

ICS143A: Principles of Operating
Systems

Lecture 21: Program linking and
loading

Anton Burtsev
March, 2017

Linking and loading

● Linking
● Combining multiple code modules into a single

executable
● E.g., use standard libraries in your own code

● Loading
● Process of getting an executable running on the

machine

● Input: object files (code modules)
● Each object file contains

● A set of segments
– Code
– Data

● A symbol table
– Imported & exported symbols

● Output: executable file, library, etc.

Why linking?

● Modularity
● Program can be written as a collection of modules
● Can build libraries of common functions

● Efficiency
● Code compilation

– Change one source file, recompile it, and re-link the executable
● Space efficiency

– Share common code across executables
– On disk and in memory

Two path process

● Path 1: scan input files
● Identify boundaries of each segment
● Collect all defined and undefined symbol information
● Determine sizes and locations of each segment

● Path 2
● Adjust memory addresses in code and data to reflect

relocated segment addresses

Example● Save a into b, e.g., b = a

 mov a, %eax
 mov %eax, b
● Generated code

● a is defined in the same file at 0x1234, b is imported
● Each instruction is 1 byte opcode + 4 bytes address

 A1 34 12 00 00 mov a, %eax
 A3 00 00 00 00 mov %eax, b
● Assume that a is relocated by 0x10000 bytes, and b is

found at 0x9a12

 A1 34 12 01 00 mov a,%eax
 A3 12 9A 00 00 mov %eax,b

More realistic
example

● Source file m.c

 extern void a(char *);
 int main(int ac, char **av)
 {
 static char string[] = "Hello, world!\n";
 a(string);
 }
● Source file a.c

 #include <unistd.h>
 #include <string.h>
 void a(char *s)
 {
 write(1, s, strlen(s));
 }

More realistic
example Sections:

 Idx Name Size VMA LMA File off Algn
 0 .text 00000010 00000000 00000000 00000020 2**3
 1 .data 00000010 00000010 00000010 00000030 2**3
 Disassembly of section .text:
 00000000 <_main>:
 0: 55 pushl %ebp
 1: 89 e5 movl %esp,%ebp
 3: 68 10 00 00 00 pushl $0x10
 4: 32 .data
 8: e8 f3 ff ff ff call 0
 9: DISP32 _a
 d: c9 leave
 e: c3 ret
 ...

More realistic
example Sections:

 Idx Name Size VMA LMA File off Algn
 0 .text 00000010 00000000 00000000 00000020 2**3
 1 .data 00000010 00000010 00000010 00000030 2**3
 Disassembly of section .text:
 00000000 <_main>:
 0: 55 pushl %ebp
 1: 89 e5 movl %esp,%ebp
 3: 68 10 00 00 00 pushl $0x10
 4: 32 .data
 8: e8 f3 ff ff ff call 0
 9: DISP32 _a
 d: c9 leave
 e: c3 ret
 ...

● Two sections:
● Text (0x10 – 16 bytes)
● Data (16 bytes)

More realistic
example Sections:

 Idx Name Size VMA LMA File off Algn
 0 .text 00000010 00000000 00000000 00000020 2**3
 1 .data 00000010 00000010 00000010 00000030 2**3
 Disassembly of section .text:
 00000000 <_main>:
 0: 55 pushl %ebp
 1: 89 e5 movl %esp,%ebp
 3: 68 10 00 00 00 pushl $0x10
 4: 32 .data
 8: e8 f3 ff ff ff call 0
 9: DISP32 _a
 d: c9 leave
 e: c3 ret
 ...

● Code starts at 0x0

More realistic
example Sections:

 Idx Name Size VMA LMA File off Algn
 0 .text 00000010 00000000 00000000 00000020 2**3
 1 .data 00000010 00000010 00000010 00000030 2**3
 Disassembly of section .text:
 00000000 <_main>:
 0: 55 pushl %ebp
 1: 89 e5 movl %esp,%ebp
 3: 68 10 00 00 00 pushl $0x10
 4: 32 .data
 8: e8 f3 ff ff ff call 0
 9: DISP32 _a
 d: c9 leave
 e: c3 ret
 ...

● First relocation entry
● Marks pushl 0x10
● 0x10 is beginning of the data

section
● and address of the string

More realistic
example Sections:

 Idx Name Size VMA LMA File off Algn
 0 .text 00000010 00000000 00000000 00000020 2**3
 1 .data 00000010 00000010 00000010 00000030 2**3
 Disassembly of section .text:
 00000000 <_main>:
 0: 55 pushl %ebp
 1: 89 e5 movl %esp,%ebp
 3: 68 10 00 00 00 pushl $0x10
 4: 32 .data
 8: e8 f3 ff ff ff call 0
 9: DISP32 _a
 d: c9 leave
 e: c3 ret
 ...

● Second relocation entry
● Marks call
● 0x0 – address is unknown

More realistic
example

Sections:
 Idx Name Size VMA LMA File off Algn
 0 .text 0000001c 00000000 00000000 00000020 2**2
 CONTENTS, ALLOC, LOAD, RELOC, CODE
 1 .data 00000000 0000001c 0000001c 0000003c 2**2
 CONTENTS, ALLOC, LOAD, DATA
Disassembly of section .text:
 00000000 <_a>:
 0: 55 pushl %ebp
 1: 89 e5 movl %esp,%ebp
 3: 53 pushl %ebx
 4: 8b 5d 08 movl 0x8(%ebp),%ebx
 7: 53 pushl %ebx
 8: e8 f3 ff ff ff call 0
 9: DISP32 _strlen
 d: 50 pushl %eax
 e: 53 pushl %ebx
 f: 6a 01 pushl $0x1
 11: e8 ea ff ff ff call 0
 12: DISP32 _write
 16: 8d 65 fc leal -4(%ebp),%esp
 19: 5b popl %ebx
 1a: c9 leave
 1b: c3 ret

● Two sections:
● Text (0 bytes)
● Data (28 bytes)

More realistic
example

Sections:
 Idx Name Size VMA LMA File off Algn
 0 .text 0000001c 00000000 00000000 00000020 2**2
 CONTENTS, ALLOC, LOAD, RELOC, CODE
 1 .data 00000000 0000001c 0000001c 0000003c 2**2
 CONTENTS, ALLOC, LOAD, DATA
Disassembly of section .text:
 00000000 <_a>:
 0: 55 pushl %ebp
 1: 89 e5 movl %esp,%ebp
 3: 53 pushl %ebx
 4: 8b 5d 08 movl 0x8(%ebp),%ebx
 7: 53 pushl %ebx
 8: e8 f3 ff ff ff call 0
 9: DISP32 _strlen
 d: 50 pushl %eax
 e: 53 pushl %ebx
 f: 6a 01 pushl $0x1
 11: e8 ea ff ff ff call 0
 12: DISP32 _write
 16: 8d 65 fc leal -4(%ebp),%esp
 19: 5b popl %ebx
 1a: c9 leave
 1b: c3 ret

● Two relocation entries:
● strlen()
● write()

Producing an executable

● Combine corresponding segments from each
object file
● Combined text segment
● Combined data segment

● Pad each segment to 4KB to match the page
size

Multiple object files

Merging
segments

Linked executable

Sections:
 Idx Name Size VMA LMA File off Algn
 0 .text 00000fe0 00001020 00001020 00000020 2**3
 1 .data 00001000 00002000 00002000 00001000 2**3
 2 .bss 00000000 00003000 00003000 00000000 2**3
Disassembly of section .text:
00001020 <start-c>:
 ...
 1092: e8 0d 00 00 00 call 10a4 <_main>
 ...
000010a4 <_main>:

 10a7: 68 24 20 00 00 pushl $0x2024
 10ac: e8 03 00 00 00 call 10b4 <_a>
 ...
000010b4 <_a>:

 10bc: e8 37 00 00 00 call 10f8 <_strlen>
 ...
 10c3: 6a 01 pushl $0x1
 10c5: e8 a2 00 00 00 call 116c <_write>
 ...
000010f8 <_strlen>:
 ...
0000116c <_write>:
 ...

Tasks involved

● Program loading
● Copy a program from disk to memory so it is ready to run

– Allocation of memory
– Setting protection bits (e.g. read only)

● Relocation
● Assign load address to each object file
● Adjust the code

● Symbol resolution
● Resolve symbols imported from other object files

Object files

Object files

● Conceptually: five kinds of information
● Header: code size, name of the source file, creation date
● Object code: binary instruction and data generated by the

compiler
● Relocation information: list of places in the object code that

need to be patched
● Symbols: global symbols defined by this module

– Symbols to be imported from other modules
● Debugging information: source file and file number

information, local symbols, data structure description

Example: UNIX A.OUT

● Small header
● Text section

● Executable code

● Data section
● Initial values for static

data

● A.OUT header

 int a_magic; // magic number
 int a_text; // text segment size
 int a_data; // initialized data size
 int a_bss; // uninitialized data size
 int a_syms; // symbol table size
 int a_entry; // entry point
 int a_trsize; // text relocation size
 int a_drsize; // data relocation size

A.OUT loading

A.OUT loading

● Read the header to get segment sizes
● Check if there is a shareable code segment for this file

– If not, create one,
– Map into the address space,
– Read segment from a file into the address space

● Create a private data segment
– Large enough for data and BSS
– Read data segment, zero out the BSS segment

● Create and map stack segment
– Place arguments from the command line on the stack

● Jump to the entry point

Interaction with virtual memory

● Virtual memory unifies paging and file I/O
● Memory mapped files

– Memory pages are backed up by files
● Loading a segment is just mapping it into memory

● Linker must provide some support
● Sections are page aligned

Mapping a.out

Relocation

Relocation, why?

● Each program gets its own private space, why relocate?
● Linkers combine multiple libraries into a single executable
● Each library assumes private address space

– E.g., starts at 0x0

● Is it possible to go away with segments?
● Each library gets a private segment (starts at 0x0)
● All cross-library references are patched to use segment numbers

● Possible!
● But slow.
● Segment lookups are slow

Relocation

● Each relocatable object file contains a relocation table
● List of places in each segment that need to be relocated
● Example:

– Pointer in the text segment points to offset 200 in the data segment
– Input file: text starts at 0, data starts at 2000, stored pointer has value 2200
– Output file: Data segment starts at 15000

● Linker adds relocated base of the data segment 13000 (DR)

– Output file: will have pointer value of 15200
● All jumps are relative on x86

– No need to relocate
– Unless its a cross-segment jump, e.g. text segment to data segment

Relocatable A.OUT

● Add relocation
information for each
section

Relocation entries
● Address relative to the

segment
● Length

● 1, 2, 4, 8 bytes

● Extern
● Local or extern symbol

● Index
● Segment number if local
● Index in the symbol table

Symbol table
● Name offset

● Offset into the string table
● UNIX supports symbols of

any length
– Null terminated strings

● Type
● Whether it is visible to

other modules

We ran out of time here

Types of object files

● Relocatable object files (.o)
● Static libraries (.a)
● Shared libraries (.so)
● Executable files

● We looked at A.OUT, but Unix has a general
format capable to hold any of these files

ELF

ELF (continued)

Xv6: exec()6310 exec(char *path, char **argv)
6311 {
...
6320 begin_op();
6321 if((ip = namei(path)) == 0){
6322 end_op();
6323 return −1;
6324 }
6325 ilock(ip);
6326 pgdir = 0;
6327
6328 // Check ELF header
6329 if(readi(ip, (char*)&elf, 0, sizeof(elf)) < sizeof(elf))
6330 goto bad;
6331 if(elf.magic != ELF_MAGIC)
6332 goto bad;
6333
...
6337 // Load program into memory.
6338 sz = 0;
6339 for(i=0, off=elf.phoff; i<elf.phnum; i++, off+=sizeof(ph)){
6340 if(readi(ip, (char*)&ph, off, sizeof(ph)) != sizeof(ph))
6341 goto bad;
6342 ...

● Two sections:
● Text (0 bytes)
● Data (28 bytes)

Static libraries

Libraries

● Conceptually a library is
● Collection of object files

● UNIX uses an archive format
– Remember the ar tool

● Can support collections of any objects
● Rarely used for anything instead of libraries

Creating a static library

Searching libraries

● First linker path needs resolve symbol names
into function locations

● To improve the search library formats add a
directory
● Map names to member positions

Shared libraries

Motivation

● 1000 programs in a typical UNIX system
● 1000 copies of printf

● How big is printf actually?

Motivation

● 1000 programs in a typical UNIX system
● 1000 copies of printf

● Printf is a large function
● Handles conversion of multiple types to strings
● 5-10K

● This means 5-10MB of disk is wasted on printf
● Runtime memory costs are

● 10K x number of running programs

Position independent code

Position independent code

● Motivation
● Share code of a library across all processes

– E.g. libc is linked by all processes in the system
● Code section should remain identical

– To be shared read-only
● What if library is loaded at different addresses?

– Remember it needs to be relocated

Position independent code (PIC)

● Main idea:
● Generate code in such a way that it can work no

matter where it is located in the address space
● Share code across all address spaces

What needs to be changed?

● Can stay untouched
● Local jumps and calls are relative
● Stack data is relative to the stack

● Needs to be modified
● Global variables
● Imported functions

Example

000010a4 <_main>:
 10a4: 55 pushl %ebp
 10a5: 89 e5 movl %esp,%ebp
 10a7: 68 10 00 00 00 pushl $0x10
 10a8: 32 .data
 10ac: e8 03 00 00 00 call 10b4 <_a>
 ...
000010b4 <_a>:
 10bc: e8 37 00 00 00 call 10f8 <_strlen>
 ...
 10c3: 6a 01 pushl $0x1
 10c5: e8 a2 00 00 00 call 116c <_write>
 ...

● Reference to a data section
● Code and data sections can be

moved around

Example

000010a4 <_main>:
 10a4: 55 pushl %ebp
 10a5: 89 e5 movl %esp,%ebp
 10a7: 68 10 00 00 00 pushl $0x10
 10a8: 32 .data
 10ac: e8 03 00 00 00 call 10b4 <_a>
 ...
000010b4 <_a>:
 10bc: e8 37 00 00 00 call 10f8 <_strlen>
 ...
 10c3: 6a 01 pushl $0x1
 10c5: e8 a2 00 00 00 call 116c <_write>
 ...

● Local function invocations
 use relative addresses

● No need to relocate

Position independent code

● How would you build it?

Position independent code

● Main insight
● Code sections are followed by data sections
● The distance between code and data remains

constant even if code is relocated
– Linker knows the distance
– Even if it combines multiple code sections together

Insight 1: Constant offset between
text and data sections

Global offset table (GOT)

● Insight #2:
● Instead of referring to a

variable by its absolute
address

● Refer through GOT

Global offset table (GOT)

● GOT
● Table of addresses
● Each entry contains

absolute address of a
variable

● GOT is patched by the
linker at relocation time

How to find position of the code in
memory at run time?

How to find position of the code in
memory at run time?

● Is there an x86 instruction that does this?
● i.e., give me my current code address

How to find position of the code in
memory at run time?

● Simple trick

 call L2

 L2: popl %ebx
● Call next instruction

● Saves EIP on the stack
● EIP holds current position of the code
● Use popl to fetch EIP into a register

PIC: Advantages and disadvantages

● Any ideas?

PIC: Advantages and disadvantages

● Bad
● Code gets slower

– One register is wasted to keep GOT pointer
● x86 has 6 registers, loosing one of them is bad

– One more memory dereference
● GOT can be large (lots of global variables)
● Extra memory dereferences can have a high cost due to cache misses

– One more call to find GOT

● Good
● Share memory of common libraries
● Address space randomization

Back to shared libraries

Loading a dynamically linked ELF
program

● Map ELF sections into memory
● Note the interpreter section

● Usually ld.so

● Map ld.so into memory
● Start ld.so instead of the program

● Linker (ld.so) intializes itself
● Finds the names of shared libraries required by the

program
● DT_NEEDED entries

Finding libraries in the file system

● DT_RPATH symbol
● Can be linked into a file by a normal linker at link time

● LD_LIBRARY_PATH
● Library cache file

● /etc/ld.so.conf
● This is the most normal way to resolve library paths

● Default library path
● /usr/lib

Loading more libraries

● When the library is found it is loaded into
memory
● Linker adds its symbol table to the linked list of

symbol tables
● Recursively searches if the library depends on other

libraries
– Loads them if needed

Shared library initialization

● Remember PIC needs relocation in the data
segment and GOT
● ld.so linker performs this relocation

Late binding

● When a shared library refers to some function,
the real address of that function is not known
until load time
● Resolving this address is called binding

● But really how can we build this?

Late binding

● When a shared library refers to some function,
the real address of that function is not known
until load time
● Resolving this address is called binding

● But really how can we build this?
● Can we use GOT?

Lazy procedure binding

● GOT will work, but
● Binding is not trivial

– Lookup the symbol
– ELF uses hash tables to optimize symbol lookup

● In large libraries many routines are never called
● Libc has over 600
● It's ok to bind all routines when the program is statically linked

– Binding is done offline, no runtime costst
● But with dynamic linking run-time overhead is too high

– Lazy approach, i.e., linking only when used, works better

Procedure linkage table (PLT)

● PLT is part of the executable text section
● A set of entries

– A special first entry
– One for each external function

● Each PLT entry
● Is a short chunk of executable code
● Has a corresponding entry in the GOT

– Contains an actual offset to the function
– Only after it is resolved by the dynamic loader

● Each PLT entry but the first consists of these
parts:
● A jump to a location which is specified in a

corresponding GOT entry
● Preparation of arguments for a "resolver" routine
● Call to the resolver routine, which resides in the first

entry of the PLT

PLT

Before function is resolved
● Nth GOT entry

points to after the
jump

PLT after the function is resolved
● Nth GOT entry

points to the actual
function

Conclusion

● Program loading
● Storage allocation

● Relocation
● Assign load address to each object file
● Patch the code

● Symbol resolution
● Resolve symbols imported from other object files

Thank you!

Initializers and finalizers

● C++ needs a segment for invoking constructors for static
variables
● List of pointers to startup routines

– Startup code in every module is put into an anonymous startup routine
– Put into a segment called .init

● Problem
● Order matters
● Ideally you should track dependencies

– This is not done
● Simple hack

– System libraries go first (.init), then user (.ctor)
–

Conclusion

● Program loading
● Storage allocation

● Relocation
● Assign load address to each object file
● Patch the code

● Symbol resolution
● Resolve symbols imported from other object files

Next time

● Static and shared libraries
● Dynamic linking and loading
● Position independent code
● OS management of user space

Thank you!

Weak vs strong symbols

● Virtually every program uses printf
● Printf can convert floating-point numbers to strings

– Printf uses fcvt()
● Does this mean that every program needs to link against floating-

point libraries?

● Weak symbols allow symbols to be undefined
● If program uses floating numbers, it links against the floating-point

libraries
– fcvt() is defined an everything is fine

● If program doesn't use floating-point libraries
– fcvt() remains NULL but is never called

Simplest object file: DOS .com

● Only binary code
● Loaded at 0x100 offset
● 0x00 – 0xFF is reserved for program prefix

– Command line arguments

● Set EIP to 0x100
● Set ESP to the top of the segment
● Run!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85

