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9 Directed graphs & Partial Orders
Directed graphs, called digraphs for short, provide a handy way to represent how
things are connected together and how to get from one thing to another by following
those connections. They are usually pictured as a bunch of dots or circles with
arrows between some of the dots, as in Figure 9.1. The dots are called nodes or
vertices and the lines are called directed edges or arrows; the digraph in Figure 9.1
has 4 nodes and 6 directed edges.

Digraphs appear everywhere in computer science. For example, the digraph in
Figure 9.2 represents a communication net, a topic we’ll explore in depth in Chap-
ter 10. Figure 9.2 has three “in” nodes (pictured as little squares) representing
locations where packets may arrive at the net, the three “out” nodes representing
destination locations for packets, and the remaining six nodes (pictured with lit-
tle circles) represent switches. The 16 edges indicate paths that packets can take
through the router.

Another place digraphs emerge in computer science is in the hyperlink structure
of the World Wide Web. Letting the vertices x1; : : : ; xn correspond to web pages,
and using arrows to indicate when one page has a hyperlink to another, results in a
digraph like the one in Figure 9.3—although the graph of the real World Wide Web
would have n be a number in the billions and probably even the trillions. At first
glance, this graph wouldn’t seem to be very interesting. But in 1995, two students
at Stanford, Larry Page and Sergey Brin, ultimately became multibillionaires from
the realization of how useful the structure of this graph could be in building a search
engine. So pay attention to graph theory, and who knows what might happen!

Figure 9.1 A 4-node directed graph with 6 edges.
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Figure 9.2 A 6-switch packet routing digraph.
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Figure 9.3 Links among Web Pages.
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Figure 9.4 A directed edge e D hu!vi. The edge e starts at the tail vertex, u,
and ends at the head vertex, v.

Definition 9.0.1. A directed graph, G, consists of a nonempty set, V.G/, called
the vertices of G, and a set, E.G/, called the edges of G. An element of V.G/ is
called a vertex. A vertex is also called a node; the words “vertex” and “node” are
used interchangeably. An element of E.G/ is called a directed edge. A directed
edge is also called an “arrow” or simply an “edge.” A directed edge starts at some
vertex, u, called the tail of the edge, and ends at some vertex, v, called the head
of the edge, as in Figure 9.4. Such an edge can be represented by the ordered pair
.u; v/. The notation hu!vi denotes this edge.

There is nothing new in Definition 9.0.1 except for a lot of vocabulary. Formally,
a digraph G is the same as a binary relation on the set, V D V.G/—that is, a
digraph is just a binary relation whose domain and codomain are the same set, V .
In fact, we’ve already referred to the arrows in a relation G as the “graph” of G.
For example, the divisibility relation on the integers in the interval Œ1::12ç could be
pictured by the digraph in Figure 9.5.

9.1 Vertex Degrees

The in-degree of a vertex in a digraph is the number of arrows coming into it, and
similarly its out-degree is the number of arrows out of it. More precisely,

Definition 9.1.1. If G is a digraph and v 2 V.G/, then

indeg.v/ WWD jfe 2 E.G/ j head.e/ D vgj
outdeg.v/ WWD jfe 2 E.G/ j tail.e/ D vgj

An immediate consequence of this definition is

Lemma 9.1.2. X
indeg.v/ outdeg.v/:

v

D
2V.G/ v2

X
V.G/

Proof. Both sums are equal to jE.G/j. ⌅
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Figure 9.5 The Digraph for Divisibility on f1; 2; : : : ; 12g.

9.2 Walks and Paths

Picturing digraphs with points and arrows makes it natural to talk about following
successive edges through the graph. For example, in the digraph of Figure 9.5, you
might start at vertex 1, successively follow the edges from vertex 1 to vertex 2, from
2 to 4, from 4 to 12, and then from 12 to 12 twice (or as many times as you like).
The sequence of edges followed in this way is called a walk through the graph. A
path is a walk which never visits a vertex more than once. So following edges from
1 to 2 to 4 to 12 is a path, but it stops being a path if you go to 12 again.

The natural way to represent a walk is with the sequence of sucessive vertices it
went through, in this case:

1 2 4 12 12 12:

However, it is conventional to represent a walk by an alternating sequence of suc-
cessive vertices and edges, so this walk would formally be

1 h1!2i 2 h2!4i 4 h4!12i 12 h12!12i 12 h12!12i 12: (9.1)

The redundancy of this definition is enough to make any computer scientist cringe,
but it does make it easy to talk about how many times vertices and edges occur on
the walk. Here is a formal definition:

Definition 9.2.1. A walk in a digraph, G, is an alternating sequence of vertices and
edges that begins with a vertex, ends with a vertex, and such that for every edge
hu!vi in the walk, vertex u is the element just before the edge, and vertex v is the
next element after the edge.
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So a walk, v, is a sequence of the form

v WWD v0 hv0!v1i v1 hv1!v2i v2 : : : hvk�1!vki vk

where hvi!viC1i 2 E.G/ for i 2 Œ0::k/. The walk is said to start at v0, to end at
vk , and the length, jvj, of the walk is defined to be k.

The walk is a path iff all the vi ’s are different, that is, if i ¤ j , then vi ¤ vj .
A closed walk is a walk that begins and ends at the same vertex. A cycle is a

positive length closed walk whose vertices are distinct except for the beginning and
end vertices.

Note that a single vertex counts as a length zero path that begins and ends at itself.
It also is a closed walk, but does not count as a cycle, since cycles by definition
must have positive length. Length one cycles are possible when a node has an
arrow leading back to itself. The graph in Figure 9.1 has none, but every vertex in
the divisibility relation digraph of Figure 9.5 is in a length one cycle. Length one
cycles are sometimes called self-loops.

Although a walk is officially an alternating sequence of vertices and edges, it
is completely determined just by the sequence of successive vertices on it, or by
the sequence of edges on it. We will describe walks in these ways whenever it’s
convenient. For example, for the graph in Figure 9.1,

✏ .a; b; d/, or simply abd , is a (vertex-sequence description of a) length two
path,

✏ .ha!bi ; hb!d i/, or simply ha!bi hb!d i, is (an edge-sequence de-
scription of) the same length two path,

✏ abcbd is a length four walk,

✏ dcbcbd is a length five closed walk,

✏ bdcb is a length three cycle,

✏ hb!ci hc!bi is a length two cycle, and

✏ hc!bi hb ai ha!d i is not a walk. A walk is not allowed to follow edges
in the wrong direction.

If you walk for a while, stop for a rest at some vertex, and then continue walking,
you have broken a walk into two parts. For example, stopping to rest after following
two edges in the walk (9.1) through the divisibility graph breaks the walk into the
first part of the walk

1 h1!2i 2 h2!4i 4 (9.2)
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from 1 to 4, and the rest of the walk

4 h4!12i 12 h12!12i 12 h12!12i 12: (9.3)

from 4 to 12, and we’ll say the whole walk (9.1) is the merge of the walks (9.2)
and (9.3). In general, if a walk f ends with a vertex, v, and a walk r starts with the
same vertex, v, we’ll say that their merge, fbr, is the walk that starts with f and
continues with r.1 Two walks can only be merged if the first ends with the same
vertex, v, that the second one starts with. Sometimes it’s useful to name the node v

where the walks merge; we’ll use the notation f v r to describe the merge of a walk
f that ends at v with a walk r that begins at v.

A consequence of this definition is that

b

Lemma 9.2.2.
jfbrj D jfj C jrj:

In the next section we’ll get mileage out of walking this way.

9.2.1 Finding a Path
If you were trying to walk somewhere quickly, you’d know you were in trouble if
you came to the same place twice. This is actually a basic theorem of graph theory.

Theorem 9.2.3. The shortest walk from one vertex to another is a path.

Proof. If there is a walk from vertex u to another vertex v ¤ u, then by the Well
Ordering Principle, there must be a minimum length walk w from u to v. We claim
w is a path.

To prove the claim, suppose to the contrary that w is not a path, meaning that
some vertex x occurs twice on this walk. That is,

w D e x f x g

for some walks e; f; g where the length of

b
f is

b
positive. But then “deleting” f yields

a strictly shorter walk
e x g

from u to v, contradicting the minimality

b
of w. ⌅

Definition 9.2.4. The distance, dist .u; v/, in a graph from vertex u to vertex v is
the length of a shortest path from u to v.

1It’s tempting to say the merge is the concatenation of the two walks, but that wouldn’t quite be
right because if the walks were concatenated, the vertex v would appear twice in a row where the
walks meet.
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As would be expected, this definition of distance satisfies:

Lemma 9.2.5. [The Triangle Inequality]

dist .u; v/  dist .u; x/C dist .x; v/

for all vertices u; v; x with equality holding iff x is on a shortest path from u to v.

Of course, you might expect this property to be true, but distance has a technical
definition and its properties can’t be taken for granted. For example, unlike ordinary
distance in space, the distance from u to v is typically different from the distance
from v to u. So, let’s prove the Triangle Inequality

Proof. To prove the inequality, suppose f is a shortest path from u to x and r
is a shortest path from x to v. Then by Lemma 9.2.2, f x r is a walk of length
dist .u; x/C dist .x; v/ from u to v, so this sum is an upper bound on the length of
the shortest path from u to v by Theorem 9.2.3.

b

Proof of the “iff” is in Problem 9.3. ⌅

Finally, the relationship between walks and paths extends to closed walks and
cycles:

Lemma 9.2.6. The shortest positive length closed walk through a vertex is a cycle
through that vertex.

The proof of Lemma 9.2.6 is essentially the same as for Theorem 9.2.3; see
Problem 9.7.

9.3 Adjacency Matrices

If a graph, G, has n vertices, v0; v1; : : : ; vn�1, a useful way to represent it is with
an n⇥ n matrix of zeroes and ones called its adjacency matrix, AG . The ij th entry
of the adjacency matrix, .AG/ij , is 1 if there is an edge from vertex vi to vertex vj

and 0 otherwise. That is,

.AG/ij WWD
(

1 if
˝
vi!vj

˛
2 E.G/;

0 otherwise:
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For example, let H be the 4-node graph shown in Figure 9.1. Its adjacency matrix,
AH , is the 4 ⇥ 4 matrix:

a b c d

a 0 1 0 1
AH D b 0 0 1 1

c 0 1 0 0

d 0 0 1 0

A payoff of this representation is that we can use matrix powers to count numbers
of walks between vertices. For example, there are two length two walks between
vertices a and c in the graph H :

a ha!bi b hb!ci c

a ha!d i d hd!ci c

and these are the only length two walks from a to c. Also, there is exactly one
length two walk from b to c and exactly one length two walk from c to c and from
d to b, and these are the only length two walks in H . It turns out we could have
read these counts from the entries in the matrix .AH /2:

a b c d

a 0 0 2 1
.A 2

H / D b 0 1 1 0

c 0 0 1 1

d 0 1 0 0

More generally, the matrix .AG/k provides a count of the number of length k

walks between vertices in any digraph, G, as we’ll now explain.

Definition 9.3.1. The length-k walk counting matrix for an n-vertex graph G is the
n ⇥ n matrix C such that

Cuv WWD the number of length-k walks from u to v: (9.4)

Notice that the adjacency matrix AG is the length-1 walk counting matrix for G,
and that .AG/0, which by convention is the identity matrix, is the length-0 walk
counting matrix.

Theorem 9.3.2. If C is the length-k walk counting matrix for a graph G, and D

is the length-m walk counting matrix, then CD is the length k Cm walk counting
matrix for G.
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According to this theorem, the square .AG/2 of the adjacency matrix is the length
two walk counting matrix for G. Applying the theorem again to .AG/2AG shows
that the length-3 walk counting matrix is .AG/3. More generally, it follows by
induction that

Corollary 9.3.3. The length-k counting matrix of a digraph, G, is .A k
G/ , for all

k 2 N.

In other words, you can determine the number of length k walks between any
pair of vertices simply by computing the kth power of the adjacency matrix!

That may seem amazing, but the proof uncovers this simple relationship between
matrix multiplication and numbers of walks.

Proof of Theorem 9.3.2. Any length .kCm/ walk between vertices u and v begins
with a length k walk starting at u and ending at some vertex, w, followed by a
length m walk starting at w and ending at v. So the number of length .k C m/

walks from u to v that go through w at the kth step equals the number Cuw of
length k walks from u to w, times the number Dwv of length m walks from w to
v. We can get the total number of length .k Cm/ walks from u to v by summing,
over all possible vertices w, the number of such walks that go through w at the kth
step. In other words,

#length .k Cm/ walks from u to v D
X

Cuw

w2V.G/

�Dwv (9.5)

But the right hand side of (9.5) is precisely the definition of .CD/uv. Thus, CD is
indeed the length-.k Cm/ walk counting matrix. ⌅

9.3.1 Shortest Paths
The relation between powers of the adjacency matrix and numbers of walks is
cool—to us math nerds at least—but a much more important problem is finding
shortest paths between pairs of nodes. For example, when you drive home for
vacation, you generally want to take the shortest-time route.

One simple way to find the lengths of all the shortest paths in an n-vertex graph,
G, is to compute the successive powers of AG one by one up to the n� 1st, watch-
ing for the first power at which each entry becomes positive. That’s because The-
orem 9.3.2 implies that the length of the shortest path, if any, between u and v,
that is, the distance from u to v, will be the smallest value k for which .A k

G/uv is
nonzero, and if there is a shortest path, its length will be  n � 1. Refinements of
this idea lead to methods that find shortest paths in reasonably efficient ways. The
methods apply as well to weighted graphs, where edges are labelled with weights
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or costs and the objective is to find least weight, cheapest paths. These refinements
are typically covered in introductory algorithm courses, and we won’t go into them
any further.

9.4 Walk Relations

A basic question about a digraph is whether there is a way to get from one particular
vertex to another. So for any digraph, G, we are interested in a binary relation, G⇤,
called the walk relation on V.G/ where

u G⇤ v WWD there is a walk in G from u to v: (9.6)

Similarly, there is a positive walk relation

u GC v WWD there is a positive length walk in G from u to v: (9.7)

Definition 9.4.1. When there is a walk from vertex v to vertex w, we say that w is
reachable from v, or equivalently, that v is connected to w.

9.4.1 Composition of Relations
There is a simple way to extend composition of functions to composition of rela-
tions, and this gives another way to talk about walks and paths in digraphs.

Definition 9.4.2. Let R W B ! C and S W A ! B be binary relations. Then the
composition of R with S is the binary relation .R ı S/ W A ! C defined by the
rule

a .R ı S/ c WWD 9b 2 B: .a S b/ AND .b R c/: (9.8)

This agrees with the Definition 4.3.1 of composition in the special case when R

and S are functions.2

Remembering that a digraph is a binary relation on its vertices, it makes sense
to compose a digraph G with itself. Then if we let Gn denote the composition of
G with itself n times, it’s easy to check (see Problem 9.9) that Gn is the length-n
walk relation:

a Gn b iff there is a length n walk in G from a to b:

2The reversal of the order of R and S in (9.8) is not a typo. This is so that relational composition
generalizes function composition. The value of function f composed with function g at an argument,
x, is f .g.x//. So in the composition, f ı g, the function g is applied first.
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This even works for n D 0, with the usual convention that G0 is the identity relation
IdV.G/ on the set of vertices.3 Since there is a walk iff there is a path, and every
path is of length at most jV.G/j � 1, we now have4

G⇤ D G0 [G1 [G2 [ : : : [GjV.G/j�1 D .G [G0/jV.G/j�1: (9.9)

The final equality points to the use of repeated squaring as a way to compute G⇤

with log n rather than n � 1 compositions of relations.

3The identity relation, IdA, on a set, A, is the equality relation:

a IdA b iff a D b;

for a; b 2 A.
4Equation (9.9) involves a harmless abuse of notation: we should have written

graph.G⇤/ D graph 0.G / [ graph 1.G / : : : :
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