
5 Directed Graphs

What is a directed graph?

Directed Graph: A directed graph, or digraph, D, consists of a set of vertices V (D), a set

of edges E(D), and a function which assigns each edge e an ordered pair of vertices (u, v).

We call u the tail of e, v the head of e, and u, v the ends of e. If there is an edge with tail

u and head v, then we let (u, v) denote such an edge, and we say that this edge is directed

from u to v.

Loops, Parallel Edges, and Simple Digraphs: An edge e = (u, v) in a digraph D is a

loop if u = v. Two edges e, f are parallel if they have the same tails and the same heads. If

D has no loops or parallel edges, then we say that D is simple.

Drawing: As with undirected graphs, it is helpful to represent them with drawings so that

each vertex corresponds to a distinct point, and each edge from u to v is represented by a

curve directed from the point corresponding to u to the point corresponding to v (usually

we indicate this direction with an arrowhead).

Orientations: If D is a directed graph, then there is an ordinary (undirected) graph G

with the same vertex and edge sets as D which is obtained from D by associating each edge

(u, v) with the ends u, v (in other words, we just ignore the directions of the edges). We call

G the underlying (undirected) graph, and we call D an orientation of G.

Standard Diraphs

Null digraph the (unique) digraph with no vertices or edges.

Directed Path a graph whose vertex set may be numbered {v1, . . . , vn} and

edges may be numbered {e1, . . . , en−1} so that ei = (vi, vi+1)

for every 1 ≤ i ≤ n− 1.

Directed Cycle a graph whose vertex set may be numbered {v1, . . . , vn} and

edges may be numbered {e1, . . . , en} so that ei = (vi, vi+1)

(modulo n) for every 1 ≤ i ≤ n

Tournament A digraph whose underlying graph is a complete graph.

Subgraphs and Isomorphism: These concepts are precisely analogous to those for undi-

rected graphs.
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Degrees: The outdegree of a vertex v, denoted deg+(v) is the number of edges with tail v,

and the indegree of v, denoted deg−(v) is the number of edges with head v.

Theorem 5.1 For every digraph D

∑

v∈V (D)

deg+(v) = |E(D)| =
∑

v∈V (D)

deg−(v)

Proof: Each edge contributes exactly 1 to the terms on the left and right. ¤

Connectivity

Directed Walks & Paths: A directed walk in a digraph D is a sequence v0, e1, v1, . . . , envn

so that vi ∈ V (D) for every 0 ≤ i ≤ n, and so that ei is an edge from vi−1 to vi for every

1 ≤ i ≤ n. We say that this is a walk from v0 to vn. If v0 = vn we say the walk is closed and

if v0, v1, . . . , vn are distinct we call it a directed path.

Proposition 5.2 If there is a directed walk from u to v, then there is a directed path from

u to v.

Proof: Every directed walk from u to v of minimum length is a directed path. ¤

δ+ and δ−: If X ⊆ V (D), we let δ+(X) denote the set of edges with tail in X and head in

V (G) \X, and we let δ−(X) = δ+(V (G) \X).

Proposition 5.3 Let D be a digraph and let u, v ∈ V (D). Then exactly one of the following

holds.

(i) There is a directed walk from u to v.

(ii) There exists X ⊆ V (D) with u ∈ X and v 6∈ X so that δ+(X) = ∅.

Proof: It is immediate that (i) and (ii) are mutually exclusive, so it suffices to show that at

least one holds. Let X = {w ∈ V (D) : there is a directed walk from u to w}. If v ∈ X then

(i) holds. Otherwise, δ+(X) = ∅, so (ii) holds. ¤

Strongly Connected: We say that a digraph D is strongly connected if for every u, v ∈
V (D) there is a directed walk from u to v.
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Proposition 5.4 Let D be a digraph and let H1, H2 ⊆ D be strongly connected. If V (H1)∩
V (H2) 6= ∅, then H1 ∪H2 is strongly connected.

Proof: If v ∈ V (H1) ∩ V (H2), then every vertex has a directed walk both to v and from v,

so it follows that H1 ∪H2 is strongly connected. ¤

Strong Component: A strong component of a digraph D is a maximal strongly connected

subgraph of D.

Theorem 5.5 Every vertex is in a unique strong component of D.

Proof: This follows immediately from the previous proposition, and the observation that a

one-vertex digraph is strongly connected.

Observation 5.6 Let D be a digraph in which every vertex has outdegree ≥ 1. Then D

contains a directed cycle.

Proof: Construct a walk greedily by starting at an arbitrary vertex v0, and at each step

continue from the vertex vi along an arbitrary edge with tail vi (possible since each vertex

has outdegree ≥ 1) until a vertex is repeated. At this point, we have a directed cycle. ¤

Acyclic: A digraph D is acyclic if it has no directed cycle.

Proposition 5.7 The digraph D is acyclic if and only if there is an ordering v1, v2, . . . , vn

of V (D) so that every edge (vi, vj) satisfies i < j.

Proof: The ”if” direction is immediate. We prove the ”only if” direction by induction on

|V (D)|. As a base, observe that this is trivial when |V (D)| = 1. For the inductive step,

we may assume that D is acyclic, |V (D)| = n ≥ 2, and that the proposition holds for all

digraphs with fewer vertices. Now, apply the Observation 5.6 to choose a vertex vn with

deg+(vn) = 0. The digraph D − vn is acyclic, so by induction we may choose an ordering

v1, v2, . . . , vn−1 of V (D− vn) so that every edge (vi, vj) satisfies i < j. But then v1, . . . , vn is

such an ordering of V (D). ¤

Proposition 5.8 Let D be a digraph, and let D′ be the digraph obtained from D by taking

each strong component H ⊆ D, identifying V (H) to a single new vertex, and then deleting

any loops. Then D′ is acyclic.
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Proof: If D′ had a directed cycle, then there would exist a directed cycle in D not contained

in any strong component, but this contradicts Theorem 5.5. ¤

Theorem 5.9 If G is a 2-connected graph, then there is an orientation D of G so that D

is strongly connected.

Proof: Let C, P1, . . . , Pk be an ear decomposition of G. Now, orient the edges of C to form

a directed cycle, and orient the edges of each path Pi to form a directed path. It now

follows from the obvious inductive argument (on k) that the resulting digraph D is strongly

connected. ¤

Eulerian, Hamiltonian, & path partitions

Proposition 5.10 Let D be a digraph and assume that deg+(v) = deg−(v) for every vertex

v. Then there exists a list of directed cycles C1, C2, . . . , Ck so that every edge appears in

exactly one.

Proof: Choose a maximal list of cycles C1, C2, . . . , Ck so that every edge appears in at most

one. Suppose (for a contradiction) that there is an edge not included in any cycle Ci and let

H be a component of D \ ∪k
i=1E(Ci) which contains an edge. Now, every vertex v ∈ V (H)

satisfies deg+
H(v) = deg−H(v) 6= 0, so by Observation 17.5 there is a directed cycle C ⊆ H.

But then C may be appended to the list of cycles C1, . . . , Ck. This contradiction completes

the proof. ¤

Eulerian: A closed directed walk in a digraph D is called Eulerian if it uses every edge

exactly once. We say that D is Eulerian if it has such a walk.

Theorem 5.11 Let D be a digraph D whose underlying graph is connected. Then D is

Eulerian if and only if deg+(v) = deg−(v) for every v ∈ V (D).

Proof: The ”only if” direction is immediate. For the ”if” direction, choose a closed walk

v0, e1, . . . , vn which uses each edge at most once and is maximum in length (subject to this

constraint). Suppose (for a contradiction) that this walk is not Eulerian. Then, as in the

undirected case, it follows from the fact that the underlying graph is connected that there

exists an edge e ∈ E(D) which does not appear in the walk so that e is incident with some
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vertex in the walk, say vi. Let H = D−{e1, e2, . . . , en}. Then every vertex of H has indegree

equal to its outdegree, so by the previous proposition, there is a list of directed cycles in

H containing every edge exactly once. In particular, there is a directed cycle C ⊆ H with

e ∈ C. But then, the walk obtained by following v0, e1, . . . , vi, then following the directed

cycle C from vi back to itself, and then following ei+1, vi, . . . , vn is a longer closed walk which

contradicts our choice. This completes the proof. ¤
Hamiltonian: Let D be a directed graph. A cycle C ⊆ D is Hamiltonian if V (C) = V (D).

Similarly, a path P ⊆ D is Hamiltonian if V (P ) = V (D).

In & Out Neighbors: If X ⊆ V (D), we define

N+(X) = {y ∈ V (D) \X : (x, y) ∈ E(D) for some x ∈ X}
N−(X) = {y ∈ V (D) \X : (y, x) ∈ E(D) for some x ∈ X}

We call N+(X) the out-neighbors of X and N−(X) the in-neighbors of X. If x ∈ X we let

N+(x) = N+({x} and N−(x) = N−({x}).

Theorem 5.12 (Rédei) Every tournament has a Hamiltonian path.

Proof: Let T be a tournament. We prove the result by induction on |V (T )|. As a base,

if |V (T )| = 1, then the one vertex path suffices. For the inductive step, we may assume

that |V (T )| ≥ 2. Choose a vertex v ∈ V (T ) and let T− (resp. T+) be the subgraph of T

consisting of all vertices in N−(v) (resp. N+(v)) and all edges with both ends in this set.

If both T− and T+ are not null, then each has a Hamiltonian path, say P− and P+ and

we may form a Hamiltonian path in T by following P− then going to the vertex v, then

following P+. A similar argument works if either T− or T+ is null. ¤

Theorem 5.13 (Camion) Every strongly connected tournament has a Hamiltonian cycle.

Proof: Let T be a strongly connected tournament, and choose a cycle C ⊆ T with |V (C)|
maximum. Suppose (for a contradiction) that V (C) 6= V (T ). If there is a vertex v ∈
V (T ) \ V (C) so that N+(v) ∩ V (C) 6= ∅ and N−(v) ∩ V (C) 6= ∅, then there must exist an

edge (w, x) ∈ E(C) so that (w, v), (v, x) ∈ E(T ). However, then we may use these edges

to find a longer cycle. It follows that the vertices in V (T ) \ V (C) may be partitioned into

{A,B} so that every x ∈ A has V (C) ⊆ N+(v) and every y ∈ B has V (C) ⊆ N−(y). It
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follows from the strong connectivity of T that A,B 6= ∅ and that there exists an edge (y, z)

with y ∈ B and z ∈ A. However, then we may replace an edge (w, x) ∈ E(C) with the path

containing the edges (w, y), (y, z), (z, x) to get a longer cycle. This contradiction completes

the proof. ¤
Path Partition: A path partition of a digraph D is a collection P = {P1, P2, . . . , Pk} so

that Pi is a directed path for 1 ≤ i ≤ k and {V (P1), V (P2), . . . , V (Pk)} is a partition of

V (D). We let heads(P) (tails(P)) denote the set of vertices which are the initial (terminal)

vertex in some Pi.

Lemma 5.14 (Bondy) Let P be a path partition of the digraph D, and assume |P| > α(D).

Then there is a path partition P ′ of D so that |P ′| = |P| − 1, and tails(P ′) ⊆ tails(P).

Proof: We proceed by induction on |V (D)|. As a base, observe that the result is trivial

when |V (D)| = 1. For the inductive step, note that since α(D) < |tails(P)| there must

exist an edge (x, y) with x, y ∈ tails(P). Choose i so that y ∈ V (Pi). If |V (Pi)| = 1, then

we may remove Pi from P and then append the edge (x, y) to the path containing x to get

a suitable path partition. Thus, we may assume that |V (Pi)| > 1, and choose w ∈ V (D)

so that (w, y) ∈ E(Pi). Now, P ′ = {P1, . . . , Pi−1, Pi − y, Pi+1, . . . , Pk} is a path partition of

D − y and α(D − y) ≤ α(D) < |P ′|, so by induction, there is a path partition P ′′ of D − y

with |P ′′| = |P ′| − 1 and tails(P ′′) ⊆ tails(P ′). Since x,w ∈ tails(P ′), at least one of x,w

is in x,w ∈ tails(P ′′). Since (x, y), (w, y) ∈ E(D), we may extend P ′′ to a suitable path

partition of D by using one of these edges. ¤

Theorem 5.15 (Gallai-Milgram) Every digraph D has a path partition P with |P| =

α(D).

Proof: This follows immediately from the observation that every digraph has a path partition

(for instance, take each vertex as a one vertex path), and (repeated applications of) the above

lemma. ¤

Note: This is a generalization of Theorem 5.12.

Partially Ordered Set: A partially ordered set (or poset) consists of a set X and a binary

relation ≺ which is reflexive (x ≺ x for every x ∈ X), antisymmetric (x ≺ y and y ≺ x imply
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x = y), and transitive (x ≺ y and y ≺ z imply x ≺ z). We say that two points x, y ∈ X are

comparable if either x ≺ y or y ≺ x.

Chains and Antichains: In a poset, a chain is a subset A ⊆ X so that any two points in A

are comparable. An antichain is a subset B ⊆ X so that no two points in B are comparable.

Theorem 5.16 (Dilworth) Let (X,≺) be a poset and let k be the size of the largest an-

tichain. Then there is a partition of X into k chains.

Proof: Form a digraph D with vertex set X by adding an edge from x to y whenever x 6= y

and x ≺ y. Now α(D) = k, so the Gallai-Milgram Theorem gives us a path partition of D

of size k. However, the vertex set of a directed path is a chain in the poset, so this yields a

partition of X into k chains. ¤

The Ford-Fulkerson Theorem

Flows: If D is a digraph and s, t ∈ V (D), then an (s, t)-flow is a map φ : E(D) → R with

the property that for every v ∈ V (D) \ {s, t} the following holds.

∑

e∈δ+(v)

φ(e) =
∑

e∈δ−(v)

φ(e).

The value of φ is
∑

e∈δ+(s) φ(e)−∑
e∈δ−(s) φ(e).

Proposition 5.17 If φ is an (s, t)-flow of value q, then every X ⊆ V (D) with s ∈ X and

t 6∈ X satisfies ∑

e∈δ+(X)

φ(e)−
∑

e∈δ−(X)

φ(e) = q.

Proof:

q =
∑

e∈δ+(s)

φ(e)−
∑

e∈δ−(s)

φ(e)

=
∑
x∈X


 ∑

e∈δ+(x)

φ(e)−
∑

e∈δ−(x)

φ(e)




=
∑

e∈δ+(X)

φ(e)−
∑

e∈δ−(X)

φ(e)
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Capacities: We shall call a weight function c : E(D) → R+ ∪ {∞} a capacity function. If

X ⊆ V (D), we say that δ+(X) has capacity
∑

e∈δ+(X) φ(e).

Admissible Flows: An (s, t)-flow φ is admissible if 0 ≤ φ(e) ≤ c(e) for every edge e.

Augmenting Paths: Let c be a capacity function and φ : E(D) → R an admissible (s, t)-

flow. A path P from u to v is called augmenting if for every edge e ∈ E(P ), either e is

traversed in the forward direction and φ(e) < c(e) or e is traversed in the backward direction

and φ(e) > 0.

Theorem 5.18 (Ford-Fulkerson) Let D be a digraph, let s, t ∈ V (D), and let c be a

capacity function. Then the maximum value of an (s, t)-flow is equal to the minimum capacity

of a cut δ+(X) with s ∈ X and t 6∈ X. Furthermore, if c is integer valued, then there exists

a flow of maximum value φ which is also integer valued.

Proof: It follows immediately from Proposition 19.1 that every admissible (s, t)-flow has

value less than or equal to the capacity of any cut δ+(X) with s ∈ X and t 6∈ X.

We shall prove the other direction of this result only for capacity functions c : E(D) → Q+

(although it holds in general). For every edge e, let pe

qe
be a reduced fraction equal to c(e),

and let n be the least common multiple of {qe : e ∈ E(D)}. We shall prove that there exists

a flow φ : E(D) → Q+ so that φ(e) can be expressed as a fraction with denominator n for

every edge e. To do this, choose a flow φ with this property of maximum value. Define the

set X as follows.

X = {v ∈ V (D) : there is an augmenting path from s to v}

If t ∈ X, then there exists an augmenting path P from s to t. However, then we may modify

the flow φ to produce a new admissible flow of greater value by increasing the flow by 1
n

on

every forward edge of P and decreasing the flow by 1
n

on every backward edge of P . Since

this new flow would contradict the choice of φ, it follows that t 6∈ X.

It follows from the definition of X that every edge e ∈ δ+(X) satisfies φ(e) = c(e) and

every edge f ∈ δ−(X) satisfies φ(f) = 0. Thus, our flow φ has value equal to the capacity

of the cut δ+(X) and the proof is complete. ¤
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Note: The above proof for rational valued flows combined with a simple convergence ar-

gument yields the proof in general. However, the algorithm inherent in the above proof

does not yield a finite algorithm for finding a flow of maximum value for arbitrary capacity

functions.

Corollary 5.19 (edge-digraph version of Menger) Let D be a digraph and let s, t ∈
V (D). Then exactly one of the following holds:

(i) There exist k pairwise edge disjoint directed paths P1, . . . , Pk from s to t.

(ii) There exists X ⊆ V (D) with s ∈ X and t 6∈ X so that |δ+(X)| < k

Proof: It is immediate that (i) and (ii) are mutually exclusive, so it suffices to show that at

least one holds. Define a capacity function c : E(D) → R by the rule that c(e) = 1 for every

edge e. Apply the Ford-Fulkerson Theorem to choose an admissible integer valued (s, t)-flow

φ : E(D) → Z and a cut δ+(X) with s ∈ X and t 6∈ X so that the value of φ and the capacity

of δ+(X) are both equal to the integer q. Now, let H = D − {e ∈ E(D) : φ(e) = 0}. Then

H is a digraph with the property that δ+
H(s)− δ−H(s) = q = δ−H(t)− δ+

H(t) and δ+
H(v) = δ−H(v)

for every v ∈ V (H) \ {s, t}. By Problem 3 of Homework 10, we find that H contains q edge

disjoint directed paths from s to t. So, if q ≤ k, then (i) holds, and if q > k (ii) holds. ¤


