

143A: Principles of Operating
Systems

Lecture 5: Address translation

Anton Burtsev
October, 2017

Two programs one memory

Very much like car sharing

What are we aiming for?

● Illusion of a private address space
● Identical copy of an address space in multiple

programs
– Remember fork()?

● Simplifies software architecture
– One program is not restricted by the memory layout of

the others

Two processes, one memory?

Two processes, one memory?

This is called segmentation

All addresses are logical address
● They consist of two parts

● Segment selector (16 bit) + offset (32 bi

● Segment selector (16 bit)
● Is simply an index into an array (Descriptor Table)
● That holds segment descriptors

– Base and limit (size) for each segment

Elements of that array are segment
descriptors

● Base address
● 0 – 4 GB

● Limit (size)
● 0 – 4 GB

● Access rights
● Executable, readable, writable
● Privilege level (0 - 3)

Segment descriptors

● Offsets into segments (x in our example) or
“Effective addresses” are in registers

● Logical addresses are translated into physical
● Effective address + DescriptorTable[selector].Base

● Logical addresses are translated into physical
● Effective address + DescriptorTable[selector].Base

● Logical addresses are translated into physical
● Effective address + DescriptorTable[selector].Base

● Logical addresses are translated into physical
● Effective address + DescriptorTable[selector].Base

Same picture

● Offsets (effective addresses) are in registers
● Effective address + DescriptorTable[selector].Base
● But where is the selector?

Right! Segment registers

● Hold 16 bit segment selectors
● Pointers into a special table
● Global or local descriptor table

● Segments are associated with one of three
types of storage
● Code
● Data
● Stack

Programming model

● Segments for: code, data, stack, “extra”
● A program can have up to 6 total segments
● Segments identified by registers: cs, ds, ss, es, fs, gs

● Prefix all memory accesses with desired segment:
● mov eax, ds:0x80 (load offset 0x80 from data into eax)

● jmp cs:0xab8 (jump execution to code offset 0xab8)

● mov ss:0x40, ecx (move ecx to stack offset 0x40)

Segmented programming (not real)

static int x = 1;

int y; // stack

if (x) {

 y = 1;

 printf (“Boo”);

} else

 y = 0;

ds:x = 1; // data

ss:y; // stack

if (ds:x) {

 ss:y = 1;

 cs:printf(ds:“Boo”);

} else

 ss:y = 0;

Programming model, cont.

● This is cumbersome, so infer code, data
and stack segments by instruction type:
● Control-flow instructions use code segment

(jump, call)
● Stack management (push/pop) uses stack
● Most loads/stores use data segment

● Extra segments (es, fs, gs) must be used
explicitly

Code segment

● Code
● CS register
● EIP is an offset inside the segment stored in CS

● Can only be changed with
● procedure calls,
● interrupt handling, or
● task switching

Data segment

● Data
● DS, ES, FS, GS
● 4 possible data segments can be used at the same

time

Stack segment

● Stack
● SS

● Can be loaded explicitly
● OS can set up multiple stacks
● Of course, only one is accessible at a time

Segmentation is ok... but

What if process needs more
memory?

What if process needs more
memory?

You can relocate P2

Or even swap it out to disk

Problems with segments

● But it's inefficient
● Relocating or swapping the entire process takes

time

● Memory gets fragmented
● There might be no space (gap) for the swapped out

process to come in
● Will have to swap out other processes

Paging

Pages

Pages

Paging idea

● Break up memory into 4096-byte chunks called
pages
● Modern hardware supports 2MB, 4MB, and 1GB pages

● Independently control mapping for each page of
linear address space

● Compare with segmentation (single base + limit)
● many more degrees of freedom

Page translation

Page translation

Page directory entry (PDE)

● 20 bit address of the page table
● Pages 4KB each, we need 1M to cover 4GB

● R/W – writes allowed?
● To a 4MB region controlled by this entry

● U/S – user/supervisor
● If 0 – user-mode access is not allowed

● A – accessed

Page table entry (PTE)

● 20 bit address of the 4KB page
● Pages 4KB each, we need 1M to cover 4GB

● R/W – writes allowed?
● To a 4KB page

● U/S – user/supervisor
● If 0 user-mode access is not allowed

● A – accessed
● D – dirty – software has written to this page

Page translation

Back of the envelope
● If a page is 4K and an entry is 4 bytes, how many entries

per page?

● 1k
● How large of an address space can 1 page represent?

● 1k entries * 1page/entry * 4K/page = 4MB
● How large can we get with a second level of translation?

● 1k tables/dir * 1k entries/table * 4k/page = 4 GB
● Nice that it works out that way!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

