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Chapter 8 Applications of Newton’s Second Law 
 
 

Those who are in love with practice without knowledge are like the sailor 
who gets into a ship without rudder or compass and who never can be 
certain whether he is going. Practice must always be founded on sound 
theory…1  

         Leonardo da Vinci 
 
 8.1 Force Laws 
 
There are forces that don't change appreciably from one instant to another, which we 
refer to as constant in time, and forces that don't change appreciably from one point to 
another, which we refer to as constant in space. The gravitational force on an object near 
the surface of the earth is an example of a force that is constant in space.  
 

There are forces that depend on the configuration of a system. When a mass is 
attached to one end of a spring, the spring force acting on the object increases in strength 
whether the spring is extended or compressed.  
 

There are forces that spread out in space such that their influence becomes less 
with distance. Common examples are the gravitational and electrical forces. The 
gravitational force between two objects falls off as the inverse square of the distance 
separating the objects provided the objects are of a small dimension compared to the 
distance between them. More complicated arrangements of attracting and repelling 
interactions give rise to forces that fall off with other powers of  r : constant,   1/ r ,   1 / r 2 , 

  1 / r3 , …,. 
 
A force may remain constant in magnitude but change direction; for example the 

gravitational force acting on a planet undergoing circular motion about a star is directed 
towards the center of the circle. This type of attractive central force is called a centripetal 
force. 
 
 A force law describes the relationship between the force and some measurable 
property of the objects involved. We shall see that some interactions are describable by 
force laws and other interactions cannot be so simply described. 
 
8.1.1 Hooke’s Law 
 
In order to stretch or compress a spring from its equilibrium length, a force must be 
exerted on the spring. Consider an object of mass  m  that is lying on a horizontal surface. 
Attach one end of a spring to the object and fix the other end of the spring to a wall. Let 
                                                
1 Notebooks of Leonardo da Vinci Complete, tr. Jean Paul Richter, 1888, Vol.1. 
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  l0  denote the equilibrium length of the spring (neither stretched nor compressed). 
Assume that the contact surface is smooth and hence frictionless in order to consider only 
the effect of the spring force. If the object is pulled to stretch the spring or pushed to 
compress the spring, then by Newton’s Third Law the force of the spring on the object is 
equal and opposite to the force that the object exerts on the spring. We shall refer to the 
force of the spring on the object as the spring force and experimentally determine a 
relationship between that force and the amount of stretching or compression of the spring. 
 
Choose a coordinate system with the origin located at the point of contact of the spring 
and the object when the spring-object system is in the equilibrium configuration. Choose 
the î  unit vector to point in the direction the object moves when the spring is being 
stretched. Choose the coordinate function  x  to denote the position of the object with 
respect to the origin (Figure 8.1). 
 

l0
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x = 0

î
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equilibrium configuration

stretched: x > 0

x = 0

îx

compressed: x < 0

frictionless
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m

m
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Figure 8.1 Spring attached to a wall and an object 

 
 Initially stretch the spring until the object is at position  x . Then release the object 
and measure the acceleration of the object the instant the object is released. The 
magnitude of the spring force acting on the object is 

   

F = m a . Now repeat the 

experiment for a range of stretches (or compressions).  Experiments show that for each 
spring, there is a range of maximum values   xmax > 0  for stretching and minimum values 

  xmin < 0  for compressing such that the magnitude of the measured force is proportional to 
the stretched or compressed length and is given by the formula 
 
 

   
!
F = k x , (8.1.1) 
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where the spring constant  k  has units  N ⋅m−1 . The free-body force diagram is shown in 
Figure 8.2.  

x = 0

î
x

F = Fx î = kx î

 
 

Figure 8.2 Spring force acting on object 
 
The constant  k  is equal to the negative of the slope of the graph of the force vs. the 
compression or stretch (Figure 8.3). 

. 

Fx

x
xmax

xmin

slope = -k

 
Figure 8.3 Plot of  x -component of the spring force  Fx  vs.  x   

 
The direction of the acceleration is always towards the equilibrium position whether the 
spring is stretched or compressed. This type of force is called a restoring force. Let  Fx  
denote the  x -component of the spring force. Then 
 
  Fx = −kx . (8.1.2) 
 
 Now perform similar experiments on other springs. For a range of stretched 
lengths, each spring exhibits the same proportionality between force and stretched length, 
although the spring constant may differ for each spring.  
 
 It would be extremely impractical to experimentally determine whether this 
proportionality holds for all springs, and because a modest sampling of springs has 
confirmed the relation, we shall infer that all ideal springs will produce a restoring force, 
which is linearly proportional to the stretched (or compressed) length. This experimental 
relation regarding force and stretched (or compressed) lengths for a finite set of springs 
has now been inductively generalized into the above mathematical model for ideal springs, 
a force law known as a Hooke’s Law.  
 
 This inductive step, referred to as Newtonian induction, is the critical step that 
makes physics a predictive science. Suppose a spring, attached to an object of mass  m , is 
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stretched by an amount  Δx . Use the force law to predict the magnitude of the force 
between the spring and the object, 

   

F = k Δx , without having to experimentally measure 

the acceleration. Now use Newton’s Second Law to predict the magnitude of the 
acceleration of the object 

 
   
a =


F
m

=
k Δx

m
. (8.1.3) 

 
 Carry out the experiment, and measure the acceleration within some error bounds. 
If the magnitude of the predicted acceleration disagrees with the measured result, then the 
model for the force law needs modification. The ability to adjust, correct or even reject 
models based on new experimental results enables a description of forces between objects 
to cover larger and larger experimental domains.  
 
Many real springs have been wound such that a force of magnitude   F0  must be applied 
before the spring begins to stretch and a force of magnitude   F1  must be applied before 
the spring begins to compress. The values   F0  and   F1  are referred to as the pre-tensions of 
the spring. Under these circumstances, Hooke’s law must be modified to account for 
these pretensions, 

 
  

Fx = −F0 − kx, x > 0
Fx = +F1 − kx, x < 0

⎧
⎨
⎪

⎩⎪
. (8.1.4) 

 
Note the value of the pre-tensions   F0  and   F1  may differ for compressing or stretching a 
spring and are determined experimentally. 
 
8.2 Fundamental Laws of Nature 
 
Force laws are mathematical models of physical processes. They arise from observation 
and experimentation, and they have limited ranges of applicability. Does the linear force 
law for the spring hold for all springs? Each spring will most likely have a different range 
of linear behavior. So the model for stretching springs still lacks a universal character. As 
such, there should be some hesitation to generalize this observation to all springs unless 
some property of the spring, universal to all springs, is responsible for the force law.  
 
 Perhaps springs are made up of very small components, which when pulled apart 
tend to contract back together. This would suggest that there is some type of force that 
contracts spring molecules when they are pulled apart. What holds molecules together? 
Can we find some fundamental property of the interaction between atoms that will suffice 
to explain the macroscopic force law? This search for fundamental forces is a central 
task of physics.  
 
 In the case of springs, this could lead into an investigation of the composition and 
structural properties of the atoms that compose the steel in the spring. We would 
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investigate the geometric properties of the lattice of atoms and determine whether there is 
some fundamental property of the atoms that create this lattice. Then we ask how stable is 
this lattice under deformations. This may lead to an investigation into the electron 
configurations associated with each atom and how they overlap to form bonds between 
atoms. These particles carry charges, which obey Coulomb’s Law, but also the Laws of 
Quantum Mechanics. So in order to arrive at a satisfactory explanation of the elastic 
restoring properties of the spring, we need models that describe the fundamental physics 
that underline Hooke’s Law.  
 
8.2.1 Universal Law of Gravitation 
 
At points significantly far away from the surface of Earth, the gravitational force is no 
longer constant with respect to the distance to the center of Earth. Newton’s Universal 
Law of Gravitation describes the gravitational force between two objects with masses, 

  m1  and   m2 . This force points along the line connecting the objects, is attractive, and its 
magnitude is proportional to the inverse square of the distance,   

r1,2 , between the two 
point-like objects (Figure 8.4a). The force on object 2 due to the gravitational interaction 
between the two objects is given by 

 
    


F1,2

G = −G
m1 m2

r1,2
2 r̂1,2 , (8.2.1) 

 
where 

   
r1,2 =

r2 −
r1  is a vector directed from object 1 to object 2, 

    
r1,2 =

r1,2 , and 

   
r̂1,2 =

r1,2 / r1,2  is a unit vector directed from object 1 to object 2 (Figure 8.4b). The 

constant of proportionality in SI units is   G = 6.67 ×10−11N ⋅m2 ⋅kg−2 .  
 

               
  
Figure 8.4 (a) Gravitational force between two point-like objects.  Figure 8.4 (b) 
Coordinate system for the two-body problem. 
 
8.2.2 Principle of Equivalence: 
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The Principle of Equivalence states that the mass that appears in the Universal Law of 
Gravity is identical to the inertial mass that is determined with respect to the standard 
kilogram. From this point on, the equivalence of inertial and gravitational mass will be 
assumed and the mass will be denoted by the symbol  m .  
 
8.2.3 Gravitational Force near the Surface of the Earth 
 
Near the surface of Earth, the gravitational interaction between an object and Earth is 
mutually attractive and has a magnitude of 
 
 

    

FG

earth,object = m g  (8.2.2) 

where  g  is a positive constant. 
 

The International Committee on Weights and Measures has adopted as a standard 
value for the acceleration of an object freely falling in a vacuum   g = 9.80665 m ⋅ s−2 . The 
actual value of  g  varies as a function of elevation and latitude.  If φ  is the latitude and  h  
the elevation in meters then the acceleration of gravity in SI units is   
 
       g = (9.80616− 0.025928cos(2φ)+ 0.000069cos2(2φ)− 3.086×10−4 h) m ⋅s−2 . (8.2.3) 
 
This is known as Helmert’s equation. The strength of the gravitational force on the 
standard kilogram at   42  latitude is  9.80345 N ⋅kg−1 , and the acceleration due to gravity 
at sea level is therefore   g = 9.80345 m ⋅ s−2  for all objects.  At the equator, 

  g = 9.78 m ⋅ s−2  and at the poles   g = 9.83 m ⋅ s−2 . This difference is primarily due to the 
earth’s rotation, which introduces an apparent (fictitious) repulsive force that affects the 
determination of  g  as given in Equation (8.2.2) and also flattens the spherical shape of 
Earth (the distance from the center of Earth is larger at the equator than it is at the poles 
by about  26.5 km ). Both the magnitude and the direction of the gravitational force also 
show variations that depend on local features to an extent that's useful in prospecting for 
oil, investigating the water table, navigating submerged submarines, and as well as many 
other practical uses. Such variations in  g  can be measured with a sensitive spring 
balance.  Local variations have been much studied over the past two decades in attempts 
to discover a proposed “fifth force” which would fall off faster than the gravitational 
force that falls off as the inverse square of the distance between the objects. 
 
8.2.4 Electric Charge and Coulomb’s Law 
 
Matter has properties other than mass. Matter can also carry one of two types of observed 
electric charge, positive and negative.  Like charges repel, and opposite charges attract 
each other. The unit of charge in the SI system of units is called the coulomb  [C] .   
  

The smallest unit of “free” charge known in nature is the charge of an electron or 
proton, which has a magnitude of   
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   e = 1.602 ×10−19 C . (8.2.4) 
 
It has been shown experimentally that charge carried by ordinary objects is quantized in 
integral multiples of the magnitude of this free charge. The electron carries one unit of 
negative charge ( qe = −e ) and the proton carries one unit of positive charge ( 

qp = +e ). In 
an isolated system, the charge stays constant; in a closed system, an amount of 
unbalanced charge can neither be created nor destroyed. Charge can only be transferred 
from one object to another.  
 

Consider two point-like objects with charges   q1  and   q2 , separated by a distance 

  
r1, 2  in vacuum. By experimental observation, the two objects repel each other if they are 
both positively or negatively charged (Figure 8.4a). They attract each other if they are 
oppositely charged (Figure 8.5b). The force exerted on object 2 due to the interaction 
between objects 1 and 2 is given by Coulomb's Law, 

 

 
    


FE

1, 2 = ke

q1 q2

r1, 2
2 r̂1, 2  (8.2.5) 

 
where 

   
r̂1,2 =

r1,2 / r1,2  is a unit vector directed from object 1 to object 2, and in SI units, 

  ke = 8.9875×109 N ⋅m2 ⋅C−2 , as illustrated in the Figure 8.5a. This law was derived 
empirically by Charles Augustin de Coulomb in the late 18th century.  
 

 
 
 

Figure 8.5 (a) and 8.5 (b) Coulomb interaction between two charges 
 
 
Example 8.1 Coulomb’s Law and the Universal Law of Gravitation 
 
Show that both Coulomb’s Law and the Universal Law of Gravitation satisfy Newton’s 
Third Law.  
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Solution: To see this, interchange 1 and 2 in the Universal Law of Gravitation to find the 
force on object 1 due to the interaction between the objects. The only quantity to change 
sign is the unit vector 
   

r̂2,1 = −r̂1, 2 . (8.2.6) 
Then  

 
    


FG

2,1 = −G
m2 m1

r2,1
2 r̂2,1 = G

m1 m2

r1, 2
2 r̂1, 2 = −


FG

1, 2 . (8.2.7) 

 
Coulomb’s Law also satisfies Newton’s Third Law since the only quantity to change sign 
is the unit vector, just as in the case of the Universal Law of Gravitation.  
 
8.3 Constraint Forces 
 
Knowledge of all the external and internal forces acting on each of the objects in a system 
and applying Newton’s Second Law to each of the objects determine a set of equations of 
motion. These equations of motion are not necessarily independent due to the fact that the 
motion of the objects may be limited by equations of constraint. In addition there are 
forces of constraint that are determined by their effect on the motion of the objects and 
are not known beforehand or describable by some force law. For example: an object 
sliding down an inclined plane is constrained to move along the surface of the inclined 
plane (Figure 8.6a) and the surface exerts a contact force on the object; an object that 
slides down the surface of a sphere until it falls off experiences a contact force until it 
loses contact with the surface (Figure 8.6b); gas particles in a sealed vessel are 
constrained to remain inside the vessel and therefore the wall must exert force on the gas 
molecules to keep them inside the vessel (8.6c); and a bead constrained to slide outward 
along a rotating rod is acted on by time dependent forces of the rod on the bead (Figure 
8.6d). We shall develop methods to determine these constraint forces although there are 
many examples in which the constraint forces cannot be determined. 
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inclined plane

.
(a) (b)

bead

rotating rod

(c) (d)  
 
Figure 8.6 Constrained motions: (a) particle sliding down inclined plane, (b) particles 
sliding down surface of sphere, (c) gas molecules in a sealed vessel, and (d) bead sliding 
on a rotating rod 
 
8.3.1 Contact Forces 
 
Pushing, lifting and pulling are contact forces that we experience in the everyday world. 
Rest your hand on a table; the atoms that form the molecules that make up the table and 
your hand are in contact with each other. If you press harder, the atoms are also pressed 
closer together. The electrons in the atoms begin to repel each other and your hand is 
pushed in the opposite direction by the table.  
 
 According to Newton’s Third Law, the force of your hand on the table is equal in 
magnitude and opposite in direction to the force of the table on your hand. Clearly, if you 
push harder the force increases. Try it! If you push your hand straight down on the table, 
the table pushes back in a direction perpendicular (normal) to the surface. Slide your 
hand gently forward along the surface of the table. You barely feel the table pushing 
upward, but you do feel the friction acting as a resistive force to the motion of your hand. 
This force acts tangential to the surface and opposite to the motion of your hand. Push 
downward and forward. Try to estimate the magnitude of the force acting on your hand. 
 
 The force of the table acting on your hand,    

!
FC ≡

!
C , is called the contact force. 

This force has both a normal component to the surface,   
!
C⊥ ≡

!
N , called the normal force, 

and a tangential component to the surface, 
  
!
C" ≡

!
f , called the friction force (Figure 8.6).  
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Figure 8.6 Normal and tangential components of the contact force 
 
The contact force, written in terms of its component forces, is therefore 
 
 

  
!
C =
!
C⊥ +

!
C" ≡

!
N +
!
f . (8.3.1) 

 
Any force can be decomposed into component vectors so the normal component,   


N , and 

the tangential component,   
!
f , are not independent forces but the vector components of the 

contact force, perpendicular and parallel to the surface of contact. The contact force is a 
distributed force acting over all the points of contact between your hand and the surface.  
For most applications we shall treat the contact force as acting at single point but 
precaution must be taken when the distributed nature of the contact force plays a key role 
in constraining the motion of a rigid body. 
  
 In Figure 8.7, the forces acting on your hand are shown. These forces include the 
contact force,   


C , of the table acting on your hand, the force of your forearm,    

!
Fforearm , 

acting on your hand (which is drawn at an angle indicating that you are pushing down on 
your hand as well as forward), and the gravitational interaction,    

!
Fg , between the earth 

and your hand. 

C

FgFforearm
 

 
Figure 8.7 Forces on hand when moving towards the left 

 
One point to keep in mind is that the magnitudes of the two components of the contact 
force depend on how hard you push or pull your hand and in what direction, a 
characteristic of constraint forces, in which the components are not specified by a force 
law but dependent on the particular motion of the hand. 
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Example 8.2 Normal Component of the Contact Force and Weight 
 
Hold a block in your hand such that your hand is at rest (Figure 8.8). You can feel the 
“weight” of the block against your palm.  But what exactly do we mean by “weight”?   
 

    

Fg = mg

.

N

 
  

Figure 8.8 Block resting in hand  Figure 8.9 Forces on block 
 
There are two forces acting on the block as shown in Figure 8.9. One force is the 
gravitational force between the earth and the block, and is denoted by    

!
Fg = m!g . The 

other force acting on the block is the contact force between your hand and the block. 
Because your hand is at rest, this contact force on the block points perpendicular to the 
surface, and hence has only a normal component,   

!
N . Let  N  denote the magnitude of the 

normal force. Because the object is at rest in your hand, the vertical acceleration is zero. 
Therefore Newton’s Second Law states that  
 
    

!
N +
!
Fg =

!
0 . (8.3.2) 

 
Choose the positive direction to be upwards and then in terms of vertical components we 
have that 
   N − mg = 0 . (8.3.3) 
 
which can be solved for the magnitude of the normal force 
 
  N = mg . (8.3.4) 
 
 When we talk about the “weight” of the block, we often are referring to the effect 
the block has on a scale or on the feeling we have when we hold the block. These effects 
are actually effects of the normal force. We say that a block “feels lighter” if there is an 
additional force holding the block up. For example, you can rest the block in your hand, 
but use your other hand to apply a force upwards on the block to make it feel lighter in 
your supporting hand.  
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 The word “weight,” is often used to describe the gravitational force that Earth 
exerts on an object. We shall always refer to this force as the gravitational force instead 
of “weight.” When you jump in the air, you feel “weightless” because there is no normal 
force acting on you, even though Earth is still exerting a gravitational force on you; 
clearly, when you jump, you do not turn gravity off!  
 

This example may also give rise to a misconception that the normal force is 
always equal to the mass of the object times the magnitude of the gravitational 
acceleration at the surface of the earth. The normal force and the gravitational force are 
two completely different forces. In this particular example, the normal force is equal in 
magnitude to the gravitational force and directed in the opposite direction because the 
object is at rest. The normal force and the gravitational force do not form a Third Law 
interaction pair of forces. In this example, our system is just the block; the normal force 
and gravitational force are external forces acting on the block. 
 

Let’s redefine our system as the block, your hand, and Earth. Then the normal 
force and gravitational force are now internal forces in the system and we can now 
identify the various interaction pairs of forces. We explicitly introduce our interaction 
pair notation to enable us to identify these interaction pairs: for example, let 

    
!
FE ,B

g  denote 
the gravitational force on the block due to the interaction with Earth. The gravitational 
force on Earth due to the interaction with the block is denoted by 

    
!
FB,E

g , and these two 

forces form an interaction pair. By Newton’s Third Law, 
    
!
FE ,B

g = −
!
FB,E

g . Note that these 
two forces are acting on different objects, the block and Earth. The contact force on the 
block due to the interaction between the hand and the block is then denoted by 

    
!
NH ,B .  

The force of the block on the hand, which we denote by 
    
!
NB,H , satisfies 

    
!
NB,H = −

!
NH ,B . 

Because we are including your hand as part of the system, there are two additional forces 
acting on the hand. There is the gravitational force on your hand 

    
!
FE ,H

g , satisfying 

    
!
FE ,H

g = −
!
FH ,E

g , where 
    
!
FH ,E

g  is the gravitational force on Earth due to your hand. Finally 

there is the force of your forearm holding your hand up, which we denote 
    
!
FF ,H . Because 

we are not including the forearm in our system, this force is an external force to the 
system. The forces acting on your hand are shown in Figure 8.10, and just the interaction 
pairing of forces acting on Earth is shown in Figure 8.11 (we are not representing all 
other external forces acting on the Earth). 
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FF ,H

NB,HFE ,H
g

 
 

Figure 8.10 Free-body force diagram on 
hand 

 

FH ,E
g

FB,E
g

 
 

Figure 8.11 Gravitational forces on 
earth due to object and hand

 
8.3.2 Kinetic and Static Friction 
 
When a block is pulled along a horizontal surface or sliding down an inclined plane there 
is a lateral force resisting the motion.  If the block is at rest on the inclined plane, there is 
still a lateral force resisting the motion. This resistive force is known as dry friction, and 
there are two distinguishing types when surfaces are in contact with each other. The first 
type occurs when the two objects are moving relative to each other; the friction in that 
case is called kinetic friction or sliding friction. When the two surfaces are non-moving 
but there is still a lateral force as in the example of the block at rest on an inclined plane, 
the force is called, static friction.  
 Leonardo da Vinci was the first to record the results of measurements on kinetic 
friction over a twenty-year period between 1493–4 and about 1515. Based on his 
measurements, the force of kinetic friction,    


f k , between two surfaces, he identified two 

key properties of kinetic friction. The magnitude of kinetic friction is proportional to the 
normal force between the two surfaces, 
 
   fk = µk N , (8.3.5) 
 
where  µk  is called the coefficient of kinetic friction. The second result is rather 
surprising in that the magnitude of the force is independent of the contact surface. 
Consider two blocks of the same mass, but different surface areas. The force necessary to 
move the blocks at a constant speed is the same. The block in Figure 8.12a has twice the 
contact area as the block shown in Figure 8.12b, but when the same external force is 
applied to either block, the blocks move at constant speed. These results of da Vinci were 
rediscovered by Guillaume Amontons and published in 1699. The third property that 
kinetic friction is independent of the speed of moving objects (for ordinary sliding 
speeds) was discovered by Charles Augustin Coulomb.  
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FF

(a) (b)

f kf k

 
Figure 8.12 (a) and (b): kinetic friction is independent of the contact area 

  
The kinetic friction on surface 2 moving relative to surface 1 is denoted by, 

    
!
f1,2

k . The 
direction of the force is always opposed to the relative direction of motion of surface 2 
relative to the surface 1. When one surface is at rest relative to our choice of reference 
frame we will denote the friction force on the moving object by    

!
f k . 

 
 The second type of dry friction, static friction occurs when two surfaces are static 
relative to each other. Because the static friction force between two surfaces forms a third 
law interaction pair, we will use the notation 

    
!
f1,2

s  to denote the static friction force on 
surface 2 due to the interaction between surfaces 1 and 2. Push your hand forward along a 
surface; as you increase your pushing force, the frictional force feels stronger and 
stronger. Try this! Your hand will at first stick until you push hard enough, then your 
hand slides forward. The magnitude of the static frictional force,   fs , depends on how 
hard you push.  
 
 If you rest your hand on a table without pushing horizontally, the static friction is 
zero. As you increase your push, the static friction increases until you push hard enough 
that your hand slips and starts to slide along the surface. Thus the magnitude of static 
friction can vary from zero to some maximum value,   ( fs )max , when the pushed object 
begins to slip, 
   0 ≤ fs ≤ ( fs )max . (8.3.6) 

 
 Is there a mathematical model for the magnitude of the maximum value of static 
friction between two surfaces? Through experimentation, we find that this magnitude is, 
like kinetic friction, proportional to the magnitude of the normal force 
 
   ( fs )max = µs N . (8.3.7) 
 
Here the constant of proportionality is  µs , the coefficient of static friction. This constant 

is slightly greater than the constant  µk  associated with kinetic friction,  µs > µk . This 
small difference accounts for the slipping and catching of chalk on a blackboard, 
fingernails on glass, or a violin bow on a string. 
 
 The direction of static friction on an object is always opposed to the direction of 
the applied force (as long as the two surfaces are not accelerating). In Figure 8.13a, an 
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external force,   
!
F , is applied the left, and the static friction,    


f s , is directed to the right 

opposing the external force. In Figure 8.13b, the external force,   
!
F , is applied to the right, 

and the static friction,    
!
f s , is now pointing to the left. 

 

f sf s
FF

(a) (b)
 

    
 

Figure 8.13 (a) and (b): External forces and the direction of static friction. 
 
 Although the force law for the maximum magnitude of static friction resembles 
the force law for sliding friction, there are important differences: 
 
1. The direction and magnitude of static friction on an object always depends on the 
direction and magnitude of the applied forces acting on the object, where the magnitude 
of kinetic friction for a sliding object is fixed. 
 
2. The magnitude of static friction has a maximum possible value. If the magnitude of the 
applied force along the direction of the contact surface exceeds the magnitude of the 
maximum value of static friction, then the object will start to slip (and be subject to 
kinetic friction.) We call this the just slipping condition. 
 
8.4 Free-body Force Diagram 
 
8.4.1 System 
 
When we try to describe forces acting on a collection of objects we must first take care to 
specifically define the collection of objects that we are interested in, which define our 
system. Often the system is a single isolated object but it can consist of multiple objects.  
 
 
Because force is a vector, the force acting on the system is a vector sum of the individual 
forces acting on the system 
    


F =

F1 +

F2 + ⋅⋅⋅  (8.4.1) 

 
 A free-body force diagram is a representation of the sum of all the forces that act 
on a single system. We denote the system by a large circular dot, a “point”. (Later on in 
the course we shall see that the “point” represents the center of mass of the system.) We 
represent each force that acts on the system by an arrow (indicating the direction of that 
force). We draw the arrow at the “point” representing the system. For example, the forces 
that regularly appear in free-body diagram are contact forces, tension, gravitation, 
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friction, pressure forces, spring forces, electric and magnetic forces, which we shall 
introduce below. Sometimes we will draw the arrow representing the actual point in the 
system where the force is acting. When we do that, we will not represent the system by a 
“point” in the free-body diagram. 
 
 Suppose we choose a Cartesian coordinate system, then we can resolve the force 
into its component vectors 
 

    

F = Fx î + Fy ĵ+ Fz k̂  (8.4.2) 

 
 Each one of the component vectors is itself a vector sum of the individual 
component vectors from each contributing force. We can use the free-body force diagram 
to make these vector decompositions of the individual forces. For example, the  x - 
component of the force is 
   

Fx = F1,x + F2,x + ⋅⋅⋅ . (8.4.3) 
 
8.4.5 Modeling 
 
One of the most central and yet most difficult tasks in analyzing a physical interaction is 
developing a physical model. A physical model for the interaction consists of a 
description of the forces acting on all the objects. The difficulty arises in deciding which 
forces to include. For example in describing almost all planetary motions, the Universal 
Law of Gravitation was the only force law that was needed. There were anomalies, for 
example the small shift in Mercury’s orbit. These anomalies are interesting because they 
may lead to new physics. Einstein corrected Newton’s Law of Gravitation by introducing 
General Relativity and one of the first successful predictions of the new theory was the 
perihelion precession of Mercury’s orbit. On the other hand, the anomalies may simply 
be due to the complications introduced by forces that are well understood but 
complicated to model. When objects are in motion there is always some type of friction 
present. Air friction is often neglected because the mathematical models for air resistance 
are fairly complicated even though the force of air resistance substantially changes the 
motion. Static or kinetic friction between surfaces is sometimes ignored but not always. 
The mathematical description of the friction between surfaces has a simple expression so 
it can be included without making the description mathematically intractable. A good 
way to start thinking about the problem is to make a simple model, excluding 
complications that are small order effects. Then we can check the predictions of the 
model. Once we are satisfied that we are on the right track, we can include more 
complicated effects.  
 
8.5 Tension in a Rope 
 
8.5.1 Definition of Tension in a Rope 
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Let’s return to our example of the very light rope (object 2 with    m2 ! 0 ) that is attached 
to a block (object 1) at the point  B , and pulled by an applied force at point  A , 

   
!
FA,2  

(Figure 8.18a). 
 

.A.B FA,2
1 2

 
Figure 8.18a Massless rope pulling a block 

 
Choose a coordinate system with the ĵ -unit vector pointing upward in the normal 
direction to the surface, and the î -unit vector pointing in the positive  x -direction, 
(Figure 8.18b). The force diagrams for the system consisting of the rope and block is 
shown in Figure 8.18a, and for the rope and block separately in Figure 8.19, where 

   
!
F2,1  is 

the force on the block (object 1) due to the rope (object 2), and 
   
!
F1,2  is the force on the 

rope due to the block. 
 

.A
+x

.
N

.
f

îĵ
B FA,21

2 .
m2g 0

m1g  
 

Figure 8.18b Forces acting on system consisting of block and rope 
 
The forces on the rope and the block must each sum to zero. Because the rope is not 
accelerating, Newton’s Second Law applied to the rope requires that   

FA,2 − F1,2 = m2a  
(where we are using magnitudes for all the forces). 

.A
îĵ

...
N

f
m1g m2g 0

B . FA,2F2,1 F1,21
2

      
Figure 8.19 Separate force diagrams for rope and block 

 
Because we are assuming the mass of the rope is negligible therefore 
 
 

  
FA,2 − F1,2 = 0; (massless rope)   (8.5.1) 

. 
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If we consider the case that the rope is very light, then the forces acting at the ends of the 
rope are nearly horizontal. Then if the rope-block system is moving at constant speed or 
at rest, Newton’s Second Law is now 
 
 

  
FA,2 − F1,2 = 0; (constant speed or at rest)  . (8.5.2) 

 
Newton’s Second Law applied to the block in the   + î -direction requires that  

F2,1 − f = 0 . 

Newton’s Third Law, applied to the block-rope interaction pair requires that   
F1,2 = F2,1 . 

Therefore 
   

FA,2 = F1,2 = F2,1 = f .  (8.5.3) 
 
Thus the applied pulling force is transmitted through the rope to the block since it has the 
same magnitude as the force of the rope on the block. In addition, the applied pulling 
force is also equal to the friction force on the block. 
 
How do we define “tension” at some point in a rope? Suppose make an imaginary slice of 
the rope at a point  P , a distance  xP  from point  B , where the rope is attached to the 
block. The imaginary slice divides the rope into two sections, labeled L (left) and R 
(right), as shown in Figure 8.20.  
 

L R. . .APB

imaginary slicexP
 

 
Figure 8.20 Imaginary slice through the rope 

 
There is now a Third Law pair of forces acting between the left and right sections of the 
rope. Denote the force acting on the left section by 

    
!
FR,L (xP ) , and the force acting on the 

right section by 
    
!
FL,R (xP ) . Newton’s Third Law requires that the forces in this interaction 

pair are equal in magnitude and opposite in direction. 
 
 

    
!
FR,L (xP ) = −

!
FL,R (xP )   (8.5.4) 

 
The force diagram for the left and right sections are shown in Figure 8.21 where 

   
!
F1,L  

is 
the force on the left section of the rope due to the block-rope interaction. (We had 
previously denoted that force by 

   
!
F1,2 ). Now denote the force on the right section of the 

rope side due to the pulling force at the point  A  by 
   
!
FA,R , (which we had previously 

denoted by 
   
!
FA,2 ). 
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L R. . .APB .P
xP

FR,L (xP ) FL,R (xP )F1,L FA,R

 
 

Figure 8.21 Force diagram for the left and right sections of rope 
 
The tension   T (xP )  at a point  P  in rope lying a distance  x  from one the left end of the 
rope, is the magnitude of the action -reaction pair of forces acting at the point  P , 

 
 

    
T (xP ) =

!
FR,L (xP ) =

!
FL,R (xP ) . (8.5.5) 

 
For a rope of negligible mass, under tension, as in the above case, (even if the rope is 
accelerating) the sum of the horizontal forces applied to the left section and the right 
section of the rope are zero, and therefore the tension is uniform and is equal to the 
applied pulling force, 
   

T = FA,R . (8.5.6) 
 
Example 8.3 Tension in a Massive Rope 
 

.A.B1 2

FA,R

 
 

Figure 8.22a Massive rope pulling a block 
 

Consider a block of mass   m1  that is lying on a horizontal surface. The coefficient of 
kinetic friction between the block and the surface is  µk .  A uniform rope of mass   m2  and 
length  d  is attached to the block. The rope is pulled from the side opposite the block 
with an applied force of magnitude 

    
!
FA,2 = FA,2 . Because the rope is now massive, the 

pulling force makes an angle φ  with respect to the horizontal in order to balance the 
gravitational force on the rope, (Figure 8.22a). Determine the tension in the rope as a 
function of distance  x  from the block. 
 
Solution: In the following analysis, we shall assume that the angle φ  is very small and 
depict the pulling and tension forces as essentially acting in the horizontal direction even 
though there must be some small vertical component to balance the gravitational forces.  
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The key point to realize is that the rope is now massive and we must take in to account 
the inertia of the rope when applying Newton’s Second Law. Consider an imaginary slice 
through the rope at a distance  x  from the block (Figure 8.22b), dividing the rope into two 
sections. The right section has length  d − x  and mass   mR = (m2 / d)(d − x) . The left 
section has length  x  and mass   mL = (m2 / d)(x) .  
 

L R. .AB

imaginary slice

d xx

O
+ x

 
 

Figure 8.22b Imaginary slice through the rope 
 
The free body force diagrams for the two sections of the rope are shown in Figure 8.22c, 
where   T (x)  is the tension in the rope at a distance  x  from the block, and 

    
F1,L =

!
F1,L ≡

!
F1,2  is the magnitude of the force on the left-section of the rope due to the 

rope-block interaction. 

L R. . .AB .
x

T (x)
îĵ

FA,T (x)F1,L ..
mRgmLg

R

 
 

Figure 8.22c Force diagram for the left and right sections of rope 
 
Apply Newton’s Second Law to the right section of the rope yielding 
 

 
  
FA,R −T (x) = mRaR =

m2

d
(d − x)aR , (8.5.7) 

 
where   aR  is the  x -component of the acceleration of the right section of the rope. Apply 
Newton’s Second Law to the left slice of the rope yielding 
 
   

T (x)− F1,L = mLaL = (m2 / d)x aL , (8.5.8) 
 
where   aL  is the  x -component of the acceleration of the left piece of the rope.   
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.1 îĵ

m1g

N

fk

FL,1

 
 

Figure 8.23 Force diagram on sliding block 
 
The force diagram on the block is shown in Figure 8.23. Newton’s Second Law on the 
block in the   + î -direction is   

FL,1 − fk = m1a1  and in the   + ĵ  -direction is   N − m1g = 0 . The 

kinetic friction force acting on the block is   fk = µk N = µkm1g . Newton’s Second Law on 

the block in the   + î -direction becomes 
 
   

FL,1 − µkm1g = m1a1 , (8.5.9) 
 
Newton’s Third Law for the block-rope interaction is given by   

FL,1 = F1,L . Eq. (8.5.8) 
then becomes  
   T (x)− (µkm1g + m1a1) = (m2 / d)xaL . (8.5.10) 
 
Because the rope and block move together, the accelerations are equal which we denote 
by the symbol   a ≡ a1 = aL . Then Eq. (8.5.10) becomes 
 
   T (x) = µkm1g + (m1 + (m2 / d)x)a . (8.5.11) 
 
This result is not unexpected because the tension is accelerating both the block and the 
left section and is opposed by the frictional force. 
 
Alternatively, the force diagram on the system consisting of the rope and block is shown 
in Figure 8.24. 
 

.AB
2

1

m1g

N

fk
. ..

m2g

FA,R

 
 

Figure 8.24 Force diagram on block-rope system 
 
Newton’s Second Law becomes 
   

FA,R − µkm1g = (m2 + m1)a   (8.5.12) 
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Solve Eq. (8.5.12) for   
FA,R  and substitute into Eq. (8.5.7), and solve for the tension 

yielding Eq. (8.5.11).  
 
Example 8.4 Tension in a Suspended Rope 
 
A uniform rope of mass  M  and length  L  is suspended from a ceiling (Figure 8.25). The 
magnitude of the acceleration due to gravity is  g . (a) Find the tension in the rope at the 
upper end where the rope is fixed to the ceiling. (b) Find the tension in the rope as a 
function of the distance from the ceiling. (c) Find an equation for the rate of change of the 
tension with respect to distance from the ceiling in terms of  M ,  L , and  g .  
 

g

L

rope of 
mass M

        

ĵ

+ y  
Figure 8.25 Rope suspended from ceiling    Figure 8.26 Coordinate system for 

suspended rope 
 
Solution: (a) Begin by choosing a coordinate system with the origin at the ceiling and the 
positive  y -direction pointing downward (Figure 8.26). In order to find the tension at the 
upper end of the rope, choose as a system the entire rope. The forces acting on the rope 
are the force at   y = 0  holding the rope up,   T ( y = 0) , and the gravitational force on the 
entire rope. The free-body force diagram is shown in Figure 8.27. 

ĵ

T ( y = 0)

Mg

                  
Figure 8.27 Force diagram on rope       
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Because the acceleration is zero, Newton’s Second Law on the rope is  Mg −T ( y = 0) = 0 . 
Therefore the tension at the upper end is   T ( y = 0) = Mg . 
 
(b) Recall that the tension at a point is the magnitude of the action-reaction pair of forces 
acting at that point. Make an imaginary slice in the rope a distance  y  from the ceiling 
separating the rope into an upper segment 1, and lower segment 2 (Figure 8.28a). Choose 
the upper segment as a system with mass   m1 = ( M / L)y . The forces acting on the upper 
segment are the gravitational force, the force   T ( y = 0)  holding the rope up, and the 
tension   T ( y)  at the point  y , that is pulling the upper segment down. The free-body force 
diagram is shown in Figure 8.28b. 

T ( y = 0)

ĵ

y 1

2

y 1

L y

m1g

T ( y)

ĵ

(a) (b)

 
Figure 8.28 (a) Imaginary slice separates rope into two pieces. (b) Free-body force 

diagram on upper piece of rope 
 

Apply Newton’s Second Law to the upper segment:  m1g +T ( y)−T ( y = 0) = 0 . Therefore 
the tension at a distance  y  from the ceiling is   T ( y) = T ( y = 0)− m1g . 
Because  m1 = ( M / L)y  is the mass of the segment piece and  Mg  is the tension at the 
upper end, Newton’s Second Law becomes  
 
   T ( y) = Mg(1− y / L)  (8.5.13) 
 
As a check, we note that when  y = L , the tension   T ( y = L) = 0 , which is what we expect 
because there is no force acting at the lower end of the rope.  
 
(c) Differentiate Eq. (8.5.13) with respect to  y  yielding  
 

 
  

dT
dy

= −( M / L)g . (8.5.14) 

 
The rate that the tension is changing at a constant rate with respect to distance from the 
top of the rope. 
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8.5.2 Continuous Systems and Newton’s Second Law as a Differential Equations 
 
We can determine the tension at a distance  y  from the ceiling in Example 8.4, by an 
alternative method, a technique that will generalize to many types of “continuous 
systems”. Choose a coordinate system with the origin at the ceiling and the positive  y -
direction pointing downward as in Figure 8.25. Consider as the system a small element of 
the rope between the points  y  and  y + Δy . This small element has length  Δy , The small 
element has mass   Δm = ( M / L)Δy  and is shown in Figure 8.29. 

 

y + y

y
ym

ĵ

y = L  
 

Figure 8.29 Small mass element of the rope 
 

The forces acting on the small element are the tension,   T ( y)  at  y  directed upward, the 
tension   T ( y + Δy)  at  y + Δy  directed downward, and the gravitational force  Δmg  
directed downward. The tension   T ( y + Δy)  is equal to the tension   T ( y)  plus a small 
difference  ΔT , 
   T ( y + Δy) = T ( y)+ ΔT .  (8.5.15) 
 
The small difference in general can be positive, zero, or negative. The free body force 
diagram is shown in Figure 8.30. 

y + y

y
y

ĵ

mg

T ( y)+ T

T ( y)

 
 

Figure 8.30 Free body force diagram on small mass element 
 
Now apply Newton’s Second Law to the small element  
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   Δmg −T ( y)+ (T ( y)+ ΔT ) = 0   (8.5.16) 
 
The difference in the tension is then  ΔT = −Δmg . We now substitute our result for the 
mass of the element   Δm = ( M / L)Δy , and find that that  
 
   ΔT = −( M / L)Δyg  . (8.5.17) 
 
Divide through by  Δy , yielding   ΔT / Δy = −( M / L)g . Now take the limit in which the 
length of the small element goes to zero,   Δy → 0 , 
 

 
  
lim
Δy→0

ΔT
Δy

= −( M / L)g  . (8.5.18) 

 
Recall that the left hand side of Eq. (8.5.18) is the definition of the derivative of the 
tension with respect to  y , and so we arrive at Eq. (8.5.14), 
 

  

dT
dy

= −( M / L)g . 

 
We can solve the differential equation, Eq. (8.5.14), by a technique called separation of 
variables. We rewrite the equation as   dT = −( M / L)gdy and integrate both sides. Our 
integral will be a definite integral in which we integrate a ‘dummy’ integration variable 
 ′y  from   ′y = 0  to  ′y = y  and the corresponding  ′T  from   ′T = T ( y = 0)  to   ′T = T ( y) : 
 

 
  

d ′T
T '=T ( y=0)

′T =T ( y )

∫ = −( M / L)g d ′y
′y =0

′y = y

∫  . (8.5.19) 

 
After integration and substitution of the limits, we have that  
 
   T ( y)−T ( y = 0) = −( M / L)gy  . (8.5.20) 
 
Use the fact that tension at the top of the rope is   T ( y = 0) = Mg  and find that 
 

  T ( y) = Mg(1− y / L)  
 
in agreement with our earlier result, Eq. (8.5.13). 
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8.6 Drag Forces in Fluids  
 
When a solid object moves through a fluid it will experience a resistive force, called the 
drag force, opposing its motion. The fluid may be a liquid or a gas. This force is a very 
complicated force that depends on both the properties of the object and the properties of 
the fluid. The force depends on the speed, size, and shape of the object. It also depends 
on the density, viscosity and compressibility of the fluid.  
 
For objects moving in air, the air drag is 
still quite complicated but for rapidly 
moving objects the resistive force is 
roughly proportional to the square of the 
speed  v , the cross-sectional area  A  of 
the object in a plane perpendicular to the 
motion, the density ρ  of the air, and 
independent of the viscosity of the air. 
Traditionally the magnitude of the air 
drag for rapidly moving objects is 
written as 
 

             
  
Fdrag =

1
2

CD Aρv2  .             (8.6.1) 

The coefficient  CD  is called the drag 
coefficient, a dimensionless number that 
is a property of the object.  Table 8.1 
lists the drag coefficient for some simple 
shapes, (each of these objects has a 
Reynolds number of order  104 ).    
 

 
Table 8.1 Drag Coefficients 
 

Sphere

Half-sphere

Cone

Cube

Angled cube

Long cylinder

Short cylinder

Streamlined
body

Streamlined
half-body

Shape Drag coefficient

0.47

0.42

0.50

1.05

0.80

0.82

1.15

0.04

0.09

 

 The above model for air drag does not extend to all fluids. An object dropped in 
oil, molasses, honey, or water will fall at different rates due to the different viscosities of 
the fluid. For very low speeds, the drag force depends linearly on the speed and is also 
proportional to the viscosity η  of the fluid. For the special case of a sphere of radius  R , 
the drag force law can be exactly deduced from the principles of fluid mechanics and is 
given by 
 

    
!
Fdrag = −6πηR!v (sphere)  . (8.6.2) 

 
This force law is known as Stokes’ Law. The coefficient of viscosity η  has SI units of 

 [N ⋅m−2 ⋅s]= [Pa ⋅s]= [kg ⋅m−1 ⋅s−1] ; a cgs unit called the poise is often encountered . 
Some typical coefficients of viscosity are listed in Table 8.2. 
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Table 8.2: Coefficients of viscosity 
 

fluid Temperature, 

 
0C  

Coefficient of viscosity η ;  [kg ⋅m−1 ⋅s−1]  

Acetone  25   3.06×10−4  
Air  15   1.81×10−5  
Benzene  25   6.04×10−4  
Blood  37   (3− 4)×10−3  
Castor oil  25   0.985  
Corn Syrup  25   1.3806  
Ethanol  25   1.074×10−3  
Glycerol  20   1.2  
Methanol  25   5.44×10−4  
Motor oil (SAE 10W)  20   6.5×10−2  
Olive Oil  25   8.1×10−2  
Water   10   1.308×10−3

 
Water   20   1.002×10−3

 
Water   60   0.467 ×10−3

 
Water   100   0.28×10−3  

 
 This law can be applied to the motion of slow moving objects in a fluid, for example: 
very small water droplets falling in a gravitational field, grains of sand settling in water, 
or the sedimentation rate of molecules in a fluid. In the later case, If we model a molecule 
as a sphere of radius  R , the mass of the molecule is proportional to   R3  and the drag force 
is proportion to  R , therefore different sized molecules will have different rates of 
acceleration.  This is the basis for the design of measuring devices that separate 
molecules of different molecular weights. 
 
In many physical situations the force on an object will be modeled as depending on the 
object’s velocity.  We have already seen static and kinetic friction between surfaces 
modeled as being independent of the surfaces’ relative velocity.  Common experience 
(swimming, throwing a Frisbee) tells us that the frictional force between an object and a 
fluid can be a complicated function of velocity.  Indeed, these complicated relations are 
an important part of such topics as aircraft design. 
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Example 8.5 Drag Force at Low Speeds 
 

h
g

marble:
mass m and 
radius R

olive oil

 
 

Figure 8.31 Example 8.5 
 
A spherical marble of radius  R  and mass  m  is released from rest and falls under the 
influence of gravity through a jar of olive oil of viscosity η . The marble is released from 
rest just below the surface of the olive oil, a height  h  from the bottom of the jar. The 
gravitational acceleration is  g  (Figure 8.31). Neglect any force due to the buoyancy of 
the olive oil. (i) Determine the velocity of the marble as a function of time, (ii) what is the 
maximum possible velocity     

!v∞ = !v(t = ∞)  (terminal velocity), that the marble can obtain, 
(iii) determine an expression for the viscosity of olive oil η  in terms of  g ,  m ,  R , and 

   v∞ = !v∞ , (iv) determine an expression for the position of the marble from just below the 
surface of the olive oil as a function of time. 
 
Solution: Choose the positive  y -direction downwards with the origin at the initial 
position of the marble as shown in Figure 8.32(a). 

y(t)

ĵ h

+ y

O

v(t)

(a)   

ĵ

O

.
+ y

mg

Fdrag

(b)
 

 
Figure 8.32  (a) Coordinate system for marble; (b) free body force diagram on marble 
 
There are two forces acting on the marble: the gravitational force, and the drag force 
which is given by Eq. (8.6.2). The free body diagram is shown in the Figure 8.32(b). 
Newton’s Second Law is then  

 
  
mg − 6πηRv = m dv

dt
,  (8.6.3) 

 
where  v  is the  y -component of the velocity of the marble. Let   γ = 6πηR / m ; the SI 
units γ  are  [s

−1] . Then Eq. (8.6.3) becomes  
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g −γ v = dv

dt
,  (8.6.4) 

 
Suppose the object has an initial  y -component of velocity   v(t = 0) = 0 . We shall solve 
Eq. (8.6.3) using the method of separation of variables. The differential equation may be 
rewritten as 

 
  

dv
(v − g / γ )

= −γ dt . (8.6.5) 

 
The integral version of Eq. (8.6.5) is then 
 

 

  

d ′v
′v − g / γ′v =0

′v =v(t )

∫ = −γ d ′t
′t =0

′t =t

∫ . (8.6.6) 

Integrating both sides of Eq. (8.6.6) yields 
 

 

  

ln v(t)− g / γ
−g / γ

⎛
⎝⎜

⎞
⎠⎟
= −γ t

. (8.6.7) 

Recall that   eln x = x , therefore upon exponentiation of Eq. (8.6.7) yields 
 

 
  

v(t)− g / γ
−g / γ

= e−γ t . (8.6.8) 

 
Thus the  y -component of the velocity as a function of time is given by 

 
  
v(t) = g

γ
(1− e−γ t ) = mg

6πηR
(1− e−(6πηR/m)t ) . (8.6.9) 

 
A plot of   v(t)  vs.  t  is shown in Figure 8.31 with 
parameters   R = 5.00×10−3m ,  η = 8.10×10−2 kg ⋅m−1 ⋅s−1 ,   m = 4.08×10−3 kg , and 

  g / γ = 1.87 m ⋅s−1 . 
 

v(t)

t

[m s 1]

5

1 2 [s][s]  
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Figure 8.33 Plot of  y -component of the velocity   v(t)  vs.  t  for marble falling through 
oil with   g / γ = 1.87 m ⋅s−1 . 
 
For large values of  t , the term   e−(6πηR/m)t  approaches zero, and the marble reaches a 
terminal velocity  

 
  
v∞ = v(t = ∞) = mg

6πηR . (8.6.10) 

 
The coefficient of viscosity can then be determined from the terminal velocity by the 
condition that 

 
  
η = mg

6πRvter
. (8.6.11) 

 
Let  ρm  denote the density of the marble. The mass of the spherical marble is 

  m = (4 / 3)ρmR3 . The terminal velocity is then 
 

 
  
v∞ =

2ρmR2g
9η . (8.6.12) 

 
The terminal velocity depends on the square of the radius of the marble, indicating that 
larger marbles will reach faster terminal speeds. 
 
The position of the marble as a function of time is given by the integral expression 
 

 
  
y(t)− y(t = 0) = v( ′t )d ′t

′t =0

′t =t

∫ , (8.6.13) 

 
which after substitution of Eq. (8.6.9) and integration using the initial condition that 
  y(t = 0) = 0 , becomes 

 
  
y(t) = g

γ
t + g

γ 2 e−γ t −1( )  . (8.6.14) 

 
Example 8.6 Drag Forces at High Speeds 
 
An object of mass  m  at time   t = 0  is moving rapidly with velocity    

!v0  through a fluid of 
density ρ .  Let  A  denote the cross-sectional area of the object in a plane perpendicular 
to the motion. The object experiences a retarding drag force whose magnitude is given by 
Eq. (8.6.1). Determine an expression for the velocity of the object as a function of time.  
 
Solution: Choose a coordinate system such that the object is moving in the positive  x -
direction,     

!v = vî . Set   β = (1/ 2)CD Aρ . Newton’s Second Law can then be written as  
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−β v2 = dv

dt
. (8.6.15) 

An integral version of Eq. (8.6.15) is then  
 

 
  

d ′v
′v 2

′v =v0

′v =v(t )

∫ = −β d ′t
′t =0

′t =t

∫ . (8.6.16) 

Integration yields 

 
  
− 1

v(t)
− 1

v0

⎛
⎝⎜

⎞
⎠⎟
= −βt . (8.6.17) 

 
After some algebraic rearrangement the  x -component of the velocity as a function of 
time is given by 

 
  
v(t) =

v0

1+ v0βt
= 1

1+ t / τ
v0 , (8.6.18) 

 
where   τ = 1/ v0β . A plot of   v(t)  vs.  t  is shown in Figure 8.34 with initial conditions 

  v0 = 20 m ⋅s−1  and β = 0.5 s−1 . 
 

v(t)

m s 1]

t
[s]

20

5

 
 

Figure 8.34 Plot of   v(t)  vs.  t  for damping force 
  
Fdrag =

1
2

CD Aρv2  

 
8.7 Worked Examples 
 
Example 8.7 Staircase 
 
An object of mass  m  at time   t = 0  has speed 0v . It slides a distance s  along a horizontal 
floor and then off the top of a staircase (Figure 8.35). The coefficient of kinetic friction 
between the object and the floor is kµ . The object strikes at the far end of the third stair. 
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Each stair has a rise of h  and a run of d . Neglect air resistance and use g  for the 
gravitational constant. (a) What is the distance s  that the object slides along the floor?  
 

 
 

Figure 8.35 Object falling down a staircase  
 

 
Solution: There are two distinct stages to the object’s motion, the initial horizontal 
motion and then free fall.  The given final position of the object, at the far end of the third 
stair, will determine the horizontal component of the velocity at the instant the object left 
the top of the stairs.  This in turn can be used to determine the time the object decelerated 
along the floor, and hence the distance traveled on the floor. The given quantities are m , 
0v , kµ , g , h  and d . 

 
 
For the horizontal motion, choose coordinates with the origin at the initial position of the 
block.  Choose the positive î -direction to be horizontal, directed to the left in Figure 8.35, 
and the positive ĵ -direction to be vertical (up). The forces on the object are gravity 

ˆm mg= −g j , the normal force ˆN=N j


 and the kinetic frictional force k k
ˆf= −f i


.  The 

components of the vectors in Newton’s Second Law, m=F a
  , are 

 

 k

.
x

y

f ma
N mg ma

− =
− =

 (8.6.19) 

 
The object does not move in the y -direction; 0ya =  and thus from the second expression 
in (8.6.19), N m g= . The magnitude of the frictional force is then k k kf N mgµ µ= = , and 
the first expression in (8.6.19) gives the x -component of acceleration as kxa gµ= − . 
Becasue the acceleration is constant the x -component of the velocity is given by 
 
 0( )x xv t v a t= + , (8.6.20) 
 



 8-34 

where 0v  is the x -component of the velocity of the object when it just started sliding. 
The displacement is given by 

 
  
x(t)− x0 = v0 t + 1

2
ax t2. (8.6.21) 

 
Denote the time the block just leaves the landing by 1t , where   x(t1) = s , and the speed 
just when it reaches the landing  

vx (t1) = vx ,1 . The initial speed is 0v  and   x0 = 0 . Using the 
initial and final conditions, and the value of the acceleration, Eq. (8.6.21) becomes  
 

 
  
s = v0 t1 −

1
2
µk g t1

2. (8.6.22) 

 
Solve Eq. (8.6.20) for the time the block reaches the edge of the landing, 
 

 
  
t1 =

vx ,1 − v0

−µkg
=

v0 − vx ,1

µkg
.  (8.6.23) 

 
Substituting Eq. (8.6.23) into Eq. (8.6.22) yields 
 

 
  
s = v0

v0 − vx ,1

µkg

⎛

⎝⎜
⎞

⎠⎟
− 1

2
µk g

v0 − vx ,1

µkg

⎛

⎝⎜
⎞

⎠⎟

2

 (8.6.24) 

 
and after some algebra, we can rewrite Eq. (8.6.24) as 
 

 
  
s =

v0
2 − vx ,1

2

2µkg
.  (8.6.25) 

 
From the top of the stair to the far end of the third stair, the object is in free fall.  Choose 
the positive î -direction to be horizontal, directed to the left in Figure 8.35, and the 
positive ĵ -direction to be vertical (up) and now choose the origin at the top of the stairs, 
where the object first goes into free fall.  The components of acceleration are 0xa = , 

ya g= − , the initial x -component of velocity is   
vx ,1 , the initial y -component of velocity 

is ,0 0yv = , the initial x -position is 0 0x =  and the initial y -position is 0 0y = .  Reset 

  t = 0  when the object just leaves the landing. Let   t2  denote the instant the object hits the 
stair, where   y(t2 ) = −3h  and   x(t2 ) = 3d . The equations describing the object’s position 
and speed at time   t = t2  are  
 
   

x(t2 ) = 3d = vx ,1 t2  (8.6.26) 



 8-35 

 
  
y(t2 ) = −3h = − 1

2
gt2

2.  (8.6.27) 

Solve Eq. (8.6.26) for   t2  to yield 

 
  
t2 =

3d
vx ,1

.  (8.6.28) 

 
Substitute Eq. (8.6.28) into Eq. (8.6.27) and eliminate the variable   t2 , 
 

 
  
3h = 1

2
g

9d 2

vx ,1
2 .  (8.6.29) 

 
Eq. (8.6.29) can now be solved for the square of the horizontal component of the velocity, 
 

 
  
vx ,1

2 = 3gd 2

2h
.  (8.6.30) 

 
Now substitute Eq. (8.6.30) into Eq. (8.6.25) to determine the distance the object traveled 
on the landing, 

 
  
s =

v0
2 − (3gd 2 / 2h)

2µkg
. (8.6.31) 

 
Example 8.8 Cart Moving on a Track  
 

C

B
 

 
Figure 8.36 A falling block will accelerate a cart on a track via the pulling force of the 

string. The force sensor measures the tension in the string.  
 
Consider a cart that is free to slide along a horizontal track (Figure 8.36). A force is 
applied to the cart via a string that is attached to a force sensor mounted on the cart, 
wrapped around a pulley and attached to a block on the other end.  When the block is 
released the cart will begin to accelerate. The force sensor and cart together have a mass 

  mC , and the suspended block has mass   mB . Neglect the small mass of the string and 
pulley, and assume the string is inextensible. The coefficient of kinetic friction between 
the cart and the track is  µk . Determine (i) the acceleration of the cart, and (ii) the tension 
in the string. 
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Solution: In general, we would like to draw free-body diagrams on all the individual 
objects (cart, sensor, pulley, rope, and block) but we can also choose a system consisting 
of two (or more) objects knowing that the forces of interaction between any two objects 
will cancel in pairs by Newton’s Third Law. In this example, we shall choose the 
sensor/cart as one free-body, and the block as the other free-body. The free-body force 
diagram for the sensor/cart is shown in Figure 8.37. 
 

C .fk

N

mC g

TR,C
î

ĵ

 
 

Figure 8.37 Force diagram on sensor/cart with a vector decomposition of the contact 
force into horizontal and vertical components 

  
There are three forces acting on the sensor/cart: the gravitational force     mC

!g , the pulling 
force 

   
!
TR,C  of the rope on the force sensor, and the contact force between the track and the 

cart. In Figure 8.34, we decompose the contact force into its two components, the kinetic 
frictional force     

!
fk = − fk î  and the normal force,     

!
N = N ĵ .  

 
 The cart is only accelerating in the horizontal direction with 

    
aC = aC,x î , so the 

component of the force in the vertical direction must be zero,   
aC,y = 0 . We can now apply 

Newton’s Second Law in the horizontal and vertical directions and find that  
 

 
   
î : TR,C − fk = mCaC,x  (8.6.32) 

    ĵ : N − mCg = 0 . (8.6.33) 
 
From Eq. (8.6.33), we conclude that the normal component is  
 
   N = mCg . (8.6.34) 
 
We use Equation (8.6.34) for the normal force to find that the magnitude of the kinetic 
frictional force is 
   fk = µk N = µkmCg . (8.6.35) 
Then Equation (8.6.32) becomes 
   

TR,C − µkmCg = mCaC,x . (8.6.36) 
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 The force diagram for the block is shown in Figure 8.38. The two forces acting on 
the block are the pulling force 

   
!
TR,B  of the string and the gravitational force     mB

!g . We now 
apply Newton’s Second Law to the block and find that  
 
 

   
ĵB : mBg −TR,B = mBaB,y . (8.6.37) 

 

B.
TR,B

mBg

ĵB

 
 

Figure 8.38 Forces acting on the block 
 
In Equation (8.6.37), the symbol   

aB, y  represents the component of the acceleration with 

sign determined by our choice of downward direction for the unit vector   ĵB . Note that we 
made a different choice of direction for the unit vector in the vertical direction in the free-
body diagram for the block shown in Figure 8.37. Each free-body diagram has an 
independent set of unit vectors that define a sign convention for vector decomposition of 
the forces acting on the free-body and the acceleration of the free-body. In our example, 
with the unit vector pointing downwards in Figure 8.38, if we solve for the component of 
the acceleration and it is positive, then we know that the direction of the acceleration is 
downwards. 
 

There is a second subtle way that signs are introduced with respect to the forces 
acting on a free-body. In our example, the force between the string and the block acting 
on the block points upwards, so in the vector decomposition of the forces acting on the 
block that appears on the left-hand side of Equation (8.6.37), this force has a minus sign 
and the quantity 

    
!
TR,B = −TR,B ĵB  where   

TR,B  is assumed positive.  
 

Our assumption that the mass of the rope and the mass of the pulley are negligible 
enables us to assert that the tension in the rope is uniform and equal in magnitude to the 
forces at each end of the rope, 
   

TR,B = TR,C ≡ T . (8.6.38) 
 
We also assumed that the string is inextensible (does not stretch). This implies that the 
rope, block, and sensor/cart all have the same magnitude of acceleration, 
 
   

aC,x = aB, y ≡ a . (8.6.39) 
 



 8-38 

Using Equations (8.6.38) and (8.6.39), we can now rewrite the equation of motion for the 
sensor/cart, Equation (8.6.36), as 
   T − µkmCg = mCa , (8.6.40) 
 
and the equation of motion (8.6.37) for the block as 
 
   mBg − T = mBa . (8.6.41) 
 
We have only two unknowns  T  and  a , so we can now solve the two equations (8.6.40) 
and (8.6.41) simultaneously for the acceleration of the sensor/cart and the tension in the 
rope. We first solve Equation (8.6.40) for the tension  
 
   T = µkmCg + mCa  (8.6.42) 
 
and then substitute Equation (8.6.42) into Equation (8.6.41) and find that 
 
   mBg − (µkmCg + mCa) = mBa . (8.6.43) 
 
We can now solve Equation (8.6.43) for the acceleration, 
 

 
  
a =

mBg − µkmCg
mC + mB

. (8.6.44) 

 
Substitution of Equation (8.6.44) into Equation (8.6.42) gives the tension in the string, 
 

 

  

T = µkmCg + mCa

= µkmCg + mC

mBg − µkmCg
mC + mB

= (µk +1)
mCmB

mC + mB

g.

 (8.6.45) 

 
 In this example, we applied Newton’s Second Law to two objects, one a 
composite object consisting of the sensor and the cart, and the other the block. We 
analyzed the forces acting on each object and also any constraints imposed on the 
acceleration of each object. We used the force laws for kinetic friction and gravitation on 
each free-body system. The three equations of motion enable us to determine the forces 
that depend on the parameters in the example: the tension in the rope, the acceleration of 
the objects, and normal force between the cart and the table. 
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Example 8.9 Pulleys and Ropes Constraint Conditions 
 
Consider the arrangement of pulleys and blocks shown in Figure 8.39.  The pulleys are 
assumed massless and frictionless and the connecting strings are massless and 
inextensible.  Denote the respective masses of the blocks as 1m , 2m  and 3m .  The upper 
pulley in the figure is free to rotate but its center of mass does not move. Both pulleys 
have the same radius R . (a) How are the accelerations of the objects related?  (b) Draw 
force diagrams on each moving object. (c) Solve for the accelerations of the objects and 
the tensions in the ropes. 

2
3

P1

 
 

Figure 8.39 Constrained pulley system  
 
Solution: (a) Choose an origin at the center of the upper pulley. Introduce coordinate 
functions for the three moving blocks, 1y , 2y  and 3y . Introduce a coordinate function 

Py  for the moving pulley (the pulley on the lower right in Figure 8.40). Choose 
downward for positive direction; the coordinate system is shown in the figure below then. 
 

2
3

P.1
yP y3 y2

ĵ

y1

string A

string B
 

 
Figure 8.40 Coordinated system for pulley system 

 
The length of string A  is given by 
 
   lA = y1 + yP +πR  (8.6.46) 
 
where Rπ  is the arc length of the rope that is in contact with the pulley. Because the rope 
is assumed to be inextensible, this length  lA  is constant, and so the second derivative with 
respect to time is zero, 
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2 2 2

1
,1 ,2 2 20 A P
y y P

d l d y d y a a
dt dt dt

= = + = + . (8.6.47) 

 
Thus block 1 and the moving pulley’s components of acceleration are equal in magnitude 
but opposite in sign, 
 , ,1y P ya a= − . (8.6.48) 
The length of string B  is given by 
 
   lB = ( y3 − yP )+ ( y2 − yP )+πR = y3 + y2 − 2yP +πR  (8.6.49) 
 
where Rπ  is the arc length of the rope that is in contact with the pulley. The length  lB  of 
the rope is constant and so the second derivative with respect to time is zero, 
 

 
2 2 2 2

2 3
,2 ,3 ,2 2 2 20 2 2B P
y y y P

d l d y d y d y a a a
dt dt dt dt

= = + − = + − . (8.6.50) 

 
We can substitute Equation (8.6.48) for the pulley acceleration into Equation (8.6.50) 
yielding the constraint relation between the components of the acceleration of the three 
blocks, 
 ,2 ,3 ,10 2y y ya a a= + + . (8.6.51) 
 
b) Free-body Force diagrams: the forces acting on block 1 are: the gravitational force 

    m1
!g  and the pulling force 

    
!
TA,1  of string A  acting on the block 1. Denote the magnitude 

of this force by  TA . Because the string is assumed to be massless and the pulley is 
assumed to be massless and frictionless, the tension AT  in the string is uniform and equal 
in magnitude to the pulling force of the string on the block. The free-body diagram on 
block 1 is shown in Figure 8.41(a). 
 

.1 . .2 3 P .
(a) (b) (c) (d)

ĵ
TA,1

m1g

TB,2

m2g

TB,3

m3g TB,P TB,P

TA,P

 
 

Figure 8.41 Free-body force diagram on (a) block 1; (b) block 2; (c) block 3; (d) pulley 
 
Newton’s Second Law applied to block 1 is then 
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ĵ : m1g −TA = m1 ay ,1 . (8.6.52) 

 
The forces on block 2 are the gravitational force     m2

!g  and string B  holding the block, 

    
!
TB,2 , with magnitude  TB . The free-body diagram for the forces acting on block 2 is 
shown in Figure 8.41(b). Newton’s second Law applied to block 2 is  
 
 

   
ĵ : m2g −TB = m2 ay ,2 . (8.6.53) 

 
The forces on block 3 are the gravitational force     m3

!g  and string holding the block, 
    
!
TB,3 , 

with magnitude equal to  TB  because pulley  P  has been assumed to be both frictionless 
and massless. The free-body diagram for the forces acting on block 3 is shown in Figure 
8.41(c). Newton’s second Law applied to block 3 is  
 
 

   
ĵ : m3g −TB = m3 ay ,3 . (8.6.54) 

The forces on the moving pulley  P  are the gravitational force Pm =g 0
  (the pulley is 

assumed massless); string B  pulls down on the pulley on each side with a force, 
    
!
TB,P , 

which has magnitude BT . String A  holds the pulley up with a force 
    
!
TA,P  with the 

magnitude AT  equal to the tension in string A . The free-body diagram for the forces 
acting on the moving pulley is shown in Figure 8.41(d). Newton’s second Law applied to 
the pulley is  
 ,

ˆ : 2 0B A P y PT T m a− = =j . (8.6.55) 
 
Because the pulley is assumed to be massless, we can use this last equation to determine 
the condition that the tension in the two strings must satisfy, 
 
 2 B AT T=  (8.6.56) 
 
We are now in position to determine the accelerations of the blocks and the tension in the 
two strings. We record the relevant equations as a summary. 
 
 ,2 ,3 ,10 2y y ya a a= + +  (8.6.57) 
 1 1 ,1A ym g T m a− =  (8.6.58) 
 2 2 ,2B ym g T m a− =  (8.6.59) 
 3 3 ,3B ym g T m a− =  (8.6.60) 
 2 B AT T= . (8.6.61) 
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There are five equations with five unknowns, so we can solve this system. We shall first 
use Equation (8.6.61) to eliminate the tension AT  in Equation (8.6.58), yielding 
 
 1 1 ,12 B ym g T m a− = . (8.6.62) 
 
We now solve Equations  (8.6.59), (8.6.60) and (8.6.62) for the accelerations,  
 

 ,2
2

B
y

Ta g
m

= −  (8.6.63) 

 ,3
3

B
y

Ta g
m

= −  (8.6.64) 

 
  
ay ,1 = g −

2TB

m1

. (8.6.65) 

 
We now substitute these results for the accelerations into the constraint equation, 
Equation (8.6.57), 
 

 
2 3 1 2 3 1

4 1 1 40 2 4B B B
B

T T Tg g g g T
m m m m m m

⎛ ⎞
= − + − + − = − + +⎜ ⎟

⎝ ⎠
. (8.6.66) 

 
We can now solve this last equation for the tension in string B , 
 

 1 2 3

1 3 1 2 2 3

2 3 1

4 4
41 1 4B

g g m m mT
m m m m m m

m m m

= =
⎛ ⎞ + +

+ +⎜ ⎟
⎝ ⎠

. (8.6.67) 

 
From Equation (8.6.61), the tension in string A is 
 

 1 2 3

1 3 1 2 2 3

82
4A B

g m m mT T
m m m m m m

= =
+ +

. (8.6.68) 

 
We find the acceleration of block 1 from Equation (8.6.65), using Equation (8.6.67) for 
the tension in string B, 
 

 2 3 1 3 1 2 2 3
,1

1 1 3 1 2 2 3 1 3 1 2 2 3

2 8 4
4 4

B
y

T g m m m m m m m ma g g g
m m m m m m m m m m m m m

+ −= − = − =
+ + + +

. (8.6.69) 

 
We find the acceleration of block 2 from Equation (8.6.63), using Equation (8.6.67) for 
the tension in string B, 
 



 8-43 

 1 3 1 3 1 2 2 3
,2

2 1 3 1 2 2 3 1 3 1 2 2 3

4 3 4
4 4

B
y

T g m m m m m m m ma g g g
m m m m m m m m m m m m m

− + += − = − =
+ + + +

. (8.6.70) 

 
Similarly, we find the acceleration of block 3 from Equation (8.6.64), using Equation 
(8.6.67) for the tension in string B, 
 

 1 3 1 2 2 31 2
,3

3 1 3 1 2 2 3 1 3 1 2 2 3

3 44
4 4

B
y

m m m m m mT gm ma g g g
m m m m m m m m m m m m m

− +
= − = − =

+ + + +
. (8.6.71) 

 
As a check on our algebra we note that 

1, 2, 3,

1 3 1 2 2 3 1 3 1 2 2 3 1 3 1 2 2 3

1 3 1 2 2 3 1 3 1 2 2 3 1 3 1 2 2 3

2

4 3 4 3 42
4 4 4

0.

y y ya a a
m m m m m m m m m m m m m m m m m mg g g
m m m m m m m m m m m m m m m m m m

+ + =

+ − − + + − ++ +
+ + + + + +

=

 

 
  
Example 8.10 Accelerating Wedge 
 

A

block of mass mwedge

 
 

Figure 8.42 Block on accelerating wedge 
 
A 45o  wedge is pushed along a table with constant acceleration   

!
A  according to an 

observer at rest with respect to the table. A block of mass m  slides without friction down 
the wedge (Figure 8.42). Find its acceleration with respect to an observer at rest with 
respect to the table. Write down a plan for finding the magnitude of the acceleration of 
the block. Make sure you clearly state which concepts you plan to use to calculate any 
relevant physical quantities. Also clearly state any assumptions you make. Be sure you 
include any free-body force diagrams or sketches that you plan to use.  
 
Solution: Choose a coordinate system for the block and wedge as shown in Figure 8.43. 
Then 

    

A = Ax ,w î  where   

Ax ,w  is the x-component of the acceleration of the wedge.  
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block of mass mwedge

xw

xb

yb
A

î
ĵ

l
 

 
Figure 8.43 Coordinate system for block on accelerating wedge 

 
We shall apply Newton’s Second Law to the block sliding down the wedge. Because the 
wedge is accelerating, there is a constraint relation between the  x - and  y - components 
of the acceleration of the block.  In order to find that constraint we choose a coordinate 
system for the wedge and block sliding down the wedge shown in the figure below. We 
shall find the constraint relationship between the components of the accelerations of the 
block and wedge by a geometric argument. From the figure above, we see that 

 
  
tanφ =

yb

l − (xb − xw )
. (8.6.72) 

Therefore 
   yb = (l − (xb − xw )) tanφ . (8.6.73) 
 
If we differentiate Eq. (8.6.73) twice with respect to time noting that  
 

 
2

2 0d l
dt

=  (8.6.74) 

we have that 

 
  

d 2 yb

dt2 = −
d 2xb

dt2 −
d 2xw

dt2

⎛

⎝
⎜

⎞

⎠
⎟ tanφ . (8.6.75) 

Therefore 
   

ab, y = −(ab,x − Ax ,w ) tanφ  (8.6.76) 
where 

 
  
Ax ,w =

d 2xw

dt2 . (8.6.77) 

 
We now draw a free-body force diagram for the block (Figure 8.44). Newton’s Second 
Law in the î - direction becomes 
   

N sinφ = mab,x . (8.6.78) 
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and the ĵ -direction becomes 
 

  
N cosφ − mg = mab,y  (8.6.79) 

 

î
ĵ

.
N

mg

 
 

Figure 8.44 Free-body force diagram on block 
 
We can solve for the normal force from Eq. (8.6.78): 
 

 
  
N =

mab,x

sinφ
 (8.6.80) 

 
We now substitute Eq. (8.6.76) and Eq. (8.6.80) into Eq. (8.6.79) yielding 
 

 
  

mab,x

sinφ
cosφ − mg = m(−(ab,x − Aw,x ) tanφ) . (8.6.81) 

 
We now clean this up yielding 
 
 

  
mab,x (cotan φ + tanφ) = m(g + Aw,x tanφ)  (8.6.82) 

 
Thus the x-component of the acceleration is then 
 

 
  
ab,x =

g + Aw,x tanφ
cotan φ + tanφ

 (8.6.83) 

 
From Eq. (8.6.76), the  y -component of the acceleration is then 
 

 
  
ab, y = −(ab,x − Aw,x ) tanφ = −

g + Aw,x tanφ
cotan φ + tanφ

− Aw,x

⎛

⎝
⎜

⎞

⎠
⎟ tanφ . (8.6.84) 

This simplifies to 

 
  
ab, y =

Aw,x − g tanφ
cotan φ + tanφ

 (8.6.85) 
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When 45φ =  , cotan 45 tan 45 1= =  , and so Eq. (8.6.83) becomes 
 

 
  
ab,x =

g + Aw,x

2
 (8.6.86) 

and Eq. (8.6.85) becomes 

 
  
ab, y =

A− g
2

. (8.6.87) 

 
The magnitude of the acceleration is then 
 

 
  
a = ab,x

2 + ab,y
2 =

g + Aw,x

2
⎛

⎝⎜
⎞

⎠⎟

2

+
Aw,x − g

2
⎛

⎝⎜
⎞

⎠⎟

2

 (8.6.88) 

 
  
a =

g 2 + Aw,x
2

2

⎛

⎝
⎜

⎞

⎠
⎟ . 

 
Example 8.11: Capstan  
 
A device called a capstan is used aboard ships in order to control a rope that is under 
great tension. The rope is wrapped around a fixed drum of radius  R , usually for several 
turns (Figure 8.45 shows about three fourths turn as seen from overhead). The load on the 
rope pulls it with a force AT , and the sailor holds the other end of the rope with a much 
smaller force BT . The coefficient of static friction between the rope and the drum is sµ . 

The sailor is holding the rope so that it is just about to slip. Show that  TB = TAe−µsθBA , 
where  θBA  is the angle subtended by the rope on the drum. 
 
 

 
 

Figure 8.45 Capstan 
 

 
 
 
 

 
 
 

Figure 8.46 Small slice of rope
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Solution: We begin by considering a small slice of rope of arc length R θΔ , shown in the 
Figure 8.46.  We choose unit vectors for the force diagram on this section of the rope and 
indicate them on Figure 8.47. The right edge of the slice is at angle θ  and the left edge of 
the slice is at θ + Δθ . The angle edge end of the slice makes with the horizontal is  Δθ / 2 . 
There are four forces acting on this section of the rope. The forces are the normal force 
between the capstan and the rope pointing outward, a static frictional force and the 
tensions at either end of the slice. The rope is held at the just slipping point, so if the load 
exerts a greater force the rope will slip to the right. Therefore the direction of the static 
frictional force between the capstan and the rope, acting on the rope, points to the left. 
The tension on the right side of the slice is denoted by   T (θ) ≡ T , while the tension on the 
left side of the slice is denoted by   T (θ + Δθ) ≡ T + ΔT . Does the tension in this slice 
from the right side to the left, increase, remain the same, or decrease?  The tension 
decreases because the load on the left side is less than the load on the right side. Note that 

0TΔ < .  

 
Figure 8.47 Free-body force diagram on small slice of rope 

 
The vector decomposition of the forces is given by 
 
    î :T cos(Δθ / 2) − fs − (T + ΔT )cos(Δθ / 2)  (8.6.89) 

 ˆ : sin( / 2) ( )sin( / 2)T N T Tθ θ− Δ + − + Δ Δj . (8.6.90) 
 
For small angles θΔ , cos( / 2) 1θΔ ≅  and sin( / 2) / 2θ θΔ ≅ Δ . Using the small angle 
approximations, the vector decomposition of the forces in the x -direction (the ˆ+i - 
direction) becomes  
 

 
   

T cos(Δθ / 2) − fs − (T + ΔT )cos(Δθ / 2)  T − fs − (T + ΔT )

= − fs − ΔT .
 (8.6.91) 

 
By the static equilibrium condition the sum of the x -components of the forces is zero, 
 
   − fs − ΔT = 0 . (8.6.92) 
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The vector decomposition of the forces in the y -direction (the ˆ+j -direction) is 
approximately 
 

 
   

−T sin(Δθ / 2) + N − (T + ΔT )sin(Δθ / 2)  −TΔθ / 2 + N − (T + ΔT )Δθ / 2
= −TΔθ + N − ΔTΔθ / 2 .

(8.6.93) 

 
In the last equation above we can ignore the terms proportional to T θΔ Δ because these 
are the product of two small quantities and hence are much smaller than the terms 
proportional to either TΔ  or θΔ . The vector decomposition in the y -direction becomes 
 
  −TΔθ + N . (8.6.94) 
 
 Static equilibrium implies that this sum of the y -components of the forces is zero, 
 
   −TΔθ + N = 0 . (8.6.95) 
 
We can solve this equation for the magnitude of the normal force 
 
 N T θ= Δ . (8.6.96) 
 
The just slipping condition is that the magnitude of the static friction attains its maximum 
value 
 s s max s( )f f Nµ= = . (8.6.97) 
 
We can now combine the Equations (8.6.92) and (8.6.97) to yield  
 
 sT NµΔ = − . (8.6.98) 
 
Now substitute the magnitude of the normal force, Equation (8.6.96), into Equation 
(8.6.98), yielding 
 0sT Tµ θ− Δ −Δ = . (8.6.99) 
 
Finally, solve this equation for the ratio of the change in tension to the change in angle, 
 

 s
T Tµ
θ

Δ = −
Δ

. (8.6.100) 

 
The derivative of tension with respect to the angle θ  is defined to be the limit  
 

 
0

limdT T
d θθ θΔ →

Δ≡
Δ

, (8.6.101) 

and Equation (8.6.100) becomes 
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 s
dT T
d

µ
θ
= − . (8.6.102) 

 
This is an example of a first order linear differential equation that shows that the rate of 
change of tension with respect to the angle θ  is proportional to the negative of the 
tension at that angle θ . This equation can be solved by integration using the technique of 
separation of variables. We first rewrite Equation (8.6.102) as  
 

 s
dT d
T

µ θ= − . (8.6.103) 

 
Integrate both sides, noting that when 0θ = , the tension is equal to force of the load AT , 
and when angle ,A Bθ θ=  the tension is equal to the force BT  the sailor applies to the rope, 
 

 
  

dT
TT =TA

T =TB

∫ = − µs dθ
θ =0

θ =θBA

∫ . (8.6.104) 

The result of the integration is 

 
  
ln

TB

TA

⎛

⎝⎜
⎞

⎠⎟
= −µsθBA . (8.6.105) 

 
Note that the exponential of the natural logarithm  
 

 exp ln B B

A A

T T
T T

⎛ ⎞⎛ ⎞
=⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

, (8.6.106) 

 
so exponentiating both sides of Equation (8.6.105) yields  
 

 
  

TB

TA

= e −µs θBA ; (8.6.107) 

the tension decreases exponentially, 
 
   TB = TA e −µsθBA , (8.6.108) 
 
Because the tension decreases exponentially, the sailor need only apply a small force to 
prevent the rope from slipping. 
 
Example 8.12 Free Fall with Air Drag 
 
Consider an object of mass  m  that is in free fall but experiencing air resistance. The 
magnitude of the drag force is given by Eq. (8.6.1), where ρ  is the density of air,  A  is 
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the cross-sectional area of the object in a plane perpendicular to the motion, and  CD  is 
the drag coefficient. Assume that the object is released from rest and very quickly attains 
speeds in which Eq. (8.6.1) applies. Determine (i) the terminal velocity, and (ii) the 
velocity of the object as a function of time. 
 
Solution: Choose positive  y -direction downwards with the origin at the initial position 
of the object as shown in Figure 8.48(a). 

y(t)

ĵ h

+ y

O

v(t)

(a)   

ĵ

O

.
+ y

mg

Fdrag

(b)
 

 
Figure 8.48  (a) Coordinate system for marble; (b) free body force diagram on marble 
 
There are two forces acting on the object: the gravitational force, and the drag force 
which is given by Eq. (8.6.1). The free body diagram is shown in the Figure 8.48(b). 
Newton’s Second Law is then  

 
  
mg − (1/ 2)CD Aρv2 = m dv

dt
,  (8.6.109) 

 
Set   β = (1/ 2)CD Aρ . Newton’s Second Law can then be written as  
 

 
  
mg − β v2 = m dv

dt
. (8.6.110) 

 
Initially when the object is just released with   v = 0 , the air drag is zero and the 
acceleration   dv / dt  is maximum. As the object increases its velocity, the air drag 
becomes larger and   dv / dt  decreases until the object reaches terminal velocity and 
  dv / dt = 0 . Set    dv / dt = 0  in Eq. (8.6.15) and solve for the terminal velocity yielding. 
 

 
  
v∞ = mg

β
= 2mg

CD Aρ
. (8.6.111) 

 
Values for the magnitude of the terminal velocity is shown in Table 8.3 for a variety of 
objects with the same drag coefficient   CD = 0.5 , and air density  ρ = 1.225 kg ⋅m−3 . 
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Table 8.3 Terminal Velocities for Different Sized Objects with   CD = 0.5 , 

 ρ = 1.225 kg ⋅m−3  
 
Object Mass  m   (kg)  Area  A   (m

2 )  Terminal Velocity  v∞  (m ⋅s−1)  
Rain drop  4×10−6   3×10−6   6.5  
Hailstone  4×10−3   3×10−4   20  
Osprey 1.5 

 2.5×10−1  14 
Human Being  7.5×101   6×10−1   60  
 
In order to integrate Eq. (8.6.15), we shall apply the technique of separation of variables 
and integration by partial fractions. First rewrite Eq. (8.6.15) as 
 

 

  

−β
m

dt = dv

v2 − mg
β

⎛
⎝⎜

⎞
⎠⎟

= dv
v2 − v∞

2( ) = − 1
2v∞(v + v∞ )

+ 1
2v∞(v − v∞ )

⎛
⎝⎜

⎞
⎠⎟

dv . (8.6.112) 

 
An integral expression of Eq. (8.6.112) is then 
 

 
  
− d ′v

2v∞( ′v + v∞ )′v =0

′v =v(t )

∫ + d ′v
2v∞( ′v − v∞ )′v =0

′v =v(t )

∫ = − β
m

d ′t
′t =0

′t =t

∫ . (8.6.113) 

 
Integration yields 

 

  

− d ′v
2v∞( ′v + v∞ )′v =0

′v =v(t )

∫ + d ′v
2v∞( ′v − v∞ )′v =0

′v =v(t )

∫ = − β
m

d ′t
′t =0

′t =t

∫
1

2v∞

− ln
v(t)+ v∞

v∞

⎛
⎝⎜

⎞
⎠⎟
+ ln

v∞ − v(t)
v∞

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
= − β

m
t

. (8.6.114) 

 
After some algebraic manipulations, Eq. (8.6.114) can be rewritten as 
 

 
  
ln

v∞ − v(t)
v(t)+ v∞

⎛
⎝⎜

⎞
⎠⎟
= −

2v∞β
m

t   (8.6.115) 

Exponentiate Eq. (8.6.115) yields 

 
  

v∞ − v(t)
v(t)+ v∞

⎛
⎝⎜

⎞
⎠⎟
= e

−
2v∞β

m
t
. (8.6.116) 

 
After some algebraic rearrangement the  y -component of the velocity as a function of 
time is given by 
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v(t) = v∞

1− e
−

2v∞β
m

t

1+ e
−

2v∞β
m

t

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= v∞ tan h

v∞β
m

t
⎛
⎝⎜

⎞
⎠⎟

. (8.6.117) 

 

where 
  

v∞β
m

= β
m

mg
β

= βg
m

=
(1/ 2)CD Aρg

m
.  

 
 


