

COMPSCI 143A: Principles of
Operating Systems

Lecture 1: Introduction

Anton Burtsev
September, 2017

Class details

● Undergraduate
● 197 students

● Instructor: Anton Burtsev
● Meeting time: 9:00-9:50am (M, W, F)

● Discussions: 12:00-12:50am (F)
– Regular discussion sections
– Feel free to stop by my office with questions (DBH 3066)

● 3 TAs
● Biswadip Manty, Vikram Naranayan, Junjie Shen

● Web page
● http://www.ics.uci.edu/~aburtsev/143A

http://www.ics.uci.edu/~aburtsev/143A

More details

● 4-5 homeworks
● Implement a shell
● Explain whats on the stack
● Implement a system call
● Change file system layout

● Midterm
● Final
● Grades are curved

● Homework: 60%, midterm exam: 15%, final exam: 25% of your grade.
● You can submit late homework 3 days after the deadline for 60% of your

grade

This course

● Inspired by
● MIT 6.828: Operating System Engineering

https://pdos.csail.mit.edu/6.828/2016/
● Adapted for undergraduate students

● We will use xv6
● Relatively simple (9K lines of code)
● Reasonably complete UNIX kernel
● https://pdos.csail.mit.edu/6.828/2016/xv6.html

● xv6 comes with a book
● https://pdos.csail.mit.edu/6.828/2016/xv6/book-rev9.pdf

● And source code printout
● https://pdos.csail.mit.edu/6.828/2016/xv6/xv6-rev9.pdf

https://pdos.csail.mit.edu/6.828/2016/
https://pdos.csail.mit.edu/6.828/2016/xv6.html
https://pdos.csail.mit.edu/6.828/2016/xv6/book-rev9.pdf
https://pdos.csail.mit.edu/6.828/2016/xv6/xv6-rev9.pdf

Another Book

“Operating Systems: Three Easy Pieces”
(OSTEP) Remzi H. Arpaci-Dusseau and Andrea
C. Arpaci-Dusseau
● Free online version

http://pages.cs.wisc.edu/~remzi/OSTEP/

http://pages.cs.wisc.edu/~remzi/OSTEP/

Course organization

● Lectures
● High level concepts and abstractions

● Reading
● Xv6 book + source code
● Bits of OSTEP book

● Homeworks
● Coding real parts of the xv6 kernel

● Design riddles
● Understanding design tradeoffs, explaining parts of xv6

Prerequisites

● Solid C coding skills
● Xv6 is written in C
● You need to read, code and

debug
● All homeworks are in C
● Many questions will require

explaining xv6 code

● Be able to work and code in
Linux/UNIX

● Some assembly skills

What is an operating system?

Goal: Run your code on a piece of hardware

● Read CPU manual
● A tiny boot layer

● Initialize CPU, memory
● Jump to your code

● main()
● This is your OS!

Print out a string
● On the screen or serial line

A more general interface
● First device driver

Device drivers

● Abstract hardware
● Provide high-level interface
● Hide minor differences
● Implement some optimizations

– Batch requests

● Examples
● Console, disk, network interface
● ...virtually any piece of hardware you know

Goal: Want to run two programs

● What does it mean?
● Only one CPU

● Run one, then run
another one

Very much like car sharing

Goal: Want to run two programs

● What does it mean?
● Only one CPU

● Run one, then run
another one

Goal: Want to run two programs

● Exit into the kernel
periodically

● Context switch
● Save and restore

context
● Essentially registers

● What! Two programs, one memory?

Like private conference rooms

Virtual address spaces

● Illusion of a private memory for each application
● Keep a description of an address space
● In one of the registers

● All normal program addresses are inside the
address space

● OS maintains description of address spaces
● Switches between them

● What if one program fails to release the CPU?
● It will run forever. Need a way to preempt it. How?

Scheduling

● Pick which application to run next
● And for how long

● Illusion of a private CPU for each task
● Frequent context switching

● What if one faulty program corrupts the kernel?
● Or other programs?

No isolation: open space office

Isolated rooms

Isolation

● Today is done with address spaces in hardware
● Many issues, e.g. shared device drivers, files, etc.

● Can it be done in software?

● What about communication?
● Can we invoke a function in a kernel?

● What if you want to save some data?
● Permanent storage

● E.g., disks

● But disks are just arrays of blocks
● wrtie(block_number, block_data)

● Files
● High level abstraction for saving data
● fd = open(“contacts.txt”);
● fpritnf(fd, “Name:%s\n”, name);

● What if you want to send data over the
network?

● Network interfaces
● Send/receive Ethernet packets (Level 2)
● Two low level

● Sockets
● High level abstraction for sending data

● Linux/Windows/Mac

Multiple levels of abstraction
● Multiple programs

● Each has illusion of a private memory and CPU
● Context switching, scheduling, isolation,

communication

● File systems
● Multiple files, concurrent I/O requests
● Consistency, caching

● Network protocols
● Multiple virtual network connections

● Memory management

Virtualization

● Want to run a Windows application on Linux?

● Want to run a Windows application on Linux?

What is the
problem?

● Hardware is not
designed to be
multiplexed

● Loss of isolation

Virtual machine

Efficient duplicate
of a real machine
● Compatibility
● Performance
● Isolation

Trap and emulate

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

