

ICS143A: Principles of Operating
Systems

Lecture 12: Interrupts and
Exceptions

Anton Burtsev
October, 2017

Why do we need interrupts?

 Remember:
hardware interface is designed to help OS

Why do we need interrupts?

● Fix an abnormal condition
● Page not mapped in memory

● Notifications from external devices
● Network packet received

● Preemptive scheduling
● Timer interrupt

● Secure interface between OS and applications
● System calls

Two types:
synchronous and asynchronous

Synchronous
● Exceptions – react to an abnormal condition

● E.g., page mapping (virtual address) is not present in the page
table
– Bring the swapped page back to memory (copy from disk)
– Fix the page-table entry

● Invoke a system call
– Transition from user-level to kernel (more later)

● Intel distinguishes 3 types: faults, traps, aborts

Asynchronous
● Interrupts – preempt normal execution

● Notify that something has happened
– New packet from the network, disk I/O completed, timer tick,

notification from another CPU)

Handling interrupts and exceptions

● Same procedure
● Stop execution of the current program
● Start execution of a handler
● Processor accesses the handler through an entry in

the Interrupt Descriptor Table (IDT)

● Each interrupt is defined by a number
● E.g., 14 is pagefault, 3 debug
● This number is an index into the interrupt table (IDT)

Interrupt path
● no change in privilege level
● e.g., we're already running in the kernel

CPUCPU

Memory

Interrupt descriptor

Interrupt descriptor

Interrupt handlers

● Just plain old code in the kernel

● The IDT stores a pointer to the right handler routine

Interrupt path

Processing of interrupt (same PL)

1.Push the current contents of the EFLAGS, CS, and
EIP registers (in that order) on the stack

2.Push an error code (if appropriate) on the stack

3.Load the segment selector for the new code segment
and the new instruction pointer (from the interrupt
gate or trap gate) into the CS and EIP registers

4.If the call is through an interrupt gate, clear the IF flag
in the EFLAGS register (disable further interrupts)

5.Begin execution of the handler

Interrupt path

● Need to change privilege level...

Processing of interrupt (cross PL)

Detour:
What are those privilege levels?

Recap: Can a process
overwrite kernel

memory?

Privilege levels

● Each segment has a privilege level
● DPL (descriptor privilege level)
● 4 privilege levels ranging 0-3

Privilege levels

● Currently running code also has a privilege
level
● “Current privilege level” (CPL): 0-3
● It is saved in the %cs register

WAT!

Segmented programming (not real)

static int x = 1;

int y; // stack

if (x) {

 y = 1;

 printf (“Boo”);

} else

 y = 0;

ds:x = 1; // data

ss:y; // stack

if (ds:x) {

 ss:y = 1;

 cs:printf(ds:“Boo”);

} else

 ss:y = 0;

● Use long jump to change code segment

9153 ljmp $(SEG_KCODE<<3), $start32
● Explicitly specify code segment, and

address
● Segment is 0b1000 (0x8)

Actual switch

Privilege level transitions

● CPL can access only less privileged segments
– E.g., 0 can access 1, 2, 3

● Some instructions are “privileged”
● Can only be invoked at CPL = 0
● Examples:

– Load GDT
– MOV <control register>

● E.g. reload a page table by changing CR3

Real world

● Only two privilege levels are used in modern
OSes:
● OS kernel runs at 0
● User code runs at 3

● This is called “flat” segment model
● Segments for both 0 and 3 cover entire address space

● But then... how the kernel is protected?
● Page tables

Page table: user bit

● Each entry (both Level 1 and Level 2) has a bit
● If set, code at privilege level 3 can access
● If not, only levels 0-2 can access

● Note, only 2 levels, not 4 like with segments
● All kernel code is mapped with the user bit clear

● This protects user-level code from accessing the
kernel

End of detour:
Back to handling interrupts

Thank you.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

