
Chapter 22 Three Dimensional Rotations and Gyroscopes 

22.1 Introduction to Three Dimensional Rotations ............................................................... 1	
22.1.1 Angular Velocity for Three Dimensional Rotations ............................................... 1	
Example 22.1 Angular Velocity of a Rolling Bicycle Wheel ............................................. 2	

22.2 Gyroscope .......................................................................................................................... 3	
22.3 Why Does a Gyroscope Precess? ..................................................................................... 8	

22.3.1 Deflection of a Particle by a Small Impulse ............................................................. 9	
22.3.2 Effect of Small Impulse on Tethered Object ........................................................... 9	
Example 22.2 Effect of Large Impulse on Tethered Object ............................................ 11	
22.3.3 Effect of Small Impulse Couple on Baton .............................................................. 12	
22.3.4 Effect of Small Impulse Couple on Massless Shaft of Baton ............................... 12	
22.3.5 Effect of a Small Impulse Couple on a Rotating Disk .......................................... 13	
22.3.6 Effect of a Force Couple on a Rotating Disk ......................................................... 13	
22.3.7 Effect of a Small Impulse Couple on a Non-Rotating Disc .................................. 15	

22.4 Worked Examples ........................................................................................................... 15	
Example 22.3 Tilted Toy Gyroscope ................................................................................. 15	
Example 22.4 Gyroscope on Rotating Platform ............................................................... 17	
Example 22.5 Grain Mill .................................................................................................... 20	

22.5 Angular Momentum and the Moment of Inertia Tensor ............................................ 23	
Example 22.5.1: Angular Momentum and Torque for a Rotating Skew Rod (without 
using principle axis theorem) ............................................................................................. 27	
Example 22.5.2: Principal Axes and Angular Momentum for a Skewed Rod .............. 30	

 
 

 



 22-1 

 

Chapter 22 Three Dimensional Rotations and Gyroscopes 
 

Hypothesis: The earth, having once received a rotational movement around an 
axis, which agrees with its axis on the figure or only differs from it slightly, will 
always conserve this uniform movement, and its axis of rotation will always 
remain the same and will be directed toward the same points of the sky, unless the 
earth should be subjected to external forces which might cause some change 
either in the speed of rotational movement or in the position of the axis of 
rotation.1 
 

          Leonhard Euler 
 
22.1 Introduction to Three Dimensional Rotations 
 
Most of the examples and applications we have considered concerned the rotation of rigid bodies 
about a fixed axis. However, there are many examples of rigid bodies that rotate about an axis 
that is changing its direction. A turning bicycle wheel, a gyroscope, the earth’s precession about 
its axis, a spinning top, and a coin rolling on a table are all examples of this type of motion. 
These motions can be very complex and difficult to analyze. However, for each of these motions 
we know that if there a non-zero torque about a point  S , then the angular momentum about   S  
must change in time, according to the rotational equation of motion, 

 

 
   


τS =

d

LS

dt
. (22.1.1) 

 
We also know that the angular momentum about  S  of a rotating body is the sum of the orbital 
angular momentum about  S  and the spin angular momentum about the center of mass. 
  
     


LS =


LS

orbital +

Lcm

spin . (22.1.2) 
 
For fixed axis rotation the spin angular momentum about the center of mass is just  
 
     


Lcm

spin = Icm


ω cm . (22.1.3) 

 
where   


ω cm  is the angular velocity about the center of mass and is directed along the fixed axis of 

rotation.  
 
22.1.1 Angular Velocity for Three Dimensional Rotations 
 
                                                
1 L. Euler, Recherches sur la precession des equinoxes et sur la nutation de l'axe de la terre 
(Research concerning the precession of the equinoxes and of the nutation of the earth's axis), Memoires de 
l'academie des sciences de Berlin 5, 1751, pp. 289-325 
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When the axis of rotation is no longer fixed, the angular velocity will no longer point in a fixed 
direction.  
 

For an object that is rotating with angular coordinates   
(θ x ,θ y ,θ z )  about each 

respective Cartesian axis, the angular velocity of an object that is rotating about 
each axis is defined to be 
 

                                     

    


ω =

dθ x

dt
î +

dθ y

dt
ĵ+

dθ z

dt
k̂

=ω x î +ω y ĵ+ω zk̂
                                         (22.1.4) 

 
This definition is the result of a property of very small (infinitesimal) angular rotations in which 
the order of rotations does matter. For example, consider an object that undergoes a rotation 
about the  x -axis,     


ω x =ω x î , and then a second rotation about the  y -axis, 

    

ω y =ω y ĵ . Now 

consider a different sequence of rotations. The object first undergoes a rotation about the  y -axis, 

    

ω y =ω y ĵ , and then undergoes a second rotation about the  x -axis,     


ω x =ω x î . In both cases the 

object will end up in the same position indicated that 
  

ω x +


ω y =


ω y +


ω x , a necessary condition 

that must be satisfied in order for a physical quantity to be a vector quantity.  
 
Example 22.1 Angular Velocity of a Rolling Bicycle Wheel 
 
A bicycle wheel of mass m  and radius R  rolls without slipping about the  z -axis. An axle of 
length  b  passes through its center. The bicycle wheel undergoes two simultaneous rotations. The 
wheel circles around the z -axis with angular speed Ω  and associated angular velocity     


Ω =Ωzk̂  

(Figure 22.1). Because the wheel is rotating without slipping, it is spinning about its center of 
mass with angular speed  

ω spin  and associated angular velocity 
   

ω spin = −ω spinr̂ .  

 

b

M

R

S ˆ

r̂

k̂

 
 

Figure 22.1 Example 22.1 
 
The angular velocity of the wheel is the sum of these two vector contributions 



 22-3 

 
 

   

ω = Ω k̂ −ω spinr̂  . (22.1.5) 

 
Because the wheel is rolling without slipping,   

vcm = bΩ =ω spin R  and so   
ω spin = bΩ / R . The 

angular velocity is then  
     


ω = Ω (k̂ − (b / R)r̂)  . (22.1.6) 

 
The orbital angular momentum about the point  S  where the axle meets the axis of rotation 
(Figure 22.1), is then  
     


LS

orbital = bmvcmk̂ = mb2Ω k̂ . (22.1.7) 
 
The spin angular momentum about the center of mass is more complicated. The wheel is rotating 
about both the  z -axis and the radial axis. Therefore 
 
 

    

Lcm

spin = IzΩ k̂ + Irω spin (−r̂) . (22.1.8) 
 
Therefore the angular momentum about  S  is the sum of these two contributions 
 

 
    


LS = mb2Ω k̂ + IzΩ k̂ + Irω spin (−r̂)

= (mb2Ω+ IzΩ) k̂ − Ir (bΩ / R)r̂.
 (22.1.9) 

 
Comparing Eqs. (22.1.6) and (22.1.9), we note that the angular momentum about  S  is not 
proportional to the angular velocity. 
 
22.2 Gyroscope  
 
A toy gyroscope of mass  m  consists of a spinning flywheel mounted in a suspension frame that 
allows the flywheel’s axle to point in any direction. One end of the axle is supported on a pylon a 
distance  d  from the center of mass of the gyroscope.  
 

s

 
 

Figure 22.2a Toy Gyroscope 
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Choose polar coordinates so that the axle of the gyroscope flywheel is aligned along the r -axis 
and the vertical axis is the z -axis (Figure 22.2 shows a schematic representation of the 
gyroscope). 
 

.cm

d

S

g

r̂k̂

ˆ

 
Figure 22.2 A toy gyroscope. 

.cm

d

S

g

r̂k̂

ˆ

 
Figure 22.3 Angular rotations 

 
The flywheel is spinning about its axis with a spin angular velocity,  
 
     


ω s =ω sr̂ , (22.2.1) 

 
where  ω s  is the radial component and   ω s > 0  for the case illustrated in Figure 22.2.  
 
When we release the gyroscope it undergoes a very surprising motion. Instead of falling 
downward, the center of mass rotates about a vertical axis that passes through the contact point 
 S  of the axle with the pylon with a precessional angular velocity  
 

 
    


Ω = Ωzk̂ =

dθ
dt

k̂ , (22.2.2) 

 
where   Ωz = dθ / dt  is the  z -component and   Ωz > 0  for the case illustrated in Figure 22.3. 
Therefore the angular velocity of the flywheel is the sum of these two contributions 
 
     


ω =

ω s +


Ω =ω s r̂ +Ωzk̂ . (22.2.3) 

 
We shall study the special case where the magnitude of the precession component  

Ωz  of the 

angular velocity is much less than the magnitude of the spin component  
ω s  of the spin angular 

velocity,  
Ωz << ω s , so that the magnitude of the angular velocity 

  

ω  ω s  and  Ωz  and  ω s  are 

nearly constant. These assumptions are collectively called the gyroscopic approximation.  
 
The force diagram for the gyroscope is shown in Figure 22.4. The gravitational force acts at the 
center of the mass and is directed downward,     


Fg = −mg k̂ . There is also a contact force,    


Fc , 

between the end of the axle and the pylon. It may seem that the contact force,    

Fc , has only an 

upward component,     

Fv = Fz k̂ , but as we shall soon see there must also be a radial inward 
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component to the contact force,     

Fr = Fr r̂ , with   Fr < 0 , because the center of mass undergoes 

circular motion. 

.cm

d

S r̂k̂

ˆ

Fpivot

mg

rS ,cm

S

Fz

Fr

 
 

Figure 22.4 Force and torque diagram for the gyroscope 
 
The reason that the gyroscope does not fall down is that the vertical component of the contact 
force exactly balances the gravitational force 
   Fz − mg = 0  . (22.2.4) 
 
What about the torque about the contact point S ? The contact force acts at S  so it does not 
contribute to the torque about S ; only the gravitational force contributes to the torque about S  
(Figure 22.5b). The direction of the torque about  S  is given by 
 
 

    

τS = rS , cm ×


Fgravity = d r̂ × mg(−k̂) = d mgθ̂ , (22.2.5) 

 
and is in the positive  θ̂ -direction. However we know that if there a non-zero torque about S , 
then the angular momentum about S  must change in time, according to 
 

 
   


τS =

d

LS

dt
. (22.2.6) 

 
The angular momentum about the point S  of the gyroscope is given by 
 
     


LS =


LS

orbital +

Lcm

spin . (22.2.7) 
 
The orbital angular momentum about the point S  is  
 
 

    

LS

orbital = rS ,cm × mvcm = d r̂ × mdΩz θ̂ = md 2Ωz k̂ . (22.2.8) 
 
The magnitude of the orbital angular momentum about  S  is nearly constant and the direction 
does not change. Therefore 
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d
dt

LS

orbital =

0 . (22.2.9) 

 
The spin angular momentum includes two terms. Recall that the flywheel undergoes two separate 
rotations about different axes. It is spinning about the flywheel axis with spin angular velocity 

  

ω s . As the flywheel precesses around the pivot point, the flywheel rotates about the  z -axis with 
precessional angular velocity  


Ω  (Figure 22.5). The spin angular momentum therefore is given 

by 
     


Lcm

spin = Irω sr̂ + IzΩz k̂ , (22.2.10) 
 
where  Ir  is the moment of inertia with respect to the flywheel axis and  Iz  is the moment of 
inertia with respect to the  z -axis. If we assume the axle is massless and the flywheel is uniform 
with radius  R , then   Ir = (1 / 2)mR2 . By the perpendicular axis theorem   

Ir = Iz + I y = 2Iz , hence 

  Iz = (1/ 4)mR2 . 

 
Figure 22.5: Rotations about center of mass 

of flywheel 
 

 
 
 

Figure 22.6 Spin angular momentum.

Recall that the gyroscopic approximation holds when  
Ωz << ω s , which implies that 

 IzΩz << Irω s , and therefore we can ignore the contribution to the spin angular momentum from 
the rotation about the vertical axis, and so  
 
     


Lcm

spin  Icmω sr̂ . (22.2.11) 
 
(The contribution to the spin angular momentum due to the rotation about the  z -axis,    IzΩz k̂ , is 
nearly constant in both magnitude and direction so it does not change in time, 

    d(IzΩz k̂) / dt 

0 .) Therefore the angular momentum about S  is approximately 

 
     


LS 


Lcm

spin = Icmω sr̂ . (22.2.12) 
 
Our initial expectation that the gyroscope should fall downward due to the torque that the 
gravitational force exerts about the contact point S  leads to a violation of the torque law. If the 
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center of mass did start to fall then the change in the spin angular momentum,    Δ

Lcm

spin , would 
point in the negative  z -direction and that would contradict the vector aspect of Eq. (22.2.6). 
Instead of falling down, the angular momentum about the center of mass,    


Lcm

spin , must change 

direction such that the direction of    Δ

Lcm

spin  is in the same direction as torque about S  (Eq. 

(22.2.5)), the positive  θ̂ -direction. 
 
Recall that in our study of circular motion, we have already encountered several examples in 
which the direction of a constant magnitude vector changes. We considered a point object of 
mass m  moving in a circle of radius r . When we choose a coordinate system with an origin at 
the center of the circle, the position vector r  is directed radially outward. As the mass moves in 
a circle, the position vector has a constant magnitude but changes in direction. The velocity 
vector is given by 
 

 
    
v = dr

dt
=

d
dt

(r r̂) = r dθ
dt

θ̂ = rω zθ̂  (22.2.13) 

 
and has direction that is perpendicular to the position vector (tangent to the circle), (Figure 
22.7a)).  

  
 

Figure 22.7 (a) Rotating position and velocity vector;  (b) velocity and acceleration vector for 
uniform circular motion 

 
For uniform circular motion, the magnitude of the velocity is constant but the direction 
constantly changes and we found that the acceleration is given by (Figure 22.7b) 
 

 
    
a = dv

dt
=

d
dt

(vθθ̂) = vθ
dθ
dt

(−r̂) = rω zω z (−r̂) = −rω z
2r̂ . (22.2.14) 

 
Note that we used the facts that 

 

   

dr̂
dt

=
dθ
dt

θ̂,

dθ̂
dt

= −
dθ
dt

r̂
, (22.2.15) 
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in Eqs. (22.2.13) and (22.2.14). We can apply the same reasoning to how the spin angular 
changes in time (Figure 22.8).  
 
The time derivative of the spin angular momentum is given by 
 

 
    

d

LS

dt
=

d

Lcm,ω s

spin

dt
=

Lcm,ω s

spin dθ
dt

θ̂ =

Lcm,ω s

spin Ωz θ̂ = Irω sΩzθ̂ . (22.2.16) 

 
where   Ωz = dθ / dt  is the  z -component and   Ωz > 0 . The center of mass of the flywheel rotates 
about a vertical axis that passes through the contact point  S  of the axle with the pylon with a 
precessional angular velocity  

 
    


Ω = Ωzk̂ =

dθ
dt

k̂ , (22.2.17) 

Substitute Eqs. (22.2.16) and (22.2.5) into Eq. (22.2.6) yielding 
 
 

    
d mgθ̂ =


Lcm

spin Ωzθ̂ . (22.2.18) 
 
Solving Equation (22.2.18) for the  z -component of the precessional angular velocity of the 
gyroscope yields 

 
    
Ωz =

d mg

Lcm

spin
=

d mg
Icm ω s

. (22.2.19) 

 

.

.

..

.

.

Lcm

Lcm
Lcm

Lcm

Lcm Lcm

dLcm
dt

dLcm
dt

dLcm
dt

dLcm
dt

dLcm
dt

dLcm
dt

view from above
 

 
Figure 22.8 Time changing direction of the spin angular momentum 

 
 
22.3 Why Does a Gyroscope Precess? 
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Why does a gyroscope precess? We now understand that the torque is causing the spin angular 
momentum to change but the motion still seems mysterious. We shall try to understand why the 
angular momentum changes direction by first examining the role of force and impulse on a 
single rotating particle and then generalize to a rotating disk. 
 
22.3.1 Deflection of a Particle by a Small Impulse 
 

 
 
 
 
 

p

I = F t

p1

p2

+ x

+ y
+ z
S

rS

+ z

+ z

 
 

(a) 
 

. p

I = F t

p1

p2

+ x

+ y

+ z

L1

L

L2

S
rS

 
(b)

Figure 22.9 (a) Deflection of a particle by a small impulse, (b) change in angular momentum 
about origin 

 
We begin by first considering how a particle with momentum    

p1  undergoes a deflection due to a 

small impulse (Figure 22.9a). If the impulse 
   

I << p1 , the primary effect is to rotate the 

momentum    
p1  about the  x -axis by a small angle θ , with    

p2 =
p1 + Δp . The application of   


I  

causes a change in the angular momentum 
    

LO ,1  about the origin  S , according to the torque 

equation, 
    
Δ
!
LS =

!
τave, SΔt = (!rS ×

!
Fave )Δt . Because     


I = Δp =


FaveΔt , we have that    Δ

!
LS =

!rS ×
!
I . As 

a result,    Δ
!
LS  rotates about the  x -axis by a small angle θ , to a new angular momentum 

    
!
LS ,2 =

!
LS ,1 + Δ

!
LS . Note that although    

!
LS  is in the  z -direction,    Δ

!
LS  is in the negative  y -

direction (Figure 22.9b). 
 
 
22.3.2 Effect of Small Impulse on Tethered Object 
 



 22-10 

.
L1

+ z

+ x

+ y

p1

rS

S
F t

 
 

(a) 

.
L1

+ z

+ x

+ y

p1

rS
SF t

L2

L

 
(b)

 
Figure 22.10a Small impulse on object undergoing circular motion, (b) change in angular 

momentum 
 
Now consider an object that is attached to a string and is rotating about a fixed point  S  with 
momentum    

p1 . The object is given an impulse   

I  perpendicular to    

!rS  and to    
p1 .  Neglect gravity. 

As a result    Δ
!
LS  rotates about the  x -axis by a small angle θ  (Figure 22.10a). Note that although 

  

I  is in the  z -direction,    Δ

!
LS  is in the negative  y - direction (Figure 22.10b). Note that although 

  

I  is in the  z -direction, the plane in which the ball moves also rotates about the  x -axis by the 
same angle (Figure 22.11). 
 

L2

L

L1

F t

p1
p

p2

+ x

+ z

+ y

 
 

Figure 22.11 Plane of object rotates about  x -axis 
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Example 22.2 Effect of Large Impulse on Tethered Object 
 

.
L1

+z

+ x

+ y

p1

SL2

p21
2

3

4
5

6

7

8

 
Figure 22.12 Example 22.2 

 
What impulse,   


I , must be given to the ball in order to rotate its orbit by 90 degrees as shown 

without changing its speed (Figure 21.12)? 
 
Solution: h. The impulse   


I  must halt the momentum    

p1  and provide a momentum    
p2  of equal 

magnitude along the  z -direction such that   

I = Δp .  

 
+z

+ x

+ y
S

L2
I = F t

L1

rS

L

+z

+ y

S t = rS I

.
 

 
Figure 22.13 Impulse and torque about  S  

 
The angular impulse about  S  must be equal to the change in angular momentum about  S  
 

     
!
τSΔt = !rS ×

!
I = (!rS × Δ!p) = Δ

!
LS   (22.3.1) 



 22-12 

 
The change in angular momentum,    Δ

!
LS , due to the torque about  S , cancels the  z -component of 

   
!
LS  and adds a component of the same magnitude in the negative  y -direction (Figure 22.13). 
 
22.3.3 Effect of Small Impulse Couple on Baton 
 

.
L1

+z

+ x

+ y

p1

S

.
I

I

p1

 
(a) 

L2

L

L1

p1
p

p2

+ x

+ z

+ y

.
. I
I

p2

 
(b)

Figure 22.14 (a) and (b) 
 
Now consider two equal masses at the ends of a massless rod, which spins about its center. We 
apply an impulse couple to insure no motion of the center of mass. Again note that the impulse 
couple is applied in the  z -direction (Figure 22.14a). The resulting torque about  S  lies along the 
negative  y -direction and the plane of rotation tilts about the  x -axis (Figure 22.14b). 
 
22.3.4 Effect of Small Impulse Couple on Massless Shaft of Baton 

 
+z

+ x

+ y

p1

S

.p1

.Ia Ia

 
(a) 

+z

+ x

+ y

p1

S

p1

.
Ib.

Ib
.

.

 
(b) 

Figure 22.15 Apply impulse couple to (a) objects and (b) shaft 
 
Instead of applying the impulse couple    

!
Ia  to the masses (Figure 21.15a), one could apply the 

same impulse couple    
!
Ib =
!
Ia  to the vertical massless shaft that is connected to the baton (Figure 

22.15b) to achieve the same result. 
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+ x

+ z

+ y

A

S

.

Ib

Ib

.L1
L2

L

.
.

p1

p1

 
 

Figure 22.16 Twisting shaft causes shaft and plane to rotate about  x -axis 
 
Twisting the shaft around the  y -axis causes the shaft and the plane in which the baton moves to 
rotate about the  x -axis.  
 
22.3.5 Effect of a Small Impulse Couple on a Rotating Disk 
 

L

L1L2 .

.
+ x

+ y

Ib

Ib

+z

 
 

Figure 22.17 Impulse couple causes a disk to rotate about the  x -axis. 
 
Now let’s consider a rotating disk. The plane of a rotating disk and its shaft behave just like the 
plane of the rotating baton and its shaft when one attempts to twist the shaft about the  y -axis. 
The plane of the disk rotates about the  x -axis (Figure 22.17). This unexpected result is due to 
the large pre-existing angular momentum about  S ,    

!
L1 , due to the spinning disk. It does not 

matter where along the shaft the impulse couple is applied, as long as it creates the same torque 
about  S . 
 
22.3.6 Effect of a Force Couple on a Rotating Disk 
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.

+ y

Ib

Ib

+z

.

..
I b

Ib

+ x

 

+ y

+z

Ls(t)

Ls

Ls(t + t)

 

 
Figure 22.18 A series of small impulse couples causes the tip of the shaft to execute 

circular motion about the  x -axis 
 
A series of small impulse couples, or equivalently a continuous force couple (with force 
  

F ), causes the tip of the shaft to execute circular motion about the  x -axis (Figure 22.18).  
The magnitude of the angular momentum about  S  changes according to 

   
d
!
LS =

!
LS Ωdt = Iω Ωdt . Recall that torque and changing angular momentum about  S  

are related by     
!
τS = d

!
LS / dt . Therefore 

   
!
τS =

!
LS Ω = Iω Ω .  The precession rate of the 

shaft is the ratio of the magnitude of the torque to the angular momentum 

    
Ω =
!
τS /

!
LS =

!
τS / Iω . 

 
 

Figure 22.19 Precessing gyroscope with hanging object 
 
Thus we can explain the motion of a precessing gyroscope in which the torque about the 
center of mass is provided by the force of gravity on the hanging object (Figure 22.19). 
 



 22-15 

22.3.7 Effect of a Small Impulse Couple on a Non-Rotating Disc 

 
 

Figure 22.20 Impulse couple on non-rotating disk causes shaft to rotate about negative 
 y -axis. 

 
If the disk is not rotating to begin with,    Δ

!
LS  is also the final    

!
LS . The shaft moves in the 

direction it is pushed (Figure 22.20). 
 
22.4 Worked Examples  
 
Example 22.3 Tilted Toy Gyroscope 
 
A wheel is at one end of an axle of length  d . The axle is pivoted at an angle φ  with 
respect to the vertical. The wheel is set into motion so that it executes uniform 
precession; that is, the wheel’s center of mass moves with uniform circular motion with 
 z -component of precessional angular velocity  Ωz . The wheel has mass  m  and moment 
of inertia   Icm  about its center of mass. Its spin angular velocity   


ω s  has magnitude  ω s  

and is directed as shown in Figure 22.21. Assume that the gyroscope approximation holds, 

 Ωz <<ω s . Neglect the mass of the axle. What is the  z -component of the precessional 

angular velocity  Ωz ? Does the gyroscope rotate clockwise or counterclockwise about the 
vertical axis (as seen from above)?  
 

.d

S g

r̂k̂

ˆ

Lcm
spin

s
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Figure 22.21 Example 22.3 
 
 
Solution: The gravitational force acts at the center of mass and is directed downward, 

    

Fg = −mg k̂ . Let  S  denote the contact point between the pylon and the axle. The contact 
force between the pylon and the axle is acting at  S  so it does not contribute to the torque 
about  S . Only the gravitational force contributes to the torque. Let’s choose cylindrical 
coordinates. The torque about  S  is  
 
 

    

τS =
rS ,cm ×


Fg = (d sinφ r̂ + d cosφ k̂)× mg(−k̂) = mgd sinφ θ̂ , (22.4.1) 

 
which is into the page in Figure 22.21. Because we are assuming that  Ωz <<ω s , we only 
consider contribution from the spinning about the flywheel axle to the spin angular 
momentum, 
     


ω s = −ω s sinφ r̂ −ω s cosφ k̂  (22.4.2) 

 
The spin angular momentum has a vertical and radial component,  
 
     

!
Lcm

spin = − Icmω s sinφ r̂ − Icmω s cosφ k̂ . (22.4.3) 
 
We assume that the spin angular velocity  ω s  is constant.  As the wheel precesses, the 
time derivative of the spin angular momentum arises from the change in the direction of 
the radial component of the spin angular momentum, 
 

 
    
d
dt

Lcm

spin = − Icmω s sinφ dr̂
dt

= − Icmω s sinφ dθ
dt

θ̂ . (22.4.4) 

 
where we used the fact that  

 
   

dr̂
dt

= dθ
dt

θ̂ . (22.4.5) 

 
The  z -component of the angular velocity of the flywheel about the vertical axis is 
defined to be  

 
 
Ωz ≡

dθ
dt

. (22.4.6) 

 
Therefore the rate of change of the spin angular momentum is then 
 

 
    
d
dt

Lcm

spin = − Icmω s sinφ Ωz θ̂ . (22.4.7) 

 
The torque about  S  induces the spin angular momentum about  S  to change, 
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
τS =

d

Lcm

spin

dt
. (22.4.8) 

 
Now substitute Equation (22.4.1) for the torque about  S , and Equation (22.4.7) for the 
rate of change of the spin angular momentum into Equation (22.4.8), yielding 
 
   mgd sinφ θ̂ = − Icmω s sinφ Ωz θ̂ . (22.4.9) 
 
Solving Equation (22.2.18) for the  z -component of the precessional angular velocity of 
the gyroscope yields 

 
  
Ωz = − d mg

Icmω s

. (22.4.10) 

 
The  z -component of the precessional angular velocity is independent of the angle φ . 
Because   Ωz < 0 , the direction of the precessional angular velocity,     

!
Ω = Ω zk̂ , is in the 

negative  z -direction. That means that the gyroscope precesses in the clockwise direction 
when seen from above (Figure 21.22). 
 

.

.

.

Lcm

Lcm

Lcm

dLcm
dt

dLcm
dt

dLcm
dt

view from 
above

 
 

Figure 21.22 Precessional angular velocity of tilted gyroscope as seen from above 
 
Both the torque and the time derivative of the spin angular momentum point in the  θ̂ -
direction indicating that the gyroscope will precess clockwise when seen from above in 
agreement with the calculation that   Ωz < 0 . 
 
Example 22.4 Gyroscope on Rotating Platform  
 
A gyroscope consists of an axle of negligible mass and a disk of mass  M  and radius  R  
mounted on a platform that rotates with angular speed Ω . The gyroscope is spinning 
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with angular speed ω . Forces  Fa  and  Fb  act on the gyroscopic mounts. What are the 
magnitudes of the forces  Fa  and  Fb  (Figure 22.22)? You may assume that the moment of 
inertia of the gyroscope about an axis passing through the center of mass normal to the 
plane of the disk is given by   Icm .  
 

d d

A B

FA FB

 
 

Figure 22.22 Example 22.4 
 

 
Solution: Figure 22.23 shows a choice of coordinate system and force diagram on the 
gyroscope.  

 
 

Figure 22.23 Free-body force diagram 
 
The vertical forces sum to zero since there is no vertical motion 
 
   Fa + Fb − Mg = 0  (22.4.11) 
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Using the coordinate system depicted in the Figure 22.23, torque about the center of mass 
is 
    


τcm = d(Fa − Fb )θ̂  (22.4.12) 

 
The spin angular momentum is (gyroscopic approximation)  
 
     


Lcm

spin  Icmω r̂  (22.4.13) 
 
Looking down on the gyroscope from above (Figure 2.23), the radial component of the 
angular momentum about the center of mass is rotating counterclockwise.  

 
Figure 22.24 Change in angular momentum 

 
During a very short time interval  Δt , the change in the spin angular momentum is 

    Δ

Lcm

spin = IcmωΔθ θ̂ , (Figure 22.24). Taking limits we have that 
 

 
    

d

Lcm

spin

dt
= lim

Δt→0

Δ

Lcm

spin

Δt
= lim

Δt→0
Icmω

Δθ
Δt

θ̂ = Icmω
dθ
dt

θ̂  (22.4.14) 

 
We can now apply the torque law  

 
    


τcm =

d

Lcm

spin

dt
. (22.4.15) 

 
Substitute Eqs. (22.4.12) and (22.4.14) into Eq. (22.4.15) and just taking the component 
of the resulting vector equation yields 
 
   d(Fa − Fb) = Icmω Ωz .  (22.4.16) 
 
We can divide Eq. (22.4.16) by the quantity  d  yielding 
  

 
  
Fa − Fb =

Icmω Ωz

d
.  (22.4.17) 

 
We can now use Eqs. (22.4.17) and (22.4.11) to solve for the forces  Fa  and  Fb , 
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Fa =

1
2

Mg +
Icmω Ωz

d
⎛
⎝⎜

⎞
⎠⎟

 (22.4.18) 

 
  
Fb =

1
2

Mg −
Icmω Ωz

d
⎛
⎝⎜

⎞
⎠⎟

.  (22.4.19) 

 
Note that if   Ωz = Mgd / Icmω  then   Fb = 0  and one could remove the right hand support 
in the Figure 22.22. The simple pivoted gyroscope that we already analyzed Section 22.2 
satisfied this condition. The forces we just found are the forces that the mounts must exert 
on the gyroscope in order to cause it to move in the desired direction. It is important to 
understand that the gyroscope is exerting equal and opposite forces on the mounts, i.e. the 
structure that is holding it. This is a manifestation of Newton’s Third Law. 
 
Example 22.5 Grain Mill  
 
In a mill, grain is ground by a massive wheel that rolls without slipping in a circle on a 
flat horizontal millstone driven by a vertical shaft. The rolling wheel has mass M , radius 
b  and is constrained to roll in a horizontal circle of radius R  at angular speed Ω  (Figure 
22.25). The wheel pushes down on the lower millstone with a force equal to twice its 
weight (normal force). The mass of the axle of the wheel can be neglected. What is the 
precessional angular frequency Ω ? 
 

g

R

b

P. r̂
ˆ

k̂

M

 
 

Figure 22.25 Example 22.5 
 
Solution: Figure 22.5 shows the pivot point along with some convenient coordinate axes.  
For rolling without slipping, the speed of the center of mass of the wheel is related to the 
angular spin speed by 
  vcm = bω . (22.4.20) 
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Also the speed of the center of mass is related to the angular speed about the vertical axis 
associated with the circular motion of the center of mass by 
 
  vcm = RΩ . (22.4.21) 
 
Therefore equating Eqs. (22.4.20) and  (22.4.21) we have that  
 
   ω =ΩR / b . (22.4.22) 
 
Assuming a uniform millwheel,   Icm = (1/ 2)Mb2 , the magnitude of the horizontal 
component of the spin angular momentum about the center of mass is 
 

 
  
Lcm

spin = Icmω = 1
2

Mb2ω = 1
2
Ω MRb . (22.4.23) 

 
The horizontal component of    


Lcm

spin  is directed inward, and in vector form is given by 
 

 
    


Lcm

spin = −Ω MRb
2

r̂ . (22.4.24) 

 
The axle exerts both a force and torque on the wheel, and this force and torque would be 
quite complicated.  That’s why we consider the forces and torques on the axle/wheel 
combination. The normal force of the wheel on the ground is equal in magnitude to 

  
NW,G = 2mg  so the third-law counterpart; the normal force of the ground on the wheel 

has the same magnitude   
NG,W = 2mg .  The joint (or hinge) at point  P  therefore must 

exert a force 
   

FH,A  on the end of the axle that has two components, an inward force    


F2  to 

maintain the circular motion and a downward force    

F1  to reflect that the upward normal 

force is larger in magnitude than the weight (Figure 22.26).   
 

P
. r̂

ˆ

k̂

F1

F2

N

Mg

 
 

Figure 22.26 Free-body force diagram on wheel 
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About point  P , 

   

FH,A  exerts no torque. The normal force exerts a torque of magnitude 

  
NG,W R = 2mgR , directed out of the page, or, in vector form, 

   

τ P,N = −2mgRθ̂ .  The 

weight exerts a toque of magnitude  mgR , directed into the page, or, in vector form, 

   

τ P,mg = mgR θ̂ .  The torque about  P  is then 
 
 

   

τ P =


τ P,N +


τ P,mg = −2mgRθ̂ + mgR θ̂ = −mgR θ̂ . (22.4.25) 

 
As the wheel rolls, the horizontal component of the angular momentum about the center 
of mass will rotate, and the inward-directed vector will change in the negative  θ̂ -
direction.  The angular momentum about the point  P  has orbital and spin decomposition 
 
     


LP =


LP

orbital +

Lcm

spin . (22.4.26) 
 
The orbital angular momentum about the point  P  is  
 
 

    

LP

orbital = rP,cm × mvcm = R r̂ × mbΩ θ̂ = mRbΩz k̂ . (22.4.27) 
 
The magnitude of the orbital angular momentum about  P  is nearly constant and the 
direction does not change. Therefore 

 
    

d

LP

orbital

dt
=

0 . (22.4.28) 

 
Therefore the change in angular momentum about the point  P  is 
 

 
    

d

LP

dt
=

d

Lcm

spin

dt
= d

dt
ΩmRb

2
(−r̂)

⎛
⎝⎜

⎞
⎠⎟
= 1

2
ΩmRbΩ(− θ̂) , (22.4.29) 

 
where we used Eq. (22.4.24) for the magnitude of the horizontal component of the 
angular momentum about the center of mass. This is consistent with the torque about  P  
pointing out of the plane of Figure 22.26. We can now apply the rotational equation of 
motion, 

 
    


τP =

d

LP

dt
.  (22.4.30) 

 
Substitute Eqs.(22.4.25) and (22.4.29) into Eq. (22.4.30) yielding 
 

 
  
mgR(− θ̂) = 1

2
Ω2mRb(− θ̂). (22.4.31) 
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We can now solve Eq. (22.4.31) for the angular speed about the vertical axis 
 

 
  
Ω = 2g

b
. (22.4.32) 

 
22.5 Angular Momentum and the Moment of Inertia Tensor  
 
Consider a rigid body rotating about the center of mass with angular velocity  

!
ω . Choose 

an inertial Cartesian reference frame  O  with origin at the center of mass and coordinates 

  (x1,x2,x3)  with unit vectors    (
!e1,!e2,!e3) , then    

!
ω =ω1

!e1 +ω2
!e2 +ω3

!e3 . Divide the rigid 
body into  N  small pieces.  Let   a = 1,..., N be an index labeling each small piece that has 
mass  

 ma ,  located at a position 
    
!ra = (xa,1,xa,2 ,xa,3)  and moving with velocity    

!va =
!
ω × !ra .  

 
The angular momentum about the center of mass of the  N  small pieces is given by 

    

!
Lcm = !ra × ma

!va
a=1

N

∑ = ma
!ra × (

!
ω × !ra )

a=1

N

∑ . 

Note that the triple cross product in vector notation is given by 
 

    
!ra × (

!
ω × !ra ) = (!ra ⋅

!ra )
!
ω − (!ra ⋅

!
ω )!ra  

The angular momentum is then 

    

!
Lcm = ma((!ra ⋅

!ra )
!
ω − (!ra ⋅

!
ω )!ra ))

a=1

N

∑ . 

Example: The 1-component of the angular momentum is 

    

!
Lcm,1 = ma((!ra ⋅

!ra )ω1 − (!ra ⋅
!
ω )xa,1))

a=1

N

∑

= ma((xa,1
2 + xa,2

2 + xa,3
2 )ω1 − (xa,1ω1 + xa,2ω2 + xa,3ω3)xa,1))

a=1

N

∑

= ma((xa,2
2 + xa,3

2 )ω1 − (xa,1xa,2ω2 + xa,1xa,3ω3))
a=1

N

∑

 

Define  

  

I11 = ma((xa,2
2 + xa,3

2 )
a=1

N

∑

I12 = − maxa,1xa,2
a=1

N

∑

I13 = − maxa,1xa,3
a=1

N

∑
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The quantities   I12  and   I13  are called the products of inertia. The 1-component of the 
angular momentum is then 
 
 

    
!
Lcm,1 = I11ω1 + I12ω2 + I13ω3  . (33) 

 
Similarly the other components are given by 
 
 

    
!
Lcm,2 = I22ω2 + I21ω1 + I23ω3  , (34) 

 
    
!
Lcm,3 = I33ω3 + I31ω1 + I32ω2  , (35) 

 
These three equations can be collected into a matrix form 
 

 

  

L1

L2

L3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

I11 I12 I13

I21 I22 I23

I31 I32 I33

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ω1

ω2

ω3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

  (36) 

The matrix  

 

  

I =

I11 I12 I13

I21 I22 I23

I31 I32 I33

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

  (37) 

is called the moment of inertia tensor.  
 
In general for a rigid body, the direction of the angular momentum does not coincide with 
the direction of the angular velocity.  
 
Principal Axes Theorem: It is always possible for an arbitrary rigid body to find a set of 
orthogonal axes such that the moment of inertia tensor has only diagonal components. 
This set of axes are called the principal axes, and the moment of inertia tensor is then 
 

  

I =

I11 0 0

0 I22 0

0 0 I33

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

( prinicpal axes) . 

 
Alternative derivation: 
 
A vector cross product can be written in index notation as 

    
(
!
A ×
!
B)k = ε ijk AiBj

i, j=1

3

∑  

where  
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ε ijk =
+1 for any even permutation of i = 1, j = 2, k = 3

0 if any two indices are equal
−1 for any odd permutation of i = 1, j = 2, k = 3

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

. 

Example: 

    
(
!
A ×
!
B)3 = ε ij3AiBj

i, j=1

3

∑ = ε123A1B2 + ε213A2B1 = A1B2 − A2B1 . 

 
Then the kth-component of the angular momentum can be written as 
 

    

!
Lcm,k = ma

!ra × (
!
ω × !ra )

a=1

N

∑ = ma ε ijkra,i
i, j=1

3

∑ (
!
ω × !ra ) j

a=1

N

∑

= ma ε ijkra,i ε lmj
l ,m=1

3

∑ ω lra,m
i, j=1

3

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥a=1

N

∑

= ma ε ijkε lmjra,iω lra,m
i, j,l ,m=1

3

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥a=1

N

∑

 

 
Note that  

ε ijk = ε jki = εkij . Therefore 

    

!
Lcm,k = ma εkijε lmjra,iω lra,m

i, j,l ,m=1

3

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥a=1

N

∑  

Also note that 

  
εkijε lmj

j=1

3

∑ = δ klδ im −δ kmδ il  

where  δ kl  is the Kronecker delta function 

  
δ kl =

+1 if k = l
0 if k ≠ l

⎧
⎨
⎩

⎫
⎬
⎭

 

Example: 

  

ε23 jε13 j
j=1

3

∑ = δ21δ33 −δ23δ31 = 0

ε23 jε32 j
j=1

3

∑ = δ23δ32 −δ22δ33 = −1

 

 
Hence the kth-component of the angular momentum is 
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!
Lcm,k = ma (δ klδ im −δ kmδ il )ra,iω lra,m

l ,m=1

3

∑
i=1

3

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥a=1

N

∑

= ma (ra,iω kra,i
i=1

3

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥a=1

N

∑ − ma ra, jω jra,k
j=1

3

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥a=1

N

∑
 

Because 
  
ω k = δ kjω j

j=1

3

∑ , the kth-component of angular momentum is then 

    

!
Lcm,k = ma (ra,iω kra,i − ra,iω ira,k )

i=1

3

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥a=1

N

∑

= ma ra
2δ kjω j

j=1

3

∑ − ra, jra,kω j
j=1

3

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥a=1

N

∑

= (ma(δ kjra
2 − ra, jra,k )ω j

j=1

3

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥a=1

N

∑

 

 In the limit as  a→∞  and   ma → 0 , the sum becomes an integral and  

    

!
Lcm,k = dm(δ kjr

2 − rjrk )ω j
body
∫

j=1

3

∑  

where  
rj  is the jth component coordinate of the mass element  dm , and  r  is the distance 

form the center of mass to the mass element.  
 
Define the moment of inertia tensor by 
 

  
Ikj = dm(δ kjr

2 − rjrk )
body
∫ . 

Then 

    

!
Lcm,k = Ikjω j

j=1

3

∑  

 
For example for a finite number of particles the 1-component of the angular momentum 
is 

    

!
Lcm,1 = I1 jω j

j=1

3

∑ = ma(xa,1
2 + xa,2

2

a
∑ + xa,3

2 )δ1 jω j
j=1

3

∑ − ma(xa, jxa,k )
a
∑ ω j

j=1

3

∑

= ma(xa,1
2 + xa,2

2

a
∑ + xa,3

2 )ω1 − ma((xa,1
2ω1 + xa,2xa,1ω2 + xa,3xa,1ω3)

a
∑

= ma((xa,2
2 + xa,3

2 )ω1 − xa,2xa,1ω2 − xa,3xa,1ω2 )
a
∑

 

 
in agreement with our result above. 
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Example 22.5.1: Angular Momentum and Torque for a Rotating Skew Rod (without 
using principle axis theorem) 
 
Consider a simple rigid body consisting of two particles of mass m  separated by a rod of 
length 2l  and negligible mass. The midpoint of the rod is attached to a vertical axis that 
rotates with angular velocity  


ω = ω k̂  about the  z -axis. The rod is skewed from the 

vertical at an angle φ . Set time 0t =  when the rod is in the position shown in figure 
below left. At   t = π /ω the rod has rotated to the position shown in the figure below right.  
 

          

+ x

+ z
1

cm

2

v1

v2

îk̂

+ x

+ z

ĵ

1

cm

2

v1

v2
t = 0 t = / T  

 
a) Find the direction and magnitude of the angular momentum about the center of 
mass at 0t = . 
 
b) Find the direction and magnitude of the torque about the center of mass at time 
  t = 0 . 
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Solution: 
 
a) We use cm m= × = ×L r p r v

      for the angular momentum about the center of mass 
for each particle: 
 

1 1 2 2 1 1 2 2cm m m= × + × = × + ×L r p r p r v r v
         

 
Since each particle travels at an angular speed ω  in a circular orbit of radius  cosφ , the 
speed of each particle is given by  v =ωcosφ . We choose a coordinate system shown in 
the figure below  

+ x

+ z

1

cm

2

v1

v2t = 0

rcm,1

rcm,2

îk̂

ĵ

 
 
For particle 1:      

r1 = −l cosφ î + l sinφ k̂  and     
v1 = −l cosφω ĵ  . Thus 

 

    

Lcm,1 =

r1 × mv1 = (−l cosφ î + l sinφk̂) × (−ml cosφω ĵ) . 
 
After calculating the cross products, we have that the angular momentum about the center 
of mass for particle 1 is  

    
!
Lcm,1 = ml2ω cosφ(cosφ k̂ + sinφ î) . 

 
Note that for particle 2, 2 1= −r r 

 and 2 1= −v v  , so  
 

,2 2 2 1 1 ,1cm cmm m= × = × =L r v r v L
    . 

 
Thus the angular momentum about the center of mass at time   t = 0  is given by 
 
     

!
Lcm(0) = 2ml2ω cosφ(cosφ k̂ + sinφ î)   (38) 

 
The magnitude of the angular momentum about the center of mass is given by 

 

  Lcm = 2ml2ω cosφ(cos2φ + sin2φ) = 2ml2ω cosφ . 
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b) At 0t = , the rod is rotating in the  x − y  plane. The figure below shows the orientation 
of the rod as seen from above.  
\ 

+ x1
cm

2

v1

v2

t = 0

view from above

î
k̂

ĵ+ ydLcm
dt

(0)

 
The  z -component of the angular momentum about the center of mass is constant and the 
 x -component of the angular momentum about the center of mass is changing in time as 
the rod rotates and is given by 
 

    
!
Lcm,x (0) = 2ml2ω cosφ sinφ î   (39) 

 
The time derivative of the angular momentum about the center of mass is perpendicular 
the angular momentum, points in the positive  y -direction, and has a magnitude that is 

equal to 
    

Lcm,x (0) ω . Therefore  

    

d

Lcm

dt
(0) =


Lcm,x (0) ω ĵ = 2ml2ω 2 cosφ sinφ ĵ . 

 
The torque about the center of mass is given by 
 

   


τcm =

d

Lcm

dt
 

Therefore at 0t = , we that 
     

!
τcm = 2ml2ω 2 cosφ sinφ ĵ  . (40) 

 
b) At  t , in the figure below the rod has rotated by an angle  θ =ωt  in the  x − z  

plane 

 
The angular momentum about the center of mass is then 
 
     

!
Lcm(t) = 2ml2ω cosφ(cosφ k̂ + sinφ(cos(ωt) î + sin(ωt) ĵ)  . (41) 
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c) As the rod rotates, the angular momentum vector is precessing at an angular speed ω . 
The horizontal component of the angular momentum (the part that rotates) is given by 
sinL φ . 

 

 
 
At the instant shown in the figure below (shown from the overhead perspective), the 
horizontal component of the angular momentum about the center of mass points in the î -
direction, and the direction of the change of the angular momentum is into the page ( k̂ -
direction).  
 

 
 
The time derivative of the angular momentum about the center of mass is given by 
 

    

d

Lcm(t)

dt
= 2ml2ω 2 cosφ(sinφ(− sin(ωt) î + cos(ωt) ĵ)  

 
The torque as a function of time is given by 
 
     

!
τcm(t) = 2ml2ω 2 cosφ(sinφ(−sin(ωt) î + cos(ωt) ĵ)   (42) 

 
Example 22.5.2: Principal Axes and Angular Momentum for a Skewed Rod 
 

a) What are the principal axes of a rotating skewed rod.  
b) Find the components of the angular velocity about those axes.  
c) Find the angular momentum about the center of the skewed rod. 
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Solution: 
 
a) The principal axes are a set of axes that coincide with the symmetry axes of the body. 
The principal axes for the skewed rod are as follows: an axis along the length of the rod 
and two axes forming a plane perpendicular to the rod.  At time 0t = , the position of the 
rod is shown in the figure below. 
 

 
 
Choose three unit vectors that point along these principal axes as follows. The subscript 
b  denotes axes associated with the body. Choose a unit vector ˆbe  that points from the 
origin to particle 1. Choose a second unit vector ˆ bn  perpendicular to the rod lying in the 
plane formed by ˆbe  and ω , and perpendicular to ˆbe . Choose a third unit vector ˆ bu  
perpendicular to ˆ bn  and ˆbe  pointing into the page of the figure above to complete the 
description of the principal axes. These axes are fixed to the body. Note that with respect 
to the x-y-z axis that are fixed in space, the body principal axes are rotating. Choose a 
Cartesian set of body axes ˆ ˆ ˆ( , , )b b bi j k  --they are not the principal axes-- that at 0t =  

coincide with a set of fixed spatial unit vectors ˆ ˆ ˆ( , , )s s si j k . The unit vectors associated 
with the principal axes are given by  

 

   

êb = sinφ k̂ b − cosφ îb

n̂b = cosφ k̂ b + sinφ îb

ûb = ĵb.

 (43) 

 
At 0t > , as the body rotates, the body and space z-axes always remain aligned so 
ˆ ˆ
b s=k k  however the body unit vectors ˆ ˆ( , )b bi j  no longer coincide with the fixed space 

unit vectors ˆ ˆ( , )s si j . As the body rotates, the components of the unit vectors for the 
principal axes lying in the x-y plane change according to 
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ˆ ˆ ˆcos sin
ˆ ˆ ˆsin cos .
b s s

b s s

t t

t t

ω ω

ω ω

= +

= − +

i i j

j i j
 (44) 

 

 
 
So the principal axes unit vectors are given in terms of the fixed space unit vectors by  
 

 

ˆ ˆˆˆ sin cos (cos sin )
ˆ ˆˆˆ cos sin (cos sin )

ˆ ˆˆ sin cos .

b s s s

b s s s

b s s

t t

t t

t t

φ φ ω ω

φ φ ω ω

ω ω

= − +

= + +

= − +

e k i j

n k i j

u i j

 (45) 

 
b) The angular velocity     


ω =ω k̂ b  can be decomposed into components along the body 

principal axes, 
     


ω =ω n n̂b +ω eêb =ω cosφn̂b +ω sinφêb  (46) 

 
We now use the principal axes theorem that states that the angular momentum about the 
center of mass for a symmetric body can be written as a sum  
 
 

    

Lcm = Icm,n ω nn̂b + Icm,e ω eêb . (47) 

 
The moment of inertia about the perpendicular to the rod is 2

, 2cm nI ml= . Also since we 
are assuming that the rod is massless and that the particles are point-like particles 

, 0cm eI = . Then Eq. (47) for the angular momentum about the center of mass becomes 
 
     


Lcm = 2ml2ω cosφ n̂b . (48) 

 
At time 0t = , using the fact that ˆˆˆ (cos sin )b b bφ φ= +n k i , the angular momentum about 
the center of mass is  
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
Lcm(t = 0) = 2ml2ω cosφ(cosφ k̂ b + sinφ îb ) , (49) 

 
in agreement with our earlier result (Eq. (38)). We can use Eq. (44) to write the angular 
momentum about the center of mass as a function of time in terms of the fixed space unit 
vectors  
 
     

!
Lcm(t) = 2ml2ω cosφ n̂b = 2ml2ω cosφ cosφ k̂ s + 2ml2ω cosφ sinφ(cosωt îs + sinω t̂js ).  

 (50) 
 

 
 
 


