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Class details

● Undergraduate
● 197 students

● Instructor: Anton Burtsev
● Meeting time: 9:00-9:50am (M, W, F)

● Discussions: 12:00-12:50am (F)
– Regular discussion sections 
– Feel free to stop by my office with questions (DBH 3066)

● 3 TAs
● Biswadip Manty, Vikram Naranayan, Junjie Shen

● Web page
● http://www.ics.uci.edu/~aburtsev/143A

http://www.ics.uci.edu/~aburtsev/143A


  

More details

● 4-5 homeworks
● Implement a shell
● Explain whats on the stack
● Implement a system call
● Change file system layout

● Midterm
● Final
● Grades are curved

● Homework: 60%, midterm exam: 15%, final exam: 25% of your grade.
● You can submit late homework 3 days after the deadline for 60% of your 

grade



  

This course

● Inspired by 
● MIT 6.828: Operating System Engineering 

https://pdos.csail.mit.edu/6.828/2016/
● Adapted for undergraduate students 

● We will use xv6
● Relatively simple (9K lines of code)
● Reasonably complete UNIX kernel
● https://pdos.csail.mit.edu/6.828/2016/xv6.html

● xv6 comes with a book
● https://pdos.csail.mit.edu/6.828/2016/xv6/book-rev9.pdf

● And source code printout 
● https://pdos.csail.mit.edu/6.828/2016/xv6/xv6-rev9.pdf

https://pdos.csail.mit.edu/6.828/2016/
https://pdos.csail.mit.edu/6.828/2016/xv6.html
https://pdos.csail.mit.edu/6.828/2016/xv6/book-rev9.pdf
https://pdos.csail.mit.edu/6.828/2016/xv6/xv6-rev9.pdf


  

Another Book

“Operating Systems: Three Easy Pieces” 
(OSTEP) Remzi H. Arpaci-Dusseau and Andrea 
C. Arpaci-Dusseau
● Free online version

http://pages.cs.wisc.edu/~remzi/OSTEP/

http://pages.cs.wisc.edu/~remzi/OSTEP/


  

Course organization

● Lectures
● High level concepts and abstractions

● Reading
● Xv6 book + source code
● Bits of OSTEP book

● Homeworks
● Coding real parts of the xv6 kernel

● Design riddles
● Understanding design tradeoffs, explaining parts of xv6



  

Prerequisites 

● Solid C coding skills
● Xv6 is written in C
● You need to read, code and 

debug
● All homeworks are in C
● Many questions will require 

explaining xv6 code

● Be able to work and code in 
Linux/UNIX

● Some assembly skills



  

What is an operating system?



  

Goal: Run your code on a piece of hardware

● Read CPU manual
● A tiny boot layer

● Initialize CPU, memory
● Jump to your code

● main()
● This is your OS!



  

Print out a string
● On the screen or serial line



  

A more general interface
● First device driver



  

Device drivers

● Abstract hardware
● Provide high-level interface
● Hide minor differences
● Implement some optimizations

– Batch requests

● Examples
● Console, disk, network interface
● ...virtually any piece of hardware you know



  

Goal: Want to run two programs

● What does it mean?
● Only one CPU

● Run one, then run 
another one



  

Very much like car sharing



  

Goal: Want to run two programs

● What does it mean?
● Only one CPU

● Run one, then run 
another one



  

Goal: Want to run two programs

● Exit into the kernel 
periodically

● Context switch
● Save and restore 

context
● Essentially registers



  

● What! Two programs, one memory? 



  

Like private conference rooms



  

Virtual address spaces

● Illusion of a private memory for each application
● Keep a description of an address space
● In one of the registers

● All normal program addresses are inside the 
address space

● OS maintains description of address spaces
● Switches between them



  

● What if one program fails to release the CPU?
● It will run forever. Need a way to preempt it. How? 



  

Scheduling

● Pick which application to run next
● And for how long

● Illusion of a private CPU for each task
● Frequent context switching



  

● What if one faulty program corrupts the kernel?
● Or other programs? 



  

No isolation: open space office



  

Isolated rooms



  

Isolation

● Today is done with address spaces in hardware
● Many issues, e.g. shared device drivers, files, etc.

● Can it be done in software? 



  

● What about communication? 
● Can we invoke a function in a kernel? 



  

● What if you want to save some data? 
● Permanent storage

● E.g., disks

● But disks are just arrays of blocks
● wrtie(block_number, block_data)

● Files
● High level abstraction for saving data
● fd = open(“contacts.txt”);
● fpritnf(fd, “Name:%s\n”, name);



  

● What if you want to send data over the 
network? 

● Network interfaces
● Send/receive Ethernet packets (Level 2)
● Two low level

● Sockets
● High level abstraction for sending data



  

● Linux/Windows/Mac 



  

Multiple levels of abstraction
● Multiple programs

● Each has illusion of a private memory and CPU
● Context switching, scheduling, isolation, 

communication

● File systems
● Multiple files, concurrent I/O requests
● Consistency, caching

● Network protocols
● Multiple virtual network connections

● Memory management



  

Virtualization



  

● Want to run a Windows application on Linux? 



  

● Want to run a Windows application on Linux? 



  

What is the 
problem? 

● Hardware is not 
designed to be 
multiplexed

● Loss of isolation



  

Virtual machine

Efficient duplicate 
of a real machine
● Compatibility
● Performance
● Isolation



  

Trap and emulate



  

Questions?
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