
KINEMATICS

FISIKA DASAR 1

Kinematics: Description of Motion

Relative Velocity Multi-body Kinematics Problems

Overview

x = x(t) x = c

All measurements require an origin, a coordinate system, and units

Next complication is *"reference frame"*, the term used to describe the motion of observer Constant velocity is OK, accelerated observer is not Basic definitions:

Position Distance versus displacement

Velocity - change of position Speed is the magnitude of velocity

> Acceleration - change of velocity

Relative Velocity

Kinematic

Basic Concept

- Observer B sees a moving object A, and
- Observer B is moving relative to observer C, so
- What does observer C see for the motion of the object?

Notation: use "wrt" to indicate "with respect to" $\vec{V}_{Awrt} V_{Awrt}$ Example: A=ball, B=me, C=you

Fisika 1

Kinematics Concepts

Posisi Sesaat	x = x(t)
Kecepatan Sesaat	$v = \frac{dx}{dt}$
Kecepatan rata-rata	$v_{rata-rata} = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1}$
Percepatan	$a = \frac{dv}{dt} = \frac{d}{dt}\frac{dx}{dt} = \frac{d^2x}{dt^2}$
Percepatan rata- rata	$a_{rata-rata} = \frac{\Delta v}{\Delta t} = \frac{v_2 - v_1}{t_2 - t_1}$

Example

Example

Posisi sebuah objek dilukiskan oleh: $x(t) = 4t^2 + 2t + 4$

Hitung:

- a. Kecepatan pada t=1detik
- b. Kecepatan rata-rata pada 5 detik pertama
- c. Percepatan sesaat

Answer:

a.
$$v = 8t + 2$$
, pada $t=1$ detik maka $v = 10m/s$
b. $x(5) = 100 + 10 + 4 = 114m$
 $x(0) = 4m$
 $v_{rata-rata} = \frac{x(5) - x(0)}{5 - 0} = \frac{114 - 4}{5} = 22,5m/s$
c. $a = \frac{dv}{dt} = 8m/s^2$

Key Kinematics Concepts

Change=slope=derivative

$$v_x = \frac{dx}{dt}$$
 $a_x = \frac{dv_x}{dt} = \frac{d^2x}{dt^2}$
velocity is the slope of position vs t,
acceleration is the slope of velocity vs t
and the curvature of position vs t

- Even in simple 1D motion, you must understand the vector nature of these quantities
- ≻Initial conditions
- ► All formulas have assumptions

Example

Example 1

A car is moving straight at a **constant velocity** of 4m/s. The starting position is 10m to the reference, then the car runs for 2 seconds. Calculate:

- a. Current car position
- b. Distance

Answer

.

-		
<mark>a.</mark>	$x_0 = 10m$	$x = vt + x_0$
	v = 4m/s	= 4.2 + 10
	t = 2s	= 18m

b.
$$\Delta x = vt$$
$$= 4.2$$
$$= 8 m$$

Example

Example 2

A particle moving with an initial velocity of 20m/s is slowed by a deceleration of $2m/s^2$ for 4 seconds, if the initial position of the particle is 5m. Calculate:

a. Particle position and distance

b. Particle velocity at 4 seconds Answer: $x = x_0 + v_0 t + \frac{1}{2}at^2$ $= 5 + 20t + \frac{1}{2}(-2)t^2$ $= 5 + 20t + t^2$ $x(4) = 5 + 20(4) + (4)^2 = 69m$

b. $v = v_0 + at$ = 20 + (-2)4 = 12m/s

$$x(4) = 5 + 20(4) + (4)^2 = 69m$$
$$\Delta x = x - x_0 = 69 - 5 = 64m$$

Multi-body Kinematics Problems

>Need to use consistent coordinate system and origin for all objects

>Need to think carefully about directions (signs!)

>Need to think carefully about initial conditions, especially when

things "start" at different times

➤Write separate equations for each object

➢ Read problem carefully to understand the

➤ specific constraint to use to solve

dopted from MIT Course

SUMMARY

- 1. Kinematics provides a language to describe motion
- 2. Basic relationship between position, velocity, acceleration (change=slope=derivative)
- 3. Study special cases (like constant acceleration) but understand the assumptions that go into all Formulas
- Position, velocity, and acceleration are ALL vectors and need to be manipulated using either arrows (qualitative) or components (quantitative)
- 5. Directions (or signs in 1D) of position, velocity, and acceleration can all be different

THANK YOU