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Chapter 31 Non-Inertial Rotating Reference Frames 
 

31.1 Introduction  
 
 An object is called an isolated object if there are no physical interactions between 
the object and the surroundings. According to Newton’s First Law an isolated object will 
undergo uniform motion. Choose a coordinate system such that the isolated body is at 
rest or is moving with a constant velocity. That coordinate system is called an inertial 
reference frame. Do such coordinate systems exist? Newton’s First Law states that it is 
always possible to find such a coordinate system. Newton’s Second Law 

    
!
Fphysical = m!a  

only holds in inertial reference frames, where 
   
!
Fphysical  are the forces that arise from the 

interactions of objects. 
 
Summary: Non-inertial Reference Frames 
 
This is a short summary of results for analyzing motion in non-inertial reference frames.   
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The position, velocity and acceleration vectors of a moving object of an object in an 
inertial references  O  and a non-inertial reference frame  ′O  are related by 
 

 

    

!r(t) = !′r (t) = !r(t)−
!
R(t)

!v(t) = ! ′v (t) = !v(t)−
!
V(t)

!′a (t) = !a(t)−
!
A(t)

 . (31.1.1) 

Newton’s Second Law in  O  is 
 

    
!
Fphysical = m!a  . (31.1.2) 

Define the total fictitious force by  
     

!
Ffictitious = −m

!
A  . (31.1.3) 

Then the modified Newton’s Second Law in the non-inertial reference frame  ′O  
becomes  
 

    
!
Fphysical +

!
Ffictitious = m!′a  . (31.1.4) 

 
 
 



Rotating Frames 
 
Let  O  designate an inertial reference frame and  ′O  a rotating reference frame that is 
rotating with an angular velocity  

!
ω  with respect to  O . We shall consider two types of 

rotating reference frames, (i)  a reference frame fixed to a platform that is rotating with 
angular velocity    

!
ω =ω k̂  with respect to an inertial frame  O  and (ii) the earth rotating 

with an angular velocity  
!
ω  with respect to an inertial frame at rest with respect to the 

distant stars.  
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O
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Velocity Transformation Law for Rotaitng Frames 
 
The transformation law for the velocity of an object in the two reference frames  O  and 
 ′O  is given by 
     

! ′v (t) = !v(t)−
!
ω × !r(t)  , (31.1.5) 

 
where     

!v = (d!r / dt)in  is the derivative of the position vector     
!r(t) in the inertial frame and 

    
! ′v = (d!′r / dt)rot  is the derivative of the position vector     

!′r (t) .  
 
Accelertion Transformation Law for Rotaitng Frames 
 
The transformation law for the acceleration of an object in the two reference frames  O  
and  ′O  is given by 
    

!′a = !a − 2
!
ω × ! ′v −

!
ω × (

!
ω × !r)  . (31.1.6) 

 
Fictitious Forces and Newton’s Second Law in Rotating Frames: 
 
The centrifugal fictitious force is given by 
  
 

    
!
Fcentrifugal = −m(

!
ω × (

!
ω × !r)) , (31.1.7) 

and the Coriolis fictitious force:  
     

!
Fcoriolis = −2m

!
ω × ! ′v  . (31.1.8) 

 
Then the modified Newton’s Second law in the rotating frame becomes 



 
 

   
!
Fphysical +

!
Fcoriolis +

!
Fcentrifugal = m!′a .  (31.1.9) 

 

31.2 Linearly Accelerating Reference Frames 
 
Let  O  designate an inertial reference frame and  ′O  designate a second reference frame 
that is accelerating with a linear acceleration   

!
A  with respect to the inertial frame  O  

(Figure 1). 
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Figure 31.1 Two reference frames 

 
At   t = 0 , the origins of the two reference frames coincide. Let     

!
R(t)  denote the position 

vector of the origin in  ′O  as seen by an observer located at  O . Then      
!
V(t) = d

!
R(t) / dt  

and     
!
A(t) = d

!
V(t) / dt  are the velocity and acceleration of reference frame  ′O  with 

respect to  O .  
 
 Suppose a particle undergoes an acceleration     

!a(t)  in  O . The path of the moving 
particle in reference frame  O  is shown in Figure 1. The position vector     

!r(t)  of the object 
in  O  is related to the position vector     

!′r (t)  of the object in  ′O  by 
 
     

!r(t) = !′r (t)+
!
R(t)  . (31.2.1) 

. 
Differentiating Eq. (31.2.1) yields the relationship between the velocities of the object in 
the two frames: 
     

!v(t) = ! ′v (t)+
!
V(t)  . (31.2.2) 

 
Eq. (31.2.2) is called the Law of Addition of Velocities. Differentiating Eq. (31.2.2) yields 
the relationship between the accelerations of the object in the two frames: 
 
     

!a(t) = !′a (t)+
!
A  . (31.2.3) 

 
Recall that in the inertial reference frame  O , 

    
m!a =

!
Fphysical . In the non-inertial frame  ′O , 

Newton’s Second Law needs to be modified, because 



 
 

    
m!′a = m!a − m

!
A =
!
Fphysical − m

!
A  . (31.2.4) 

 
Define a fictitious force by  
     

!
Ffictitious = −m

!
A  . (31.2.5) 

Then the modified Newton’s Second Law in the non-inertial reference frame  ′O  
becomes  
 

    
!
Fphysical +

!
Ffictitious = m!′a  . (31.2.6) 

 
Concept Question 1:  Inertial or Non-inertial Reference Frame 
 
You are in a spaceship with the engines turned off in a zero gravitational field. You are 
standing on a frictionless floor at rest. Suppose you start to slide backwards. Which of the 
following statements is true immediately after you start to slide backwards.  
 

1. The spaceship is still an inertial reference frame and has not changed its speed. 
2. The spaceship is accelerating backwards. 
3.  The spaceship is accelerating forwards. 

 
Answer 3. Initially the spaceship defined an inertial reference frame because you, as an 
isolated, body, remained at rest. Once you start to slide backwards, you conclude that a 
fictitious force is acting on you in the direction you are moving and hence the spaceship 
is accelerating in the opposite (forward) direction.  

 
Example 1: Accelerating Car with Hinged Roof 

 
A uniform thin rod of length  L  and mass  m  is pivoted at one end. The pivot is attached 
to the top of a car accelerating at rate   


A . What is the equilibrium value of the angle θ  

between the rod and the top of the car? 
A

g

 
Solution: The free body force diagram on the hinged roof in the accelerating reference 
frame is shown in the figure below, 

mg

FpivotFfic = mA

 



where we have added a fictitious force 
   

Ffic = −m


A . Because the rod is at rest in the 

accelerating reference frame, Newton’s Second Law becomes 
 

   
mg − m


A +

Fpivot =


0 . 

 
Therefore the pivot force must satisfy 

    
mg − m


A +

Fpivot = −m(g −


A) . Note that   

′g = g −

A  

acts like an effective gravitational field point in the direction given by 
 

  θ = tan−1(g / A)  
 
which is the direction that the hinged roof is angled. 

31.3 Angular Velocity of a Rigid Body 
 
In Chapter 6 we defined the angular velocity vector  

!
ω  of a point object undergoing 

circular motion about the  z -axis by 
 

 
    

!
ω =

dθz
dt

k̂ =ω z k̂ . (31.3.1) 

 
where  θz  is the angle that the position vector of the object makes with the positive  x -
axis as shown in Figure 31.2.  

O
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Figure 31.2 Angular velocity for circular motion about z-axis 
 
Now consider a rigid body at time  t  that is instantaneously rotating about an axis, with 
unit normal   n̂  , angle θ , and angular velocity as shown in Figure 31.3. 
 

 
    

!
ω = dθ

dt
n̂  . (31.3.2) 
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Figure 31.3: Rigid body undergoing rotation about the instantaneous axis of rotation 

 
Introduce angular coordinates  θx ,  

θ y , and  θz , corresponding to angles about the  x ,  y , 
and  z  axes. The angular velocity vector in this coordinate system is then 
 

 
    

!
ω =

dθx

dt
î +

dθ y

dt
ĵ+

dθz

dt
k̂ ≡ω x î +ω y ĵ+ω z k̂ . (31.3.3) 

 
The velocity of the rigid body and the angular velocity are related as follows. Every 
particle in the rigid body is instantaneously undergoing circular motion about the 
instantaneous axis of rotation (Figure 31.3),     

!
ω = (dθ / dt) n̂ . Recall that the position 

vector   
!r  of the particle is constant in length and hence the velocity is given by the 

derivative  

 
    
!v = d!r

dt
= !r sinφ dθ

dt
θ̂  , (31.3.4) 

  
where  θ̂  is a unit vector tangent to the circular path. Note also that    n̂× !r = !r sinφ θ̂ . 
Therefore the velocity is given by the vector product 
 
   

!v =
!
ω × !r  . (31.3.5) 

 

(Note that 
    
!v =
!
ω × !r = dθ

dt
n̂× !r = !r sinφ dθ

dt
θ̂ .) 

 

31.4 Non-inertial Rotating Reference Frame 
 
Let  O  designate an inertial reference frame and  ′O  a rotating reference frame that is 
rotating with an angular velocity  

!
ω  with respect to  O . We shall consider two types of 

rotating reference frames.  The first example is a reference frame fixed to a platform that 
is rotating with angular velocity    

!
ω =ω k̂  with respect to an inertial frame  O  (Figure 

31.4). 
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Figure 31.4: Non-inertial reference frame fixed to a rotating platform 

 
The second example is the earth rotating with an angular velocity  

!
ω  with respect to an 

inertial frame at rest with respect to the distant stars (Figure 31.5). 
 

 
 

Figure 31.5: Non-inertial reference frame fixed to the earth 
 
31.4.1 Kinematics in Rotating Reference Frames 

 
Let  O  denote an inertial reference frame.  Let  ′O  denote a reference frame that is 
rotating with an angular velocity  

!
ω  respect to  O . Choose a Cartesian coordinate systems 

for  O , with coordinates   (x, y, z) , and  ′O , with coordinates   ( ′x , ′y , ′z ) , such that the 
origins of  O  and  ′O  coincide at time  t , and the axis of rotation of  ′O  passes through the 
origin in the positive   k̂ -direction, with    

!
ω =ω k̂ . During the time interval   [t, t + Δt] , the 

 ′x - and  ′y -axes have rotated by the angle  Δθ =ωΔt  as shown in the Figure 31.6. 
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Figure 31.6: Instantaneous rotation about  z  and  ′z -axes 
 
Consider the motion of a particle as seen by an observer in reference frame  O . Suppose 
at time  t , the position of the particle is located in the   (x, z)  plane. Denote the position 
vector by     

!r(t)  (Figure 31.7a). During the time interval  Δt , the particle has moved to the 
position     

!r(t + Δt) , with displacement  (Figure 31.7b). In the reference frame  ′O , the 
position of the particle at time  t  is given by     

!′r (t) . At time  t + Δt , the position of the 
particle in  ′O  is given in     

!′r (t + Δt) . The displacement of the particle in  ′O  is given by 

    Δ
!′r = !′r (t + Δt)− !′r (t) , (Figure 31.8).  
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Figure 31.7a: position at time  t                  Figure 31.7b: position at time  t + Δt  
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Figure 31.8: Displacement vectors in  O  and  ′O  at time  t + Δt  
 
This displacement   Δ

!′r  is not equal to the displacement   Δ
!r  in  O  because the  ′x  and  ′y  

axes have rotated by an angle  Δθ =ωΔt . The initial position vector     
!′r (t)  still lies in the 

  ( ′x , ′z )  plane in  ′O  but at time  t + Δt , this vector has rotated with respect to the position 

    
!r(t)  as seen by an observer in  O  (Figure 31.8). The lengths of the two vectors     

!r(t)  and 

    
!′r (t)  are equal,     

!r(t) = !′r (t) . The difference vector between the two displacement 
vectors,   Δ

!r − Δ!′r , is perpendicular to the axes of rotation (Figure 31.9a). 
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Figure 31.9a:   Δ
!r − Δ!′r  at time  t + Δt  

 
 
The magnitude of   Δ

!r − Δ!′r  is given by (Figure 31.9b)  
 
     Δ

!r − Δ!′r = 2 !r(t) sin(φ)sin(Δθ / 2)   (31.4.1) 
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             Figure 31.9b:   Δ
!r − Δ!′r  at time  t + Δt  

 
In the limit as  Δθ → 0 ,  sin(Δθ / 2)→Δθ / 2 , and thus in the limit as  Δθ → 0   
 
     Δ

!r − Δ!′r = !r(t) sin(φ)Δθ . (31.4.2) 
 
Introduce a set of unit vectors   (r̂,θ̂,k̂)  at the point  P  as shown in Figure 31.9c. The 
vector   Δ

!r − Δ!′r  is in the  θ̂ -direction, hence the difference in the displacement vectors is 
given by 
     Δ

!r − Δ!′r = !r(t) sin(φ)Δθθ̂   (31.4.3) 
 
Dividing both sides by  Δt  and taking the limit as   Δt → 0  yields 
 

 
    
!v(t)− ! ′v (t) = lim

Δt→0

!r(t) sin(φ) Δθ
Δt

θ̂   (31.4.4) 

Thus 
     

!v(t) = ! ′v (t)+ !r(t) sin(φ)ω θ̂  , (31.4.5) 
 
where   ω = dθ / dt . In cylindrical coordinates, the position vector is 
 
     

!r(t) = !r(t) sinφ r̂ + !r(t) cosφ k̂ .  (31.4.6) 
 
The vector cross product     

!
ω × !r(t)  is then 

 
     

!
ω × !r(t) = ω k̂ × ( !r(t) sinφ r̂ + !r(t) cosφ k̂) = ω !r(t) sinφ θ̂  . (31.4.7) 

 
Substituting Eq. (31.4.7) into Eq. (31.4.5) yields 
 
     

!v(t) = ! ′v (t)+
!
ω × !r(t)  , (31.4.8) 



 
where     

!v = (d!r / dt)in  is the derivative of the position vector     
!r(t) in the inertial frame and 

    
! ′v = (d!′r / dt)rot  is the derivative of the position vector     

!′r (t) . Eq. (31.4.8) is the rotational 
version of Eq. (31.2.2). Keep in mind that at time  t , the vectors     

!r(t)  and     
!′r (t) are 

instantaneously equal because they point from the origin to the moving object (although 
their decomposition into component vectors is different because the unit vectors in the 
two reference frames are different.) However the time derivatives are different. 
 
Example 2: Moving tangentially on rotating platform 

(a) Consider a platform that is rotating about the  z -axis with angular velocity    
!
ω =ω k̂  in 

the inertial reference frame  O . Let  ′O  denote a reference frame that is rotating with the 
platform. An object of mass  m  is moving in a circle of radius  r  on the platform with a 
constant tangential velocity     

!v = v θ̂  in the inertial frame  O , such that  v > rω  (Figure 
31.10a and Figure 31.10b). What is the velocity of the object   

! ′v  in the reference frame 
 ′O ? 
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Figure 31.10a        Figure 31.10b 

 
Solution: In the instant shown in Figure 31.10a and Figure 31.10b, the unit vectors in the 
two frames are equal, and therefore Eq. (31.4.8) can be written as  
 

    
! ′v (t) = !v(t)−

!
ω × !r(t) = vθ̂ − (ω k̂ × r r̂) = (v − rω) θ̂ . 

 
Note that if  v = rω , then the object is at rest in  ′O . 
 
(b) An object of mass  m  is moving in a circle of radius  r  on the platform with a constant 
tangential velocity     

! ′v = − ′v ˆ ′θ  in the rotating frame  ′O  (Figure 31.11a and Figure 
31.11b). What is the velocity of the object   

!v  in the reference frame  O ? 
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Figure 31.11a                     Figure 31.11b 

 
 
Solution:     

! ′v = −v θ̂ . The velocity   
!v  in the reference frame  O  is given by 

 

    
!v(t) = ! ′v (t)+

!
ω × !r(t) = −v θ̂ + (ω k̂ × r r̂) = (−v+ rω) θ̂ . 

 
Note that if  v = rω , then the object is at rest in  O . 
 

Example 3: Moving radially inward on rotating platform 
 
Consider a platform that is rotating about the  z -axis with angular velocity    

!
ω =ω k̂  in the 

inertial reference frame  O . Let  ′O  denote a reference frame that is rotating with the 
platform. An object of mass  m  is connected to a string that is pulled radially inward 
along the surface of the platform at a constant speed  v  

in  ′O .  At the instant shown in 
Figure 31.12a and Figure 31.12b, the object is at a distance  r = ′r  from the center of the 
platform. What is the velocity of the object   

!v  in the reference frame  O ? 
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Figure 31.12a          Figure 31.12b 

 
 
Solution:     

! ′v = −v ˆ′r . The velocity   
!v  in the reference frame  O  is given by 

 



    
!v(t) = ! ′v (t)+

!
ω × !r(t) = −vr̂+ (ω k̂ × r r̂) = −vr̂ + rω θ̂ . 

 

31.4.2 Acceleration in a Rotating Reference Frame 
 
The result in Eq. (31.4.8) that describes the transformation law for the time derivative of 
the position vector in the two reference frames  O  and  ′O  holds for the derivative of any 
vector   

!
C .  

 
Let     (d

!
C / dt)in denote the derivative of the vector   

!
C  in the inertial frame  O , and let 

    (d
!
C / dt)rot  denote the derivative of the vector in the rotating reference frame  ′O . Then 

     (d
!
C / dt)in = (d

!
C / dt)rot +

!
ω ×
!
C .  (31.4.9) 

 
(See Appendix 31.A.1 for a proof.) In particular the derivative of the velocity   

!v  is then 
 
     (d!v / dt)in = (d!v / dt)rot +

!
ω × !v .  (31.4.10) 

 
Now   

!v = ! ′v +
!
ω × !r , therefore Eq. (31.4.10) becomes 

 

 
    

!a = (d!v / dt)in = (d(! ′v +
!
ω × !r) / dt)rot +

!
ω × (! ′v +

!
ω × !r)

!a = !′a + (d(
!
ω × !r) / dt)rot +

!
ω × ! ′v +

!
ω × (

!
ω × !r).

. (31.4.11) 

 
where     

!a = (d!v / dt)in  is the acceleration of the particle has seen in the inertial frame  O  

and     
!′a = (d! ′v / dt)rot  is the acceleration of the particle has seen in the inertial frame  ′O  

We have assumed that  
!
ω  is constant and therefore  

 
     (d(

!
ω × !r) / dt)rot =

!
ω × (d!r / dt)rot =

!
ω × ! ′v  . (31.4.12) 

 
So Eq. (31.4.11) becomes the transformation law for the acceleration of an object in the 
two reference frames  O  and  ′O  is given by 
 
    

!a = !′a + 2
!
ω × ! ′v +

!
ω × (

!
ω × !r) .  (31.4.13) 

 
31.4.3 Newton’s Second Law in Rotating Reference Frames 
 
Let 

   
!
Fphy  denote the sum of the physical forces acting on a particle.  Recall that in an 

inertial reference frame  O , Newton’s Second Law is given by 
 
 

   
!
Fphy = m!a .  (31.4.14) 

 



In a non-inertial rotating reference frame  ′O , the Second Law becomes, using Eq. 
(31.4.13), 
 
 

    
!
Fphy = m(!′a + 2

!
ω × ! ′v +

!
ω × (

!
ω × !r)) .  (31.4.15) 

Rewrite Eq. (31.4.15) as 
 

    
!
Fphy − 2m

!
ω × ! ′v − m(

!
ω × (

!
ω × !r) = m!′a .  (31.4.16) 

 
Define two ‘fictitious forces’, the centrifugal fictitious force: 
  
 

    
!
Fcentrifugal = −m(

!
ω × (

!
ω × !r)) , (31.4.17) 

 
and the Coriolis fictitious force:  
     

!
Fcoriolis = −2m

!
ω × ! ′v  . (31.4.18) 

 
Then the modified Newton’s Second law in the rotating frame becomes 
 
 

   
!
Fphysical +

!
Fcoriolis +

!
Fcentrifugal = m!′a .  (31.4.19) 

 
Eq. (31.4.19) will be the starting point for analyzing the motion of particles in a rotating 
reference frame.  
 
The centrifugal force 

   
!
Fcentrifugal  is perpendicular to both terms in the cross product  

!
ω  and 

  
!
ω × !r , and therefore is perpendicular to the axis of rotation. It is a simple exercise to 
show that it is also pointing in the radially outward direction from the axis of rotation.The 
Coriolis force    

!
Fcoriolis  is perpendicular to  

!
ω  and the velocity   

! ′v  of the particle in the 
rotating frame. 
 
Because of these two fictitious forces, the motion of particles in rotating reference frames 
like the earth are far more complicated to analyze. For example, air molecules moving 
along the surface or water molecules in the ocean of the earth experience both of these 
fictitious forces as seen in the earth rotating reference frame. Thus the study of 
atmospheric physics, ocean physics on the earth, and the study of extraterrestrial spinning 
objects like stars, planets, or rotating gas clouds require an understanding of the 
centrifugal and the Coriolis forces.      
 



Example 4: Mass at Rest on a Rotating Platform 
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      Figure 31.13a     Figure 31.13b 

 
A platform is rotating about the  z -axis with angular velocity    

!
ω =ω k̂  in the inertial 

reference frame  O  (Figure 31.13a).  Choose a set of cylindrical unit vectors   (r̂,θ̂ , k̂) . An 
object of mass  m  that lies on the platform a distance  r  from the center is rotating with 
the platform, hence in the reference frame  O , the object has angular velocity    

!
ω =ω k̂  

and velocity     
!v = rωθ̂ . The force keeping the object from moving on the platform is a 

radially inward static friction force     
!
fs = − fs r̂ .  The object is accelerating towards the 

center with     
!a = −rω 2r̂ . Newton’s Second Law in the inertial reference frame  O  is then 

 
    − fs r̂ = −mrω 2r̂ ⇒ fs = mrω 2  . (31.4.20) 
 
Let  ′O  denote a reference frame that is rotating with the platform (Figure 31.13b).  The 
object is at rest in the rotating frame  ′O ,   

! ′v =
!
0 , and therefore the Coriolis force is zero. 

Choose a set of cylindrical unit vectors   (ˆ ′r , ˆ ′θ , k̂) . The centrifugal force is non-zero and 
points in the outward radial direction and is given by 
 

    
!
Fcentrifugal = −m(

!
ω × (

!
ω × !′r ) = −m(ω k̂ × (ω k̂ × r ˆ′r )) = −m(ω k̂ × rω ˆ′θ ) = mrω 2ˆ′r . 

 
The acceleration of the object is zero in  ′O , and the modified Newton’s Second Law Eq. 
(31.4.19) is then 

   
!
fs +
!
Fcentrifugal =

!
0  . 

  
Using our results above, the static friction force is then 
 

    − fs ˆ′r + mrω 2ˆ′r =
!
0⇒ fs = mrω 2 , 

in agreement with Eq. (31.4.20). 
 



Example 5: Rotating Water Bucket 
In an inertial reference frame  O , consider a water bucket that is rotating about the 
vertical  z -axis with angular velocity    

!
ω =ω k̂ . The rotational motion of the bucket is 

transformed to the fluid contained within and after a period of time, the fluid is rotating 
with the same angular velocity  

!
ω  and the surface of the fluid takes on a concave shape  

shown in Figure 31.14. 
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     Figure 31.14  
      
In a reference frame  ′O  rotating with the bucket, the water is in static equilibrium. The 
forces acting on a small surface element of mass  Δm , located at the point   (r, z) , are the 
gravitational force    Δm!g , the fictitious centrifugal force    

!
Fcent , and a hydrostatic force    

!
FS  

that the rest of the fluid exerts on the fluid element (Figure 31.14b). Choose a cylindrical 
coordinate system with unit vectors   (ˆ ′r , ˆ ′θ , k̂)  as shown in Figure 31.15.  
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Figure 31.15 

 
The tangent line to the surface element makes an angle φ  with respect to the horizontal 
axis such that the slope is given by 

 
  
dz
dr

= tanφ   (31.4.21) 

The centrifugal force is given by 
 

    
!
Fcent = −m(

!
ω × (

!
ω × !′r ) = −m(ω k̂ × (ω k̂ × (r ˆ′r + zk̂)) = −m(ω k̂ × rω ˆ′θ ) = mrω 2ˆ′r . 

 
Newton’s modified Second Law is the   ̂ ′r -direction is given by 
 
   −Fs sinφ + mrω 2 = 0  , (31.4.22) 



and in the   k̂ -direction is given by 
   Fs cosφ − mg = 0  . (31.4.23) 
 
Eqs. (31.4.22) and (31.4.23) can be solved for  tanφ : 

 
  
tanφ = rω 2

g
 . (31.4.24) 

 
Therefore the slope of the surface at the point   (r, z)  is given by 

 
  

dz
dr

= rω 2

g
 . (31.4.25) 

Separate variables and form an integral equation 
 

 
  

dz
z=0

z

∫ = ω 2

g
r

r=0

r

∫ dr   (31.4.26) 

 
which upon integration yields the equation for the surface of the fluid 
 

 
  
z = 1

2
ω 2

g
r2  . (31.4.27) 

31.5 Motion on the Earth 

31.5.1 Introduction 

 
In an inertial reference frame  O  fixed with respect to the distant stars, the earth is 
rotating with a period of 23 hours, 53 minutes and 4 seconds corresponding to an angular 

speed 
 
ω = 2π rad

85984 s
= 7.307 ×10−5 rad/sec . Choose the positive  z -direction to point in the 

direction of the angular velocity  
!
ω . In a non-inertial reference frame  ′O  that is rotating 

with the earth, consider a point located on the surface of the earth at latitude λ . Choose a 
spherical coordinate system with coordinates   (r,θ ,φ)  with associated unit 
vectors,  (r̂,θ̂ ,φ̂) , as shown in Figure 31.17.  
 



   
 

Figure 31.17 
 

31.5.2 Centrifugal Fictitious Force on Earth  
 
At the latitude λ , the angular velocity vector can be written as the vector sum  (Figure 
31.17) 
 

   
!
ω =ω sinλ r̂ −ω cosλθ̂ =

!
ω⊥ +

!
ω"  . (31.5.1) 

 
where    

!
ω⊥ =ω sinλ r̂  is the component of the angular velocity perpendicular to the 

surface of the earth and 
  
!
ω" = −ω cosλθ̂  is the component of the angular velocity tangent 

to the surface of the earth.  
 

 
 

Figure 31.18 
 
 

Example 6 The Centrifugal Force and Apparent Gravitation Acceleration 
 

(a) Show that in the rotating reference frame the centrifugal force points radially 
away from the axis of rotation.  In particular show that 



 
 

    
!
Fcentrifugal = mREω

2 cosλ ρ̂  , (31.5.2) 
 

where   ρ̂ = cosλ r̂ + sinλ θ̂  is the unit vector pointing radially away from the 
rotation axis (Figure 31.18). 

 
(b) The acceleration due to gravity measured in an earthbound rotating coordinate 

system is denoted by   
!g . However, because of the earth’s rotation,   

!g  is different 
from the true acceleration due to gravity     

!g0 = −g0r̂ , where   g0 = GM E / RE
2 . 

Assuming that the earth is perfectly round, with radius eR  and angular velocity 

eΩ , find    g = !g  as a function of latitude λ . (Assuming the earth to be round is 
actually not justified; the contributions to the variation of g  due to the polar 
flattening is comparable to the effect calculated here.) 

 
 
 
 
 
Solution: 
 
(a) Choose coordinates in the rotating frame as shown in Figure 31.18. At the latitude λ , 
the angular velocity vector is given by    

!
ω =ω sinλ r̂ −ω cosλθ̂ . The position vector is 

    
!r = RE r̂ . Note that   θ̂ × φ̂ = r̂ . Therefore the centrifugal fictitious force is given by 
 

    

!
Fcentrifugal ≡

!
Fcf = −m(

!
ω × (

!
ω × !r))

= −m((ωsinλ r̂ − ω cosλ θ̂)× ((ωsinλ r̂ − ω cosλ θ̂)× RE r̂)))

= −m(ωsinλ r̂ − ω cosλ θ̂)× ω cosλRE φ̂)

= m(ω2sinλcosλRE θ̂ +ω
2 cos2 λRE r̂)

= mREω
2 cosλ(cosλ r̂ + sinλ θ̂)

= mREω
2 cosλ ρ̂  

 
where we used the fact that   ρ̂ = cosλ r̂ + sinλ θ̂ . The centrifugal force points radially 
away from the axis of rotation as we expect. For future use note that in spherical 
coordinates the centrifugal force is given by 
 
 

    
!
Fcentrifugal = mREω

2 cosλ(cosλ r̂ + sinλ θ̂)   (31.5.3) 
 
(b) The force diagram on the object in the rotating frame is shown in the figure below. 



 

r̂

ˆ

ˆ

N

Fcf
g0

g = g0 + (Fcf / m)
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The acceleration due to gravity measured in an earthbound rotating coordinate system is 
denoted by 
 
 

    
!geff =

!g0 + (
!
Fcf / m) = (REω

2 cos2 λ − g0 )r̂ + REω
2 cosλ sinλθ̂  . (31.5.4) 

 
The magnitude of 

   
!geff  is then 

    

geff =
!geff = ((REω

2 cos2 λ − g0 )2 + (REω
2 cosλ sinλ)2 )1/2

= ((REω
2 cos2 λ)2 − 2g0REω

2 cos2 λ + g0
2 + (REω

2 cosλ sinλ)2 )1/2

= g0

REω
2 cos2 λ
g0

⎛

⎝⎜
⎞

⎠⎟

2

− 2
REω

2

g0

cos2 λ +1+
REω

2 cosλ sinλ
g0

⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

 

 
To simplify the calculation, let   y = REω

2 / g0 . (Note that   y = REω
2 / g0 = RE

3ω 2 / GM E ). 
Then 

  

geff = g0 ycos2 λ( )2
− 2ycos2 λ +1+ ycosλ sinλ( )2⎡

⎣⎢
⎤
⎦⎥

1/2

= g0 1− (2y − y2 )cos2 λ⎡⎣ ⎤⎦
1/2

 

 
At the latitude of MIT,   λ = 42.36!N . The mean radius of the earth is   RE = 6.371×106 m , 

the angular speed  ω = 7.307 ×10−5 rad ⋅s−1 , the mass of the earth   M E = 5.972×1024kg  

and the universal gravitational constant is   G = 6.674×10−11 m3 ⋅kg−1 ⋅s−2 . Then  
 

  g0 = (6.674×10−11 m3 ⋅kg−1 ⋅s−2 )(5.972×1024 kg) / (6.371×106 )2 = 9.82 m ⋅s−2  
and  

  

y = (6.371×106 m)3(7.307 ×10−5 rad ⋅s−1)2 / (6.674×10−11 m3 ⋅kg−1 ⋅s−2 )(5.972×1024 kg)
= 3.461×10−3.

 

 
Therefore 



  

geff = g0 ycos2 λ( )2
− 2ycos2 λ +1+ ycosλ sinλ( )2⎡

⎣⎢
⎤
⎦⎥

1/2

= g0 1− (2y − y2 )cos2 λ⎡⎣ ⎤⎦
1/2

= 9.801m ⋅s-2.
. 

 
The actual value of the acceleration due to gravitation at the latitude of MIT based on 
the International Gravity Formula IGF) 1980 from the parameters of the Geodetic 
Reference System 1980 (GRS80), which determines the gravity from the position of 
latitude, is 

  
geff = 9.80381m ⋅s-2 . 

 

31.5.3 Coriolis Fictitious Force  

 
 

Figure 31.19 
 
Consider a particle traveling in the northern hemisphere tangent to the surface of the earth 
with velocity (in the earth rotating reference frame) 

    
!v = vθθ̂ + vφ φ̂ , where   ( r̂,θ̂ ,φ̂)  are 

unit vectors in the rotating frame,   
(vθ ,vφ )  are the components of the velocity with speed 

  
v = (vθ

2 + vφ
2 )1/2 . The Coriolis force is given by 

 
 

    
!
Fcor = −2m

!
ω × !v = −2m(

!
ω⊥ +

!
ω")×

!v = −2m
!
ω⊥ × !v − 2m

!
ω" ×

!v   (31.5.5) 
 
The contribution from the term     −2m

!
ω⊥ × !v  is tangent to the surface of the earth, 

perpendicular to the velocity, and has magnitude   2mω⊥v = 2mωv sinλ . The contribution 

from the term 
    
− 2m

!
ω" ×

!v  is perpendicular to the surface of the earth, and has magnitude 

  2mω cosλ . This term is quite small compared to the gravitational force and we shall 
usually ignore its contribution to the fictitious force acting on particles that are moving 
tangential to the surface of the earth. The full vector expression for the Coriolis force is 
given by 

 
    

!
Fcoriolis = −2m

!
ω × !v = −2m(ω sinλ r̂ −ω cosλθ̂ )× (vθθ̂ + vφ φ̂)

= 2mω sinλ(−vθφ̂ + vφθ̂ )+ 2mω cosλvφr̂
  (31.5.6) 



 
The component of the Coriolis force tangential to the surface of the earth is given by 
 
 

    
!
Fcor," = 2mω sinλ(−vθφ̂ + vφθ̂ )   (31.5.7) 

with magnitude 
 

    
!
Fcor," = 2mω sinλ(vθ

2 + vφ
2 )1/2 = 2mω sinλv   (31.5.8) 

 
in agreement with our discussion above. The component perpendicular to the surface of 
the earth is given by  
 

    
!
Fcor,⊥ = 2mω cosλvφr̂ .  (31.5.9) 

 
Example 7: Direction of Coriolis Force in Northern Hemisphere 

 
Consider a particle moving in the northern hemisphere at north latitude λ .  Note that 

  ̂r × θ̂ = φ̂ . 

 
 

a) If the particle is moving along a longitude line towards the North Pole with 
velocity     

!v = −v θ̂ , where  v  is the speed of the particle, find a vector expression 
for the Coriolis force?  Does it point east, west, or some other direction?  

 
b) If the particle is moving along a longitude line away from the North Pole with 

velocity     
!v = v θ̂ , where  v  is the speed of the particle, find a vector expression for 

the Coriolis force?  Does it point east, west, or some other direction?  
 
 
 
 
 
Solution: 

a) In the northern hemisphere the angular velocity of the earth is given by 

   
!
ω =ω sinλ r̂ −ω cosλθ̂ . The Coriolis force acting on a particle that is moving 
along a longitude line towards the North Pole is given by 

 



    
!
Fcor = −2m

!
ω⊥ × !v = −2m(ω sinλ r̂ −ω cosλθ̂)× (−vθ̂) = 2mω sinλvφ̂ . 

 
It points in the positive  φ̂ -direction, which is east. 

 
b) The Coriolis force acting on a particle that is moving along a longitude line 

away from the North Pole is given by 
 

    
!
Fcor = −2m

!
ω⊥ × !v = −2m(ω sinλ r̂ −ω cosλθ̂)× (vθ̂) = −2mω sinλv φ̂ . 

 
It points due west, in the negative  φ̂ -direction. 

 

Example 8: Direction of Coriolis Force in Southern Hemisphere 
 
Consider a particle moving in the southern hemisphere at south latitude  λ > 0 . Note that 

  ̂r × θ̂ = φ̂ . 

ˆ ˆ

r̂

 
  

a) If the particle is moving along a longitude line away from the South Pole with 
velocity     

!v = −v θ̂ , where  v  is the speed of the particle, find a vector expression 
for the Coriolis force?  Does it point east, west, or some other direction?  

 
b) If the particle is moving along a longitude line towards the South Pole with 

velocity     
!v = v θ̂ , where  v  is the speed of the particle, find a vector expression for 

the Coriolis force?  Does it point east, west, or some other direction?  
 
Solution: 
 

a) In the southern hemisphere the angular velocity of the earth is given by 

   
!
ω = −ω sinλ r̂ −ω cosλθ̂ . The Coriolis force acting on an object moving along a 
longitude line away from the South Pole is  

 

    
!
Fcor = −2m

!
ω × !v = −2m(−ω sinλ r̂ −ω cosλθ̂)× (−v θ̂) = −2mωvsinλφ̂ . 

 
It points in the negative  φ̂ -direction, which is west. 



 
b) The Coriolis force on an object moving along a longitude line towards the South 

Pole is  
 

    
!
Fcor = −2m

!
ω × !v = −2m(−ω sinλ r̂ −ω cosλθ̂)× (v θ̂) = +2mωvsinλφ̂ , 

 

which is due east in the positive  φ̂ -direction. 

Example 9: Tangential Deflection of a Freely Falling Object 
An object is released from rest at a height   r0 = RE + z  from the center of Earth directly 
above the equator. Choose a spherical coordinate system, as shown in the figure below. 
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In the figure on the right, north is pointing out of the plane of the figure,  φ̂  is pointing in 
the east direction, and the angular velocity of Earth is   

!
ω = −ω θ̂ . The problem is to 

determine the tangential deflection of the object due to the Coriolis force ,  Δs = REΔφ  
 

r̂ˆ
ˆ

mRE
s = RE

 
 
The apparent acceleration due to gravity is  
 
 

    
!g = !g0 + (

!
Fcf / m) = (rω 2 − g0 )r̂ = −gr̂  . (31.5.10) 



 
where we set  λ = 0  in Eq. (31.5.4). When the object is in free fall, the velocity is  
 

 
    
!v = dr

dt
r̂ + r dφ

dt
φ̂  . (31.5.11) 

 
The acceleration of the object is given by 
 

 
    

!a = d 2r
dt2 − r dφ

dt
⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
r̂ + 2 dr

dt
dφ
dt

+ r d 2φ
dt2

⎛
⎝⎜

⎞
⎠⎟
φ̂  . (31.5.12) 

 
The Coriolis force acting on the object is  
 

 
    

!
Fcor = −2m

!
ω × !v = −2m −ω θ̂ × dr

dt
r̂ + r

dφ
dt

φ̂
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ = −2mω dr

dt
φ̂ + 2mωr

dφ
dt

r̂  .(31.5.13) 

 
Newton’s second law in the radial direction is then 
 

 
  
m d 2r

dt2 − r dφ
dt

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= m −g + 2ωr dφ

dt
⎛
⎝⎜

⎞
⎠⎟

 . (31.5.14) 

 
Newton’s second law in the tangential direction is then 
 

 
  
m 2 dr

dt
dφ
dt

+ r d 2φ
dt2

⎛
⎝⎜

⎞
⎠⎟
= −2mω dr

dt
 . (31.5.15) 

 
(See Appendix 31.B.1 for derivation of acceleration.)  
 
We shall make a few simplifying assumptions:  (1)  RE >> z , therefore approximate 

 r ≈ RE ; (2) 
 
dφ
dt

<<ω , therefore the radial equation is approximately 

 
  
d 2r
dt2 = −g  , (31.5.16) 

 
and the tangential equation is approximately 
 

 
  
RE

d 2φ
dt2 = −2ω dr

dt
 . (31.5.17) 

 



We can solve these equations for the coordinates   (r,θ )  of the falling object. Integrating 
the radial equation noting that initially the object was at rest yields 
 

 
 
dr
dt

= −gt  . (31.5.18) 

 
Integrating again with initial position   r0 = RE + z  yields 
 

 
  
r = (RE + z)− 1

2
gt2  . (31.5.19) 

 
Substitute Eqs. (31.5.18) and (31.5.19) into Eq. (31.5.17) and after rearranging terms 
 

 
  

d 2φ
dt2 = 2ωgt

RE

 . (31.5.20) 

Integration then yields 

 
  

dφ
dt

= ωgt2

RE

 . (31.5.21) 

A second integration yields  

 
  
φ = ωgt3

3RE

 . (31.5.22) 

 
The object reaches Earth at time  

t = t f  when   
r(t f ) = rE . With these substitutions, Eq. 

(31.5.19) becomes 

 
  
RE = (RE + z)− 1

2
gt f

2  , (31.5.23) 

which we can solve for  
t f : 

 
  
t f =

2z
g

⎛
⎝⎜

⎞
⎠⎟

1/2

 . (31.5.24) 

 
The tangential displacement of the object when it hits Earth is then 
 

 
  
Δs = REΔφ = REφ(t f ) =

ωgt f
3

3
= ωg

3
2z
g

⎛
⎝⎜

⎞
⎠⎟

3/2

 . (31.5.25) 

 

31.6 Trajectories of a Particle in an Inertial and Rotating Frame   
 
Consider an object that is moving at constant velocity in an inertial reference frame  O .  
The trajectory of that object is a straight line. Now consider a platform that is rotating 



with angular velocity    
!
ω =ω k̂  that lies beneath that object such that the object passes 

over the center of the platform. Let  ′O denote the non-inertial reference frame fixed to 
the platform i.e.  ′O  is rotating with angular velocity    

!
ω =ω k̂  with respect to  O . Choose 

cylindrical coordinates   (r,θ , z) in  ′O . Let     
! ′v = (vθ θ̂ + vr r̂)  denote the velocity of the 

object along the trajectory in  ′O .  (We are dropping the primes for coordinates and 
component functions in  ′O  to simplify the notation). Note that when the object is moving 
inward in the inertial frame,   vr < 0  and   vθ < 0 , and when the object is moving outward, 

  vr > 0  and   vθ < 0 . In  both cases the tangential velocity in the rotating frame is negative. 
The Coriolis force is given by 
 
 

    
!
Fcor = −2m

!
ω × ! ′v = −2mω k̂ × (vθ θ̂ + vr r̂) = 2mωvθ r̂ − 2mωvr θ̂ = Fcor,rr̂ + Fcor,θ θ̂  (31.6.1) 

 
Thus when the object is moving inward with   vr < 0  and   vθ < 0 , the  θ̂ -component of the 

Coriolis force is positive, 
  
Fcor,θ > 0 , and the radial component of the Coriolis force is 

negative 
  
Fcor,r < 0 .  When the object is moving outward with   vr > 0  and   vθ < 0 , the  θ̂ -

component of the Coriolis force is negative, 
  
Fcor,θ < 0  and the radial component of the 

Coriolis force remains negative 
  
Fcor,r < 0 , gradually increasing in magnitude as  

vθ  
gradually increases. There is also a centrifugal force in the radial direction 
 
 

    
!
Fcf = −m(

!
ω × (

!
ω × !r) = −m(ω k̂ × (ω k̂ × rr̂)) = −m(ω k̂ × rω θ̂) = mrω 2r̂ . (31.6.2) 

 
In the inertial frame,  O , the object is moving with a constant velocity, therefore 

    
!
Ftotal

phy =
!
0 . Newton’s Second Law, 

   
!
Ftotal

phy +
!
Fcor +

!
Fcf = m

!′a , applied to the object in the 
rotating frame  ′O  is then 
     (2mωvθ + mrω 2 )r̂ − 2mωvr θ̂ = m ′!a   (31.6.3) 
 
Recall that in polar coordinates, the expression for the acceleration of an object is  
 
     ′

!a = (dvr / dt − r(dθ / dt)2 )r̂ + (2vr (dθ / dt)+ r(d 2θ / dt2 ))θ̂  , (31.6.4) 
 
where   vr = dr / dt  and   dvr / dt = d 2r / dt2 . (See Appendix 31.B for a derivation). The 
equations of notion in the rotating frame are 
 
in the radial direction: 
   2ωvθ + rω 2 = dvr / dt − r(dθ / dt)2   (31.6.5) 
and in the tangential direction: 
 



   −2ωvr = 2vr (dθ / dt)+ r(d 2θ / dt2 )  . (31.6.6) 
 
Let’s consider the case in which the initial conditions are given by   (dθ / dt)0 = −ω  and 

  
vr ,0 = (dr / dt)0 = vin . Then there is a unique solution to Eqs. (31.6.5) and (31.6.6) given 
by 
 
   dθ / dt = −ω  . (31.6.7) 
  
Using that result in Eq. (31.6.5), implies   dvr / dt = 0 : the radial component of the velocity 
in  ′O  is constant. This is the condition that the radially component of the Coriolis force 
and the centrifugal force are equal to the centripetal acceleration. In Figure 31.20, we 
show the orbit in the two frames under these special conditions. 
 

Fcor

Fcor

v

v
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r̂
ˆ

 
Figure 31.20 

 
The object is moving across a rotating platform at a constant speed  vin . The object 

traverses the platform in time   Ttransit = 2R / vin . In Figure 31.20, the platform is rotating 

with angular speed   ω = 2π / 5Ttransit  hence with period   Trot = 2π /ω = 5Ttransit . In the 
inertial reference frame, as the object travels   Δs = (1/ 3)R  (the distance between two 

adjacent circles), the platform rotates 
   
Δθ platform = 12! . During each of the these intervals, 

  Δt = (1/ 3)R / vin , in the reference frame rotating with the platform, the object appears to 

decrease it’s angular position by 
   
Δθobject = −12! . 

 
The velocity   

! ′v  of the object  ′O  is no longer constant.  The tangent line at any point on 
trajectory in  ′O  (red line moving inward, green line moving outward) indicates the 
direction of the velocity   

! ′v . The direction of   
! ′v  at various points along the trajectory in 

 ′O  is shown in Figure 13. Initially, in the frame  O  the object is moving radially inward. 



Because the platform is rotating, an observer on the platform also observes that the 
particle is moving in the negative  θ̂ -direction. Hence the velocity   

! ′v  at the initial 
position in  ′O  has component inward and also in the negative  θ̂ -direction. As the object 
moves inward in  ′O , the  θ̂ -component of the velocity becomes less negative indicating 
that there is a positive angular acceleration in the  θ̂ -direction.  The observer in  ′O  
attributes this angular acceleration to the Coriolis force     

!
Fcor = −2m

!
ω × ! ′v , which is 

perpendicular to the velocity   
! ′v . As the object moves outward, the  θ̂ -component of the 

velocity decreases (becomes more negative) indicating that there is a negative  θ̂ -
component to the acceleration.  
 

31.7 Simple Pendulum in Rotating Frames 
 
Consider a simple pendulum of length  l  with a bob of mass  m . In inertial space (non-
rotating frame) the pendulum will undergo small oscillations with angular frequency 

  ω0 = g / l . If the pendulum is placed on a rotating platform or on the surface of Earth at 
latitude λ , and undergoes small oscillations, in the rotating frame the plane of oscillation 
will precess in the opposite direction of the rotation due to the Coriolis force. 
 
Example 10 Pendulum on a Rotating Platform  
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A simple pendulum consists of a bob of mass  m  at the end of a string of length  l . 
Choose polar coordinates on the rotating platform. Suppose the bob is released from rest 
at a small angle  φ0  with respect to the vertical axis. In the frame  O , the bob undergoes 
linear simple harmonic motion with distance from the center varying in time according to 

    
!r(t) = r(t) r̂ + z(t)k̂ , where   ω0 = g / l ,   r(t) = l sin(φ0 )cos(φ(t)) ,   z(t) = l(1− cosφ(t)) , 

and   φ(t) = φ0 cos(ω0t) . Choose cylindrical coordinates   (r,θ , z)  in the rotating frame  ′O  

with angular velocity    
!
ω =ω k̂  with respect to  O . The motion of the bob is no longer in 

the radial direction because the platform is rotating underneath the bob.  



 
Let   
!
T  denote the tension force of the string on the bob. The effective gravity is  

 

 

    

!geff =
!g − m(

!
ω × (

!
ω × !r))

= −gk̂ − m(ωk̂ × (ωk̂ × (rr̂ + zk̂))

= −gk̂ − m(ωk̂ × rωθ̂) = −gk̂ + mrω 2r̂

 . (31.7.1) 

 
 Newton’s Second Law on the bob is then 
 
 

    
m!arot = m!geff +

!
T − 2m(

!
ω × !vrot )  . (31.7.2) 

 
The velocity of the bob is given by 

 
    
!vrot =

dr
dt

r̂ + r
dθ
dt

θ̂ + dz
dt

k̂  . (31.7.3) 

 
The angular rotational velocity is given by    

!
ω =ωk̂ . The Coriolis force is then  

 

 

    

!
Fcor = −2m((

!
ω × !vrot )

= −2m ωk̂ × dr
dt

r̂ + r
dθ
dt

θ̂ + dz
dt

k̂
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

= −2m ω dr
dt

θ̂ −ωr
dθ
dt

r̂
⎛
⎝⎜

⎞
⎠⎟

 . (31.7.4) 

 
The acceleration of an object in the plane is given by 
 

 

    

!′a = d 2r
dt2 − r dθ

dt
⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
r̂ + 2 dr

dt
dθ
dt

+ r d 2θ
dt2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
θ̂  . (31.7.5) 

 
(For the derivation of the acceleration see Appendix 31.B.1.) 
 
For small oscillations, the contribution of the centrifugal force is very small which we 
shall neglect. Therefore Newton’s Second Law in the  θ̂ -direction in the plane is thus 
 

 
  
m 2 dr

dt
dθ
dt

+ r d 2θ
dt2

⎛

⎝
⎜

⎞

⎠
⎟ = −2mω dr

dt
 . (31.7.6) 

 
One possible solution occurs when   dθ / dt = constant , hence   d

2θ / dt2 = 0 . Then Eq. 
(31.7.6) becomes  



 
  
dθ
dt

= −ω sinλ  . (31.7.7) 

 
The pendulum precesses in the negative  θ̂ -direction. With a period 
 

 
  
T = 2π

dθ / dt
= 2π

ω
  (31.7.8) 

Example 11: Foucault Pendulum on Earth. 
 
The analysis for a pendulum of length  l  with a bob of mass  m  that is located on the 
surface of Earth at latitude λ  and undergoing small oscillations is slightly more 
complicated due to the variation of the Coriolis force with latitude. In this case the plane 
of oscillation of the pendulum will precess in a plane that is tangential to the surface of 
Earth with a period that depends on the latitude.  
 
The analysis will be very similar to the analysis on the rotating platform. On the tangent 
plane, choose local cylindrical coordinates   (r,θ , z)  with unit vectors   (r̂,θ̂,k̂)  where   ̂r  
and  θ̂  are unit vectors that lie in the tangent plane, and   k̂  points perpendicular to the 
tangent plane. (Note this is not a spherical coordinate system.) 
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Figure 31. 22 
For small angles of oscillation, the pendulum undergoes simple harmonic motion with the 
period 

  
T = 2π l / geff , where (see Equation (31.5.4) is 

 
 

    
!geff =

!g0 + (
!
Fcf / m)  . (31.7.9) 

 



Recall that the centrifugal force points radially outward form the rotation axis.  Let  ρ̂  be 
a unit vector pointing radially outward from the axis of rotation. Then the centrifugal 
force 
 

    
(
!
Fcf / m) = REω

2 cosλρ̂  . (31.7.10) 
 
Because this is proportional to  ω

2 , it will be smaller compared to the Coriolis force 
which is proportional to ω  and we can neglect its effect. 
 
Let   
!
T  denote the tension force of the string on the bob. Newton’s Second Law on the 

bob is then 
 
     m

!arot = m!g0 +
!
T − 2m(

!
ω × !vrot )  . (31.7.11) 

 
where we neglected the centrifugal force. The velocity of the bob in local coordinates is 
given by 

 
    
!vrot =

dr
dt

r̂ + r
dθ
dt

θ̂ + dz
dt

k̂  . (31.7.12) 

 
In local coordinates, the angular rotational velocity in the northern hemisphere is given 
by 

   
!
ω =
!
ω" +

!
ω⊥ =

!
ω" +ω sinλk̂ , where 

 
!
ω"  lies in the tangent plane and we have 

assumed that   k̂  is approximately radially outward from the surface. Only    
!
ω⊥ =ω sinλk̂  

contributes a non-negligible component of the Coriolis force in the tangential plane. The 
Coriolis force is 
 

 

    

!
Fcor = −2m((

!
ω⊥ +

!
ω")×

!vrot )

= −2m ω sinλk̂ × dr
dt

r̂ + r
dθ
dt

θ̂ + dz
dt

k̂
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ − 2m((

!
ω" ×

!vrot )

= −2m ω sinλ dr
dt

θ̂ +ω sinλr
dθ
dt

r̂
⎛
⎝⎜

⎞
⎠⎟
− 2m((

!
ω" ×

!vrot )

 . (31.7.13) 

 
The last term in the Coriolis force has two terms 

    
−2m((

!
ω" ×

!vrot ) = −2m
!
ω" ×

dr
dt

r̂ + r
dθ
dt

θ̂
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ − 2m

!
ω" ×

dz
dt

k̂
⎛
⎝⎜

⎞
⎠⎟

. 

The first term, 
    
−2m

!
ω" ×

dr
dt

r̂ + r dθ
dt

θ̂
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ , is perpendicular to the tangent plane. The 

second term, 
    
− 2m

!
ω" ×

dz
dt

k̂
⎛
⎝⎜

⎞
⎠⎟

, lies in the tangent plane, but we shall neglect it because 

  dz / dt  is small.  
 



The acceleration of an object in the local coordinates on the tangent plane is  
 

 

    

!′a = d 2r
dt2 − r dθ

dt
⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
r̂ + 2 dr

dt
dθ
dt

+ r d 2θ
dt2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
θ̂  . (31.7.14) 

 
Therefore Newton’s Second Law in the  θ̂ -direction in the plane is thus 
 

 
  
m 2 dr

dt
dθ
dt

+ r d 2θ
dt2

⎛

⎝
⎜

⎞

⎠
⎟ = −2mω sinλ dr

dt
 . (31.7.15) 

One possible solution occurs when 
  
dθ
dt

= constant , hence 
  

d 2θ
dt2 = 0 . Then Eq. (31.7.15) 

becomes  

 
  
dθ
dt

= −ω sinλ  . (31.7.16) 

 
The pendulum precesses in the negative  θ̂ -direction. With a period 
 

 
  
T = 2π

dθ / dt
= 2π
ω sinλ

= 24 h
sinλ

  (31.7.17) 

 
When   λ = 90! ,   T = 24 h . The significance of this result is that Earth rotates underneath 
the pendulum, so the plane of the pendulum’s oscillation is not changing with respect to 
inertial space. 
 



Appendix 31.A: Algebraic Derivation of Time Derivative of Vector in Rotating 
Reference Frame 
 
The components of a vector     

!
C(t)  can be expressed in any coordinate system. However 

the time derivative of a vector will differ in inertial and rotating coordinate systems. 
Consider an inertial reference frame and a reference frame  ′O  such that the origins and  z  
and  ′z  axes of  O  and  ′O  coincide, and  ′O  is rotating with constant angular frequency 

    
!
ω = (dθ / dt)k̂ =ω zk̂  with respect to an inertial frame  O .  
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Figure 31.A.1 
 
The vector expression for     

!
C(t)  in  O  is given by  

 
 

    
!
C(t) = Cx (t)î +Cy (t) ĵ  , (31.8.1) 

and in  ′O  by 
 

    
!
C(t) = C ′x (t)ˆ′i +C ′y (t)ˆ′j  . (31.8.2) 

 
The derivative of     

!
C(t)  in the inertial frame  O  is then 

 

 
    

d
!
C(t)
dt

⎛
⎝⎜

⎞
⎠⎟ in

= d
dt

(Cx î +Cy ĵ)   (31.8.3) 

 
Because 

   
Cx (t)î +Cy (t) ĵ= C ′x (t)ˆ′i +C ′y (t)ˆ′j , the derivative in the inertial frame is then 

 

 

    

d
!
C(t)
dt

⎛
⎝⎜

⎞
⎠⎟ in

= d
dt

(Cx î +Cy ĵ) = d
dt

(C ′x
ˆ′i +C ′y

ˆ′j )

=
dC ′x

dt
ˆ′i +C ′x

dˆ′i
dt

+
dC ′y

dt
ˆ′j +C ′y

dˆ′j
dt

  (31.8.4) 

 



Because the unit vectors   ̂ ′i  and   
ˆ′j  are equal to 

 

 
  

ˆ′i = cosθ î + sinθ ĵ
ˆ′j = −sinθ î + cosθ ĵ

  (31.8.5) 

the derivatives are 

 

   

d
dt

ˆ′i = d
dt

(cosθ î + sinθ ĵ) = −sinθ dθ
dt

î + cosθ dθ
dt

ĵ= dθ
dt

ˆ′j

d
dt

ˆ′j = d
dt

(−sinθ î + cosθ ĵ) = −sinθ dθ
dt

ĵ− cosθ dθ
dt

î = − dθ
dt

ˆ′i
  (31.8.6) 

 

The angular velocity is given by 
    

!
ω = dθ

dt
k̂ , therefore 

 

 

    

dˆ′i
dt

= dθ
dt

ˆ′j = dθ
dt

k̂ × ˆ′i =
!
ω × ˆ′i

dˆ′j
dt

= − dθ
dt

ˆ′i = dθ
dt

k̂ × ˆ′j =
!
ω × ˆ′j

  (31.8.7) 

Thus 

 

    

d
!
C(t)
dt

⎛
⎝⎜

⎞
⎠⎟ in

=
dC ′x

dt
ˆ′i +

dC ′y

dt
ˆ′j +
!
ω × (C ′x

ˆ′i +C ′y
ˆ′j )

= d
!
C(t)
dt

⎛
⎝⎜

⎞
⎠⎟ rot

+
!
ω ×
!
C

  (31.8.8) 

 
Example 31.A.1:  Let     

!r(t) be the position vector of an object, let     
!v(t) = (d!r / dt)in  denote 

the velocity of the object in the inertial frame  O , and let     
! ′v (t) = (d!r / dt)rot  denote the 

velocity of the object in the rotating frame  ′O , Then the two velocities are related by 
 
   v = ! ′v +

!
ω × !r  , (31.8.9) 

in agreement with Eq. (31.4.8). 
 
 
 



Appendix 31.B Acceleration in Polar Coordinates 
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Figure 31.B.1 

 
Let’s now consider central motion in a plane that is non-circular. In polar coordinates, the 
key point is that the time derivative   dr / dt  of the position function  r  is no longer zero. 
The second derivative   d

2r / dt2  also may or may not be zero. In the following calculation 
we will drop all explicit references to the time dependence of the various quantities. The 
position vector is given by  
  

!r = r r̂ . (31.9.1) 
 
Because   dr / dt ≠ 0 , when we differentiate Eq. (31.9.1), we need to use the product rule 
 

 
 

!v = d
!r
dt

= dr
dt
r̂+ r d r̂

dt
. (31.9.2) 

 
At the point  P , consider two sets of unit vectors (   ̂r(t) ,  θ̂(t) ) and ( î , ĵ ), as shown in the 
figure above. The vector decomposition expression for    ̂r(t)  and   θ̂(t)  in terms of î  and ĵ  
is given by 
    ̂r(t) = cosθ(t) î + sinθ(t) ĵ ,  (31.9.3) 
    θ̂(t) = −sinθ(t) î + cosθ(t) ĵ .  (31.9.4) 
 
The time derivative of the unit vectors are given by 
 

 
   
d r̂
dt

= dθ
dt

(−sinθ(t) î + cosθ(t) ĵ ) = dθ
dt

θ̂ . (31.9.5) 

 
   
d θ̂
dt

= − dθ
dt

(cosθ(t) î + sin(t) ĵ ) = − dθ
dt

r̂ . (31.9.6)  

 
Substituting Eq. (31.9.5) into Eq. (31.9.2) yields 
 



 
 

!v = d
!r
dt

= dr
dt
r̂ + r dθ

dt
θ̂ = vr r̂ + vθ θ̂ . (31.9.7) 

 
The velocity is no longer tangential but now has a radial component as well 
 

 vr =
dr
dt

. (31.9.8) 

 
In order to determine the acceleration, we now differentiate Eq. (31.9.7), again using the 
product rule, which is now a little more involved: 
 

 
 

!a = d
!v
dt

= d
2r
dt 2

r̂ + dr
dt
d r̂
dt

+ dr
dt
dθ
dt

θ̂ + r d
2θ
dt 2

θ̂ + r dθ
dt
d θ̂
dt

. (31.9.9) 

 
Now substitute Eqs. (31.9.5) and (31.9.6) for the time derivatives of the unit vectors in 
Eq. (31.9.9), and after collecting terms yields  
 

 

 

!a = d 2r
dt 2

− r dθ
dt

⎛
⎝⎜

⎞
⎠⎟
2⎛

⎝⎜
⎞

⎠⎟
r̂ + 2 dr

dt
dθ
dt

+ r d
2θ
dt 2

⎛
⎝⎜

⎞
⎠⎟
θ̂

= arr̂+ aθ θ̂

. (31.9.10) 

 
The radial and tangential components of the acceleration are now more complicated than 
then in the case of circular motion due to the non-zero derivatives of   dr / dt  and 

  d
2r / dt2 . The radial component is  

 ar =
d 2r
dt 2

− r dθ
dt

⎛
⎝⎜

⎞
⎠⎟
2

. (31.9.11) 

and the tangential component is 

 aθ = 2
dr
dt
dθ
dt

+ r d
2θ
dt 2

. (31.9.12) 

 
The second term in the radial component of acceleration is called the centripetal 
acceleration. The first term in the tangential component of the acceleration, 
2(dr / dt)(dθ / dt)   has a special name, the Coriolis acceleration, 
 

 
  
acor = 2 dr

dt
dθ
dt

. (31.9.13) 

 
 


