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Chapter 4 One Dimensional Kinematics 
 

 
In the first place, what do we mean by time and space? It turns out that these deep 
philosophical questions have to be analyzed very carefully in physics, and this is 
not easy to do. The theory of relativity shows that our ideas of space and time are 
not as simple as one might imagine at first sight. However, for our present 
purposes, for the accuracy that we need at first, we need not be very careful about 
defining things precisely. Perhaps you say, “That’s a terrible thing—I learned 
that in science we have to define everything precisely.” We cannot define 
anything precisely! If we attempt to, we get into that paralysis of thought that 
comes to philosophers, who sit opposite each other, one saying to the other, “You 
don’t know what you are talking about!” The second one says. “What do you 
mean by know? What do you mean by talking? What do you mean by you?”, and 
so on. In order to be able to talk constructively, we just have to agree that we are 
talking roughly about the same thing. You know as much about time as you need 
for the present, but remember that there are some subtleties that have to be 
discussed; we shall discuss them later.1   
 
               Richard Feynman 

 
4.1 Introduction 
 
Kinematics is the mathematical description of motion. The term is derived from the 
Greek word kinema, meaning movement. In order to quantify motion, a mathematical 
coordinate system, called a reference frame, is used to describe space and time. Once a 
reference frame has been chosen, we shall introduce the physical concepts of position, 
velocity and acceleration in a mathematically precise manner. Figure 4.1 shows a 
Cartesian coordinate system in one dimension with unit vector   ̂i  pointing in the direction 
of increasing  x -coordinate. 

î

0 + x

 
Figure 4.1 A one-dimensional Cartesian coordinate system. 

 
 

                                                
1 Richard P. Feynman, Robert B. Leighton, Matthew Sands, The Feynman Lectures on 
Physics, Addison-Wesley, Reading, Massachusetts, (1963), p. 12-2. 



4.2 Position, Time Interval, Displacement 
 
4.2.1 Position 
 
Consider a point-like object moving in one dimension. We denote the position 
coordinate of the object with respect to the choice of origin by   x(t) . The position 
coordinate is a function of time and can be positive, zero, or negative, depending on the 
location of the object. The position of the object with respect to the origin has both 
direction and magnitude, and hence is a vector (Figure 4.2), which we shall denote as the 
position vector (or simply position) and write as 
 
     

r(t) = x(t) î . (4.2.1) 
  
We denote the position coordinate at   t = 0  by the symbol 0 ( 0)x x t≡ = . The SI unit for 
position is the meter [m]. 

î

0 + xr(t)

x(t)
 

 
Figure 4.2 The position vector, with reference to a chosen origin. 

 
4.2.2 Time Interval 
 
Consider a closed interval of time   [t1, t2] . We characterize this time interval by the 
difference in endpoints of the interval, 
   Δt = t2 − t1 . (4.2.2) 
 
The SI units for time intervals are seconds [s]. 
 
4.2.3 Displacement 
 

The displacement of a body during a time interval   [t1, t2]  (Figure 4.3) is defined 
to be the change in the position of the body 
 
     Δ

r ≡ r(t2 )− r(t1) = (x(t2 )− x(t1)) î ≡ Δx(t) î . (4.2.3) 
 

Displacement is a vector quantity. 
 



î

0 + x

x(t2 )x(t1)

r(t2 )

r

r(t1)

 
Figure 4.3 The displacement vector of an object over a time interval is the vector 

difference between the two position vectors 
 
4.3 Velocity 
 
When describing the motion of objects, words like “speed” and “velocity” are used in 
natural language; however when introducing a mathematical description of motion, we 
need to define these terms precisely. Our procedure will be to define average quantities 
for finite intervals of time and then examine what happens in the limit as the time interval 
becomes infinitesimally small. This will lead us to the mathematical concept that velocity 
at an instant in time is the derivative of the position with respect to time.  
 
4.3.1 Average Velocity 

 
The  x -component of the average velocity,   

vx,ave , for a time interval tΔ  is defined 
to be the displacement xΔ  divided by the time interval tΔ ,  
 

 
  
vx,ave ≡

Δx
Δt

. (4.3.1) 

 
Because we are describing one-dimensional motion we shall drop the subscript  x  and 
denote  
   

vave = vx,ave . (4.3.2) 
 
When we introduce two-dimensional motion we will distinguish the components of the 
velocity by subscripts. The average velocity vector is then  
 

 
    
vave ≡

Δx
Δt

î = vave î . (4.3.3) 

 
The SI units for average velocity are meters per second 1m s−⎡ ⎤⋅⎣ ⎦ . The average velocity is 
not necessarily equal to the distance in the time interval tΔ  traveled divided by the time 
interval tΔ . For example, during a time interval, an object moves in the positive  x -
direction and then returns to its starting position, the displacement of the object is zero, 
but the distance traveled is non-zero. 



4.3.3 Instantaneous Velocity 
 
Consider a body moving in one direction. During the time interval [ , ]t t t+ Δ , the average 
velocity corresponds to the slope of the line connecting the points ( , ( ))t x t  and 

  (t + Δt, x(t + Δt)) . The slope, the rise over the run, is the change in position divided by 
the change in time, and is given by 
 

 
  
vave ≡

rise
run

= Δx
Δt

= x(t + Δt)− x(t)
Δt

. (4.3.4) 

 
As 0tΔ → , the slope of the lines connecting the points   (t, x(t))  and   (t + Δt, x(t + Δt)) , 
approach slope of the tangent line to the graph of the function   x(t)  at the time t  (Figure 
4.4). 

t t + t

x(t)

x(t + t)

t

x

tangent line 
at time t

x(t)

 
Figure 4.4 Plot of position vs. time showing the tangent line at time t . 

 
The limiting value of this sequence is defined to be the x -component of the 
instantaneous velocity at the time t . 
 

The x -component of instantaneous velocity at time t  is given by the 
slope of the tangent line to the graph of the position function at time t : 
 

 
  
v(t) ≡ lim

Δt→0
vave = lim

Δt→0

Δx
Δt

= lim
Δt→0

x(t + Δt)− x(t)
Δt

≡ dx
dt

. (4.3.5) 

 
The instantaneous velocity vector is then 
 
     

v(t) = v(t) î . (4.3.6) 
 
The component of the velocity,   v(t) , can be positive, zero, or negative, depending on 
whether the object is travelling in the positive  x -direction, instantaneously at rest, or the 
negative  x -direction. 
 

 



Example 4.1 Determining Velocity from Position 
 
Consider an object that is moving along the x -coordinate axis with the position function 
given by 

 
  
x(t) = x0 +

1
2

bt2  (4.3.7) 

 
where 0x  is the initial position of the object at 0t = . We can explicitly calculate the x -
component of instantaneous velocity from Equation (4.3.5) by first calculating the 
displacement in the x -direction, ( ) ( )x x t t x tΔ = + Δ − . We need to calculate the position 
at time t t+ Δ , 

 
  
x(t + Δt) = x0 +

1
2

b(t + Δt)2 = x0 +
1
2

b(t2 + 2tΔt + Δt2 ) . (4.3.8) 

 
Then the x -component of instantaneous velocity is  
 

 
  
v(t) = lim

Δt→0

x(t + Δt)− x(t)
Δt

= lim
Δt→0

x0 +
1
2

b(t2 + 2tΔt + Δt2 )
⎛
⎝⎜

⎞
⎠⎟
− x0 +

1
2

bt2⎛
⎝⎜

⎞
⎠⎟

Δt
. (4.3.9) 

 
This expression reduces to 

 
  
v(t) = lim

Δt→0
bt + 1

2
bΔt

⎛
⎝⎜

⎞
⎠⎟

. (4.3.10) 

 
The first term is independent of the interval tΔ  and the second term vanishes because in 
the limit as 0tΔ → , the term   (1/ 2)bΔt → 0  is zero. Therefore the x -component of 
instantaneous velocity at time t is  
   v(t) = bt . (4.3.11) 
 
In Figure 4.5 we plot the instantaneous velocity,   v(t) , as a function of time t . 

t

v(t) v(t) = bt

 
Figure 4.5 Plot of instantaneous velocity instantaneous velocity as a function of time. 
 
 
 



Example 4.2 Mean Value Theorem 
 
Consider an object that is moving along the x -coordinate axis with the position function 
given by 

 
  
x(t) = x0 + v0t +

1
2

bt2 . (4.3.12) 

 
The graph of   x(t)  vs.  t  is shown in Figure 4.6.  
 

  x(t)

x0

slope = vave

slope = v(t1)

t

x(t) = x0 + v0t + 1
2

bt2

ti t f

x(t f )

x(ti )

t1 = (t f ti ) / 2
 

 
Figure 4.6 Intermediate Value Theorem 

 
The x -component of the instantaneous velocity is 
 

 
  
v(t) = dx(t)

dt
= v0 + bt .  (4.3.13) 

 
For the time interval   

[ti ,t f ] , the displacement of the object is 
 

 
  
x(t f )− x(ti ) = Δx = v0(t f − ti )+

1
2

b(t f
2 − ti

2 ) = v0(t f − ti )+
1
2

b(t f − ti )(t f + ti ) . (4.3.14) 

 
Recall that the x -component of the average velocity is defined by the condition that 
 
   

Δx = vave(t f − ti ) .  (4.3.15) 
 
We can determine the average velocity by substituting Eq. (4.3.15) into Eq. (4.3.14) 
yielding 



 

 
  
vave = v0 +

1
2

b(t f + ti ) .  (4.3.16) 

 
 
The Mean Value Theorem from calculus states that there exists an instant in time   t1 , with 

  
ti < t1 < t f , such that the  x -component of the instantaneously velocity,   v(t1) , satisfies 
 
   

Δx = v(t1)(t f − ti )  . (4.3.17) 
 
Geometrically this means that the slope of the straight line (blue line in Figure 4.6) 
connecting the points   (ti ,x(ti ))  to   

(t f ,x(t f ))  is equal to the slope of the tangent line (red 

line in Figure 4.6) to the graph of   x(t)  vs.  t  at the point   (t1,x(t1))  (Figure 4.6), 
 
   v(t1) = vave  . (4.3.18) 
We know from Eq. (4.3.13) that 
 
   v(t1) = v0 + bt1 .  (4.3.19) 
 
We can solve for the time   t1  by substituting Eqs. (4.3.19) and (4.3.16) into Eq. (4.3.18) 
yielding 
   

t1 = (t f + ti ) / 2   (4.3.20) 
 
This intermediate value   v(t1)  is also equal to one-half the sum of the initial velocity and 
final velocity 
 

 
  
v(t1) =

v(ti )+ v(t f )
2

=
(v0 + bti )+ (v0 + bt f )

2
= v0 +

1
2

b(t f + ti ) = v0 + bt1  . (4.3.21) 

 
For any time interval, the quantity   

(v(ti )+ v(t f )) / 2 , is the arithmetic mean of the initial 
velocity and the final velocity (but unfortunately is also sometimes referred to as the 
average velocity).  The average velocity, which we defined as   

vave = (x f − xi ) / Δt , and the 

arithmetic mean,   
(v(ti )+ v(t f )) / 2 , are only equal in the special case when the velocity is 

a linear function in the variable  t  as in this example, (Eq. (4.3.13)). We shall only use the 
term average velocity to mean displacement divided by the time interval. 
 
 
 



4.4 Acceleration 
 
We shall apply the same physical and mathematical procedure for defining acceleration, 
as the rate of change of velocity with respect to time.  We first consider how the 
instantaneous velocity changes over a fixed time interval of time and then take the limit 
as the time interval approaches zero.  
 
4.4.1 Average Acceleration 
 
Average acceleration is the quantity that measures a change in velocity over a particular 
time interval. Suppose during a time interval tΔ  a body undergoes a change in velocity  
 
 ( ) ( )t t tΔ = + Δ −v v v   . (4.3.22) 
 
The change in the x -component of the velocity,  Δv , for the time interval [ , ]t t t+ Δ  is 
then 
   Δv = v(t + Δt)− v(t) . (4.3.23) 
 

The x -component of the average acceleration for the time interval tΔ  is defined 
to be 

 
    
aave = aave î ≡ Δv

Δt
î = (v(t + Δt)− v(t))

Δt
î . (4.3.24) 

 
The SI units for average acceleration are meters per second squared,  [m⋅s−2] . 
 
4.4.2 Instantaneous Acceleration  
  
Consider the graph of the  x -component of velocity,   v(t) , (Figure 4.7).  
 

t

slope = 

t

t

v(t)

v

t + t

a(t)

v(t + t)

 



 
Figure 4.7 Graph of velocity vs. time showing the tangent line at time  t . 

 
The average acceleration for a fixed time interval  Δt  is the slope of the straight line 
connecting the two points   (t, v(t))  and   (t + Δt, v(t + Δt)) . In order to define the  x -
component of the instantaneous acceleration at time  t , we employ the same limiting 
argument as we did when we defined the instantaneous velocity in terms of the slope of 
the tangent line. 
 

The x -component of the instantaneous acceleration at time t  is the slope of the 
tangent line at time t  of the graph of the x -component of the velocity as a 
function of time, 
 

 
  
a(t) ≡ lim

Δt→0

Δv
Δt

= lim
Δt→0

(v(t + Δt)− v(t))
Δt

≡ dv
dt

. (4.3.25) 

 
The instantaneous acceleration vector at time t  is then 
 
     

a(t) = a(t) î . (4.3.26) 
 
Because the velocity is the derivative of position with respect to time, the x -component 
of the acceleration is the second derivative of the position function, 
 

 
  
a = dv

dt
= d 2x

dt2 . (4.3.27) 

  
Example 4.3 Determining Acceleration from Velocity 
 
Let’s continue Example 4.1, in which the position function for the body is given by 

  x = x0 + (1/ 2)bt2 , and the x -component of the velocity is  v = bt . The x -component of 
the instantaneous acceleration is the first derivative (with respect to time) of the x -
component of the velocity: 
 

 
  
a = dv

dt
= lim

Δt→0

v(t + Δt)− v(t)
Δt

= lim
Δt→0

bt + bΔt − bt
Δt

= b . (4.3.28) 

 
Note that in Eq. (4.3.28), the ratio /v tΔ Δ  is independent of  t , consistent with the 
constant slope as shown in Figure 4.5. 
 



 
 
 
4.5 Constant Acceleration 
 

t

a(t) = a
a(t)

a

t

v(t) v(t) = v0 + at

v0

(a) (b)

Area = at

 
 

Figure 4.8 Constant acceleration: (a) velocity, (b) acceleration 
 
When the  x -component of the velocity is a linear function (Figure 4.8(a)), the average 
acceleration,   Δv / Δt , is a constant and hence is equal to the instantaneous acceleration 
(Figure 4.8(b)). Let’s consider a body undergoing constant acceleration for a time interval 
  [0, t] , where  Δt = t . Denote the  x -component of the velocity at time   t = 0  by 

  v0 ≡ v(t = 0) . Therefore the  x -component of the acceleration is given by 
 

 
  
a(t) = Δv

Δt
=

v(t)− v0

t
. (4.4.1) 

 
Thus the  x -component of the velocity is a linear function of time given by 
 
   v(t) = v0 + at . (4.4.2) 
 
4.5.1 Velocity: Area Under the Acceleration vs. Time Graph 
 
In Figure 4.8(b), the area under the acceleration vs. time graph, for the time interval 
  Δt = t − 0 = t , is 
   Area(a(t), t) = at . (4.4.3) 
 
From Eq. (4.4.2), the area is the change in the  x -component of the velocity for the 
interval   [0, t] : 
   Area(a(t),t) = at = v(t)− v0 = Δv . (4.4.4) 
 
4.5.2 Displacement: Area Under the Velocity vs. Time Graph  
 
In Figure 4.9 shows a graph of the  x -component of the velocity vs. time for the case of 
constant acceleration (Eq. (4.4.2)).  



 

t

v(t)
v(t) = v0 + at

v0 A1 = v0 t

A2 =
1
2
(v(t) v0 )

O

t

 
 

Figure 4.9 Graph of velocity as a function of time for  a  constant. 
 
The region under the velocity vs. time curve is a trapezoid, formed from a rectangle with 
area   

A1 = v0 t , and a triangle with area   
A2 = (1/ 2)(v(t)− v0 )t . The total area of the 

trapezoid is given by 

 
  
Area(v(t),t) = A1 + A2 = v0 t + 1

2
(v(t)− v0 )t . (4.4.5) 

 
Substituting for the velocity (Eq. (4.4.2)) yields 
 

 
  
Area(v(t),t) = v0 t + 1

2
at2 . (4.4.6) 

 
Recall that from Example 4.2 (setting  b = a  and  Δt = t ),  
 

 
  
vave = v0 +

1
2

at = Δx / t , (4.4.7) 

 
therefore Eq. (4.4.6) can be rewritten as 
 

 
  
Area(v(t),t) = (v0 +

1
2

at)t = vavet = Δx   (4.4.8) 

 
The displacement is equal to the area under the graph of the x -component of the velocity 
vs. time. The position as a function of time can now be found by rewriting Equation 
(4.4.8) as 

 
  
x(t) = x0 + v0 t + 1

2
at2 . (4.4.9) 

 
Figure 4.10 shows a graph of this equation. Notice that at 0t =  the slope is non-zero, 
corresponding to the initial velocity component   v0 . 



 

x0
O t

x(t)

slope = v0

 
Figure 4.10 Graph of position vs. time for constant acceleration. 

 
 
Example 4.4 Accelerating Car 
 
A car, starting at rest at   t = 0 , accelerates in a straight line for  100 m  with an unknown 
constant acceleration. It reaches a speed of  20 m ⋅ s−1  and then continues at this speed for 
another 10 s . (a) Write down the equations for position and velocity of the car as a 
function of time. (b) How long was the car accelerating? (c) What was the magnitude of 
the acceleration? (d) Plot speed vs. time, acceleration vs. time, and position vs. time for 
the entire motion. (e) What was the average velocity for the entire trip? 
 
Solutions: (a) For the acceleration  a , the position   x(t)  and velocity   v(t)  as a function of 
time  t  for a car starting from rest are 

 

 
  

x(t) = (1/ 2)at2

vx (t) = at.
 (4.4.10) 

 
b) Denote the time interval during which the car accelerated by   t1 . We know that the 

position   x(t1) = 100m  and   v(t1) = 20 m ⋅ s−1 . Note that we can eliminate the acceleration 
 a  between the Equations (4.4.10) to obtain  
 
   x(t) = (1 / 2)v(t) t . (4.4.11) 
 
We can solve this equation for time as a function of the distance and the final speed 
giving 

 
  
t = 2

x(t)
v(t)

. (4.4.12) 

 
We can now substitute our known values for the position   x(t1) = 100m  and 

  v(t1) = 20 m ⋅ s−1  and solve for the time interval that the car has accelerated 



 

 
  
t1 = 2

x(t1)
v(t1)

= 2
100 m

20 m ⋅ s−1 = 10s . (4.4.13) 

 
c) We can substitute into either of the expressions in Equation (4.4.10); the second is 
slightly easier to use, 

 
  
a =

v(t1)
t1

=
20 m ⋅ s−1

10s
= 2.0m ⋅ s−2 . (4.4.14) 

 
d) The  x -component of acceleration vs. time,  x -component of the velocity vs. time, and 
the position vs. time are piece-wise functions given by 
 

  
a(t) = 2 m ⋅s-2; 0 < t ≤10 s

0; 10 s < t < 20 s
⎧
⎨
⎩

, 

  
v(t) =

(2 m ⋅s-2 )t; 0 < t ≤10 s
20 m ⋅s-1; 10 s ≤ t ≤ 20 s

⎧
⎨
⎪

⎩⎪
, 

  
x(t) =

(1/ 2)(2 m ⋅s-2 )t2; 0 < t ≤10 s
100 m +(20 m ⋅s-2 )( t −10 s); 10 s ≤ t ≤ 20 s

⎧
⎨
⎪

⎩⎪
. 

 
The graphs of the  x -component of acceleration vs. time,  x -component of the velocity vs. 
time, and the position vs. time are shown in Figure 4.11. 

 
(e) After accelerating, the car travels for an additional ten seconds at constant speed and 
during this interval the car travels an additional distance   Δx = v(t1) ×10s=200m  (note 
that this is twice the distance traveled during the  10s  of acceleration), so the total 
distance traveled is  300m  and the total time is  20s , for an average velocity of 
 

 
  
vave =

300m
20s

=15m ⋅s−1 . (4.4.15) 

 

10 s 20 s
t

x(t)

100 m

10 s 20 s
t

v(t)
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a(t)
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t

300m

 
 
Figure 4.11 Graphs of the x-components of acceleration, velocity and position as piece-
wise functions  
 



 
Example 4.5 Catching a Bus 
 
At the instant a traffic light turns green, a car starts from rest with a given constant 
acceleration,  3.0 m ⋅s-2 . Just as the light turns green, a bus, traveling with a given 
constant velocity,  1.6 ×101 m ⋅ s-1 , passes the car. The car speeds up and passes the bus 
some time later. How far down the road has the car traveled, when the car passes the bus?  
 
Solution:  
 
There are two moving objects, bus and the car. Each object undergoes one stage of one-
dimensional motion. We are given the acceleration of the car, the velocity of the bus, and 
infer that the position of the car and the bus are equal when the bus just passes the car. 
Figure 4.12 shows a qualitative sketch of the position of the car and bus as a function of 
time. 

x1(t)

x2(t)

x

t0
ta

bus

car

 
Figure 4.12 Position vs. time of the car and bus 

 
Choose a coordinate system with the origin at the traffic light and the positive  x -
direction such that car and bus are travelling in the positive  x -direction. Set time   t = 0  as 
the instant the car and bus pass each other at the origin when the light turns green. Figure 
4.13 shows the position of the car and bus at time  t .  

x1(t)

x2(t)

+ x0

 
Figure 4.13 Coordinate system for car and bus 

 
Let   x1(t)  denote the position function of the car, and   x2(t)  the position function for the 
bus. The initial position and initial velocity of the car are both zero,   

x1,0 = 0  and   
v1,0 = 0 , 



and the acceleration of the car is non-zero   a1 ≠ 0 . Therefore the position and velocity 
functions of the car are given by 

  
x1(t) =

1
2

a1t
2 , 

  v1(t) = a1t . 
 
The initial position of the bus is zero,   

x2,0 = 0 , the initial velocity of the bus is non-zero, 

  
v2,0 ≠ 0 , and the acceleration of the bus is zero,   a2 = 0 . Therefore the velocity is constant, 

  
v2(t) = v2,0 , and the position function for the bus is given by   

x2(t) = v2,0t .  
 
Let  t = ta  correspond to the time that the car passes the bus. Then at that instant, the 
position functions of the bus and car are equal,   x1(ta ) = x2 (ta ) . We can use this condition 
to solve for  ta : 

  
(1/ 2)a1ta

2 = v2,0ta ⇒ ta =
2v2,0

a1

= (2)(1.6×101 m ⋅s-1)
(3.0m ⋅s-2 )

= 1.1×101s . 

 
Therefore the position of the car at  ta  is 

 

  
x1(ta ) = 1

2
a1ta

2 =
2v2,0

2

a1

= (2)(1.6×101 m ⋅s-1)2

(3.0 m ⋅s-2 )
= 1.7 ×102 m . 

 
 
4.6 One Dimensional Kinematics and Integration  
 
When the acceleration   a(t)  of an object is a non-constant function of time, we would like 
to determine the time dependence of the position function   x(t)  and the  x -component of 
the velocity   v(t) . Because the acceleration is non-constant we no longer can use Eqs. 
(4.4.2) and (4.4.9). Instead we shall use integration techniques to determine these 
functions.   
 
4.6.1 Change of Velocity as the Indefinite Integral of Acceleration  
 
Consider a time interval   t1 < t < t2 . Recall that by definition the derivative of the velocity 

  v(t)  is equal to the acceleration   a(t) ,  

 
  
dv(t)

dt
= a(t)  . (4.5.1) 

 



Integration is defined as the inverse operation of differentiation or the ‘anti-derivative’. 
For our example, the function   v(t)  is called the indefinite integral of   a(t)  with respect 
to  t , and is unique up to an additive constant  C . We denote this by writing 
 
    v(t)+C = a(t)dt∫  . (4.5.2) 
 
The symbol   ...dt∫  means the ‘integral, with respect to  t , of …”, and is thought of as the 

inverse of the symbol 
  
d
dt

.... . Equivalently we can write the differential   dv(t) = a(t)dt , 

called the integrand, and then Eq. (4.5.2) can be written as 
 
   v(t)+C = dv(t)∫  , (4.5.3) 
 
which we interpret by saying that the integral of the differential of function is equal to the 
function plus a constant.  
 
Example 4.6 Non-constant acceleration 
 
Suppose an object at time   t = 0  has initial non-zero velocity   v0  and acceleration 

  a(t) = bt2 , where b is a constant. Then   dv(t) = bt2dt = d(bt3 / 3) . The velocity is then 

  v(t)+C = d(bt3 / 3)∫ = bt3 / 3 . At   t = 0 , we have that   v0 +C = 0 . Therefore   C = −v0  and 

the velocity as a function of time is then   v(t) = v0 + (bt3 / 3) . 
 
4.6.2 Area as the Indefinite Integral of Acceleration  
 
 Consider the graph of a positive-valued acceleration function   a(t)  vs.  t  for the 
interval   t1 ≤ t ≤ t2 , shown in Figure 4.14a. Denote the area under the graph of   a(t)  over 

the interval   t1 ≤ t ≤ t2  by 
  
A t1

t2 .   

 

t1

a(t)

t

a(t1)

a(t2 )

t2tc

Area = A t1
t2

       

Figure 4.14a: Area under the graph of 
acceleration over an interval   t1 ≤ t ≤ t2  
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Figure 4.14b: Intermediate value 
Theorem. The shaded regions above and 
below the curve have equal areas. 

 
 
The Intermediate Value Theorem states that there is at least one time  tc  such that the 

area 
  
A t1

t2  is equal to    

 
  
A t1

t2= a(tc )(t2 − t1)  . (4.5.4) 

 
In Figure 4.14b, the shaded regions above and below the curve have equal areas, and 
hence the area 

  
A t1

t2  under the curve is equal to the area of the rectangle given by 

  a(tc )(t2 − t1) . 

t1

a(t)

t

a(t1)

a(t2 )

t2t t + t

A t1
t A t

t+ t

 
Figure 4.15 Area function is additive 

 
We shall now show that the derivative of the area function is equal to the acceleration and 
thererfore we can write the area function as an indefinite integral. From Figure 4.15, the 
area function satisfies the condition that  
 
 

  
A t1

t + A t
t+Δt= A t1

t+Δt  . (4.5.5) 

 
Let the small increment of area be denoted by 

  
ΔA t1

t = A t1

t+Δt− A t1

t = A t
t+Δt . By the 

Intermediate Value Theorem  



 
  
ΔA t1

t = a(tc )Δt  , (4.5.6) 

 
where  t ≤ tc ≤ t + Δt . In the limit as   Δt → 0 , 
 

 
  

dA t1

t

dt
= lim

Δt→0

ΔA t1

t

Δt
= lim

tc→t
a(tc ) = a(t)  , (4.5.7) 

 
with the initial condition that when   t = t1 , the area 

  
A t1

t1= 0  is zero. Because   v(t)  is also an 

integral of   a(t) , we have that 
 
 

  
A t1

t = a(t)dt∫ = v(t)+C  . (4.5.8) 

 
When   t = t1 , the area 

  
A t1

t1= 0  is zero, therefore   v(t1)+C = 0 , and so   C = −v(t1) . Therefore 

Eq. (4.5.8) becomes 
 

  
A t1

t = v(t)− v(t1) = a(t)dt∫  . (4.5.9) 

 
When we set   t = t2 ,  Eq. (4.5.9) becomes 
 
 

  
A t1

t2= v(t2 )− v(t1) = a(t)dt∫  . (4.5.10) 

 
The area under the graph of the positive-valued acceleration function for the interval 

  t1 ≤ t ≤ t2  can be found by integrating   a(t) . 
 
4.6.3 Change of Velocity as the Definite Integral of Acceleration  
 
Let   a(t)  be the acceleration function over the interval  

ti ≤ t ≤ t f . Recall that the velocity 

  v(t)  is an integral of   a(t)  because   dv(t) / dt = a(t) . Divide the time interval   
[ti , t f ]  into 

 n  equal time subintervals   
Δt = (t f − ti ) / n . For each subinterval   

[t j ,t j+1] , where the index 

  j = 1, 2, ... ,n ,   t1 = ti  and   
tn+1 = t f , let 

 
tc j

 be a time such that 
  
t j ≤ tc j

≤ t j+1 . Let 

 

 
  
Sn = a(tc j

) Δt
j=1

j=n

∑  . (4.5.11) 

 

 Sn  is the sum of the blue rectangle shown in Figure 4.16a for the case   n = 4 . The 
Fundamental Theorem of Calculus states that in the limit as  n→∞ , the sum is equal 
to the change in the velocity during the interval   

[ti , t f ]  



 
  
lim
n→∞

Sn = lim
n→∞

a(tc j
) Δt

j=1

j=n

∑ = v(t f )− v(ti )  . (4.5.12) 
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Figure 4.16a Graph of   a(t)  vs.  t  
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Figure 4.16b Graph of   a(t)  vs.  t  

The limit of the sum in Eq. (4.5.12) is a number, which we denote by the symbol 
 

 
  

a(t) dt
ti

t f

∫ ≡ lim
n→∞

a(tc j
) Δt

j=1

j=n

∑ = v(t f )− v(ti )  , (4.5.13) 

 
and is called the definite integral of   a(t)  from  ti  to  

t f . The times  ti  and  
t f  are called 

the limits of integration,  ti  the lower limit and  
t f  the upper limit. The definite integral is 

a linear map that takes a function   a(t)  defined over the interval   
[ti , t f ]and gives a 

number. The map is linear because 
 

 
  

(a1(t)+ a2(t)) dt
ti

t f

∫ = a1(t) dt
ti

t f

∫ + a2(t) dt
ti

t f

∫  , (4.5.14) 

 
Suppose the times 

 
tc j

,   j = 1,...,n , are selected such that each 
 
tc j

 satisfies the Intermediate 

Value Theorem,  
 

 
  
Δv j ≡ v(t j+1)− v(t j ) =

dv(tc j
)

dt
Δt = a(tc j

)Δt  , (4.5.15) 

 



where 
  
a(tc j

)  is the instantaneous acceleration at 
 
tc j

, (Figure 4.16b). Then the sum of the 

changes in the velocity for the interval   
[ti , t f ]  is 

 

 

   

Δv j
j=1

j=n

∑ = (v(t2 )− v(t1))+ (v(t3)− v(t2 ))++ (v(tn+1)− v(tn )) = v(tn+1)− v(t1)

= v(t f )− v(ti ).
(4.5.16) 

 
where   

v(t f ) = v(tn+1)  and   v(ti ) = v(t1) . Substituting Eq. (4.5.15) into Equation (4.5.16) 
yields the exact result that the change in the x -component of the velocity is give by this 
finite sum. 

 
  
v(t f )− v(ti ) = Δv j

j=1

j=n

∑ = a(tc j
) Δt

j=1

j=n

∑ . (4.5.17) 

 
We do not specifically know the intermediate values 

  
a(tc j

)  and so Eq. (4.5.17) is not 

useful as a calculating tool. The statement of the Fundamental Theorem of Calculus is 
that the limit as  n→∞  of the sum in Eq. (4.5.12) is independent of the choice of the set 
of 

 
tc j

. Therefore the exact result in Eq. (4.5.17) is the limit of the sum. 

 
Thus we can evaluate the definite integral if we know any indefinite integral of the 
integrand    a(t)dt = dv(t) .  
 
Additionally, provided the acceleration function has only non-negative values, the limit is 
also equal to the area under the graph of   a(t)  vs.  t  for the time interval,   

[ti , t f ] : 
 

 
  
A ti

t f = a(t) dt
ti

t f

∫  . (4.5.18) 

 
In Figure 4.14, the red areas are an overestimate and the blue areas are an underestimate. 
As  N →∞ , the sum of the red areas and the sum of the blue areas both approach zero. If 
there are intervals in which   a(t)  has negative values, then the summation is a sum of 
signed areas, positive area above the  t -axis and negative area below the  t -axis.  
 
We can determine both the change in velocity for the time interval   

[ti , t f ]  and the area 

under the graph of   a(t)  vs.  t  for   
[ti , t f ]  by integration techniques instead of limiting 

arguments. We can turn the linear map into a function of time, instead of just giving a 
number, by setting  

t f = t . In that case, Eq. (4.5.13) becomes  
 



 
  
v(t)− v(ti ) = a( ′t )

′t =ti

′t =t

∫ d ′t .  (4.5.19) 

 
Because the upper limit of the integral,  

t f = t , is now treated as a variable, we shall use 
the symbol  ′t  as the integration variable instead of  t . 
 
4.6.4 Displacement as the Definite Integral of Velocity  
 
We can repeat the same argument for the definite integral of the x -component of the 
velocity   v(t)  vs. time  t . Because   x(t)  is an integral of   v(t)  the definite integral of   v(t)  
for the time interval   

[ti , t f ]  is the displacement 
 

 
  
x(t f )− x(ti ) = v( ′t )

′t =ti

′t =t f

∫ d ′t .  (4.5.20) 

 
If we set  

t f = t , then the definite integral gives us the position as a function of time 
 

 
  
x(t) = x(ti )+ v( ′t )

′t =ti

′t =t

∫ d ′t .  (4.5.21) 

 
Summarizing the results of these last two sections, for a given acceleration   a(t) , we can 
use integration techniques, to determine the change in velocity and change in position for 
an interval   [ti , t] , and given initial conditions   (xi ,vi ) , we can determine the position   x(t)  
and the x -component of the velocity   v(t)  as functions of time. 
 
Example 4.5 Non-constant Acceleration  
 
Let’s consider a case in which the acceleration,   a(t) , is not constant in time, 
 
   a(t) = b0 + b1 t + b2 t2 . (4.5.22) 
 
The graph of the x -component of the acceleration vs. time is shown in Figure 4.16 
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Figure 4.16 Non-constant acceleration vs. time graph. 
 
Denote the initial velocity at   t = 0  by   v0 . Then, the change in the x -component of the 
velocity as a function of time can be found by integration: 
  

 
  
v(t)− v0 = a( ′t )d ′t

′t =0

′t =t

∫ = (b0 + b1 ′t + b2 ′t 2 )d ′t
′t =0

′t =t

∫ = b0 t +
b1 t2

2
+

b2 t3

3
. (4.5.23) 

 
The x -component of the velocity as a function in time is then 
 

 
  
v(t) = v0 + b0 t +

b1 t2

2
+

b2 t3

3
. (4.5.24) 

 
Denote the initial position at   t = 0  by   x0 . The displacement as a function of time is  
 

 
  
x(t)− x0 = v( ′t )d ′t

′t =0

′t =t

∫ .  (4.5.25) 

 
Use Equation (4.5.24) for the x -component of the velocity in Equation (4.5.25) and then 
integrate to determine the displacement as a function of time: 
 

 

  

x(t)− x0 = v( ′t )d ′t
′t =0

′t =t

∫

= v0 + b0 ′t +
b1 ′t 2

2
+

b2 ′t 3

3
⎛

⎝⎜
⎞

⎠⎟
d ′t

′t =0

′t =t

∫ = v0 t +
b0 t2

2
+

b1 t3

6
+

b2 t4

12
.
 (4.5.26) 

 
Finally the position as a function of time is then 
  

 
  
x(t) = x0 + vx ,0 t +

b0 t2

2
+

b1 t3

6
+

b2 t4

12
.  (4.5.27) 



 
Example 4.6 Bicycle and Car 
 
A car is driving through a green light at   t = 0  located at   x = 0  with an initial speed 

  
vc,0 = 12 m ⋅s-1 . At time   t1 = 1s , the car starts braking until it comes to rest at time   t2 . The 
acceleration of the car as a function of time is given by the piecewise function 
 

  
ac(t) =

0; 0 < t < t1 = 1s
b(t − t1); 1s < t < t2

⎧
⎨
⎪

⎩⎪
, 

where   b = −(6 m ⋅s-3) . 
 
(a) Find the x -component of the velocity and the position of the car as a function of time. 
(b) A bicycle rider is riding at a constant speed of   

vb,0  and at   t = 0  is  17 m  behind the car. 
The bicyclist reaches the car when the car just comes to rest. Find the speed of the bicycle. 
 
Solution: a) In order to apply Eq. (4.5.19), we shall treat each stage separately. For the 
time interval   0 < t < t1 , the acceleration is zero so the x -component of the velocity is 
constant. For the second time interval   t1 < t < t2 , the definite integral becomes 
 

  
vc(t)− vc(t1) = b( ′t − t1)

′t =t1

′t =t

∫ d ′t  

  
Because   vc(t1) = vc0 , the x -component of the velocity is then 
 

  

vc(t) =

vc0; 0 < t ≤ t1

vc0 + b( ′t − t1)d ′t
′t =t1

′t =t

∫ ; t1 ≤ t < t2

⎧

⎨
⎪

⎩
⎪

. 

 
Integrate and substitute the two endpoints of the definite integral, yields 
 

  

vc(t) =
vc0; 0 < t ≤ t1

vc0 +
1
2

b(t − t1)2; t1 ≤ t < t2

⎧
⎨
⎪

⎩⎪
. 

 
In order to use Eq. (4.5.25), we need to separate the definite integral into two integrals 
corresponding to the two stages of motion, using the correct expression for the velocity 
for each integral. The position function is then 
 



  

xc(t) =
xc0 + vc0 d ′t

′t =0

′t =t1

∫ ; 0 < t ≤ t1

xc(t1)+ vc0 +
1
2

b( ′t − t1)2⎛
⎝⎜

⎞
⎠⎟′t =t1

′t =t

∫ dt; t1 ≤ t < t2

⎧

⎨

⎪
⎪

⎩

⎪
⎪

. 

 
Upon integration we have 
 

  

xc(t) =

xc(0)+ vc0 t; 0 < t ≤ t1

xc(t1)+ vc0( ′t − t1)+ 1
6

b( ′t − t1)3⎛
⎝⎜

⎞
⎠⎟

′t =t1

′t =t

; t1 ≤ t < t2

⎧

⎨
⎪⎪

⎩
⎪
⎪

. 

 
We chose our coordinate system such that the initial position of the car was at the origin, 

  xc0 = 0 , therefore   xc(t1) = vc0 t1 . So after substituting in the endpoints of the integration 
interval we have that 
 

  

xc(t) =
vc0t; 0 < t ≤ t1

vc0 t1 + vc0(t − t1)+ 1
6

b(t − t1)3; t1 ≤ t < t2

⎧
⎨
⎪

⎩⎪
. 

 
(b) We are looking for the instant   t2  that the car has come to rest. So we use our  
expression for the x -component of the velocity the interval   t1 ≤ t < t2 , where we set   t = t2  
and   vc(t2 ) = 0 : 

  
0 = vc(t2 ) = vc0 +

1
2

b(t2 − t1)2 . 

Solving for   t2  yields  

  
t2 = t1 + −

2vc0

b
, 

 
where we have taken the positive square root. Substitute the given values then yields 
 

  
t2 = 1s+ − 2(12 m ⋅s−1)

(−6 m ⋅s−3)
= 3s . 

 
The position of the car at   t2  is then given by  
 



  

xc(t2 ) = vc0 t1 + vc0(t2 − t1)+ 1
6

b(t2 − t1)3

xc(t2 ) = vc0 t1 + vc0 −2vc0 / b + 1
6

b(−2vc0 / b)3/2

xc(t2 ) = vc0 t1 +
2 2(vc0

3/2 )
3(−b)1/2

 

 
where we used the condition that   t2 − t1 = −2vc0 / b . Substitute the given values then 
yields 

  
xc(t2 ) = vc0 t1 + 2

4 2(vc0 )3/2

3(−b)1/2 = (12 m ⋅s-1)(1s)+ 4 2((12 m ⋅s-1)3/2

3((6 m ⋅s−3))1/2 = 28 m . 

 
b) Because the bicycle is traveling at a constant speed with an initial position 

  xb0 = −17 m , the position of the bicycle is given by   xb(t) = −17 m + vbt . The bicycle and 
car intersect at time   t2 = 3 s , where   xb(t2 ) = xc (t2 ) . Therefore   −17 m + vb(3 s) = 28 m . So 

the speed of the bicycle is   vb = 15 m ⋅s−1 . 


