comes from its derivative, the force is zero. 

A more intuitive proof is in the second figure. The infinitesimal areas on the surface 
are proportional to q2 and Q ~ .  But the distances to those areas are q and Q, so the 
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forces involve l/q2 and l/Q2 (the inverse square law). Therefore the two areas exert 
equal and opposite forces on the inside point, and they cancel each other. The total 
force from the shell is zero. 

I believe this zero integral is the reason that the inside of a car is safe from lightning. 
Of course a car is not a sphere. But electric charge distributes itself to keep the surface 
at constant potential. The potential stays constant inside-therefore no force. The 
tires help to prevent conduction of current (and electrocution of driver). 

P.S. Don't just step out of the car. Let a metal chain conduct the charge to the 
ground. Otherwise you could be the conductor. 

CHANGE OF COORDINATES-STRETCHING FACTOR J 

Once more we look to calculus for a formula. We need the volume of a small curved 
box in any uvw coordinate system. The r8z box and the p4B box have right angles, 
and their volumes were read off from the geometry (stretching factors J = r and J = 
p2 sin 4 in Figures 14.15 and 14.17). Now we change from xyz to other coordinates 
uvw-which are chosen to fit the problem. 

Going from xy to uv, the area dA = J du dv was a 2 by 2 determinant. In three 
dimensions the determinant is 3 by 3. The matrix is always the "Jacobian matrix," 
containing first derivatives. There were four derivatives from xy to uv, now there are 
nine from xyz to uuw. 

I4C Suppose x, y, z are given in terms of u, v, w. Then a small faax in uuw 
space (sides du, dv, dw) comes from a volume d V = J dtc dv dw in xyz space: 

I The volume integral Ijldx d y  dz becomes fljIJI du dv dw, with limits on uvw. 

Remember that a 3 by 3 determinant is the sum of six terms (Section 11 3 .  One term 
in J is (ax/du)(dy/dv)(dz/i3w), along the main diagonal. This comes from pure stretch- 
ing, and the other five terms allow for rotation. The best way to exhibit the formula 
is for spherical coordinates-where the nine derivatives are easy but the determinant 
is not: 

EXAMPLE 9 Find the factor J for x = p sin 4 cos 8, y = p sin 4 sin 8, z = p cos 4. 

sin 4 cos 8 p cos 4 cos 8 - p sin 4 sin 8 
J =  a(x' "') = sin 4 sin 8 p cos 4 sin 8 p sin 4 cos 8 . 

(6, 8) 

The determinant has six terms, but two are zero-because of the zero in the corner. 
The other four terms are p2sin 4 cos24 sin28 and p2sin 4 cos24 cos28 and 
p2sin34 sin28 and p2sin34 cos28. Add the first two (note sin28 + cos28) and separately 
add the second two. Then add the sums to reach J = p2sin (6. 

Geometry already gave this answer. For most uvw variables, use the determinant. 
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14.4 EXERCISES 

Read-through questions {:[:15 {: p2 sin ( dp d( do 
The three a coordinates are rez. The point at x = y = 
z = 1  has r =  b , 8 =  c , z =  d . The volume 
integral is JJJ e . The solid region 1$ r < 2, 0 $ 8 <2n, 
O < z < 4 i s a  f .Itsvolumeis g . F r o m t h e r a n d € J  
integrals the area of a h equals i . From the z and 
8 integrals the area of a i equals k . In r0z coordi- 
nates the shapes of I are convenient, while m are 
not. 

The three n coordinates are p(8. The point at x = y = 
z = l h a s p =  o ,(= P , B =  s .Theangle( is  
measured from r . 8 is measured from s . p is the 
distance to t , where r was the distance to u . If p(8 
are known then x =  v , y =  w , z = x . The 
stretching factor J is a 3 by 3 Y , and volume is jjj z . 

T h e s o l i d r e g i o n 1 < p < 2 , O < ( ~ n , O < 8 < 2 n i ~ a  A . 
Its volume is B . From the ( and 8 integrals the area of 
a c at radius p equals D . Newton discovered that 

21 Example 5 gave the volume integral for a sphere in rOz 
coordinates. What is the area of the circular slice at height z? 

the outside gravitational attraction of a E is the same as 
for an equal mass located at F . 

What is the area of the cylindrical shell at radius r? Integrate 
over slices (dz) and over shells (dr) to reach 4nR3/3. 

22 Describe the solid with 0 6  p < 1 -cos ( and find its 
volume. 

23 A cylindrical tree has radius a. A saw cuts horizontally, 
ending halfway in at the x axis. Then it cuts on a sloping 
plane (angle r with the horizontal), also ending at the x axis. 
What is the volume of the wedge that falls out? 

24 Find the mass of a planet of radius R, if its density at each 
radius p is 6 =(p + l)/p. Notice the infinite density at the 
center, but finite mass M = jjj S dV. Here p is radius, not 
density. 

25 For the cone out to r = 1 -z, the average distance from 
the z axis is ? = 3. For the triangle out to r = 1 -z the average 
is 7 = 3. How can they be different when rotating the triangle 
produces the cone? 

Problems 26-32, on the attraction of a sphere, use Figure 14.18 
and the law of cosines q2 = D~ -2pD cos ( + p2 = u. 

26 Newton's achievement Show that ~ J ~ ( c o sr)dv/q2 equals 
v o l u m e l ~ ~ .One hint only: Find cos r from a second law of 
cosines p2 = D2 -2qD cos r + q2. The 4 integral should 
involve l/q and l/q3. Equation (2) integrates l/q, leaving 

dV/q3 still to do. 

27 Compute aq/aD in the first cosine law and show from 
Figure 14.18 that it equals cos r. Then the derivative of 
equation (2) with respect to D is a shortcut to Newton's 
equation (3). 

28 The lines of length D and q meet at the angle a. Move the 
meeting point up by AD. Explain why the other line stretches 
by Aq x AD cos 2. So aq/dD = cos a as before. 

Convert the xyz coordinates in 1-4 to rOz and p(0. 

Convert the spherical coordinates in 5-7 to xyz and rOz. 

7 p = 1, ( = n, 8 = anything. 

8 Where does x = r and y = O? 

9 Find the polar angle ( for the point with cylindrical 
coordinates rez. 

10 What are x(t), y(t), z(t) on the great circle from p = 1, 
( = n/2, 0 = 0 with speed 1 to p = 1, ( = n/4, 0 = x/2? 

From the limits of integration describe each region in 11-20 
and find its volume. The inner integral has the inner limits. 
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29 Show that the average distance is q =  4R/3, from the 
North Pole (D = R) to points on the Earth's surface (p = R). 
To compute: q =jJ qR2sin 4 d4 dO/(area 4nR2). Use the same 
substitution u. 

30 Show as in Problem 29 that the average distance is 
q = D + ip2/D, from the outside point (0, 0, D) to points on 
the shell of radius p. Then integrate jflq dV and divide by 
4 n ~ ~ / 3to find q for the solid sphere. 

31 In Figure 14.18b, it is not true that the areas on the surface 
are exactly proportional to q2 and Q2. Why not? What hap- 
pens to the second proof in Example 8? 

32 For two solid spheres attracting each other (sun and 
planet), can we concentrate both spheres into point masses at 
their centers? 

*33 Compute j ~ ~ c o s  a dV/q3 to find the force of gravity at 
(0, 0, D) from a cylinder x2 +y2 <a2, 0 d z d h. Show from a 
figure why q2 =r2 + (D -z ) ~and cos a = (D -z)/q. 

34 A linear change of variables has x =au + bu + cw, y = 
du + ev +.fw, and z =gu + hv + iw. Write down the six terms 
in the determinant J. Three terms have minus signs. 

35 A pure stretching has x =au, y =bu, and z = cw. Find the 
3 by 3 matrix and its determinant J. What is special about 
the xyz box in this case? 

36 (a) The matrix in Example 9 has three columns. Find the 
lengths of those three vectors (sum of squares, then square 
root). Compare with the edges of the box in Figure 14.17. 
(b)Take the dot product of every column in J with every 
other column. Zero dot products mean right angles in the 
box. So J is the product of the column lengths. 

37 Find the stretching factor J for cylindrical coordinates 
from the matrix of first derivatives. 

38 Follow Problem 36 for cylindrical coordinates-find the 
length of each column in J and compare with the box in 
Figure 14.15. 

39 Find the moment of inertia around the z axis of a spherical 
shell (radius p, density 1). The distance from the axis to a 
point on the shell is r = . Substitute for r to find 

Divide by mr2 (which is 4np4) to compute the number J for 
a hollow ball in the rolling experiment of Section 8.5. 

40 The moment of inertia of a solid sphere (radius R, 
density 1) adds up the hollow spheres of Problem 39: 
I =E I(P)~P=-. Divide by mR2 (which is $71~') to 
find J in the rolling experiment. A solid ball rolls faster than 
a hollow ball because . 

41 Inside the Earth, the force of gravity is proportional to 
the distance p from the center. Reason: The inner ball of 
radius p has mass proportional to (assume constant 
density). The force is proportional to that mass divided by 

. The rest of the Earth (sphere with hole) exerts no 
force because . 

42 Dig a tunnel through the center to Australia. Drop a ball 
in the tunnel at y =R; Australia is y = -R. The force of 
gravity is -cy by Problem 41. Newton's law is my" = -cy. 
What does the ball do when it reaches Australia? 
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C H A P T E R  15 

Vector Calculus 


Chapter 14introduced double and triple integrals. We went from dx to jj dx dy and 
JIJdx dy dz. All those integrals add up small pieces, and the limit gives area or volume 
or mass. What could be more natural than that? I regret to say, after the success of 
those multiple integrals, that something is missing. It is even more regrettable that 
we didn't notice it. The missing piece is nothing less than the Fundamental Theorem 
of Calculus. 

The double integral 11dx dy equals the area. To compute it, we did not use an 
antiderivative of 1. At least not consciously. The method was almost trial and error, 
and the hard part was to find the limits of integration. This chapter goes deeper, to 
show how the step from a double integral to a single integral is really a new form of 
the Fundamental Theorem-when it is done right. 

Two new ideas are needed early, one pleasant and one not. You will like vector 
fields. You may not think so highly of line integrals. Those are ordinary single integrals 
like J v(x)dx, but they go along curves instead of straight lines. The nice step dx 
becomes the confusing step ds. Where Jdx equals the length of the interval, J ds is 
the length of the curve. The point is that regions are enclosed by curves, and we have 
to integrate along them. The Fundamental Theorem in its two-dimensional form 
(Green's Theorem) connects a double integral over the region to a single integral along 
its boundary curve. 

The great applications are in science and engineering, where vector fields are so 
natural. But there are changes in the language. Instead of an antiderivative, we speak 
about a potential function. Instead of the derivative, we take the "divergence" and 
"curl." Instead of area, we compute flux and circulation and work. Examples come 
first. 

-1 FieldsVector
15.1 

For an ordinary scalar function, the input is a number x and the output is a number 
f(x). For a vector field (or vector function), the input is a point (x, y) and the output 
is a two-dimensional vector F(x, y). There is a "field" of vectors, one at every point. 549 
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In three dimensions the input point is (x, y, z) and the output vector F has three 
components. 

DEFINITION Let R be a region in the xy plane. A vectorfield F assigns to every point 
(x, y) in R a vector F(x, y) with two components: 

F(x, y) = M(x, y)i + N(x,  y)j. (1)  
This plane vector field involves two functions of two variables. They are the compo- 
nents M and N, which vary from point to point. A vector has fixed components, a 
vector field has varying components. 

A three-dimensional vector field has components M(x, y, z) and N(x, y, z) and 
P(x, y, 2). Then the vectors are F = Mi + Nj + Pk. 

EXAMPLE 1 The position vector at (x, y) is R = xi + yj. Its components are M = x 
and N = y. The vectors grow larger as we leave the origin (Figure 15.la). Their 
direction is outward and their length is IRI = J;i?;i = r, The vector R is boldface, 
the number r is lightface. 

EXAMPLE 2 The vector field R/r consists of unit vectors u,, pointing outward. We 
divide R = xi + yj by its length, at every point except the origin. The components 
of Rlr are M = xlr and N = y/r. Figure 15.1 shows a third field ~ / r ~ ,  whose length 
is 1 /r. 

Fig. 15.1 The vector fields R and R/r and R/r2 are radial. Lengths r and 1 and l / r  

EXAMPLE 3 The spin field or rotation field or turning field goes around the origin 
instead of away from it. The field is S. Its components are M = - y and N = x: 

S = - yi + xj also has length IS1 = J(-y)2 + x2 = r. (2) 
S is perpendicular to R-their dot product is zero: S R = (- y)(x) + (x)(y) = 0. The 
spin fields S/r and S/r2 have lengths 1 and llr: 

The unit vector S/r is u,. Notice the blank at (O,O), where this field is not defined. 

Fig. 15.2 The spin fields S and S/r and S/r2 go around the origin. Lengths r and 1 and l /r .  
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EXAMPLE 4 A gradientfield starts with an ordinary function f(x, y). The components 
M and PJ are the partial derivatives df/dx and dfldy. Then the field F is the gradient 
off: 

F = grad f = Vf= dfldx i + dfldy j. (3) 

This vector field grad f is everywhere perpendicular to the level curves f(x, y) = c. The 
length lgrad f 1 tells how fast f is changing (in the direction it changes fastest). Invent 
a function like f = x2y, and you immediately have its gradient field F = 2xyi + x2j. 
To repealt, M is df/dx and N is dfldy. 

For every vector field you should ask two questions: Is it a gradient field? If so, 
what is f? Here are answers for the radial fields and spin fields: 

M A  The radial fields R and R/r and ~ / r ~  are a11 gradient fields. 
The spin fields S and S/r  are not gradients of any f(x, y), 
The spin field S/r2 is the gradient of the polar angle 0 = tan- '(ylx). 

The derivatives off = f(x2+ y2) are x and y. Thus R is a gradient field. The gradient 
off = r is the unit vector R/r pointing outwards. Both fields are perpendicular to 
circles around the origin. Those are the level curves off = f r2 and f = r. 

Question Is every R/rn a gradient field? 
Answer Yes. But among the spin fields, the only gradient is S/r2. 

A ma-jor goal of this chapter is to recognize gradient fields by a simple test. The 
rejection of S and S/r will be interesting. For some reason -yi + xj is rejected and 
yi + xj is accepted. (It is the gradient of .) The acceptance of S/r2 as the 
gradient off = 0 contains a surprise at the origin (Section 15.3). 

Gradient fields are called conservative. The function f is the potential function. 
These words, and the next examples, come from physics and engineering. 

EXAMPLE5 The velocity field is V and the flow field is pV. 

Suppose: fluid moves steadily down a pipe. Or a river flows smoothly (no waterfall). 
Or the air circulates in a fixed pattern. The velocity can be different at different points, 
but there is no change with time. The velocity vector V gives the direction offlow 
and speed of Jow at every point. 

In reality the velocity field is V(x, y, z), with three components M, N, P. Those are 
the velocities v,, v2, v, in the x, y, z directions. The speed (VI is the length: IVI2 = 
v: + v: -t v:. In a "plane flow" the k component is zero, and the velocity field is 
v , i+v2j= M i +  Nj. 

gravity 

F = - R//." 

Fig. 15.3 A steady velocity field V and two force fields F. 
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For a compact disc or a turning wheel, V is a spin field (V =US, co = angular 
velocity). A tornado might be closer to V =S/r2 (except for a dead spot at the center). 
An explosion could have V =R/r2. A quieter example is flow in and out of a lake 
with steady rain as a source term. 

TheJlowJield pV is the density p times the velocity field. While V gives the rate of 
movement, pV gives the rate of movement of mass. A greater density means a greater 
rate IpVJof "mass transport." It is like the number of passengers on a bus times the 
speed of the bus. 

EXAMPLE 6 Force fields from gravity: F is downward in the classroom, F is radial 
in space. 

When gravity pulls downward, it has only one nonzero component: F = -mgk. This 
assumes that vectors to the center of the Earth are parallel-almost true in a class- 
room. Then F is the gradient of -mgz (note dfldz = -mg). 
In physics the usual potential is not -mgz but +mgz. The force field is minus grad f 
also in electrical engineering. Electrons flow from high potential to low potential. 
The mathematics is the same, but the sign is reversed. 

In space, the force is radial inwards: F = -mMGR/r3. Its magnitude is propor- 
tional to l/r2 (Newton's inverse square law). The masses are m and M, and the 
gravitational constant is G =6.672 x 10-"--with distance in meters, mass in kilo- 
grams, and time in seconds. The dimensions of G are (force)(di~tance)~/(mass)~.This 
is different from the acceleration g =9.8m/sec2, which already accounts for the mass 
and radius of the Earth. 

Like all radial fields, gravity is a gradient field. It comes from a potential f: 

EXAMPLE 7 (a short example) Current in a wire produces a magnetic field B. It is 
the spin field S/r2 around the wire, times the strength of the current. 

STREAMLINES AND LINES OF FORCE 

Drawing a vector field is not always easy. Even the spin field looks messy when the 
vectors are too long (they go in circles and fall across each other). The circles give a 
clearer picture than the vectors. In any field, the vectors are tangent to "jield linesw- 
which in the spin case are circles. 

DEFINITION C is afield line or integral curve if the vectors F(x, y) are tangent to C. 
The slope dyldx of the curve C equals the slope N/M of the vector F =Mi +Nj: 

We are still drawing the field of vectors, but now they are infinitesimally short. 
They are connected into curves! What is lost is their length, because S and S/r and 
S/r2 all have the same field lines (circles). For the position field R and gravity field 
R/r3, the field lines are rays from the origin. In this case the "curves" are actually 
straight. 

EXAMPLE 8 Show that the field lines for the velocity field V =yi +xj are hyperbolas. 

dy N x-- --- * y dy =x dx *y2 -$x2 =constant. 
~ X - M - ~  
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reamlines x2 - y2  = C 

Fig. 15.4 Velocity fields are tangent to streamlines. Gradient fields also have equipotentials. 

At every point these hyperbolas line up with the velocity V. Each particle of fluid 
travels on afield line. In fluid flow those hyperbolas are called streamlines. Drop a 
leaf into a river, and it follows a streamline. Figure 15.4 shows the streamlines for a 
river going around a bend. 

Don't forget the essential question about each vector field. Is it a gradient field? 
For V = yi + xj the answer is yes, and the potential is f = xy: 

the gradient of xy is (8flax)i + (8flay)j = yi + xj. (7) 

When there is a potential, it has level curves. They connect points of equal potential, 
so the curves f (x, y) = c are called equipotentials. Here they are the curves xy = c- 
also hyperbolas. Since gradients are perpendicular to level curves, the streamlines are 
perpendicular to the equipotentials. Figure 15.4 is sliced one way by streamlines and 
the other way by equipotentials. 

A gradient field F = afldx i + afldy j is tangent to the field lines (stream- 
lines) and perpendicular to the equipotentials (level curves off). 

In the gradient direction f changes fastest. In the level direction f doesn't change at 
all. The chain rule along f (x, y) = c proves these directions to be perpendicular: 

af dx af d y  -- + - = 0 or (grad f )  (tangent to level curve) = 0. 
ax dt oy  dt 

EXAMPLE 9 The streamlines of S/r2 are circles around (0,O). The equipotentials are 
rays 0 = c. Add rays to Figure 15.2 for the gradient field S/r2. 

For the gravity field those are reversed. A body is pulled in along the field lines (rays). 
The equipotentials are the circles where f = l l r  is constant. The plane is crisscrossed 
by "orthogonal trajectories9'-curves that meet everywhere at right angles. 

If you bring a magnet near a pile of iron filings, a little shake will display the field 
lines. In a force field, they are "lines of force." Here are the other new words. 

Vector hid F, y, z) = Mi + Nj + Pk Plane field F = M(x, y)i + N(x, y)j 

Radial field: multiple of R = xi + yj + zk Spifl field: multiple of $ = - yi + xj 

Gradient ktd = conservative field: A4 = wax, N = af&, P = $18~ 

Potmtialf(x, yf (not a vector) Equipotential curves f(x, y) = c 

Streamline = field line = integral curve: a curve that has F(x, y) as its tangent 
vectors. 
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15.1 EXERCISES 

Read-through questions 

A vector field assigns a a to each point (x, y) or (x, y, z). 
In two dimensions F(x,y) = b i + c j. An example is 
the position field R = d . Its magnitude is IRI = e 

and its direction is f . It is the gradient field for f = 
g . The level curves are h , and they are i to 

the vectors R. 

Reversing this picture, the spin field is S = i . Its mag- 
nitude is IS1 = k and its direction is I . It is not a 
gradient field, because no function has af/ax = m and 
af/ay = n . S is the velocity field for flow going 0 . 
The streamlines or P lines or integral s are r . 
The flow field pV gives the rate at which s is moved 
by the flow. 

A gravity field from the origin is proportional to F = t 
which has IF1 = u . This is Newton's v square law. 
It is a gradient field, with potential f = w .The equipoten- 
tial curves f(x, y) = c are x . They are Y to the field 
lines which are . This illustrates that the A of a 
function f(x, y) is B to its level curves. 

The velocity field yi + xj is the gradient off = c . Its 
streamlines are D .The slope dyldx of a streamline equals 
the ratio E of velocity components. The field is F to 
the streamlines. Drop a leaf onto the flow, and it goes along 

G . 

Find a potential f(x, y) for the gradient fields 1-8. Draw the 
streamlines perpendicular to the equipotentials f(x, y) = c. 

1 F = i + 2j (constant field) 2 F = xi +j 

7 F=xyi+  j 8 F = & i +  j 

9 Draw the shear field F =xj. Check that it is not a gradient 
field: If af/ax =0 then af/ay =x is impossible. What are the 
streamlines (field lines) in the direction of F? 

10 Find all functions that satisfy af/ax = -y and show that 
none of them satisfy af/ay = x. Then the spin field S = 
-yi + xj is not a gradient field. 

Compute af/ax and af/ay in 11-18. Draw the gradient field 
F =padf and the equipotentials f(x, y) = c: 

15f=x2-y2  16 f = ex cos y 

Find equations for the streamlines in 19-24 by solving dyldx = 
N/M (including a constant C). Draw the streamlines. 

21 F =S (spin field) 22 F =S/r (spin field) 

23 F =grad (xly) 24 F =grad (2x + y). 

25 The Earth's gravity field is radial, but in a room the field 
lines seem to go straight down into the floor. This is because 
nearby field lines always look . 
26 A line of charges produces the electrostatic force field F = 
R/r2=(xi + yj)/(x2+ y2). Find the potential f(x, y). (F is also 
the gravity field for a line of =asses.) 

In 27-32 write down the vector fields Mi + Nj. 

27 F points radially away from the origin with magnitude 5. 

28 The velocity is perpendicular to the curves x3 + y3 =c and 
the speed is 1. 

29 The gravitational force F comes from two unit masses at 
(0,O) and (1,O). 

30 The streamlines are in the 45" direction and the speed is 4. 

31 The streamlines are circles clockwise around the origin 
and the speed is 1. 

32 The equipotentials are the parabolas y = x2+ c and F is 
a gradient field. 

33 Show directly that the hyperbolas xy = 2 and x2 -y2 = 3 
are perpendicular at the point (2, l), by computing both slopes 
dyldx and multiplying to get -1. 

34 The derivative off (x, y) = c isf, +f,(dy/dx) =0. Show that 
the slope of this level curve is dyldx = -MIN. It is perpendic- 
ular to streamlines because (- M/N)(N/M)= . 

35 The x and y derivatives of f(r) are dfldx = and 
dflay =-by the chain rule. (Test f =r2.) The equi- 
potentials are . 

36 F = (ax + by)i + (bx + cy)j is a gradient field. Find the 
potential f and describe the equipotentials. 

37 True or false: 
I.  The constant field i + 2k is a gradient field. 
2. For non-gradient fields, equipotentials meet stream- 
lines at non-right angles. 
3. In three dimensions the equipotentials are surfaces 
instead of curves. 
4. F = x2i+ y2j+ z2k points outward from (0,0,0)-
a radial field. 

38 Create and draw f and F and your own equipotentials 
and streamlines. 
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39 How can different vector fields have the same streamlines? 40 Draw arrows at six or eight points to show the direction 
Can they have the same equipotentials? Can they have the and magnitude of each field: 
same f?  (a) R + S  (b) Rlr -S/r (c) x2i+x2j (d)yi. 

15.2 Line Integrals .- 
A line integral is an integral along a curve. It can equal an area, but that is a special 
case and not typical. Instead of area, here are two important line integrals in physics 
and engineering: 

Work along a curve = F T ds Flow across a curve = 

In the first integral, F is a force field. In the second integral, F is a flow field. Work 
is done in the direction of movement, so we integrate F T. Flow is measured through 
the curve C, so we integrate F n. Here T is the unit tangent vector, and F T is the 
force cornponent along the curve. Similarly n is the unit normal vector, at right angles 
with T. Then F n is the component of flow perpendicular to the curve. 

We will write those integrals in several forms. They may never be as comfortable 
as J y(x) dx, but eventually we get them under control. I mention these applications 
early, so you can see where we are going. This section concentrates on work, and 
flow comes later. (It is also calledflux-the Latin word for flow.) You recognize ds 
as the step along the curve, corresponding to dx on the x axis. Where f dx gives the 
length of an interval (it equals b - a), 5 ds is the length of the curve. 

EXAMPLE 1 Flight from Atlanta to Los Angeles on a straight line and a semicircle. 

According to Delta Airlines, the distance straight west is 2000 miles. Atlanta is at 
(1000,O) and Los Angeles is at (-1000, O), with the origin halfway between. The 
semicircle route C has radius 1000. This is not a great circle route. It is more of a 
"flat circle," which goes north past Chicago. No plane could fly it (it probably goes 
into space). 

The equation for the semicircle is x2 + y2 = 10002. Parametrically this path is x = 
1000 cos t, y = 1000 sin t. For a line integral the parameter is better. The plane leaves 
Atlanta at t = 0 and reaches L.A. at t = n, more than three hours later. On the straight 
2000-mile path, Delta could almost do it. Around the semicircle C, the distance is 
lOOOn miles and the speed has to be 1000 miles per hour. Remember that speed is 
distance ds divided by time dt: 

dsldt = ,/(dx~dt)~ + (dyldt)' = l000,/(- sin t)2 + (cos t)2 = 1000. (1) 

The tangent vector to C is proportional to (dxldt, dyldt) = (-1000 sin t, 1000 cos t). 
But T is a unit vector, so we divide by 1000-which is the speed. 

Suppose the wind blows due east with force F = Mi. The components are M and 
zero. Foir M =constant, compute the dot product F * T  and the work -2000 M: 

F w T =  Mi*(-sin t i+cos  t j ) =  M(-sin t)+O(cos t ) =  - M sin t 
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Work is force times distance moved. It is negative, because the wind acts against the 
movement. You may point out that the work could have been found more simply- 
go 2000 miles and multiply by - M. I would object that this straight route is a 
dzrerent path. But you claim that the path doesn't matter-the work of the wind is 
-2000M on every path. I concede that this time you are right (but not always). 

Most line integrals depend on the path. Those that don't are crucially important. 
For a gradient field, we only need to know the starting point P and the finish Q. 

158 When F is the gradient of a potential function f (x, y), the work J, F T ds 
depends only on the endpoints P and Q. The work is the change in$ 

if F = afpx i + af/ay j then F T ds = f (Q) -f(P). 

When F = Mi, its components M and zero are the partial derivatives off = Mx. To 
compute the line integral, just evaluate f at the endpoints. Atlanta has x = 1000, Los 
Angeles has x = - 1000, and the potential function f = Mx is like an antiderivative: 

work = f (Q) - f (P) = M(- 1000) - M(1000) = - 2000M. (3) 

LAX LAX 
- 1000 , - 1000 1000 

J F . Tdr = - 2000M depends on path 

Fig. 15.5 Force Mi, work -2000M on all paths. Force Myi, no work on straight path. 

May I give a rough explanation of the work integral 5 F T ds? It becomes clearer 
when the small movement Tds is written as dx i + dy j. The work is the dot product 
with F: 

The infinitesimal work is df: The total work is 5 df= f(Q) - f (P). This is the Fundamen- 
tal Theorem for a line integral. Only one warning: When F is not the gradient of any 
f (Example 2), the Theorem does not apply. 

EXAMPLE 2 Fly these paths against the non-constant force field F = Myi. Compute 
the work. 

There is no force on the straight path where y = 0. Along the x axis the wind does 
no work. But the semicircle goes up where y = 1000 sin t and the wind is strong: 

F * T = ( M y i ) * ( - s i n t i + c o s t j ) =  -My sin t =  - lOOOM sin2t 

This work is enormous (and unrealistic). But the calculations make an important 
point-everything is converted to the parameter t. The second point is that F = Myi 
is not a gradient field. First reason: The work was zero on the straight path and 
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nonzero on the semicircle. Second reason: No function has df/ dx = My and df /dy = 

0. (The first makes f depend on y and the second forbids it. This F is called a shear 
force.) Without a potential we cannot substitute P and Q-and the work depends 
on the path. 

THE DEFINITION OF LINE INTEGRALS 

We go back to the start, to define F T ds. We can think of F T as a function g(x, y) 
along the path, and define its integral as a limit of sums: 

N IC g ( ~ ,  y) ds = limit of &xi, yi)Asi as (As),,,., -i 0. 
i=  1 

( 5 )  

The points (xi, y,) lie on the curve C. The last point Q is (x,, y,); the first point P is 
(xo, yo). The step Asi is the distance to (xi, yi) from the previous point. As the steps 
get small (As -, 0) the straight pieces follow the curve. Exactly as in Section 8.2, the 
special case g = 1 gives the arc length. As long as g(x, y) is piecewise continuous 
(jumps allowed) and the path is piecewise smooth (corners allowed), the limit exists 
and defines the line integral. 

When g is the density of a wire, the line integral is the total mass. When g is F T, 
the integral is the work. But nobody does the calculation by formula (5). We now 
introduce a parameter t-which could be the time, or the arc length s, or the distance 
x along the base. 

The diflerential ds becomes (ds/dt)dt. Everything changes over to t: 

The curve starts when t = a, runs through the points (x(t), y(t)), and ends when t = b. 
The square root in the integral is the speed dsldt. In three dimensions the points on 
C are (x(t), y(t), z(t)) and (dz/dt)l is in the square root. 

EXAMPLE 3 The points on a coil spring are (x, y, z) = (cos t, sin t, t). Find the mass 
of two complete turns (from t = 0 to t = 4 4  if the density is p = 4. 

Solution The key is ( d ~ / d t ) ~  + ( d ~ / d t ) ~  + ( d ~ l d t ) ~  = sin2t + cos2t + 1 = 2. Thus 
dsldt = fi. To find the mass, integrate the mass per unit length which is g = p = 4: 

That is a line integral in three-dimensional space. It shows how to introduce t. But 
it misses the main point of this section, because it contains no vector field F. This 
section is about work, not just mass. 

DIFFERENT FORMS OF THE WORK INTEGRAL 

The work integral I F  T ds can be written in a better way. The force is F = Mi + Nj. 
A small step along the curve is dx i + dy j. Work is force times distance, but it is only 
the force component along the path that counts. The dot product F -Tds  finds that 
component automatically. 
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I 15C The vector to a point on C is R = xi + yj. Then dR = Tds = dx i + dy j: 

I Along a space curve the work is j F * ~ d s = f ~ * d ~ = j ~ d x + ~ d ~ +  ~ d z .  

The product M dx is (force in x direction)(movement in x direction). This is zero if 
either factor is zero. When the only force is gravity, pushing a piano takes no work. 
It is friction that hurts. Carrying the piano up the stairs brings in Pdz, and the total 
work is the piano weight P times the change in z. 

To connect the new I F dR with the old I F  * T  ds, remember the tangent vector 
T. It is dRlds. ~herefoie Tds is dR. The best for computations is dR, because the 
unit vector T has a division by dsldt = , / ( d ~ / d t ) ~  + ( d ~ l d t ) ~ .  Later we multiply by this 
square root, in converting ds to (dsldtjdt. It makes no sense to compute the square 
root, divide by it, and then multiply by it. That is avoided in the improved form 
~ M ~ x + N ~ Y .  

EXAMPLE 4 Vector field F = - yi + xj, path from (1,O) to (0, 1): Find the work. 

Note 1 This F is the spin field S. It goes around the origin, while R = xi + yj goes 
outward. Their dot product is F R = - yx + xy = 0. This does not mean that 
F dR = 0. The force is perpendicular to R, but not to the change in R. The work to 
move from (I, 0) to (0, I), x axis to y axis, is not zero. 
Note 2 We have not described the path C. That must be done. The spin field is not 
a gradient field, and the work along a straight line does not equal the work on a 
quarter-circle: 

straight line x = 1 - t, y = t quarter-circle x = cos t, y = sin t. 

Calculation of work Change F dR = M dx + N dy to the parameter t: 

Straight line: - y dx + x dy = - t(- dt) + (1 - t)dt = 1 l lo1 

S 7T 
Quarter-circle: - y dx + x dy = -sin t(- sin t dt) + cos t(cos t dt) = -. 

2 

General method The path is given by x(t) and y(t). Substitute those into M(x, y) 
and N(x, y)-then F is a function of t. Also find dxldt and dyldt. Integrate 
M dxldt + N dyldt from the starting time t to the finish. 

I work 7[: / 2 no work ' 
work F.dR = 1 

Fig.15.6 T h r e e p a t h ~ f o r ~ F ~ d R = ~ - ~ d x + . u d y = l , n / 2 , 0 .  
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For practice, take the path down the x axis to the origin (x = 1 - t, y = 0). Then 
go up the y axis (x = 0, y = t - 1). The starting time at (1,O) is t = 0. The turning time 
at the origin is t = 1. The finishing time at (0, 1) is t = 2. The integral has two parts 
because this new path has two parts: 

Bent path: J -ydx+xdy=O+O (y=O on one part, then x=O). 

Note 3 The answer depended on the path, for this spin field F = S. The answer did 
not depend on the choice of parameter. If we follow the same path at a different 
speed, the work is the same. We can choose another parameter 2, since (ds/dt)dt and 
(ds/dz)dz both equal ds. Traveling twice as fast on the straight path (x = 1 - 22, 
y = 22) we finish at t = 4 instead of t = 1. The work is still 1: 

CONSERVNION OF TOTAL ENERGY (KINETIC + POTENTIAL) 

When a force field does work on a mass m, it normally gives that mass a new velocity. 
Newton's Law is F =ma = mdvldt. (It is a vector law. Why write out three compo- 
nents?) The work F dR is 

J (m dvldt) (v dt) = *mv v]: = $mv(Q)12 - $mlv(P)12. 

The work equals the change in the kinetic energy 4mlv12. But for a gradient field the 
work is also the change in potential-with a minus sign from physics: 

Comparing (8) with (9), the combination $m1vl2 + f is the same at P and Q. The total 
energy, kinetic plus potential, is conserved. 

INDEPENDENCE OF PATH: GRADIENT FIELDS 

The work of the spin field S depends on the path. Example 4 took three paths- 
straight line, quarter-circle, bent line. The work was 1, 42 ,  and 0, different on each 
path. This happens for more than 99.99% of all vector fields. It does not happen for 
the most important fields. Mathematics and physics concentrate on very special 
fields-for which the work depends only on the endpoints. We now explain what 
happens, when the integral is independent of the path. 

Suppose you integrate from P to Q on one path, and back to P on another path. 
Combined, that is a closed path from P to P (Figure 15.7). But a backward integral 
is the negative of a forward integral, since dR switches sign. If the integrals from P 
to Q are equal, the integral around the closed path is zero: 

closed path 1 back path 2 path 1 path 2 

The circle on the first integral indicates a closed path. Later we will drop the P's. 
Not all closed path integrals are zero! For most fields F, different paths yield 

different work. For "conservative" fields, all paths yield the same work. Then zero 
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work around a closed path conserves energy. The big question is: How to decide 
which fields are conservative, without trying all paths? Here is the crucial information 
about conservative fields, in a plane region R with no holes: 

15D F = M(x,  y)i + N(x ,  y)j is a conservative field if it has these properties: 

A. The work J F dR around every closed path is zero. 

B. The work F d R depends only on P and Q, not on the path. 

C. F is a gradient field: M = df/ax and N = df/dy for some potential f ( x ,  y). 

D. The components satisfy dM/ay = (3Nldx. 

A field with one of these properties has them all. D is the quick test. 

These statements A-D bring everything together for conservative fields (alias gradient 
fields). A closed path goes one way to Q and back the other way to P. The work 
cancels, and statements A and B are equivalent. We now connect them to C. Note: 
Test D says that the "curl" of F is zero. That can wait for Green's Theorem in the 
next section-the full discussion of the curl comes in 15.6. 

First, a gradient field F = grad f is conservative. The work is f (Q) - f (P), by the 
fundamental theorem for line integrals. It depends only on the endpoints and not the 
path. Therefore statement C leads back to B. 

Our job is in the other direction, to show that conservative fields Mi + Nj are 
gradients. Assume that the work integral depends only on the endpoints. We must 
construct a potentialf, so that F is its gradient. In other words, dfldx must be M and 
dfldy must be N. 

Fix the point P .  Define f (Q) as the work to reach Q. Then F equals grad& 

Check the reasoning. At the starting point P, f is zero. At every other point Q, f is 
the work J M dx + N dy to reach that point. Allpathshsfom P to Q give the same f(Q), 
because the field is assumed conservative. After two examples we prove that grad f 
agrees with F-the construction succeeds. 

back path 2 - 

Fig. 15.7 Conservative fields: $ F d R  = 0 and j@ F d R = f ( Q )  - f (P ) .  Here f ( P )  = 0. 

EXAMPLE 5 Find f ( x ,  y) when F = Mi + Nj = 2xyi + x2j. We want (: f /ax = 2xy 
and df ldy = x2.  

Solution 1 Choose P = (0,O). Integrate M dx + N dy along to ( x ,  0) and up to (x, y) :  

(x. 0 )  0, Y )  

2xy dx = 0 (since y = 0) x2dY = x 2 y  (which is f ). 
(0 .0 )  S S (x, 0 )  

Certainly f = x2y meets the requirements: f, = 2xy and f, = x2. Thus F = gradf Note 
that dy = 0 in the first integral (on the x axis). Then dx = 0 in the second integral 
(X is fixed). The integrals add to f = x2y. 
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Solution 2 Integrate 2xydx  + x2dy on the straight line (x t ,  yt) from t = 0 to t = 1: 

2(xt)(yt)(x dt) + ( ~ t ) ~ ( yIol dt)= So13x2yt2dt= x2yt3]: = x2y. 

Most authors use Solution 1. I use Solution 2. Most students use Solution 3: 

Solution 3 Directly solve df /dx  = M = 2xy and then fix up dfldy = N = x2: 

af/dx = 2xy gives f = x2y (plus any function of y). 

In this example x2y already has the correct derivative dfldy = x2. No additional 
function of y is necessary. When we integrate with respect to x,  the constant of 
integration (usually C ) becomes a function C(y). 

You will get practice in finding f. This is only possible for conservative fields! I 
tested M = 2xy and N = x2 in advance (using D) to be sure that dM/dy = dN/dx.  

EXAMPLE 6 Look for f ( x ,  y) when Mi + Nj is the spin field -yi + xj. 

Attempted solution 1 Integrate -y dx  + x dy from (0,O) to (x ,  0 )  to (x ,  y): 

I(x, 0) 

- y d x = O  and I(x. Y) 

x dy = x y  (which seems like f ) .  
(0,O) (x. 0) 

Attempted solution 2 Integrate -y dx  + x dy on the line (x t ,  yt) from t = 0 to 1 : 

So1-(y t ) (x  dt) + (x t ) (y  dt) = 0 (a different f, also wrong). 

Aitempted solution 3 Directly solve dfldx = -y and try to fix up af/dy = x :  

af /dx  = -y gives f = -x y  (plus any function C(y)). 

The y derivative of this f is - x  + dC/dy. That does not agree with the required 
dfldy = x. Conclusion: The spin field -yi + xj is not conservative. There is no f. 
Test D gives dM/dy = - 1 and dN/dx = + 1.  

To finish this section, we move from examples to a proof. The potential f (Q)  is 
defined as the work to reach Q. We must show that its partial derivatives are M and 
N. This seems reasonable from the formula f (Q)  = I M dx  + N dy, but we have to 
think it through. 

Remember statement A, that all paths give the same f(Q). Take a path that goes 
from P to the left of Q. It comes in to Q on a line y = constant (so dy = 0). As the 
path reaches Q, we are only integrating M dx. The derivative of this integral, at Q, is 
df/ax = M. That is the Fundamental Theorem of Calculus. 

To show that af/ay= N, take a different path. Go from P to a point below Q. The 
path comes up to Q on a vertical line (so dx  = 0). Near Q we are only integrating 
N dy, so i?f/dy= N. 

The requirement that the region must have no holes will be critical for test D. 

EXAMPLE 7 Find f ( x ,  y) = x dx  + y dy. Test D is passed: aN/ax= 0= dM/dy. 

Solution 1 j:",: x dx  = +x2is added to j::;:; y dy = fy2. 

Solution 2 1; (x t ) (x  dt) + (y t ) (y  dt) = 1; (x2+ y2)t dt = f ( x 2+ y2). 

Solution 3 afjax = x gives f = +x2+ C(y).Then af/dy = y needs C(y)= :y2. 
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15.2 EXERCISES 

Read-through questions 

Work is the a of F dR. Here F is the b and R is 
the c . The d product finds the component of 
in the direction of movement dR = dxi + dyj. The straight 
path (x, y) = (t, 2t) goes from f at t = 0 to g at t = 
1 withdR=dt i+ h .TheworkofF=3i+j isjF=dR= 
j i d t=  i . 

Another form of d R is T ds, where T is the k vector to 
the path and ds = ,/T. For the path (t, 2t), the unit vector 
T i s  m andds= n dt.ForF=3i+j ,F*Tdsisst i l l  

0 dt. This F is the gradient off = P . The change in 
f= 3x + y  from (0,O) to (1,2) is q . 

When F = gradf, the dot product F dR is (af/dx)dx + 
r = df: The work integral from P to Q is j df = s . 

In this case the work depends on the t but not on the 
u . Around a closed path the work is v . The field is 

called w . F = (1 + y)i + xj is the gradient off = x . 
The work from (0,O) to (1,2) is Y , the change in potential. 

For the spin field S = 2 , the work (does)(does not) 
depend on the path. The path (x, y) = (3 cos t, 3 sin t) is a 
circle with S g d R  = A . The work is B around the 
complete circle. Formally jg(x, y)ds is the limit of the sum 

c .  

The four equivalent properties of a conservative field F = 
Mi+ Nj are A: D , B: E , C: F , and D: G . 
Test D is (passed)(not passed) by F = (y + 1)i + xj. The work 
I F  dR around the circle (cos t, sin t) is H . The work on 
the upper semicircle equals the work on I . This field is 
the gradient off = J , so the work to (- 1,0) is K . 

Compute the line integrals in 1-6. 

jcds and jcdy: x = t, y = 2t, 0 6 t < 1. 

fcxds and jcxyds: x=cost ,  y=sint ,  O<t<n/2.  

S, xy ds: bent line from (0,O) to (1, 1) to (1,O). 

1, y dx - x dy: any square path, sides of length 3. 

fc dx and jc y dx: any closed circle of radius 3. 

Jc (dsldt) dt: any path of length 5. 

Does if xy dy equal f xy2]:? 

Does jfx dx equal fx2]:? 

Does (jc d ~ ) ~  = (IC d ~ ) ~  + (fC dy)l? 

Does jc ( d ~ ) ~  make sense? 

11-16 find the work in moving from (1,O) to (0,l). When F 
is conservative, construct f: choose your own path when F is 
not conservative. 

11 F = i + y j  12 F = y i + j  

17 For which powers n is S/rn a gradient by test D? 

18 For which powers n is R/rn a gradient by test D? 

19 A wire hoop around a vertical circle x2 + z2 = a2 has 
density p = a + z. Find its mass M = pds. 

20 A wire of constant density p lies on the semicircle 
x2 + Y2 = a2, y 3 0. Find its mass M and also its moment 
Mx = 1 py ds. Where is its center of mass 2 = My/M, j = Mx/ 
M? 

21 If the density around the circle x2 + y2 = a2 is p = x2, what 
is the mass and where is the center of mass? 

22 Find F dR along the space curve x = t, y = t2, z = t3, 
O < t < l .  

(a) F = grad (xy + xz) (b) F = yi - xj + zk 

23 (a) Find the unit tangent vector T and the speed dsldt 
along the path R = 2t i + t2 j. 
(b) For F = 3xi + 4j, find F T ds using (a) and F dR 
directly. 
(c) What is the work from (2, 1) to (4,4)? 

24 If M(x, y, z)i + N(x, y, z)j is the gradient of f(x, y, z), show 
that none of these functions can depend on z. 

25 Find all gradient fields of the form M(y)i + N(x)j .  

26 Compute the work W(x, y) = j M dx + N dy on the 
straight line path (xt, yt) from t = 0 to t = 1. Test to see if aW/ 
ax = M and aWpy = N. 

(a) M = y3, N = 3xy2 (b) M = x3, N = 3yx2 
(c )M=x/y ,N=y/x  (d)M=ex+Y,N=e"+Y 

27 Find a field F whose work around the unit square (y = 0 
then x = 1 then y = 1 then x = 0) equals 4. 

28 Find a nonconservative F whose work around the unit 
circle x2 + y2 = 1 is zero. 

In 29-34 compute 1 F dR along the straight line R = ti + tj 
and the parabola R = ti + t2j, from (0,O) to (1,l). When F is a 
gradient field, use its potential f (x, y). 

29 F = i - 2 j  30 F = x2j 

33 F=yi -x j  34 F = (xi + yj)/(x2 + y2 + 1) 

35 For which numbers a and b is F = axyi + (x2 + by)j a 
gradient field? 

36 Compute j - y dx + x dy from (1,O) to (0,l) on the line 
x = 1 - t2, y = t2 and the quarter-circle x = cos 2t, y = sin 2t. 
Example 4 found 1 and n/2 with different parameters. 
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Apply the test N x  = My to 37-42. Find f when test D is passed. 43 Around the unit circle find 4 ds and $ dx and 8 xds. 

44 True or false, with reason: 
(a) When F = yi the line integral l F e d R  along a curve 

xi + yj grad xy from P to Q equals the usual area-under the curve. 
39 F=- 40 I?=- 

Ixi + J# 1 grad XY 1 (b) That line integral depends only on P and Q, not on the 
curve. 

41 F = R + S  42 F =(ax + by)i + (cx + dy)j (c) That line integral around the unit circle equals n. 

15.3 Green's Theorem 

This section contains the Fundamental Theorem of Calculus, extended to two dimen- 
sions. That sounds important and it is. The formula was discovered 150 years after 
Newton and Leibniz, by an ordinary mortal named George Green. His theorem 
connects a double integral over a region R to a line integral along its boundary C.  

The integral of dfldx equals f(b) - f (a). This connects a one-dimensional integral 
to a zero-dimensional integral. The boundary only contains two points a and b! The 
answer f (b) - f (a) is some kind of a "point integral." It is this absolutely crucial idea- 
to integrate a derivative from information at the boundary-that Green's Theorem 
extends into two dimensions. 

There are two important integrals around C. The work is I F T ds = I M dx + N dy. 
The flux is 1 F n ds = M dy - N dx (notice the switch). The first is for a force field, 
the second is for a flow field. The tangent vector T turns 90" clockwise to become 
the normal vector n. Green's Theorem handles both, in two dimensions. In three 
dimensions they split into the Divergence Theorem (1 5.5) and Stokes' Theorem (1 5.6). 

Green's Theorem applies to "smooth" functions M(x, y) and N(x, y), with con- 
tinuous first derivatives in a region slightly bigger than R. Then all integrals are well 
defined. M and N will have a definite and specific meaning in each application-to 
electricity or magnetism or fluid flow or mechanics. The purpose of a theorem is to 
capture the central ideas once and for all. We do that now, and the applications 
follow. 

1SE Green's TIreorm Suppose the region R is bounded by the simple 
closed piecewise smooth curve C. Thm an integral over R equals a line integral 
around C: 

A curve is "simple" if it doesn't cross itself (figure 8's are excluded). It is "closed" if 
its endpoint Q is the same as its starting point P. This is indicated by the closed circle 
on the integral sign. The curve is "smooth" if its tangent T changes continuously- 
the word "piecewise" allows a finite number of corners. Fractals are not allowed, but 
all reasonable curves are acceptable (later we discuss figure 8's and rings). First comes 
an understanding of the formula, by testing it on special cases. 
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x1d)
strip area (X2 -x1)dy

x2dy

Fig. 15.8 Area of R adds up strips: x dy = ff dx dy and f y dx = -fI dy dx.

Special case 1: M = 0 and N = x. Green's Theorem with ON/ax = 1 becomes

x dy = ff1 dx dy (which is the area of R). (2)

The integrals look equal, because the inner integral of dx is x. Then both integrals
have x dy-but we need to go carefully. The area of a layer of R is dy times the
difference in x (the length of the strip). The line integral in Figure 15.8 agrees. It has
an upward dy times x (at the right) plus a downward -dy times x (at the left). The
integrals add up the strips, to give the total area.

Special case 2: M = y and N = 0 and fc y dx = fR(-1) dx dy= -(area of R).

Now Green's formula has a minus sign, because the line integral is counterclockwise.
The top of each slice has dx < 0 (going left) and the bottom has dx > 0 (going right).
Then y dx at the top and bottom combine to give minus the area of the slice in
Figure 15.8b.

Special case 3: f 1 dx = 0. The dx's to the right cancel the dx's to the left (the curve
is closed). With M = 1 and N = 0, Green's Theorem is 0 = 0.

Most important case: Mi + Nj is a gradient field. It has a potential function f(x, y).
Green's Theorem is 0 = 0, because aMlay = aN/ax. This is test D:

My Oy xa (a is the same as ax = (3)ey y Fx Ox ax /y
The cross derivatives always satisfy f,y =fx,. That is why gradient fields pass test D.

When the double integral is zero, the line integral is also zero: fc M dx + N dy = 0.
The work is zero. The field is conservative! This last step in A => B => C => D = A will
be complete when Green's Theorem is proved.

Conservative examples are fx dx = 0 and f y dy = 0. Area is not involved.

Remark The special cases x dy and - ydx led to the area of R. As long as
1 = aN/ax - aM/ay, the double integral becomes ff 1 dx dy. This gives a way to com-
pute area by a line integral.

The area ofR is xdy= - ydx= - (x dy - ydx). (4)

EXAMPLE 1 The area of the triangle in Figure 15.9 is 2. Check Green's Theorem.

The last area formula in (4) uses -S, half the spin field. N = ½x and M = - ½y yield
Nx - My = + 1 = 1. On one side of Green's Theorem is ff1 dx dy = area of triangle.
On the other side, the line integral has three pieces.
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(0, 2) (0, b)

x=0

(2, 0)

os t
= b sin t

(a, 0)

y=0
Fig. 15.9 Green's Theorem: Line integral around triangle, area integral for ellipse.

Two pieces are zero: x dy - y dx = 0 on the sides where x = 0 and y = 0. The sloping
side x = 2 - y has dx = - dy. The line integral agrees with the area, confirming
Green's Theorem:

xdy-ydx= f=(2 - y)dy + ydy = 2dy = 2.

EXAMPLE 2 The area of an ellipse is nrab when the semiaxes have lengths a and b.

This is a classical example, which all authors like. The points on the ellipse are
x = a cos t, y = b sin t, as t goes from 0 to 21r. (The ellipse has (x/a)2 + (y/b)2 = 1.)
By computing the boundary integral, we discover the area inside. Note that the
differential x dy - y dx is just ab dt:

(a cos t)(b cos t dt) - (b sin t)(- a sin t dt) = ab(cos2t + sin2 t)dt = ab dt.

The line integral is _o2 ab dt = 7nab. This area nab is 7rr2, for a circle with a = b = r.

Proof of Green's Theorem: In our special cases, the two sides of the formula were
equal. We now show that they are always equal. The proof uses the Fundamental
Theorem to integrate (aN/ax)dx and (aM/dy)dy. Frankly speaking, this one-dimen-
sional theorem is all we have to work with-since we don't know M and N.

The proof is a step up in mathematics, to work with symbols M and N instead of
specific functions. The integral in (6) below has no numbers. The idea is to deal with
M and N in two separate parts, which added together give Green's Theorem:

fM dx a= dx dy and separately N dy= - dx dy. (5)
cdxJR - ay Nc y axJ

Start with a "very simple" region (Figure 15.10a). Its top is given by y =f(x) and
its bottom by y = g(x). In the double integral, integrate - aM/ay first with respect to
y. The inner integral isTf(x) dy M (x)

S.y = - M(x, Y) (x) = - M(x, f(x)) + M(x, g(x)). (6)
g(x) ay

The Fundamental Theorem (in the y variable) gives this answer that depends on x.
If we knew M and f and g, we could do the outer integral-from x = a to x = b. But
we have to leave it and go to the other side of Green's Theorem-the line integral:

M dx = M(x, y)dx + bot M(x, y)dx += f M(x, f(x))dx + fa M(x, g(x))dx. (7)
top bottomba
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P
- Mdx

-f Ndy

W() J Mdx

Fig. 15.10 Very simple region (a-b). Simple region (c) is a union of very simple regions.

Compare (7) with (6). The integral of M(x, g(x)) is the same for both. The integral of
M(x,f(x)) has a minus sign from (6). In (7) it has a plus sign but the integral is from
b to a. So life is good.

The part for N uses the same idea. Now the x integral comes first, because
(0N/ax)dx is practically asking to be integrated-from x = G(y) at the left to x = F(y)
at the right. We reach N(F(y), y) - N(G(y), y). Then the y integral matches § Ndy and
completes (5). Adding the two parts of (5) proves Green's Theorem.

Finally we discuss the shape of R. The broken ring in Figure 15.10 is not "very
simple," because horizontal lines go in and out and in and out. Vertical lines do the
same. The x and y strips break into pieces. Our reasoning assumed no break between
y =f(x) at the top and y = g(x) at the bottom.

There is a nice idea that saves Green's Theorem. Separate the broken ring into
three very simple regions R 1, R2, R 3 . The three double integrals equal the three line
integrals around the R's. Now add these separate results, to produce the double
integral over all of R. When we add the line integrals, the crosscuts CC are covered
twice and they cancel. The cut between R1 and R2 is covered upward (around R1 )
and downward (around R 2). That leaves the integral around the boundary equal to
the double integral inside-which is Green's Theorem.

When R is a complete ring, including the piece R4 , the theorem is still true. The
integral around the outside is still counterclockwise. But the integral is clockwise
around the inner circle. Keep the region R to your left as you go around C. The
complete ring is "doubly" connected, not "simply" connected. Green's Theorem
allows any finite number of regions Ri and crosscuts CC and holes.

EXAMPLE 3 The area under a curve is jb y dx, as we always believed.

In computing area we never noticed the whole boundary. The true area is a line
integral - y dx around the closed curve in Figure 15.11 a. But y = 0 on the x axis.
Also dx = 0 on the vertical lines (up and down at b and a). Those parts contribute
zero to the integral of y dx. The only nonzero part is back along the curve-which
is the area - a y dx or I' y dx that we know well.

What about signs, when the curve dips below the x axis? That area has been
counted as negative since Chapter 1. I saved the proof for Chapter 15. The reason
lies in the arrows on C.

The line integral around that part goes the other way. The arrows are clockwise,
the region is on the right, and the area counts as negative. With the correct rules, a
figure 8 is allowed after all.
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dx =

b
-ydx =aydx F= S/r 2

b f f=0=0
.=. ff= 6 = 2x

ix = 0infinite spin

e tt a center /F -dR = 2xr

Fig. 15.11 Closed path gives the sign of the area. Nonconservative field because of hole.

CONSERVATIVE FIELDS

We never leave gradients alone! They give conservative fields-the work around a
closed path is f(P) -f(P) = 0. But a potential function f(x, y) is only available when
test D is passed: If Of/ax = M and af/Oy = N then dM/ly = aN/ax. The reason is that

fxy =fx .
Some applications prefer the language of "differentials." Instead of looking for

f(x, y), we look for df:

DEFINITION The expression M(x, y)dx + N(x, y)dy is a differential form. When it
agrees with the differential df= (df/Ox)dx + (f/aOy) dy of some function, the form
is called exact. The test for an exact differential is D: ON/Ox = OM/ay.

Nothing is new but the language. Is y dx an exact differential? No, because My = 1
and Nx = 0. Is y dx + x dy an exact differential? Yes, it is the differential of f= xy.
That is the product rule! Now comes an important example, to show why R should
be simply connected (a region with no holes).

EXAMPLE 4 The spin field S/r 2 = (- yi + xj)/(x 2 + y 2) almost passes test D.

( x x2  y 2 -x(2x) M a(-y (X2 + y 2)+y(2y)N= -M-(8)
X• -~x~2 (X + y 2)2  (X2 y 2)2

Both numerators are y2- x2 . Test D looks good. To find f, integrate M = Of/ax:

f(x, y) = - y dx/(x2 + y2) = tan- (yx) + C(y).

The extra part C(y) can be zero--the y derivative of tan- '(y/x) gives N with no help
from C(y). The potentialf is the angle 0 in the usual x, y, r right triangle.

Test D is passed and F is grad 0. What am I worried about? It is only this,
that Green's Theorem on a circle seems to give 27r = 0. The double integral is
ff (Nx - My)dx dy. According to (8) this is the integral of zero. But the line integral is
27r:

F* dR = (- y dx + x dy)/(x 2 + y2)= 2(area of circle)/a 2 = 2ra2/a2 = 27. (9)

With x = a cos t and y = a sin t we would find the same answer. The work is 27r (not
zero!) when the path goes around the origin.

We have a paradox. If Green's Theorem is wrong, calculus is in deep trouble. Some
requirement must be violated to reach 27t = 0. Looking at S/r 2 , the problem is at the
origin. The field is not defined when r = 0 (it blows up). The derivatives in (8) are not
continuous. Test D does not apply at the origin, and was not passed. We could remove
(0, 0), but then the region where test D is passed would have a hole.
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u I-V



15 Vector Calculus 

It is amazing how one point can change everything. When the path circles the 
origin, the line integral is not zero. The potential function f = 8 increases by 27r. That 
agrees with I F d R = 27r from (9). It disagrees with I10 dx dy. The 27r is right, the zero 
is wrong. Nx - My must be a "delta function of strength 2n." 

The double integral is 27r from an infinite spike over the origin-even though N, = 
My everywhere else. In fluid flow the delta function is a ''vortex." 

FLOW ACROSS A CURVE: GREEN'S THEOREM TURNED BY 90" 

A flow field is easier to visualize than a force field, because something is really there 
and it moves. Instead of gravity in empty space, water has velocity M(x, y)i + N(x, y)j. 
At the boundary C it can flow in or out. The new form of Green's Theorem is a 
fundamental "balance equation" of applied mathematics: 

Flow through C (out minus in) = replacement in R (source minus sink). 

The flow is steady. Whatever goes out through C must be replaced in R. When there 
are no sources or sinks (negative sources), the total flow through C must be zero. 
This balance law is Green's Theorem in its "normal form" (for n) instead of its 
"tangential form" (for T): 

C 

15F For a steady flow field F = M(x, y)i + N(x, y)j, the flux 1 F n ds through 
the boundary C balances the replacement of fluid inside R: 

Figure 15.12 shows the 90" turn. T becomes n and "circulation" along C becomes 
flux through C. In the original form of Green's Theorem, change N and M to M and 
- N to obtain the flux form: 

Playing with letters has proved a new theorem! The two left sides in (1 1) are equal, 
so the right sides are equal-which is Green's Theorem (10) for the flux. The compo- 
nents M and N can be chosen freely and named freely. 

The change takes Mi + Nj into its perpendicular field - Ni + Mj. The field is turned 
at every point (we are not just turning the plane by 90"). The spin field S = - yi + xj 
changes to the position field R = xi + yj. The position field R changes to -S. Stream- 
lines of one field are equipotentials of the other field. The new form (10) of Green's 

circulation 

1 dy jdy idx Tdsy ky 
C 

j nds 

Fig. 15.12 The perpendicular component F n flows through C. Note n ds = d y  i - dx j. 
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Theorem is just as important as the old one-in fact I like it better. It is easier to
visualize flow across a curve than circulation along it.

The change of letters was just for the proof. From now on F = Mi + Nj.

EXAMPLE 5 Compute both sides of the new form (10) for F = 2xi + 3yj. The region
R is a rectangle with sides a and b.

Solution This field has dM/ax + ON/ly = 2 + 3. The integral over R is f, 5 dx dy =
5ab. The line integral has four parts, because R has four sides. Between the left and
right sides, M = 2x increases by 2a. Down the left and up the right, fM dy = 2ab
(those sides have length b). Similarly N = 3y changes by 3b between the bottom and
top. Those sides have length a, so they contribute 3ab to a total line integral of 5ab.

Important: The "divergence" of a flow field is aM/ax + aNlay. The example has
divergence = 5. To maintain this flow we must replace 5 units continually-not just
at the origin but everywhere. (A one-point source is in example 7.) The divergence is
the source strength, because it equals the outflow. To understand Green's Theorem
for any vector field Mi + Nj, look at a tiny rectangle (sides dx and dy):

Flow out the right side minus flow in the left side = (change in M) times dy

Flow out the top minus flow in the bottom = (change in N) times dx

Total flow out of rectangle: dM dy + dN dx = (aM/ax + aN/ay)dx dy.

The divergence times the area dx dy equals the total flow out. Section 15.5 gives more
detail with more care in three dimensions. The divergence is Mx + N, + PZ.

flux 3ab F = 2xi

t A• t/t/ +3yj

flux
M 2ab

Fig. 15.13 Mx + N, = 2 + 3 = 5 yields flux = 5(area) = 5ab. The flux is dM dy + dN dx=
(Mx + NY) dx dy. The spin field has no flux.

EXAMPLE 6 Find the flux through a closed curve C of the spin field S = - yi + xj.

Solution The field has M = - y and N = x and Mx + N, = 0. The double integral is
zero. Therefore the total flow (out minus in) is also zero-through any closed curve.
Figure 15.13 shows flow entering and leaving a square. No fluid is added or removed.
There is no rain and no evaporation. When the divergence Mx + N, is zero, there is
no source or sink.

FLOW FIELDS WITHOUT SOURCES

This is really quite important. Remember that conservative fields do no work around
C, they have a potential f, and they have "zero curl." Now turn those statements
through 90', to find their twins. Source-free fields have no flux through C, they have
stream functions g, and they have "zero divergence." The new statements E-F-G-H
describe fields without sources.

b

0 __0II
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156 The field F = M(x, y)i + N(x, y)j is source-free if it has these properties: 

E The total flux f F n ds through every closed curve is zero. 

F Across all curves from P to Q, the ff ux r: F n ds is the same. 

G There is a stream function g(x, y), for which M = ag/dy and N = - agf ax. 

H The components satisfy aM/ax + aN/ay = 0 (the divergence is zero). 

A field with one of these properties has them all. H is the quick test. 

The spin field -yi + xj passed this test (Example 6 was source-free). The field 
2xi + 3yj does not pass (Example 5 had M, + N, = 5). Example 7 almost passes. 

EXAMPLE 7 The radial field R/r2 = (xi + yj)/(x2 + y2) has a point source at (0,O). 

The new test H is divergence = dM/dx + dN/dy = 0. Those two derivatives are 

- - -  x2 + y2 - x(2x) 
and - - - x2+y2-y(2y). (12) 

ax 7 X~ + y2 ) - (x2 + y2). ay a ( x2 + y2 ) - (x2 +y2)2 

They add to zero. There seems to be no source (if the calculation is correct). The flow 
through a circle x2 + y2 = a' should be zero. But it's not: 

A source is hidden somewhere. Looking at R/r2, the problem is at (0,O). The field is 
not defined when r = 0 (it blows up). The derivatives in (12) are not continuous. Test 
H does not apply, and was not passed. The divergence M, + N, must be a "delta 
function" of strength 211. There is' a point source sending flow out through all circles. 

I hope you see the analogy with Example 4,. The field S/r2 is curl-free except at r = 0. 
The field R/r2 is divergence-free except at r = 0. The mathematics is parallel and the 
fields are perpendicular. A potential f and a stream function g require a region without 
holes. 

THE BEST FIELDS: CONSERVATIVE AND SOURCE-FREE 

What if F is conservative and also source-free? Those are outstandingly important 
fields. The curl is zero and the divergence is zero. Because the field is conservative, it 
comes from a potential. Because it is source-free, there is a stream function: 

Those are the Cauchy-Riemann equations, named after a great mathematician of his 
time and one of the greatest of all time. I can't end without an example. 

EXAMPLE 8 Show that yi + xj is both conservative and source-free. Find f and g. 

Solution With M = y and N = x, check first that i?M/dy = 1 = dN/Zx. There must 
be a potential function. It is f = xy, which achieves af/ax = y and i?f/ay = x. Note 
that fxx +A, = 0. 

Check next that dM/dx + aN/dy = 0 + 0. There must be a stream function. It is 
g = f (y2 - x2), which achieves dg/ay = y aild dg/i?x = - x. Note that g,, + g,, = 0. 



15.3 Green's Theorem 

The curves f = constant are the equipotentials. The curves g = constant are the 
streamlines (Figure 15.4). These are the twin properties-a conservative field with 
a potential and a source-free field with a stream function. They come together into 
the fundamental partial differential equation of equilibrium-Laplace's equation 
fxx  +&y = 0. 

ISH There is a potential and stream function when My = Nx and Mx = - Ny. 
They satisfy LaplhceJs e 4 ~ i m :  

f,+f,=M,+Ny=O and g,+gyy=-Nx+My=O. (15) 

If we have f without g, as in f = x2 + y2 and M = 2x and N = 2y, we don't have 
Laplace's equation: f, + fyy =4. This is a gradient field that needs a source. 
If we have g without f; as in g = x2 + y2 and M = 2y and N = - 2x, we don't have 
Laplace's equation. The field is source-free but it has spin. The first field is 2R and 
the second field is 2s. 

With no source and no spin, we are with Laplace at the center of mathematics and 
science. 

Green's Theorem: Tangential form f F T ds and normal form f F n ds 

fcMdx+Ndy=J'Ji*.-M,)dxdy f c ~ d y - N ~ = f / R ( M x + N y ) d x d y  

work curl flux divergence 

Conservative: work = zero, Nx = My, gradient of a potential: M = fx and N =f, 
Sourcefree: h x  = zero, Mx = - Ny , has a stream function: M = gy and N = - gx 
Conservative + source-free: Cauchy-Rimann + Laplace equations for f and g. 

15.3 EXERCISES 
Read-through questions 

The work integral 8 M dx + N dy equals the double integral 
a by b 'sTheorem. ForF = 3i +4j the workis c . 

For F = d and e ,the work equals the area of R. When 
M = af/ax and N = aflay, the double integral is zero because 

f . The line integral is zero because g . An example is 
F = h . The direction on Cis i around the outside and 

I around the boundary of a hole. If R is broken into very 
simple pieces with crosscuts between them, the integrals of 

k cancel along the crosscuts. 

Test D for gradient fields is I . A field that passes this 
test has 8 F dR = m . There is a solution to f, = n and 
f, = o . Then df = M dx + N dy is an P differential. 
The spin field S/r2 passes test D except at s . Its potential 
f = r increases by s going around the origin. The 
integral jj (N, - M,)dx dy is not zero but t . 

The flow form of Green's Theorem is u = v . The 
normal vector in F n ds points w and In1 = x and n ds 

equals dy i - dx j. The divergence of Mi + Nj is Y . For F = 
xi the double integral is 2 . There @)(is not) a source. For 
F = yi the divergence is A . The divergence of ~ / r ~  is zero 
except at B . This field has a c source. 

A field with no source has properties E = D , F = E , 
G = F , H =zero divergence. The stream function g 
satisfies the equations G . Then aM/ax + 
aNpy = 0 because a2g/axay = H . The example F = yi has 
g = I . There (is)(is not) a potential function. The example 
F = xi - yj has g = J and also f = K . This f satisfies 
Laplace's equation 1 , because the field F is both M 
and N . The functions f and g are connected by the 0 

equations afpx = ag/ay and P . 

Compute the line integrals 1-6 and (separately) the double integ- 
rals in Green's Theorem (1). The circle has x = a cos t, 
y = a sin t. The triangle has sides x = 0, y = 0, x + y = 1. 

1 8 x dy along the circle 2 8 x2y dy along the circle 
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3 8 x dx along the triangle 4 $ y dx along the triangle 

5 $ x2y dx along the circle 6 8 x2y dx along the triangle 

7 Compute both sides of Green's Theorem in the form (10): 
(a) F = xi + yj, R = upper half of the disk x2 + y2 Q 1. 
(b) F = x2i + xyj, C = square with sides y = 0, x = 1, y = 1, 
x = 0. 

8 Show that $,(x2y + 2x)dy + xy2dx depends only on the 
area of R. Does it equal the area? 

9 Find the area inside the hypocycloid x = cos3t, y = sin3t 
from +$ x dy - y dx. 

10 For constants b and c, how is $by dx + cx dy related to 
the area inside C? If b = 7, which c makes the integral zero? 

11 For F = grad ,/-, show in three ways that $F dR = 

0 around x = cos t, y = sin t. 
(a) F is a gradient field so 
(b) Compute F and directly integrate F dR. 
(c) Compute the double integral in Green's Theorem. 

12 Devise a way to find the one-dimensional theorem 
1: (df/dx)dx = f (b) - f (a) as a special case of Green's Theorem 
when R is a square. 

13 (a) Choose x(t) and y(t) so that the path goes from (1,O) 
to (1,O) after circling the origin twice. 
(b) Compute $ y dx and compare with the area inside your 
path. 
(c) Compute $ (y dx - x dy)/(x2 + y2) and compare with 271 
in Example 7. 

14 In Example 4 of the previous section, the work I S  d R 
between (1,O) and (0, 1) was 1 for the straight path and 7112 
for the quarter-circle path. Show that the work is always twice 
the area between the path and the axes. 

Compute both sides of 4 F n ds = (M, + N,) dx dy in 15-20. 

15 F = yi + xj in the unit circle 

16 F = xyi in the unit square 0 6 x, y 6 1 

17 F = Rlr in the unit circle 

18 F = S/r in the unit square 

19 F = xZyj in the unit triangle (sides x = 0, y = 0, x + y = 1) 

20 F = grad r in the top half of the unit circle. 

21 Suppose div F = 0 except at the origin. Then the flux 
$ F  nds is the same through any two circles around the 
origin, because . (What is jj (M, + N,)dx dy between 
the circles?) 

22 Example 7 has div F = 0 except at the origin. The flux 
through every circle x2 + y2 = a2 is 271. The flux through a 
square around the origin is also 2n because . (Com- 
pare Problem 2 1 .) 

23 Evaluate 8 a(x, y)dx + b(x, y)dy by both forms of Green's 
Theorem. The choice M = a, N = b in the work form gives 
the double integral . The choice M = b, N = - a in 
the flux form gives the double integral . There was 
only one Green. 

24 Evaluate 8 cos3y dy - sin3x dx by Green's Theorem. 

25 The field R/r2 in Example 7 has zero divergence except at 
r = 0. Solve ag/ay = x/(x2 + y2) to find an attempted stream 
function g. Does g have trouble at the origin? 

26 Show that S/r2 has zero divergence (except at r = 0). Find 
a stream function by solving ag/ay = y/(x2 + y2). Does g have 
trouble at the origin? 

27 Which differentials are exact: y dx - x dy, x2dx + y2dy, 
y2dx + x2dy? 

28 If Mx + N, = 0 then the equations dg/ay = and 
ag/ax = yield a stream function. If also Nx = My, 
show that g satisfies Laplace's equation. 

Compute the divergence of each field in 29-36 and solve g, = 
M and gx = - N for a stream function (if possible). 

33 ex cos y i - ex sin y j 34 eX+y(i - j) 

35 2yi/x + y2j/x2 36 xyi - xyj 

37 Compute Nx- My for each field in 29-36 and find a 
potential function f when possible. 

38 The potential f(Q) is the work 1: F Tds to reach Q from 
a fixed point P (Section 15.2). In the same way, the stream 
function g(Q) can be constructed from the integral . 
Then g(Q) - g(P) represents the flux across the path from P to 
Q. Why do all paths give the same answer? 

39 The real part of (x + i ~ ) ~  = x3 + 3ix2y - 3xy2 - iy3 is f = 
x3 - 3xy2. Its gradient field is F =grad f = . The 
divergence of F is . Therefore f satisfies Laplace's 
equation fx, + fyy = 0 (check that it does). 

40 Since div F = 0 in Problem 39, we can solve ag/ay = 

and ag/Jx = . The stream function is g = 

. It is the imaginary part of the same (x + i ~ ) ~ .  Check 
that f and g satisfy the Cauchy-Riemann equations. 

41 The real part f and imaginary part g of (x + iy)" satisfy the 
Laplace and Cauchy-Riemann equations for n = 1,2, .... 
(They give all the polynomial solutions.) Compute f and g for 
n=4. 

42 When is M dy - N dx an exact differential dg? 

43 The potential f = ex cos y satisfies Laplace's equation. 
There must be a g. Find the field F = grad f and the stream 
function g(x, y). 
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44 Show that the spin field S does work around every simple inside R can be squeezed to a point without leaving R. Test 
closed curve. these regions: 

1. xy  plane without (0,O) 2. xyz space without (0, 0,O) 
45 For F =f(x) j  and R = unit square 0 < x  6 1, 0 < y <  1, 3. sphere x2 + y2 + z2 = 1 4.  a torus (or doughnut) 
integrate both sides of Green's Theorem (1). What formula is 
required from one-variable calculus? 5. a sweater 6. a human body 

7. the region between two spheres 
46 A region R is "simply connected" when every closed curve 8. xyz space with circle removed. 

-[ 15.4 Surface Integrals 

The double integral in Green's Theorem is over a flat surface R. Now the region 
moves out of the plane. It becomes a curved surface S, part of a sphere or cylinder 
or cone. When the surface has only one z for each (x, y), it is the graph of a function 
z(x, y). In other cases S can twist and close up-a sphere has an upper z and a lower 
z. In all cases we want to compute area and flux. This is a necessary step (it is our 
last step) before moving Green's Theorem to three dimensions. 

First a quick review. The basic integrals are 1 dx and 11 dx dy and 111 dx dy dz. The 
one that didn't fit was Jds-the length of a curve. When we go from curves to 
surfaces, ds becomes dS. Area is JI dS m d  flux is IJ F n dS, with double integrals 
because the surfaces are two-dimensional. The main difficulty is in dS. 

All formulas are summarized in a table at the end of the section. 

There are two ways to deal with ds (along curves). The same methods apply to dS 
(on surfaces). The first is in xyz coordinates; the second uses parameters. Before this 
subject gets complicated, I will explain those two methods. 

Method 1 is for the graph of a function: curve y(x) or surface z(x, y). 

A small piece of the curve is almost straight. It goes across by dx and up by dy: 

length ds = J- = ,/i+(dyldx)2 dx. (1) 

A small piece of the surface is practically flat. Think of a tiny sloping rectangle. One 
side goes across by dx and up by (dz/dx)dx. The neighboring side goes along by dy 
and up by (az/dy)dy. Computing the area is a linear problem (from Chapter 1 I), 
because the flat piece is in a plane. 

Two vectors A and B form a parallelogram. The length of their cross product is the 
area. In the present case, the vectors are A = i + (az/ax)k and B = j + (az/ay)k. Then 
Adx and Bdy are the sides of the small piece, and we compute A x B: 

This is exactly the normal vector N to the tangent plane and the surface, from 
Chapter 13. Please note: The small flat piece is actually a parallelogram (not always 
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a rectangle). Its area dS is much like ds, but the length of N = A x B involves two
derivatives:

area dS = IAdx x Bdyl = INIdx dy = 1 + (az/ax)2 + (z/aOy) 2 dx dy. (3)

EXAMPLE 1 Find the area on the plane z = x + 2y above a base area A.

This is the example to visualize. The area down in the xy plane is A. The area up on
the sloping plane is greater than A. A roof has more area than the room underneath
it. If the roof goes up at a 450 angle, the ratio is 2/. Formula (3) yields the correct
ratio for any surface--including our plane z = x + 2y.

X = U Cos
y = u sin v

u

X = Cos V
y = sin v
Z=U

Y

Fig. 15.14 Roof area = base area times |NI. Cone and cylinder with parameters u and v.

The derivatives are dz/dx = 1 and az/ay = 2. They are constant (planes are easy).
The square root in (3) contains 1 + 12 + 22 = 6. Therefore dS = 6 dx dy. An area in
the xy plane is multiplied by 6 up in the surface (Figure 15.14a). The vectors A and
B are no longer needed-their work was done when we reached formula (3)-but
here they are:

A=i+(az/ax)k=i+k B=j+(az/ay)k=j+2k N= -i-2j+k.

The length of N = A x B is 6. The angle between k and N has cos 0 = 1/ 6. That
is the angle between base plane and sloping plane. Therefore the sloping area is 6
times the base area. For curved surfaces the idea is the same, except that the square
root in INI = 1/cos 0 changes as we move around the surface.

Method 2 is for curves x(t), y(t) and surfaces x(u, v), y(u, v), z(u, v) with parameters.

A curve has one parameter t. A surface has two parameters u and v (it is two-
dimensional). One advantage of parameters is that x, y, z get equal treatment, instead
of picking out z as f(x, y). Here are the first two examples:

cone x = u cos v, y = u sin v, z = u cylinder x = cos v, y = sin v, z = u. (4)

Each choice of u and v gives a point on the surface. By making all choices, we get
the complete surface. Notice that a parameter can equal a coordinate, as in z = u.
Sometimes both parameters are coordinates, as in x = u and y = v and z =f(u, v).
That is just z =f(x, y) in disguise-the surface without parameters. In other cases we
find the xyz equation by eliminating u and v:

cone (u cos v)2 +(uin )2 = 2 or X2y 2 =z Or z==x 2 y 2

cylinder (cos v)2 + (sin v)2 = 1 or x2 +y 2 = 1.

I I
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The cone is the graph off = ,/-. The cylinder is not the graph of any function. 
There is; a line of z's through each point on the circle x2 + y2 = 1. That is what z = 
u tells us: Give u all values, and you get the whole line. Give u and v all values, and 
you get the whole cylinder. Parameters allow a surface to close up and even go 
through itself-which the graph of f(x, y) can never do. 

Actually z = Jw gives only the top half of the cone. (A function produces 
only one z.) The parametric form gives the bottom half also. Similarly y = ,/- 
gives only the top of a circle, while x = cos t, y = sin t goes all the way around. 

Now we find dS, using parameters. Small movements give a piece of the surface, 
practica.11~ flat. One side comes from the change du, the neighboring side comes from 
dv. The two sides are given by small vectors Adu and Bdv: 

ax ay a~ ax ay a2 
A=- i+ - j+ -k  and B=- i+- j+-k .  au au a~ a v  a v  a u  

To find the area dS of the parallelogram, start with the cross product N = A x B: 

Admittedly this looks complicated-actual examples are often fairly simple. The area 
dS of the small piece of surface is IN1 du dv. The length IN1 is a square root: 

iy iz i'z iyJ ( z  ax ix izJ (ax iy iy ix 
----- + ----- + ----- udv. (7) au av au a~ iiu iv iu av au av au av 

ay a2 a2 a ~ ) ~  + (az ax ax a;) (ax ay ay ax) = (-- - -- ----- j +  ----- k 
au a v  au av au a v  au av au a v  au av (6) N =  

EXAMPLE 2 Find A and B and N = A x B and dS for the cone and cylinder. 

i j k 

x ~ ,  yU z,, 

The cone has x = u cos v, y = u sin v, z = u. The u derivatives produce A = dR/du = 

cos v i -I- sin v j + k. The v derivatives produce the other tangent vector B = aR/dv = 

- u s i n v i + u c o s v j .  The normal vector is A x B =  - u c o s v i - u s i n v j + u k .  Its 
length gives dS: 

~ S = I A  x BI dudv=J(u cos v12+(u sin v)* +u2dudv=&ududv.  

The cylinder is even simpler: dS = du dv. In these and many other examples, A is 
perpendicular to B. The small piece is a rectangle. Its sides have length IAl du and 
IB(dv. (The cone has ]A/ = u and IBI = &, the cylinder has IAl= IBI = 1). The cross 
product is hardly needed for area, when we can just multiply IAl du times IBldv. 

Remark on the two methods Method 1 also used parameters, but a very special 
choice--u is x and v is y. The parametric equations are x = x, y = y, z = f(x, y). If 
you go through the long square root in (7), changing u to x and v to y, it simplifies 
to the s'quare root in (3). (The terms dy/dx and axlay are zero; axldx and dyldy are 
1.) Still it pays to remember the shorter formula from Method 1. 

Don't forget that after computing dS, you have to integrate it. Many times the 
good is with polar coordinates. Surfaces are often symmetric around an axis or 
a point. Those are the surfaces of revolution-which we saw in Chapter 8 and will 
come back to. 

Strictly speaking, the integral starts with AS (not dS). A flat piece has area 
[A x BlAxAy or [A x BlAuAv. The area of a curved surface is properly defined as a 
limit. The key step of calculus, from sums of AS to the integral of dS, is safe for 
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smooth surfaces. In examples, the hard part is computing the double integral and
substituting the limits on x, y or u, v.

EXAMPLE 3 Find the surface area of the cone z = x2 + y2 up to the height z = a.

We use Method 1 (no parameters). The derivatives of z are computed, squared, and
added:

z x z 2 y2
Sy INI2 = 1 + 2+ - 2.

Ox - y 2  y x 2 y 2  x2 +y2 
2 y2

Conclusion: INI = /2 and dS = /2 dx dy. The cone is on a 450 slope, so the area
dx dy in the base is multiplied by 2 in the surface above it (Figure 15.15). The
square root in dS accounts for the extra area due to slope. A horizontal surface has
dS = 1 dx dy, as we have known all year.

Now for a key point. The integration is down in the base plane. The limits on x and
y are given by the "shadow" of the cone. To locate that shadow set z = x/x2 + y2

equal to z = a. The plane cuts the cone at the circle x2 + y 2 = a2 . We integrate over
the inside of that circle (where the shadow is):

surface area of cone = f 2 dx dy = /2 na 2

shadow

EXAMPLE 4 Find the same area using dS = /2 u du dv from Example 2.

With parameters, dS looks different and the shadow in the base looks different. The
circle x2 + y2 = a2 becomes u2 cos 2v + u2 sin2v = a2. In other words u = a. (The cone
has z = u, the plane has z = a, they meet when u = a.) The angle parameter v goes
from 0 to 27x. The effect of these parameters is to switch us "automatically" to polar
coordinates, where area is r dr dO:

surface area of cone = dS = fu du dv = 2a 2.
fo 0o

y2 dxdy

x--

/ ayx2 2x +y 2 = a2

x

1I ududv

=-x
-1 -x

Fig. 15.15 Cone cut by plane leaves shadow in the base. Integrate over the shadow.

EXAMPLE 5 Find the area of the same cone up to the sloping plane z = 1 - x.

Solution The cone still has dS = 2 dx dy, but the limits of integration are changed.
The plane cuts the cone in an ellipse. Its shadow down in the xy plane is another
ellipse (Figure 15.15c). To find the edge of the shadow, set z = x2 + y2 equal to z =
1 - x. We square both sides:

2 y2 = + 2 or !(x + )2 + y2= 4
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This is the ellipse in the base-where height makes no difference and z is gone. The 
area of an ellipse is nab, when the equation is in the form (xla)' + (y/b)2= 1. After 
multiplying by 314 we find a = 413 and b = $@. Then jJ$ dx dy = $nab is the 
surface area of the cone. 

The hard part was finding the shadow ellipse (I went quickly). Its area nab came 
from Example 15.3.2. The new part is & from the slope. 

EXAMPLE 6 Find the surface area of a sphere of radius a (known to be 4na2). 

This is a good example, because both methods almost work. The equation of the 
sphere is x2 + y2 + z2 = a2. Method 1 writes z =,,/-. The x and y deriva- 
tives are -x/z and -ylz: 

The square root gives dS = a dxdy/J-. Notice that z is gone (as it should 
be). Nolw integrate dS over the shadow of the sphere, which is a circle. Instead of 
dx dy, switch to polar coordinates and r dr d6: 

2naJ-1:- - = 2na2. 
shadow 

This calculation is successful but wrong. 2na2 is the area of the half-sphere above the 
xy plane. The lower half takes the negative square root of z2 = a2 -x2 -y2. This 
shows t'he danger of Method 1, when the surface is not the graph of a function. 

EXAMPLE 7 (same sphere by Method 2: use parameters) The natural choice is spheri- 
cal coordinates. Every point has an angle u = # down from the North Pole and an 
angle v = 6 around the equator. The xyz coordinates from Section 14.4 are x = 

a sin # cos 6, y = a sin # sin 6, z = a cos #. The radius p = a is fixed (not a parameter). 
Compute the first term in equation (6)' noting dz/d6 = 0: 

(dy/d#)(az/aO) - (az/a#)(ay/a6) = - (-a sin #)(a sin # cos 6) = a2 sin24 cos 6. 

The other terms in (6) are a2 sin2# sin 6 and a2 sin # cos #. Then dS in equation (7) 
squares these three components and adds. We factor out a4 and simplify: 

Conclusion: dS = a2 sin # d# dB. A spherical person will recognize this immediately. 
It is the volume element dV = p2 sin # dp d# dB, except dp is missing. The small box 
has area dS and thickness dp and volume dK Here we only want dS: 

= Sfrrarea of sphere = [[dS [: a2 sin i,l d 4  dB = 4aa2. (9) 

Figure 15.16a shows a small surface with sides a d# and a sin # d6. Their product is 
dS. Figure 15.16b goes back to Method 1, where equation (8) gave dS = (alz) dx dy. 

I doubt that you will like Figure 15.16~-and you don't need it. With parameters 
# and 8,the shadow of the sphere is a rectangle. The equator is the line down the 
middle, where # = 4 2 .  The height is z = a cos #. The area d# d6 in the base is the 
shadow of dS = a2 sin # d# dB up in the sphere. Maybe this figure shows what we 
don't halve to know about parameters. 
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z z
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- 21r
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Fig. 15.16 Surface area on a sphere: (a) spherical coordinates (b) xyz coordinates (c) 00 space.

EXAMPLE 8 Rotate y = x 2 around the x axis. Find the surface area using parameters.

The first parameter is x (from a to b). The second parameter is the rotation angle 0
(from 0 to 27r). The points on the surface in Figure 15.17 are x = x, y = x 2 cos 0,
z = x2 sin 0. Equation (7) leads after much calculation to dS = x 2 /1 4x2 dx dO.

Main point: dS agrees with Section 8.3, where the area was S 2nty 1 + (dy/dx)2 dx.
The 2rr comes from the 0 integral and y is x2. Parameters give this formula auto-
matically.

VECTOR FIELDS AND THE INTEGRAL OF F n

Formulas for surface area are dominated by square roots. There is a square root in
dS, as there was in ds. Areas are like arc lengths, one dimension up. The good point
about line integrals IJF -nds is that the square root disappears. It is in the denominator
of n, where ds cancels it: F * nds = M dy - N dx. The same good thing will now
happen for surface integrals Jf F . ndS.

This formula tells what to integrate, given the surface and the vector field (f and F).
The xy limits come from the shadow. Formula (10) takes the normal vector from
Method 1:

N = - Of/x i - Of/ayj + k and INI = V1 + (fax) + (f/x)2  )2.

For the unit normal vector n, divide N by its length: n = N/INI. The square root is in
the denominator, and the same square root is in dS. See equation (3):

F ndS = dx dy= -M - N +P dxdy. (11)

That is formula (10), with cancellation of square roots. The expression F . ndS is often
written as F . dS, again relying on boldface to make dS a vector. Then dS equals ndS,
with direction n and magnitude dS.

15I Through the surface z =f(x, y), the vector field F(x, y, z) = Mi + Nj + Pk
has

flux= Jf FndS= JJ -M -N +P + dxdy. (10)
sufaeshadow ex Oy

J J

I

0
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y = x b o s  6, L = x2 sin 6 

d s  = dxdy 
Y 

Fig. 15.1 7 Surface of revolution: parameters x, 8. Fig. 15.18 F - n dS gives flow through dS.  

EXAMPLE 9 Find ndS for the plane z = x + 2y. Then find F ndS for F = k. 

This plane produced & in Example 1 (for area). For flux the & disappears: 

For the flow field F = k, the dot product k ndS reduces to l d x  dy. The slope of the 
plane makes no difference! Theflow through the base alsoflows through the plane. The 
areas are different, but flux is like rain. Whether it hits a tent or the ground below, 
it is the same rain (Figure 15.18). In this case JJ F ndS = 51 d x  dy = shadow area in 
the base. 

EXAMPLE 10 Find the flux of F = xi + yj + zk through the cone z = , /x2 + y2. 

X 
Solution F ndS = 

The zero comes as a surprise, but it shouldn't. The cone goes straight out from the 
origin, and so does F. The vector n that is perpendicular to the cone is also perpendic- 
ular to F. There is no flow through the cone, because F n = 0. The flow travels out 
along rays. 

jj F ndS F O R  A SURFACE WITH PARAMETERS 

In Example 10 the cone was z = f(x, y) = Jx2 + y2. We found dS by Method 1. 
Parameters were not needed (more exactly, they were x and y). For surfaces that fold 
and twist, the formulas with u and v look complicated but the actual calculations can 
be simpler. This was certainly the case for dS = dudv on the cylinder. 

A small piece of surface has area dS = IA x BI du dv. The vectors along the sides are 
A = xui + yuj + z,k and B = xvi + y,j + zvk. They are tangent to the surface. Now we 
put their cross product N = A x B to another use, because F ndS involves not only 
area but direction. We need the unit vector n to see how much flow goes through. 

The direction vector is n = N/INI. Equation (7) is dS = lNldu dv, so the square root 
IN1 cancels in ndS. This leaves a nice formula for the "normal component" of flow: 

1 155 Through a surface with parameters u and v, the field F = Mi + Nj + P k  I 
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EXAMPLE I I Find the flux of F = xi + yj + zk through the cylinder x2 + y2 = 1, 
O < z < b .  

Solution The surface of the cylinder is x = cos u, y = sin u, z = v. The tangent vectors 
from (5) are A = (- sin u) i + (cos u) j and B = k. The normal vector in Figure 15.19 
goes straight out through the cylinder: 

To find F N, switch F = xi + yj + zk to the parameters u and v. Then F N = 1: 

For the flux, integrate F N = 1 and apply the limits on u = 8 and v = z: 

flux = f b  fin 1 du dv = 2nb = surface area of the cylinder. 
0 0 

Note that the top and bottom were not included! We can find those fluxes too. The 
outward direction is n = k at the top and n = - k down through the bottom. Then 
F n is + z = b at the top and -z = 0 at the bottom. The bottom flux is zero, the top 
flux is b times the area (or nb). The total flux is 2nb + nb = 3nb. Hold that answer 
for the next section. 

Apology: I made u the angle and v the height. Then N goes outward not inward. 

EXAMPLE 12 Find the flux of F = k out the top half of the sphere x2 + y2 + z2 = a2. 

Solution Use spherical coordinates. Example 7 had u = 4 and v = 8. We found 

N = A x B = a2 sin2# cos 8 i + a' sin24 sin 8 j + a2 sin # cos # k. 

The dot product with F = k is F * N = a2 sin # cos #. The integral goes from the pole 
to the equator, # = 0 to # = 4 2 ,  and around from 8 = 0 to 0 = 2n: 

flux = 
sin2# "I2 

a2 sin # cos 4 d4  dB = 2na2 --- I = nu2 
2 0 

The next section will show that the flux remains at nu2 through any surfLlce (!) that 
is bounded by the equator. A special case is a flat surface-the disk of radius a at 
the equator. Figure 15.18 shows n = k pointing directly up, so F - n  = k k = 1. The 
flux is jj 1 dS = area of disk = nu2. ANfluid goes past the equator and out through the 
sphere. 

Fig. 15.19 Flow through cylinder. Fig. 15.20 Mobius strip (no way to choose n). 
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I have to mention one more problem. It might not occur to a reasonable person, but
sometimes a surface has only one side. The famous example is the Miibius strip, for
which you take a strip of paper, twist it once, and tape the ends together. Its special
property appears when you run a pen along the "inside." The pen in Figure 15.20
suddenly goes "outside." After another round trip it goes back "inside." Those words
are in quotation marks, because on a Mdbius strip they have no meaning.

Suppose the pen represents the normal vector. On a sphere n points outward.
Alternatively n could point inward; we are free to choose. But the M6bius strip makes
the choice impossible. After moving the pen continuously, it comes back in the
opposite direction. This surface is not orientable. We cannot integrate F * n to compute
the flux, because we cannot decide the direction of n.

A surface is oriented when we can and do choose n. This uses the final property of
cross products, that they have length and direction and also a right-hand rule. We
can tell A x B from B x A. Those give the two orientations of n. For an open surface
(like a wastebasket) you can select either one. For a closed surface (like a sphere) it
is conventional for n to be outward. By making that decision once and for all, the
sign of the flux is established: outward flux is positive.

FORMULAS
FOR
SURFACE
INTEGRALS

15.4 EXERCISES
Read-through questions

A small piece of the surface z =f(x, y) is nearly a .When
we go across by dx, we go up by b . That movement is
Adx, where the vector A is i + c . The other side of the
piece is Bdy, where B = j+ d . The cross product A x B
is N = e . The area of the piece is dS = INIdxdy. For the
surface z = xy, the vectors are A = f and B = g and
N = h . The area integral is fS dS = I dx dy.

With parameters u and v, a typical point on a 450 cone is
x = u cos v, y = I , z= k . A change in u moves that
point by Adu = (cos v i + I )du. A change in v moves the
point by Bdv= m . The normal vector is N=AxB=

n .The area is dS= o du dv. In this example A ' B =
p so the small piece is a q and dS = IAl IBdu dv.

For flux we need ndS. The r vector n is N=A x B
divided by s . For a surface z =f(x, y), the product ndS
is the vector t (to memorize from table). The particular

surface z = xy has ndS= u dx dy. For F = xi + yj + zk the
flux through z = xy is F * ndS = v dx dy.

On a 30' cone the points are x = 2u cos v, y = 2u sin v, z =
u. The tangent vectors are A= w and B= x . This
cone has ndS=A x Bdudv= y . For F=xi+yj+zk,
the flux element through the cone is F ndS = z . The
reason for this answer is A .The reason we don't compute
flux through a M6bius strip is B

In 1-14 find N and dS = INI dx dy and the surface area ff dS.
Integrate over the xy shadow which ends where the z's are equal
(x2 + y2 = 4 in Problem 1).

1 Paraboloid z = x2 + y2 below the plane z = 4.

2 Paraboloid z = x 2 + y 2 between z = 4 and z = 8.

3 Plane z = x - y inside the cylinder x2 + y2 = 1.

4 Plane z = 3x + 4y above the square 0 < x < 1, 0 < y < 1.
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Spherical cap x2 + y2 + z2 = 1 above z = 1/& 

Spherical band x2 + y2 + z2 = 1 between z = 0 and 1/& 

Plane z = 7y above a triangle of area A. 

Cone z2 = x2 + y2 between planes z = a and z = b. 

The monkey saddle z = 3x3 - xy2 inside x2 + y2 = 1. 

z = x + y above triangle with vertices (0, O), (2,2), (0,2). 

Plane z = 1 - 2x - 2y inside x 2 0, y 2 0, z 2 0. 

Cylinder x2 + z2 = a2 inside x2 + y2 = a2. Only set up 

SS 'is- 
13 Right circular cone of radius a and height h. Choose 
z = f (x, y) or parameters u and v. 

14 Gutter z = x2 below z = 9 and between y = f 2. 

In 15-18 compute the surface integrals g(x, y, z)dS. 

15 g = xy over the triangle x + y + z = 1, x, y, z 2 0. 

16 g = x2 + y2 over the top half of x2 + y2 + z2 = 1 (use +,8). 

17 g = xyz on x2 + y2 + z2 = 1 above z2 = x2 + y2 (use +,8). 

18 g = x on the cylinder x2 + y2 = 4 between z = 0 and z = 3. 

In 19-22 calculate A, B, N, and dS. 

19 x = u ,  y = v + u , z = v + 2 u + l .  

20 x=uv, y = u + u ,  z=u-v. 

21 x = (3 + cos u) cos v, y = (3 + cos u) sin v, z = sin u. 

22 x = u cos v, y = u sin v, z = v (not z = u). 

23-26 In Problems 1-4 respectively find the flux F ndS 
for F = xi + yj + zk. 

27-28 In Problems 19-20 respectively compute F ndS for 
F = yi - xj through the region u2 + v2 < 1. 

29 A unit circle is rotated around the z axis to give a torus 
(see figure). The center of the circle stays a distance 3 from 
the z axis. Show that Problem 21 gives a typical point (x, y, z) 
on the torus and find the surface area dS = IN1 du dv. 

30 The surface x = r cos 8, y = r sin 8, z = a2 - r2 is bounded 
by the equator (r = a). Find N and the flux 11 k ndS, and 
compare with Example 12. 

31 Make a "double Mobius strip" from a strip of paper by 
twisting it twice and taping the ends. Does a normal vector 
(use a pen) have the same direction after a round trip? 

32 Make a "triple Mobius strip" with three twists. Is it 
orientable-does the normal vector come back in the same 
or opposite direction? 

33 If a very wavy surface stays close to a smooth surface, are 
their areas close? 

34 Give the equation of a plane with roof area dS = 3 times 
base area dx dy. 

35 The points (x, f(x) cos 8, f(x) sin 8) are on the surface of 
revolution: y = f(x) revolved around the x axis, parameters 
u = x and v = 8. Find N and compare dS = IN1 dx d8 with 
Example 8 and Section 8.3. 

15.5 The Divergence Theorem 

This section returns to the fundamental law wow out) - wow in) = (source). In two 
dimensions, the flow was in and out through a closed curve C. The plane region 
inside was R. In three dimensions, the flow enters and leaves through a closed surface 
S. The solid region inside is V. Green's Theorem in its normal form (for the flux of a 
smooth vector field) now becomes the great three-dimensional balance equation- 
the Divergence Theorem: 
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I 15K The flux qfF = Mi + Nj +Pk through abe boundary surface S equds the 
integral of the divergemx of F insick Y.  'TL~ Mrlgcaee Threni  h I 

In Green's Theorem the divergence was dM/dx + dN/dy. The new term dP/dz 
accounts for upward flow. Notice that a constant upward component P adds nothing 
to the divergence (its derivative is zero). It also adds nothing to the flux (flow up 
through the top equals flow up through the bottom). When the whole field F is 
constant, the theorem becomes 0 = 0. 

There are other vector fields with div F = 0. They are of the greatest importance. 
The Divergence Theorem for those fields is again 0 = 0, and there is conservation of 
fluid. When div F = 0, flow in equals flow out. We begin with examples of these 
"divergence-free" fields. 

EXAMPLE 1 The spin fields - yi + xj + Ok and Oi - zj + yk have zero divergence. 

The first is an old friend, spinning around the z axis. The second is new, spinning 
around the x axis. Three-dimensional flow has a great variety of spin fields. The 
separate terms dM/dx, dN/dy, dP/az are all zero, so div F = 0. The flow goes around 
in circles, and whatever goes out through S comes back in. (We might have put a 
circle on 11, as we did on $c, to emphasize that S is closed.) 

EXAMPLE 2 The position field R = xi + yj + zk has div R = 1 + 1 + 1 = 3. 

This is radial flow, straight out from the origin. Mass has to be added at every point 
to keep the flow going. On the right side of the divergence theorem is [[[ 3 dl/. 
Therefore the flux is three times the volume. 

Example 11 in Section 15.4 found the flux of R through a cylinder. The answer 
was 3nb. Now we also get 3nb from the Divergence Theorem, since the volume is nb. 
This is one of many cases in which the triple integral is easier than the double integral. 

EXAMPLE 3 An electrostatic field R/p3 or gravity field - R/p3 almost has div F = 0. 

The vector R = xi + yj + zk has length = p. Then F has length p/p3 
(inverse square law). Gravity from a point mass pulls inward (minus sign). The electric 
field from a point charge repels outward. The three steps almost show that div F = 0: 

Step 1. ap/ax = x/p, dplay = y/p, apldz = z/p-but do not add those three. F is not 
p or l/p2 (these are scalars). The vector field is We need dM/ax, aN/ay, aP/dz. 

Step 2. a ~ / a x  = d/dx(x/p3) is equal to l/p3 - ( 3 ~  dp/ax)/p4 = 1lp3 - 3x2/p5. For 
dN/dy and dP/az, replace 3x2 by 3y2 and 3z2. Now add those three. 

Step 3. div F = 3lp3 - 3(x2 + y2 + z2)/p5 = 3lp3 - 3lp3 = 0. 

The calculation div F = 0 leaves a puzzle. One side of the Divergence Theorem seems 
to give jjjO dV= 0. Then the other side should be jJ F * ndS = 0. But the flux is not 
zero when all flow is outward: 

The unit normal vector to the sphere p = constant is n = Rip. 
The outward flow F n = ( ~ 1 ~ ~ )  (Rip) = p2/p4 is always positive. 
Then jj F ndS = jj ds/p2 = 4np2/p2 = 4n. We have reached 4n = 0. 
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This paradox in three dimensions is the same as for R/r2 in two dimensions.
Section 15.3 reached 27r = 0, and the explanation was a point source at the origin.
Same explanation here: M, N, P are infinite when p = 0. The divergence is a "delta
function" times 47r, from the point source. The Divergence Theorem does not apply
(unless we allow delta functions). That single point makes all the difference.

Every surface enclosing the origin has flux = 47r. Our calculation was for a sphere.
The surface integral is much harder when S is twisted (Figure 15.21 a). But the Diver-
gence Theorem takes care of everything, because div F = 0 in the volume V between
these surfaces. Therefore Jf F ndS = 0 for the two surfaces together. The flux
If F . ndS = - 4n into the sphere must be balanced by If F ndS = 4n7r out of the twisted
surface.

tf

(P2- P1) dS - (dP/dz) dV1

(Pe- Po) dS - (dPldz) dVo

(P2- Po) dS - SUM - INTEGRAL

Fig. 15.21 Point source: flux 47r through all enclosing surfaces. Net flux upward
= ffJ(8P/8z)dV.

Instead of a paradox 47r = 0, this example leads to Gauss's Law. A mass M at the
origin produces a gravity field F = - GMR/p3 . A charge q at the origin produces an
electric field E = (q/4rneo)R/p3 . The physical constants are G and go, the mathematical
constant is the relation between divergence and flux. Equation (1) yields equation (2),
in which the mass densities M(x, y, z) and charge densities q(x, y, z) need not be
concentrated at the origin:

45L Gauss's law in differential form: div F= - 4GM and div E = q/eo
Gauss's law in integral form: Flux is proportional to total mass or charge:

{{F ndS= - {J'j47rGMdV and JJE ndS = qdV/lo. (2)

THE REASONING BEHIND THE DIVERGENCE THEOREM

The general principle is clear: Flow out minus flow in equals source. Our goal is to
see why the divergence of F measures the source. In a small box around each point,
we show that div F dV balances F * ndS through the six sides.

So consider a small box. Its center is at (x, y, z). Its edges have length Ax, Ay, Az.
Out of the top and bottom, the normal vectors are k and -k. The dot product with
F = Mi + Nj + Pk is + P or -P. The area AS is AxAy. So the two fluxes are close
to P(x, y, z + ½Az)AxAy and - P(x, y, z - ½Az)AxAy. When the top is combined with
the bottom, the difference of those P's is AP:

net flux upward ,- APAxAy = (AP/Az)AxAyAz , (OP/Oz)A V.
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Similarly, the combined flux on two side faces is approximately (aN/ay)AK On the 
front and back it is (dM/ax)AK Adding the six faces, we reach the key point: 

flux out of the box x (aM/dx + aN/dy + dP/az)A K (4) 
This is (div F)AK For a constant field both sides are zero-the flow goes straight 
through. For F = xi + yj + zk, a little more goes out than comes in. The divergence 
is 3, so 3AV is created inside the box. By the balance equation the flux is also 3AK 

The approximation symbol x means that the leading term is correct (probably 
not the next term). The ratio APlAz is not exactly dP/az. The difference is of order 
Az, so the error in (3) is of higher order AVAz. Added over many boxes (about 1/AV 
boxes), this error disappears as Az + 0. 

The sum of (div F)A V over all the boxes approaches [Sj(div F)dK On the other 
side of the equation is a sum of fluxes. There is F *nAS out of the top of one box, 
plus F nAS out of the bottom of the box above. The first has n = k and the second 
has n = - k. They cancel each other-the flow goes from box to box. This happens 
every time two boxes meet. The only fluxes that survive (because nothing cancels 
them) are at the outer surface S. The final step, as Ax, Ay, Az + 0, is that those outside 
terms approach 11 F ndS. Then the local divergence theorem (4) becomes the global 
Divergence Theorem (1). 

Remark on the proof That "final step" is not easy, because the box surfaces don't 
line up with the outer surface S. A formal proof of the Divergence Theorem would 
imitate the proof of Green's Theorem. On a very simple region JjJ (aP/az)dx dy dz 
equals 11 P dx dy over the top minus 11 P dx dy over the bottom. After checking the 
orientation this is 11 Pk ndS. Similarly the volume integrals of dM/ax and dN/dy are 
the surface integrals 11 Mi ndS and 11 Nj ndS. Adding the three integrals gives the 
Divergence Theorem. Since Green's Theorem was already proved in this way, the 
reasoning behind (4) is more helpful than repeating a detailed proof. 

The discoverer of the Divergence Theorem was probably Gauss. His notebooks 
only contain the outline of a proof-but after all, this is Gauss. Green and Ostrograd- 
sky both published proofs in 1828, one in England and the other in St. Petersburg 
(now Leningrad). As the theorem was studied, the requirements came to light (smooth- 
ness of F and S, avoidance of one-sided Mobius strips). 

New applications are discovered all the time-when a scientist writes down a bal- 
ance equation in a small box. The source is known. The equation is div F = source. 
After Example 5 we explain F. 

EXAMPLE 4 If the temperature inside the sun is T = In lip, find the heat flow F = 
- grad T and the source div F and the flux 11 F . ndS. The sun is a ball of radius po. 

Solution F is -grad In l/p = +grad In p. Derivatives of In p bring division by p: 

F = (dpldx i + apjdy j + dp/dz k)/p = (xi + yj + zk)/p2. 

This flow is radially outward, of magnitude lip. The normal vector n is also radially 
outward, of magnitude 1. The dot product on the sun's surface is l/po: 

F = ndS = dS/po = (surface area)/po = 4npi/p0 = h p o .  JJ JJ 
Check that answer by the Divergence Theorem. Example 5 will find div F = l/p2. 
Integrate over the sun. In spherical coordinates we integrate dp, sin 4d4, and do: 

Ill div F dV = JO2' Jn  1'0 P2 sin 4 dp dm d9/p2 = (po)(2)(2n) as in (5). 
sun 0 0 
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This example illustrates the basic framework of equilibrium. The pattern appears 
everywhere in applied mathematics-electromagnetism, heat flow, elasticity, even 
relativity. There is usually a constant c that depends on the material (the example 
has c = 1). The names change, but we always take the divergence of the gradient: 

potential f 4 forcefild - c grad f: Then div(- c grad f )  = electric charge 

temperature T -+ flowfield - c grad T. Then div(- c grad T) = heat source 

displacement u 4 stressfield + c grad u. Then div(- c grad u) = outside force. 

You are studying calculus, not physics or thermodynamics or elasticity. But please 
notice the main point. The equation to solve is div(- c grad f )  = known source. The 
divergence and gradient are exactly what the applications need. Calculus teaches the 
right things. 

This framework is developed in many books, including my own text Introduction 
to Applied Mathematics (Wellesley-Cambridge Press). It governs equilibrium, in mat- 
rix equations and differential equations. 

PRODUCT RULE FOR VECTORS: INTEGRATION BY PARTS 

May I go back to basic facts about the divergence? First the definition: 

F(X, y, Z) = Mi + Nj + ~k has div F = v F = a ~ l a x  + a ~ l a y  + aplaz. 

The divergence is a scalar (not a vector). At each point div F is a number. In fluid 
flow, it is the rate at which mass leaves-the "flux per unit volume" or "flux density." 

The symbol V stands for a vector whose components are operations not numbers: 

v = "del" = i alax + j alay + k alaz. (6) 

This vector is illegal but very useful. First, apply it to an ordinary function f(x, y, z): 

Vf ="del f" = i aflax+j af/dy+ k df/az=gradient off.  (7) 

Second, take the dot product V F with a vector function F(x, y, z) = Mi + Nj + Pk: 

V F = "del dot F" = aM/dx + aN/dy + aP/az = divergence of F .  (8) 

Third, take the cross product V x F. This produces the vector curl F (next section): 

V x F = "del cross F" = . . . (to be defined). . . = curl of F .  (9) 

The gradient and divergence and curl are V and V and V x . The three great opera- 
tions of vector calculus use a single notation! You are free to write V or not-to 
make equations shorter or to help the memory. Notice that Laplace's equation 
shrinks to 

Equation (10) gives the potential when the source is zero (very common). F = grad f 
combines with div F = 0 into Laplace's equation div grad f = 0. This equation is so 
important that it shrinks further to V2 f = 0 and even to A f = 0. Of course A f = 
fxx + fyy + f,, has nothing to do with A f = f (x + Ax) - f (x). Above all, remember that 
f is a scalar and F is a vector: gradient of scalar is vector and divergence of vector is 
scalar. 
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Underlying this chapter is the idea of extending calculus to vectors. So far we have 
emphasized the Fundamental Theorem. The integral of df/dx is now the integral of 
div F. Instead of endpoints a and b, we have a curve C or surface S. But it is the rules 
for derivatives and integrals that make calculus work, and we need them now for 
vectors. Remember the derivative of u times v and the integral (by parts) of u dvldx: 

15M Scalar functions u(x, y, z)  and vector fields V (x, y, z) obey the product rule: 

div(uV) = u div V + V (grad zr). (1 1) 

The reverse of the product rule is integration by parts (Gauss's Formula): 

For a plane field this is Green's Fwmurla (and u = 1 gives Green's Theorem): 

Those look like heavy formulas. They are too much to memorize, unless you use 
them often. The important point is to connect vector calculus with "scalar calculus," 
which is not heavy. Every product rule yields two terms: 

Add those ordinary rules and you have the vector rule (1 1) for the divergence of uV. 
Integrating the two parts of div(uV) gives I[ uV ndS by the Divergence Theorem. 

Then one part moves to the other side, producing the minus signs in (12) and (13). 
Integration by parts leaves a boundary term, in three and two dimensions as it did in 
one dimension: uvtdx = - j utvdx + [uv]:. 

EXAMPLE 5 Find the divergence of F = R/p2, starting from grad p = R/p. 

Solution Take V = R and u = llp2 in the product rule (1 1). Then div F = (div R)/ 
P2 + R (grad l/p2). The divergence of R = xi + yj + zk is 3. For grad l/p2 apply the 
chain rule: 

R (grad llp2) = - 2R (grad p)/p3 = - 2R R/p4 = - 2/p2. 

The two parts of div F combine into 3/p2 - 2/p2 = l/p2-as claimed in Example 4. 

EXAMPLE 6 Find the balance equation for flow with velocity V and fluid density p. 

V is the rate of movement of fluid, while pV is the rate of movement of mass. 
Comparing the ocean to the atmosphere shows the difference. Air has a greater 
velocity than water, but a much lower density. So normally F = pV is larger for the 
ocean. (Don't confuse the density p with the radial distance p. The Greeks only used 
24 letters.) 

There is another difference between water and air. Water is virtually incompressible 
(meaning p = constant). Air is certainly compressible (its density varies). The balance 
equation is a fundamental law-the conservation of mass or the "continuity equation" 
for fluids. This is a mathematical statement about a physical flow without sources or 
sinks: 

Continuity Equation: div(pV) + 3plat = 0. (14) 
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Explanation: The mass in a region is j j j p  d V .  Its rate of decrease is - j j j  a p l a t  dV .  
The decrease comes from flow out through the surface (normal vector n).  The dot 
product F n = p V  * n  is the rate of mass flow through the surface. So the integral 
S j F  n d S  is the total rate that mass goes out. By the Divergence Theorem this is 
j j j  div F d V. 

To balance - j j j  d p / d t  d V in every region, div F must equal - a p l d t  at every point. 
The figure shows this continuity equation (14) for flow in the x direction. 

extra mass out mass loss 
- - 

mass in + Imsrr + d @ V )  d S  d t  - d p  d S  di p V  d S  d t  

Fig. 15.22 Conservation of mass during time dt: d(pV)/dx + dpldt = 0. 

15.5 EXERCISES 

Read-through questions 

In words, the basic balance law is a . The flux of F 
through a closed surface S is the double integral b . The 
divergence of Mi + Nj + Pk is c , and it measures d . 
The total source is the triple integral e . That equals the 
flux by the f Theorem. 

For F = 5zk the divergence is g . If V is a cube of side 
a then the triple integral equals h . The top surface where 
z = a has n = i and F n = i . The bottom and sides 
have F n = k . The integral jj F ndS equals I . 

The field F = R / ~ ~  has div F = 0 except m . jj F ndS 
equals n over any surface around the origin. This 
illustrates Gauss's Law 0 . The field F = xi + yj - 2zk has 
div F = P and 11 F ndS = q . For this F, the flux out 
through a pyramid and in through its base are r . 

The symbol V stands for s . In this notation div F is 
t . The gradient off is u . The divergence of grad f 

is v . The equation div grad f = 0 is w 's equation. 

The divergence of a product is div(uV) = x . Integration 
by parts is jjj u div V dx dydz = Y + z . In two 

.dimensions this becomes A . In one dimension it becomes 
B . For steady fluid flow the continuity equation is 

div pV = c . 

In 1-10 compute the flux jj F . ndS by the Divergence Theorem. 

1 F = xi + xj + xk, S: unit sphere x2 + y2 + z2 = 1. 

2 F =  -yi+xj, V: unit cube O<.u< 1, O<y<1 ,  O < z <  1. 

3 F = x2i + y2j + z2k, S: unit sphere 

4 F = x2i + 8y2j + z2k, V: unit cube. 

5 F = x i + 2 y j ,  S: sides x=O,  y = 0 ,  z=O, x + y + z =  1. 

6 F = u, = (xi + yj + A l p ,  S: sphere p = a. 

7 F = p(xi + yj + zk), S: sphere p = a 

8 F = x3i + y3j + z3k, S: sphere p = a. 

9 F = z2k, V: upper half of ball p < a. 

10 F = grad (xeY sin z ) ,  S: sphere p = a. 

11 Find jjj div(x2i + yj + 2k)dV in the cube 0 < x, y, z < a. 

Also compute n and jj F ndS for all six faces and add. 

12 When a is small in problem 11, the answer is close to ca3. 
Find the number c. At what point does div F = c? 

13 (a) Integrate the divergence of F = pi in the ball p < a. 

(b) Compute 11 F ndS over the spherical surface p = a. 

14 Integrate R ndS over the faces of the box 0 < x < 1, 
0 6 y < 2, 0 < z < 3 and check by the Divergence Theorem. 

15 Evaluate F . ndS when F = xi + z2j + y2k and: 

(a) S is the cone z2 = x2 + y2 bounded above by the plane 
z =  1. 

(b) S is the pyramid with corners (O,0, O), (1,0, O), (0, 1 .  O), 
(O,O,  1). 

16 Compute all integrals in the Divergence Theorem when 
F = x(i + j - k) and V is the unit cube 0 < x, y, z 6 1. 

17 Following Example 5 ,  compute the divergence of 
(.xi + yj + +k)/p7. 

18 (grad f )  n is the derivative off in the direction 
. It is also written af/an. If j;, + jyy + fzz = 0 in V, 

derive jj Ff/?n dS = 0 from the Divergence Theorem. 

19 Describe the closed surface S and outward normal n: 
(a) V = hollow ball 1 < x' + y2 + z2 < 9. 
(b) V = solid cylinder .u2 + y% 1. 1z1 < 7. 

(c) V=pyramid x 3 0 ,  2 ' 30 ,  z 3 0 ,  . u + 2 v + 3 + < 1 .  

(d) V = solid cone x2 + y2 < z2 < 1. 

20 Give an example where ISF-ndS is easier than 
div F dV. 
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21 Suppose F = M(x, y)i + Njx, y)j, R is a region in the xy 
plane, and (x, y, z) is in V if (x, y) is in R and JzJ $ 1. 

(a) Describe V and reduce IIIdiv F dV to a double 
integral. 
(b) Reduce F ndS to a line integral (check top, bottom, 
side). 
(c) Whose theorem says that the double integral equals 
the line integral? 

22 Is it possible to have F n = 0 at all points of S and also 
div F = 0 at all points in V? F = 0 is not allowed. 

23 Inside a solid ball (radius a, density 1, mass M = 4na3/3) 
the gravity field is F = - GMR/a3. 

(a) Check div F = - 4nG in Gauss's Law. 
(b) The force at the surface is the same as if the whole 
mass M were 
(c) Find a gradient field with div F = 6 in the ball p $ a 
and div F = 0 outside. 

24 The outward field F = R/p3 has magnitude IF( = l/p2. 
Through an area A on a sphere of radius p, the flux is 

. A spherical box has faces at p, and p2 with A = 
pf sin 4d4d9  and A = pi sin 4d$dO. Deduce that the flux 
out of the box is zero, which confirms div F = 0. 

25 In Gauss's Law, what charge distribution q(x, y, z) gives 
the unit field E = u,? What is the flux through the unit sphere? 

26 If a fluid with velocity V is incompressible (constant den- 
sity p), then its continuity equation reduces to . If it 
is irrotational then F = grad5 If it is both then f satisfies 

equation. 

27 True or false, with a good reason. 
(a) If jj F . ndS = 0 for every closed surface, F is constant. 
(b) If F = grad f then div F = 0. 
(c) If JFJ $ 1  at all points then IIj div F dV $ area of the 
surface S. 
(d) If JFJ $ 1 at all points then Jdiv FJ < 1 at all points. 

28 Write down statements E-F-G-H for source-free fields 
F(x, y, z) in three dimensions. In statement F, paths sharing 
the same endpoint become surfaces sharing the same bound- 
ary curve. In G, the stream function becomes a vector Jield 
such that F = curl g. 

29 Describe two different surfaces bounded by the circle 
x2 + y2 = 1, z = 0. The field F automatically has the same flux 
through both if 

30 The boundary of a bounded region R has no boundary. 
Draw a plane region and explain what that means. What does 
it mean for a solid ball? 

For the Divergence Theorem, the surface was closed. S was the boundary of V. 
Now the surface is not closed and S has its own boundary-a curve called C. We 
are back near the original setting for Green's Theorem (region bounded by curve, 
double integral equal to work integral). But Stokes' Theorem, also called Stokes's 
Theorem, is in three-dimensional space. There is a curved surface S bounded by a 
space curve C. This is our first integral around a space curve. 

The move to three dimensions brings a change in the vector field. The plane field 
F(x, y) = Mi + Nj becomes a space field F(x, y, z) = Mi + Nj + Pk. The work 
Mdx + Ndy now includes Pdz. The critical quantity in the double integral (it was 
aN/ax - aM/dy) must change too. We called this scalar quantity "curl F," but in 
reality it is only the third component of a vector. Stokes' Theorem needs all three 
components of that vector-which is curl F. 

DEFINITION The curl of a vector field F(x, y, z) = Mi + Nj + Pk is the vector field 
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The symbol V x F stands for a determinant that yields those six derivatives: 

curl F = V x F = I 2ldx dldy 2l2z I . 

The three products i  d/dy P and j dldz M and k dldx N have plus signs. The three 
products like k dldy M, down to the left, have minus signs. There is a cyclic symmetry. 
This determinant helps the memory, even if it looks and is illegal. A determinant is 
not supposed to have a row of vectors, a row of operators, and a row of functions. 

EXAMPLE 1 The plane field M(x,  y)i + N(x,  y)j has P = 0 and dM/az = 0 and 
dN/dz = 0. Only two terms survive: curl F = (aNldx-dM/ay)k. Back to Green. 

EXAMPLE 2 The cross product a x R is a spinfield S. Its axis is the fixed vector a = 
al i  + a,  j + a3k. The flow in Figure 15.23 turns around a, and its components are 

Our favorite spin field -yi + xj has (a,, a,, a,) = (0,0, 1 )  and its axis is a = k.  
The divergence of a spin field is M ,  + N ,  + P, = 0 + 0 + 0. Note how the divergence 

uses M, while the curl uses N ,  and P,. The curl of S is the vector 2a: 

This example begins to reveal the meaning of the curl. It measures the spin! The direc- 
tion of curl F is the axis of rotation-in this case along a. The magnitude of curl F is 
twice the speed of rotation. In this case lcurl FI = 2/al and the angular velocity is la]. 

R =x i  + y j  + _-k 

curl S = 2a curl R = 0 
div R = 3 

Fig. 15.23 Spin field S = a x R, position field R, velocity field (shear field) V = zi, any field F. 

EXAMPLE 3 (!!) Every gradient field F = Sf/?x i  + 2f / f y  j + ?Jli?z k has curl F = 0: 

Always fyz equals f,, . They cancel. Also f,, =f,, and f,,=f,, . So curl grad f = 0. 
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EXAMPLE 4 (twin of Example 3) The divergence of curl F is also automatically 
zero: 

Again the mixed derivatives give Pxy = Pyx and Nxz = Nzx and Mzy = Myz.  The terms 
cancel in pairs. In "curl grad" and "div curl", everything is arranged to give zero. 

I 456( The curl of the grackat of every f(x, y, a) is curl grad f = V x Vf = 0. 
Thx: divergence of tlae curl of every F4x, y, z) is div curl F = V V x F = 0. I 

The spin field S has no divergence. The position field R has no curl. R is the gradient 
of f = &x2 + y2 + z2). S is the curl of a suitable F. Then div S = div curl F and 
curl R = curl grad f are automatically zero. 

You correctly believe that curl F measures the "spin" of the field. You may expect 
that curl (F + G) is curl F + curl G. Also correct. Finally you may think that a field 
of parallel vectors has no spin. That is wrong. Example 5 has parallel vectors, but 
their different lengths produce spin. 

EXAMPLE 5 The field V = zi in the x direction has curl V = j in the y direction. 

If you put a wheel in the xz plane, thisfield will turn it. The velocity zi at the top of 
the wheel is greater than zi at the bottom (Figure 15.23~). So the top goes faster and 
the wheel rotates. The axis of rotation is curl V = j. The turning speed is ), because 
this curl has magnitude 1. 

Another velocity field v = - xk produces the same spin: curl v = j. The flow is in 
the z direction, it varies in the x direction, and the spin is in the y direction. Also 
interesting is V + v. The two "shear fields" add to a perfect spin field S = zi - xk, 
whose curl is 2j. 

THE MEANING OF CURL F 

Example 5 put a paddlewheel into the flow. This is possible for any vector field F, 
and it gives insight into curl F. The turning of the wheel (if it turns) depends on its 
location (x, y, z). The turning also depends on the orientation of the wheel. We could 
put it into a spin field, and if the wheel axis n is perpendicular to the spin axis a, the 
wheel won't turn! The general rule for turning speed is this: the angular velocity of 
the wheel is %curl F) n. This is the bbdirectional spin," just as (grad f )  o was the 
"directional derivative"-and n is a unit vector like u. 

There is no spin anywhere in a gradient field. It is irrotational: curl grad f = 0. 
The pure spin field a x R has curl F = 2a. The angular velocity is a n (note that 

) cancels 2). This turning is everywhere, not just at the origin. If you put a penny on 
a compact disk, it turns once when the disk rotates once. That spin is "around itself," 
and it is the same whether the penny is at the center or not. 

The turning speed is greatest when the wheel axis n lines up with the spin axis a. 
Then a n is the full length (a(. The gradient gives the direction of fastest growth, and 
the curl gives the direction of fastest turning: 

maximum growth rate off is lgrad f 1 in the direction of grad f 

maximum rotation rate of F is f lcurl FI in the direction of curl F. 
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STOKES' THEOREM

Finally we come to the big theorem. It will be like Green's Theorem-a line integral
equals a surface integral. The line integral is still the work f F* dR around a curve.
The surface integral in Green's Theorem is ff (Nx - M,) dx dy. The surface is flat (in
the xy plane). Its normal direction is k, and we now recognize Nx - My as the k
component of the curl. Green's Theorem uses only this component because the nor-
mal direction is always k. For Stokes' Theorem on a curved surface, we need all three
components of curl F.

Figure 15.24 shows a hat-shaped surface S and its boundary C (a closed curve).
Walking in the positive direction around C, with your head pointing in the direction
of n, the surface is on your left. You may be standing straight up (n = k in Green's
Theorem). You may even be upside down (n = - k is allowed). In that case you must
go the other way around C, to keep the two sides of equation (6) equal. The surface is
still on the left. A M6bius strip is not allowed, because its normal direction cannot be
established. The unit vector n determines the "counterclockwise direction" along C.

450 (Stokes' Theorem) F* dR = (curl F) ndS. (6)

The right side adds up small spins in the surface. The left side is the total circulation
(or work) around C. That is not easy to visualize-this may be the hardest theorem
in the book-but notice one simple conclusion. If curl F = 0 then f F . dR = 0. This
applies above all to gradient fields-as we know.

A gradient field has no curl, by (4). A gradient field does no work, by (6). In three
dimensions as in two dimensions, gradient fields are conservative fields. They will be
the focus of this section, after we outline a proof (or two proofs) of Stokes' Theorem.

The first proof shows why the theorem is true. The second proof shows that it
really is true (and how to compute). You may prefer the first.

First proof Figure 15.24 has a triangle ABC attached to a triangle ACD. Later there
can be more triangles. S will be piecewiseflat, close to a curved surface. Two triangles
are enough to make the point. In the plane of each triangle (they have different n's)
Green's Theorem is known:

4 F dR= ff curl F ndS ~ FdR= if curl F ndS.
AB+BC+CA ABC AC+CD+DA ACD

Now add. The right sides give ff curl F .ndS over the two triangles. On the left, the
integral over CA cancels the integral over AC. The "crosscut" disappears. That leaves
AB + BC + CD + DA. This line integral goes around the outer boundary C-which
is the left side of Stokes' Theorem.

A

Sn

B

ncur
D

Fig. 15.24 Surfaces S and boundary curves C. Change in B -+ curl E - current in C.
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Second proof Now the surface can be curved. A new proof may seem excessive, but 
it brings formulas you could compute with. From z = f(x, y) we have 

For ndS, see equation 15.4.1 1. With this dz, the line integral in Stokes' Theorem is 

8 F d~ = 8 M d~ + N dy + ~ ( a f l a ~  d~ + aflay dy). 
C shadow of C 

(7) 

The dot product of curl F and ndS gives the surface integral JJ curl F ndS: 
S 

To prove (7) = (8), change M in Green's Theorem to M + Paflax. Also change N to 
N + Paflay. Then (7) = (8) is Green's Theorem down on the shadow (Problem 47). 
This proves Stokes' Theorem up on S. Notice how Green's Theorem (flat surface) 
was the key to both proofs of Stokes' Theorem (curved surface). 

EXAMPLE 6 Stokes' Theorem in electricity and magnetism yields Faraday's Law. 

Stokes' Theorem is not heavily used for calculations-equation (8) shows why. But 
the spin or curl or vorticity of a flow is absolutely basic in fluid mechanics. The other 
important application, coming now, is to electric fields. Faraday's Law is to Gauss's 
Law as Stokes' Theorem is to the Divergence Theorem. 

Suppose the curve C is an actual wire. We can produce current along C by varying 
the magnetic field B(t). The flux q = JJ B ndS, passing within C and changing in time, 
creates an electric field E that does work: 

/. 

Faraday's Law (integral form): work = E dR = - dqldt. I 
That is physics. It may be true, it may be an approximation. Now comes mathematics 
(surely true), which turns this integral form into a differential equation. Information 
at points is more convenient than information around curves. Stokes converts the 
line integral of E into the surface integral of curl E: 

$ E m  dR = 11 curl E ndS and also - &plat = 55 - (aB/at) ndS. 
C S S 

These are equal for any curve C, however small. So the right sides are equal for any 
surface S. We squeeze to a point. The right hand sides give one of Maxwell's equations: 

Faraday's Law (differential form): curl E = - aBldt. 

CONSERVATIVE FIELDS AND POTENTIAL FUNCTIONS 

The chapter ends with our constant and important question: Which fields do no 
work around closed curves? Remember test D for plane curves and plane vector 
fields: 

if aM/dy = dN/dx then F is conservative and F = grad f and $ F - dR = 0. 

Now allow a three-dimensional field like F = 2xy i + (x2 + z)j + yk. Does it do work 
around a space curve? Or is it a gradient field? That will require aflax = 2xy and 
afjdy = x2 + z and af/az = y. We have three equations for one function f(x, y, z). 
Normally they can't be solved. When test D is passed (now it is the three-dimensional 
test: curl F = 0) they can be solved. This example passes test D, and f is x2y + yz. 
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ISP  F(x, y, z) = Mi + Nj + Pk is a conservative field if it has these properties: 
A. The work F da around every closed path in space is zero. 
B. The work f $F dR depends only on P and Q, not on the path in space. 
C. F is a graden? fild M = a f /ax and N = af/dy and P = df/az. 
D. The components satisfy My = N,, M, = P,, and N, = P, (curl F is zero). 
A field with one of these properties has them all. D is the quick test. 

A detailed proof of A * B =.> C * D * A is not needed. Only notice how C a D: 
curl grad F is always zero. The newest part is D * A. Ifcurl F = 0 then f F dR = 0. 
But that is not news. It is Stokes' Theorem. 

The interesting problem is to solve the three equations forf, when test D is passed. 
The example above had 

df/dx = 2xy f = 5 2xy dx = x2y plus any function C(y, z) 

dfldy = x2 + z = x2 + dC/dy C = yz plus any function C(Z) 

df/dz = y = y + dcldz c(z) can be zero. 

The first step leaves an arbitrary C(y, z) to fix the second step. The second step leaves 
an arbitrary c(z) to fix the third step (not needed here). Assembling the three steps, 
f = x2y + C = x2y + yz + c = x~~ + yz. Please recognize that the "fix-up" is only pos- 
sible when curl F = 0. Test D must be passed. 

EXAMPLE 7 Is F = (Z - y)i + (x - z)j + (y - x)k the gradient of any f ?  

Test D says no. This F is a spin field a x R. Its curl is 2a = (2,2,2), which is not zero. 
A search for f is bound to fail, but we can try. To match df/dx = z - y, we must have 
f = zx - yx + C(y, z). The y derivative is -x + dC/dy. That never matches N = x - z, 
so f can't exist. 

EXAMPLE 8 What choice of P makes F = yz2i + xz2j + Pk conservative? Findf: 

Solution We need curl F = 0, by test D. First check dM/dy = z2 = dNjdx. Also 

dP/dx = aM/dz = 2yz and dP/dy = dN/az = ~ X Z .  

P = 2xyz passes all tests. To find f we can solve the three equations, or notice that 
f = xyz2 is S U C C ~ S S ~ U ~ .  Its gradient is F. 

A third method defines f (x, y, z) as the work to reach (x, y, z) from (0,0,O). The path 
doesn't matter. For practice we integrate F dR = M dx + N dy + P dz along the 
straight line (xt, yt, zt): 

f ( ~ ,  y, Z) = So1 (y t ) (~t )~(x  dt) + (x t ) (~t )~(y  dt) + 2(xt)(yt)(zt)(z dl) = xyz2. 

EXAMPLE 9 Why is div curl grad f automatically zero (in two ways)? 

Solution First, curl grad f is zero (always). Second, div curl F is zero (always). Those 
are the key identities of vector calculus. We end with a review. 

Green's Theorem: (2N/?x - 2Ml2y)dx dy 

$F ndr = jj(ZM/dr + dN/Fy)dx dy 
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Divergence Theorem : 

Stokes' Theorem : 

Stokes' Theorem and the Curl of F 

F - d R  = curl F * n d S .  j? 
The first form of Green's Theorem leads to Stokes' Theorem. The second form 
becomes the Divergence Theorem. You may ask, why not go to three dimensions in 
the f i s t  place? The last two theorems contain the first two (take P = 0 and a flat 
surface). We could have reduced this chapter to two theorems, not four. I admit that, 
but a fundamental principle is involved: "It is easier to generalize than to specialize." 

For the same reason d f l d x  came before partial derivatives and the gradient. 

15.6 EXERCISES 

Read-through questions 

The curl of Mi + Nj + Pk. is the vector a . It equals the 
3 by 3 determinant b . The curl of x2i + z2k is c . 
For S = yi - (x + z)j + yk the curl is d . This S is a e 

field a x R =+(curl F) x R, with axis vector a = f . For 
any gradient field fxi +f, j + fzk the curl is 9 . That is the 
important identity curl grad f = h . It is based on f,, =f,, 
and i and i . The twin identity is k . 

The curl measures the I of a vector field. A pad- 
dlewheel in the field with its axis along n has turning speed 

m . The spin is greatest when n is in the direction of 
n . Then the angular velocity is 0 . 

Stokes' Theorem is P = q . The curve C is the 
r of the s S. This is t Theorem extended to 
u dimensions. Both sides are zero when F is a gradient 

field because v . 

The four properties of a conservative field are A = w , 
B = x , C = Y , D = . The field y2z2i + 2xy2zk 
(passes)(fails) test D. This field is the gradient off = A . 
The work J F  .dR from (O,0, 0) to (1, 1, 1) is B (on which 
path?). For every field 17, JJcurl F o n d s  is the same out 
through a pyramid and ulp through its base because c . 

Problems 1-6 find curl F. 

F = z i + x j + y k  2 F = grad(xeY sin z) 

F =(x +y+z)( i  + j + k) 4 F =(x  +y)i-(x +y)k 

F = pn(xi + yj + zk) 6 F = ( i + j ) x R  

Find a potential f for the field in Problem 3. 

Find a potential f for the field in Problem 5. 

When do the fields xmii and xnj have zero curl? 

When does (a,x + a2y + a,z)k have zero curl? 

In 11-14, compute curl F and find $,F0dR by Stokes' 
Theorem. 

12 F = i x R, C = circle x2 + z2 = 1, y = 0. 

13 F = (i + j) x R, C = circle y2 + z2 = 1, x = 0. 

14 F = (yi - xj) x (xi + yj), C = circle x2 + y2 = 1, z = 0. 

15 (important) Suppose two surfaces S and T have the same 
boundary C, and the direction around C is the same. 

(a) Prove JJ, curl F . ndS = flT curl F . ndS. 
(b) Second proof: The difference between those integrals is 
JJJdiv(cur1 F ) N  By what Theorem? What region is I/? 
Why is this integral zero? 

16 In 15, suppose S is the top half of the earth (n goes out) 
and T is the bottom half (n comes in). What are C and Ir! 
Show by example that IS, F ndS = 11, F ndS is not generally 
true. 

17 Explain why i[ curl F ndS = 0 over the closed boundary 
of any solid V. 

18 Suppose curl F = 0 and div F = 0. (a) Why is F the gradi- 
ent of a potential? (b) Why does the potential satisfy Laplace's 
equation f,, + f,, +f,, = O? 

In 19-22, find a potential f if it exists. 

21 F = ex-zi - ex-zk 22 F = yzi + xzj + (XY + z2)k 

23 Find a field with curl F = (1, 0,O). 

24 Find all fields with curl F = (1, 0,O). 

25 S = a x R is a spin field. Compute F = b x S (constant 
vector b) and find its curl. 
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26 How fast is a paddlewheel turned by the field F = yi - xk 
(a) if its axis direction is n = j? (b) if its axis is lined up with 
curl F? (c) if its axis is perpendicular to curl F? 

27 How is curl F related to the angular velocity o in the spin 
field F = a(- yi + xj)? How fast does a wheel spin, if it is in 
the plane x + y + z = l? 

28 Find a vector field F whose curl is S = yi - xj. 

29 Find a vector field F whose curl is S = a x R. 

30 True or false: when two vector fields have the same curl 
at all points: (a) their difference is a constant field (b) their 
difference is a gradient field (c) they have the same divergence. 

In 31-34, compute 11 curl F ndS over the top half of the sphere 
x2 + y2 + z2 = 1 and (separately) $ F . dR around the equator. 

35 The circle C in the plane x + y + z = 6 has radius r and 
center at (1,2, 3). The field F is 3zj + 2yk. Compute $ F  dR 
around C. 

36 S is the top half of the unit sphere and F = zi + xj + xyzk. 
Find 11 curl F . ndS. 

37 Find g(x, y) so that curl gk = yi + x2j. What is the name 
for g in Section 15.3? It exists because yi + x2j has zero 

38 Construct F so that curl F = 2xi + 3yj - 5zk (which has 
zero divergence). 

39 Split the field F = xyi into V + W with curl V = 0 and 
div W = 0. 

40 Ampere's law for a steady magnetic field B is curl B = pJ 
(J =current density, p = constant). Find the work done by B 
around a space curve C from the current passing through it. 

Maxwell allows varying currents which brings in the electric 
field. 

41 For F = (x2 + y2)i, compute curl (curl F) and grad (div F) 
and F,,+F,,+F,,. 

42 For F = v(x, y, z)i, prove these useful identities: 

(a) curl(cur1 F) = grad (div F) - (F,, + F,, + F,,). 

(b) curl( f F) = f curl F + (grad f )  x F. 

43 If B = a cos t (constant direction a), find curl E from Fara- 
day's Law. Then find the alternating spin field E. 

44 With G(x, y, z) = mi + nj + pk, write out F x G and take 
its divergence. Match the answer with G curl F - F . curl G. 

45 Write down Green's Theorem in the xz plane from Stokes' 
Theorem. 

True or false: V x F is perpendicular to F. 

(a) The second proof of Stokes' Theorem took M* = 

M(x, y, f (x, y)) + P(x, y, f (x, y))af/ ax as the M in Green's 
Theorem. Compute dM*/dy from the chain rule and pro- 
duct rule (there are five terms). 

(b) Similarly N* = N(x, y, f )  + P(x, y, f )df/dy has the x 
derivative N, + N, f, + P, f, + Pz f, f, + Pf,,. Check that 
N,* - M,* matches the right side of equation (S), as needed 
in the proof. 

"The shadow of the boundary is the boundary of the 
shadow." This fact was used in the second proof of Stokes' 
Theorem, going to Green's Theorem on the shadow. Give 
two examples of S and C and their shadows. 

49 Which integrals are equal when C = boundary of S or S = 

boundary of V? 

$ F dR $ (curl F)  . dR $(curl F) . nds 11 F n d ~  

11 div FdS 11 (curl F) ndS 11 (grad div F) . ndS 111 div F d V 

50 Draw the field V = - xk spinning a wheel in the xz plane. 
What wheels would not spin? 
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Mathematics after Calculus 


I would like this book to do more than help you pass calculus. (I hope it does that 
too.) After calculus you will have choices- Which mathematics course to take next?- 
and these pages aim to serve as a guide. Part of the answer depends on where you 
are going-toward engineering or management or teaching or science or another 
career where mathematics plays a part. The rest of the answer depends on where the 
courses are going. This chapter can be a useful reference, to give a clearer idea than 
course titles can do: 

Linear Algebra Differential Equations Discrete Mathematics 

Advanced Calculus (with Fourier Series) Numerical Methods Statistics 

Pure mathematics is often divided into analysis and algebra and geometry. Those 
parts come together in the "mathematical way of thinking9'-a mixture of logic 
and ideas. It is a deep and creative subject-here we make a start. 

Two main courses after calculus are linear algebra and differential equations. 
I hope you can take both. To help you later, Sections 16.1 and 16.2 organize them 
by examples. First a few words to compare and contrast those two subjects. 

Linear algebra is about systems of equations. There are n variables to solve for. A 
change in one affects the others. They can be prices or velocities or currents or 
concentrations-outputs from any model with interconnected parts. 

Linear algebra makes only one assumption-the model must be linear. A change 
in one variable produces proportional changes in all variables. Practically every 
subject begins that way. (When it becomes nonlinear, we solve by a sequence of linear 
equations. Linear programming is nonlinear because we require x >, 0.)Elsewhere J 
wrote that "Linear algebra has become as basic and as applicable as calculus, and 
fortunately it is easier." I recommend taking it. 

A differential equation is continuous (from calculus), where a matrix equation is 
discrete (from algebra). The rate dyldt is determined by the present state y-which 
changes by following that rule. Section 16.2 solves y' = cy + s(t) for economics and 
life sciences, and y" + by' + cy =f(t) for physics and engineering. Please keep it and 
refer to it. 
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A third key direction is discrete mathematics. Matrices are a part, networks and 
algorithms are a bigger part. Derivatives are not a part-this is closer to algebra. It 
is needed in computer science. Some people have a knack for counting the ways a 
computer can send ten messages in parallel-and for finding the fastest way. 

Typical question: Can 25 states be matched with 25 neighbors, so one state in each 
pair has an even number of letters? New York can pair with New Jersey, Texas with 
Oklahoma, California with Arizona. We need rules for Hawaii and Alaska. This 
matching question doesn't sound mathematical, but it is. 

Section 16.3 selects four topics from discrete mathematics, so you can decide if you 
want more. 

Go back for a moment to calculus and differential equations. A completely realistic 
problem is seldom easy, but we can solve models. (Developing a good model is a skill 
in itself.) One method of solution involves complex numbers: 

any function u(x + iy) solves uxx+ u,, = 0 (Laplace equation) 

any function eik("+") solves u,, - c2uxx= 0 (wave equation). 

From those building blocks we assemble solutions. For the wave equation, a signal 
starts at t = 0.It is a combination of pure oscillations eikx.The coefficients in that 
combination make up the Fourier transform-to tell how much of each frequency is 
in the signal. A lot of engineers and scientists would rather know those Fourier 
coefficients than f(x). 

A Fourier series breaks the signal into Z a, cos kx or Z b, sin kx or T. ekeikx. 
These sums can be infinite (like power series). Instead of values of f(x), or derivatives 
at the basepoint, the function is described by a,, b,, c,. Everything is computed by 
the "Fast Fourier Transform." This is the greatest algorithm since Newton's method. 

A radio signal is near one frequency. A step function has many frequencies. A delta 
function has every frequency in the same amount: 6(x) = Z cos kx. Channel 4 can't 
broadcast a perfect step function. You wouldn't want to hear a delta function. 

We mentioned computing. For nonlinear equations this means Newton's method. 
For Ax = b it means elimination-algorithms take the place of formulas. Exact solu- 
tions are gone-speed and accuracy and stability become essential. It seems right to 
make scientific computing a part of applied mathematics, and teach the algorithms 
with the theory. My text Introduction to Applied Mathematics is one step in this 
direction, trying to present advanced calculus as it is actually used. 

We cannot discuss applications and forget statistics. Our society produces oceans 
of data-somebody has to draw conclusions. To decide if a new drug works, and if 
oil spills are common or rare, and how often to have a checkup, we can't just guess. 
I am astounded that the connection between smoking and health was hidden for 
centuries. It was in the data! Eventually the statisticians uncovered it. Professionals 
can find patterns, and the rest of us can understand (with a little mathematics) what 
has been found. 

One purpose in studying mathematics is to know more about your own life. 
Calculus lights up a key idea: Functions. Shapes and populations and heart signals 
and profits and growth rates, all are given by functions. They change in time. They 
have integrals and derivatives. To understand and use them is a challenge-
mathematics takes effort. A lot of people have contributed, in whatever way they 
could-as you and I are doing. We may not be Newton or Leibniz or Gauss or 
Einstein, but we can share some part of what they created. 
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16.1 Vector Spaces and Linear Algebra 

You have met the idea of a matrix. An m by n matrix A has m rows and n columns 
(it is square if m =n). It multiplies a vector x that has n components. The result is a 
vector Ax with m components. The central problem of linear algebra is to go back- 
ward: From Ax =bfind x. That is possible when A is square and invertible. Otherwise 
there is no solution x-or there are infinitely many. 

The crucial property of matrix multiplication is linearity. If Ax = b and AX = B 
then A times x + X is b + B. Also A times 2x is 2b. In general A times cx is cb. 
In particular A times 0 is 0 (one vector has n zeros, the other vector has m zeros). The 

. whole subject develops from linearity. Derivatives and integrals obey linearity too. 

Question 1 What are the solutions to Ax =O? One solution is x =0. There 
may be other solutions and they fill up the "nullspace": 

x =  2 
x = o  011requires 1 =[J also allows y = - 1 
y = o  

z z =  3 
L A 

When there are more unknowns than equations-when A has more columns than 
rows-the system Ax =0 has many solutions. They are not scattered randomly 
around! Another solution is X =4, Y= -2, Z =6. This lies on the same line as 
(2, -1,3)  and (0,0,O). Always the solutions to Ax =0 form a "space" of vectors- 
which brings us to a central idea of linear algebra. 

Note These pages are not concentrating on the mechanics of multiplying or invert- 
ing matrices. Those are explained in all courses. My own teaching emphasizes that 
Ax is a combination of the columns of A. The solution x = A-'b is computed by 
elimination. Here we explain the deeper idea of a vector space-and especially the 
particular spaces that control Ax =6. I cannot go into the same detail as in my book 
on Linear Algebra and Its Applications, where examples and exercises develop the 
new ideas. Still these pages can be a useful support. 

All vectors with n components lie in n-dimensional space. You can add them and 
subtract them and multiply them by any c. (Don't multiply two vectors and never 
write llx or 1/A). The results x + X and x -X and cx are still vectors in the space. 
Here is the important point: 

The line of solutions to Ax =0 is a "subspace"-a vector space in its own right. 
The sum x + X has components 6, -3,9-which is another solution. The difference 
x -X is a solution, and so is 4x. These operations leave us in the subspace. 

The nullspace consists of all solutions to Ax = 0. It may contain only the zero 
vector (as in the first example). It may contain a line of vectors (as in the second 
example). It may contain a whole plane of vectors (Problem 5). In every case x + X 
and x -X and cx are also in the nullspace. We are assigning a new word to an old 
idea-the equation x - 2y =0 has always been represented by a line (its nullspace). 
Now we have 6-dimensional subspaces of an %dimensional vector space. 

Notice that x2 - y =0 does not produce a subspace (a parabola instead). Even the 
x and y axes together, from xy = 0, do not form a subspace. We go off the axes when 
we add (1,O) to (0, 1). You might expect the straight line x - 2y = 1 to be a subspace, 
but again it is not so. When x and y are doubled, we have X - 2Y =2. Then (X, Y) 
is on a different line. Only Ax = 0 is guaranteed to produce a subspace. 
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Figure 16.1 shows the nullspace and "row space." Check dot products (both zero). 

Fig. 16.1 The nullspace is perpendicular to the rows of A (the columns of AT). 

Question 2 When A multiplies a vector x, what subspace does Ax lie in? The 
product Ax is a combination of the columns of A-hence the name "column space": 

No choice of x can produce Ax = (0,0, 1). For this A, all combinations of the columns 
end in a . The column space is like the xy plane within xyz space. It is a 
subspace of m-dimensional space, containing every vector b that is a combination of 
the columns: 

The system Ax = b has a solution exactly when b is in the column space. 

When A has an inverse, the column space is the whole n-dimensional space. The 
nullspace contains only x = 0. There is exactly one solution x = A 1 b .  This is the 
good case-and we outline four more key topics in linear algebra. 

1. Basis and dimension of a subspace. A one-dimensional subspace is a line. A plane 
has dimension two. The nullspace above contained all multiples of (2, -1, 3)-by 
knowing that "basis vector" we know the whole line. The column space was a plane 
containing column 1 and column 2. Again those vectors are a "basis"-by knowing 
the columns we know the whole column space. 

Our 2 by 3 matrix has three columns: (1,O) and (2, 3) and (0, 1). Those are not a 
basis for the column space! This space is only a plane, and three vectors are too 
many. The dimension is two. By combining (1,O) and (0, 1) we can produce the other 
vector (2, 3). There are only two independent columns, and they form a basis for this 
column space. 

In general: When a subspace contains r independent vectors, and no more, those 
vectors are a basis and the dimension is r. "Independent" means that no vector is a 
combination of the others. In the example, (1,O) and (2, 3) are also a basis. A subspace 
has many bases, just as a plane has many axes. 

2.  Least squares. If Ax = b has no solution, we look for the x that comes closest. 
Section 1 1.4 found the straight line nearest to a set of points. We make the length 
of Ax - b as small as possible, when zero length is not possible. No vector solves 
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Ax = b, when b is not in the column space. So b is projected onto that space. This 
leads to the "normal equations" that produce the best x: 

When a rectangular matrix appears in applications, its transpose generally comes 
too. The columns of A are the rows of AT. The rows of A are the columns of AT. 
Then  AT^ is square and symmetric-equal to its transpose and vital for applied 
mathematics. 

3. Eigenvalues (for square matrices only). Normally Ax points in a direction 
different from x. For certain special eigenvectors, Ax is parallel to x. Here is a 2 by 
2 matrix with two eigenvectors-in one case Ax = 5x and in the other Ax = 2x; 

3 2  1 

Ax=Ax: [ 1 4  ][]=[:]=5[:] 1 and [: :][-:]=[-:]=2[-:]. 

The multipliers 5 and 2 are the eigenvalues of A. An 8 by 8 matrix has eight eigen- 
values, which tell what the matrix is doing (to the eigenvectors). The eigenvectors are 
uncoupled, and they go their own way. A system of equations dyldt = Ay acts like 
one equation-when y is an eigenvector: 

d ~ i l d t =  3 ~ 1 +  2 ~ 2  yl = eSt 
has the solution which is est [:I. 

dyddt = yi + 4 ~ 2  y2 = eSt 

The eigenvector is (1, 1). The eigenvalue A = 5 is in the exponent. When you substitute 
y1 and y2 the differential equations become 5est = 5est. The fundamental principle 
for dyldt = cy still works for the system dyldt = Ay: Look for pure exponential solu- 
tions. The eigenvalue "lambda" is the growth rate in the exponent. 

I have to add: Find the eigenvectors also. The second eigenvector (2, - 1) has 
eigenvalue i = 2. A second solution is y1 = 2e2', y2 = - e". Substitute those into the 
equation-they are even better at displaying the general rule: 

If Ax = Ax then d/dt(ehx) = ~ ( e ~ ~ x ) .  The pure exponentials are y = eAtx. 

The four entries of A pull together for the eigenvector. So do the 64 entries of an 
8 by 8 matrix-again e"x solves the equation. Growth or decay is decided by A > 0 
or K < 0. When A = k + iw is a complex number, growth and oscillation combine in 
e ~ t  = e k t e i ~ t  = ekt(cos wt + i sin at).  

Subspaces govern static problems Ax = b. Eigenvalues and eigenvectors 
govern dynamic problems dyldt = Ay. Look for exponentials y = eUx. 

4. Determinants and inverse matrices. A 2 by 2 matrix has determinant D = ad - bc. 
This matrix has no inverse if D = 0. Reason: A-' divides by D: 

This pattern extends to n by n matrices, but D and A -  l become more 'complicated. 
For 3 by 3 matrices D has six terms. Section 11.5 identified D as a triple product 

a (b x c) of the columns. Three events come together in the singular case: D is zero 
and A has no inverse and the columns lie in a plane. The opposite events produce the 
"nonsingular" case: D is nonzero and A- ' exists. Then Ax = b is solved by x = A- b. 
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D is also the product of the pivots and the product of the eigenvalues. The pivots 
arise in elimination-the practical way to solve Ax = b without A- ' .  To find eigen- 
values we turn Ax = Ax into ( A- i1)x  = 0 .  By a nice twist of fate, this matrix A -A1 
has D = 0.Go back to the example: 

[f : ] - A [ :  : ] = [ j ; '  4 iA]has D = ( i - q ( 4 - A ) - 2 = A 2 - 7 A l O .  

The equation A2 - 71. + 10 = 0 gives 1. = 5 and A = 2. The eigenvalues come first, to 
make D = 0.Then ( A- 51)x = 0 and (A - 2I)x = 0 yield the eigenvectors. These x's 
go into y = e"x to solve differential equations-which come next. 

16.1 

Read-through questions 

If Ax = b and AX = B, then A times 2x + 3X equals a . 
If Ax = 0 and AX = 0 then A times 2x + 3X equals b . 
In this case x and X are in the c of A, and so is the 
combination d . The nullspace contains all solutions to 

e . It is a subspace, which means f . If x = (1, 1, 1) is 
in the nullspace then the columns add to g , so they are 
(independent)(dependent). 

Another subspace is the h space of A, containing all 
combinations of the columns. The system Ax = b can be 
solved when b is i . Otherwise the best solution comes 
from A T ~ x= i . Here AT is the k matrix, whose 
rows are I . The nullspace of AT contains all solutions to 

m . The n space of AT (row space of A) is the fourth 
fundamental subspace. Each su bspace has a basis containing 
as many o vectors as possible. The number of vectors in 
the basis is the P of the subspace. 

When Ax =Ax,  the number ;I. is an q and x is an 
r . The equation dyldt = A y  has the exponential solution 

y = s . A 7 by 7 matrix has t eigenvalues, whose 
product is the u D. If D is nonzero the matrix A has an 

v . Then Ax = b is solved by x = w . The formula 
for D contains 7! = 5040 terms, so x is better computed by 

x . On the other hand Ax = i.x means that A ->.I has 
determinant v . The eigenvalue is computed before the 

Z . 


Find the nullspace in 1-6. Along with x go all cx. 

12 - 6  
1 A = 2 ]  (solve Ax = 0)

2 4 ' = [ - 6  3 1  

1 0  
1 0 1  

3 C = 0 1 (solve C x  = 0) 

1 2  cT=[o1 2 1  

EXERCISES 

7 Change Problem 1 to Ax = (a) Find any particular r:1
L A 

solution x,. (b) Add any x ,  from the nullspace and show that 
x ,  + xo is also a solution. 

8 Change Problem 1 to Ax = Ll and find all solutions. 
L 

Graph the lines x ,  + 2x2 = 1 and 2 x ,  + 4x2 = 0 in a plane. 

9 Suppose AX,  = b and Ax,  = 0 .  Then by linearity 
&P + xo) = -. Conclusion: The sum of a particular 
solution x ,  and any nullvector xo is . 

10 Suppose Ax = b and AX,  = b. Then by linearity 
A(x -x,) = . The difference between solutions is a 
vector in . Conclusion: Every solution has the form 
x = x ,  + xo ,  one particular solution plus a vector in the 
nullspace. 

11 Find three vectors b in the column space of E. Find all 
vectors b for which Ex = b can be solved. 

12 If Ax = 0 then the rows of A are perpendicular to x .  Draw 
the row space and nullspace (lines in a plane) for A above. 

13 Compute CCT and CTC.Why not C2?  

14 Show that C x  = b has no solution, if b = (-1, 1,l). Find 
the best solution from C T  C X  = cTb. 

15 CT has three columns. How many are independent? 
Which ones? 

16 Find two independent vectors that are in the column space 
of C but are not columns of C. 

17 For which of the matrices A B C  E F are the columns a 
basis for the column space? 
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18 Explain the reasoning: If the columns of a matrix A are 27 Compute the determinant of E -AI. Find all A's that make 
independent, the only solution to Ax =0 is x =0. this determinant zero. Which eigenvalue is repeated? 

19 Which of the matrices ABCEF have nonzero deter- 28 Which previous problem found eigenvectors for Ex =Ox? 
minants? Find an eigenvector for Ex =3x. 

20 Find a basis for the full three-dimensional space using 29 Find the eigenvalues and eigenvectors of A. 
only vectors with positive components. 30 Explain the reasoning: A matrix has a zero eigenvalue if 

and only if its determinant is zero. 
21 Find the matrix F - ' for which FF - '=I =[:;I- 31 Find the matrix H whose eigenvalues are 0 and 4 with 

eigenvectors (1, 1)and (1, -1). 
22 Verify that (determinant of F ) ~  =(determinant of F ~ ) .  32 If Fx =I x  then multiplying both sides by gives 

23 (Important) Write down F -AI and compute its determi- F-'x =A-'x. If F has eigenvalues 1 and 3 then F- '  has 
. The determinants of F and F arenant. Find the two numbers A that make this determinant eigenvalues 

zero. For those two numbers find eigenvectors x such that 
Fx =Ax. 33 True or false, with a reason or an example. 

24 Compute G =F 2. Find the determinant of G -AI and the (a) The solutions to Ax =b form a subspace. 
two A's that make it zero. For those I's find eigenvectors x [:Isuch that Gx =Ax. Conclusion: if Fx =Ax then F ~ X=A2x. (b) [ O  2] has in its nullspace and column space. 

0 0 
25 From Problem 23 find two exponential solutions to the (c) ATA has the same entry in its upper right and lower 
equation dyldt =Fy. Then find a combination of those left corners. 
solutions that starts from yo =(1,O) at t =0. (d)If Ax =Ax then y =e" solves dyldt =Ay. 
26 From Problem 24 find two solutions to dyldt = Gy. Then (e) If the columns of A are not independent, their combi- 
find the solution that starts from yo =(2, 1). nations still form a subspace. 

16.2 Differential Equations 

We just solved differential equations by linear algebra. Those were special systems 
dyJdt= Ay, linear with constant coefficients. The solutions were exponentials, 
involving eU. The eigenvalues of A were the "growth factors" A. This section solves 
other equations-by no means all. We concentrate on a few that have important 
applications. 

Return for a moment to the beginning-when direct integration was king: 

In 1, y(t) is the integral of s(t). In 2, y(t) is the integral of cy(t). That sounds circular- 
it only made sense after the discovery of y = ec'. This exponential has the correct 
derivative cy. To find it by integration instead of inventing it, separate y from t: 

Separation and integration also solve 3:j dy/u(y)=5 c(t)dt.The model logistic equation 
has u = y - y2 = quadratic. Equation 2 has u = y = linear. Equation 1is also a special 
case with u = 1 = constant. But 2 and 1are very different, for the following reason. 

The compound interest equation y' = cy is growing from inside. The equation 
y' = s(t) is growing from outside. Where c is a "growth rate," s is a "source." They 
don't have the same meaning, and they don't have the same units. The combination 
y' =cy + s was solved in Chapter 6, provided c and s are constant-but applications 
force us to go further. 
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In three examples we introduce non-constant source terms. 

EXAMPLE 1 Solve dyldt = cy + s with the new source term s = ekt. 

Method Substitute y = B@, with an "undetermined coefficient" B to make it right: 

kBek' = cBek' + ekt yields B = l / (k- c). 

The source ek' is the driving term. The solution Bekt is the response. The exponent is 
the same! The key idea is to expect ek' in the response. 

Initial condition To match yo at t = 0, the solution needs another exponential. 
It is the free response Aec', which satisfies dyldt = cy with no source. To make 
y = Aec' + Bek' agree with yo, choose A = yo - B: 

Final solution y = (yo- B)ec' + Bekt = yoect+ (ek' - ec')/(k- c). (1) 

Exceptional case B = l / ( k- c) grows larger as k approaches c. When k = c the 
method breaks down-the response Bek' is no longer correct. The solution (1) 
approaches 010, and in the limit we get a derivative. It has an extra factor t: 

ekt - ect 
- change in ect 

+ -
d 

(ect)= tect. 
k - c change in c dc 

The correct response is tectwhen k = c. This is the form to substitute, when the driving 
rate k equals the natural rate c (called resonance). 

Add the free response yoec' to match the initial condition. 

EXAMPLE 2 Solve dyldt = cy + s with the new source term s = cos kt. 

Substitute y = B sin kt + D cos kt. This has two undetermined coefficients B and D: 

kB cos kt - kD sin kt = c(B sin kt + D cos kt)+ cos kt. (3) 

Matching cosines gives kB = cD + 1. The sines give -kD = cB. Algebra gives B, D, y: 

c sin kt + k cos ktB=- C D=- k 
y= k2+c2 (4)k2 + c2 k2 + c2 

Question Why do we need both B sin kt and D cos kt in the response to cos kt? 

First Answer Equation (3)is impossible if we leave out B or D. 
Second Answer cos kt is f eikt+ i e  -"'. So eiktand e-"' are both in the response. 

EXAMPLE 3 Solve dyldt = cy + s with the new source term s = tekt. 

Method Look for y = ~ e ~ '+ Dtek'. Problem 13 determines B and D. Add Aec' as 
needed, to match the initial value yo. 

SECOND-ORDER EQUATIONS 

The equation dyldt = cy is jrst-order. The equation d2y/dt2= - cy is second-order. 
The first is typical of problems in life sciences and economics-the rate dyldt depends 
on the present situation y. The second is typical of engineering and physical sciences- 
the acceleration d2y/dt2enters the equation. 

If you put money in a bank, it starts growing immediately. If you turn the wheels 
of a car, it changes direction gradually. The path is a curve, not a sharp corner. 
Newton's law is F = ma, not F = mu. 
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A mathematician compares a straight line to a parabola. The straight line crosses 
the x axis no more than once. The parabola can cross twice. The equation 
ax2+ bx + c = 0 has two solutions, provided we allow them to be complex or equal. 
These are exactly the possibilities we face below: two real solutions, two complex 
solutions, or one solution that counts twice. The quadratic could be x2 - 1 or x2 + 1 
or x2. The roots are 1 and -1, i and - i, 0 and 0. 

In solving diflerential equations the roots appear in the exponent, and are called A. 

EXAMPLE 4 y" = +y: solutions y = et and y = e-' A = 1, -1 
EXAMPLE 5 y" = 0 y: solutions y = 1 and y = t iZ = 0,0  
EXAMPLE 6 y" = -y: solutions y = cos t and y = sin t A =  i, - i 

Where are the complex solutions? They are hidden in Example 6, which could be 
written y = eit and y = e-". These satisfy y" = -y since i2 = - 1. The use of sines and 
cosines avoids the imaginary number i, but it breaks the pattern of e". 

Example 5 also seems to break the pattern-again eU is hidden. The solution y = 1 
is eO'. The other solution y = t is teot. The zero exponent is repeated-another excep-
tional case that needs an extra factor t. 

Exponentials solve every equation with constant coeficients and zero right hand side: 

To solve ay" + by' + cy = 0 substitute y = e" and find A. 

This method has three steps, leading to the right exponents A = r and A =  s: 

1. With y = eU the equation is aA2ee" + bAe" + ceAt= 0. Cancel e". 
2. Solve aA2 + bA + c = 0. Factor or use the formula A = (- b f Jbi-rlac)/2a. 
3. Call those roots A = r and A= s. The complete solution is y = Aert+ Best. 

The pure exponentials are y = er' and y = e". Depending on r and s, they grow or 
decay or oscillate. They are combined with constants A and B to match the two 
conditions at t = 0. The initial state yo equals A + B. The initial velocity yb equals 
rA + sB (the derivative at t = 0). 

EXAMPLE 7 Solve y" - 3y' + 2y = 0 with yo = 5 and yb = 4. 

Step 1 substitutes y = e". The equation becomes i2e" - 3Ae" + 2e" = 0. Cancel e". 
Step 2 solves 1.' -31. + 2 = 0. Factor into (A -1)(A-2) = 0. The exponents r, s are 1,2. 
Step 3 produces y = Aet + ~ e ~ ' .The initial conditions give A + B = 5 and 1 A + 2B = 4. 
The constants are A = 6 and B = - 1. The solution is y = 6et - elt. 

This solution grows because there is a positive A. The equation is "unstable." It 
becomes stable when the middle term -3y' is changed to + 3y'. When the damping 
is positive the solution decays. The 1's are negative: 

EXAMPLE 8 (A2+ 31 + 2) factors into (1 + 1)(1+ 2). The exponents are -1 and -2. 
The solution is y = Ae-' + Be-2t. It decays to zero for any initial condition. 

EXAMPLES 9-10 Solve y" + 2y' + 2y = 0 and y" + 2y' + y = 0. How do they differ? 

Key difference A2 + 2A + 2 has complex roots, L2 + 23, + 1 has a repeated root: 

A 2 + 2 1 + 2 = 0  gives A = - 1 + i  ( 1 + 1 ) ~ = 0  gives A=-1, -1 .  

The -1 in all these R's means decay. The i means oscillation. The first exponential 
is e(-I+ i)t ,which splits into e-' (decay) times eit (oscillation). Even better, change eit 
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and e-" into cosines and sines: 
= Ae(-1 +i)t + ge(-1- i ) t  = e-'(a cos t + b sin t). ( 5 )  

At t = 0 this produces yo = a. Then matching yb leads to b. 
Example 10 has r = s = - 1 (repeated root). One solution is e-' as usual. The 

second solution cannot be another e-'. Problem 21 shows that it is te-'-again the 
exceptional case multiplies by t! The general solution is y = Ae-' + Bte-'. 

Without the damping term 2yf, these examples are y" + 2y = 0 or y" + y = 0-pure 
oscillation. A small amount of damping mixes oscillation and decay. Large damping 
gives pure decay. The borderline is when A is repeated (r = s). That occurs when 
b2 -4ac in the square root is zero. The borderline between two real roots and two 
complex roots is two repeated roots. 

The method of solution comes down to one idea: Substitute y = eU. The equations 
apply to mechanical vibrations and electrical circuits (also other things, but those 
two are of prime importance). While describing these applications I will collect the 
information that comes from A. 

SPRINGS AND CIRCUITS: MECHANICAL AND ELECTRICAL ENGINEERING 

A mass is hanging from a spring. We pull it down an extra distance yo and give it a 
starting velocity yb. The mass moves up or down, obeying Newton's law: mass times 
acceleration equals spring force p lus damping force: 

my" = - ky - dy' or my" + dy' + ky = 0. (6) 

This is free oscillation. The spring force -ky is proportional to the stretching y 
(Hooke's law). The damping acts like a shock absorber or air resistance-it takes 
out energy. Whether the system goes directly toward zero or swings back and forth 
is decided by the three numbers m, d, k. They were previously called a, b, c. 

16A The solutions e" to my" + dy' + ky = 0 are controlled by the roots of 
mA2 + d l  + k = 0. With d > 0 there is damping and decay. From J62-4mk 
there may be oscillation: 

overdamping: d > 4mk gives real roots and pure decay (Example 8) 

underdamping: d < 4mk gives complex roots and oscillation (Example 9) 

I critical damping: d2 = 4mk gives a real repeated root -d/2m (Example 10) 

We are using letters when the examples had numbers, but the results are the same: 

d l
m i 2 + d 1 + k = 0  hasroots r , s = - - f  --,/;iT-4mk.

2m 2m 

Overdamping has no imaginary parts or oscillations: y = Ae" + Bes'. Critical damping 
has r = s and an exceptional solution with an extra t: y = Ae" + Bte". (This is only a 
solution when r = s.) Underdamping has decay from -d/2m and oscillation from the 
imaginary part. An undamped spring (d = 0) has pure oscillation at the natural fre- 
quency wo = Jklm. 

AN these possibilities are in Figure 16.2, created by Alar Toomre. At the top is pure 
oscillation (d = 0 and y = cos 2t). The equation is y" + dy' + 4y = 0 and d starts to 
grow. When d reaches 4, the quadratic is A2 + 41 + 4 or (1 + 2)2. The repeated root 
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Fig. 16.2

yields e-2t and te-2t. After that the oscillation is gone. There is a smooth transition

from one case to the next-as complex roots join in the repeated root and split into
real roots.

At the bottom right, the final value y(27n) increases with large damping. This was
a surprise. At d = 5 the roots are -1 and - 4. At d = 8.5 the roots are - ' and - 8.

The small root gives slow decay (like molasses). As d -+ oo the solution approaches

y= 1.
If we are serious about using mathematics, we should take advantage of anything

that helps. For second-order equations, the formulas look clumsy but the examples
are quite neat. The idea of e"' is absolutely basic. The good thing is that electrical
circuits satisfy the same eqution. There is a beautiful analogy between springs and
circuits:

mass m , inductance L

damping constant d *- resistance R

elastic constant k - 1/(capacitance C)

The resistor takes out energy as the shock absorber did-converting into heat by
friction. Without resistance we have pure oscillation. Electric charge is stored in
the capacitor (like potential energy). It is released as current (like kinetic energy).
It is stored up again (like a stretched spring). This continues at a frequency
c0 = 1/-LC (like the spring's natural frequency k/r). These analogies turn

mechanical engineers into electrical engineers and vice versa.
The equation for the current y(t) now includes a driving term on the right:

L + R y + - y dt = applied voltage = V sin cot. (7)dt C
To match networks with springs, differentiate both sides of (7):

Ly" + Ry' + y/C = Vwt cos cot. (8)

The oscillations are free when V = 0 and forced when V A 0. The free oscillations
eAt are controlled by LA2 + RA + 1/C = 0. Notice the undamped case R = 0 when



16 Mathematics after Calculus 

A = i/-. This shows the natural frequency w, = l / p .  Damped free oscilla- 
tions are in the exercises-what is new and important is the forcing from the right 
hand side. Our last step is to solve equation (8). 

PARTICULAR SOLUTIONS-THE METHOD OF UNDETERMINED COEFFICIENTS 

The forcing term is a multiple of cos wt. The "particular solution" is a multiple 
of cos o t  plus a multble of sin wt. To discover the undetermined coefficients in 
y = a cos cot + b sin cot, substitute into the differential equation (8): 

-Lw2(a cos wt + b sin ot)  + Rw(- a sin wt + b cos wt) 

+ (a cos wt + b sin wt)/C = Vw cos wt. 

The terms in cos wt and the terms in sin o t  give two equations for a and b: 

-a h 2+ bRw + a/C = Vw and -b ~ w ~- aRw + blC = 0. (9) 

EXAMPLE 11 Solve y" + y = cos o t .  The oscillations are forced at frequency w. The 
oscillations are free (y" + y = 0) at frequency 1. The solution contains both. 

Particular solution Set y = a cos o t  + b sin wt at the driving frequency w, and (9) 
becomes 

- a w 2 + O + a =  1 and -bo2-O+b=O.  

The second equation gives b = 0. No sines are needed because the problem has no 
dyldt. The first equation gives a = 1/(1-w2), which multiplies the cosine: 

y = (cos wt)/(1 -w2) solves y" + y = cos wt. (10) 

General solution Add to this particular solution any solution to y" + y = 0: 

Problem of resonance When the driving frequency is o = 1, the solution (1 1) 
becomes meaningless-its denominator is zero. Reason: The natural frequency in 
cos t and sin t is also 1. A new particular solution comes from t cos t and t sin t. 

The key to success is to know the form for y. The table displays four right hand 
sides and the correct y's for any constant-coefficient equation: 

Right hand side Particular solution 
ekt y = Bek' (same exponent) 
cos wt or sin o t  y = a cos a t  + b sin wt (include both) 
polynomial in t y = polynomial of the same degree 
ektcos wt or ekt sin wt y = aekt cos wt + bekt sin wt 

Exception If one of the roots A for free oscillation equals k or ico or 0 or k + iw, the 
corresponding y in the table is wrong. The proposed solution would give zero on the 
right hand side. The correct form for y includes an extra t. All particular solutions 
are computed by substituting into the differential equation. 

Apology Constant-coefficient equations hardly use calculus (only e"). They reduce 
directly to algebra (substitute y, solve for iland a and b). I find the S-curve from the 
logistic equation much more remarkable. The nonlinearity of epidemics or heartbeats 
or earthquakes demands all the calculus we know. The solution is not so predictable. 
The extreme of unpredictability came when Lorenz studied weather prediction and 
discovered chaos. 



NUMERICAL METHODS 


Those four pages explained how to solve linear equations with constant coefficients: 
Substitute y = eat. The list of special solutions becomes longer in a course on 
differential equations. But for most nonlinear problems we enter another world- 
where solutions are numerical and approximate, not exact. 

In actual practice, numerical methods for dyldt =f (t, y) divide in two groups: 

1. Single-step methods like Euler and Runge-Kutta 
2. Multistep methods like Adams-Bashforth 

The unknown y and the right side f can be vectors with n components. The notation 
stays the same: the step is At = h, the time t, is nh, and y, is the approximation to 
the true y at that time. We test the first step, to find y, from yo = 1. The equation is 
dyldt = y, so the right side is f = y and the true solution is y = et. 

Notice how the first value off  (in this case 1) is used inside the second f: 

TEST y, = 1 + +h[l+ (1 + h)] = 1 + h + $h2 

At time h the true solution equals eh. Its infinite series is correct through h2 
for Improved Euler (a second-order method). The ordinary Euler method 
yn+ = yn+ hf (t,, y,) is first-order. TEST: y, = 1+ h. Now try Runge-Kutta 
(a fourth-order method): 

Now the first value off is used in the second (for k,), the second is used in the third, 
and then k3 is used in k,. The programming is easy. Check the accuracy with another 
test on dyldt = y: 

h2 h3 h4 
=1+ h + -+ -+ -. This answer agrees with eh through h4. 

2 6 24 

These formulas are included in the book so that you can apply them directly- 
for example to see the S-shape from the logistic equation with f= cy - by2. 

Multistep formulas are simpler and quicker, but they need a single-step method to 
get started. Here is y, in a fourth-order formula that needs yo, y,, y,, y,. Just shift 
all indices for y,, y,, and y, + ,: 

h 
Multistep y4 = y3 + -[55yi - 59y; + 37y; - 9ybl.

24 

The advantage is that each step needs only one new evaluation of y; =f(t,, y,). 
Runge-Kutta needs four evaluations for the same accuracy. 

Stability is the key requirement for any method. Now the good test is y' = -y. The 
solution should decay and not blow up. Section 6.6 showed how a large time step 
makes Euler's method unstable-the same will happen for more accurate formulas. 
The price of total stability is an "implicit method" like y, = yo + + h ( ~ b+ y;), 
where the unknown y, appears also in y; . There is an equation to be solved at every 
step. Calculus is ending as it started-with the methods of Isaac Newton. 
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16.2 EXERCISES

Read-through questions

The solution to y' -5y = 10 is y = Ae5t + B. The homo-
geneous part Ae 5' satisfies y'-5y = a . The particu-
lar solution B equals b . The initial condition Yo is
matched by A = c . For y'-5y = ekt the right form
is y =Ae + d . For y'-5y = cos t the form is
y = Ae5'+ e + f

The equation y"+4y'+ 5y=0 is second-order because
g . The pure exponential solutions come from the roots

of h , which are r= i and s= I . The general
solution is y = k . Changing 4y' to I yields pure
oscillation. Changing to 2y' yields = - 1 + 2i, when the
solutions become y= m . This oscillation is
(over)(under)(critically) damped. A spring with m = 1, d = 2,
k = 5 goes (back and forth)(directly to zero). An electrical
network with L = 1, R = 2, C = also n

One particular solution of y" + 4y = e' is e' times
o . If the right side is cos t, the form of y, is p . If the

right side is 1 then y, = q . If the right side is r we
have resonance and y, contains an extra factor s

Problems 1-14 are about first-order linear equations.

I Substitute y = Be3 ' into y' - y = 8e3' to find a particular
solution.

2 Substitute y = a cos 2t + b sin 2t into y' + y = 4 sin 2t to
find a particular solution.

3 Substitute y = a + bt + ct2 into y' + y = 1 + t2 to find a
particular solution.

4 Substitute y = aetcos t + be'sin t into y' = 2e'cos t to find
a particular solution.

5 In Problem 1 we can add Ae' because this solves the equa-
tion . Choose A so that y(0) = 7.

6 In Problem 2 we can add Ae - t, which solves
Choose A to match y(0)= 0.

7 In Problem 3 we add to match y(O)= 2.

8 In Problem 4 we can add y = A. Why?

9 Starting from Yo= 0 solve y' = ek ' and also solve y' = 1.
Show that the first solution approaches the second as k -0.

10 Solve y' - y = ek' starting from Yo= 0. What happens to
your formula as k - 1? By l'H6pital's rule show that y
approaches te' as k -, 1.

11 Solve y' - y = e' + cos t. What form do you assume for y
with two terms on the right side?

12 Solve y' + y = e' + t. What form to assume for y?

13 Solve y' = cy + te' following Example 3 (c - 1).

14 Solve y' = y + t following Example 3 (c = 1 and k = 0).

Problems 15-28 are about second-order linear equations.

15 Substitute y = ea' into y" + 6y' + 5y = 0. (a) Find all it's.
(b) The solution decays because . (c) The general
solution with constants A and B is

16 Substitute y = eat into y" + 9y = 0. (a) Find all it's. (b) The
solution oscillates because . (c) The general solution
with constants a and b is

17 Substitute y = eAt into y" + 2y' + 3y = O0.Find both it's.
The solution oscillates as it decays because . The
general solution with A and B and et is . The
general solution with e-' times sine and cosine is

18 Substitute y = eat into y" + 6y' + 9y = 0. (a) Find all 's.
(b) The general solution with e and teA is

19 For y"+dy'+y=0 find the type of damping at
d=0, 1, 2, 3.

20 For y"+2y'+ky=0 find the type of damping at
k=0, 1,2.

21 If A2+ b + c = 0 has a repeated root prove it is =
- b/2. In this case compute y" + by' + cy when y = teA'.

22 A2+ 3 + 2 = 0 has roots -1 and -2 (not repeated). Show
that te-' does not solve y" + 3y' + 2y = 0.

23 Find y = a cos t + b sin t to solve y" + y'+ y = cos t.

24 Find y = a cos ot + b sin cot to solve y" + y' + y = sin ot.

25 Solve y" + 9y = cos 5t with Yo= 0 and yO= 0. The solution
contains cos 3t and cos 5t.

26 The difference cos 5t - cos 3t equals 2 sin 4t sin t. Graph
it to see fast oscillations inside slow oscillations (beats).

27 The solution to y"+o2y=coscot with yo=0 and
y = 0 is what multiple of cos ot-cos cot? The formula
breaks down when o =

28 Substitute y = Aei "' into the circuit equation
Ly' + Ry + y dt/C = Vei' . Cancel ei"' to find A. Its denomi-
nator is the impedance.

Problems 29-32 have the four right sides in the table (end of
section). Find Ypa,,icularby using the correct form.

29 y"+ 3y = e5'

31 y"+2y= l+t

30 y" + 3y = sin t

32 y" + 2y = e' cos t.

33 Find the coefficients of y in Problems 29-31 for which the
forms in the table are wrong. Why are they wrong? What new
forms are correct?

610
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34 The magic factor t entered equation (2). The series for 40 In one sentence tell why y" = 6 y  has exponential solutions 
ek' - eCt starts with 1 + kt + 4k2t2minus 1 + ct + ic2t2.Divide but y"= 6y2 does not. What power y = xn solves this 
by k -c and set k = c to start the series for te". equation? 

35 Find four exponentials y = e" for d 4y/dt4 -y = 0. 41 The solution to dy/dt =f (t), with no y on the right side, 
is y = j f(t) dt. Show that the Runge-Kutta method becomes 

36 Find a particular solution to d 4y/dt + y = et. Simpson's Rule. 
+ Bte-2t when d = 4 in37 The solution is y = ~ e - ~ '  42 Test all methods on the logistic equation y' = y -y2 to

Figure 16.2. Choose A and B to match yo = 1 and yb = 0. see which gives y, = 1 most accurately. Start at the inflection 
How large is y(271)? point yo = 4 with h = &. Begin the multistep method with 
38 When d reaches 5 the quadratic for Figure 16.2 is exact values of y = (1 + e-')- l. 
A2 + 5A + 4 = (A + l)(A + 4). Match y = Ae-I + Bed4' to 43 Extend the tests of Improved Euler and Runge-Kutta to 
yo = 1 and yb = 0. How large is y(2n)? y' = -y with yo = 1. They are stable if 1 y, 1 < 1. How large ' 

39 When the quadratic for Figure 16.2 has roots -r  and can h be? 
-4/r, the solution is y = Ae-" + 44 Apply Runge-Kutta to y' = - 100y + 100 sin t with 

(a) Match the initial conditions yo = 1 and yb = 0. yo = 0 and h = .02. Increase h to .03 to see that instability 
(b) Show that y approaches 1 as r + 0. is no joke. 

Discrete Mathematics: Algorithms 

Discrete mathematics is not like calculus. Everything isfinite. I can start with the 50 
states of the U.S. I ask if Maine is connected to California, by a path through 
neighboring states. You say yes. I ask for the shortest path (fewest states on the way). 
You get a map and try all possibilities (not really all-but your answer is right). Then 
I close all boundaries between states like Illinois and Indiana, because one has an 
even number of letters and the other has an odd number. Is New York still connected 
to Washington? You ask what kind of game this is-but I hope you will read on. 

Far from being dumb, or easy, or useless, discrete mathematics asks good questions. 
It is important to know the fastest way across the country. It is more important to 
know the fastest way through a phone network. When you call long distance, a quick 
connection has to be found. Some lines are tied up, like Illinois to Indiana, and there 
is no way to try every route. 

The example connects New York to New Jersey (7 letters and 9). Washington is 
' connected to Oregon (10 letters and 6). As you read those words, your mind jumps 

to this fact-there is no path from New York with 7 letters to Washington with 10. 
Somewhere you must get stuck. There might be a path between all states with an 
odd number of letters-I doubt it. Graph theory gives a way to find out. 

GRAPHS 

A model for a large part of finite mathematics is a graph. It is not the graph of 
y =f(x) .  The word "graph" is used in a totally different way, for a collection of nodes 
and edges. The nodes are like the 50 states. The edges go between two nodes-the 
neighboring states. A network of computers fits this model. So do the airline connec- 
tions between cities. A pair of cities may or may not have an edge between them- 
depending on flight schedules. The model is determined by V and E. 
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DEFINITION A graph is a set V of nodes (or vertices) and a set E of edges. 

EXAMPLE 1 How many edges are possible with n nodes, in a complete graph? 

The first node has edges to the n - 1 other nodes. (An edge to itself is not allowed.) 
The second node has n - 2 new edges. The third node has another n - 3. The total 
count of edges, when none are missing, is the sum from Section 5.3: 

1 + 2 + - - -  + (n - 1) = in(n - 1) edges in a complete graph. 

Fifty states have 25 -49 = 1225 possible edges. The "neighboring states graph" has 
less than 200. A line of 6 nodes has 5 edges, out of 4 6 5 = 15 possible. 

EXAMPLE 2 Which states with an odd number of letters are reachable from New 
York? Boundaries to states like Pennsylvania (12 letters) are closed. 

Method of solution Start from New York (7). There is an edge to Connecticut (1 1). 
That touches Massachusetts (13), which is a neighbor of Vermont (7). But we missed 
Rhode Island, and how do we get back? The order depends on our search method- 
and two methods are specially important. 

Depth f i s t  search (DFS) "From the current state, go to one new state if possible." 
But what do we do from Vermont, when New Hampshire (12) is not allowed? The 
answer is: backtrack to Massachusetts. That becomes the next current state. 

We label every state as we reach it, to show which state we came from. Then VT 
has the label MA, and we easily cross back. From MA we go to RI. Then backtrack 
to MA and CT and NY. At every step I searched for a new state with no success. 
From NY we see NJ (9). Finally we are in a corner. 

The depth first search is ended, by a barrier of even states. Unless we allow Ontario 
and keep going to Minnesota. 

Breadthfist search (BFS) "From the current state, add all possible new states to the 
bottom of the list. But take the next current state from the top of the list." There is 
no need to backtrack. 

From NY we reach VT and MA and CT and NJ. What comes next? 
Where DFS moves from the last possible state, breadth first search moves from 

thefirst possible state. No move from VT is possible-so we "scan" from Massachu- 
setts. We see Rhode Island (barely). That ends BFS. 

The same six states are reached both ways. Only the order is different. DFS is last 
in-&st out. BFS is f i s t  in-fist out. You have the same choice in drawing a family 
tree-follow a path as far as it goes and backtrack, or list all brothers and sisters 
before their children. The BFS graph in Figure 16.3 is a tree. So is the DFS graph, 
using forward edges only. 

MA 

DFS from NY CT BFS from NY - CT 3 

i 
NJ NJ 

Fig. 16.3 Search trees from New York. The minimum spanning tree. 
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DEFINITION A tree is a connected graph with no loops. Its N nodes are connected 
by N - 1 edges. If N = n, so every node is in the tree, it is a spanning tree. 

The path from VA to KY to TN to NC to VA is a loop (or cycle). If one of those four 
edges is removed, we have a tree. If two edges are removed, we have two trees (a 
small forest). 

EXAMPLE 3 .411ow an edge between neighboring states only when one state is even 
and the other is odd. Are the lower 48 states connected? 

Start anywhere-say California. Apply either type of search-maybe DFS. Go to 
Arizona (7) then Utah (4) then WY (9) then CO (8) then NM then OK then TX. 
(I am writing this on an airplane, looking at the map.) We will never get to Florida! 
It is blocked by Alabama and Georgia. 

The search creates a tree, but not a spanning tree. This graph is not connected. 
An odd-to-even graph is special and important. It is called "bipartite," meaning 

two parts. The odd states are in one part, the even states are in the other. All edges 
go between parts. No edges are within a part.? 

EXAMPLE 4 Is there a "complete matching" between 25 even and 25 odd states? 
This requires neighboring states to be paired off (with no repetition). 

Method 1 Start pairing them OR CA-AZ, UT-WY, NV-ID, NE-SD, WA-MT. 
What about Oregon? Maybe it should have been paired with Idaho. Then Nevada 
could pair with Arizona. Trial and error goes nowhere fast. 

Method 2 Think first. The four states CA-OR-WA-NV are even. This whole group 
is only connected to three odd states (AZ, ID, MT). The matching is impossible. 

This is Hall's Theorem. In a course on graphs, it would be proved. Our purpose here 
is to see the ideas and questions in discrete mathematics, more than the proofs. 

THE GREEDY ALGORITHM 

Put back all edges between neighboring states. The nodes could be provinces of 
Canada or states of Australia. If they are countries of Europe-Asia-Africa (or the 
Americas), we need a new map. The essential thing is the new problem. 

In a network each edge has a "length." A positive number cij is assigned to the edge 
from node i to node j. In an economics problem, cij is the cost. In a flow problem it 
is the capacity, in an electrical circuit it is the conductance. We look for paths that 
minimize these "lengths." 

PROBLEM Find the minimum spanning tree. Connect all nodes by a tree with the 
smallest possible total length. 

The six cheapest highways connecting seven cities form a minimum spanning tree. It 
is cheapest to build, not cheapest to drive-you have to follow the tree. Where there 

tExactly half the states have an even number of letters (a real trivia question). This is the little- 
known reason for admitting Alaska and Hawaii. 
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is no edge we set cij = GO (or an extremely large value, in an actual code). Then the 
algorithm works with a complete network-all n(n - 1)/2 edges are allowed. How 
does it find the minimum spanning tree in Figure 16.3c? 

Method 1 Always add the shortest edge that goes out from the current tree. 

Starting from node s, this rule chooses edges of length 1,2, 7,4, 3. Now it skips 5, 
which would close a loop. It chooses 6, for total length 23. 

Method 2 Add edges in order, from shortest to longest. Reject an edge that closes a 
loop. Several trees grow together (a forest). At the end we have a minimum spanning 
tree. 

This variation chooses edge lengths in the order 1 ,2 ,3 ,4 ,6  (rejecting 5), 7. In our 
network both methods produce the same tree. When many edges have equal length, 
there can be many shortest trees. 

These methods are examples of the Greedy Algorithm: Do the best thing at every 
step. Don't look ahead. Stick to a decision once it is made. In most network problems 
the Greedy Algorithm is not optimal-in this spanning tree problem it is. 

Method 2 looks faster than Method 1. Sort the edges by length, and go down the 
list. Just avoid loops. But sorting takes time! It is a fascinating problem in itself- 
bubble sort or insertion sort or heapsort. We go on to a final example of discrete 
mathematics and its algorithms. 

PROBLEM Find the shortest path from the source node s to each other node. 

The shortest path may not go along the minimum spanning tree. In the figure, the 
best path going east has length 1 + 8. There is a new shortest path tree, in which the 
source plays a special role as the "root." 

How do we find shortest paths? Listing all possibilities is more or less insane. A 
good algorithm builds out from the source, selecting one new edge at every step. 
After k steps we know the distances dl ,  ...,d, to the k nearest nodes. 

Algorithm: Minimize di + cij over all settled nodes i and all remaining nodes j. 

The best new node j is a distance cij  from a settled node, which is a distance di from 
the source. In the example network, the first edges are 1,2,7. Next is 8. The northeast 
node is closest to the source at this step. The final tree does not use edges 3, 5,6- 
even though they are short. 

These pages were written to show you the algorithmic part of discrete mathematics. 
The other part is algebra-permutations, partitions, groups, counting problems, 
generating functions. There is no calculus, but that's fair. The rest of the book was 
written to show what calculus can do-I hope very much that you enjoyed it. 

Thank you for reading, and thinking, and working. 

Read-through questions To find a path from node i to node j, two search methods 
A graph is a set V of a and a set E of b . With 6 are h . As nodes are reached, DFS looks out from the 
nodes, a complete graph has c edges. A spanning tree i node for a new one. BFS looks out from j . DFS 
has only d .A tree is defined as e ,and it is spanning must be prepared to k to earlier nodes. In case of fire, 
if r . It has a path between each pair of nodes. BFS locates all doors from the room you are in before I . 



615 16.3 Discrete Mcrthemcrtics: Algorithms 

In a bipartite graph, all edges go from one part to m . 
A matching is impossible if k nodes in one part are connected 
to n nodes in the other part. The edges in a network have 

o cij. A minimum spanning tree is P .It can be found 
by the q algorithm, which accepts the shortest edge to a 
new node without worrying about r . 

1 Start from one node of a hexagon (six nodes, six edges). 
Number the other nodes by (a) breadth first search (b) depth 
first search. 

2 Draw two squares with one node in common (7-node 
graph). From that node number all others by DFS and BFS. 
Indicate backtracks. 

3 How many spanning trees in the hexagon graph? 

4 Draw a spanning tree in the two-square graph. How many 
spanning trees does it have? 

5 Define a connected graph. If a graph has 7 edges and 9 
nodes, prove that it is not connected. 

6 Define a loop. If a connected graph has 8 edges and 9 
nodes, prove that it has no loops. 

7 Find the shortest path (minimum number of edges) from 
Maine to California. 

8 Which state is farthest (how many edges are needed) from 
the state you are in? Why would it come last in BFS? 

9 List the steps of BFS from your state to Georgia or 
Colorado or New Jersey. (There are edges Hawaii-California 
and Alaska- Washington.) 

10 With edges between odd neighboring states and between 
even neighbors, what is the largest connected set of states? 
Map required. 

11 With edges only from odd to even neighbors, how many 
states can be matched? (Answer unknown to author-please 
advise.) 

12 A matching is a forest of two-node trees. Give another 
description. 

13 Find the minimum spanning tree for network A. 

14 Find the shortest path tree from the center of network A. 

15 Is there a complete matching between left and right nodes 
in graph B? If not, which group of nodes has too few 
connections? 

16 Find the loop in network B. Then find a minimum span- 
ning tree by Method 1 and Method 2. 

17 How many spanning trees in graph B? It has one loop. 

18 Show that a graph cannot have O,1,2,3, and 4 edges 
going into its five nodes. 

19 If the only edges into a node have lengths 6 and 8, can 
they both be in a minimum spanning tree? 

20 In Problem 19, prove that a minimum spanning tree con- 
tains edge (6) if it contains edge (8). 

21 True or false, with reason or example. 
(a) In a complete network, the minimum spanning tree 
contains the n - 1 shortest edges. 
(b) If a graph has 9 nodes and 9 edges, it has a loop. 
(c) A graph with a complete matching must be connected. 

22 Draw a tree that is perfect for (a) DFS; (b) BFS. 

23 The adjacency matrix has aij = 1 if there is an edge from 
node i to node j. Write down this matrix for graphs A and B. 

24 In a complete network start with dij =cij. Show that the 
dij at the end of this program are shortest distances: 

for i = l  to n d o  
for j = 1 to n do 
for k = 1 to n do 

dij=max(dij, dik +dkj) 

25 How many spanning trees in graph A? 

26 A maximum spanning tree has greatest possible length. 
Give an algorithm to find it. 

27 Write a code that will find a spanning tree (or stop), given 
a list of edges like (1, 2), (1, 3), (4, 7), .... 
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CHAPTER 1 INTRODUCTION TO CALCULUS 

Section 1.1 Velocity and Distance (page 6) 

2for 0 < t < 10 0 for 0 < t <  T 
1v = 30,0, -30;v = -10,20 3 v(t) = 1for 10 < t < 20 v(t) = for T < t < 2T 

-3for 20 < t < 30 0 for 2T < t < 3T 

20for t < .2 20t for t 5 .2
5 25; 22; t + 10 7 6; -30 9 v(t) = { 

Ofor t > .2 1110%; l2$% 

29 Slope -2; 15 f 5 9 3 1  v(t) = 
8 for O < t < T  8t for 0 5 t T 

-2 for T < t < 5 T  lt) = { lOT - 2t for T 5 t _( ST 

4 7  %v;;V 4 9  input * input -+ A input * input -+ A B * B -+ C input + I +  A 
input +A --+ output input +A --+ B B + C --+ output A * A -+ B 

A + B --+ output 
6 1  3 t +  5,3t + 1,6t - 2,6t - 1,-3t - 1,9t - 4; slopes 3,3,6,6,-3,9 

Section 1.2 Calculus Without Limits (page 14) 

12 + 5 + 3 = 10;f = 1,3,8,11;10 3 f = 3,4,6,7,7,6; max f at v = 0 or at break from v = 1to -1 

5 1.1,-2,s; f (6) = 6.6, -11,4; f (7) = 7.7, - l3 ,9 7 f (t) = 2t for t 5 5,10 + 3(t - 5) for t 2 5; f (10) = 25 

9 7, 28, 8t + 4; multiply slopes 11f (8) = 8.8, -15,14; = 1.1,-2,5 

13 f (z)= 3052.50 + .28(x - 20,350); then 11,158.50 is f (49,300) 1 5  19+% 

1 7  Credit subtracts 1,000, deduction only subtracts 15% of 1000 1 9  All vj = 2;vj = (-l)j-';vj = ($)j 

2 1  L's have area 1,3,5,7 23  f j  = j ;  sum j2+ j ;  sum + 25 (1012 - 9g2)/2 = 7 27 V j  = 2 j  29 f31 = 5 

31 a j  = -f j  35  0; 1; .1 35  v = 2,6,18,54; 2 3j-I 37  = 1,.7177, .6956, .6934 -+ln 2 = .6931 in Chapter 6 

39  V, = -(i)j 4 1  vj = 2(-l)j, sum is f j  - 1 45 v = 1000,t = lO/V 

47  M, N 5 1  4 < 2 . 9  < 92 < 29; (i)2< 2 ( i )  < @< 2lI9 

Section 1.3 The Velocity at an Instant (page 21) 

1 6 , 6 , y a , - 1 2 , 0 , 1 3  3 4 , 3 . 1 , 3 + h , 2 . 9  5 V e l o c i t y a t t = l i s 3  7 A r e a f = t + t 2 , s l o p e o f f i s 1 + 2 t  

9 F; F; F; T 112; 2t 1 3  12 + 10t2; 2 + lot2 1 5  Time 2, height 1, stays above from t = $ to 

1 7  f(6) = 18 2 1  v(t) = -2t then 2t 23  Average to t = 5 is 2; v(5) = 7 25  4v(4t) 27  v,,, = t, v(t) = 2t 

Section 1.4 Circular Motion (page 28) 

1lor ,  (0, -11, (- 1,O) 3 (4 cos t, 4 sin t)  ;4 and 4t; 4 cos t and -4 sin t 

5 3t; (cos 3t, sin 3t); -3 sin 3t and 3 cos 3t 7 z = cost; J2/2; -&/2 9 2x13; 1; 2a 

11Clockwise starting at (1 ,O)  1 3  Speed $ 1 5  Area 2 1 7  Area 0 
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19 4 from speed, 4 from angle 2 1  from radius times 4 from angle gives 1in velocity 

23  Slope i ;  average (1 - $)/(r/6) = = .256 25 Clockwise with radius 1from (1,0), speed 3 
27 Clockwise with radius 5 from (0,5), speed 10 29 Counterclockwise with radius 1from (cos 1,sin I), speed 1 
31Left and right from (1,O) to (-1,0), u = - sin t 33 Up and down between 2 and -2; start 2 sin 8, u = 2 cos(t+8) 
36Upanddownfrom(O,-2)to(0,2);u=sinit  3 7 ~ = c o s ~ , ~ = s i n ~ , s p e e d ~ , u ~ , = c o s ~360 

Section 1.5 A Review of Trigonometry (page 33) 

1Connect corner to midpoint of opposite side, producing 30' angle 3 n 7 $ -r area i r28  
9 d = 1,distance around hexagon < distance around circle 11T; T; F; F 

13cos(2t+t) = cos2tcost -sin2tsint = 4cos3t - 3cost 
1 5 i c o s ( s - t ) + ~ c o s ( s + t ) ; ~ c o s ( s - t ) - i c o s ( s + t )  1 7 c o s 8 = s e c B = ~ t l a t 8 = n r  
1 9 U s e c o s ( t - s - t ) = c o s ( t - s ) c o s t + s i n ( t - s ) s i n t  2 3 8 = ~ + r n u l t i p l e o f 2 n  
25 8 = f +  multiple of n 27 No 8 29 4 = f 31 lOPl= a, 1OQ1= b 

CHAPTER 2 DERIVATIVES 

Section 2.1 The Derivative of a Function (page 49) 

1(b) and (c) 3 12+ 3h; 13 + 3h;3; 3 6 f(x) + 1 7 -6 9 2 x + A x +  1;2x+ 1 
-4 

1 1 & d = & + 3 - 137;9;corner 1 5 A = 1 ,  B = - 1  1 7 F ; F ; T ; F  
19 b = B; m and M; m or undefined 2 1  Average x2 + xl + 2x1 
25 i ;  no limit (one-sided limits 1,-1); 1; 1if t # 0, -1 if t = 0 27 ft(3); f (4) - f (3) 
29  2x4(4x3) = BX7 31 = l=2 33 X = - L .  ,, f1(2) doesn't exist d~ 2u 2 f i  AX 36 2 f 5 = 4 u 3 2  

Section 2.2 Powers and Polynomials (page 56) 

1 5  3x2 - 1= 0 at x = fi and A 17 8 ft/sec; - 8 ft/sec; 0 19 Decreases for -1 < x <fi
z+h)-x 23 1 5 10 10 5 1adds to (l+l)'(x = h = 1) 

253x2;2hisdifferenceofx's 2 7 %  =2x+Ax+3x2+3xAx+(Ax)2 +2x+3x2=sumofseparatederivatives 
1 4 12 9 7 ~ ~ ; 7 ( x + l ) ~  3 1 ~ x 4 p l ~ ~ a n y c u b i c  3 3 x + ~ x 2 + $ x 3 + f x 4 + C  3 5 ~ x , 1 2 0 x 6  

37 F; F; F; T; T 39 = .12 so 4 = i(.12); sixcents 4 1  4 = 1C- * = -3AX AX + A A d z  
4 3 E = X  1 10. l X n + l .2x+3 4 5 t t o f i t  4 7 i 5 x  , n + l  , d i v i d e b y n + l = O  

Section 2.3 The Slope and the Tangent Line (page 63) 
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1 7  (-3,19) and (8, E) 1 9  c = 4, y = 3 - x tangent at x = 1 

2 1  (1+ h)3; 3h + 3h2 + h3; 3 + 3h + h2; 3 23  Tangents parallel, same normal 

25 y = 2ax - a2,Q = (0, -a2) ; distance a2 + i ;  angle of incidence = angle of reflection 

fi'
2 7 ~ = 2 p ; f o c u s h a s y = $ = p  2 9 y - & = x + L - x = - 2 -4 - 4  

31 y - = -12 a ( x - a ) ; y =  a 2 +  $ ; a =  $ 33  ($)(1000) = 10 at x =  10 hours 5 5  a =  2 
4157 1.01004512; 1+ 10(.001) = 1.01 39  (2 + AX)^ - (8 +6Ax) = AX)' + AX)^ 4 1  xl  = i;x2 = -40 

4 3 T = 8 s e c ; f ( T ) = 9 6 m e t e r s  4 5 a > t m e t e r s / s e c 2  

Section 2.4 The Derivative of the Sine and Cosine (page 70) 

1(a) and (b) 3 0; 1; 5; $ 5 sin(x + 2s); (sin h)/h -t 1; 2 s  7 cos2 B w 1- 8' + f B4; f B4 is small 

9 s i n i B m i B  11:;4 1 3 P S = s i n h ; a r e a O P R = i s i n h < c u r v e d a r e a i h  
1 5  c o s x = l -  d - + L - . . .  1 7  &(cos(x+ h) - cos(x - h)) = ;(-sinxsinh) -+ -sinx2.1 4.3.2.1 
1 9 3 / = c o s x - s i n x = O a t x = q + n s  2 l ( t a n h ) / h = s i n h / h c o s h < ~ - + l  

-1.2 , 2 , n o  2 5 y = 2 c o s x + s i n x ; y " = - y  2 7 y = - ~ c o s 3 x ; y = ~ s i n 3 x2 3 S l o p e ~ c o s ~ x = ~ , 0 ,1. 

29 In degrees (sin h)/h -+2x1360 = .01745 31 2 sin x cos x + 2 cos x(- sin x) = 0 

Section 2.5 The Product and Quotient and Power Rules (page 77) 

122 5&-* 5 (2 - 2)(x - 3) + (2 - 1)(x- 3) + (x - 1)(x- 2) 

7 - ~ ~ s i n ~ + 4 x c o s x + 2 s i n x9 2 x - 1 - ~ 1 1 2 ~ s i n x c o s x + ~ x - 1 / 2 s i n 2 x + ~ ( s i n x ) - 1 / 2 c o s ~  
134x3cosx-x4sinx+cos4x-4xcos3x sinx 1 5 ~ ~ ~ ~ 0 s x + 2 x ~ i n x 1 7 0 1 9 - ~ ( ~ - 5 ) ~ ~ / ~ + ~ ( 5 - ~ ) - ~ / ~ ( = 0 ? )  

2 1  3(sin x cos X ) ~ ( C O S ~  x - sin2 x) + 2 cos 22 23  u'vwz + v'utuz + w'uvz +z'uvw 25 -csc2 x - sec2 x 
27 v = t;ytt, vt = cost-t sint-t '  s in t  

(l+t) '  A = ~ ( & + ~ c o s ~ + % )  A ' = 2 ( ~ o s t - t s i ~ t + ' - ~ ~ ~ ~  lint 

29 lot for t < 10, & for t > 10 3 1  (l+t) '  p 2t3+6t' 

.(t+l)'-iTi) 
(l+t)? 

5 3  unv + 2u1v' + uu"; ut"v + 3u"v1 + 3u1v" + v"' 35  i sin2 t; i tan2 t; ![(I + t)3/2 - 11 

5 9 T ; F ; F ; T ; F  41degree2n- l /degree2n 4 3 v ( t ) = c o s t - t s i n t ( t < $ ) ; v ( t ) = - : ( t > : )  
45 y = 9+ 9,h a  2 = 0 at x = 0 (no crash) and at x = -L (no dive). Then 2 = ?($ + f )  and 

6 ~ ' h  2 s$#= r (Z + 1). 

Section 2.6 Limits (page 84) 

after 5; 1.1111, y,all n; a,1,after 38; a-1!, L = 0, after N = 10; E,oo, no N; i , ~ ,  4, $, all n; 

-i E i , e  = 2.718..., after N = 12. 3 (c) and (d) 

5 Outside any interval around zero there are only a finite number of a's 9 1117 $ 
1 3  1 1 5  sin 1 1 7  No limit 1 9  $ 2 1  Zero if f (x) is continuous at a 23  2 

25.001,.0001,.005,.1 27 l f (x ) -LI ;&  2 9 0 ; X = 1 0 0  534;03;7;7 353 ;no l imi t ;O ; l  

if lrl < 1; no limit if lrl 2 1 39 .0001; after N = 7 (or 8?) 37 4 1  $ 
4 3  9;8;;an - 8 = $(a,-1 - 8) -+ 0 

45 a, - L 5 b ,  - L 5 c, - L so Ib, - LI < E if la, - LI < E and Ic, - LI < E 
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Section 2.7 Continuous Functions (page 89) 

I c = s i n l ; n o c  3Anyc ;c=O 5 c = O o r  1 ; n o c  7 c = l ; n o c  9 no c; no c 
11 c = 1. 

64, '= 64 1 3 c = - l ; c = - 1  1 5 c = l ; c = l  1 7 c = - l ; c = - 1  

1 9 c = 2 , 1 , 0 , - 1 , ~ ~ ~ ; s a m e c  2 1 f ( x ) = O e x c e p t a t x = l  2 3 d x  25-ff 2 7 A  

29One;two;two 31No;yes;no 3 3 x f ( x ) , ( f ( ~ ) ) ~ , ~ , f ( ~ ) , 2 ( f ( ~ ) - ~ ) , f ( ~ ) + 2 +  3 5 F ; F ; F ; T  

37 Step; f (x) = sin $ with f (0) = 0 39 Yes; no; no; yes (f4(0) = 1) 
4 1  g ( i )  = f (1) - f (i) = f (0) - f (i) = -g(O); zero is an intermediate value between g(0) and g(;) 

43 f(x) - x  is 2 0 at x = O  and 5 0  at x =  1 

CHAPTER 3 APPLICATIONS OF THE DERIVATIVE 

Section 3.1 Linear Approximation (page 95) 

I Y = ~  3 y  = I + ~ ( x - : )  5 ~ = 2 ~ ( ~ - 2 4  726+6.25. .001 9 1  

11 1 - I(-.02) = 1.02 13 Error .000301 vs. i (.0001)6 1 5  .0001- $lo-' vs. i(.0001)(2) 

1 7  Error .59 vs. ?(.01)(90) 1 9  = A 2- = a a t x = O  

2 1 $ ~ ~ = r f i = & a t u = 0 , c + ~ = c + $  l+u 2SdV=3(10)~(.1) 

25 A = 47rr2, dA = 87rr dr 27 V = 7rr2h, dV = 27rrh dr (plus 7rr2 dh) 29 1 + i x  31 32nd root 

Section 3.2 Maximum and Minimum Problems . (page 103) 

1 x =  -2: absmin 3 x =  -1: relmax, x = 0 :  a b s m i n , x = 4 :  absmax 

5 x = -1: abs max, x = 0 , l :  abs min, x = : re1 rnax 7 x = -3: abs min, x = 0 :  re1 max, x = 1: re1 min 

9 x = 1,9 : abs min, x = 5 : abs rnax 11 x = : re1 max, x = 1 : re1 min, x = 0 : stationary (not rnin or max) 
x = 0,1,2, . . : abs min, x = i, 4,4 ,  . . : abs rnax 151x/ 1 : all min, x = -3 abs max, x = 2 re1 rnax 

x = 0 : re1 min, x = $ : abs max, x = 4 : abs min 

x = 0 : abs min, x = 7r : stationary (not min or rnax), x = 27r : abs rnax 

19 = 0 : re1 min, tan B = -? (sin B = 2 and cosB = - %  abs max, sin B = -$ and COSB = % abs min), 

8 = 27r : re1 rnax 

h = $(62" or 158 cm); cube 25 A; 2 6  gallons/mile, miles/gallon at v = fi 
(b) B = = 67.5' 29 x = compare Example 7; f = 4 6' 

R z - C s  . d R  dC R(x)-C(x); Ox ds ;p r~f i t  3 3 x = + ; r e r o  3 5 x = 2  
2(b 4 

2 V = x ( 6 - 9 ) ( 1 2 - 2 x ) ; x w 1 . 6  3 9 A = n r 2 + x 2 , x = f ( 4 - 2 a r ) ; r , , , i , = ~  
m a x a r e a 2 5 0 0 v s ~ = 3 1 8 5  4 3 x = 2 , y = 3  45P(x)=12-x;thinrectangleupyaxis 

H h =  F , r = z  3 V =  = ~ f c ~ n e v o l u m e  

r = ,*; best cylinder has no height, area 27rR2 from top and bottom (?) 
r = 2, h = 4 53 25 and 0 55 8 and -00 

dFG-2 + Jq2 + (S - x)2. * = A - 8-2 

9 d~ &- = 0 when sin a = sinc 

y = x2 = 6 1  (1-1) ( - )  63  m = 1 gives nearest line 65  m = $ 67 equal; x = $ 
kx2 7 1  'Rue (use sign change of f") 
Radius R, swim 2 R cos 0, run 2 RB , time + ; max when sin 0 = A, min all run 
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Section 3.3 Second Derivatives: Bending and Acceleration (page 110) 

3 y =  - l - x 2 ;  no . . .  5 False 7 T r u e  9True ( f1has8ze ros ,  f "has7 )  

11 x = 3 i s m i n :  f M ( 3 ) = 2  1 3  x = O n o t m a x o r m i n ; x = ~ i s m i n :fM( ; )=81  

1 5  x = a  is max: f " ( y )  = -a;x = is min: ft1(?) = fi 
1 7  Concave down for x > $ (inflection point) 

1 9 ~ = 3 i s m a x : f " ( 3 ) = - 4 ; z = 2 , 4 a r e m i n b u t f " = O  2 1 f ( A x ) = f ( - A z )  2 3 l + x - $  

825 1-$ 27 1- ;x - Lx2 29 Error f " ( x ) ~ x  31 Error OAx + &f " ' ( x ) ( ~ z ) ~  

37  & = 1 . 0 1 0 1 ~ ;  = .909m 39 Inflection 4 1  18 vs. 17 43  Concave up; below 

Section 3.4 Graphs (page 119) 

1 120; 150; 9 3 Odd; x = 0, y = x 5 Even; x = 1,x = -1, y = 0 7 Even; y = 1 9 Even 

11 Even; x = l , x =  -1, y = 0 13 x = O , x = - l , y = O  1 5  x = 1,y = 1 1 7  Odd 1 9  3 
2 1  x + &  23 d G  25 Of the same degree 27 Have degree P < degree Q; none 

29 x = 1and y = 32 + C if f is a polynomial; but f (x) = (x - 1)'13+ 32 has no asymptote x = 1 

3 1 ( ~ - 3 ) ~  3 9 x = f i , x = - & y = x  4 1 ~ = 1 0 0 s i n ~  4 5 ~ = 3 , d = l O ; c = 4 , d = 2 0  

47 X* = JS= 2.236 49  t j  = x - 2; Y = X ; y  = 2~ 5 1  xmax = -281,Zmin = 6.339; xinfl = 4.724 

53  xmin = -393, xmaX = 1.53, xmin = 3.33;Zinfl = .896,2.604 

55 xmin = -.7398, xmaX = .8l35; xins = .O4738;x~~,,,, = k2.38 57  8 digits 

Section 3.5 Parabolas, Ellipses, and Hyperbolas (page 128) 

1dyldx = 0 at 2 3 V = (1,-4), F = (1,-3.75) 5 V = ( O , O ) , F  = (0,-1) 7 F = (1,l) 

9 V = ( O , f 3 ) ; F = ( o , f f i )  11V = ( O , f l ) ; F = ( ~ , f f i )  1 3  Twolines, a = b = c = O ; V = F = ( 0 , 0 )  
111 5  t ~ = 5 x ~ - 4 x  1 7  Y + P = J x 2 + ( Y - p ) 2 - - + 4 p y = x 2 ; ~ = ( ~ , ~ ) , Y = - ~ ; ( f ~ , 1 2 )  

1 9  x = a y 2  with a > 0 ; y =  W ; y =  - a x 2 + a x w i t h a > 0  

z2+ Y1, = 1., (x -3 ) '  + ( ~ - 1 ) ~2 1  $ + y 2 = 1 ; ~ + ( y - 1 ) 2 = 1  2 3 %  ,, = 1;x2 + y2 = 25 

-25 Circle, hyperbola, ellipse, parabola 27 * = -2; y = -$x +5 

32 

29 b*2 = 1 
dz 49 40 , 2 ( ~  5) 

2 3 3 3 x 1 2 + y 1 2 = 2  ~ 5 ~ ~ - $ ~ ~ = 1 . ~ - ~ = l ; ~ ~ - ~ ~ = 5~ 1 ~ i r ~ l ~ ; ( 3 , 1 ) ; 2 ; X = y , Y = ~  ' 9  9 

37 2 -& = 1 39 # - 4y + 4, 2x2 + 122 + 18; -14, (-3,2), right-left 25 

4 1  ~ = ( k $ , ~ ) ; y = k :  43  ( ~ + y + 1 ) ~ = 0  

45 (a2 - 1)x2+ 2abxy + (b2 - 1)y2 + 2acx + 2bcy + c2 = 0; 4(a2 + b2 - 1); if a2 + b2 < 1then B2 - 4AC < 0 

Section 3.6 Iterations xn+l = F ( x n )  (page 136) 

1-.366;oo 3 1 ; l  5 : ; foo  7-2;-2 
9 attracts, 9repels; $ attracts, 0 repels; 1attracts, 0 repels; 1 attracts; $ attracts, 0 repels; 

f \ /Z  repel 

11Negative 13 .900 1 5  .679 1 7  la1 < 1 1 9  Unstable IFII> 1 2 1  x* = k;la1 < 1 



Answers to Odd-Numbered Problems 

23 $2000; $2000 25 X O ,  6 / 0 0 ,  X O ,  ~ / x o ,  . . 27 F' = - A x - 3 / 2  2 = -: at .* 

29 F1 = 1 - 2cx = 1 - 4c at x* = 2;O < c < ) succeeds 

3 1  F1 = 1 - 9c(x - 2)8 = 1 - 9c at x* = 3; 0 < c < succeeds 
xa -2. sin 2 % -  

SQ xn+l = Xn - &; = xn-  C 0 8 X m  
3 5 ~ *  = 4 i f x O  > 2 .5 ;~*  = 1 i f ~ o  < 2.5 

37 m = 1 + c at x* = 0,  m = 1 - c at x* = 1 (converges if 0 < c < 2) 39  0 4 3  F' = 1 at x* = 0 

Section 3.7 Newton's Method and Chaos (page 145) 

1 b:+;Y = 25 r is not afraction 27= f x : +  ) + S;Z = A 29 162 - 80z2 + 1282 - 64z4; 4; 2 

3 1  lxol < 1 33  A x  = 1, one-step convergence for quadratics 55 = *; x2 = 1.86 

37 1.75 < x* < 2.5; 1.75 < x* < 2.125 39 8; 3 < x* < 4 4 1  Increases by  1; doubles for Newton 

45  xl = xo + cot xo = xo + r gives x2 = xl + cot xl = X I +  r 49  a = 2, Y 's  approach ; 

Section 3.8 The Mean Value Theorem and 1'H6pita19s Rule (page 152) 

I c = fi S No c 5 c = 1 7 Corner at ) 9 Cusp at 0 

11 sec2 x - tan2 x = constant 13  6 15 -2 17 -1 l 9 n  2 1  -) 23Not % 
1 -sin x 25 -1 27 1; TT~;;;; has no limit 29 fl(c) = $$;c = \/j 

3 1  0 = x* - xn+1 + -#$(x* - xn)' gives M m 33 fl(0); v; singularity 35 # -+ 37 1 

CHAPTER 4 DERIVATIVES BY THE CHAIN RULE 

Section 4.1 The Chain Rule (page 158) 

1s = y3,y = x2 - 3,s' = 6x(x2 - 3)2 3 2  = cosy,y  = x3,z' = -3x2sinx3 

5 ~ = ~ , ~ = s i n x , z ' = c o s x / 2 ~ ~  7 z = t a n y + ( 1 / t a n x ) , y = l / x , d = ( ~ ) s e c 2 ( ~ ) - ( t a n x ) - 2 s e c 2 x  
9 z = c o s y , y = x 2 + x + 1 , d = - ( 2 x + 1 ) s i n ( x 2 + x + 1 )  1117cos17x 13sin(cosx)sinx 

15x2cosx+2xs inx  1 7 ( ~ o s ~ ~ ) ~ ( x + l ) - ' / ~  1 9 ) ( 1 + s i n ~ ) - ~ ~ ~ ( c o s z )  2 l c o s ( & - ) ( ~ ~ )  

2 3 8 ~ ' = 2 ( ~ ~ ) ~ ( 2 ~ ~ ) ( 2 x )  2 5 2 ( ~ + 1 ) + c o s ( x + r ) = 2 ~ + 2 - ~ o s x  
27 (x2 + + I 2  + 1; sin U from 0 to  sin 1; U(sin x )  is 1 and 0 with period 27r; R from 0 to  x; R(sin x )  is half-waves. 

29 g(x) = x + 2, h ( x )  = x2 + 2; k ( x )  = 3 3 1  f t ( f  ( x ) )  f l ( x ) ;  no; ( - l / ( l / ~ ) ~ ) ( - l / x ~ )  = 1 and f ( f  ( x ) )  = x 
33 ? ( ) x  + 8) + 8; i x  + 14; & 35 f (g (x) )  = x, g ( f  ( y ) )  = y 
37 f (g (x) )  = d f  (4) = 1 - $ 8  f ( f  (4) = x = g(g(x)),  g ( f  ( g ( x ) ) )  = = f ( g ( f  (4)) 
39 f ( y) = y - 1, g(x) = 1 48 2 cos(x2 + 1) - 4x2 sin(x2 + 1); - (x2 - 1)-'I2; - (cos &)/4x + (sin f i / 4 x 3 I 2  

45f ' (u( t ) )u1( t )  4 7 ( c o s 2 u ( x ) - s i n 2 u ( x ) ) g  4 9 2 x u ( x ) + x 2 ~  511/4d=4= 
53 df /dt 55 f ' (g(z))g1(x)  = = 122" 57 3600; 4; 18 59 3; 5 
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Section 4.2 Implicit Differentiation and Related Rates (page 163) 

I -xn-l/yn-l  3 2 4 5 2 = 1  7 (y2- 2 x y ) / ( x 2- 2xy) or 1 1 
F ' ( v )  g & o r ~ i ; l  

11 First 2 = -E ,  second 2 = j 1 3  Faster, faster 15 222' = 2yyt -+ 2' = E y' = y' sin6 

2 1 $ = - g . * =17 sec2 0 = I S ~ O O ~ ; ~ O O J ~  3 , d t  - 2 f i ; o o t h e n O  

23  V = T r 2 h . d h  = --I dV -- -- in/sec 25 A = iabsin 9 ,  % = 7 27 1.6 m/sec; 9 m/sec; 12.8 m/sec
9 dt 4 r  dt 

L C O s 2 ~ & . g u =&29 -g  3 1  d " - a&.&-
d t  ' ,, y" - &jcos3 O ~ i n B ( y ' ) ~dt - 2 d t  1 d t  - 10 

Section 4.3 Inverse Functions and Their Derivatives (page 170) 

( x  unrestricted -,no inverse) 11 y = ,1 1 3  2 < f - ' ( x )  < 3 15  f goes u p  and down 

f ( x ) g ( x )and & 1 9  m # 0;m 2 0; Iml > 1 2 1  $ = 5x4,2 = iy-4/5
2 -125 & = -=1_ & -= 3x2. dz = $ ( I +  y) -2 /3' dY 

27 y ; i y 2+ C  7-
d x  (3-1 l2  d~ -
39  2/& 4 1  l /6cos9f ( g ( x ) )= -1/3x3; g - l (y )  

Decreasing; $ = & 
g(g-'(x)) :;= 

< 0 45  F ;  T ;  F 47 g ( x )= xm, f ( y )= yn, x 
= x 

= (2'1" 1 ' I r n  
g ( z ) = ~ ~ , f ( y ) = y + 6 , x = ( z - 6 ) ~ / ~5 1 g ( x ) = 1 0 x , f ( y ) = l o g y , x = l o g ( l ~ Y ) = y  

y = x3, y'' = 62,d2x/d$ = -$ yV5I3;m /  sec2,sec / m 2  55  p = fl - 1;0 < y 5 1 
,ax = G = 3gY 413 GI= 2y 113 59  y2/1009 

Section 4.4 Inverses of Trigonometric Functions (page 175) 

CHAPTER 5 INTEGRALS 

Section 5.1 The Idea of the Integral (page 181) 

811,3,7,15,127 3 - 1 - 1 - 1 = 1 - 8 1 5 f j - f O = 2  7 3 ~ f o r x ~ 7 ~ 7 x - 4 f o r x ~ 1

s2m,&,&Gg 11 1 1 L o w e r b y 2  13Up,down;rectangle 15 , /X-&;A~;~;$ 
17 6 ;  18; triangle 1 9  18 rectangles 2 1  62 - $x2 - 10;6 - x 23 25 x2;x2; i x 3  
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Section 5.2 Antiderivatives (page 186) 

i x 6 + $ x 6 * P  ' 3  3 2 f i ; 2  5Qx413(1+21/3);q(i+21/3) 7 - 2 ~ 0 s x - ~ c o s 2 ~ ; ~ - 2 c o s i - ~ c o s 2  

9xsinx+cosx;s in1+cos1-1 1 1 i s i n 2 x ; i s i n 2 1  1 3 f = C ; O  15f (b ) - f (a ) ; f7 - f2  

5 ,  36 ,oo 23 f(x) = 2& 25 5, below -1; + , q  1 7 8 + *  19:(1+&);:(3+fi);2 2 l 5 = m *  

27 Increase - decrease; increase - decrease - increase 
29 Area under B - area under D; time when B = D; time when B - D is largest 33 T; F; F; T; F 

Section 5.3 Summation Versus Integration (page 194) 

n n 

7 x akxk; x sin - 9 5.18738; 7.48547 11 2(a; + 6;) 13 2" - 1; if - 1 5  F; T 

1 7  $ + C; fp  - fs - fl + fo 1 9  fl = 1; n2 + (2n + 1) = (n + 1)2 

21  a + b + c = 1,2a + 4b + 8c = 5,3a + 9b + 27c = 14; sum of squares 23 S4oO = 80200; E400 = .0025 = i 
25 Sloo,l/3 w 350, Eloo,l/3 w .00587; Sloo,3 = 25502500, Eloas = .0201 27 vl and v2 have the same sign 

Section 5.4 Indefinite Integrals and Substitutions (page 200) 

1 $ ( 2 + x ) ~ / ~ + C  ~ ( x + l ) " + ' / ( n + l ) + C ( n # - I )  5 & ( ~ ~ + 1 ) ~ + C  7 - + c o s 4 z + C  

9 -!cos42x+C l l s i n - l t + c  1 3  $(1+t2)312-(1+t2)112+C 1 5  2 f i + x + C  

1 7  s e c x + ~  1 9  - C O S X + C  21  ax3 + $x3/2 23 -$(I - 2~)3/2 25 y = 6 
27 ?x2 29 asinx + bcosx 3 1  &x'/~ 33 F; F; F; F 35 f (x  - 1);2f(:) 
57 x - tan-' x 39 I ?du 4 1  4.9t2 + Clt + C2 43 f (t + 3); f (t) + 3t; 3 f (t); $f (3t) 

Section 5.5 The Definite Integral (page 205) 

1 C = - f (2) S C = f (3) 5 f (t) is wrong 7 C = 0 9 C = f(-a) - f(-b) 

1 5 u = s e c x ; ~ ~ ~ ~ d u = ~ ( s a m e a s 1 3 )  1 7 u = ) , x = ~ , d x = = $ ; ~ , ' ~ ~ ~  

19 s=  $(++I) '+ + ( I + I ) ~ ; s  = ;(o) + +(++q4  
21  s = + i3 + (;)3 + 23]; s = ?[03 + (+)3 + i3 + (;)3] 

1 17 4 
23 S = z[(E) + (q)4 + (%)( + 2'1 25 Last rectangle minus first rectangle 
27 S = .07 since 7 intervals have points where W = 1. The integral of W (x) exists and equals zero. 
29 M is increasing so Problem 25 gives S - s = Ax(1- 0); area from graph up to y = 1 is $ 1 + A ' + . . = 

A 
4 2 

+ ( I+  + & +.-.) = = i; area under graph is i. 
3 1  f (x) = 3 + v(x)dx; f (x) = I; v(x)dx 33 T;F;T;F;T;F;T 
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Section 5.6 Properties of the Integral and Average Value (page 212) 

1 ~ = ~ ~ ~ ~ x ~ d x = ~ e ~ u a l s c ~ a t c = f ( ~ ) ~ ~ ~~ ~ = ~ J ~ c o s ~ x d x = ~ e ~ u a l s c o s ~ c a t c = ~ a n d $  

2 d z6 i r = / 1 2 = ~ e q u a l s $ a t c = f i  7J:v(x)dx gFalse,takev(x)<O 

11The; 3 J',v(x)dx + $ . J: v (x)dx = i J,S v(x)dx 1 3  False; when v(x) = z2 the function x2 - i is even 

1 5  False; take v(x) = 1; faetor ? is missing 1 7  = A Ja v(x)dx 19 0 and ?b-a 

2 1  v(x) = Cx2; v(x) = C. This is 'constant elasticity" in economics (Section 2.2) 23 V +0; + 1 

25 i J i ( a - x ) d x =  a +  1i f a  > 2;;s; la- xldx= ? area = $ - a +  1i f a  < 2; distance = absolute value 

27 Small interval where y = sin B has probability $; the average y is J: = 2A 

29 Area under cos 0 is 1. Rectangle 0 < 0 5 5 , O  5 y 5 1has area 5. Chance of falling across a crack is $= 1. 
%dt = -220- g s i n  % = Vave31 $,&,..., $;10.5 33 5 J , '~~ocos  

35 Any V(X) = veve,(x) odd(^); (X + = (3x2 + 1)+ (x3 + 3%);;)i= -& 
31 16 per class; $;E(X) = 64 = 22.9 39 F; F; T; T8 

Section 5.7 The Fundamental Theorem and Its Applications (page 219) 

1cos2 x S O  S ( X ~ ) ~ ( ~ X ) = ~ X ~~ v ( x + I ) - V ( X )  g e m -2. J: sin2 t dt 

ll/;v(u)du 1 3 0  152sinx2 17u(x)v(x) 19th- ' (sinx)cosx=xcosx 

21 F; F; F; T 23 Taking derivatives v(x) = (xcos x)' = cos x - xsin x 

25 Taking derivatives -v(-x) (- 1) = v(x) so v is even 27 F; T; T; F 
29 Jr v(t)dt = J; v(t)dt - v(t)dt = +-& (in revised printing) 

3 1  V = s3; A = 3s2; half of hollow cube; AV rr 3s2dS; 3s' (which is A) 

33 dH/dr = 2?r2r3 35 Wedge has length r rr height of triangle; $r2d0 = $ 
1 . do . ~ 4 4  do = t a . e + = ~  

c o s 8 ~ 2 e o s 2 8 ~ 02cos28 T O  2 

39 x = y2;J; y2dy = = t ;vertical strips have length 2 -fi 
4 1  Length &a; Jo1ada = 43 The differences of the sums f j  = vl +v2+-.  *+vj are f j -  fj-1 = vjwidth 3; 

Section 5.8 Numerical Integration (page 226) 

1? A X ( U ~  - vn) 3 1,-5625, ,3025; 0, -0625, -2025 5 L8 W .1427, T8 W .2052, S8 U .2OOO 

- la# $ 9 F o r y = x 2 ,  error +(AX)' from i - s,yl' -2Ax-7 p = 2 :  for y = z 2 , f  . ~ ~ + I - ( i ) ~ + f  2 

13 8 intervals give %[:& + = < .001 15 fl'(c) is yl(c) 1 7  00;.683, .749, .772 + 2 
1 9  A + B + C =  l , ? B + C =  & , ~ B + c =$;Simpson 

12 1  y = 1and x on [0,1]: L, = 1 and i - &,R, = 1 and + k,so only ?L, + $R, gives 1and 5 

23 Tlo N 500,000,000; Tloow 50,000,000; 25,000~ 
25 a = 4, b = 2, c = 1; 1,'(4x2 + 22 + 1)dx = y; Simpson fits parabola 27 c = & 
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CHAPTER 6 EXPONENTIALS AND LOGARITHMS 

Section 6.1 An Overview (page 234) 

15; -5; -1.1.. 3.2 5 1; -10; 80; 1; 4; -1 7n logbx  g m a a3 , 10 13 lo55' 2 '  

1 5 0 ; I S F = 1 0 7 ~ O ~ 8 . 3 + l ~ g l o 41 7 A = 7 , b = 2 . 5  1 9 A = 4 , k = 1 . 5  

2 1  A; -&;log2 23  y - 1= cx; y - 10 = c(x - 1) 25 (.l-h- l)/(-h) = (loh - l)/(-h) 

27 3/' = c2bX; x0 = -l/c# 29 Logarithm 

Section 6.2 The Exponential eZ (page 241) 

149e7" 3 8e8" 5 3% in 3 7 ($)" in $ 9- (i+e:)2 1 1 2  13xex l5(e~+e-z)24 

1 7  esin x cos x + ex cos ex 1 9  .1246, .0135, .0014 are close to ; i ;~  2 1  1.1e ' e  

2 3 Y ( h ) = l + & ; Y ( l ) = ( l + & ) ' O = 2 . 5 9  2 5 ( l + ~ ) " < e < e x < e 3 x / 2 < e 2 x < 1 0 x < z x  
3s 72  z3 e-z3 

2 7 % + ?  2 9 x + & + &  3 1  %+2ex 33%-- 2 

35 2exl2 + $ 37 e-" drops faster at x = 0 (slope -1); meet at x = 1; e-"'/e-" < e-g/e-3 < & for x > 3 

39 y - ea = ea(x - a); need -ea = -aea or a = 1 

> 0 

d~43 $(e-x y) = e-" *- e-"y = 0 so e-x y = Constant or y = Cex 
2z ninz 

2 A
45 !L]i= I-' 

47 &]L1 = g= ,,, , 49 -e-"IF = 1 5 1  el+"]: = e2 - e 5 3  = 0 

=55 J F d x  = -e-u +C; J ( e u ) 2 e d x  = +eZU+C 57  yy' = 1gives iy2x +C or y = 4-
59 = (n - X ) X " - ~ / ~ "  < 0 for x > n;F(2x) < -+0 6 1  m 117;( : )6  m 116; 7 digits 

Section 6.3 Growth and Decay in Science and Economics (page 250) 

47 (1.02)(1.03) + 5.06%; 5% by Problem 27 49 20,000 e(20-T)(.05) = 34,400 (it grows for 20 - T ears) 

- 1) .0055 1  s = -cyoect/(ect - 1)= -(.01) ( 1 0 0 0 ) e . ~ ~ / ( e . ~ ~  53  yo = m(1 - e-.005(48)1 
55 e4c = 1-20 so c = 57  24e36.5 =? 59 TO-00; constant; to + oo 
6 1  = 60cY; = 60(-Y + 5); still Y, = 5 

4 1  3/ = xx(lnx + 1)= 0 at %,in = :; y" = !] +1)2+xx[(ln x 



A-10 Answers to Odd-Numbered Problems 

Section 6.4 Logarithms (page 258) 

1 $ 3 - 1  5 lnx  7 ~ 0 8 5 =  
x(ln x)a s i n s  x 9 11 $ l n t + C  I 3  i n $  

1 5 i l n 5  17 - ln ( l n2 )  1 9 1 n ( s i n x ) + C  21 -$ ln ( cos3x )+C  2 3 $ ( l n ~ ) ~ + C  

27  in y = $ ln(x2 + 1); 2 = 29  * = esin cos x dFE dx 
3 1  2 = exee' 33 l n y = e x l n x ; ~ = y e x ( l n x + ~ )  5 5 l n y = - 1 s o y =  : , z = O  3 7 0  

39  -1 4 1  sec x 4 7  . l ;  .095; .095310179 4 9  -.01; -.01005; -.010050335 

5 1  lYHSpital: 1 53 1 5 5  3 - 2 in 2 5 7  Rectangular area i + . . + < $: $ = I nn  In b 

5 9 M a x i m u m a t e  6 1 0  6 3 1 0 g l o e o r &  6 5 1 - x ; l + x l n 2  

( t+2)a  -+ y = 1 - 1 never equals 1 67 Raction is y = 1 when ln(T + 2) - In 2 = 1 or T = 2e - 2 69 y' = -2- t+2 
7 1  lnp  = x l n 2 ; L D  2"ln2;ED p = eZLn2,p'  = In2 esln2 

75  24 = 42; yln x = xln y -+ '"2 = decreases after x = e, and the only integers before e are 1 and 2. 
y ' s  

Section 6.5 Separable Equations Including the Logistic Equation (page 266) 

I 7et - 5  3 ($x2 + 1)lI3 5 x 7 e l - ~ ~ ~ t  9 (?+&)a  11 y, =O;t  = 1 
 YO 

1 5  z = l + e - t ,  y is in 1 3  1 7  ct = ln3,ct = ln9  
19 b = c = 13 . y, = 13 . lo6; at  y = & (10) gives ln = ct + In c_'::,b so t = 1900 + = 2091 

2 1  # dips down and up (avalley) 2 3  sc = 1 = sbr so s = $ , r  = 

25 Y = l+e-NY(N-l) ; ~=!d!!$l-+o 27  Dividing cy by y + K > 1 slows down y' 

29  dR = CK 
dy ( y + ~ ) f  > 09 * -+ 

3 1  = 6; multiply e ~ l K  = e - c t l K e y ~ l K  ( EL ) by K and take the K t h  power to reach (19) 

3 3  f / = ( 3 - y ) 2 ; & = t + $ ; y = 2 a t t = 2  3 

3 5  A e t + D = A e t + B + ~ t + t - + ~ = - l , B = - l ; y o = A + B g i v e s A = l  

37  y +  1 from yo > 0, y -+ -oo from yo < 0; y -+ 1 from yo > 0, y -+ -1 from yo < 0 

39  $ Cyiydy = dt -+ ln(sin y) = t + C = t + In i. Then sin y = i e t  stops at  1 when t = In 2 

Section 6.6 Powers Instead of Exponentials (page 276) 
a 3 a 3 1 l - x + y - % + . . .  3 l f  x + ~ f ~ + -  5 1050.62; 1050.95; 1051.25 

7 1 + n ( $ )  + w(+)2 + 1- I +  4 9 square of ( I +  i)"; set N = 2n 

11 Increases; l n ( l +  $) - & > 0 1 3  y(3) = 8 1 5  y(t) = 4(3') 1 7  y(t) = t 

19 y(t) = $(3t - 1) 2 1  s ( 2 )  if o # 1;st  if a = 1 23  yo = 6 25  yo = 3 
b 2 7 - 2 , - 1 0 , - 2 6 + - 0 0 ; - 5 - = - ? - + - 1 2  9 2 ,  2 9 P = =  3 1  10.38% 3 3  100 (1 .1 )~~  = $673 

100 000 1 12 35  & = 965 3 7  Y ( 1 . l z 0  - 1) = 57,275 39 y, = 1500 4 1  2; ( g ) 5 2  = 2 69. ye 

43  1.0142'~ = 1.184 -+ Visa charges 18.4% 

Section 6.7 Hyperbolic Functions (page 280) 

1 ex, e-x eax-eeax 
2 4 = $ sinh 22 7 sinh nx 9 3 sinh(3x + 1) 11 - eoah = - t anhx  sech x 

1 3  4 cosh x sinh x 1 5  ~ ( s e c h 4 G ) ~  1 7  6 sinh5 x cosh x 

19cosh( lnx)=  i(x+;) = l a t  x = 1  2 1  139 '3 5 1 -B 5 I -3 12,  -5 12 23 O , O Y ~ Y ~ Y ~  

25 sinh(2x + 1) 27  $ cosh3 x 29  ln(1 + cosh x) 3 1  ex 
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33  J y d z = J s i n h  t(sinh t d t ) ; A =  i s i n h  t c o s h t - J y d x ; ~ l =  ~ ; A = oat t = ~ s o  A =  i t .  
4 1  eY = x + d m ,y = In[x+ d-] 47 4 ln 1% 1 4 9  sinh-' x  (see 41) 5 1  -sech-'z 

5 3 $ 1 n 3 ; o o  5 5 y ( x ) = ~ c o s h c x ; $ c o s h c ~ - $  
57 5/' = y - 3 3 . L(Y = 1 - y3 is satisfied b y  y = isech2:

9 2  2 Y  

CHAPTER 7 TECHNIQUES OF INTEGRATION 

Section 7.1 Integration by Parts (page 287) 

$ ( x 2 + 1 ) t a n - ' x - % + C  2 1 x 3 s i n x + 3 x 2 c o s x - 6 x s i n x - 6 c o s x + C  
ex(x3- 3x2 + 6x  - 6 )+ C 25 x  tan x  + ln(cos x )  + C 27 -1 29 -:e-2 + 3 1  -2 
3 ln10 -6+2 tanV '3  35 u =  x n , v = e x  37 u =  x n , v = s i n x  39 u =  ( l n x ) " , v = x  

u =  x s inx , v  = ex + / e x s i n x d x  in 9  and -$xcosxexdx .  Then u =  -xcosx ,v  = ex + ~ e x c o s x d x  

in 10  and - J x  sin x  exdx (move t o  left side): ( x  sin x  - xcos x  + cos x ) .  Also try  u  = xex, v  = -cos x. 

$ $ u s i n u d u =  $ ( s i n u - u c o s u )  = $ ( s inx2 -x2cosx2 ) ;  odd 

3. step function; 3ex. step function 49  0;  x6(x )]  - $6 (x )dx = -1; v ( x ) d ( z ) ]  - I v ( x )6 ( x )dx  

~ ( 4= Jxl f (+x 
u ( x )= 51,"v(x )dx;+(: - $);f for x  5 i ,~ ( Z X- x2 - 4 ) for x  2 i;:for X Ii ,&for x >  i. 
u = x 2 , v = - c o s x + - x 2 c o ~ x + ( 2 x ) s i n x - J 2 s i n x d x  57Compare23  

1

uw']A- Jo' u'wl - u1w]A+ So u'w' = [uwl- ulw]; 

No mistake: ex cosh x  - ex sin hx  = 1  is part o f  the constant C  

Section 7.2 Trigonometric Integrals (page 293) 

1 J ( 1 - ~ o s ~ x ) s i n x d x = - ~ o s x + ~ ~ o s ~ x + C3 i s i n 2 x + C  

5 $ ( 1 - u 2 ) 2 u 2 ( - d t l ) = - $ c 0 s 3 x + ~ c 0 s 5 x - ~ c 0 s 7 x + ~  7 $ ( s i n ~ ) ~ / ~ + ~  

3 2 7)9 i J s i n 3 2 x d x = & ( - c o s 2 x + $ c o s 3 2 x ) + ~  1 1 3 L ( 5 2 + s i n 6 x  + C  

15  x  + C 17 cos5 x  sin x  + $ cos4 x  dx; use equation ( 5 )  

19  $:I2 dx = $:I2 c0sn-2 dx = . . . = &. . . i $:I2n n n-2 d~  
2 1  I = - sinn-' x  cos x  + ( n- 1)J xcos2 x  dx = - sinn-' x  cos x  + ( n- 1)J x  dx - ( n- 1)I .  

So nI = - sinn-' x  cos x  + ( n- 1)$ x  dx. 

230 ,+,0 ,0 ,0 , - ~ ~ - $ c o s ~ x , o  2 7 - ; ( &  2 + T ) , O  200C0s200x 29 + ( s i n2003 + si;2x), 0 

3 1  -+ 33 1: =A sin2 x  dx + A $:=x  sin x  dx 55 Sum = zero = (left+ right)cos x ,  0  2 

37 p is even 39 p - q is even 4 1  sec x  + C 43  $ tan3 x  + C 4 5  $ sec3 x + C 

47 $ t a n 3 x - t a n x + x + C  49  ln Is inx l+C 5 1  &+c 53  A = & , - f i s i n ( x + : )  
55 4JZ 57 59 1-cosx s inx  6 1  p and q are 10 and 1  l + c o a x ~ s i n x+ C 
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Section 7.3 Trigonometric Substitutions (page 299) 

7 ~ =  i t a n - ' z + ? + + ~t a n 8 ; $ ~ 0 ~ ~ 8 d f I =  

9 X =  5sec8;S5(sec28- l ) d 8 =  d n - 5 s e c - I  ; + C  

I I X = S ~ C ~ ; J C O S ~ ~ ~ = ~ + CI ~ X = ~ ~ ~ ~ ; $ C O S B ~ O = - + C  
-515 x = 3 sec 8; $ 'g"'?,dee = & + C = -

dm 
9 @ z i  + c  

1 7  x = sec8; Jsec3 8 dB = &sect9 tan8 + i ln(sec8 + tan8) + C = & x d G +  ? l n ( x +  d m )  + C 
1 g X = t a n 8 ; $ c ~ s ~ d ~= - L + C =  -+C 

sina 6 sin 0 x 

2 1  $ = -8 + C = - cos-' x + C; with C = 5 this is sin-' x 

= - ln(cos 8) + C = 1n4- + C which is i ln(x2 + 1)+ C23  $ t a n ~ ~ $ ~ e  

25  x = a sin 8; $:L72 a2 cos2 8 d8 = = area of semicircle 27  sin-' x]f5= 5 - 2 = t 
"12 cos8d0 = -14 229  Like Example 6: x = sin 8 with 8 = 5 when x = oo,8 = 5 when x = 2, Jnl3 

,h 
"12 3 seca de = g "12 dx = $xn-'dx = $3 1  x = 3 tan 8; $-r12 9seca e 3]-n/2 = 33 $ xnTcln-l 

3 5  x = s e c e ; i ( e f  +e - f )  = L(x+J=+ .+;=)=2 ? ( x + d Z + x - - d G )  = x  

37  x = cosh 8; $ dB = cosh-' x + c 
39  x = cosh 8; $ sinh2 8 dB = i(sinh 8 cosh 8 - 8) + C = $xd= - $ ln(x + d r l )+ C 
4 1  x = tanh 8; $ dB = tanh-' x + C 4 3  (x - 2)2 + 4 4 5  (x - 3)2 - 9 4 7  (x + 

1 x 249u=x-2 ,$-&= itan- ' := i t a n - (+j-)+C;u=x-3,$*= L l n U - 5 =  '1 ~ - 6  
u -9 6 ~ + 3  n ~ + c ;  

u = x + 1 , $ + = L - ' + c  x+1u 

dU5 1  u = x + b; $ u'-ba+c u ~ e ~ u = a s e c 8 i f b ~ > ~ , ~ = a t a n 8 i f b ~ < c , e ~ u a l s - ~ = ~ i f b ~ =c 
5 3  cos 8 is negative (-d-) from 5 $: thenF;to - + 4-dx = 7 = area of unit circle 

5 5  Divide y by 4, multiply dx by 4, same $ y dx 

5 7  No sin-' x for x > 1; the square root is imaginary. All correct with complex numbers. 

Section 7.4 Partial Fractions (page 304) 

~ ~ A + + + M . A = - L  
4 ' B = L  

4 ' C = OD = - Lx+1 x- x'+l ' 2 

1 7  Coefficients of y : 0 = -Ab + B; match constants 1= Ac; A = $, B = 

1 9 A = l , t h e n  B = Z a n d C =  1 ; ~ 5 + $ % =  

ln(x - 1)+ ln(x2 + x + 1)= ln(x - l ) (xZ+ x + 1)= ln(x3 - 1) 

2 1 u = e ~ ; $ ~ = $ ~ - $ ~ = l n ( ~ ) + ~ = l n ( ~ ) + ~  
~ ~ u = c o s ~ ; $ . &  + C. We can reach = - $ J A - I $ k =& l n ( l - - u ) - ~ l n ( l + u ) = $ l n ~  

1 in ('-CO.B)1 = In 1-cose 
~ - C O S ~ O  - ln(csc8 -co te )  or a different way +In  =In- ~ + C O S  e = -1,- sm e = 

- ln(csc 8 + cot 8) 
25 u = e x ; d u = e x d x = u d x ; $ ~ d u = $ ~ + $ ~(1-U)U = - 2 l n ( l - e x ) + l n e x + C =  - 2 l n ( l - e x ) + z + C  

2 
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2 7 x + 1 = u 2 , d x = 2 u d u ; $ ~ =J [ 2 - & ] d u = 2 ~ - 2 1 n ( l + u ) + C =  

2,/2+1-21n(i+,/z+l)+c 
.-s + & by definition of derivative. At a double root Q'(a) = 0.29 Note Q(o) = 0. Then = 

Section 7.5 Improper Integrals (page 309) 

1 - P
1 5  diverges for every p! 1 7  Less than $? 3 = 

+ $PO ,q= tan-' XI; - -$]I" = + 219 Less than $,' ,& 

2 1  Less than $PO e-'dx = $, greater than -+ 
23  Less than i,'e2dx + e $re-('-')'dz = c2 + e $ '  e - ~ l d u= e2 + '-Jsr 


3 $;+1less than-25 1,' -+ 
 = 2 27 p! = p times (p - I)!; 1= 1times 01 

31 $; -2
L d x  = i f i7~ $;+ 

= G:-33 w = 3 p l ~--- tmV;a, = 

1000e--~~dt -10,000e-.~~]r= $10,000=29 u = x, dv = xe-"'dz : -x<] r  

$ = Jree--+ln2dx= C ! I I  00- 1 
- I n 2 1 0  -m $;35 


37 $:I2 (see x - tan x)dx = [ln(secx + tan x) + ln(cos x)]:~' = [ ln(l+ sin x)];l2 = In 2. 

The areas under sec x and tan x separately are infinite 39  Only p = 0 

CHAPTER 8 APPLICATIONS OF THE INTEGRAL 

Section 8.1 Areas and Volumes by Slices (page 318) 

1x2 - 3 = 1gives x = f 2 ;  ~!~[(1- 32(x2 - 3)ldx = 7 
3 3 = x = 9 gives y = f3; $_S3[9- y2]dy= 36 

5 x4 - 2x2 = 2x2 gives x = f 2 (or x = 0); $!2[2x2 - (x4 - 2x2)]dx= 
7 y = x2 = -x2 + 182 gives x = 0,9; $:I(-x2 + 182) - x2]dx = 243 

9 y = c o s x = c o s 2 x w h e n c o s x = 1 0 r 0 , x = O o r ~ o r ~ ~ ~~ ~ ~ ~ ( c o s x - c o s ~ x ) d x = 1 - ~  
-111ex = e2z-1 gives x = 1;$:[ex - e2'-']dz = (e - 1)- ( y) 

4 

1 3  Intersections (O,O), (l ,3),  (2,2); $,'[3x - xldx + ~:[4 - x - xldx = 2 

1 5  Inside, since 1- x2 < J D ;  $ : l [dn  - (1- x2)ldx = 5 - $ 
1 7  V = $:a ay2dx = $faab2(l- $)dx = 9;around y axis V = w; rotating 

x = 2, y = 0 around y axis gives a circle not in the first footballv; $: = -2ax(8 $; a(81; 2 1  
~ ( x ~ ) ~ d x= F; $,'27r(l- x4)x dx = 

I9 V 2x2 sin x dx = 27r2 x)dx = (same cone tipped over)- X ) ~ ~ X= 

23 J,' a . 12dx-I,' 
- 25r25 ~ ( 3 ~ ) d x  = y; 2rx(3 - $)dx = 7 

27 1,'~ [ ( x ~ l ~ ) ~  = $; lo'2ax(x213 - X ~ / ~ ) ~ X- ( ~ ~ l ~ ) ~ ] d x  = (notice xy symmetry) 

29 x2 = R2 - y2,V = $R-h T ( R ~- y2)dy = r ( ~ h ~R - $) 
3 1  j : a ( 2 d m ) 2 d x  = ?a3 33  J,'(2d=)'dy = 2 37 1A(x)dx or in this case $ o(y)dy 

39 Ellipse; J s t a n  8; $(I - x2)tan 8;  tan 8 

4 1  Half of ar2h; rectangles 4 3  ~ ( 5 ~- 22)dx = 42r 4 5  J: a(4' - 12)dx= 30a 
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59 2 r  6 1  1,' 2ry(2 - &)dy = 63 3re 65 Height 1; $: 2 r z  dz = ra2; cylinder 

67 Length of hole is 2d- = 2, so b2 - a2 = 1 and volume is !f 69 F; T(?); F; T 

Section 8.2 Length of a Plane Curve (page 324) 

Graphs are flat toward (1,O) then steep up to (1,l); limiting length is 2 

~ = \ / 3 6 s i n 2 3 t + 3 6 c o s 2 3 t = 6  2 3 J , ' a d y = &  
1 J!, J-dy = J!, 3(e'+ e-Y)dy = $(ev - e-')]L1 = e - - e 

Using x = cosh y this is dy = 1 cosh y dy = sinh y]kl = 2 sinh 1 

Ellipse; two y's for the same z 29 Carpet length 2 # straight distance */Z 
(dd2 = ( d ~ ) ~  + ( d ~ ) ~  + ( d ~ ) ~ ;  ds = \/(%)l + (%)a + (%)2dt; 

ds = \/sin2 t + cos2 t + ldt  = h d t ;  2 a 4 ;  curve = helix, shadow = circle 

L = I,' t/TTZ?dz; Jt d G S d z  = 1,' JGG 2du = 2L; stretch xy plane by 2 (y = x2 becomes : = 

Section 8.3 Area of a Surface of Revolution (page 327) 

1 J" 2rfiJ-dx = 1: 2rdZ+!dx = 3 2 1,' 2 r ( 7 x ) m d x  = 14s- 

1 
5 J', - 2 a d = m d x  = I-, 4rdz = 8 r  7 1: 2rx J1+(22)2dx = f (1 + 4x2)312]~ = f [173/2 - 11 

9 $: 2rzz\/Zdx = 9 r f i  11 Figure shows radius s times angle I9 = arc 2rR 

13 2rrAs = r ( R  + Rt)(s - st)  = aRs - uR's' because Rts - Rs' = 0 

15 Radius a, center at (0, b); + = a2, surface area st" 2r(b + asin t)a  dt = 47r2ab 

17 J: 2rx J-dx = 1: = r2 + 2 r  (write 22 - z2 = 1 - (x - 112 and set x - 1 = sin 19) 

19 $t12 2 r x d q d z  (can be done) 

21 Surface area = JF 2r: J x d x  > JT 00 = 2 r l n x J r  = a, but volume = JF ~ ( $ ) ~ d x  = r 

23 J: 2 r  sin t d 2  sin2 t + cos2 t dt = J: 2 r  sin tt/- dt = 2rt/Z--;du = 

rut/= + 2 r  sin-' 3 ] L 1  = 2 r  + 9 

Section 8.4 Probability and Calculus (page 334) 

1 p ( X  < 4) = i, P(X = 4) = & , P(X > 4) = $ s ir p(x)dx is not 1; p(x) is negative for large x 

5 1; e-'dz = -$;/ll.O1e-'dx (J (.01); 7 p(x) = $; F(z)  = : for 0 5 x 5 r (F = 1 for x > A) 



$; 
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9 p =  1 . 1 + ; . 2 +  . . . + 1 . 7  = 4  11$* 2xdx = I ln(1 + x2)]F = + m7 7 o n(l+x3) m 

~ x e - ~ " d z= [-xe-""]F + e-axdx = a 
2dx = Z tan-' x. JX e-"dx = 1- e-X. ae-aXdx = 1- e-ax 1 7  $= Le-x/10dZ = -e-~/10 w 1J X

0I"n(l+x3) rr 0 0 10 10 I10 =; 
Exponential better than Poisson: 60 years --+ .01e-.~" dx = 1- e-s6 = .45 

y =7;three areas = $ each because p - o to p is the same as p to p +o and areas add to 1 
-2p J xp(x)dx +p2 J p(x)dx = -2p .p +p2 e = -pal 

p = o . $ + 1 . $ + 2 . + 1 ;  0 2 = ( o - 1 ) 2 . $ + ( 1 - 1 ) 2 . $ + ( 2 - 1 ) 2 . $ = Z  3 ' 

A l ~ o x n ~ ~ , - p ~ = O . $ + 1 . 1 + 4 . ~ - 1 = Z3 3 

00 ~ e - * / ~ d x-- 2; 1- Jo 7p = Jo -7 4 e-s72dx = 1+ [e-x/2]: = e-2 

Standard deviation (yes - no poll) 5 1= = & Poll showed = % peaceful.
2 n  

95% confidence interval is from % - & to + &, or 93% to 100% peaceful. 
3 1  95% confidence of unfair if more than $=&= 2% away from 50% heads. 

2% of 2500 = 50. So unfair if more than 1300 or less than 1200. 

33 55 is 1.50 below the mean, and the area up to p - 1.50 is about 8% so 24 students fail. 

A grade of 57 is 1.30 below the mean and the area up to p - 1.30 is about 10%. 

35 .999; .9991°00 = (1- &)loo' = $ because (1- i)"4 $. 

Section 8.5 Masses and Moments (page 340) 

3I F = ?  s z = r4 5 ~ = 3 . 5  7 z = + g  9 z = + g  I I Z = L $ = ~  IS^=$,$$ 
1 5  Z =  & = g  2 1  1 = $ x ~ ~ d x - 2 t $ x ~ d x + t ~ $ ~ d x ; ~ = - 2 ~ x ~ d x + 2 t $ ~ d x = 0 f o r t = ~  
23 South Dakota 25 2n2a2b 27 M, = 0, M, 75 29 $ 31 Moment 

33 I =xmnrz; C rn,rzwz; o 35  14nt$; 14d$ ;  

37 $; solid ball, solid cylinder, hallow ball, hollow cylinder 39  No 
a,
4 1  T =5.mby Problem 40 so T =a,m,4 

Section 8.6 Force, Work, and Energy (page 346) 

12.4 ft lb; 2.424 ... ft lb 3 24000 lb/ft; 835 ft lb 5 lox ft lb; lox ft lb 7 25000 ft lb; 20000 ft lb 
9 864,000 Nkm 115.6. lo7 Nkm I3 k = 10 lb/ft; W = 25 ft lb 1 5  $6Owh dh = 48000cu, 12000w 

1 7  iwAH2; ~ W A H ~19 9600w 2 1  (1- $- ) -3 /2  23 (800) (9800) kg 25 f force 

CHAPTER 9 POLAR COORDINATES AND COMPLEX NUMBERS 

Section 9.1 Polar Coordinates (page 350) 

I ~ O < Y < O O , - ; < B <  ~ ; O < r < m , n < ~ < 2 n ; & < r < J S , 0 < 0 < 2 n ; 0 ~ r < m , - ~ < B <  

1 9 y = x t a n B , r = x s e c B  2 1 B = ~ , a l l r ; r = s i n e ~ e o s e ; r = ~ ~ s B + ~ i n B  
2 3 x 2 + y 2 = y  2 5 ~ = r s i n B c o s 8 , y = r s i n ~ 8 , ~ ~ + ~ ~ = ~(e)21 2  + ( Y - * ) ~ =  2 9 x =  C O ~ @  sineZ ' 1 x 2 + y 2 = x + y , ( x - Z )  

cos @+sin0 9 Y = cos @+sin8 
3 1  (x2 + y2)3 = 24 
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Section 9.2 Polar Equations and Graphs (page 355) 

1Line y = 1 3 Circle x2 + y2 = 25 5 Ellipse 3x2 + 4y2 = 1- 22 7 x, y, r symmetries 

9 x symmetry only 11No symmetry 13 x, y, r symmetries! 

1 5  x2 + y2 = 6y + 82 -t (x - 4)2 + (y - 3)2 = 52, center (4'3) 1 7  (2,0), (0,O) 
l g r = l - &  2 B=s" .4 , r  = I +  +,8 = ".(o,o) 2 1  r = 2 , ~  f~12'  f~1 2 '4 ' = 1 2 '  5-12 

Section 9.3 Slope, Length, and Area for Polar Curves (page 359) 

1Area 3 Area 9 5 Area 7 Area - a 9 $:I3 7r/3 (22 Cos2 6 - = 

11Area 87r 13 Only allow r2 > 0, then 4 j;l4 i cos- 28 d6 = 1 1 5  2 + q 
1 7  8=O; left points r =  + , 8 =  f F , x =  -I4 , Y  = f 9 
1 9  $]i4= 40,000; $[ r J F T F  + c2 ln(r + J 7 7 7 ) 1 : 4  = 40,000.001 

2 1 t a n $ = t a n 8  23x=O,y=1isonl imaconbutnotc irc le  25iln(27r+J=)+7rd1+4?rZ 

r27 ?f 29 & (base) (height) FJ i ( r ~ 8 )  31 ?& 33 2s(2 -&) 35 !f 39 sec 19 

Section 9.4 Complex Numbers (page 364) 

1Sum = 4, product = 5 5 Angles F,?f , 7 Real axis; imaginary axis; + axis x 2 0; unit circle 

g c d = 5 + 1 0 i  ,c = u,, 112 cos 8 , l ;  -1,l 1 3  sum = O, product = -1 1 5  r4e4" 
' r  
le-'O Le-4'e 

, r 4  

1 7  Evenly spaced on circle around origin 1 9  eit, e-" 21et,e-t,e0 23cos7t,sin7t 

2 9 t = - z , y =  -ex/+ 3 1  F; T; at most 2; Re c < 0 33  be-", x = $ cos8, y = -$ sin 8; fLe-'e/2 
J; 


CHAPTER 10 INFINITE SERIES 

Section 10.1 The Geometric Series (page 373) 

1Subtraction leaves G - XG= 1or G = & 3 L. 9.W. 3 4  5 2 - l + 3 . 2 x + 4 . 3 x 2 + . . - =29 5 '  11 9 99 

7 .I42857 repeats because the next step divides 7 into 1 again 

9 If q (prime, not 2 or 5) divides loN - loM then it divides 10N-M - 1 11This decimal does not repeat 
19 '"53 

87 123 
1 5 a  1 7  6 1-111 x 2 1  23 tan-'(tan x) = x 

25 ( ~ + x + x ~ + x ~ - . . ) ( ~ -  - x3. . . )  = 1 + x 2 + x 4z + x 2  
2 1272(.1234 ...) i s 2 - & . * = 8 ; 1 - . 0 1 2 3  . . . i ~ l - - ~ ~loo (1-&)1 - 81 - - ~2 9 5 s = 1  

3 

3 1 - l n ( 1 - . l ) = - l n . 9  3 3 i l n Y  35((n+1)!  3 7 y = L1 - b ~  

39 All products like a1b2 are missed; (1+ 1)(1+1)# 1+ 1 4 1  Take x = in (13): In 3 = 1.0986 

43  In 3 seconds the ball goes 78 feet 45  tan z = $; (18) is slower with x = $ 
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Section 10.2 Convergence Tests: Positive Series (page 380) 

1 ? + f + is smaller than 1 + $ + . 
1 2 n  1 8 ~ n = S n - S n - 1 = ~ , S = 1 ; ~ n = 4 , S = ~ ; ~ n = h * - ~ n ~ = ~ n ~ , ~ = h 2  n+l n 1 

5 No decision on x b, 7 Diverges: &(I + + . *) 9 x - converges: 5 is larger 

11 Converges: 5 is larger 1 5  Diverges: x is smaller 15 Diverges: & is smaller 

1 7  Converges: x 8 is larger 19 Converges: C 5 is larger 2 1  L = 0 2 3  L = 0 25 L = 5 
2 7 r o 0 t ( v ) ~ + L = $  29s=l(onlysurvivor)  3 l I f y d e c r e a s e s , ~ ~ y ( i ) ~ ~ ~ y ( x ) d z ~ ~ ; - ' y ( i )  

1 35 x: e-" imO e-ldx = 1; $ + 7 + + . = 55 Converges faster than f i  
zC- I+ 1 

37 Diverges because ST = ln(x2 + 1)Ir = oo 39 Diverges because Sr xe-"dx = = oo 

4 1  Converges (geometric) because i;(f)'dx < oo 43 (b) J'+' $ > (base 1) (height &) 
45 After adding we have 1 + 5 + . . + & (close to ln 2n); thus originally close to ln 2n - In n = In % = ln 2 

1000 & 
47 Jloo 2 = 2 loo - looo - - .009 49  Comparison test: sin an < an; if an = m then sin a, = 0 but C an = oo 

5 1 a n = n - 6 / 2  5 3 a n = 5  65Ratiasarel,~,l,i,...(nolimitL);(&)'l"= ' ; yes 

5 7 R o o t t e s t & - r L = O  5 9 R o o t t e s t L = &  6 1 D i v e r g e n c e : N t e r m s a d d t o ~ ~ + m  
65  Diverge (compare i) 65  Root test L = Q 6 7  Beyond some point $ < 1 or an < b, 

Section 10.3 Convergence Tests: All Series (page 384) 

1 Terms don't approach zero 3 Absolutely 5 Conditionally not absolutely 7 No convergence 

9 Absolutely 11 No convergence 1 3  By comparison with C la, 1 
1 5  Even sums + f + a + . diverge; an's are not decreasing 1 7  (b) If an > 0 then s, is too large so s - s, < 0 

19 s = 1 - $; below by less than 

2 1  Subtract 2($ + f i  + . -) = i(fr + & + . . .) = from positive series to get alternating series 

23  Text proves: If C lanl converges so does C a, 

25 New series = (4)  - f + (i) - is.. = i(1 - I +  - .. 
2 -) 27 In 2 : add in 2 series to $ (In 2 series) 

29 Terms alternate and decrease to zero; partial sums are 1 + 8 + + ;! - In n + 7 

31 .5403? 53  Hint + comparison test 55  Partial sums a, - ao; sum -a0 if a, + 0 

57  && = 3 but product is not 1 + + . - .  
39 Write x to base 2, as in 1.0010 which keeps 1 + and deletes i, f ,  . . 
4 1  + & + adds to = 6 and can't cancel + 
43 a I-cos 1 = cot ? (trig identity) = tan (g - 1). 2 '  s = C 2 n = - log(1- e') by 10a in Section 10.1; 

take imaginary part 

Section 10.4 The Taylor Series for eZ, sin x, and cos x (page 390) 

+ . . . ; derivatives 2"; 1 + 2 + $ + . . 3 Derivatives in; 1 + i x  + . 1 l + 2 x +  
5 Derivatives 2"n!; 1 + 22 + 4x2 + . . 7 Derivatives -(n - l)!; -X - E?, - - 

2 3 
g y = 2 - e ~ = l - x - I ) - . . .  11 y = x - $ +  ... =sin 13 y=~e'=~+~~+d+.-• 

21 21 
1 5  l + 2 ~ + ~ ~ ; 4 + 4 ( ~ - 1 ) + ( ~ - l ) ~  1 7  - ( X - I ) ~  19 i - ( ~ - i ) + ( ~ - l ) ~ - -  
2 1  ( % -  1)- w+ - ... = l n ( l +  (x-1))  25 e-'el-= =e-'(1- (x-  1)+ - a * . )  

3 

25 x+2z2+2x3  27 A - ~ + .  2 24 720 2 g X - d . + &  18 600 3 1  l + x 2 + $  35  l + x - $  
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x5 2~~ 35ooslope; l + & ( z - l )  3 7 x - 3 - 4 - 5  3 9 ~ + % + ~  4 1 l + x + $  43  14-OX-x2 
eie  +e-?O i e -  - iB 

45 cos 8 = ,sin8 = + 47 99th powers - 1, -i, e3"14, -i 

49  e-"I3 and - 1; sum zero, product - 1 53  i;, it + 27ri 55 2ex 

Section 10.5 Power Series (page 395) 

1 1 + 4 ~ + ( 4 x ) ~ + - . . ; r =  !;x= f 3 e ( l - x + <  - . . . ) ;  r =  co 

5 l n e + l n ( l + i ) =  1+ 5 -  i ( 5 ) 2 + - . . ; r = e ; x =  -e 

7 1 < 1 or ( - 1 , )  9 l x -  a1 < 1;-ln(1- (x -  a)) 
l-(1-Lx?..) 

1 1 1 + ~ + $ + . . . ; a d d t o l a t x = 0  13 a l ,a3 , . . . a rea l lzero  1 5  - + L  2 

1 7  f ('1 (c) = cos c < 1; alternating terms might not decrease (as required) 
x n + l  n+ l 

1 9 f  = & , l R n l I w ; R n = ~ ; ( 1 - ~ ) 4 = 1 - ;  
n+ 1 

2 1  f("+')(x) = *,, lRnI 5 -(A) -' 0 when x = 4 and 1 - c > i 
23 R2 = f (x) - f (a) - f t (a ) (x  - a)  - i fU(a)(x  - so Rz = R; = R" 2 - - 0 at x = a, R:' = f"'; 

Generalized Mean Value Theorem in 3.8 gives a < c < c2 < cl < x 

25 1 + i x 2  + ;(x2)' 27 (-l)n; (- l )n(n + 1) 

29 (a) one friend k times, the other n - k times, 0 5 k 5 n; 21 33 (16 - 1)'14 EI 1.968 

35 (1 + I ) = ( ) ( )  + ( I ) 1.1105 37  1 + $ + 5ZI-r 24 ' = 5 4 1  x + x2 + $x3 + $x4 
43  x2 - 5x4 + &x6 45 1 + + + 2 47.2727 49 -' 6 - 3 = -' 2 5 1 r  = 1 , r  = 5 - 1 

CHAPTER 11 VECTORS AND MATRICES 

Section 11.1 Vectors and Dot Products (page 405) 

1(0,0,0);(5,5,5);3;-3;cose = -1 3 % - j  -k;-i-7j+8k;6;-3;cosB = -I 2 

5 (v2, -vi); ( ~ 2 ,  -vl, 0), (v3,0, -v1) 7 (0,0);(0,0,0) 9 Cosine of 8; projection of w on v 
11 F;T;F 13 Zero; sum = 10 o'clock vector; sum = 8 o'clock vector times 

1 5  45' 1 7  Circle xZ + J = 4; (x - 1)2 + # = 4; vertical line x = 2; half-line x 2 0 

1 9 ~ = - 3 i + 2 j , w = 2 i - j ; i = 4 v - w  2 1 d = - 6 ; C = i - 2 j + k  

23cos8 = -&cos8 = -&;cos8= 2 5 A . ( A + B ) =  l + A . B =  l + B . A = B - ( A + B ) ;  equilateral,600 
27 a = A . I, b = A . J 29 (cos t, sin t) and (- sin t, cos t) ; (cos 2t, sin 2t) and (-2 sin 2t, 2 cos 2t) 
31C=A+B,D=A-B;C.D=A.A+B.A-A-B-B-B=r2-r2 = O  

S S U + V - W = ( 2 , 5 , 8 ) , U - V + W  = ( 0 , - 1 , - 2 ) , - U + V + W =  (4,3,6) 

35 c and JFTF; b/a and J a 2  + b2 + c2 

~ ~ M ~ = ~ A + c , M ~ = A + ~ B , M ~ = B + $ c ; M ~ + M ~ + M ~ =  ~ ( A + B + c ) = o  
39 8 5 3 3; 2 & j  5 x + y 4 1  Cancel a2c2 and b2d2; then b2c2 + a2d2 2 2abcd because (be - ad)2 2 0 

43F;  T; T; F 45all2fi;cosB = -+ 
Section 11.2 Planes and Projections (page 414) 

1 (0 ,0 ,0 )and(2 , - l ,O) ;N=( l , 2 ,3 )  3 (0 ,5 ,6 )and(0 ,6 ,7 ) ;N=(1 ,0 ,0 )  

5 (1,1,1) and (1,2,2); N = (1,1,-1) 7 x + y = 3 9 x + 2y + z = 2 
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11 Parallel if N V = 0; perpendicular if V = multiple of N 

1 3  i + j + k (vector be tween ~oints)  is not perpendicular to N; V . N is not zero; plane through first three 

is x + y + z = 1; x + y - z = 3 succeeds; right side must be zero 

1 5 a x + b y + c z = O ; a ( x - x o ) + b ( y -  yo)+c(z -zo)=O 17cosB= $,$,* 
19  &A has length $ 21  P = $A has length $ 1 ~ 1 23 P = -A has length IAl 25 P = 0 
27 Projection on A = (1,2,2) has length g; force down is 4; mass moves in the direction of F 
29 IPlmin = & = distance from plane to origin 3 1  Distances 2 and 2 both reached at ($, $, - $) 6 6 
3 3 i + j + k ; t =  -$;(!,-5,-;);-& 

35 Same N = (2, -2,l); for example Q = (0,0,1); then Q + $N = (2, -$, v) is on second plane; $ 1 ~ 1 = 

37 3i + 4j; (3t,4t) is on the line if 3(3t) + 4(4t) = 10 or t = g; P = (g, g), IPI = 2 

~ 9 2 x + 2 ( ~ - f x ) ( - f ) = 0 s o x = ~ = ~ ; 3 x + 4 ~ = 1 0 g i v e s y = ~  

41 Use equations (8) and (9) with N = (a, b) and Q = (xl , yl ) 43 t = A'B B onto A 

45 aVL = ?LI - ?LIII; aVF = $LII + $LrII 

4 7 V . L I  = 2 - l ; V . L I I  = - 3 - l , V . L I I I  = - 3 - 2 ; t h u s ~ . 2 i =  1 , ~ - ( i - & j ) = - 4 ,   and^= $ i + U e  2 J 

Section 11.3 Cross Products and Determinants (page 423) 

10 33i -2 j -3k  5-2i+3j-5k 7 2 7 i + 1 2 j - 1 7 k  

9 A perpendicular to B; A, B, C mutually perpendicular 11 I A x B I = a, A x B = j - k 1 3  A x B = 0 
15  [ A  x BIZ = (a: + ag)(b: + bg) - (albl + a2b2)2 = (alb2 - a2b1)2; A x B = (alb2 - a2bl)k 

1 7 F ; T ; F ; T  1 9 N = ( 2 , 1 , O ) o r 2 i + j  2 1 x - y + z = 2 s o N = i - j + k  

23[(1,2,1)-(2,1,1)]x[(1,1,2)-(2,1,1)]=N=i+j+k;x+y+z=4 

25 (1,1,1) x (a, b, c) = N = (c - b)i + (a - c) j  + (b - a)k; points on a line if a = b = c (many planes) 

27 N = i + j, plane x + y = constant 29 N = k, plane z = constant 

31  1 1 0 = x - y + z = O  I : : I  33 i - 3j; -i + 3j; -3i - j 35 -1,4, -9 

39 +c1 
b2 b3 

- c2 
b l  b2 

41  area2 = ( i ~ b ) ~  + ( ? u c ) ~  + ( $ 6 ~ ) ~  = (21A 1 x B1)2 when A =  ai -b j ,B = ai -ck 

43 A = $(2 1 - (-1)l) = i; fourth corner can be (3,3) 

45 ali + a j and bli + b j ;  lad2 - a2b1 I; A x B = + (alb2 - azbl)k 
47 A x B; from Eq. (6), (A x B) x i = -(asbl - alb3)k + (a1b2 - a2bl)j; (A . i )B - (B  . i)A = 

al(bli + b j + b3k) - bl(ali + a j + a&) 
4 9 N = ( Q - P ) x ( R - P ) = i + j + k ; a r e a  $ & ; X + ~ + Z = ~  

Section 11.4 Matrices and Linear Equations (page 433) 
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15 ad - bc = -2 so A-l = [ :;-:;] 17 Are parallel; multiple; the same; infinite 

19 Multiples of each other; in the same direction as the columns; infinite 

21  dl = .34, d2 = 4.91 23 .96x + .02y = .58, .O4x + .98y = 4.92; D = .94,x = .5, y = 5 

25 a = 1gives any x = -y; a = -1 gives any x = y-:] ; D27 D = - 2 , ~ - l  = -1 - = -8, (2A)-' = +A-'; D = -2 ' (Aw1)-' = original A; 
L .I 

D = -2 (not +2), (-A)-' = -A-'; D = 1,I-' = I 

39 Line 4 + t, errors -1,2, -1 4 1  dl - 2d2 + ds = 0 4 3  A-' can't multiply 0 and produce u 

Section 11.5 Linear Algebra 

0 -1 

5 det A = 0, add 3 equations -,0 = 1 7 5 a + l b + O c = d , A V 1 =  

9 b x c; a . b x c = 0; determinant is zero 11 6, 2, 0; product of diagonal entries 
-2 4 0 2 -1 

15 Zero; same plane; D is zero 

17 d = (1,-1.0); u = ( 10, 0) or (7,3,I) 19 AB = 4: 2: , det A S  = 12 = (det A) times (det B)][ 
18 12 0 

2 3 -3 
I 1  A + C  = [ 1 4 z ]  , d e t ( A + C )  is not det A + det C 

0 -1 

2 s P = l2)(3)-(0)(6) 
6
6 = 1 , q =  -(4)(3)+(0)(0)= -2 25 ( ~ - l ) - lis always A 

33 New second equation 32 = 0 doesn't contain y; exchange with third equation; there is a solution 

35 Pivots 1,2,4, D = 8; pivots 1,- l ,2 ,  D = -2 37 al;! = 1,a21 = 0, aijbjk = row 2 ,  column k in A B  

CHAPTER 12 MOTION ALONG A CURVE 

Section 12.1 The Position Vector (page 452) 

=1~ ( 1 )i + 3j; speed m; 3 2 = = %;tangent to circle is perpendicular to " = 
Y 

5 v = e t i - e - t j = i - j ; y - 1 = - ( x - l ) ; x y = 1  
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7 R = (1,2,4) + (4,3,O)t;R = (1,2,4) + (8,6,O)t;R = (5,5,4) + (8,6,O)t 

9 R =  ( 2 + t , 3 , 4 - t ) ; R =  (2+ $,3,4- $);the same line 

Line; y =  2 + 2 t , z =  2+3t ;y=  2+4t ,z  = 2+6t  

L i n e ; t / m = 7 ; ( 6 , 3 , 2 ) ; l i n e s e g m e n t  1 5 $ ; l ; $  I I x = t , y = m t + b  

v = i -&j,IvI = ~ W , T= v/lvl;v = (cost - tsint)i + (sint +tcost)j; Ivl = d m ;  

R = -sint i +  cost j + any &;same R plus any w t  

v = (1- sin t)i + (1- cos t)j; Ivl= 4 3  - 2 sin t - 2 cos t, Ivlmin = d r f i ,IVI~.. = d c f i ;  

a = -cost i+s in t j , l a l  = 1; center is on x = t ,y = t 
Leaves at (9,$);v = (-&,&);a = (9,$) + v(t - P) 
R = cos l i  + sin i j  + l kfi fi \/z 
v = sec2t i+secttantj ;Ivl  = s e c 2 t m ; a  = 2sec2t tant i+  (sec3t+secttan2t) j; 

curve is y2 - x2 = 1; hyperbola has asymptote y = x 

If T = v then lvl = 1; line R = ti or helix in Problem 27 

- (240) 0 5 t 5 3 (3 - 2t, 1) 15 t 5 q
(x(t)3 - (1,2t - 1) 3 5 t 5 1 (0,4 - 2t) q 5 t 5 2 
~ ( t ) = 4 c o s i , ~ ( t ) = 4 s i n i  3 7 F ; F ; T ; T ; F  3 9 f = t a n e b u t t # t a n t  

v and w; v and w and u; v and w, v and w and u; not zero 

u = (8,3,2); projection perpendicular to v = (1,2,2) is (6, -1, -2) which has length 

x = G(t), y = F(t); y = x2I3;t = 1and t = -1 give the same x so they would give the same y; y = G(F-I(%)) 

Section 12.2 Plane Motion: Projectiles and Cycloids (page 457) 

1(a) T = 16/gsec, R = 128&lg ft, Y = 32/g ft (b) ; , (c) 0 3 z= 1.2 or 33.5 

5 y = x - i x 2 = ~ a t  ~ = 2 ; ~ = z t a n x - ~  2(v,cosa)2= 0 at x =  R 7 x = v o e  

9 vo M 11.2, tan a M 4.32 11vo = a= am/sec; larger 1 3  +j/2t~ = 40 meters 
1 5  Multiply R and H by 4; dR = 2vi cos 2ada/g, dH = v; sin a cos a da/g 

1 9  T= ~l-cOse)i+sinei1 7  t = set; y = 12 -%r, -2.1 m; + 2,lm ,/-
21  Top of circle 25 ca(1- cos 8), casin 8; 8 = r,$ 27 After 8 = r :x = r a  + vot and y = 2a - igt2 29 2; 3 
3 1  v ; 5 9 a 3  33 x=cos8+8sin8,y=sin8-8cos8  35 ( a = 4 )  6 r  

57 y = 2sin 8 - sin 28 = 2 sin 8(1 - cos 8); x2 + y2 = 4(1- cos 8)2; r = 2(1- cos 8) 

Section 12.3 Curvature and Normal Vector (page 463) 

1-&-5 0 (line) 7 &$&3 $ 9 (- sin t2, cos t2); (- cos t2, - sin t2) 
11(cost,sint);(-sint,-cost) 1 3  ( - ~ s i n t , ~ c o s t , ~ ) ; ~ v ~ = 5 , n = & ; ~ l o n g e r ;t a n B = $  

1 
16,N = i 1 9  (0,O); (-3,0) with $ = 4; (-1,2) with != 2 f il52\/za,/l-cos8 1 7  n = 9 

2 l R a d i u s ~ , c e n t e r ( 1 , f ~ ~ f o r n ~ 12 3 U - V '  2 5 l ( s i n t i - c o s t j + k )  2 7 ;  

29 N in the plane, B = k, r = 0 33 a = 0 T + 5w2N 55 a = -&T + &N3 1  e5 
\/z 

3 7 a = * ~ + -Ja 39 IF2+ 2(F1)' -FF"I/(F2+ F " ) ~ / ~\l&N 
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Section 12.4 Polar Coordinates and Planetary Motion (page 468) 

9 r $ $ + 2 2 g = O = L d ( r 2 $ )  1 1 ~ = . 0 0 0 4 r a d i a n s / s e c ; h = r 2 ~ = 4 0 , 0 0 0r dt 

47r2 150 1017 kg1 3  mR x a;torque 15T ~ / ~ ( G M / ~ ~ ) ' / ~1 7  4n2a3/T2G 19 ( 3 6 5 ~ ) 2 ~ 2 4 ) 1 ( ( 3 ~ 0 ~ 2 ( 6 6 6 7 ~ 1 0 0 1 1  
23UseProb l eml5  2 5 a + c = & , a - c = - ,&, solve for C, D 
27  Kepler measures area from focus (sun) 29  Line; x = 1 

10 
3 3  r = 20 - 2t, 0 = z,v= -2ur + (20 - 2 t ) g u s ;  a = (2t - 20 ) (%)~u ,- 4(%)us; So lvldt 

CHAPTER 13 PARTIAL DERIVATIVES 

Section 13.1 Surfaces and Level Curves (page 475) 

3 x derivatives ca,-1, -2, -4e-4 (flattest) 5 Straight lines 7 Logarithm curves 

9 Parabolas 11No: f = (x + y)" or (ax + by)" or any function of ax  + by 1 3  f (x, y) = 1 - x2 - y2 
1 5  Saddle 1 7  Ellipses 4x2 + y2 = c2 19Ellipses 5x2 + y2 = c2 + 4cx + x2 

2 1  Straight lines not reaching (1,2) 2 3  Center (1 , l ) ;  f = x2 + y2 - 1 25  Four, three, planes, spheres 

27  Less than 1, equal to 1,greater than 1 29  Parallel lines, hyperbolas, parabolas 

3 1  $ : 482 - 3x2 = 0, x = 16 hours 33 Plane; planes; 4 left and 3 right (3 pairs) 

Section 13.2 Partial Derivatives (page 479) 

7 -22 . -21 3+ 2xy2;-1 + 2yz2 3 3x2y2 - 2x;2x3y - eY 5 a;(z%)2 (z2+Y2); (z2+$)2 
z&2 i 7% l1Z+ z2:y2 1 3 2 , 3 , 4  1 5 6 ( x + i y ) , 6 z ( x + i y ) , - 6 ( x + z y )  

2z2- 2 .  2 2-z2
17 ( f= ! ) f zZ=  , sY  , f z y = y ; f y y =  y r s  19-a2 cos ax  cos by, ab sin ax  sin by, -b2 cos ax cos by 

2 1  Omit line x = y; all positive numbers; fz = -2(x - Y ) - ~ ,  fy = 2(x - y)-3 

23  Omit s= t; all numbers; 2,A,H,&$ 
2 5 x > O , t > O a n d x = O , t >  1 andx=-1,-2,...,t=e,e2,...;fz = ( l n t ) ~ ' " ~ - ' ,ft = ( ~ n x ) t ~ ~ ~ - '  

27  y, x; f = G(x) + H(y) 29  = Y v ( x y )  = yv(zy) 

3 1  fzzz = 6 9 ,  fyyy = ex3, fzzy = f z y z  = fuzz = 1 8 x 9 , fyyz = fyzy = fxyy = 18x2y 

3 3  g(y) = 3 5  g(y) = ~ e ' y / ~+ ~ e - ' y / ~  

37  ft = -2 f ,  fzz = fyy = -e-2t sin x sin y; e-13' sin 2x sin 3y 

39  sin(x + t )  moves left 4 1  sin(x - ct), cos(x + ct), ez-" 

4 3  (B- A) hy (C*) = ( B  - A) [fy (b, C*) - fy (a, C*)]  = ( B  - A) (b  - a)  fyz (c*, C*); continuous fxy and fyx 

45  y converges to b; inside and stay inside; d, = J(x, - a)2 + (y, - b)2  -+ zero; d, < E for n > N 
4 7  E, less than 6 4 9  f (a, b); 

1 51 f (0,O) = 1; f (0,O) = 1;not defined for x < 0or (x- l ) (y -2)  
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Section 13.3 Tangent Planes and Linear Approximations (page 488) 

9 Tangent plane 2 4 2  -a)- 2xo(x - xo) - 2yo(y - yo) = 0; (0,0,O) satisfies this equation because 

zi - xg - yi = 0 on the surface; cos 9 = ,m= dL,N-k = (surface is the 45' cone)
zg+Y: +r,l 

11dz = 3dx - 2dy for both; dz = 0 for both; Az = 0 for 3% - 2y, Az = .00029 for x ~ / ~ ' ;  tangent plane 

1 3  z = z o +  Fzt; planeB(x-4) + 1 2 ( y - 2 ) + 8 ( ~ - 3 )  =O; normalline x =  4 + 6 t , y =  2+12t,z = 3 + 8 t  

15  Tangent plane 4(x - 2) + 2(y - 1) + 4(z - 2) = 0; normal line x = 2 + 4t, y = 1+ 2t, z = 2 + 4t; (0,0,0) 
at t = - 1

2 

1 7  dw = yodx + xody; product rule; Aw - dw = (x - xo)(y- yo) 

1 9  d I  = 4000dR + .08dP; d P  = $100;I = (.78)(4100)= $319.80 

2 1  Increase = - = &,decrease = - = &;dA = Adz - S d y ;  3 23 A@ M - Y ~ ~ + ~ ~ Y 
Y ,/z'+y' 

25 Q increases; Q8 = - y , Q t  = +,pa = -.2Q8 = El3' Pt = -.2Qt = $ ; Q = 5 0 - Z$l(s- .4) - $( t -  10) 
P8 = -Qu = 

2 7 s = l , t = l O g i v e s Q = 4 0 :  s Q a + Q = Q 8 + 4 0  ;Q8=-2O,Qt=-;,p8 =20,Pt = $Pt = -Qt = sQt + 1= Qt + 1 
2 9 s - 2 =  x-2+2(y-1)  and z - 3 = 4 ( ~ - 2 ) - 2 ( ~ - 1 ) ; ~ =  1 , y =  ; , Z = O  

2 , ~ 1  13 1  AX = -$,Ay = A - = 5,yl = -$; line X + ~ = O  

33 3 a 2 ~ x-Ay = -a - a3 gives Ay = -Ax = f&&;lemon starts at (I/&, -I/&) 
-Ax + 3a2Ay = a + a3 

35 If x3 = y then y3 = x9. Then x9 = x only if x = 0 or 1or -1 (or complex number) 

37 AX = -xo + 1,Ay = -yo + 2, (XI ,  yl) = (1,2) = solution 
x1

39 G = H = 2xn:1 4 l J =  [: :Y ] , A X =  - l+e-xn,Ay= -1- (..-l + e - ~ n ) e - ~ n  

43 ( ~ 1 ,  =~ 1 )  (0, :), (-:, :)I (;to) 

Section 13.4 Directional Derivatives and Gradients (page 495) 

1grad f = 2xi - 2yj, Du f = f i x  - y, Du f (P) = fi 
3 grad f = ex cos y i - ex sin y j, Du f = -ex sin y, Duf (P)  = -1 

t i f = ~ ~ ~ + ( ~ - 3 ) ~ , g r a df = j i + y j , & f = r , & f ( P ) = L  fi 7 g r a d f  = * i + , & j  
9 grad f = 6xi + 4yj = 6i + 8j = steepest direction at P ;  level direction -8i + 6j is perpendicular; 10, 0 

l lT;F(gradf isavector);F;T 1 3 ~ = ( *  \/Wa2+b' ' b - ) , ~ u f = d =  
(&,s), f15  grad f = (ex-Y, -ex-Y) = (e-', -e-') at P ; u  = = h e - '  

17gradf=Oatmaximum;levelcurveisonepoint I g N = ( - I l l , - l ) , U = ( - 1 , 1 , 2 ) , L = ( l , l , O )  
21  Direction -U = (-2,0, -4) 23 -U = ( d m ,  - x P - Y l  

l - z l - ~ l )  

25 f = (x + 2y) and (x + 2y)2; i + 2j;straight lines x + 2y = constant (perpendicular to i + 2j) 

27 grad f = f(A,3);grad g = f (2& &), f = f(3- %) + C,g = f ( 2 h x  + &) + C . . 
29 9 = constant along ray in direction u = 7;grad 9 = wi = *;u-grad t9 = 0 

x +Y 
3 1  U = (fx, fy, fi+ f i )  = (-1, -2,s); -U = (-1, -2,5); tangent at the point (2,1,6) 
33 grad f toward 21 +j at P,j at Q, -2i +j at R; (2, ?) and (21,2); largest upper left, smallest lower right; 

z,,, > 9; z goes from 2 to 8 and back to 6 
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3 5  f = iJ(x - 112 + (y - 112; ( 3 ,  = (3~ J Z )2 J i '  
3 7  Figure C now shows level curves; lgrad f 1 is varying; f could be xy 

39 x2 + xy; ex-'; no function has 3= y and % = -x because then f,, # f,, 
4 1  v = (1,2t); T = v / & S F ;  % = v . (2t, 2t2) = 2t + 4t3; $ = (2t + 4t3)/J-

4 3  v = (2,3);T = -&; 3 = v . (2xo + 4t, -2yo - 6t) = 4xo -Byo - lot; $ = 

45  v =  (et,2e2',-e-');T = G;grad f = (;, $, $) = (~- ' , e -~ ' , e ' ) ,% = 1+2 -
0 

1, = -2-
Ivl 

4 7  v = (-2 sin 2t, 2 cos 2t), T = (- sin 2t, cos 2t); grad f = (y,x), 2 = -2 sin2 2t + 2cos2 2t, % = i s ;  

zero slope because f = 1on this path 

4 9 2 - 1 = 2 ( x - 4 ) + 3 ( y - 5 ) ;  f = l + 2 ( x - 4 ) + 3 ( y - 5 )  51 grad f . T = O ; T  

Section 13.5 The Chain Rule (page 503) 

1f, = cfx = c COS(X + ey) 3 f, = 7fx = 7ex+7' 5 3g2*&ax dt + 3 2 % 2 7 Moves left a t  speed 2 
9 2= 1 (wave moves at  speed 1) 

11sf(x + iy) = f t t (x+ iy),  -@-f(x+iy) = i 2 f t t ( x + i y )  

so f i x  + f,, = 0; (x + ~ y ) ~= (x2 - #) + i(2xy) 
1 3 % = 2 ~ ( 1 ) + 2 ~ ( 2 t ) = 2 t + 4 t ~  1 5 $ = y $ + x $ = - 1  1 7 * = l d . + 1 * = 1dt x+ydt s+ydt 

19 V = STr2h dV 27rrh dr 7rr2 dh = 3GTdt=--3 d t + ~ d t  
90 

90a+90a 903+90 = Ji m ~ h ;dD2 1  % = d z ( 6 0 )  + d7(45) 7 T  = d- 60 (60) + J- 45 (45) cl 74 mph 

23  $ = U I % + U ~ % + U ~ %  25  g = l w i t h x a n d y f i x e d ;  % = 6  

27 ft = fxt + f , W  ftt  = fxtt + fx + 2fytt + 2f, = (fxxt+ fYX(2t))t+ fx + 2(fx,t + f,,(2t))t + 2f, 

29  = gg + gg = ~ C O S B+ U s i n B , ~is fixed 
x3 = h..a? 

3 , a(:)-- r - .,-2& ax = L - 2 -3,2 2 + ~ 1 ) 3  ax r ~ 3 - $  

1
2 )(2), = I;  first answer is also J&= eosr 

3 5  f r  = f~cosB+f,s inB, fro = -fxsin~+f,cosB+fx,(-rsinBcos~)+fx,(-rsin2~+rcos28)+f,,(~~~~~~i~~) 
-37  yes (with y constant): 2 = yex', 2 = 2 -& 39 ft = fxxt + f,yt; ftt = fxxx; + 2fX,xtyt + fyyy? 

9 ( 2 ) y  = a; (E).= gg =4 1 ( % ) , = % + % 2 = a - 3 b .  $6 

4 3 1  4 5 f = y 2 s o f x = ~ , f , = 2 y = 2 r s i n ~ ; f = r 2 s o f r = 2 r = 2 J ~ , ~ f e = ~  

47 gu = fxxu + f,yu = f x  + f,;gu = fxxu + f,yu = fx - f,; guu = f,& + fx,y, + f,,x, + f,,yu 
-
- f i x  + 2 f ~ y+ fyy; ~ U U= ~ X X X ~+ fXyyu - fyXxu- fyyyu= fix - 2fxy + fyy Add gUu+ guu 4 9  False 

Section 13.6 Maxima, Minima, and Saddle Points (page 512) 

1(0,O) is a minimum 3 (3,O) is a saddle point 5 No stationary points 7 (0,0) is a maximum 
9 (0,0,2) is a minimum 11All points on the line x = y are minima 13 (0,0) is a saddle point 

1 5  (0,O) is a saddle point; (2,O) is a minimum; (0, -2) is a maximum; (2, -2) is a saddle point 

1 7  Maximum of area (12 - 3y)y is 12 
2(x + y) + 2(x + 2y - 5) + 2(x + 3y - 4) = 0 x = 2;19 gives 

y = - 1  min because ExxEyy= (6)(28) > E:, = 1z22(x + y) + 4(x + 2y - 5) + 6(x + 3y - 4) = 0 
2 1  Minimum at (0, i ) ;  (0 , l ) ;  ( 0 , l )  
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23 % = 0 w h e n t a n t = & ; f m , = 2 a t  ( i , $ ) , fmin=-2a t  (-+,-'$) 
1 

25 (ax + by),, = W; (x2 + y2)min = 2 7 0 < c < f  

29 The vectors head-to-tail form a 60-6@6O triangle. The outer angle is 120' 31 2 + &; 1 + fi; 1 + 
35 Steiner point where the arcs meet 39 Best point for p = oo is equidistant from corners 

4 1  grad f = (& ?+ y+ y,\/Z ?+ + 7); angles are 90-135-135 

43 Third derivatives all 6; f = 5 x 3  + *x2 + $29 + 5 y3 
1 2  3 3  

45 (&)n(s)m ln(1- ~ y ) ] ~ , ~  = n!(n - I)! for rn = n > 0, other derivatives zero; f = -xy - 2 
- 3 - . . 

47 All derivatives are e2 at (1,l); f N e2[l + (x - 1) + (y - 1) + i ( x  - 1)2 + (x - l)(y - 1) + ?(y - I ) ~ ]  
4 9 x = l , y = - 1 :  f ,= 2, f, = -2, f,, = 2, fx, = 0, f, = 2; series must recover x2 + y2 

51 Line x - 2y = constant; x + y = constant 

5 3 ~ f . , + z y f x , + f f , , ] ~ , ~ ; f x , > O a n d f x z f u v > f ~ a t ( ~ , ~ ) ; f x = f v = O  5 5 A x = - l , A y = - 1  
57 f = x2(12 - 42) has fmax = 16 at (2,4); line has slope -4, y = 5 has slope = -4 

59 If the fence were not perpendicular, a point to the left or right would be closer 

Section 13.7 Constraints and Lagrange Multipliers (page 519) 

2k kkl 3 A = -4, Xmin = 2, Ymin = 2 1 f = x2+ (k- 2 ~ ) ~ ;  = 22- 4(k- 22) = 0; (-g-, g ) ,  -g 
5 X = : (x, y) = (~k2 ' /~ ,  0) or (0,f21/6), fmin = 2lI3; X = ' 3 (x, Y) = (*I, f 1 ) s  f m a ~  = 2 

7 X = i, (x, y) = (2, -3); tangent line is 22 - 3y = 13 

9 (1 - c ) ~  + (-a- c)'+ (2 - a -  b - c)'+ (2- b -  c ) ~  is minimized at a = -$ ,b  = t , c  = Q 
1 11 (1, -1) and (-1,l); X = -5 

1 3  f is not a minimum when C crosses to lower level curve; stationary point when C is tangent to level curve 

1 5  Substituting = = = 0 and L = fmin leaves = X 
1 7  x2 is never negative; (0,O); 1 = A(-3y2) but y = 0; g = 0 has a cusp at (0,0) 

19 2x=X1+X2,4y=X1,2s=X1 - X 2 , x + y + z = 0 , x - z =  1 gives X1 =0,X2 = 1, fmin= ? at (;,o,-?) 
21(1,0,0);(0,1,0);(Xl,X2,0);x=y=O 2 3 % a n d d ; X = O  

25 (1,0,0), (0,1,0), (0,0,1); at these points f = 4 and -2 (min) and 5(max) 

27 By increasing k, more points are available so fmax goes up. Then X = 2 0 
29 (0,O); X = 0; fmin stays at 0 

31  5 = X1 + X2, 6 = X1 + As, X2 2 0, As 5 0; subtraction 5 - 6 = X2 - X3 or -1 2 0 (impossible); 

x = 2004, y = -2000 gives 52 + 6y = - 1980 

33 22 = 4X1 + X2, 2y = 4X1 + As, X2 2 0, X3 2 0,4x + 4y = 40; max area 100 at (10,0)(0,10); min 25 at (5,5) 

CHAPTER 14 MULTIPLE INTEGRALS 

Section 14.1 Double Integrals (page 526) 
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& L  .-L 

37 + q L ! = , C L f  (n, ~ ) i s e x a c t f o r f = 1 , x , y , x y  39Volume8.5 41Volumes ln2 ,2 ln( l+&)n 

&dy $:=xydx dy J: $:4 3  

45 W i t h  long rectangles 

1 1 
Ins= ln2;J0 loxydy dx = $'o " - l d x  = In2 

y i A A  = A A  = 1 but $$ y d A  = 

Section 14.2 Change to Better Coordinates (page 534) 

Wdudv 
1 $:;i4$: 

1 dl-"'
5 R is symmetric across the y axis; So So u du dv = 5 divided b y  area gives (a,U)= ( 4 / 3 r ,  4 / 3 4  

'+-dy dx;  xy region R* becomes R in the x*y* plane; dx dy = dx'dy* when region moves 7 2SoI *  Sl+x 

g J =  
COSO* -r*sinO* 

= r*;$:7i4so1r*dr*dO* 

1 1  Iy  = $$Rx2dx dy = $:Y/~$: r2cos2O r dr do = 5 - i;Is = 5 + i;I. = 

13  (0,0), (1,2),  (1,3),  ( 0 , l ) ;  area o f  parallelogram is 1 

15 x = u ,  y = u + 3v + uv; then ( u ,  v )  = (1 ,0 ) ,  (1 ,  I ) ,  ( 0 , l )  give corners ( x ,  y) = (1 ,O ) ,  (1 ,5 ) ,  (0 ,3 )  
317 Corners (0 ,0) ,  (2,1),  (3,3),  (1,2); sides y = i x ,  y = 22 - 3, y = i x  + 5 ,y = 22 

I 9  Corners (1 ,  I ) ,  (e2, e ) ,  (e3, e3) ,  (e,  e2);  sides x = y2 ,  = x2/e3, x = y2/e3, y = x2 

1 
r dr dB = 2 3 S = quarter-circle with u > O and v 2 0;So So 

2 1  Corners (0,0 / , (1,0),  (1,2),  ( 0 , l ) ;  sides y = 0 ,  x = 1, y = 1 + x2, x = 0 
1 1  3e3u+3"dU d y  $: $: e 2 ~ + ~ze2u+v13 J = = 3, area soZdu dv = 3;J = eu+2v 2eu+2v - 3e3u+3v,- = 

1 0125 corners ( x ,  y) = ( 0 , 0 ) ,  (1 ,0 ) ,  (1 ,  / ( 1 ) ) ,  (0 ,  f ( 0 ) ) ;  ( $ 9  1) gives x = $ 9  Y = f ( $ ) i  J = v u f(,) 

27 ~2 = 2 $:I4 $:Isine e-r'r dr do = - 1 
" 8  2n 129 f = // r2dr dB/ // r dr dB = So ,a 3 cos3 B dd/xa2 = 97r 3 1  /, sor2r dr dB = 5 

3 3  Along the right side; along the bottom; at the bottom right corner 
1 1

35  $$ xy dx dy = So So (ucos a - v s ina) (us in  a + v cos a ) d u  dv = f (cos2 a - sin2 a )  

37 $:" $ '  r2r2r dr do = Y(S6- 46)  39 x = cos a - sin a ,  y = sin a + cos a goes t o  u = 1, v = 1 

Section 14.3 Triple Integrals (page 540) 

21 Corner o f  cube at 1 1( &,z, sides 5; 
3&

z); area 
4

23 Horizontal slices are circles o f  area r r 2  = a(4 - z ) ;  volume = lor ( 4  - z ) d z  = 8 r ;  centroid 
4has z =  0 , g =  0 , z =  sozlr(4--z)dz/8r= 5 
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f dx dz, &$ gives aeros; = dy dz,f $: = I: -- I,"f25 I = 

J : ~ ( ~ ~+ z2)dx dy dz = y;J/Ix2dv = t ;3 $JJ(x $!, $:,27 
 - T ) 2 d ~= 

29 J: dx dy dz = 6 $1Tkape~oidalrule is second-order; correct for 1,x, y, z, xy, xz, yz, xyz 

Section 14.4 Cylindrical and Spherical Coordinates (page 547) 

1(r,8, 2) = (D, 0, 0); (P, 498) = (Dl :, 0) 3 (r, #,a) = (0, any angle, Dl; (P, 4,8) = (D,0, any angle) 
5(x,y,z)=(2,-2,2fi);(r,8,~)=(2@,-f,2@) 7(x,y,z)=(O,O,-l);(r,d,z)=(O,anyangle,-1) 
9 4 = tan-'(:) 1145' cone in unit sphere: y(1-A) 1 3cone without top: 2 

1 5  hemisphere: 1 7  $ 19Hemisphere of radius r ::r4 21  r (R2 - z2);4 r t - d n  

23 $a3 t ana  (see 8.1.39) 27 = p-DcOsC - near lide-
Q hypotenuse = COs 

3 1  Wedges are not exactly similar; the error is higher order + proof is correct 

33 Proportional to 1+ i(\/02+ (D -h)2 -@TP) 
a cos8 -rsin# 0 

35 J = b = abc; straight edges at right angles 37 sin 8 r cos 8 0 = r 
C 0 0 1 

3g e.n 
3 '3 41 p3; pa; force = 0 inside hollow sphere 

CHAPTER 15 VECTOR CALCULUS 

Section 15.1 Vector Fields (page 554) 

l f ( z , y ) = x + 2 y  3 f (x ,y )=s in (x+y)  5 f ( x , y ) = l n ( x 2 + # ) = 2 1 n r  

7 F = xyi + Gj,f (x, Y) = 9 9 = O so f cannot depend on x; streamlines are vertical (y = constant) 
1 1 F = 3 i + j  I S F = i + 2 y j  1 5 F = 2 x i - 2 y j  17F=ex-v i -ex-Yj  

Y 'l g z = - l ; y = - x + C  2 1 $ = - E - x 2 + y 2 = C  23 3 x2 + y2 = C 25 parallel= *-= 7; 
2 7 ~ =Fi+yj 2 9 F =  -:fG(xi+yj)- ((x-1)2+Ya)3/2~ M G  ((x - 1) i + Y j) 
t l ~ = $ ~ i - q ~ j  J J ~ z = = = - ~ . ~ K =2 9 d ~  * = 2  

35 = gE= g:; 5 = g f ;  f(r) = C gives circles 
37 T; F (no equipotentials); T; F (not multiple of xi + yj + zk) 
39 F and F + i and 2F have the same streamlines (different velocities) and equipotentials (different potentials). 

But if f is given, F must be grad f .  

Section 15.2 Line Integrals (page 562) 

l $ ; d W d t = & ; j , ' 2 d t = 2  3 c t 2 \ / Z d t + ~ : 1 . ( 2 - t ) d t =  $+; 
5 JtU(-3 sin t)dt = 0 (gradient field); J:" -9 sin2t dt = -97r = - area 

7 No, xy j is not a gradient field; take line x = t, y = t from (0,O) to (1'1) and $ t2dt # ? 
g N o , f o r a ~ L c l e ( 2 7 r r ) ~ # 0 ~ + 0 ~l l f = x + ~ # ; f ( O , l ) - f ( 1 , 0 ) = - i  

1 3f = +xay2;f (0, l)  - f (1 ,O)  = 0 1 5  f = r = dm; f (0, l)  - f ( l , ~ )= 0 
1 7Gradient for n = 2; after calculation - = ~3 

ax rn1 9 x = a c o s t , z =  asint,ds = a d t , M = $ ,  ( a+as in t )ad t  = 2ra2 
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2 1  x  = a  cos t ,y = a  sin t ,  ds = a  d t ,  M = a3 cos2 t  dt = nu3, (3,$) = (0 ,0 )  b y  symmetry 
2i+2tj 

4+4t +;F = 3 x i + 4 j  = 6 t i + 4 j , d s = 2 d m d t , ~ . ~ d s =23T=\r,=d- (6 t i+4 j ) - ( -$=$)2~mdt= 
2Ot dt;  F  .d R  = (6ti + 4). ( 2  dti + 2t dt j )  = 20t dt;  work = J1 

2 
20t dt = 30 

25  ~f = t hen  M = cay + 6 , N = a x  + c ,  constants a ,  b, c 

27 F = 4xj (work = 4  from (1,O) u p  t o  ( 1 , l ) )  2 9  f = [ X  - 2ylIt:ij = -1 3 1  f = [ x y 2 ] ~ ~ : ~ ~= 1

-'-( t i  $:3 3  Not conservative; 1t j )  . (d t  i + dt j )  = $ 0  dt = 0 ;  ( t2i- t j )  (d t  i + 2t dt j )  = so -t2dt = 
3 

3 5  = a x ,  = 22 + 6 ,  so a = 2,b is arbitrary 3 7  = 2yebx = w-f = -y2e-"
BY ay ax 9 

a M = ~ = ~ . f = r = J ~ = 1 x i + y j 1
3 9 ~ ax ,f-

Section 15.3 Green's Theorem (page 571) 

1 $:"(a cos t ) a  cos t  dt = r a 2 ;  N z  - M y  = 1,$$ dx  dy  = area r a 2  
0

3  J , ' xdx+J1  x ~ x = O , N ~ - M ~ = O , J $ O ~ X ~ ~ = O  
27r 

= 4 '5  $ x 2 y d x =  $:7r(a~ost)2(asint) ( -asintd t )  = -$so ( ~ i n 2 t ) ~ d t-d. 
27r a

N ,  - M y  = - x 2 , $ $ ( - x 2 ) d x d y =  SO So -r2cos2@ r  drd0  = -$-
7 J x  dy  - y  d x  = $ ' ( c o s 2  t  + sin2 t )  dt = r;$ / ( I  + 1)dx  dy  = 2  (area) = s;$ x2dy - x y  d x  = $ + 1; 

Jl (22+ x ) d x  dy  = $ 
9 4 $ i n ( 3  cos4 t  sin2 t  + 3  sin4 t  cos2 t )d t  = i stff3 cos2 t  sin2 tdt  = $ 2  (see Answer 5 )  

11 $ F d R  = 0  around any loop; F = :i + Fj and $ F d R  = $:"[- sin t cos t  + sin t  cos t ]  dt = 0;  

= z gives $$o  d x  dy  ay 
2n

1 3  x  = cos 2t ,  y  = sin 2t ,  t  from 0  t o  2 r ;  So -2 sin2 2t dt = - 2 s  = -2 (area); 

$:7r -2dt = -47r = -2 times Example 7 

1 5  J ~ d y - ~ d x =  ~ ~ " 2 s i n t c o s t d t = 0 ; ~ $ ( ~ , + ~ ~ ) d x d ~ = $ $ 0 d x d ~ = 0  

2lr

1 7 M = ~ , N = ~ , $ ~ d y - ~ d x = $ ,( c o s 2 t + s i n 2 t ) d t = 2 r ; $ $ ( ~ x + ~ y ) d x d y = $ $ ( ~ - $ . + ~ - $ ) d x d y =  


$$ k d x  dy  = $$ dr dB = 2 s  

1 9  $ ~ d - yN d x  = / - x2y  d x  = -x2(1  1: - x ) d x  = A;$' oo $ I - Y  x2dx dy  = & 
2 1  J$ (M,  + N y ) d x  dy  = $$ div F  d x  d y  = 0  between the circles 

2 3  Work: $ a  d x  + b  dy  = $$(%- E ) d x  dy; Flux: same integral 

25 g  = tan-'(:) = 0 is undefined at (0,0) 27 Test M y  = N ,  : x2dx + y2dy is exact = d ( 5 x 3+ 5y3) 

2 9 d i v F = 2 y - 2 y = O ; g = x y 2  3 1 d i v F = 2 x + 2 y ; n o g  3 3 d i v F = O ; g = e x s i n y  

3 5  div F  = 0 ;  g  = $ 
37 N ,  - M y  = -22, -6xy,  0 , 2 x  - 2y, 0 ,  -2ex+Y; in  3 1  and 3 3  f = 5 ( x 3 + y3) and f = ex cos y  

3 9  F  = (3x2- 3y2)i- 6 x y j ; d i v  F  = 0 4 1  f = x4 - 6x2y2+ y4; g  = 4x3y - 4xy3 

4 3  F  = e z c o s y  i - e x s i n y  j ; g =  e x s i n y  

f4 5  N  = f ( x ) ,$ M d x  + N d y  = I,' + f ( 0 )dy= f (1) - f (0); $ $ ( N ,  - M y ) d x  dy  = 

$$ g d x  dy  = I,' g d x  (Fundamental Theorem o f  Calculus) 
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Sect ion 15.4 Surface Integrals (page 581) 

2rr 2 
1 N = -2xi - 2yj + k; d S  = dl + 4x2 + 4 9  dx dy; lo /, d w r dr  dB = :(17~/' - 1) 
3 ~ = - i + j + k ; d ~ = f i d x d y ;  area fir . 

-21- + k ; d S =  d2d 2~ 1 / f i  rdrd8 
5 N = d &  0 0 J--+fi) 
7 N = -7j + k; d S  = 5 f i  dx dy; area 5 4 ~ 
9 N = ( y 2 - x 2 ) i - 2 x y j + k ; d S = ~ l + ( y 2 -  + 4x2y2dx dy = dl + (y2 + ~ 2 ) ~ d x  dy; 

JtCJ,' d m  r dr d0 = 

N = 2i + 2j + k; d S  = 3dx dy; 3(area of triangle with 2% + 2y 5 1) = 

A =  -sinu(cosv i + s i n v j )  + c o s u k ; B  = - (3+cosu)s invi+ (3+cosu)cosv j;  

N = -(3 + cosu)(cosucosv i +cosusinv j + sinu k);dS = (3 + cosu)du dv 

$ J ( - M ~  - N% + P)dx dy = JJ(-2x2 - 2 3  + z)dx dy = -r2(r dr d0) = -87r 

F . N =  - z + y + z = O o n p l a n e  

N = - i - j + k , F = ( v + u ) i - u j , J ~ F . N d S = I I - v d u d v = ~  
2rr 2rr 

JJ dS = so Jo (3 + cos u)du dv = 127r2 31 Yes 33 No 

A = i +  f'cos0 j + f'sin0 k ; B  = -f sin8 j + f cos8 k ; N  = ff ' i  - f cos8 j - f sin0 k ;dS  = INldz dB = 

f ( x ) d m  dx dB 

l d i v F = l , J J J d ~ = Y  3 d i v F = 2 ~ + 2 y + 2 z , ~ / $ d i v ~ d V = 0  5 d i v F = 3 , ~ ~ 3 d ~ = ~ = ~  
2~ ~ / 2  

7 F N = pa, JJp=a p2dS = 47ra4 9 div F = 22, lo I. J: 2pcos 4(p2 sin 4 dp d# dB) = i r u 4  

11 J: J: J:(2x + 1)dz dy dz = a' + a3; -2a2 + 2u2 + 0 + a' + 0 + a3 

I ~ ~ ~ v F = $ , J I J $ ~ v = o ; F . ~ = x , J J x ~ s = o  1 5 d i v F = l ; J I I i d V = ~ ; ~ $ J 1 d ~ = ~  
R div R 1 7  div (7) = 7 + R grad$ = 3 - $R gradp 

19 Two spheres, n radial out, n radial in, n = k on top, n = -k on bottom, n = on side; @T7 
n = -i, -j, -k, i + 2j + 3k on 4 faces; n = k on top, n = l ( ' i  + fj - fi k)  on cone 

2 1  V = cylinder, / div F dV = /I(% + +)dx dy (a integral = 1); IJ F - ndS  = 

Mdy - Ndx, z integral = 1 on side, F - n = 0 top and bottom; Green's flux theorem. 

23 div F = -:yM = -47rG; at the center; F = 2R inside, F = 2(:)3R outside 

25d ivu ,  = : , q =  y , / J E - n d ~ = $ I l d ~ = 4 a  2 7 F  ( d i v F = O ) ; F ; T ( F . n <  1); F 
29 Plane circle; top half of sphere; div F = 0 

Section 15.6 Stokes' Theorem and the Curl of F (page 595) 

l c u r l F = i + j + k  S c u r l F = O  5 c u r l F = O  7 f = + ( x + y + ~ ) ~  

9 curl xmi = 0; xnj has zero curl if n = 0 11 curl F = 2yi; n = j on circle so $$ F - ndS  = 0 

1 3 c u r l ~ = 2 i + 2 j , n = i , ~ ~ c u r l ~ ~ n d ~ = ~ ~ 2 d ~ = 2 7 r  
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15 Both integrals equal F dR; Divergence Theorem, V = region between S and T, always div curl F = 0 
17 Always div curl F = 0 19 f = xz + y 21 f = e2-' 23 F = yk 

25 curl F = ( a s k  - a2bs)i + (alb3 - a3bl)j + (a2bl - alba)k 27 curl F = 2wk; curl F . = 2 w / 4  
29 F = x(a3z + a2y)i + y(alx + a3z)j + z(alx + a2y)k 

2% r / 2  
31 curl F = -2k, JJ -2k . R d S  = Jo Jo -2 cos 4(sin 4 d4 dB) = -2r; J y dx - x dy = 

J:"(- sin2 t - cos2 t)dt = -2r  
2% %/2 

33 curl F = 2a, 2 //(alx + a2y + a3z)dS = 0 + 0 + 2a3 Jo Jo cos 4 sin 4 d4 dB = 

35 curl F = -i,n = *,JIB' . n d S  = - ~ r r ~  h A 
3 7 p = d - I ' =  stream function; zero divergence 

39 div F = div (V + W) = div V so y = div V so V = $j (has zero curl). Then W = F -V = xyi - $j 
41 curl (curl F) = curl (-2yk) = -21; grad (div F )  = grad 22 = 2i; Fx2 + F,, + Fzz = 4i 

aB 43 curl E = -= = a s i n t  so E = ?(a x R )  sint 

CHAPTER 16 MATHEMATICS AFTER CALCULUS 

Section 16.1 Linear Algebra (page 602) 

1 All vectors c 3 Only x = 0 5 Plane of vectors with xl  + x2 + x3 = 0 

7 + =  [ ~ ] , A ( X ~ + ~ O ) =  [ : I +  [:] 9 A(xp + xo) = b + 0 = b; another solution 

1 0 1  
13 C C ~  = [ 0 1 2 ] ; CTC = [ : : ] ; (2 by 3) (2 by 3) is impossible 

1 2  5 

15 Any two are independent 17 C and F have independent columns 

23 det (F  - XI) = det [ 2 ; X  2!X] = ( 2 - X ) 2 - 1 = 3 - 4 X + X 2 = ~ i f X = l o r X = 3 ;  

l - X  1 
1 - X 1 = (1 - - 3(1- A)  + 2 = X3 - 3X2 = 0 if X = 3 or X = 0 (repeated) 

1 l - X  ' I  
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3 1  H 33 F if b 2 0; T;T; F (eAtis not a vector); T= [ -2 
2 -:] 

Section 16.2 Differential Equations (page 610) 

13Best -Best = 8est gives B = 4 :y = 4est 3 y = 3 - 2 t + t 2  5 A e t + 4 e s t = 7 a t t = O i f A = 3  

7 Add y = Ae-' because y' + y = 0; choose A = -1 so -e-' + 3 - 2t + t2 = 2 at t = 0 
e" - 1 tekt

g y =  *;,= t; by19~bpital  lim- = lim- = t 
k+O k k+O 1 

11Substitute y = Aet + Btet + C cost + D sin t in equation: B = 1,C = i,D = -i,any A 

13Particular solution y = Atet + Bet; y' = Atet + (A + B)et = c(Atet + Bet) + tet 
-1
g i v e s A = c A + l , A + B = c B , A =  & , B = =  

15X2eXt+ 6XeXt+ 5eXt= 0 gives X2 + 6X + 5 = 0, (A + 5)(X + 1)= 0, X = -1 or -5 

(both negative so decay); y = Ae-' + Be-5t 

1 7  (A2 + 2X + 3)eXt= 0, X = -1 f \/=Z has imaginary part and negative real part; 
+ ~ ~ ( - 1 - f i ~ i ) t ;y = ~ ~ ( - l + f i i P  y = Ce-' cos f i t  + De-' sin f i t  

19d = 0 no damping; d = 1underdamping; d = 2 critical damping; d = 3 overdamping 

2 1  X = -:z t  is repeated when b2 = 4c and X = -i;(tX2 + 2X)ext + b(tX + 1)e" + ctext = 0 

when X2 + bX + c = 0 and 2X + b = 0 

23 -most  - bsint - as in t  + bcost + acost + bsint = cost if a = 0, b = 1,y = sint 

25 y = Acos3t + Bcos5t;y" + 9y = -25Bcos5t + 9Bcos5t = cos5t gives B = G;  
yo = 0 gives A = 1 

27 y = A(cos wt - cos wet), y" = -Aw2 cos wt + Aw: cos wot, y" + wiy = cos wt gives A(-w2 + wg) = 1; 

breaks down when w2 = w i  
2 9 y =  BeSt ;25B+3B=1 ,B= $ 3 1 y = ~ + ~ t =$ + i t  

ss y" - 25y = e5t;y" + y = sin t; y" = 1+ t; right side solves homogeneous equation so particular 

solution needs extra factor t 

35 et ,e-" ee", e-it 37 y = e-2t + 2te-"; y(27r) = (1+ 4 ~ ) e - ~ "r~ 0 

39 y = (4e-" - r2e-4tlr)/(4 - r2) -+ 1as r -+ 0 4 3  h 5 2; h 5 2.8 

Section 16.3 Discrete Mathematics (page 615) 

1Two then two then last one; go around hexagon 3 Six (each deletes one edge) 
5 Connected: there is a path between any two nodes; connecting each new node requires an edge 

1 3  Edge lengths 1,2,4 

15No;1,3,4onleftconnectonlyto2,3onright;1,3onrightconnectonlyto2onleft 1 7 4  

19Yes 2 l F ( m a y l o o p ) ; T  2516 
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I c+b :in az+dc2-b2cos az ,
b+csin az )2 < c2dz - -1 ln b+c sin az , I '- r -

L 4 

dz - 1 
ln I c+b cosaz+dc2-b2 sin az 

b+c cos az - a,/m b+c cos az 1 ,  b 2 < c 2  

-481  sin-' ax dx = x sin-' ax + 491  xn sin-' ax dx = sin-laX - L 
zn+ld~ 

n+l J 4-
"+' dz5 0 1  tan-' ax  dx = x tan-' ax - & ln(1 + a2x2) 511xn tan-' ax dx = ;;T;i tan-' ax  -& $ -

5 2 1  eazdz = 5 531xeaZdz= $(ax - 1) 5 4 1  x2eaZ dx = 5 (a2x2- 2ax + 2) (baz is ea('nb)z) 
sin- ' z dx5 5 $ & = 1 n I l n a ~ l  Notelementary: J e z 2 d x , $ e z 1 n ~ d ~ , J $ , J $ d ~ , J % d ~ , J  



Exponentials and Logarithms Equations and Their Solutions 

,J'= cY yo eCt 

y' = cy + s yoect + (eCt - 1) 

y' = cy -bd c d = c-by0
b+de-ct YO 

y" = -X2y cos At and sin A t  

my" + dy' + ky = 0 e x l t  and e x s t  or t e x l t  

Yn+l = ayn anYO 

Yn+l = a,Jn + 3 anyo + 3% 

Vectors and Determinants Matrices and Inverses 

A = a l i + a 2  j + a 3 k  Ax = combination of columns = b 

1 A l 2  = A . A = a: + a: + a: (length squared) Solution x = A-lb if A-'A = I 

cos B Least squares AZ = AT bA . B = al bl + a2b2+ a3b3 = JAJJBI  

( A . B ( 5 ( A( (BI (Schwarz inequality: ( cos B I 5 1) Ax = Ax (A is an eigenvalue) 

IA + BI < IAl + IBI (triangle inequality) 

IA x BI = IAIIBJI sin B J  (cross product) 

i j k i(a2bs - a3ba) 

A x B = a1 a2 a3 = +j(a3bl - alb3) 

b l  b2 b3 +k(a1bz - a 2 h )  
Righthandrule i x j = k ,  j x k = i ,  k x i = j  

Parallelogram area = (alb2 - a2bll = IDetJ 

niangle  area = ila1b2 - a2bl ( = ? I ~ e t l  

Box volume = IA . ( B  x C)I = 1Determinant 1 

SI Units Symbols From To Multiply by 

length meter m degrees radians .01745 
mass kilogram kg calories joules 4.1868 
time second s BTU joules 1055.1 
current ampere 

Hz -A 
11s 

foot-pounds joules 1.3558 
frequency hertz feet meters .3048 
force newton N - kg*m/s2 miles km 1.609 
pressure pascal Pa  ~ / m ~N feet /sec km/hr 1,0973 
energy, work joule NJ Nom pounds kg .45359 
power watt W - J/s ounces kg .02835 
charge coulomb C - AWS gallons liters 3.785 

"temperature kelvin K horsepower watts 745.7 
Speed of light c = 2.9979 x108 m/s Radius at  Equator R = 6378 km = 3964 miles 
Gravity G = 6.6720 x 10-l1Nm2/kg2 Acceleration g = 9.8067 m/s2 = 32.174 ft/s2 



Sums and Infinite Series Area - Volume - Length - Mass - Moment 
l + x + . . . + x n - ' =  1-2" 

1-2 Circle ?rr2 Ellipse rub Wedge of circle r28/2 

l + n x + ~ x 2 + . . . + x n =  (1 + z)" Cylinder side 2 m h  Volume r r 2 h  Shell dV = 27rrh dr 

l + 2 + . . . + n =  $ n ( n + l ) k  $ Sphere surface 47rr2 Volume $7rr3 Shell dV = 4ar2dr 

12 + 22 + . . + ,2 = nln+l)l2n+l) n3 
~ $ 7  

Cone or pyramid Volume $ (base area) (height) 
6 

1 + ? + - . .+  $ N I nn  -+ a, (harmonic) Length of curve $ ds = $ Jl+ (dy/dx)2 dx 

1 - L +  L... = 
2 3 In 2 (alternating) Area between curves $(v(x) - w(x))dx 

~ - L $ - I  - . . . =  rr c+=Z EL="' Surface area of revolution J27rr ds(r = x or r = y) 
3 5 6 n4 90 

1 1-x = 1 + x +  z2 + (geometric: 1x1 < 1) Volume of revolution: Slices $ 7ryZdx Shells J27rxh dz 

1- ( ,-XI,  - 1 + 22 + 3xZ + . . = $(A) Area of surface z(z, y) : $4- dx d y 

_L = 1 - x + x 2 -  . . .  
l+s  (geometric for -2) Mass M = JJ p dA Moment My = JJ ,ox dA 

3 3 dx - 
l n ( l + x )  = X - ~ + F - . - . = J G  2 x = M,/M, = Ms/M Moment of Inertia Iy = JJ p ~ 2 d ~  

sin x = x - x3/6 + x5/120 - . . (all x) Work W = F(x)dx = V(b) - V(a) Force F = dV/dz 

cos x = 1 - x2 /2 + x4 124 - . . . (all x) 
Partial Derivatives of z = f (x, y) 

ex = l + x + $ + . - . ( e =  1 + 1 . + $ + . . . )  

e" = cos x + i sin x (Euler's formula) Tangent plane z - zo = ( g ) ( x  - xo) + ($?)(y - yo) 

coshx = $(ex +e-%) = I +  $ + . . .  Approximation A z  ;3. (%)AX + (%)ay 
sinhx = i ( e ~ - ~ - ~ )  = ~ + d + - . .  

3! Noma1 N = (fz,  f,, -1) or (Fz,  Fy, F Z )  

(cos 0 + i sin 8)" = cos n0 + i sin n6 
Gradient V f = gi + gj 

f (x) = f (0) + f l (0)x + f "(0)$ + . . (Taylor) Directional derivative: Du f = Vf . u = fxul + jVu2 

Polar and Spherical 
Vector f i e l d F ( x , y , z ) = M i + N j + P k  

x = rcos0 and y = rs in8 

r = d w  and tan6 = y/x 

x + i y  = r(cos 0 + i sin 8) = rei8 

Area $ ?r2d9 Length $ d m d 8  

Work J F a d R  F l u x $ M d y - N d x  
aM aN aP Divergence of F = V . F = ;i; + + 

j 
cu r l  of F = v x P = a/ay a/az 

x = p sin d, cos 6, y = p sin 4 sin 6, z = p cos d, I M  N P I  
Area dA = dx dy = r dr d6 = J du dv Conservative F = V f = gradient of f if curl F = 0 

Volume r dr d6 dz = p2 sin 4 dp dd, dB Green's Theorem f M dx + N dy = sf(% - g) dx dy 
I I 

Stretching factor J = = 
xu xu 

~ ( u , w )  
Divergence Theorem $$ F . n d S  = $J$ div F dV 

Stokes' Theorem f F d R  = $$ (curl F) . n dS  

An additional table of integrals is included just after the index. 
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