

143A: Principles of Operating
Systems

Lecture 4: Calling conventions

Anton Burtsev
October, 2017

Recap from last time

Stack and procedure calls

What is stack?

Stack

● It's just a region of
memory
● Pointed by a special

register ESP

● You can change ESP
● Get a new stack

Why do we need stack?

Calling functions

// some code...
foo();
// more code..

● Stack contains information for how to return
from a subroutine
● i.e., foo()

Stack

● Main purpose:
● Store the return address

for the current procedure
● Caller pushes return

address on the stack
● Callee pops it and jumps

Stack

● Main purpose:
● Store the return address

for the current procedure
● Caller pushes return

address on the stack
● Callee pops it and jumps

Stack

● Other uses:
● Local data storage
● Parameter passing
● Evaluation stack

– Register spill

Call/return

● CALL instruction
● Makes an unconditional jump to a subprogram and

pushes the address of the next instruction on the
stack

push eip + sizeof(CALL); save return

 ; address

jmp _my_function
● RET instruction

● Pops off an address and jumps to that address

Manipulating
stack

● ESP register
● Contains the memory

address of the
topmost element in
the stack

● PUSH instruction

 push 0xBAR

● Insert data on the
stack

● Subtract 4 from ESP

Manipulating
stack

● POP instruction

 pop EAX

● Removes data from
the stack

● Saves in register or
memory

● Adds 4 to ESP

Example: PUSH

Example: POP

Calling conventions

Calling conventions

● Goal: reentrant programs
● How to pass arguments

– On the stack?
– In registers?

● How to return values
– On the stack?
– In registers?

● Conventions differ from compiler, optimizations,
etc.

Stack consists of frames

● Each function has a new
frame

void DrawSquare(...)
{
 ...
 DrawLine(x, y, z);
}

● Use dedicated register
EBP (frame pointer)
● Points to the base of the

frame

Stack consists of frames

● Each function has a new
frame

void DrawSquare(...)
{
 ...
 DrawLine(x, y, z);
}

● Use dedicated register
EBP (frame pointer)
● Points to the base of the

frame

Stack consists of frames

● Each function has a new
frame

void DrawSquare(...)
{
 ...
 DrawLine(x, y, z);
}

● Use dedicated register
EBP (frame pointer)
● Points to the base of the

frame

Prologue/epilogue

● Each function maintains the frame

● A dedicated register EBP is used to keep the frame
pointer

● Each function uses prologue code (blue), and epilogue
(yellow) to maintain the frame

my_function:
 push ebp ; save original EBP value on stack
 mov ebp, esp ; new EBP = ESP
 …. ; function body
 pop ebp ; restore original EBP value
 ret

How to allocate local variables?

void my_function()
{
 int a, b, c;
 …
}

Allocating local variables

On the stack!

● Each function has private instances of local variables
● Can call recursively

foo(int x) {
 int a, b, c;
 a = x + 1;
 if (a < 100)
 foo(a);
 return;
}

Allocating local variables

● Stored right after the saved EBP value in the
stack

● Allocated by subtracting the number of bytes
required from ESP

_my_function:
 push ebp ; save original EBP value on stack
 mov ebp, esp ; new EBP = ESP
 sub esp, LOCAL_BYTES ; = # bytes needed by locals
 … ; function body
 mov esp, ebp ; deallocate locals
 pop ebp ; restore original EBP value
 ret

Example
void my_function() {
 int a, b, c;
 …

_my_function:
 push ebp ; save the value of ebp
 mov ebp, esp ; ebp = esp, set ebp to be top of the stack (esp)
 sub esp, 12 ; move esp down to allocate space for the
 ; local variables on the stack

● With frames local variables can be accessed by dereferencing
EBP

mov [ebp - 4], 10 ; location of variable a
mov [ebp - 8], 5 ; location of b
mov [ebp - 12], 2 ; location of c

Example
void my_function() {
 int a, b, c;
 …

_my_function:
 push ebp ; save the value of ebp
 mov ebp, esp ; ebp = esp, set ebp to be top of the stack (esp)
 sub esp, 12 ; move esp down to allocate space for the
 ; local variables on the stack

● With frames local variables can be accessed by dereferencing
EBP

mov [ebp - 4], 10 ; location of variable a
mov [ebp - 8], 5 ; location of b
mov [ebp - 12], 2 ; location of c

Example
void my_function() {
 int a, b, c;
 …

_my_function:
 push ebp ; save the value of ebp
 mov ebp, esp ; ebp = esp, set ebp to be top of the stack (esp)
 sub esp, 12 ; move esp down to allocate space for the
 ; local variables on the stack

● With frames local variables can be accessed by dereferencing
EBP

mov [ebp - 4], 10 ; location of variable a
mov [ebp - 8], 5 ; location of b
mov [ebp - 12], 2 ; location of c

Example
void my_function() {
 int a, b, c;
 …

_my_function:
 push ebp ; save the value of ebp
 mov ebp, esp ; ebp = esp, set ebp to be top of the stack (esp)
 sub esp, 12 ; move esp down to allocate space for the
 ; local variables on the stack

● With frames local variables can be accessed by dereferencing
EBP

mov [ebp - 4], 10 ; location of variable a
mov [ebp - 8], 5 ; location of b
mov [ebp - 12], 2 ; location of c

How to pass arguments?

● Options
● Registers
● On the stack

How to pass arguments?

● x86 32 bit
● Pass arguments on the stack
● Return value is in EAX and EDX

● x86 64 bit – more registers!
● Pass first 6 arguments in registers

– RDI, RSI, RDX, RCX, R8, and R9
● The rest on the stack
● Return value is in RAX and RDX

x86_32: passing arguments on the
stack

● Example function

void my_function(int x, int y, int z)
{ … }

● Example invocation

my_function(2, 5, 10);

● Generated code
push 10
push 5
push 2
call _my_function

Example stack

: :
| 10 | [ebp + 16] (3rd function argument)
| 5 | [ebp + 12] (2nd argument)
| 2 | [ebp + 8] (1st argument)
| RA | [ebp + 4] (return address)
| FP | [ebp] (old ebp value) ← EBP points here
| | [ebp - 4] (1st local variable)
: :
: :
| | [ebp - X] (esp - the current stack pointer)

Example stack

: :
| 10 | [ebp + 16] (3rd function argument)
| 5 | [ebp + 12] (2nd argument)
| 2 | [ebp + 8] (1st argument)
| RA | [ebp + 4] (return address)
| FP | [ebp] (old ebp value) ← EBP points here
| | [ebp - 4] (1st local variable)
: :
: :
| | [ebp - X] (esp - the current stack pointer)

Example stack

: :
| 10 | [ebp + 16] (3rd function argument)
| 5 | [ebp + 12] (2nd argument)
| 2 | [ebp + 8] (1st argument)
| RA | [ebp + 4] (return address)
| FP | [ebp] (old ebp value) ← EBP points here
| | [ebp - 4] (1st local variable)
: :
: :
| | [ebp - X] (esp - the current stack pointer)

Example stack

: :
| 10 | [ebp + 16] (3rd function argument)
| 5 | [ebp + 12] (2nd argument)
| 2 | [ebp + 8] (1st argument)
| RA | [ebp + 4] (return address)
| FP | [ebp] (old ebp value) ← EBP points here
| | [ebp - 4] (1st local variable)
: :
: :
| | [ebp - X] (esp - the current stack pointer)

Example: callee
side code

void my_function(int x, int y, int z)
{
 int a, b, c;
 …
 return;
}_my_function:

 push ebp
 mov ebp, esp
 sub esp, 12 ; allocate local varaibles
 ; sizeof(a) + sizeof(b) + sizeof(c)
 ; x = [ebp + 8], y = [ebp + 12], z = [ebp + 16]
 ; a=[ebp-4]=[esp+8],
 ; b=[ebp-8]=[esp+4], c=[ebp-12] = [esp]
 mov esp, ebp ; deallocate local variables
 pop ebp
 ret

Example: callee
side code

void my_function(int x, int y, int z)
{
 int a, b, c;
 …
 return;
}_my_function:

 push ebp
 mov ebp, esp
 sub esp, 12 ; allocate local varaibles
 ; sizeof(a) + sizeof(b) + sizeof(c)
 ; x = [ebp + 8], y = [ebp + 12], z = [ebp + 16]
 ; a=[ebp-4]=[esp+8],
 ; b=[ebp-8]=[esp+4], c=[ebp-12] = [esp]
 mov esp, ebp ; deallocate local variables
 pop ebp
 ret

Example: callee
side code

void my_function(int x, int y, int z)
{
 int a, b, c;
 …
 return;
}_my_function:

 push ebp
 mov ebp, esp ; ebp = esp
 sub esp, 12 ; allocate local varaibles
 ; sizeof(a) + sizeof(b) + sizeof(c)
 ; x = [ebp + 8], y = [ebp + 12], z = [ebp + 16]
 ; a=[ebp-4]=[esp+8],
 ; b=[ebp-8]=[esp+4], c=[ebp-12] = [esp]
 mov esp, ebp ;deallocate local variables (esp = ebp)
 pop ebp
 ret

Example: caller
side code

int callee(int, int, int);

int caller(void)
{
 int ret;

 ret = callee(1, 2, 3);
 ret += 5;
 return ret;
}

caller:
 ; make new call frame
 push ebp
 mov ebp, esp
 ; push call arguments
 push 3
 push 2
 push 1
 ; call subroutine 'callee'
 call callee
 ; remove arguments from frame
 add esp, 12
 ; use subroutine result
 add eax, 5
 ; restore old call frame
 pop ebp
 ; return
 ret

Example: caller
side code

int callee(int, int, int);

int caller(void)
{
 int ret;

 ret = callee(1, 2, 3);
 ret += 5;
 return ret;
}

caller:
 ; make new call frame
 push ebp
 mov ebp, esp
 ; push call arguments
 push 3
 push 2
 push 1
 ; call subroutine 'callee'
 call callee
 ; remove arguments from frame
 add esp, 12
 ; use subroutine result
 add eax, 5
 ; restore old call frame
 pop ebp
 ; return
 ret

Back to stack frames, so why do we
need them?

● … They are not strictly required
● GCC compiler option -fomit-frame-pointer can

disable them

Don't keep the frame pointer in a register for
functions that don't need one. This avoids the
instructions to save, set up and restore frame
pointers; it also makes an extra register available
in many functions. It also makes debugging
impossible on some machines.

Referencing args without frames

● Initially parameter is
● [ESP + 4]

● Later as the function
pushes things on the
stack it changes, e.g.
● [ESP + 8]

● Debugging becomes hard
● As ESP changes one has to manually keep track

where local variables are relative to ESP (ESP + 4
or +8)
– Compiler can do this!
– But it's hard for a human

● It's hard to unwind the stack in case of a crash
– To print out a backtrace

And you only save...

● A couple instructions required to maintain the
stack frame

● And 1 register (EBP)
● x32 has 8 registers (and one is ESP)

– So taking another one is 12.5% of register space
– Sometimes its worse it!

● x64 has 16 registers, so it doesn't really matter

● That said, GCC sets -fomit-frame-pointer to “on”
● At -O, -O1, -O2 …
● Don't get surprised

Saving and restoring registers

Saving register state across
invocations

● Processor doesn't save registers
● General purpose, segment, flags

● Again, a calling convention is needed
● Agreement on what gets saved by a callee and

caller

Saving register state across
invocations

● Registers EAX, ECX, and EDX are caller-saved
● The function is free to use them

● ... the rest are callee-saved
● If the function uses them it has to restore them to

the original values

● In general there multiple calling conventions
● We described cdecl
● Make sure you know what you're doing
● https://en.wikipedia.org/wiki/X86_calling_convention

s#List_of_x86_calling_conventions
● It's easy as long as you know how to read the table

Questions?

References

● https://en.wikibooks.org/wiki/X86_Disassembly/
Functions_and_Stack_Frames

● https://en.wikipedia.org/wiki/Calling_convention
● https://en.wikipedia.org/wiki/X86_calling_conve

ntions
● http://stackoverflow.com/questions/14666665/tr

ying-to-understand-gcc-option-fomit-frame-
pointer

	Slide 1
	Slide 2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 37
	Slide 40
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

