5 Directed Graphs

What is a directed graph?

Directed Graph: A directed graph, or digraph, D, consists of a set of vertices V (D), a set
of edges E(D), and a function which assigns each edge e an ordered pair of vertices (u,v).
We call u the tail of e, v the head of e, and u,v the ends of e. If there is an edge with tail
u and head v, then we let (u,v) denote such an edge, and we say that this edge is directed

from u to v.

Loops, Parallel Edges, and Simple Digraphs: An edge e = (u,v) in a digraph D is a
loop if u =v. Two edges e, f are parallel if they have the same tails and the same heads. If

D has no loops or parallel edges, then we say that D is simple.

Drawing: As with undirected graphs, it is helpful to represent them with drawings so that
each vertex corresponds to a distinct point, and each edge from u to v is represented by a
curve directed from the point corresponding to u to the point corresponding to v (usually

we indicate this direction with an arrowhead).

Orientations: If D is a directed graph, then there is an ordinary (undirected) graph G
with the same vertex and edge sets as D which is obtained from D by associating each edge
(u,v) with the ends u, v (in other words, we just ignore the directions of the edges). We call

G the underlying (undirected) graph, and we call D an orientation of G.

Standard Diraphs
Null digraph the (unique) digraph with no vertices or edges.

Directed Path | a graph whose vertex set may be numbered {v,...,v,} and
edges may be numbered {ey, ..., e,_1} so that e; = (v;, v;11)

forevery 1 <i<mn—1.

Directed Cycle | a graph whose vertex set may be numbered {vy, ..., v,} and
edges may be numbered {eq,...,e,} so that e; = (v;,v;41)

(modulo n) for every 1 <i<mn

Tournament A digraph whose underlying graph is a complete graph.

Subgraphs and Isomorphism: These concepts are precisely analogous to those for undi-

rected graphs.
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Degrees: The outdegree of a vertex v, denoted deg™(v) is the number of edges with tail v,

and the indegree of v, denoted deg™ (v) is the number of edges with head v.

Theorem 5.1 For every digraph D

Y. degt(v)=|ED)|= ) deg (v)

veV (D) veV (D)

Proof: Each edge contributes exactly 1 to the terms on the left and right. O

Connectivity

Directed Walks & Paths: A directed walk in a digraph D is a sequence vg, €1, 01, . . ., €,Uy,
so that v; € V(D) for every 0 < i < n, and so that e; is an edge from v;_; to v; for every
1 <17 <n. We say that this is a walk from vy to v,,. If vg = v,, we say the walk is closed and

if vg, vq, ..., v, are distinct we call it a directed path.

Proposition 5.2 If there is a directed walk from u to v, then there is a directed path from

u tov.

Proof: Every directed walk from u to v of minimum length is a directed path. U

0t and 67: If X CV(D), we let 67(X) denote the set of edges with tail in X and head in
V(G)\ X, and we let 6~ (X) = d7(V(G) \ X).

Proposition 5.3 Let D be a digraph and let u,v € V(D). Then exactly one of the following
holds.

(i)  There is a directed walk from u to v.

(ii)  There exists X C V(D) withu € X and v & X so that 67 (X) = 0.

Proof: Tt is immediate that (i) and (ii) are mutually exclusive, so it suffices to show that at
least one holds. Let X = {w € V(D) : there is a directed walk from u to w}. If v € X then
(i) holds. Otherwise, 67(X) = 0, so (ii) holds. O

Strongly Connected: We say that a digraph D is strongly connected if for every u,v €
V(D) there is a directed walk from u to v.
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Proposition 5.4 Let D be a digraph and let Hy, Hy C D be strongly connected. If V(Hy) N
V(Hy) # 0, then Hy U Hy is strongly connected.

Proof: 1If v € V(H;) N V(H,), then every vertex has a directed walk both to v and from v,
so it follows that H; U Hs is strongly connected. 0J

Strong Component: A strong component of a digraph D is a maximal strongly connected

subgraph of D.
Theorem 5.5 FEvery vertex is in a unique strong component of D.

Proof: This follows immediately from the previous proposition, and the observation that a

one-vertex digraph is strongly connected.

Observation 5.6 Let D be a digraph in which every vertex has outdegree > 1. Then D

contains a directed cycle.

Proof: Construct a walk greedily by starting at an arbitrary vertex vy, and at each step
continue from the vertex v; along an arbitrary edge with tail v; (possible since each vertex

has outdegree > 1) until a vertex is repeated. At this point, we have a directed cycle. 0]
Acyclic: A digraph D is acyclic if it has no directed cycle.

Proposition 5.7 The digraph D is acyclic if and only if there is an ordering vy, ve, ..., Uy

of V(D) so that every edge (v;,v;) satisfies i < j.

Proof: The ”if” direction is immediate. We prove the "only if” direction by induction on
|[V(D)|. As a base, observe that this is trivial when |V(D)| = 1. For the inductive step,
we may assume that D is acyclic, |V(D)| = n > 2, and that the proposition holds for all
digraphs with fewer vertices. Now, apply the Observation 5.6 to choose a vertex v, with
deg®(v,) = 0. The digraph D — v, is acyclic, so by induction we may choose an ordering
U1, Vg, ..., Up_1 Of V(D —1,) so that every edge (v;,v;) satisfies ¢ < j. But then vy, ..., v, is
such an ordering of V(D). O

Proposition 5.8 Let D be a digraph, and let D" be the digraph obtained from D by taking
each strong component H C D, identifying V(H) to a single new vertex, and then deleting

any loops. Then D' is acyclic.
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Proof: If D’ had a directed cycle, then there would exist a directed cycle in D not contained

in any strong component, but this contradicts Theorem 5.5. U

Theorem 5.9 If G is a 2-connected graph, then there is an orientation D of G so that D

1s strongly connected.

Proof: Let C, P, ..., P, be an ear decomposition of G. Now, orient the edges of C' to form
a directed cycle, and orient the edges of each path P; to form a directed path. It now
follows from the obvious inductive argument (on k) that the resulting digraph D is strongly

connected. O

Eulerian, Hamiltonian, & path partitions

Proposition 5.10 Let D be a digraph and assume that deg™ (v) = deg™ (v) for every vertex
v. Then there exists a list of directed cycles Cy,Cs,...,C) so that every edge appears in

exactly one.

Proof: Choose a maximal list of cycles C, Cs, ..., C so that every edge appears in at most
one. Suppose (for a contradiction) that there is an edge not included in any cycle C; and let
H be a component of D\ U¥_, E(C;) which contains an edge. Now, every vertex v € V(H)
satisfies degj;(v) = degy(v) # 0, so by Observation 17.5 there is a directed cycle C' C H.
But then C' may be appended to the list of cycles (', ..., Cy. This contradiction completes
the proof. O

Eulerian: A closed directed walk in a digraph D is called Fulerian if it uses every edge

exactly once. We say that D is Fulerian if it has such a walk.

Theorem 5.11 Let D be a digraph D whose underlying graph is connected. Then D 1is
Eulerian if and only if deg® (v) = deg™ (v) for every v € V(D).

Proof: The "only if” direction is immediate. For the ”if” direction, choose a closed walk
Vo, €1, - - -, U, Which uses each edge at most once and is maximum in length (subject to this
constraint). Suppose (for a contradiction) that this walk is not Eulerian. Then, as in the
undirected case, it follows from the fact that the underlying graph is connected that there

exists an edge e € E(D) which does not appear in the walk so that e is incident with some
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vertex in the walk, say v;. Let H = D—{ey,es,...,e,}. Then every vertex of H has indegree
equal to its outdegree, so by the previous proposition, there is a list of directed cycles in
H containing every edge exactly once. In particular, there is a directed cycle C' C H with
e € C. But then, the walk obtained by following v, e1,...,v;, then following the directed
cycle C' from v; back to itself, and then following e; 1, v;, ..., v, is a longer closed walk which
contradicts our choice. This completes the proof. 0

Hamiltonian: Let D be a directed graph. A cycle C' C D is Hamiltonian if V/(C) = V(D).
Similarly, a path P C D is Hamiltonian if V(P) = V(D).

In & Out Neighbors: If X C V(D), we define

NT(X) = {yeV(D)\ X : (z,y) € E(D) for some z € X}
N (X) = {yeV(D)\ X : (y,z) € E(D) for some x € X}

We call NT(X) the out-neighbors of X and N~ (X) the in-neighbors of X. If x € X we let
Nt(x) = N*({z} and N~ (z) = N~ ({z}).

Theorem 5.12 (Rédei) Every tournament has a Hamiltonian path.

Proof: Let T be a tournament. We prove the result by induction on |V(T')|. As a base,
if |V(T')] = 1, then the one vertex path suffices. For the inductive step, we may assume
that |V(T)| > 2. Choose a vertex v € V(T) and let T~ (resp. T") be the subgraph of T
consisting of all vertices in N~ (v) (resp. N*(v)) and all edges with both ends in this set.
If both T~ and T are not null, then each has a Hamiltonian path, say P~ and P* and
we may form a Hamiltonian path in 7" by following P~ then going to the vertex v, then

following P*. A similar argument works if either T~ or T'" is null. ([l
Theorem 5.13 (Camion) FEvery strongly connected tournament has a Hamiltonian cycle.

Proof: Let T be a strongly connected tournament, and choose a cycle C' C T with |V(C)|
maximum. Suppose (for a contradiction) that V(C) # V(T'). If there is a vertex v €
V(T)\ V(C) so that N*(v) NV (C) # 0 and N~ (v) N V(C) # (), then there must exist an
edge (w,z) € E(C) so that (w,v), (v,z) € E(T). However, then we may use these edges
to find a longer cycle. It follows that the vertices in V(T') \ V(C') may be partitioned into
{A, B} so that every x € A has V(C) C N*(v) and every y € B has V(C) C N~ (y). It
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follows from the strong connectivity of 7' that A, B # () and that there exists an edge (y, 2)
with y € B and z € A. However, then we may replace an edge (w,z) € E(C') with the path
containing the edges (w,y), (y, 2), (z,x) to get a longer cycle. This contradiction completes
the proof. O

Path Partition: A path partition of a digraph D is a collection P = {Py, Py, ..., Py} so
that P; is a directed path for 1 < i < k and {V(P,),V(F2),...,V(Ps)} is a partition of
V(D). We let heads(P) (tails(P)) denote the set of vertices which are the initial (terminal)

vertex in some F;.

Lemma 5.14 (Bondy) Let P be a path partition of the digraph D, and assume |P| > a(D).
Then there is a path partition P' of D so that |P'| = |P| — 1, and tails(P’) C tails(P).

Proof: We proceed by induction on |V (D)|. As a base, observe that the result is trivial
when |V(D)| = 1. For the inductive step, note that since a(D) < |tails(P)| there must
exist an edge (z,y) with x,y € tails(P). Choose i so that y € V(F;). If |V(F;)| = 1, then
we may remove P; from P and then append the edge (x,y) to the path containing x to get
a suitable path partition. Thus, we may assume that |V (F;)| > 1, and choose w € V(D)
so that (w,y) € E(P;). Now, P' ={P,...,P,_1,P, —y, Piy1,..., Py} is a path partition of
D —y and a(D —y) < a(D) < |P'], so by induction, there is a path partition P” of D —y
with [P"] = |P'| — 1 and tails(P") C tails(P’). Since z,w € tails(P’), at least one of z,w
is in z,w € tails(P"). Since (x,y), (w,y) € E(D), we may extend P” to a suitable path
partition of D by using one of these edges. O

Theorem 5.15 (Gallai-Milgram) Every digraph D has a path partition P with |P| =
a(D).

Proof: This follows immediately from the observation that every digraph has a path partition
(for instance, take each vertex as a one vertex path), and (repeated applications of ) the above

lemma. U
Note: This is a generalization of Theorem 5.12.

Partially Ordered Set: A partially ordered set (or poset) consists of a set X and a binary

relation < which is reflexive (x < x for every x € X)), antisymmetric (x < y and y < x imply
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x =y), and transitive (x < y and y < z imply = < z). We say that two points =,y € X are

comparable if either x < y or y < x.

Chains and Antichains: In a poset, a chain is a subset A C X so that any two points in A

are comparable. An antichain is a subset B C X so that no two points in B are comparable.

Theorem 5.16 (Dilworth) Let (X, <) be a poset and let k be the size of the largest an-

tichain. Then there is a partition of X into k chains.

Proof: Form a digraph D with vertex set X by adding an edge from x to y whenever x # y
and = < y. Now a(D) = k, so the Gallai-Milgram Theorem gives us a path partition of D
of size k. However, the vertex set of a directed path is a chain in the poset, so this yields a

partition of X into k chains. 0

The Ford-Fulkerson Theorem

Flows: If D is a digraph and s,t € V(D), then an (s,t)-flow is a map ¢ : F(D) — R with
the property that for every v € V(D) \ {s,t} the following holds.

Y. dle)= ) o).
)

ecdt(v) ecd— (v
The value of ¢ is Zee5+(s) o(e) — Zee(s—(s) P(e).

Proposition 5.17 If ¢ is an (s,t)-flow of value q, then every X C V(D) with s € X and
t & X satisfies

e€dt(X) e€6—(X)

Proof:

e€dt(s) e€d—(s)
= 2| 2 da- > 9o
z€X \e€dt(z) ecd—(x)

= D de)— > dle)

e€dt(X) ecd— (X)
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Capacities: We shall call a weight function ¢ : E(D) — R U {oc} a capacity function. If
X CV(D), we say that 01 (X) has capacity Ze€5+(X) o(e).

Admissible Flows: An (s,t)-flow ¢ is admissible if 0 < ¢(e) < ¢(e) for every edge e.

Augmenting Paths: Let ¢ be a capacity function and ¢ : E(D) — R an admissible (s, t)-
flow. A path P from u to v is called augmenting if for every edge e € E(P), either e is
traversed in the forward direction and ¢(e) < c¢(e) or e is traversed in the backward direction

and ¢(e) > 0.

Theorem 5.18 (Ford-Fulkerson) Let D be a digraph, let s,t € V(D), and let ¢ be a
capacity function. Then the maximum value of an (s, t)-flow is equal to the minimum capacity
of a cut 67(X) with s € X and t ¢ X. Furthermore, if ¢ is integer valued, then there exists

a flow of maximum value ¢ which is also integer valued.

Proof: 1t follows immediately from Proposition 19.1 that every admissible (s,?)-flow has
value less than or equal to the capacity of any cut §*(X) with s € X and t ¢ X.

We shall prove the other direction of this result only for capacity functions ¢ : E(D) — QT
(although it holds in general). For every edge e, let f]’—: be a reduced fraction equal to c(e),
and let n be the least common multiple of {¢. : e € E(D)}. We shall prove that there exists
a flow ¢ : E(D) — Q% so that ¢(e) can be expressed as a fraction with denominator n for
every edge e. To do this, choose a flow ¢ with this property of maximum value. Define the

set X as follows.
X ={v € V(D) : there is an augmenting path from s to v}

If t € X, then there exists an augmenting path P from s to t. However, then we may modify
the flow ¢ to produce a new admissible flow of greater value by increasing the flow by % on
every forward edge of P and decreasing the flow by % on every backward edge of P. Since
this new flow would contradict the choice of ¢, it follows that t ¢ X.

It follows from the definition of X that every edge e € 01 (X) satisfies ¢(e) = c¢(e) and
every edge f € 0~ (X) satisfies ¢(f) = 0. Thus, our flow ¢ has value equal to the capacity
of the cut 67(X) and the proof is complete. O
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Note: The above proof for rational valued flows combined with a simple convergence ar-
gument yields the proof in general. However, the algorithm inherent in the above proof
does not yield a finite algorithm for finding a flow of maximum value for arbitrary capacity

functions.

Corollary 5.19 (edge-digraph version of Menger) Let D be a digraph and let s,t €
V(D). Then exactly one of the following holds:

(i)  There exist k pairwise edge disjoint directed paths Py, ..., Py from s to t.

(ii)  There exists X C V(D) with s € X andt ¢ X so that |07 (X)| < k

Proof: Tt is immediate that (i) and (ii) are mutually exclusive, so it suffices to show that at
least one holds. Define a capacity function ¢ : E(D) — R by the rule that ¢(e) = 1 for every
edge e. Apply the Ford-Fulkerson Theorem to choose an admissible integer valued (s, t)-flow
¢: E(D) — Zand acut 61(X) with s € X and t ¢ X so that the value of ¢ and the capacity
of §7(X) are both equal to the integer ¢q. Now, let H = D — {e € E(D) : ¢(e) = 0}. Then
H is a digraph with the property that §7;(s) — d5(s) = ¢ = 0 (t) — 6};(t) and &}, (v) = 65 (v)
for every v € V(H) \ {s,t}. By Problem 3 of Homework 10, we find that H contains ¢ edge
disjoint directed paths from s to t. So, if ¢ < k, then (i) holds, and if ¢ > k& (ii) holds. O



