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Recap from last time



  



  

Stack and procedure calls



  

What is stack?



  

Stack

● It's just a region of 
memory 
● Pointed by a special 

register ESP

● You can change ESP
● Get a new stack



  

Why do we need stack?



  

Calling functions

// some code...
foo();
// more code..

● Stack contains information for how to return 
from a subroutine 
● i.e., foo()



  

Stack

● Main purpose:
● Store the return address 

for the current procedure
● Caller pushes return 

address on the stack
● Callee pops it and jumps



  

Stack

● Main purpose:
● Store the return address 

for the current procedure
● Caller pushes return 

address on the stack
● Callee pops it and jumps



  

Stack

● Other uses:
● Local data storage
● Parameter passing
● Evaluation stack

– Register spill



  

Call/return

● CALL instruction
● Makes an unconditional jump to a subprogram and 

pushes the address of the next instruction on the 
stack

push eip + sizeof(CALL); save return  

                       ; address 

jmp _my_function
● RET instruction

● Pops off an address and jumps to that address



  

Manipulating 
stack

● ESP register
● Contains the memory 

address of the 
topmost element in 
the stack 

● PUSH instruction

     push 0xBAR

● Insert data on the 
stack

● Subtract 4 from ESP



  

Manipulating 
stack

● POP instruction

     pop EAX

● Removes data from 
the stack

● Saves in register or 
memory

● Adds 4 to ESP



  

Example: PUSH



  

Example: POP



  

Calling conventions



  

Calling conventions

● Goal: reentrant programs
● How to pass arguments

– On the stack? 
– In registers?

● How to return values
– On the stack? 
– In registers?  

● Conventions differ from compiler, optimizations, 
etc.



  

Stack consists of frames

● Each function has a new 
frame

void DrawSquare(...)
{
    ...
    DrawLine(x, y, z);
}

● Use dedicated register 
EBP (frame pointer)
● Points to the base of the 

frame
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Prologue/epilogue

● Each function maintains the frame

● A dedicated register EBP is used to keep the frame 
pointer

● Each function uses prologue code (blue), and epilogue 
(yellow) to maintain the frame

my_function:
     push ebp            ; save original EBP value on stack
     mov ebp, esp     ; new EBP = ESP
     ….                      ; function body
     pop ebp              ; restore original EBP value
     ret



  

How to allocate local variables?

void my_function()
{
    int a, b, c;
    …
}



  

Allocating local variables

On the stack!

● Each function has private instances of local variables
● Can call recursively

foo(int x) {
    int a, b, c;
    a = x + 1;
    if ( a < 100 ) 
        foo(a); 
    return; 
}



  

Allocating local variables

● Stored right after the saved EBP value in the 
stack

● Allocated by subtracting the number of bytes 
required from ESP

_my_function:
     push ebp                           ; save original EBP value on stack
     mov ebp, esp                    ; new EBP = ESP
     sub esp, LOCAL_BYTES ; = # bytes needed by locals
     …                                      ; function body
     mov esp, ebp                    ; deallocate locals
     pop ebp                             ; restore original EBP value
     ret



  

Example
void my_function() {
    int a, b, c;
    …
    
_my_function:
   push ebp     ; save the value of ebp
   mov ebp, esp ; ebp = esp, set ebp to be top of the stack (esp)
   sub esp, 12  ; move esp down to allocate space for the  
                ; local variables on the stack

● With frames local variables can be accessed by dereferencing 
EBP
         

mov [ebp -  4], 10  ; location of variable a
mov [ebp -  8], 5   ; location of b
mov [ebp - 12], 2   ; location of c     
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How to pass arguments? 

● Options
● Registers
● On the stack



  

How to pass arguments? 

● x86 32 bit
● Pass arguments on the stack
● Return value is in EAX and EDX

● x86 64 bit – more registers!
● Pass first 6 arguments in registers

– RDI, RSI, RDX, RCX, R8, and R9
● The rest on the stack
● Return value is in RAX and RDX



  

x86_32: passing arguments on the 
stack

● Example function

void my_function(int x, int y, int z)
{  …  }

● Example invocation

my_function(2, 5, 10);

● Generated code         
push 10
push 5
push 2
call _my_function



  

Example stack

:    : 
| 10 | [ebp + 16] (3rd function argument)
|  5 | [ebp + 12] (2nd argument)
|  2 | [ebp + 8]  (1st argument)
| RA | [ebp + 4]  (return address)
| FP | [ebp]      (old ebp value) ← EBP points here
|    | [ebp - 4]  (1st local variable)
:    :
:    :
|    | [ebp - X]  (esp - the current stack pointer)
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Example stack
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|  5 | [ebp + 12] (2nd argument)
|  2 | [ebp + 8]  (1st argument)
| RA | [ebp + 4]  (return address)
| FP | [ebp]      (old ebp value) ← EBP points here
|    | [ebp - 4]  (1st local variable)
:    :
:    :
|    | [ebp - X]  (esp - the current stack pointer)



  

Example: callee 
side code

void my_function(int x, int y, int z)
{
    int a, b, c;
    …
    return;
}_my_function:

  push ebp
  mov ebp, esp
  sub esp, 12 ; allocate local varaibles
              ; sizeof(a) + sizeof(b) + sizeof(c)
  ; x = [ebp + 8], y = [ebp + 12], z = [ebp + 16]
  ; a=[ebp-4]=[esp+8], 
  ; b=[ebp-8]=[esp+4], c=[ebp-12] = [esp]
  mov esp, ebp ; deallocate local variables
  pop ebp
  ret
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Example: callee 
side code

void my_function(int x, int y, int z)
{
    int a, b, c;
    …
    return;
}_my_function:

  push ebp
  mov ebp, esp ; ebp = esp
  sub esp, 12 ; allocate local varaibles
              ; sizeof(a) + sizeof(b) + sizeof(c)
  ; x = [ebp + 8], y = [ebp + 12], z = [ebp + 16]
  ; a=[ebp-4]=[esp+8], 
  ; b=[ebp-8]=[esp+4], c=[ebp-12] = [esp]
  mov esp, ebp ;deallocate local variables (esp = ebp)
  pop ebp
  ret



  

Example: caller 
side code

int callee(int, int, int);

int caller(void)
{
    int ret;

    ret = callee(1, 2, 3);
    ret += 5;
    return ret;
}

caller:
  ; make new call frame
  push    ebp
  mov     ebp, esp
  ; push call arguments
  push    3
  push    2
  push    1
  ; call subroutine 'callee'
  call    callee
  ; remove arguments from frame
  add     esp, 12
  ; use subroutine result
  add     eax, 5
  ; restore old call frame
  pop     ebp
  ; return
  ret



  

Example: caller 
side code

int callee(int, int, int);

int caller(void)
{
    int ret;

    ret = callee(1, 2, 3);
    ret += 5;
    return ret;
}

caller:
  ; make new call frame
  push    ebp
  mov     ebp, esp
  ; push call arguments
  push    3
  push    2
  push    1
  ; call subroutine 'callee'
  call    callee
  ; remove arguments from frame
  add     esp, 12
  ; use subroutine result
  add     eax, 5
  ; restore old call frame
  pop     ebp
  ; return
  ret



  

Back to stack frames, so why do we 
need them?

● … They are not strictly required
● GCC compiler option  -fomit-frame-pointer can 

disable them

Don't keep the frame pointer in a register for 
functions that don't need one. This avoids the 
instructions to save, set up and restore frame 
pointers; it also makes an extra register available 
in many functions. It also makes debugging 
impossible on some machines.



  

Referencing args without frames

● Initially parameter is 
● [ESP + 4]

● Later as the function 
pushes things on the 
stack it changes, e.g.
● [ESP + 8]



  

● Debugging becomes hard
● As ESP changes one has to manually keep track 

where local variables are relative to ESP (ESP + 4 
or +8)
– Compiler can do this!
– But it's hard for a human

● It's hard to unwind the stack in case of a crash
– To print out a backtrace



  

And you only save... 

● A couple instructions required to maintain the 
stack frame

● And 1 register (EBP)
● x32 has 8 registers (and one is ESP)

– So taking another one is 12.5% of register space
– Sometimes its worse it!

● x64 has 16 registers, so it doesn't really matter 

● That said, GCC sets -fomit-frame-pointer to “on”
● At -O, -O1, -O2 … 
● Don't get surprised 



  

Saving and restoring registers



  

Saving register state across 
invocations

● Processor doesn't save registers
● General purpose, segment, flags

● Again, a calling convention is needed
● Agreement on what gets saved by a callee and 

caller



  

Saving register state across 
invocations

● Registers EAX, ECX, and EDX are caller-saved
● The function is free to use them

● ... the rest are callee-saved
● If the function uses them it has to restore them to 

the original values



  

● In general there multiple calling conventions
● We described cdecl
● Make sure you know what you're doing
● https://en.wikipedia.org/wiki/X86_calling_convention

s#List_of_x86_calling_conventions 
● It's easy as long as you know how to read the table



  

Questions?
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