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Paging idea

● Break up memory into 4096-byte chunks called 
pages
● Modern hardware supports 2MB, 4MB, and 1GB pages

● Independently control mapping for each page of 
linear address space

● Compare with segmentation (single base + limit)
● many more degrees of freedom



  



  



  



  



  



  

● Result: 
● EAX = 55
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Page directory entry (PDE)

● 20 bit address of the page table
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Page directory entry (PDE)

● 20 bit address of the page table
● Pages 4KB each, we need 1M to cover 4GB

● Bit #1: R/W – writes allowed? 
● But allowed where? 
● One page directory entry controls 1024 Level 2 page tables

– Each Level 2 maps 4KB page
● So it's a region of 4KB x 1024 = 4MB



  

Page directory entry (PDE)

● 20 bit address of the page table
● Pages 4KB each, we need 1M to cover 4GB

● Bit #1: R/W – writes allowed? 
● To a 4MB region controlled by this entry

● Bit #2: U/S – user/supervisor
● If 0 – user-mode access is not allowed

● A – accessed
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Page directory entry (PDE)

● 20 bit address of the page table
● Pages 4KB each, we need 1M to cover 4GB

● Bit #1: R/W – writes allowed? 
● To a 4MB region controlled by this entry

● Bit #2: U/S – user/supervisor
● If 0 – user-mode access is not allowed
● Allows protecting kernel memory from user-level applications

● Bit #5: A – accessed



  

Page translation



  

Page table entry (PTE)

● 20 bit address of the 4KB page
● Pages 4KB each, we need 1M to cover 4GB

● Bit #1: R/W – writes allowed? 
● To a 4KB page

● Bit #2: U/S – user/supervisor
● If 0 user-mode access is not allowed

● Bit #5: A – accessed
● Bit #6: D – dirty – software has written to this page
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Back of the envelope
● If a page is 4K and an entry is 4 bytes, how many entries 

per page?

● 1k
● How large of an address space can 1 page represent?

● 1k entries * 1page/entry * 4K/page = 4MB
● How large can we get with a second level of translation?

● 1k tables/dir * 1k entries/table * 4k/page = 4 GB
● Nice that it works out that way!



  

Why do we need paging?

● Compared to segments pages provide fine-
grained control over memory layout
● No need to relocate/swap the entire segment

– One page is enough
–

● You're trading flexibility (granularity) for 
overhead of data structures required for 
translation



  

Example 1: Ultimate flexibility

● Each byte can be relocated anywhere in 
physical memory

● What's the overhead of page tables? 
● Imagine we use array instead of page tables (for 

simplicity)



  

Example 1: Ultimate flexibility

● Each byte can be relocated anywhere in physical 
memory

● What's the overhead of page tables? 
● Imagine we use array instead of page tables (for 

simplicity)
● We need 4 bytes to relocate each other byte

– 4 bytes describe 32bit address
● Therefore, we need array of 4 bytes x 4B entries

– 16GBs



  

Example 2: Reasonable flexibility

● Each 4K bytes (a page) can be relocated 
anywhere in physical memory

● What's the overhead of page tables? 
● Again, imagine we use array instead of page tables 

(for simplicity)



  

Example 2: Reasonable flexibility

● Each 4K bytes (a page) can be relocated anywhere in 
physical memory

● What's the overhead of page tables? 
● Again, imagine we use array instead of page tables (for 

simplicity)
● We need 4 bytes to relocate each 4KB page

– 4 bytes describe 32bit address
● Therefore, we need array of 4 bytes x 1M entries

– If we split 4GB address space, into 4GB pages, we need 1M pages
● We need 4MB array



  

Example 3: Less flexibility

● Each 1M bytes (a 1MB page) can be relocated anywhere in 
physical memory

● What's the overhead of page tables? 
● Again, imagine we use array instead of page tables (for simplicity)
● We need 4 bytes to relocate each 1MB page

– 4 bytes describe 32bit address
● Therefore, we need array of 4 bytes x 4K entries

– If we split 4GB address space, into 1MB pages, we need 4K pages
● We need 16KB array

– Wow! That's much less than 4MB required for 4KB pages



  

But why do we need page tables

● Instead of arrays?



  

But why do we need page tables

… Instead of arrays?
● Page tables represent sparse address space more 

efficiently
● An entire array has to be allocated upfront
● But if the address space uses a handful of pages
● Only page tables (Level 1 and 2 need to be allocated to 

describe translation)

● On a dense address space this benefit goes away
● I'll assign a homework!



  

But what about isolation?

● Two programs, 
one memory?



  

But what about isolation?

● Two programs, 
one memory?

● Each process has 
its own page table
● OS switches 

between them



  

Compared to segments pages 
allow ...

● Emulate large virtual address space on a 
smaller physical memory
● In our example we had only 12 physical pages
● But the program can access all 1M pages in its 4GB 

address space
● The OS will move other pages to disk



  

Compared to segments pages 
allow ...

● Share a region of memory across multiple 
programs
● Communication (shared buffer of messages)
● Shared libraries



  

More paging tricks

● Protect parts of the program
● E.g., map code as read-only

– Disable code modification attacks
– Remember R/W bit in PTD/PTE entries!

● E.g., map stack as non-executable
– Protects from stack smashing attacks
– Non-executable bit



  

Address translation



  



  



  



  



  



  



  



  



  

Questions?
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More paging tricks

● Determine a working set of a program?
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More paging tricks

● Determine a working set of a program?
● Use “accessed” bit

● Iterative copy of a working set?
● Used for virtual machine migration
● Use “dirty” bit

● Copy-on-write memory, e.g. lightweight fork()?
● Map page as read/only



  

When would you disable paging?



  

When would you disable paging?

● Imagine you're running a memcached
● Key/value cache

● You serve 1024 byte values (typical) on 
10Gbps connection
● 1024 byte packets can leave every 835ns, or 1670 

cycles (2GHz machine)
● This is your target budget per packet

●



  

When would you disable paging?

● Now, to cover 32GB RAM with 4K pages
● You need 64MB space
● 64bit architecture, 3-level page tables

● Page tables do not fit in L3 cache
● Modern servers come with 32MB cache

● Every cache miss results in up to 3 cache misses 
due to page walk (remember 3-level page tables)
● Each cache miss is 200 cycles

● Solution: 1GB pages



  

Page translation for 4MB pages



  

Segmentation



  



  



  



  

Descriptor table



  

Descriptor table
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