

Overview

Kinematics

$$x = x_o + v_{ox}t + \frac{1}{2}a_xt^2$$
$$v_x = v_{ox} + a_xt$$
$$a_x = 0$$
$$v_{0x} = v_0\cos(\theta)$$

$$y = y_o + v_{oy}t + \frac{1}{2}a_yt^2$$
$$v_y = v_{oy} + a_yt$$
$$a_y = -g$$
$$v_{0y} = v_0\sin(\theta)$$

Circular Motion

	Circular Motion Equations		Kinematics		Circular Motion Summary		
$x = 0$ $v_x = 0$ $a_x = 0$ $a_x = 0$	$R\cos(\omega t)$ $= -R\omega\sin(\omega t)$ $= -R\omega^{2}\cos(\omega t)$ $= -\omega^{2}x$ $ \vec{r} = R$ $ \vec{v} = R\omega$	$y = R \sin(\omega t)$ $v_y = R\omega \cos(\omega t)$ $a_y = -R\omega^2 \sin(\omega t)$ $a_y = -\omega^2 y$ $ \vec{a} = R\omega^2 = \frac{ \vec{v} ^2}{R}$ $\vec{a} = -\omega^2 \vec{r}$	•) ωt)	 1. Trajectories with gravity near the surface of the Earth and no air resistance or other drag forces. 2. The velocity is constant in magnitude but changes direction. It points tangentially. 3. The acceleration is constant in magnitude but changes direction. 			
Adopted from MIT Course				4. Th ac	ne magnitud celeration is giv	le of ven by: $ \vec{a} =$	$\frac{v^2}{R}$

Example 1

The moon revolves around the earth for 28 days. The distance between the earth and the moon is $38,4x10^4$ km. **Find:**

- a. Linier Speed
- b. Angular Velocity
- c. centripetal acceleration

Solution:

a.
$$s = 2\pi R = 2\pi \ 38,4x10^4 = 24,13x10^8 m$$

 $t = 28x24x3600 = 24,19x10^5 s$
 $v = 24,13x10^8 x \ 24,19x10^5 = 99m/s$
b. $\omega = v/R$
 $\omega = \frac{99}{38,4x10^4}$
 $= 3,58x10^{-7}rad/s$
c. $a = v^2/R$
 $a = \frac{99^2}{38,4x10^4}$
 $= 26x10^{-6}m/s^2$

Dimensional Analysis				
Kinematics 2D				

1. Name for a technique of checking the dimensions (or units) of an answer to check for careless mistakes in the formulas or algebra.

2. Example:
$$|\vec{a}| = \frac{v^2}{R}$$

 $\frac{m}{s^2}?\frac{(m/s)^2}{m} = \frac{(m^2/s^2)}{m} = \frac{m^2}{s^2m} = \frac{m}{s^2}$

SUMMARY

1. Position, velocity, and acceleration are ALL vectors and need to be manipulated using either arrows (qualitative) or components (quantitative)

- 2.A vector can change by changing its magnitude (speed) or direction or both. All three changes imply the presence of an acceleration
- 3. Checking the units or dimensions of an answer will help to guard against simple careless mistakes

THANK YOU