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Chapter 29 Navier-Stokes Equations 
 
29.1 Introduction 
 
29.2 Acceleration Vector Field 
 
Consider the path of a fluid particle, which we shall designate by the label 1, as shown in 
the figure below when the particle is located at the point with coordinates   (x, y, z,t) . The 
position vector of the fluid particle is given by 
 
     

r1(x, y, z,t) = x1(x, y, z,t) î + y1(x, y, z,t) ĵ+ z1(x, y, z,t)k̂ . (29.1.1) 
 
where   x1(x, y, z,t) ,   y1(x, y, z,t) , and   z1(x, y, z,t)  are the component functions of the 
particle. If the fluid flow is described by the velocity field     

v(x, y, z,t) , then the velocity 
of particle 1 at the point   (x, y, z,t)  is given by 
 
 

    
v1(x, y, z,t) = v1x (x, y, z,t) î + v1y (x, y, z,t) ĵ+ v1z (x, y, z,t)k̂ . (29.1.2) 

 
The acceleration of the particle can be found by differentiating the velocity. The velocity 
vector of the particle is a function of both time and the position of particle 1. Therefore 
the change of velocity of particle 1 can depend on how the velocity is changing in time 
and how the position of the particle is changing in space. In order to account for both of 
these changes, we need the chain rule for differentiation. The acceleration of particle 1 is 
then 

 
    

a1 =
dv1

dt
=
∂v1

∂t
+
∂v1

∂x
dx1

dt
+
∂v1

∂y
dy1

dt
+
∂v1

∂z
dz1

dt
, (29.1.3) 

 
where we have suppressed the reference to the coordinates   (x, y, z,t) . In the above 
expression for the acceleration, the derivatives of the coordinate position functions of 
particle 1 are just the respective component functions of the velocity of particle 1, 
 

 
  
v1x =

dx1

dt
, v1y =

dy1

dt
, v1z =

dz1

dt
. (29.1.4) 

 
Therefore the acceleration of particle 1 is 
 

 
    

a1 =
dv1

dt
=
∂v1

∂t
+
∂v1

∂x
v1x +

∂v1

∂y
v1y +

∂v1

∂z
v1z . (29.1.5) 
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Eq. (29.1.5) applies to all fluid particles, so we can drop the reference to particle 1, and 
therefore the acceleration vector field associated with the flow is given by 
 

 
    

!a(x, y, z,t) = d!v
dt

= ∂!v
∂t

+ ∂!v
∂x

vx +
∂!v
∂y

vy +
∂!v
∂z

vz . (29.1.6) 

 
Note that the     d

!v / dt  does not correspond to the rate of change of the velocity field at a 
fixed point in space, but corresponds to the rate of change of the velocity of a fluid 
particle as it moves about it space. The first term corresponds to how the velocity is 
changed at a fixed point in space during a small time interval  dt . The second term 
corresponds to the difference in velocities at the same instant in time between two points 
in space that are connected by the displacement    d

!r  of the fluid particle in the time 
interval  dt . 
 
Recall that the gradient partial differential vector operator is defined in Cartesian 
coordinates by the expression 
 

 
    


∇ = ∂

∂x
î + ∂

∂y
ĵ+ ∂

∂z
k̂ . (29.1.7) 

 
In particular, consider the scalar partial differential operator given by 
 

 

    

v ⋅

∇ = vx î + vy ĵ+ vz k̂( ) ⋅ ∂

∂x
î + ∂

∂y
ĵ+ ∂

∂z
k̂

⎛
⎝⎜

⎞
⎠⎟

= vx

∂
∂x

+ vy

∂
∂y

+ vz

∂
∂z

. (29.1.8) 

 
It acts on functions. For example, the action of this operator on the components of the 
velocity vector field are 
 

 

    

(v ⋅

∇)vx = vx

∂vx

∂x
+ vy

∂vx

∂y
+ vz

∂vx

∂z
,

(v ⋅

∇)vy = vx

∂vy

∂x
+ vy

∂vy

∂y
+ vz

∂vy

∂z
,

(v ⋅

∇)vz = vx

∂vz

∂x
+ vy

∂vz

∂y
+ vz

∂vz

∂z
.

  (29.1.9) 

 
We can combine these three scalar expressions into one vector expression 
 

 
    
(v ⋅

∇)v = vx

∂v
∂x

+ vy

∂v
∂y

+ vz

∂v
∂z

.  (29.1.10) 
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The expression in Eq.(29.1.10) measures the difference in velocity at a given instant in 
time between two points in space that are connected by the displacement    d

!r  of the fluid 
particle in the time interval  dt . 
 The vector expression for the acceleration field (Eq. (29.1.6) can now be rewritten as 
 

 
    
a(x, y, z,t) = ∂v

∂t
+ (v ⋅


∇)v . (29.1.11) 

The derivative operator 
 

 
    

D
Dt

≡ ∂
∂t

+ (v ⋅

∇) = ∂

∂t
+ vx

∂
∂x

+ vy

∂
∂y

+ vz

∂
∂z

. (29.1.12) 

 
is called the material derivative. The term   

v ⋅

∇  is called the convective derivative. The 

expression for the acceleration field in terms of the material derivative is given by 
 

 
    
a(x, y, z,t) = Dv

Dt
≡ ∂v
∂t

+ (v ⋅

∇)v . (29.1.13) 

 
The material derivative can be applied to any variable that changes in time for a given 
particle (as seen by an observer moving along with the particle). For example for a given 
flow     

v(x, y, z,t)  with varying pressure   P(x, y, z,t) , the rate of change of pressure of a 
fluid particle is 
 

 
    

DP
Dt

= ∂
∂t

+ (!v ⋅
!
∇)P = ∂P

∂t
+ vx

∂P
∂x

+ vy

∂P
∂y

+ vz

∂P
∂z

. (29.1.14) 

 
29.4 Fluid Kinematics 
 
Consider a small cubic volume element of fluid as shown in the figure below. The motion 
of the fluid between time  t  and time  t +δ t  may consist of a combination of different 
motions. The fluid element may translate through space while maintaining its shape. The 
element may undergo a linear deformation resulting in a volume change. The element 
may undergo a rotation. The element may undergo angular deformation resulting in a 
change in shape. The general motion is some complicated combination of all of these 
individual motions.  We shall begin by studying each motion separately. 
 
29.4.1 Translational Motion 
 
Consider the point  P  located in the fluid element at time  t  undergoing a uniform flow 
    
v(x, y, z,t) , which means that all spatial derivatives of the components of the velocity are 
zero.  The fluid element will simply translate in the direction of the velocity and not 
undergo any change in shape.  
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29.4.2 Linear Deformation 
 
Now assume that the velocity field is non-uniform. For simplicity, let’s assume that 

    
v(x, y, z,t) = vx (x,t) î ; there is only a non-zero  x -component of the velocity and the only 
non-zero change is in the  x -direction. Consider a fluid element of volume  δV = δ xδ yδ z , 
then the fluid element will undergo a change in volume. Consider the segments  AB  and 
 CD  of the fluid at time  t . At time  t +δ t  the fluid element has both translated and 
deformed. As it moves, segment  AB  has moved to the position   x + vx (x)δ t . Segment 

 CD  has moved to the position   x +δ x + vx (x +δ x)δ t . The change in volume of the 
element is then 
 

 
  

Δ(δV ) = ((x +δ x + vx (x +δ x)δ t)− (x + vx (x)δ t))δ yδ z( )−δ xδ yδ z

= ((vx (x +δ x)− vx (x))δ t)δ yδ z.
  (29.2.1) 

 
Now apply the Taylor formula to the  x -component of the velocity keeping terms of first 
order in  δ x  with the result that the change  
 

 
  
vx (x +δ x)− vx (x) =

∂vx

∂x
δ x .  (29.2.2) 

 
Then the change in the volume element is  
 

 
  
Δ(δV ) =

∂vx

∂x
δ tδ xδ yδ z =

∂vx

∂x
δ tδV .  (29.2.3) 

 
The rate that the volume of the fluid is changing divided by the original volume of the 
fluid element is called the volumetric dilatation rate and is given by 
 

 
  

1
δV

lim
δ t→0

Δ(δV )
δ t

=
∂vx

∂x
.  (29.2.4). 

 
If there are non-zero changes in the component of the velocity in the two other directions 
then the volume dilatation rate can be generalized to the expression 
 
 

 
    

1
δV

lim
δ t→0

Δ(δV )
δ t

=
∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z
=

∇⋅ v .  (29.2.5) 
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Recall that the density of an incompressible fluid cannot change. Therefore there can be 
no volume change only translational displacement of the fluid element. Therefore the 
velocity field for an incompressible fluid must satisfy the condition that  
 
    

!
∇⋅ !v = 0, (incompressible fluid)  . (29.2.6) 

 
29.4.3 Rotational Motion and Angular Deformation 
 
For simplicity we will begin by considering a two-dimensional flow with 
 
 

    
v(x, y, z,t) = vx ( y,t) î+ vy (x,t) ĵ .  (29.2.7) 

. 
The non-zero derivative of the velocity components are  
 

 
  

∂vx ( y,t)
∂y

≠ 0 and
∂vx ( y,t)

∂y
≠ 0  . (29.2.8) 

 
The line segments  AB  and  CD  of the fluid will now undergo a rotation as shown in the 
figure below. The point  A  located at time  t  at   (x, y)  will move to the new point 

  
(x + vx ( y)δ t, y + vy (x)δ t) . The change in position of point  A  is therefore 
 

 
  

Δ rA = (x + vx ( y)δ t, y + vy (x)δ t)− (x, y)

= (vx ( y)δ t,vy (x)δ t).
  (29.2.9) 

 
The point  B  located at time  t  at   (x, y +δ y)  will move to the new point located 
at  

(x + vx ( y +δ y)δ t, y +δ y + vy (x)δ t) . The change in position of point  B  is  
 

 
  

Δ rB = (x + vx ( y +δ y)δ t, y +δ y + vy (x)δ t)− (x, y +δ y)

= (vx ( y +δ y)δ t,vy (x)δ t).
  (29.2.10) 

 
Notice that both points  A  and  B  translate in the  y -direction by the same amount but 
point  B  has translating an additional distance in the  x -direction given by 
 

 
  
Δ rB,x − Δ rA,x = (vx ( y +δ y)− vx ( y))δ t =

∂vx

∂y
δ yδ t .  (29.2.11) 

 
Line segment  AB  has undergone a rotation with angular displacement 
 

 
  
Δθ AB =

ΔrB,x − Δ rA,x

δ y
=
∂vx

∂y
δ t .  (29.2.12) 
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. 
The rate of angular displacement is clockwise and given by 
 

 
  
ω AB = lim

δ t→0

Δθ AB

δ t
=
∂vx

∂y
.  (29.2.13) 

 
We can make a similar calculation (try this as an exercise) for the line segment  CD  and 
shown that the rate of angular displacement is counterclockwise and given by 
 

 
  
ωCD = lim

δ t→0

ΔθCD

δ t
=
∂vy

∂x
.  (29.2.14) 

 
If we define the angular velocity,     


ω =ω zk̂ , as the average of these two rotations, where 

clockwise rotations have a negative component and counterclockwise rotations have a 
positive component, then the  z -component of the angular velocity is given by 
 

 
  
ω z =

1
2

∂vy

∂x
−
∂vx

∂y

⎛

⎝
⎜

⎞

⎠
⎟ .  (29.2.15) 

 
We can generalize this argument to three dimensional flow where 
 

 

  

ω x =
1
2

∂vz

∂y
−
∂vy

∂z

⎛

⎝
⎜

⎞

⎠
⎟ ,

ω y =
1
2

∂vx

∂z
−
∂vz

∂x
⎛
⎝⎜

⎞
⎠⎟

.

  (29.2.16) 

 
In general, the angular rotation can be written as a vector product 
 

 
   


ω = 1

2
(

∇× v)   (29.2.17) 

 
The vorticity of the velocity flow is defined to be the twice the angular rotation vector  
 
    


ζ = 2


ω = (


∇× v)   (29.2.18) 

 
For our two-dimensional flow,   ω z = 0  when   

∂vy / ∂x = −∂vx / ∂y ; the fluid will only 

undergo pure rotation. When   
∂vy / ∂x = ∂vx / ∂y , then   ω z = 0 , and the fluid will only 

undergo angular deformation and not rotate. For the general case, if the velocity field 
satisfies the condition that 
    


∇× v =


0 (irrotational) ,  (29.2.19) 
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then the flow is said to be irrotational.  
 
29.5 Forces on Fluid Element 
 
29.5.1 Surfaces Forces 
 
Consider the forces acting on the surface of a fluid element as shown in Figure 29.  .  
 

 
 

Figure 29.  Forces on the surface of a fluid volume element 
 
The surface force can be decomposed into normal and tangential components,  
 
    δ


Fs = δ


Fn +δ


Ft .  (29.3.1) 

 
Let  Fn  denote the magnitude of the normal force. Let  δ A  denote the area of the surface 
element. The magnitude of the normal stress is defined to be  
 

 
  
σ n = lim

δ A→0

δ Fn

δ A
.  (29.3.2) 

 
We shall assign a sign for the normal stress as follows.  For each surface on the fluid 
element, let    n̂out  denote the outward pointing unit normal on that surface. The normal 
stress is defined to be positive if     δ


Fn ⋅ n̂out > 0 , and negative if     δ


Fn ⋅ n̂out < 0 .  

 
The magnitude of the shear stress is defined to be 
 

 
  
τ t = lim

δ A→0

δ Ft

δ A
.  (29.3.3) 

 
Choose a set of unit vectors   (ê1, ê2 )  on the surface such that    ̂e1 × ê2 = n̂out . Decompose 
the surface tangential force into components with respect to these surface unit vectors  
 



 29-9 

 
    
δ

Ft = δ


Fe1

+δ

Fe2

.  (29.3.4) 

 
Then the shear stress on the surface has two components with magnitude 
 

 
  
τ1 = lim

δ A→0

δ Fe1

δ A
.  (29.3.5) 

 
  
τ 2 = lim

δ A→0

δ Fe2

δ A
.  (29.3.6) 

 
Our sign convention for the shear stress is that 

    
τ1 > 0 if δ

!
Fe1

⋅ ê1 > 0 , and 

    
τ 2 > 0 if δ

!
Fe2

⋅ ê2 > 0 . Because there are three pairs of surfaces on the fluid element, 

there are nine different stresses. We shall introduce the following notation. Suppose we 
choose a cubic fluid element aligned with the Cartesian axes. Consider the plane defined 
by   x = x0 . Let   σ xx (x0 )  denote the normal stress,   

σ xy (x0 )  denote the shear stress in the 

 y -direction, and   σ xz (x0 )  denote the shear stress in the  z -direction (Figure 29. ). 

 
Let’s now consider the surface forces on our cubic fluid element.  
 

 
 
We begin by considering the forces in the  x -direction. We first consider the forces acting 
on the two surfaces with fixed values of  x  and  x +δ x  (Figure 29.).  
 



 29-10 

 
   
The contribution to the  x -component of the force is only due to the normal stress times 
the area of the surface element  δ zδ y , and is given by 
 

 
  
(σ xx (x +δ x)−σ xx (x))δ zδ y =

∂σ xx

∂x
δ xδ zδ y =

∂σ xx

∂x
δV .  (29.3.7) 

 
Now let’s consider the pair of top and bottom surfaces as shown in Figure 29.  . 
 

 
 
The contribution to the  x -component of the force is due to the shear stresses tiems the 
surface area  δ xδ y  
 

 
  
(σ zx (z +δ z)−σ zx (z))δ xδ y =

∂σ zx

∂z
δ zδ xδ y =

∂σ zx

∂z
δV .  (29.3.8) 

 
The forces on the front and back facing planes are shown in the Figure 29.  . 
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The contribution to the  x -component of the force is due to the shear stresses times the 
surface area  δ zδ x  
 

 
  
(σ yx ( y +δ y)−σ yx ( y))δ zδ x =

∂σ yx

∂y
δ zδ xδ y =

∂σ yx

∂y
δV .  (29.3.9) 

 
The total  x -component of the force on all of the surface faces of the cubic fluid element 
is then 

 
  
δ Fs,x =

∂σ xx

∂x
+
∂σ zx

∂z
+
∂σ yx

∂y

⎛

⎝
⎜

⎞

⎠
⎟ δV .  (29.3.10) 

 
In a similar calculation, the total  y - and  z -component of the force on all of the surface 
faces of the cubic fluid element is 
 

 
  
δ Fs,y =

∂σ yy

∂y
+
∂σ zy

∂z
+
∂σ xy

∂x

⎛

⎝
⎜

⎞

⎠
⎟ δV ,  (29.3.11) 

 
  
δ Fs,z =

∂σ zz

∂z
+
∂σ yz

∂y
+
∂σ xz

∂x

⎛

⎝
⎜

⎞

⎠
⎟ δV   (29.3.12) 

29.5.2 Body Forces 
 
In addition to surfaces forces there may be body forces acting on the entire fluid element. 
The gravitational force on the fluid element is an example of such a body force and is 
given by  
 

   
δ

Fg = ρgδV   (29.3.13) 

 
The combined body and surface forces on the fluid element is then 
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δ Fx = ρgx +
∂σ xx

∂x
+
∂σ zx

∂z
+
∂σ yx

∂y

⎛

⎝
⎜

⎞

⎠
⎟ δV ,

δ Fy = ρgy +
∂σ yy

∂y
+
∂σ zy

∂z
+
∂σ xy

∂x

⎛

⎝
⎜

⎞

⎠
⎟ δV ,

δ Fz = ρgz +
∂σ zz

∂z
+
∂σ yz

∂y
+
∂σ xz

∂x

⎛

⎝
⎜

⎞

⎠
⎟ δV .

  (29.3.14) 

  
 
29.5.3 Non-viscous Fluids 
 
For many fluids in which the viscosity is very small, the shearing stresses are negligible. 
The flow fields associated with negligible shearing stresses are said to be non-viscous or 
inviscid, 
 

  
σ ij = 0, i ≠ j (non-viscous)   (29.3.15) 

 
When there are no shearing stresses the normal stresses on any fluid element are 
independent of direction. The pressure is defined to be the negative of the normal stress.  
 
Recall that the normal stress is positive if the normal surface force is directed outward 
from the fluid element, 
 

  
− p =σ xx =σ yy =σ zz (non-viscous) .  (29.3.16) 

 
For a non-viscous fluid the total force on the fluid element is then 
 

 

  

δ Fx = ρgx −
∂p
∂x

⎛
⎝⎜

⎞
⎠⎟
δV

δ Fy = ρgy −
∂p
∂y

⎛
⎝⎜

⎞
⎠⎟
δV

δ Fz = ρgz −
∂p
∂z

⎛
⎝⎜

⎞
⎠⎟
δV .

  (29.3.17) 

 
The vector expression for the total force is then 
 
 

   
δ

F = ρg −


∇p( )δV .  (29.3.18) 

 
29.6 Euler Equations of Motion for a Non-Viscous Fluid 
 
Consider a non-viscous flow (no shearing stresses)     

v(x, y, z,t)  with pressure   p(x, y, z,t) , 
and density   ρ(x, y, z,t) . We can now apply Newton’s Second Law,    δ


F =δma  to a small 
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fluid element of mass  δm = ρδV . The force on the fluid element is given by Eq. 
(29.3.18), and the acceleration is given by Eq. (29.1.13). Therefore Newton’s Second 
Law, after dividing through by the volume  δV  is 
 

 
    
ρg −


∇p = ρ ∂v

∂t
+ (v ⋅


∇)v

⎛
⎝⎜

⎞
⎠⎟

.  (29.4.1) 

 
Eq. (29.4.1) is called Euler’s Equations of Motion for a non-viscous fluid. This is a non-
linear equation that arises due to the convective derivative   

v ⋅

∇ .  

 
29.6.1 Steady Flow 
 
For steady flow,  

 
    
∂v
∂t

=

0 (steady flow)   (29.4.2) 

 
We can rewrite Eq. (29.4.1) using the vector identity 
 

 
   
(v ⋅

∇)v = 1

2


∇(v ⋅ v)− v × (


∇× v) .  (29.4.3) 

 
Recall that the gravitational field is the gradient of the potential function 
 
 

   
g = −


∇φg .  (29.4.4) 

 
Then for steady flow Eq. (29.4.1) becomes 
 

 
    
−ρ

∇φg −


∇p = ρ 1

2


∇(v ⋅ v)− v × (


∇× v)

⎛
⎝⎜

⎞
⎠⎟

(steady non-viscous flow) . (29.4.5) 

 
29.6.2 Incompressible Steady Flow 
 
Let’s now consider an incompressible fluid. Then we can rearrange Eq. (29.4.5) as 
 

 
    
ρ

∇(φg +

p
ρ
+ 1

2
v2 ) = v × (


∇× v) (incompressible steady non-viscous flow) . (29.4.6) 

 
29.6.3 Irrotational Incompressible Steady Flow: Bernoulli Equation 
 
Recall that for irrotational flow (Eq. (29.2.19),   


∇× v =


0 . Therefore for steady 

irrotational flow, the Euler Equations of Motion become 
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ρ

∇(φg +

p
ρ
+ 1

2
v2 ) =


0 (irrotational incompressible steady non-viscous flow) . (29.4.7) 

 
Define a new potential function  

 
  
φ ≡φg +

p
ρ
+ 1

2
v2 .  (29.4.8) 

  
Then Eq. (29.4.7) can be rewritten after dividing through by the density ρ  
 
    


∇φ =


0 (irrotational incompressible steady non-viscous flow)   (29.4.9) 

 
This implies that  
 

 
  
φg +

p
ρ
+ 1

2
v2 = φ0 (irrotational incompressible steady non-viscous flow)  (29.4.10) 

.  
Eq. (29.4.10) is called the Bernouilli Equation. Consider any two points  A  and  B . Then 
the constancy of φ  implies that 
 

 

  

φg ,A +
pA

ρA

+ 1
2

vA
2 = φg ,B +

pB

ρB

+ 1
2

vB
2

(irrotational incompressible steady non-viscous flow).

 (29.4.11) 

 
 
29.10 Navier-Stokes Equations for an Incompressible Newtonian Fluid 
 
29.10.1 Stress and Deformation for an Incompressible Newtonian Viscous Fluid 
 
For a viscous fluid, the normal stress on each face of the small fluid element are no 
longer necessary equal. When the normal stresses are related to the pressure and the rate 
of change of the velocity gradient by  
 

 

  

σ xx = − p + 2µ
∂vx

∂x

σ yy = − p + 2µ
∂vy

∂y

σ zz = − p + 2µ
∂vz

∂z

  (29.4.12) 
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the fluid is called Newtonian, where µ  is the viscosity and has SI units 

 [N ⋅ /(m2 ⋅(m/s)/m)]= N ⋅s ⋅m-2 = kg ⋅m−1 ⋅s−1 . If we add the three normal stresses we have 
that 

 
  
σ xx +σ yy +σ zz = −3p + 2µ

∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z

⎛

⎝
⎜

⎞

⎠
⎟  . (29.4.13) 

 
Recall that the continuity equation for the incompressible fluid element is given by 
  

 
    


∇⋅ v =

∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z
= 0 .  (29.4.14) 

 
Therefore the pressure is the negative of the average value of the three normal stresses, 
 

 
  
p = − 1

3
(σ xx +σ yy +σ zz ) (incompressible Newtonian Fluid) . (29.4.15) 

 
The shear stresses for a Newtonian fluid are related to the rate of shearing strain (the 
gradient of the components of the velocity vector, 

   

∇vx ,


∇vy ,


∇vz  by 

 

 

  

σ yx =σ xy = µ(
∂vy

∂x
+
∂vx

∂y
),

σ zy =σ yz = µ(
∂vz

∂y
+
∂vy

∂z
),

σ xz =σ zx = µ(
∂vx

∂z
+
∂vz

∂x
).

  (29.4.16) 

 
For a non-Newtonian fluid, the shear and normal components are proportional to higher 
order partial derivatives of the components of the velocity field. 
 
Derive this. 
 
29.10.2 Navier-Stokes Equations for an Incompressible Newtonian Fluid 
 
We can now substitute Eqs. (29.4.12) and (29.4.16) into Eqs. (29.3.14) to determine the 
components of the force on the fluid element. We begin with the  
 x -component of the force on the fluid element  
 

 
  
δ Fx = ρgx −

∂p
∂x

+ 2µ
∂2 vx

∂x2 + µ
∂2 vx

∂z2 + µ
∂2 vz

∂z∂x
+ µ

∂2 vy

∂y∂x
+ µ

∂2 vx

∂y2

⎛

⎝
⎜

⎞

⎠
⎟ δV , (29.4.17) 
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which we can rewrite as 
 

 
  
δ Fx = ρgx −

∂p
∂x

+ µ ∂
∂x

∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z

⎛

⎝
⎜

⎞

⎠
⎟ + µ

∂2 vx

∂x2 + µ
∂2 vx

∂z2 + µ
∂2 vx

∂y2

⎛

⎝
⎜

⎞

⎠
⎟ δV .(29.4.18) 

 
Recall that the continuity equation for the incompressible fluid element is given by 
   

 
    


∇⋅ v =

∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z
= 0   (29.4.19) 

 
Therefore the  x -component of the force on the fluid element  
 

 
  
δ Fx = ρgx −

∂p
∂x

+η
∂2 vx

∂x2 +η
∂2 vx

∂z2 +η
∂2 vx

∂y2

⎛

⎝⎜
⎞

⎠⎟
δV . (29.4.20) 

 
We can calculate the  y -component of the force on the fluid element in a similar fashion 
 

 

  

δ Fy = ρgy −
∂p
∂y

+ 2µ
∂2 vy

∂y2 + ∂
∂z

µ(
∂vz

∂y
+
∂vy

∂z
)+ ∂

∂x
µ(

∂vy

∂x
+
∂vx

∂y
)

⎛

⎝
⎜

⎞

⎠
⎟ δV

δ Fy = ρgy −
∂p
∂y

+ µ ∂
∂y

∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z

⎛

⎝
⎜

⎞

⎠
⎟ + µ

∂2 vy

∂x2 +
∂2 vy

∂y2 +
∂2 vy

∂z2

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
δV

δ Fy = ρgy −
∂p
∂y

+ µ
∂2 vy

∂x2 +
∂2 vy

∂y2 +
∂2 vy

∂z2

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
δV

. (29.4.21) 

 
The  z -component of the force on the fluid element is 
 

 

  

δ Fz = ρgz +
∂σ zz

∂z
+
∂σ yz

∂y
+
∂σ xz

∂x

⎛

⎝
⎜

⎞

⎠
⎟ δV

δ Fz = ρgz −
∂p
∂z

+ 2µ
∂2 vz

∂z2 + ∂
∂y

µ(
∂vz

∂y
+
∂vy

∂z
)+ ∂

∂x
µ(

∂vx

∂z
+
∂vz

∂x
)

⎛

⎝
⎜

⎞

⎠
⎟ δV

δ Fz = ρgz −
∂p
∂z

+ µ ∂
∂z

∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z

⎛

⎝
⎜

⎞

⎠
⎟ + µ

∂2 vz

∂x2 +
∂2 vz

∂y2 +
∂2 vz

∂z2

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟ δV

δ Fz = ρgz −
∂p
∂z

+ µ
∂2 vz

∂x2 +
∂2 vz

∂y2 +
∂2 vz

∂z2

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟ δV

. (29.4.22) 

 
The vector expression for the force acting on the fluid element is then 



 29-17 

 
 

    
δ

F = ρg −


∇p + µ∇2v( )δV (incompressible Newtonian Fluid) .  (29.4.23) 

 
We now use Eq. (29.1.11) for the acceleration field in Newton’s Second Law and after 
dividing through by the volume  δV becomes  
 

 
    
ρg −


∇p + µ∇2v = ρ ∂v

∂t
+ ρ(v ⋅


∇)v (incompressible Newtonian Fluid) . (29.4.24) 

 
Eq. (29.4.24) is called the Navier-Stokes equations and applies to an incompressible 
Newtonian fluid. The continuity equation and the Navier-Stokes equations are four 
independent equations in four unknowns,  p ,  vx ,  

vy , and  vz . This is a set of non-linear 
equations partial differential equations that in principle are enough to solve for our four 
unknowns but there are only a few special cases in which there is exact analytic solutions. 
When we compare the Navier-Stokes equations to the Euler equations of motion for the 
incompressible non-viscous fluid we see that the new term due to viscosity,    µ∇

2v , is 
proportional to the Laplacian of the velocity field. 
 
29.10.2 Navier-Stokes Equation in Polar Coordinates 
 
There are many vector flow fields that exhibit cylindrical symmetry, for example flow in 
a cylindrical pipe. If we choose polar coordinates   (r,θ , z) , (Figure 29.  ) then the gradient 
operator is given by the expression 
 

 
    


∇ = ∂

∂r
r̂ + 1

r
∂
∂θ

θ̂ + ∂
∂z

k̂ .  (29.4.25) 

The Laplacian operator is given by 
 

 
  
∇2 = 1

r
∂
∂r

r ∂
∂r

⎛
⎝⎜

⎞
⎠⎟
+ 1

r 2

∂2

∂θ 2 +
∂2

∂z2 .  (29.4.26) 

 
Example Laminar Flow in a Cylindrical Pipe 
 
Consider a pipe of length  L  and radius  R . A Newtonian fluid with viscosity µ  
undergoes steady irrotational flow. Choose cylindrical coordinate with the origin located 
at the center of the pipe and the positive  z -direction in the direction of the flow. The only  
non-zero component in the velocity field is in the  z -direction, thus     

v = vz (r)k̂ . Let’s 
neglect the effect of the gravitational force on the flow. The Navier-Stokes equations in 
the positive  z -direction becomes 
 

 
  
− ∂p
∂z

+ µ 1
r
∂
∂r

r
∂vz

∂r
⎛
⎝⎜

⎞
⎠⎟
= 0 .  (29.4.27) 



 29-18 

 

 
  
−ρg sinθ − ∂p

∂r
= 0 .  (29.4.28) 

 

 
  
−ρg cosθ − 1

r
∂p
∂θ

= 0 .  (29.4.29) 

 
 
We begin by integrating Eq. (29.4.28) 
 

 
  
−g sinθ d ′r

0

r

∫ = d ′p
p(0)

p(r ,θ )

∫ .  (29.4.30) 

resulting in 
   −gr sinθ = p(r,θ )− p(0) .  (29.4.31) 
Integrating Eq. (29.4.29) yields 
 

 

  

−ρgr cos ′θ d ′θ
′θ =0

′θ =θ

∫ = d ′p
p(0)

p(θ )

∫

−ρgr sinθ = p(θ )− p(0)
.  (29.4.32) 

 
Recall that   r sinθ = h , therefore 
   −ρgh = p(r,θ )− p(0) .  (29.4.33) 
 
We can also integrate Eq. (29.4.27) 
 

 

  

∂p
∂z

′r d ′r
0

r

∫ = µ ∂
∂ ′r

′r
∂vz

∂ ′r
⎛
⎝⎜

⎞
⎠⎟

d ′r
0

r

∫

1
2µ

∂p
∂z

r 2 = r
∂vz

∂r
⎛
⎝⎜

⎞
⎠⎟

. (29.4.34) 

 
where we used the fact that   ∂p / ∂z  is independent of  r  and so can be treated as a 
constant with regards to the integration. Integration again yields 
 

 

  

1
2µ

∂p
∂z

′r d ′r
0

r

∫ =
∂vz

∂ ′r
⎛
⎝⎜

⎞
⎠⎟

d ′r
vz (0)

vz (r )

∫

1
4µ

∂p
∂z

r 2 = vz (r)− vz (0)
. (29.4.35) 

 
Therefore the  z -component of the velocity field is 
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1
2µ

∂p
∂z

′r d ′r
0

r

∫ =
∂vz

∂ ′r
⎛
⎝⎜

⎞
⎠⎟

d ′r
vz (0)

vz (r )

∫

vz (r) = 1
4µ

∂p
∂z

r 2 + vz (0)
. (29.4.36) 

 
At the walls of the pipe where  r = R  there is no slippage of the fluid and so we have the 
boundary condition that at  r = R ,   vz (R) = 0 . From Eq. (29.4.36) this implies that  
 

 

  

1
2µ

∂p
∂z

′r d ′r
0

r

∫ =
∂vz

∂ ′r
⎛
⎝⎜

⎞
⎠⎟

d ′r
vz (0)

vz (r )

∫

vz (0) = − 1
4µ

∂p
∂z

R2

. (29.4.37) 

 
Therefore the velocity field is 
 

 
    

v(r) = vz (r)k̂ = 1
4µ

∂p
∂z

(r 2 − R2 )k̂ . (29.4.38) 

 
 
 
 


