

ICS143A: Principles of Operating
Systems

Lecture 12: Interrupts and
Exceptions (part 2)

Anton Burtsev
November, 2017

Privilege levels again

Started boot: no CPL yet

Prepare to load GDT entry #1

Privilege levels

● Each segment has a privilege level
● DPL (descriptor privilege level)
● 4 privilege levels ranging 0-3

Now CPL=0. We run in the kernel

iret: return to user, load GDT #4

Run in user,
CPL=3

Privilege levels

● Currently running code also has a privilege
level
● “Current privilege level” (CPL): 0-3
● It is saved in the %cs register

Privilege level transitions

● CPL can access only less privileged segments
– E.g., 0 can access 1, 2, 3

● Some instructions are “privileged”
● Can only be invoked at CPL = 0
● Examples:

– Load GDT
– MOV <control register>

● E.g. reload a page table by changing CR3

Real world

● Only two privilege levels are used in modern
OSes:
● OS kernel runs at 0
● User code runs at 3

● This is called “flat” segment model
● Segments for both 0 and 3 cover entire address

space

● But then... how the kernel is protected?

Page table: user bit

● Each entry (both Level 1 and Level 2) has a bit
● If set, code at privilege level 3 can access
● If not, only levels 0-2 can access

● Note, only 2 levels, not 4 like with segments
● All kernel code is mapped with the user bit clear

● This protects user-level code from accessing the
kernel

Back to interrupts

Recap: interrupt path, no
PL change

● Assume we're at CPL =3 (user)

Processing of interrupt (cross PL)

Interrupt descriptor

● Interrupt is allowed
● If current privilege level (CPL) is less or equal to descriptor

privilege level (DPL)
● The kernel protects device interrupts from user

Interrupt descriptor

● Note that this new segment can be more privileged
● E.g., CPL = 3, DPL = 3, new segment can be PL = 0
● This is how user-code (PL=3) transitions into kernel (PL=0)

Interrupt path

Stack
● Can we continue on

the same stack?

Stack
● But how hardware

knows where it is?

TSS: Task State
Segment (yet another
table)

Task State Segment

● Another magic control block

● Pointed to by special task register (TR)

● Lots of fields for rarely-used features

● A feature we care about in a modern OS:

● Location of kernel stack (fields SS/ESP)

– Stack segment selector
– Location of the stack in that segment

1.Save ESP and SS in a CPU-internal register

2.Load SS and ESP from TSS

3.Push user SS, user ESP, user EFLAGS, user
CS, user EIP onto new stack (kernel stack)

4.Set CS and EIP from IDT descriptor's segment
selector and offset

5.If the call is through an interrupt gate clear
some EFLAGS bits

6.Begin execution of a handler

Processing of interrupt (cross PL)

Complete
interrupt path

Return from an interrupt

● Starts with IRET

1.Restore the CS and EIP registers to their values
prior to the interrupt or exception

2.Restore EFLAGS

3.Restore SS and ESP to their values prior to
interrupt
– This results in a stack switch

4.Resume execution of interrupted procedure

x86 interrupt table

0 255

…

31

… …

47

Reserved for
the CPU

Software Configurable

Device IRQs

Interrupts

● Each type of interrupt is assigned an index from 0—255.

● 0—31 are for processor interrupts fixed by Intel
● E.g., 14 is always for page faults

● 32—255 are software configured

● 32—47 are often for device interrupts (IRQs)
● Most device’s IRQ line can be configured
● Look up APICs for more info (Ch 4 of Bovet and Cesati)
● 0x80 issues system call in Linux (more on this later)

Sources

● Interrupts
● External

– From a device
– Through CPU pins connected to APIC

● Software generated with INT n instruction

● Exceptions
● Processor generated, when CPU detects an error in the

program
– Fault, trap, abort

● Software generated with INTO, INT 3, BOUND

Software interrupts

● The INT n instruction allows software to raise an interrupt

● 0x80 is just a Linux convention

● You could change it to use 0x81!

● There are a lot of spare indexes

● OS sets ring level required to raise an interrupt

● Generally, user programs can’t issue an int 14 (page fault manually)

● An unauthorized int instruction causes a general protection fault

– Interrupt 13

Disabling interrupts

● Delivery of maskable interrupts can be disabled
with IF (interrupt flag) in EFLAGS register

● Exceptions
● Non-maskable interrupts (see next slide)
● INT n – cannot be masked as it is synchronous

Nonmaskable interrupts (NMI)

● Delivered even if IF is clear, e.g. interrupts
disabled
● CPU blocks subsequent NMI interrupts until IRET

● Sources
● External hardware asserts the NMI pin
● Processor receives a message on the system bus,

or the APIC serial bus with NMI delivery mode

● Delivered via vector #2

Thank you.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

