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Chapter 24 Physical Pendulum 
 

…. I had along with me….the Descriptions, with some Drawings of the 
principal Parts of the Pendulum-Clock which I had made, and as also of 
them of my then intended Timekeeper for the Longitude at Sea.1 
 

       John Harrison 
 
24.1 Introduction 
 
We have already used Newton’s Second Law or Conservation of Energy to analyze 
systems like the spring-object system that oscillate. We shall now use torque and the 
rotational equation of motion to study oscillating systems like pendulums and torsional 
springs. 
 
24.1.1 Simple Pendulum: Torque Approach 
 
Recall the simple pendulum from Chapter 23.3.1.The coordinate system and force 
diagram for the simple pendulum is shown in Figure 24.1.  
 

   
(a)      (b) 

 
Figure 24.1 (a) Coordinate system and (b) torque diagram for simple pendulum 

 
The torque about the pivot point  P  is given by 
 
 

    

τP = rP, m × mg = l r̂ × m g(cosθ r̂ − sinθ θ̂) = −l m g sinθ k̂  (24.1.1) 

 
The z -component of the torque about point  P  
 
   (τ P )z = −mgl sinθ . (24.1.2) 
 
                                                
1 J. Harrison, A Description Concerning Such Mechanisms as will Afford a Nice, or True Mensuration of 
Time;…(London, 1775), p.19. 
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When  θ > 0 ,    (τ P )z < 0  and the torque about  P  is directed in the negative   k̂ -direction 
(into the plane of Figure 24.1b) when  θ < 0 ,    (τ P )z > 0  and the torque about  P  is 

directed in the positive   k̂ -direction (out of the plane of Figure 24.1b). The moment of 
inertia of a point mass about the pivot point  P  is   IP = ml2 . The rotational equation of 
motion is then  
 

 

  

(τ P )z = IPα z ≡ IP

d 2θ
dt2

−mgl sinθ = ml2 d 2θ
dt2 .

  (24.1.3) 

Thus we have  

 
2

2 sind g
dt l
θ θ= − , (24.1.4) 

 
agreeing with Eq. 23. 3.14. When the angle of oscillation is small, we may use the small 
angle approximation 
 sinθ θ≅ , (24.1.5) 
 
and Eq. (24.1.4) reduces to the simple harmonic oscillator equation 
 

 
2

2

d g
dt l
θ θ≅ − .  (24.1.6) 

 
We have already studied the solutions to this equation in Chapter 23.3. A procedure for 
determining the period when the small angle approximation does not hold is given in 
Appendix 24A. 
 
24.2 Physical Pendulum 
 
A physical pendulum consists of a rigid body that undergoes fixed axis rotation about a 
fixed point S  (Figure 24.2).  

 
 

Figure 24.2 Physical pendulum 
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The gravitational force acts at the center of mass of the physical pendulum. Denote the 
distance of the center of mass to the pivot point S  by cml . The torque analysis is nearly 
identical to the simple pendulum. The torque about the pivot point  S  is given by 
 
 

    

τS = rS , cm × mg = lcmr̂ × m g(cosθ r̂ − sinθ θ̂) = −lcmm g sinθ k̂ . (24.2.1) 

 
Following the same steps that led from Equation (24.1.1) to Equation (24.1.4), the 
rotational equation for the physical pendulum is 
 

 
  
−mglcm sinθ = IS

d 2θ
dt2 , (24.2.2) 

 
where  IS  the moment of inertia about the pivot point  S . As with the simple pendulum, 
for small angles sinθ θ≈ , Equation (24.2.2) reduces to the simple harmonic oscillator 
equation  

 
   

d 2θ
dt2  −

mglcm

IS

θ . (24.2.3) 

 
The equation for the angle   θ(t)  is given by  
 
 θ(t) = Acos(ω 0 t)+ Bsin(ω 0 t) , (24.2.4) 
 
where the  angular frequency is given by 
 

 
   
ω0 

mg lcm

IS

(physical pendulum) , (24.2.5) 

and the period is 

 
   
T = 2π

ω0

 2π
IS

mg lcm

(physical pendulum) . (24.2.6) 

 
Substitute the parallel axis theorem,   IS = mlcm

2 + Icm , into Eq. (24.2.6) with the result that 
 

 
   
T  2π

lcm

g
+

Icm

mg lcm

(physical pendulum) . (24.2.7) 

 
Thus, if the object is “small” in the sense that   Icm << mlcm

2 , the expressions for the 
physical pendulum reduce to those for the simple pendulum. The  z -component of the 
angular velocity is given by 
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ω z (t) =

dθ
dt

(t) = −ω0 Asin(ω0 t)+ω0Bcos(ω0 t) . (24.2.8) 

 
The coefficients  A  and  B  can be determined form the initial conditions by setting t = 0  
in Eqs. (24.2.4) and (24.2.8) resulting in the conditions that 
 

 

  

A = θ(t = 0) ≡θ0

B =
ω z (t = 0)

ω0

≡
ω z ,0

ω0

.
  (24.2.9) 

 

Therefore the equations for the angle   θ(t)  and 
  
ω z (t) =

dθ
dt

(t)  are given by 

 

 
  
θ(t) = θ0 cos(ω0 t)+

ω z ,0

ω0

sin(ω0 t) , (24.2.10) 

 
  
ω z (t) =

dθ
dt

(t) = −ω0θ0 sin(ω0 t)+ω z ,0 cos(ω0 t) . (24.2.11) 

 
24.3 Worked Examples 
 
Example 24.1 Oscillating Rod  
 
A physical pendulum consists of a uniform rod of length  d  and mass  m  pivoted at one 
end. The pendulum is initially displaced to one side by a small angle  θ0  and released 
from rest with  θ0 <<1. Find the period of the pendulum. Determine the period of the 
pendulum using (a) the torque method and (b) the energy method. 
 

 
Figure 24.3 Oscillating rod 

 
(a) Torque Method: with our choice of rotational coordinate system the angular 
acceleration is given by 
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
α =

d 2θ
dt2 k̂ . (24.3.1) 

 
The force diagram on the pendulum is shown in Figure 24.4. In particular, there is an 
unknown pivot force and the gravitational force acts at the center of mass of the rod.  
 

 
Figure 24.4 Free-body force diagram on rod 

 
The torque about the pivot point  P  is given by 
 
 

    

τP = rP,cm × mg . (24.3.2) 

 
The rod is uniform, therefore the center of mass is a distance   d / 2  from the pivot point. 
The gravitational force acts at the center of mass, so the torque about the pivot point  P  is 
given by 
     


τP = (d / 2)r̂ × mg(− sinθ θ̂ + cos r̂) = −(d / 2)mg sinθ k̂ . (24.3.3) 

 
The rotational equation of motion about  P  is then 
 
   


τP = IP


α . (24.3.4) 

 
Substituting Eqs. (24.3.3) and (24.3.1) into Eq. (24.3.4) yields 
 

 
   
−(d / 2)mg sinθ k̂ = IP

d 2θ
dt2 k̂ . (24.3.5) 

 
When the angle of oscillation is small, we may use the small angle approximation 
 sinθ ≅θ , then Eq. (24.3.5) becomes 



 24-6 

 

 
   

d 2θ
dt2 + (d / 2)mg

IP

θ  0 , (24.3.6) 

 
which is a  simple harmonic oscillator equation. The angular frequency of small 
oscillations for the pendulum is  

 
   
ω0 

(d / 2)mg
IP

. (24.3.7) 

 
The moment of inertia of a rod about the end point  P  is   IP = (1 / 3)md 2  therefore the 
angular frequency is  

 
   
ω0 

(d / 2)mg
(1/ 3)md 2 = (3 / 2)g

d
 (24.3.8) 

with period 

 
   
T = 2π

ω0

 2π 2
3

d
g

. (24.3.9) 

 
(b) Energy Method: Take the zero point of gravitational potential energy to be the point 
where the center of mass of the pendulum is at its lowest point (Figure 24.5), that is, 
 θ = 0 .  

 
 

Figure 24.5 Energy diagram for rod 
 
When the pendulum is at an angle θ  the potential energy is 
 

 
  
U = mg d

2
(1− cosθ ) . (24.3.10) 

 
The kinetic energy of rotation about the pivot point is 
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K rot = 1

2
I pω z

2 . (24.3.11) 

The mechanical energy is then 
 

 
  
E =U + K rot = mg d

2
1− cosθ( ) + 1

2
I pω z

2 , (24.3.12) 

 
with 2(1/ 3)PI md= . There are no non-conservative forces acting (by assumption), so the 
mechanical energy is constant, and therefore the time derivative of energy is zero, 
 

 
  
0 = dE

dt
= mg d

2
sinθ dθ

dt
+ I pω z

dω z

dt
. (24.3.13) 

 
Recall that   ω z = dθ / dt  and   α z = dω z / dt = d 2θ / dt2 , so Eq.  (24.3.13) becomes 
 

 
  
0 =ω z mg d

2
sinθ + I p

d 2θ
dt2

⎛
⎝⎜

⎞
⎠⎟

. (24.3.14) 

 
There are two solutions,   ω z = 0 , in which case the rod remains at the bottom of the 
swing,  

 
  
0 = mg d

2
sinθ + I p

d 2θ
dt2 . (24.3.15) 

 
Using the small angle approximation, we obtain the simple harmonic oscillator equation 
(Eq. (24.3.6)) 

 
   

d 2θ
dt2 +

m g(d / 2)
I p

θ  0 . (24.3.16) 

 
Example 24.3 Torsional Oscillator  
 
A disk with moment of inertia about the center of mass   Icm  rotates in a horizontal plane. 
It is suspended by a thin, massless rod. If the disk is rotated away from its equilibrium 
position by an angle θ , the rod exerts a restoring torque about the center of the disk with 
magnitude given by   τ cm = bθ  (Figure 24.6), where  b  is a positive constant. At  0t = , the 
disk is released from rest at an angular displacement of 0θ . Find the subsequent time 
dependence of the angular displacement ( )tθ . 
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Figure 24.6 Example 24.3 with exaggerated angle θ  
 
Solution: Choose a coordinate system such that   k̂  is pointing upwards (Figure 24.6), 
then the angular acceleration is given by 

 
    


α =

d 2θ
dt2 k̂ . (24.3.17) 

 
The torque about the center of mass is given in the statement of the problem as a 
restoring torque, therefore 
     


τcm = −bθ k̂ . (24.3.18) 

 
The  z -component of the rotational equation of motion is  
 

 
  
−bθ = Icm

d 2θ
dt2 . (24.3.19) 

 
This is a simple harmonic oscillator equation with solution 
 
   θ(t) = Acos(ω0 t) + Bsin(ω0 t)  (24.3.20) 
 
where the angular frequency of oscillation is given by 
 
   ω0 = b / Icm . (24.3.21) 
 
The z -component of the angular velocity is given by 
 

 
  
ω z (t) =

dθ
dt

(t) = −ω0 Asin(ω0 t) +ω0 Bcos(ω0 t) . (24.3.22) 

 
The initial conditions at 0t = , are 0( 0)t Aθ θ= = = , and   (dθ / dt)(t = 0) =ω0 B = 0 . 
Therefore  
   θ(t) = θ0 cos( b / Icm t) . (24.3.23) 
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Example 24.4 Compound Physical Pendulum 
 
A compound physical pendulum consists of a disk of radius R  and mass  md  fixed at the 
end of a rod of mass  mr  and length l  (Figure 24.7a). (a) Find the period of the pendulum. 
(b) How does the period change if the disk is mounted to the rod by a frictionless bearing 
so that it is perfectly free to spin? 

 
(a) 

 
(b)

 
Figure 24.7 (a) Example 24.4   (b) Free-body force diagram 

 
Solution: We begin by choosing coordinates. Let k̂  be normal to the plane of the motion 
of the pendulum pointing out of the plane of the Figure 24.7b.  Choose an angle variable 
θ  such that counterclockwise rotation corresponds to a positive  z -component of the 
angular velocity. Thus a torque that points into the page has a negative  z -component and 
a torque that points out of the page has a positive  z -component. The free-body force 
diagram on the pendulum is also shown in Figure 24.7b. In particular, there is an 
unknown pivot force, the gravitational force acting at the center of mass of the rod, and 
the gravitational force acting at the center of mass of the disk.  The torque about the pivot 
point is given by 
 

    

τP = rP,cm × mr

g + rP,disk × md
g . (24.3.24) 

 
Recall that the vector 

    
rP,cm  points from the pivot point to the center of mass of the rod a 

distance   l / 2  from the pivot. The vector 
    
rP,disk  points from the pivot point to the center of 

mass of the disk a distance  l  from the pivot. Torque diagrams for the gravitational force 
on the rod and the disk are shown in Figure 24.8. Both torques about the pivot are in the 
negative   k̂ -direction (into the plane of Figure 24.8) and hence have negative  z -
components,  
     


τP = −(mr (l / 2)+ mdl)g sinθ k̂ . (24.3.25) 
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(a) 

 

 
(b) 

 
Figure 24.8 Torque diagram for (a) center of mass, (b) disk 

 
In order to determine the moment of inertia of the rigid compound pendulum we will 
treat each piece separately, the uniform rod of length  d  and the disk attached at the end 
of the rod. The moment of inertia about the pivot point  P  is the sum of the moments of 
inertia of the two pieces, 
 

  
IP = IP,rod + IP,disc . (24.3.26) 

 
We calculated the moment of inertia of a rod about the end point  P  (Chapter 16.3.3), 
with the result that 

 
  
IP,rod =

1
3

mrl
2 . (24.3.27) 

 
We can use the parallel axis theorem to calculate the moment of inertia of the disk about 
the pivot point  P , 
 

  
IP,disc = Icm,disc + mdl2 . (24.3.28) 

 
We calculated the moment of inertia of a disk about the center of mass (Example 16.3) 
and determined that 

 
  
Icm,disc =

1
2

md R2 . (24.3.29) 

 
The moment of inertia of the compound system is then 
 

 
  
IP = 1

3
mrl

2 + mdl2 + 1
2

md R2 . (24.3.30) 

 
Therefore the rotational equation of motion becomes 
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−((1/ 2)mr + md )gl sinθ k̂ = ((1/ 3)mr + md )l2 + (1/ 2)md R2( ) d 2θ

dt2 k̂ . (24.3.31) 

 
When the angle of oscillation is small, we can use the small angle approximation 
  sinθ  θ . Then Eq. (24.3.31) becomes a simple harmonic oscillator equation, 
 

 
   

d 2θ
dt2  −

((1/ 2)mr + md )gl
((1/ 3)mr + md )l2 + (1/ 2)md R2 θ . (24.3.32) 

 
Eq. (24.3.32) describes simple harmonic motion with an angular frequency of oscillation 
when the disk is fixed in place given by  
 

 
  
ω fixed =

((1/ 2)mr + md )gl
((1/ 3)mr + md )l2 + (1/ 2)md R2 . (24.3.33) 

 
The period is 

 
   
Tfixed =

2π
ω fixed

 2π
((1/ 3)mr + md )l2 + (1/ 2)md R2

((1/ 2)mr + md )gl
. (24.3.34) 

 
(b) If the disk is not fixed to the rod, then it will not rotate about its center of mass as the 
pendulum oscillates. Therefore the moment of inertia of the disk about its center of mass 
does not contribute to the moment of inertia of the physical pendulum about the pivot 
point. Notice that the pendulum is no longer a rigid body. The total moment of inertia is 
only due to the rod and the disk treated as a point like object, 
 

 
  
IP =

1
3

mrl
2 + mdl2 . (24.3.35) 

 
Therefore the period of oscillation is given by 

 

 
   
Tfree =

2π
ω free

 2π
((1/ 3)mr + md )l2

((1/ 2)mr + md )gl
. (24.3.36) 

 
Comparing Eq. (24.3.36) to Eq. (24.3.34), we see that the period is smaller when the disk 
is free and not fixed. From an energy perspective we can argue that when the disk is free, 
it is not rotating about the center of mass. Therefore more of the gravitational potential 
energy goes into the center of mass translational kinetic energy than when the disk is free. 
Hence the center of mass is moving faster when the disk is free so it completes one 
period is a shorter time. 
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Appendix 24A Higher-Order Corrections to the Period for Larger 
Amplitudes of a Simple Pendulum 

 
In Section 24.1.1, we found the period for a simple pendulum that undergoes small 
oscillations is given by 

 
  
T =

2π
ω0

≅ 2π l
g

(simple pendulum) . 

 
How good is this approximation? If the pendulum is pulled out to an initial angle 0θ  that 
is not small (such that our first approximation sinθ θ≅  no longer holds) then our 
expression for the period is no longer valid. We shall calculate the first-order (or higher-
order) correction to the period of the pendulum.  
 
Let’s first consider the mechanical energy, a conserved quantity in this system. Choose 
an initial state when the pendulum is released from rest at an angle  θ i ; this need not be at 
time 0t = , and in fact later in this derivation we’ll see that it’s inconvenient to choose 
this position to be at 0t = . Choose for the final state the position and velocity of the bob 
at an arbitrary time t .  Choose the zero point for the potential energy to be at the bottom 
of the bob’s swing (Figure 24A.1).  

 
 

Figure 24A.1 Energy diagram for simple pendulum 
 
The mechanical energy when the bob is released from rest at an angle  θ i  is 
 
   Ei = Ki +Ui = mg l (1− cosθ i ) . (24.C.37) 
 
The tangential component of the velocity of the bob at an arbitrary time t  is given by 
 

 
 
vθ = l dθ

dt
, (24.C.38) 

and the kinetic energy at that time is 
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K f =

1
2

mvθ
2 = 1

2
m l dθ

dt
⎛
⎝⎜

⎞
⎠⎟

2

. (24.C.39) 

 
The mechanical energy at time  t  is then 
 

 
21

(1 cos )
2f f f

dE K U m l m g l
dt
θ θ⎛ ⎞= + = + −⎜ ⎟⎝ ⎠

. (24.C.40) 

 
Because the tension in the string is always perpendicular to the displacement of the bob, 
the tension does no work, we neglect any frictional forces, and hence mechanical energy 
is constant,  

E f = Ei . Thus 
 

 

  

1
2

m l dθ
dt

⎛
⎝⎜

⎞
⎠⎟

2

+ mg l (1− cosθ ) = mg l (1− cosθ i )

l dθ
dt

⎛
⎝⎜

⎞
⎠⎟

2

= 2
g
l

(cosθ − cosθ i ).

 (24.C.41) 

 
We can solve Equation (24.C.41) for the angular velocity as a function of θ , 
 

 
  
dθ
dt

= 2g
l

cosθ − cosθ i . (24.C.42) 

 
Note that we have taken the positive square root, implying that / 0d dtθ ≥ .  This clearly 
cannot always be the case, and we should change the sign of the square root every time 
the pendulum’s direction of motion changes.  For our purposes, this is not an issue.  If we 
wished to find an explicit form for either   θ(t)  or ( )t θ , we would have to consider the 
signs in Equation (24.C.42) more carefully. 
 
Before proceeding, it’s worth considering the difference between Equation (24.C.42) and 
the equation for the simple pendulum in the simple harmonic oscillator limit, where 

  cosθ  1− (1/ 2)θ 2 . Then Eq. (24.C.42) reduces to 
 

 
  
dθ
dt

= 2g
l

θ i
2

2
− θ

2

2
. (24.C.43) 

 
In both Equations (24.C.42) and (24.C.43) the last term in the square root is proportional 
to the difference between the initial potential energy and the final potential energy.  The 
final potential energy for the two cases is plotted in Figures 24A.2 for π θ π− < <  on the 
left and / 2 / 2π θ π− < <  on the right (the vertical scale is in units of mgl ).  
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Figures 24A.2 Potential energies as a function of displacement angle 
 
It would seem to be to our advantage to express the potential energy for an arbitrary 
displacement of the pendulum as the difference between two squares. We do this by first 
recalling the trigonometric identity 
 
  1− cosθ = 2sin2(θ / 2)  (24.C.44) 
 
with the result that Equation (24.C.42) may be re-expressed as 
 

 
  
dθ
dt

= 2g
l

2(sin2(θ i / 2)− sin2(θ / 2)) . (24.C.45) 

 
Equation (24.C.45) is separable, 
 

 
  

dθ
sin2(θ i / 2)− sin2(θ / 2)

= 2 g
l

dt  (24.C.46) 

 
Rewrite Equation (24.C.46) as 
 

 

  

dθ

sin(θ i / 2) 1− sin2(θ / 2)
sin2(θ i / 2)

= 2 g
l

dt . (24.C.47) 

 
The ratio   sin(θ / 2) / sin(θ i / 2)  in the square root in the denominator will oscillate (but 
not with simple harmonic motion) between 1−  and  +1, and so we will make the 
identification 

 
  
sinφ = sin(θ / 2)

sin(θ i / 2)
. (24.C.48) 
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Let   b = sin(θ i / 2) , so that  
 

 

  

sin
θ
2
= bsinφ

cos
θ
2
= 1− sin2 θ

2
⎛
⎝⎜

⎞
⎠⎟

1 2

= (1− b2 sin2φ)1 2.
 (24.C.49) 

 
Eq.  (24.C.47) can then be rewritten in integral form as 
 

 
  

dθ
b 1− sin2φ
∫ = 2 g

l
dt∫ . (24.C.50) 

 
From differentiating the first expression in Equation (24.C.49), we have that  
 

 

  

1
2

cos
θ
2

dθ =bcosφ dφ

dθ = 2b cosφ
cos(θ / 2)

dφ = 2b 1− sin2φ

1− sin2(θ / 2)
dφ

= 2b 1− sin2φ

1− b2 sin2φ
dφ.

  (24.C.51) 

 
 
Substituting the last equation in (24.C.51) into the left-hand side of the integral in 
(24.C.50) yields  

 
  

2b
b 1− sin2φ

1− sin2φ

1− b2 sin2φ
dφ∫ = 2 dφ

1− b2 sin2φ
∫ . (24.C.52) 

 
Thus the integral in Equation (24.C.50) becomes 
 

 
  

dφ
1− b2 sin2φ

∫ = g
l

dt∫ . (24.C.53) 

 
This integral is one of a class of integrals known as elliptic integrals. We find a power 
series solution to this integral by expanding the function 
 

 
  
(1− b2 sin2φ)−1 2 = 1+ 1

2
b2 sin2φ + 3

8
b4 sin4φ + ⋅⋅⋅ . (24.C.54) 

 
The integral in Equation (24.C.53) then becomes 
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1+ 1
2

b2 sin2φ + 3
8

b4 sin4φ + ⋅⋅⋅
⎛
⎝⎜

⎞
⎠⎟

dφ∫ = g
l

dt∫ . (24.C.55) 

 
Now let’s integrate over one period.  Set 0t =  when 0θ = , the lowest point of the swing, 
so that sin 0φ =  and 0φ = .  One period T  has elapsed the second time the bob returns to 
the lowest point, or when 2φ π= .  Putting in the limits of the φ -integral, we can 
integrate term by term, noting that 
 

 

  

1
2

b2 sin2φ dφ
0

2π

∫ = 1
2

b2 1
2

(1− cos(2φ))
0

2π

∫ dφ

= 1
2

b2 1
2

φ − sin(2φ)
2

⎛
⎝⎜

⎞
⎠⎟

0

2π

= 1
2
πb2 = 1

2
π sin2 θ i

2
.

 (24.C.56) 

 
Thus, from Equation (24.C.55) we have that  
  

 

  

1+ 1
2

b2 sin2φ + 3
8

b4 sin4φ + ⋅⋅⋅
⎛
⎝⎜

⎞
⎠⎟

dφ
0

2π

∫ = g
l

dt
0

T

∫

2π + 1
2
π sin2 θ i

2
+ ⋅⋅⋅= g

l
T

, (24.C.57) 

 
We can now solve for the period,  
 

 
  
T = 2π l

g
1+ 1

4
sin2 θ i

2
+ ⋅⋅⋅

⎛
⎝⎜

⎞
⎠⎟

. (24.C.58) 

 
If the initial angle   θ i <<1  (measured in radians), then    sin2(θ i / 2)  θ i

2 / 4  and the period 
is approximately 

 
  
T ≅ 2π l

g
1+ 1

16
θ i

2⎛
⎝⎜

⎞
⎠⎟
= T0 1+ 1

16
θ i

2⎛
⎝⎜

⎞
⎠⎟

, (24.C.59) 

where  

 0 2 lT
g

π=  (24.C.60) 

 
is the period of the simple pendulum with the standard small angle approximation. The 
first order correction to the period of the pendulum is then 
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ΔT1 =

1
16

θ i
2 T0 . (24.C.61) 

 
Figure 24A.3 below shows the three functions given in Equation (24.C.60) (the 
horizontal, or red plot if seen in color), Equation (24.C.59) (the middle, parabolic or 
green plot) and the numerically-integrated function obtained by integrating the expression 
in Equation (24.C.53) (the upper, or blue plot) between 0φ =  and 2φ π= . The plots 
demonstrate that Equation (24.C.60) is a valid approximation for small values of  θ i , and 
that Equation (24.C.59) is a very good approximation for all but the largest amplitudes of 
oscillation.  The vertical axis is in units of   l / g .  Note the displacement of the 
horizontal axis. 
 

 
 

Figure 24A.3 Pendulum Period Approximations as Functions of Amplitude 


