

143A: Principles of Operating
Systems

Lecture 3: OS Interfaces

Anton Burtsev
January, 2017

20 Socks

Ten red socks and ten blue socks are all mixed
up in a dresser drawer. The 20 socks are exactly
alike except for their color. The room is in pitch
darkness and you want two matching socks.

What is the smallest number of socks you must
take out of the drawer in order to be certain that
you have a pair that match?

Operating system interfaces

● Share hardware across multiple processes
● Illusion of private CPU, private memory

● Abstract hardware
● Hide details of specific hardware devices

● Provide services
● Serve as a library for applications

● Security
● Isolation of processes, users, namesapces
● Controlled ways to communicate (in a secure manner)

Typical UNIX OS

System calls
● Provide user to kernel communication

● Effectively an invocation of a kernel function

● System calls are the interface of the OS

System call

User address space

Kernel address space

Kernel and user address spaces

System calls, interface for...

● Processes
● Creating, exiting, waiting, terminating

● Memory
● Allocation

● Files and folders
● Opening, reading, writing, closing

● Inter-process communication
● Pipe

UNIX (xv6) system calls are designed
around the shell

 Ken Thompson (sitting) and Dennis Ritchie working together at a PDP-11

https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Dennis_Ritchie
https://en.wikipedia.org/wiki/PDP-11

 DEC LA36 DECwriter II Terminal

 DEC VT100 terminal, 1980

Shell
● Normal process
● Interacts with the kernel through system calls

● Creates new processes

fork() -- create new process
int pid;

pid = fork();
if(pid > 0){
 printf("parent: child=%d\n", pid);
 pid = wait();
 printf("child %d is done\n", pid);
} else if(pid == 0){
 printf("child: exiting\n");
 exit();
} else {
 printf("fork error\n");
}

More process management
● exit() -- terminate current processss

● wait() -- wait for the child to exit

● exec() -- replace memory of a current process with
a memory image (of a program) loaded from a file

 char *argv[3];
 argv[0] = "echo";
 argv[1] = "hello";
 argv[2] = 0;
 exec("/bin/echo", argv);
 printf("exec error\n");

File descriptors

File descriptors: two processes

Two file descriptors pointing to a pipe

File descriptors
● An index into a table, i.e., just an integer
● The table maintains pointers to “file” objects

● Abstracts files, devices, pipes
● In UNIX everything is a pipe – all objects provide

file interface

● Process may obtain file descriptors through
● Opening a file, directory, device
● By creating a pipe
● Duplicating an existing descriptor

Standard file descriptors
● Just a convention

● 0 – standard input
● 1 – standard output
● 2 – standard error

● This convention is used by the shell to
implement I/O redirection and pipes

File I/O

● read(fd, buf, n) – read n bytes from fd into
buf

● write(fd, buf, n) – write n bytes from buf
into fd

Example: cat

 char buf[512]; int n;
 for(;;) {
 n = read(0, buf, sizeof buf);
 if(n == 0)
 break;
 if(n < 0) {
 fprintf(2, "read error\n");
 exit(); }
 if(write(1, buf, n) != n) {
 fprintf(2, "write error\n");
 exit();
 }
 }

File I/O redirection

● close(fd) – closes file descriptor
● The next opened file descriptor will have the

lowest number

● fork replaces process memory, but
● leaves its file table (table of the file descriptors

untouched)

Example: cat < input.txt

 char *argv[2];
 argv[0] = "cat";
 argv[1] = 0;
 if(fork() == 0) {
 close(0);
 open("input.txt", O_RDONLY);
 exec("cat", argv);
 }

pipe - interprocess communication
● Pipe is a kernel buffer exposed as a pair of file

descriptors
● One for reading, one for writing

● Pipes allow processes to communicate
● Send messages to each other

wc on the
read end of
the pipe

int p[2];
char *argv[2]; argv[0] = "wc"; argv[1] = 0;
pipe(p);
if(fork() == 0) {
 close(0);
 dup(p[0]);
 close(p[0]);
 close(p[1]);
 exec("/bin/wc", argv);
} else {
 write(p[1], "hello world\n", 12);
 close(p[0]);
 close(p[1]);
}

Pipes
● Shell composes simple utilities into more

complex actions with pipes, e.g.

 grep FORK sh.c | wc -l
● Create a pipe and connect ends

Xv6 demo

Files
● Files

● Uninterpreted arrays of bytes

● Directories
● Named references to other files and directories

Creating files

● mkdir() – creates a directory

● open(O_CREATE) – creates a file

● mknod() – creates an empty files marked as
device
● Major and minor numbers uniquely identify the

device in the kernel

● fstat() – retrieve information about a file

● Named references to other files and directories

Fstat
● fstat() – retrieve information about a file

#define T_DIR 1 // Directory
#define T_FILE 2 // File
#define T_DEV 3 // Device
struct stat {
 short type; // Type of file
 int dev; // File system’s disk device
 uint ino; // Inode number
 short nlink; // Number of links to file
 uint size; // Size of file in bytes
};

Links, inodes
● Same file can have multiple names – links

● But unique inode number

● link() – create a link

● unlink() – delete file

● Example, create a temporary file

 fd = open("/tmp/xyz", O_CREATE|O_RDWR);
 unlink("/tmp/xyz");

Xv6 system
calls

fork() Create a process
exit() Terminate the current process
wait() Wait for a child process to exit
kill(pid) Terminate process pid
getpid() Return the current process’s pid
sleep(n) Sleep for n clock ticks
exec(filename, *argv) Load a file and execute it
sbrk(n) Grow process’s memory by n bytes
open(filename, flags) Open a file; the flags indicate read/write
read(fd, buf, n) Read n bytes from an open file into buf
write(fd, buf, n) Write n bytes to an open file
close(fd) Release open file fd
dup(fd) Duplicate fd
pipe(p) Create a pipe and return fd’s in p
chdir(dirname) Change the current directory
mkdir(dirname) Create a new directory
mknod(name, major, minor) Create a device file
fstat(fd) Return info about an open file
link(f1, f2) Create another name (f2) for the file f1
unlink(filename) Remove a file

Xv6 demo

In many ways xv6 is an OS
you run today

Questions?

Speakers from the 1984 Summer Usenix Conference (Salt Lake City, UT)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

