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Chapter 26 Elastic Properties of Materials 
 

26.1 Introduction 
 
In our study of rotational and translational motion of a rigid body, we assumed that the 
rigid body did not undergo any deformations due to the applied forces. Real objects 
deform when forces are applied. They can stretch, compress, twist, or break. For example 
when a force is applied to the ends of a wire and the wire stretches, the length of the wire 
increases. More generally, when a force per unit area, referred to as stress, is applied to 
an object, the particles in the object may undergo a relative displacement compared to 
their unstressed arrangement. Strain is a normalized measure of this deformation. For 
example, the tensile strain in the stretched wire is fractional change in length of a stressed 
wire. The stress may not only induce a change in length, but it may result in a volume 
change as occurs when an object is immersed in a fluid, and the fluid exerts a force per 
unit area that is perpendicular to the surface of the object resulting in a volume strain 
which is the fractional change in the volume of the object. Another type of stress, known 
as a shear stress occurs when forces are applied tangential to the surface of the object, 
resulting in a deformation of the object. For example, when scissors cut a thin material, 
the blades of the scissors exert shearing stresses on the material causing one side of the 
material to move down and the other side of the material to move up as shown in Figure 
26.1, resulting in a shear strain. The material deforms until it ultimately breaks. 
 

 
 

Figure 26.1: Scissors cutting a thin material1 
 
In many materials, when the stress is small, the stress and strains are linearly proportional 
to one another. The material is then said to obey Hooke’s Law. The ratio of stress to 
strain is called the elastic modulus. Hooke’s Law only holds for a range of stresses, a 
range referred to as the elastic region. An elastic body is one in which Hooke’s Law 
applies and when the applied stress is removed, the body returns to its initial shape. Our 

                                                
1 Mohsen Mahvash, et al, IEEE Trans Biomed Eng. 2008, March; 55(3); 848-856. 
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idealized spring is an example of an elastic body. Outside of the elastic region, the stress-
strain relationship is non-linear until the object breaks. 
 

26.2 Stress and Strain in Tension and Compression 
 
Consider a rod with cross sectional area  A  and length   l0 . Two forces of the same 
magnitude  F⊥  are applied perpendicularly at the two ends of the section stretching the 
rod to a length  l  (Figure 26.2), where the beam has been stretched by a positive amount 

  δ l = l − l0 . 

 
 

Figure 26.2:  Tensile stress on a rod 
 
The ratio of the applied perpendicular force to the cross-sectional area is called the tensile 
stress,  

 
 
σ T =

F⊥

A
.  (26.2.1) 

 
The ratio of the amount the section has stretched to the original length is called the tensile 
strain, 

 
  
εT = δ l

l0

.  (26.2.2) 

 
Experimentally, for sufficiently small stresses, for many materials the stress and strain are 
linearly proportional, 
 

 
  

F⊥

A
= Y δ l

l0

(Hooke's Law) .  (26.2.3) 

 
where the constant of proportionality  Y  is called Young’s modulus. The SI unit for 
Young’s Modulus is the pascal where  1 Pa ≡ 1 N ⋅m−2 . Note the following conversion 
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factors between SI and English units:  1 bar ≡ 105 Pa ,  1 psi ≡ 6.9×10−2 bar , and 

 1 bar = 14.5 psi . In Table 26.1, Young’s Modulus is tabulated for various materials. 
Figure 26.3 shows a plot of the stress-strain relationship for various human bones. For 
stresses greater than approximately  70 N ⋅mm-2 , the material is no longer elastic. At a 
certain point for each bone, the stress-strain relationship stops, representing the fracture 
point.  
 
 
Material Young’s Modulus, Y 

(Pa) 
Iron  21×1010  
Nickel  21×1010

 
Steel  20×1010

 
Copper  11×1010

 
Brass  9.0×1010

 
Aluminum  7.0×1010

 
Crown Glass  6.0×1010

 
Cortical Bone  7 ×109 − 30×109  
Lead  1.6×1010

 
Tendon  2×107  
Rubber  7 ×105 − 40×105  
Blood vessels  2×105  
 
 
Table 26.1: Young’s Modulus for 
various materials 
 

 
 

Figure 26.3: Stress-strain relation for 
various human bones (figure from H. 
Yamada, Strength of Biological 
Materials) 

 
When the material is under compression, the forces on the ends are directed towards each 
other producing a compressive stress resulting in a compressive strain (Figure 26.4). For 
compressive strains, if we define   δ l = l0 − l > 0  then Eq. (26.2.3) holds for compressive 
stresses provided the compressive stress is not too large. For many materials, Young’s 
Modulus is the same when the material is under tension and compression. There are some 
important exceptions. Concrete and stone can undergo compressive stresses but fail when 
the same tensile stress is applied. When building with these materials, it is important to 
design the structure so that the stone or concrete is never under tensile stresses. Arches 
are used as an architectural structural element primarily for this reason. 
 



 26-4 

 
Figure 26.4: Compressive Stress 

26.3 Shear Stress and Strain 
 
The surface of material may also be subjected to tangential forces producing a shearing 
action. Consider a block of height  h  and area  A , in which a tangential force,    


Ftan , is 

applied to the upper surface. The lower surface is held fixed. The upper surface will shear 
by an angle α  corresponding to a horizontal displacement  δ x . The geometry of the 
shearing action is shown in Figure 26.5. 
 

 
 

Figure 26.5: Shearing forces 
 
The shear stress is defined to be the ratio of the tangential force to the cross sectional 
area of the surface upon which it acts, 

 
  
σ S =

Ftan

A
.  (26.3.1) 

 
The shear strain is defined to be the ratio of the horizontal displacement to the height of 
the block, 

 
 
α = δ x

h
. (26.3.2) 

 
For many materials, when the shear stress is sufficiently small, experiment shows that a 
Hooke’s Law relationship holds in that the shear stress is proportional to shear strain, 
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Ftan

A
= S

δ x
h

(Hooke's Law) .  (26.3.3) 

 
where the constant of proportional,  S , is called the shear modulus. When the 
deformation angle is small,    δ x / h = tanα  sinα α , and Eq. (26.3.3) becomes 
 

 
   

Ftan

A
 Sα (Hooke's Law) .  (26.3.4) 

 
In Table 26.2, the shear modulus is tabulated for various materials. 
 

Table 26.2: Shear Modulus for Various Materials 
 

Material Shear Modulus, S (Pa) 
 

Nickel  7.8×1010
 

Iron  7.7 ×1010
 

Steel  7.5×1010
 

Copper  4.4×1010
 

Brass  3.5×1010
 

Aluminum  2.5×1010
 

Crown Glass  2.5×1010
 

Lead  0.6×1010
 

Rubber  2×105 −10×105
 

 

Example 26.1: Stretched wire  
 
An object of mass  1.5×101 kg  is hanging from one end of a steel wire. The wire without 
the mass has an unstretched length of  0.50 m . What is the resulting strain and elongation 
of the wire? The cross-sectional area of the wire is  1.4×10−2 cm2 .  
 
Solution: When the hanging object is attached to the wire, the force at the end of the wire 
acting on the object exactly balances the gravitational force. Therefore by Newton’s 
Third Law, the tensile force stressing the wire is  
 
  F⊥ = mg .  (26.3.5) 
 
We can calculate the strain on the wire from Hooke’s Law (Eq. (26.2.3)) and the value of 
Young’s modulus for steel  20×1010 Pa  (Table 26.1); 
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δ l
l0

=
F⊥

YA
= mg

YA
= (1.5×101 kg)(9.8 m ⋅s−2 )

(2.0×1011 Pa)(1.4×10−6 m2 )
= 5.3×10−4 .  (26.3.6) 

 
The elongation  δ l  of the wire is then  
 

 
  
δ l = mg

YA
l0 = (5.3×10−4 )(0.50 m) = 2.6×10−4 m .  (26.3.7) 

 

26.4 Elastic and Plastic Deformation 
 
Consider a single sheet of paper. If we bend the paper gently, and then release the 
constraining forces, the sheet will return to its initial state. This process of gently bending 
is reversible as the paper displays elastic behavior. The internal forces responsible for the 
deformation are conservative. Although we do not have a simple mathematical model for 
the potential energy, we know that mechanical energy is constant during the bending. We 
can take the same sheet of paper and crumple it. When we release the paper it will no 
longer return to its original sheet but will have a permanent deformation. The internal 
forces now include non-conservative forces and the mechanical energy is decreased. This 
plastic behavior is irreversible.   
 

 
 

Figure 26.5: Stress-strain relationship 
 

When the stress on a material is linearly proportional to the strain, the material 
behaves according to Hooke’s Law. The proportionality limit is the maximum value of 
stress at which the material still satisfies Hooke’s Law. If the stress is increased above the 
proportionality limit, the stress is no longer linearly proportional to the strain. However, 
if the stress is slowly removed then the material will still return to its original state; the 
material behaves elastically. If the stress is above the proportionality limit, but less then 
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the elastic limit, then the stress is no longer linearly proportional to the strain. Even in 
this non-linear region, if the stress is slowly removed then the material will return to its 
original state. The maximum value of stress in which the material will still remain elastic 
is called the elastic limit. For stresses above the elastic limit, when the stress is removed 
the material will not return to its original state and some permanent deformation sets in, a 
state referred to as a permanent set. This behavior is referred to as plastic deformation. 
For a sufficiently large stress, the material will fracture. Figure 26.5 illustrates a typical 
stress-strain relationship for a material. The value of the stress that fractures a material is 
referred to as the ultimate tensile strength. The ultimate tensile strengths for various 
materials are listed in Table 26.3. The tensile strengths for wet human bones are for a 
person whose age is between 20 and 40 years old.  
 

Table 26.3: Ultimate Tensile Strength for Various Materials 
 

Material Shear Modulus, S (Pa) 
 

Femur  1.21×108
 

Humerus  1.22×108
 

Tibia  1.40×108
 

Fibula  1.46×108
 

Ulna   1.48×108
 

Radius  1.49×108
 

Aluminum  2.2×108
 

Iron  3.0×108
 

Brass  4.7 ×108
 

Steel  5− 20×108
 

 

Example 26.2: Ultimate Tensile Strength of Bones 
 
The ultimate tensile strength of the wet human tibia (for a person of age between 20 and 
40 years) is  1.40×108 Pa . If a greater compressive force per area is applied to the tibia 
then the bone will break. The smallest cross sectional area of the tibia, about  3.2 cm2 , is 
slightly above the ankle. Suppose a person of mass  60 kg  jumps to the ground from a 
height  2.0 m  and absorbs the shock of hitting the ground by bending the knees. Assume 
that there is constant deceleration during the collision. During the collision, the person 
lowers her center of mass by an amount   d = 1.0 cm . (a) What is the collision time   Δtcol ? 
(b) Find the average force of the ground on the person during the collision. (c) Can we 
effectively ignore the gravitational force during the collision? (d) Will the person break 
her ankle? (e) What is the minimum distance   Δdmin  that she would need to lower her 
center of mass so she does not break her ankle? What is the ratio   h0 / Δdmin ? What factors 
does this ratio depend on?  
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Solution: Choose a coordinate system with the positive  y -direction pointing up, and the 
origin at the ground. While the person is falling to the ground, mechanical energy is 
constant (we are neglecting any non-conservative work due to air resistance). Choose the 
contact point with the ground as the zero potential energy reference point. Then the initial 
mechanical energy is 
   E0 =U0 = mgh0 .  (26.4.1) 
 
The mechanical energy of the person just before contact with the ground is 
 

 
  
Eb = K1 =

1
2

mvb
2 .  (26.4.2) 

 
The constancy of mechanical energy implies that 
 

 
  
mgh0 =

1
2

mvb
2 .   (26.4.3) 

 
The speed of the person the instant contact is made with the ground is then 
 
   vb = 2gh0 .  (26.4.4) 
 
If we treat the person as the system then there are two external forces acting on the 
person, the gravitational force     


Fg = −mgĵ  and a normal force between the ground and the 

person     

FN = N ĵ . This force varies with time but we shall consider the time average 

    

Fave

N = Nave ĵ . Then using Newton’s Second Law, 
 
   

Nave − mg = may ,ave .  (26.4.5) 
 
The  y -component of the average acceleration is equal to  
 

 
  
ay ,ave =

Nave

m
− g .  (26.4.6) 

 
Set   t = 0  for the instant the person reaches the ground; then   

vy ,0 = −vb . The displacement 

of the person while in contact with the ground for the time interval   Δtcol  is given by 
 

 
  
Δy = −vbΔtcol +

1
2

ay ,aveΔtcol
2 .  (26.4.7) 
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The  y -component of the velocity is zero at   t = Δtcol  when the person’s displacement is 

 Δy = −d ,  
 

  
0 = −vb + ay ,aveΔtcol .  (26.4.8) 

 
Solving Eq. (26.4.8) for the collision time yields 
 
 

  
Δtcol = vb / ay ,ave .  (26.4.9) 

 
We can now substitute  Δy = −d , Eq. (26.4.9), and Eq. (26.4.4) into Eq. (26.4.7) and 
solve for the  y -component of the acceleration, yielding 
 

 
  
ay ,ave =

gh0

d
.  (26.4.10) 

 
We can solve for the collision time by substituting Eqs. (26.4.10) and Eq. (26.4.4) into Eq. 
(26.4.9) and using the given values in the problem statement, yielding 
 

 
  
Δtcol =

2d
2gh0

= 2(1.0 ×10−2 m)

2(9.8 m ⋅s2 )(2.0 m)
= 3.2×10−3s .  (26.4.11) 

 
Now substitute Eq. (26.4.10) for the  y -component of the acceleration into Eq. (26.4.6) 
and solve for the average normal force 
  

 
  
Nave = mg 1+

h0

d
⎛
⎝⎜

⎞
⎠⎟
= (60 kg)(9.8 m ⋅s−2 ) 1+ (2.0 m)

(1.0×10−2 m)
⎛
⎝⎜

⎞
⎠⎟
= 1.2×105 N . (26.4.12) 

 
Notice that the factor    1+ h0 / d  h0 / d  so during the collision we can effectively ignore 
the external gravitational force. The average compressional force per area on the person’s 
ankle is the average normal force divided by the cross sectional area 
 

 
   
P =

Nave

A


mg
A

h0

d
⎛
⎝⎜

⎞
⎠⎟
= 1.2×105 N

3.2×10−4 m2 = 3.7 ×108 Pa .  (26.4.13) 

 
From Table 26.3, the tensile strength of the tibia is  1.4×108 Pa , so this fall is enough to 
break the tibia.  
 
In order to find the minimum displacement that the center of mass must fall in order to 
avoid breaking the tibia bone, we set the force per area in Eq. (26.4.13) equal to 

  P = 1.4×108 Pa . Because at this value of tensile strength,  
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PA
mg

= (1.4×108 Pa)((3.2×10−4 m2 )
(60 kg)(9.8 m ⋅s−2 )

= 80   (26.4.14) 

 
and so  PA >> mg . We can solve Eq. (26.4.13) for the minimum displacement 
 

 

   

dmin =
h0

PA
mg

−1
⎛
⎝⎜

⎞
⎠⎟


mgh0

PA
= (60 kg)(9.8 m ⋅s−2 )(2.0 m)

(1.4×108 Pa)(3.2×10−4 m2 )
= 2.6 cm , (26.4.15) 

 
where we used the fact that 
 

 
  

PA
mg

= (1.4×108 Pa)((3.2×10−4 m2 )
(60 kg)(9.8 m ⋅s−2 )

= 76   (26.4.16) 

 
and so  PA >> mg . The ratio  
    h0 / dmin  PA / mg = 76 .  (26.4.17) 
 
This ratio depends on the compressive strength of the bone, the cross sectional area, and 
inversely on the weight of the person.  The maximum normal force is anywhere from two 
to ten times the average normal force. A safe distance to lower the center of mass would 
be about 20 cm. 
 

26.5 Bending Beam 
 
Consider a section of a beam that is under both compression and tension and bends as 
shown in Figure 26.6.  

 
 

Figure 26.6: Beam under both compression and tension 
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The upper portion of the beam is under compression and the lower portion of the beam is 
under tension. The centerline is neither under tension or compression and is called the 
neutral axis. For the section shown in Figure 26.6, the neutral axis has length  l . 
 
We shall compute the strain at a distance  x  from neutral axis. The geometry of the 
deformed beam is shown in Figure 26.7. 

 
 

Figure 26.7: Deformed beam with neutral line 
 
At a distance  x  from the neutral line, the beam stretches on each side by an amount 
  y = x tan(α / 2) . For small angles of deformation,   tan(α / 2)  (α / 2) . Therefore the 
length of the section of the beam at a distance  x  from the neutral axis is 
 
    l(x) = l + 2x tan(α / 2) ! l + 2x(α / 2) = l + xα .  (26.5.1) 
 
The amount the beam has stretched is given by  δ l = xα . The arc length is related to the 
radius of curvature,  R , by  l = Rα , therefore the stretched length is   δ l = xl / R . The 
strain as a function of distance  x

 
from the neutral line is given by   

 

 
 

δ l
l
= x

R
.  (26.5.2). 

 
At each point along a line lying a distance x  from the neutral line, the stress is therefore 
 

 
 
σ =

F⊥

A
= Y

δ l
l
= Y

x
R

.  (26.5.3) 

 
The forces these internal stresses exert on the line  AOB  are shown in Figure 26.8. These 
internal stresses produce an internal torque about a point  O  lying on the neutral line. This 
internal torque is called the bending moment. 
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Figure 26.8: Internal torque about a point lying on the neutral line 
 
Consider a strip of cross-sectional strip of area  dA , a distance  x  from the neutral line 
(Figure 26.9). 
  

 
 

 
Figure 26.9: Internal stress due to deformation of body 

 
The total force acting on the strip is 
 

 
 
dF =σ dA = Y

R
xdA .  (26.5.4) 

 
The internal torque about the neutral line is  
 

 
    
d

τ = x î × dF k̂ = − Y

R
x2dAĵ .  (26.5.5) 

 
The bending moment is then the integral of the internal torque over the cross-section and 
is given by 

 
    

!
MB = d

!
τ

area
∫ = − Y

R
x2 dA

area
∫ ĵ= − Y

R
I A ĵ ,  (26.5.6) 

 where  
 

  
I A = x2 dA

area
∫ .  (26.5.7) 
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is called the area moment of inertia of the beam. When the radius of curvature,  R , is 
large, the magnitude of the bending moment,  M B , is small; when the radius of curvature 
is small, the bending moment is large. The curvature of the beam is defined as 
 

 
  
K ≡ 1

R
=

M B

YI A

.  (26.5.8) 

 

Example 26.3: Bending Moment of a Beam 
 
Calculating the area moment of inertia of a 2 by 6 inch beam, which has a width of 
  w = 38 mm  and height of   h = 140 mm , about the stiff vertical direction shown in Figure 
26.10. 
 

 
 

Figure 26.10: cross section of a 2 by 6 inch beam. 
 
Solution: The cross-sectional area element  dA = wdx . The area moment of inertia is  
 

 

  

I A = w ′x 2 d ′x
′x =−h/2

′x =h/2

∫ = w
′x 3

3
′x =−h/2

′x =h/2

= w
(h / 2)3

3
− w

(−h / 2)3

3
= w

h3

12

= (38 mm) (140 mm)3

12
= 8.7 ×10−6 m3.

 (26.5.9) 

 
The bending moment is proportional to the cube of the height  h  of the beam in the plane 
of the bending (Figure 26.11) and only linearly proportional to the width  w  
perpendicular to that plane. 
 

 
 

Figure 26.11: Plane of bending about 
the stiff direction of a 2 by 6 beam 
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Figure 26.12: Bending about the more 
flexible dimension of a 2 by 6 beam 

 
The bending moment about the plane in which the dimensions are interchanged,  ′h = w  
and  ′w = h  is smaller (Figure 26.12), 
 

 
  
′I A =

′w ′h 3

12
= hw3

12
= (140 mm) (38 mm)3

12
= 6.4×10−7 m3 .  (26.5.10) 

Note that 

 
  
′I A / I A =

w
h

⎛
⎝⎜

⎞
⎠⎟

2

= 38
140

⎛
⎝⎜

⎞
⎠⎟

2

= 7.4×10−2   (26.5.11) 

 
Because the curvature is proportional to the bending moment, the greater the bending 
moment, the greater the deformation. The cross sections of various structural elements 
are shown in Figure 26.13. The I-beam provides the desired stiffness and minimizes the 
amount of material as well. 
 

              
 

Figure 26.13: Various structural elements 
 
 

26.6 Differential Equation for Deflection of Loaded Beam 
 
We shall now solve for a differential equation that describes how the neutral axis changes 
as a function of distance along the axis when a stress is applied to the beam 
 

 
 

Figure 26.14: Deflection of neutral axis of loaded beam 
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Consider a beam that deflects under the action of a load and the neutral line describes 
some curve   y(x)  (Figure 26.14). We first begin by finding an expression for the 
curvature   K ≡ 1/ R  in terms of the second derivative of the equation for the curve 
describing the shape of the beam. 
 
Let   θ(x)  describe the angle that the beam is bent with respect to the  x -axis at the point 
 x  (Figure 26.15). We shall consider cases in which the angle   θ(x)  is small and make the 
approximation that    tanθ(x)  θ(x) .   
 

 
 

Figure 26.15: Differential analysis of bending 
 
The arc length is given by  Δs = RΔθ . The slope of the curve   y(x)  at the two points  x  
and  x + Δx  are given by 

 
   

dy
dx

(x) = tanθ(x)  θ(x) ,  (26.5.12) 

and  

 
   

dy
dx

(x + Δx) = tanθ(x + Δx)  θ(x + Δx) = θ(x)+ Δθ .  (26.5.13) 

 
 Therefore the second derivative is given by 
 

 
  

d 2 y
dx2 (x) = lim

Δx→0

dy
dx

(x + Δx)− dy
dx

(x)

Δx
= lim

Δx→0

(θ(x)+ Δθ )−θ(x)
Δx

= lim
Δx→0

Δθ
Δx

. (26.5.14) 

 
The arc length is  

 
  
Δs = RΔθ = (Δx2 + Δy2 )1/2 = Δx 1+ Δy

Δx
⎛
⎝⎜

⎞
⎠⎟

2⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1/2

 . (26.5.15). 

Thus 
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Δθ
Δx

= 1
R

1+ Δy
Δx

⎛
⎝⎜

⎞
⎠⎟

2⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1/2

 . (26.5.16). 

 
Therefore the second derivative is given by 
 

 
  

d 2 y
dx2 (x) = lim

Δx→0

Δθ
Δx

= lim
Δx→0

1
R

1+ Δy
Δx

⎛
⎝⎜

⎞
⎠⎟

2⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1/2

= 1
R

1+ dy
dx

(x)
⎛
⎝⎜

⎞
⎠⎟

2⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1/2

.  (26.5.17) 

 
For small deflections, 

 
   

dy
dx

(x)  0 .  (26.5.18) 

 
In that case, the second derivative is equal to the curvature 
 

 
   

d 2 y
dx2 

1
R
= K .  (26.5.19) 

 
We can now determine the differential equation for the loaded beam by applying our 
result for the curvature (Eq. (26.5.8)), 
 

 
  

d 2 y
dx2 =

M B(x)
YI A

.  (26.5.20) 

 

26.7 Cantilevered Beam 
 
Consider a beam that at   x = 0  is held fixed and allowed to bend under a load F  applied 
at the other end,  x = L  (Figure 26.16). 

 
 

Figure 26.16: Loaded beam with one end held fixed 
 
Consider a mathematical cut in the beam a distance  x  from the fixed end. The right side 
of the beam is static so there must be a vertical force     


F(x) = Fĵ  at  x  to balance the load 

    

FL = −Fĵ  at  x = L  (Figure 26.17). 
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.  

 
 
Figure 26.17: Internal vertical force at imaginary cut at a distance  x  from the fixed end 
of beam 
 
In addition to the shearing vertical force, there are compressive and tensile forces at  x  in 
order to balance the external torque about  x  (Figure 26.18), given by  
 
     


τ L(x) = (L− x) î ×


FL = (L− x) î × (−Fĵ) = −(L− x)Fk̂ .  (26.5.21) 

 
The internal torque due to the compression and extension at  x , which exactly balances 
the external torque is  
     


τ int (x) = (L− x)Fk̂ .  (26.5.22) 

 
 

 
 
Figure 26.18: Bending moment for a loaded beam fixed at one end. 
 
Because the beam is deflecting downwards, the bending moment in this example must be 
negative in order to produce negative curvature, 
 
   M B = −(L− x)F .  (26.5.23) 
 
The bending moment as a function of distance from the fixed end is shown in Figure 
26.19.  
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Figure 26.19: Bending moment 
 
The differential equation (Eq. (26.5.20)) for the beam is 
 

 
  

d 2 y
dx2 = − F

YI A

(L− x) .  (26.5.24) 

The first integral of this equation is 
 

 
  

dy
dx

= F
2YI A

(L− x)2 + a1 , (26.5.25) 

 
where   a1  is a constant of integration. The second integral is then 
 

 
  
y(x) = − F

6YI A

(L− x)3 + a1x + a2 , (26.5.26) 

 
where   a2  is another constant of integration. 
 
We can determine   a1  and   a2  by applying the boundary conditions that 
 
1) At   x = 0 :   y = 0 , there is zero deflection at the fixed end, therefore  

 
  
y(x = 0) = − FL3

6YI A

+ a2 ⇒ a2 =
FL3

6YI A

, (26.5.27) 

2) At   x = 0 : 
  

dy
dx

(x = 0) = 0 , the beam is level at the fixed end, therefore 

 

 
  

dy
dx

(0) = FL2

2YI A

+ a1 ⇒ a1 = − FL2

2YI A

, (26.5.28) 

 
The general equation for the beam deflection is given by 
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y(x) = − F

6YI A

(L− x)3 − FL2

2YI A

x + FL3

6YI A

, (26.5.29) 

 
In particular at the loaded end,  x = L , the deflection is 
 

 
  
y(x = L) = − FL3

2YI A

+ FL3

6YI A

= − FL3

3YI A

, (26.5.30) 

Example 26.4: Deflection of a Beam 
 
Consider an eight foot long, 2 by 6 beam. The length of the beam is   L = 2.44 m . Recall 
The area moment of inertia about the stiff direction (Figure 26.10 in Example 26.3) is 

  I A = 8.7 ×10−6 m3 . Young’s modulus for wood is   Y = 1.0×1010 Pa . If we load the beam 

with a force of magnitude   F = 2.2×102 N , then the beam will deflect at the loaded end 
by 

 
  
y(x = L) = − FL3

3YI A

= − (2.2×102 N)(2.44 m)3

3(1.0×1010 Pa)(8.7 ×10−6 m3)
= 1.2×10−2 m = 1.2 cm .(26.5.31) 

 
If we hang the load in the flexible direction (Figure 26.12), with,   ′I A = 6.4×10−7 m3 , then 
the beam will bend at the loaded by 
 

 
  
y(x = L) = − FL3

3Y ′I A

= − (2.2×102 N)(2.44 m)3

3(1.0×1010 Pa)(6.4×10−7 m3)
= 1.7 ×10−1 m = 17 cm .(26.5.32) 

 

 
 

Figure 26.21: Loaded beam in stiff and flexible directions 


