

143A: Principles of Operating
Systems

Lecture 6: Address translation
(Paging)

Anton Burtsev
October, 2017

Paging

Pages

Pages

Paging idea

● Break up memory into 4096-byte chunks called
pages
● Modern hardware supports 2MB, 4MB, and 1GB pages

● Independently control mapping for each page of
linear address space

● Compare with segmentation (single base + limit)
● many more degrees of freedom

● Result:
● EAX = 55

Page translation

Page translation

Page directory entry (PDE)

● 20 bit address of the page table

Page directory entry (PDE)

● 20 bit address of the page table
● Wait... 20 bit address, but we need 32 bits

Page directory entry (PDE)

● 20 bit address of the page table
● Wait... 20 bit address, but we need 32 bits

● Pages 4KB each, we need 1M to cover 4GB

Page directory entry (PDE)

● 20 bit address of the page table
● Pages 4KB each, we need 1M to cover 4GB

● Bit #1: R/W – writes allowed?
● But allowed where?

Page directory entry (PDE)

● 20 bit address of the page table
● Pages 4KB each, we need 1M to cover 4GB

● Bit #1: R/W – writes allowed?
● But allowed where?
● One page directory entry controls 1024 Level 2 page tables

– Each Level 2 maps 4KB page
● So it's a region of 4KB x 1024 = 4MB

Page directory entry (PDE)

● 20 bit address of the page table
● Pages 4KB each, we need 1M to cover 4GB

● Bit #1: R/W – writes allowed?
● To a 4MB region controlled by this entry

● Bit #2: U/S – user/supervisor
● If 0 – user-mode access is not allowed

● A – accessed

Page directory entry (PDE)

● 20 bit address of the page table
● Pages 4KB each, we need 1M to cover 4GB

● Bit #1: R/W – writes allowed?
● To a 4MB region controlled by this entry

● Bit #2: U/S – user/supervisor
● If 0 – user-mode access is not allowed
● Allows protecting kernel memory from user-level applications

Page directory entry (PDE)

● 20 bit address of the page table
● Pages 4KB each, we need 1M to cover 4GB

● Bit #1: R/W – writes allowed?
● To a 4MB region controlled by this entry

● Bit #2: U/S – user/supervisor
● If 0 – user-mode access is not allowed
● Allows protecting kernel memory from user-level applications

● Bit #5: A – accessed

Page translation

Page table entry (PTE)

● 20 bit address of the 4KB page
● Pages 4KB each, we need 1M to cover 4GB

● Bit #1: R/W – writes allowed?
● To a 4KB page

● Bit #2: U/S – user/supervisor
● If 0 user-mode access is not allowed

● Bit #5: A – accessed
● Bit #6: D – dirty – software has written to this page

Page translation

Back of the envelope
● If a page is 4K and an entry is 4 bytes, how many entries

per page?

● 1k
● How large of an address space can 1 page represent?

● 1k entries * 1page/entry * 4K/page = 4MB
● How large can we get with a second level of translation?

● 1k tables/dir * 1k entries/table * 4k/page = 4 GB
● Nice that it works out that way!

Why do we need paging?

● Compared to segments pages provide fine-
grained control over memory layout
● No need to relocate/swap the entire segment

– One page is enough
–

● You're trading flexibility (granularity) for
overhead of data structures required for
translation

Example 1: Ultimate flexibility

● Each byte can be relocated anywhere in
physical memory

● What's the overhead of page tables?
● Imagine we use array instead of page tables (for

simplicity)

Example 1: Ultimate flexibility

● Each byte can be relocated anywhere in physical
memory

● What's the overhead of page tables?
● Imagine we use array instead of page tables (for

simplicity)
● We need 4 bytes to relocate each other byte

– 4 bytes describe 32bit address
● Therefore, we need array of 4 bytes x 4B entries

– 16GBs

Example 2: Reasonable flexibility

● Each 4K bytes (a page) can be relocated
anywhere in physical memory

● What's the overhead of page tables?
● Again, imagine we use array instead of page tables

(for simplicity)

Example 2: Reasonable flexibility

● Each 4K bytes (a page) can be relocated anywhere in
physical memory

● What's the overhead of page tables?
● Again, imagine we use array instead of page tables (for

simplicity)
● We need 4 bytes to relocate each 4KB page

– 4 bytes describe 32bit address
● Therefore, we need array of 4 bytes x 1M entries

– If we split 4GB address space, into 4GB pages, we need 1M pages
● We need 4MB array

Example 3: Less flexibility

● Each 1M bytes (a 1MB page) can be relocated anywhere in
physical memory

● What's the overhead of page tables?
● Again, imagine we use array instead of page tables (for simplicity)
● We need 4 bytes to relocate each 1MB page

– 4 bytes describe 32bit address
● Therefore, we need array of 4 bytes x 4K entries

– If we split 4GB address space, into 1MB pages, we need 4K pages
● We need 16KB array

– Wow! That's much less than 4MB required for 4KB pages

But why do we need page tables

● Instead of arrays?

But why do we need page tables

… Instead of arrays?
● Page tables represent sparse address space more

efficiently
● An entire array has to be allocated upfront
● But if the address space uses a handful of pages
● Only page tables (Level 1 and 2 need to be allocated to

describe translation)

● On a dense address space this benefit goes away
● I'll assign a homework!

But what about isolation?

● Two programs,
one memory?

But what about isolation?

● Two programs,
one memory?

● Each process has
its own page table
● OS switches

between them

Compared to segments pages
allow ...

● Emulate large virtual address space on a
smaller physical memory
● In our example we had only 12 physical pages
● But the program can access all 1M pages in its 4GB

address space
● The OS will move other pages to disk

Compared to segments pages
allow ...

● Share a region of memory across multiple
programs
● Communication (shared buffer of messages)
● Shared libraries

More paging tricks

● Protect parts of the program
● E.g., map code as read-only

– Disable code modification attacks
– Remember R/W bit in PTD/PTE entries!

● E.g., map stack as non-executable
– Protects from stack smashing attacks
– Non-executable bit

Address translation

Questions?

References

More paging tricks

● Determine a working set of a program?

More paging tricks

● Determine a working set of a program?
● Use “accessed” bit

More paging tricks

● Determine a working set of a program?
● Use “accessed” bit

● Iterative copy of a working set?
● Used for virtual machine migration

More paging tricks

● Determine a working set of a program?
● Use “accessed” bit

● Iterative copy of a working set?
● Used for virtual machine migration
● Use “dirty” bit

More paging tricks

● Determine a working set of a program?
● Use “accessed” bit

● Iterative copy of a working set?
● Used for virtual machine migration
● Use “dirty” bit

● Copy-on-write memory, e.g. lightweigh fork()?

More paging tricks

● Determine a working set of a program?
● Use “accessed” bit

● Iterative copy of a working set?
● Used for virtual machine migration
● Use “dirty” bit

● Copy-on-write memory, e.g. lightweight fork()?
● Map page as read/only

When would you disable paging?

When would you disable paging?

● Imagine you're running a memcached
● Key/value cache

● You serve 1024 byte values (typical) on
10Gbps connection
● 1024 byte packets can leave every 835ns, or 1670

cycles (2GHz machine)
● This is your target budget per packet

●

When would you disable paging?

● Now, to cover 32GB RAM with 4K pages
● You need 64MB space
● 64bit architecture, 3-level page tables

● Page tables do not fit in L3 cache
● Modern servers come with 32MB cache

● Every cache miss results in up to 3 cache misses
due to page walk (remember 3-level page tables)
● Each cache miss is 200 cycles

● Solution: 1GB pages

Page translation for 4MB pages

Segmentation

Descriptor table

Descriptor table

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

