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Chapter 2 Units, Dimensional Analysis, and Estimation 
 

But we must not forget that all things in the world are connected with one 
another and depend on one another, and that we ourselves and all our thoughts 
are also a part of nature. It is utterly beyond our power to measure the changes 
of things by time. Quite the contrary, time is an abstraction, at which we arrive 
by means of the change of things; made because we are not restricted to any one 
definite measure, all being interconnected. A motion is termed uniform in which 
equal increments of space described correspond to equal increments of space 
described by some motion with which we form a comparison, as the rotation of 
the earth. A motion may, with respect to another motion, be uniform. But the 
question whether a motion is in itself uniform, is senseless. With just as little 
justice, also, may we speak of an “absolute time” --- of a time independent of 
change. This absolute time can be measured by comparison with no motion; it 
has therefore neither a practical nor a scientific value; and no one is justified in 
saying that he knows aught about it. It is an idle metaphysical conception.1 
  

                              Ernst Mach 
 
2.1 International System of Units 
 
The system of units most commonly used throughout science and technology today is 
the Système International (SI). The seven base quantities and their corresponding base 
units, are shown in Table 2.1.  

Table 2.1 Base Units 
 

Base Quantity Base Unit 
Time  second (s) 
Length  meter (m) 
Mass kilogram (kg) 
Electric Current ampere (A) 
Temperature kelvin (K)  
Amount of Substance mole (mol) 
Luminous Intensity candela (cd) 

 
Many physical quantities are then derived from the base quantities by a set of algebraic 
relations defining the physical relation between these quantities. Mechanics is based on 
just the first three of these quantities, the second, the meter, and the kilogram, MKS or 

                                                
1 E. Mach, The Science of Mechanics, translated by Thomas J. McCormack, Open Court 
Publishing Company, La Salle, Illinois, 1960, p. 273. 



meter-kilogram-second system.  An alternative metric system, still widely used, is the 
CGS system (centimeter-gram-second).  
 
Example: Derived units for velocity, acceleration, force, energy, and power 
 
Velocity is defined to be the rate of change of position with respect to time and 
therefore has the derived SI unit  m ⋅s−1 . Acceleration is defined to be the rate of 
velocity with respect to time and therefore has the derived SI unit  m ⋅s−2 . The newton, 
symbol  N , is the derived SI unit for force which is equal to the product of mass with 
acceleration. Therefore force has the derived SI unit  kg ⋅m ⋅s−2 . The joule, symbol  J , is 
the derived SI unit for energy which is equal to the product of force with distance. 
Therefore the derived SI unit for energy is  kg ⋅m2 ⋅s−2 . The watt, symbol  W , is the 
derived SI unit for power which is equal to the rate of change of energy with respect to 
time. Therefore the derived SI unit for power is  kg ⋅m2 ⋅s−3 . 
 

The base quantities were originally determined by experiment with uncertainties in their 
values. Gradually the base units were no longer defined by physical prototypes like the 
standard kilogram or standard meter bar but were defined by asset of constants. As of 
May 20, 2019, all the base SI units are now defined in terms of seven constants shown 
in Table 2.2.  

Table 2.2 Defining Constants  
 

Quantity Symbol Numerical Value SI Units 
Cesium hyperfine 
frequency  ΔνCs   9 192 631 770   s

−1  
Speed of light in 
vacuum  c   299 792 458   m ⋅s−1  

Planck constant  h   6.626 07015×10−34   kg ⋅m2 ⋅s−1  

Elementary charge  e   1.602176 634×10−19   A ⋅s  
Boltzmann constant  k   1.380 649×10−23   kg ⋅m2 ⋅s−2 ⋅K−1  
Avogadro constant  N A   6.022140 76×1023

  mol  
Luminous efficacy of a 
defined visible radiation   Kcd   683   cd ⋅sr ⋅kg−1 ⋅m−2 ⋅s3

 
 



The International Committee for Weights and Measures describes practical methods 
(mises en practique) for “realizing” a unit”.2  This means a method for the 
establishment of the value and associated uncertainty of a quantity of the same kind as 
the unit that is consistent with the definition of the unit. Any method that is traceable to 
the seven constants could be used. 

The future definition of a unit does not imply any particular experiment for its practical 
realization. Any method capable of deriving an amount of base quantity value traceable 
to the set of seven reference constants could, in principle, be used. A primary method 
for realizing each unit is one that achieves the best precision and lowest uncertainty. 

In what follows, the exact language for the definitions of the constants and SI base units 
is used. The definitions specify the exact numerical value of each constant when its 
value is expressed in the corresponding SI unit. By fixing the exact numerical value the 
unit becomes defined, since the product of the numerical value and the unit has to 
equal the value of the constant, which is postulated to be invariant. The seven constants 
are chosen in such a way that any unit of the SI can be written either through a defining 
constant itself or through products or quotients of defining constants.3 
 
2.1.1 Definition of the second 
 
Isaac Newton, in the Philosophiae Naturalis Principia Mathematica (“Mathematical 
Principles of Natural Philosophy”), distinguished between time as duration and an 
absolute concept of time,  
 

“Absolute true and mathematical time, of itself and from its own nature, 
flows equably without relation to anything external, and by another 
name is called duration: relative, apparent, and common time, is some 
sensible and external (whether accurate or unequable) measure of 
duration by means of motion, which is commonly used instead of true 
time; such as an hour, a day, a month, a year. ”4. 

 
Before 1960, the unit of time the  

 Before 1960, the second was defined as the fraction  1/ 86400  of the mean solar 
day, which varied due to slight changes in the earth rotation and so this was not a good 
definition. The development of clocks based on atomic oscillations allowed measures of 
timing with accuracy on the order of 1 part in  1014 , corresponding to errors of less than 
one microsecond (one millionth of a second) per year. Given the incredible accuracy of 

                                                
2 https://www.bipm.org/en/publications/mises-en-pratique/ 
3 https://www.bipm.org/en/measurement-units/base-units.html 
4 Isaac Newton. Mathematical Principles of Natural Philosophy. Translated by Andrew 
Motte (1729). Revised by Florian Cajori. Berkeley: University of California Press, 
1934. p. 6. 



this measurement, and clear evidence that the best available timekeepers were atomic in 
nature, the second [s] was defined in 1967 by the International Committee on Weights 
and Measures as a certain number of cycles of electromagnetic radiation emitted by 
cesium (or caesium) atoms as they make transitions between two designated quantum 
states: 
 

The second, symbol  s , is the SI unit of time. It is defined by taking the 
fixed numerical value of the cesium frequency  ΔνCs , the unperturbed 
ground-state hyperfine transition frequency of the cesium  133  atom to 
be  9192 631770  when expressed in the unit  Hz , which is equal to  s

−1 . 5 
 
The second is equal to the duration of  9192 631770  periods of the radiation 
corresponding to the transition between the two hyperfine levels  F = 4  and 
 F = 3  of the ground state  6s1/2 of the cesium  133  atom.  

6s1/2

6p3/2

F = 4

F = 3

F = 4

F = 3

F = 5

F = 2

9192 631770 Hz
ground state

excited state

8.52124 nm
wavelength
of      transition 
line

D2

 
 

Figure: Energy levels of Cesium atom, showing the hyperfine transition between the 
two hyperfine levels  F = 4  and  F = 3  of the ground state  6s1/2  and the wavelength of 

 D2  line corresponding to the fine structure doublet transition  6s1/2 → 6p3/2 . 

 
The hyperfine frequency is exactly defined to be  
 
  ΔνCs = 9192 631770 Hz = 9192 631770 s−1   (2.1) 

                                                
5 https://www.bipm.org/utils/en/pdf/si-mep/SI-App2-second.pdf 



 
Therefore the unit second is equal to 
 

 
 
1s =  9192 631770

ΔνCs
 . (2.2) 

 

A primary method to “realize” a second, the unit of time, with the highest accuracy 
involves certain national metrology laboratories that design primary frequency 
standards. The primary frequency standards aim at exactly realizing the SI second using 
the transition between the two hyperfine levels of the ground state of the cesium  133  
atom, and for which corrections with respect to all known systematic shifts due to a 
variety of physical phenomena (gravitation is especially problematic in correcting for its 
effect) have been applied to best knowledge. The accuracy order of the best primary 
frequency standards that define the SI second approaches 1 part in  1016 .  

The invention of the optical frequency comb made it possible to increase the “tic rate” 
of an atomic clock by a factor of one thousand or more, opening the way to replacing 
the cesium frequency standard by an optical frequency standard with uncertainty at the 
level of 1 part in  1018 , using an atom such as strontium or ytterbium, or an ion such as 
ytterbium or aluminum. 6 
 
2.1.2 Definition of the meter 

The meter was originally defined as 1/10,000,000 of the arc from the Equator to the 
North Pole along the meridian passing through Paris. In 1889 the meter was redefined 
in terms of the international prototype meter by the 1st Conférence Générale des Poids 
et Mèsures (CGPM). The prototype meter was a platinum bar with an etched length 
scale to aid in calibration and ease of comparison, preserved near Paris. The accuracy of 
the bar was limited to one part in  107 . Effects of temperature and pressure needed to be 
precisely calibrated as well as the mounting in order to ensure that the bar was straight.  

In 1960 the CGPM introduced a microscopic reference by defining the meter as the 
length equal to  1650763.73  wavelengths in vacuum of the radiation corresponding to 
the transition between the levels  2p10  and  5d5 of the krypton 86 atom. This definition 
of the meter depended on a particular radiation and cannot be realized to better than 4 
parts in  109 . 

                                                

6 Andrew D. Ludlow, Martin M. Boyd, Jun Ye, E. Peik, and P. O. Schmidt, Rev. Mod. Phys. 87, 637 

 



 
In 1983 the 17th CGPM defined the speed of light as a constant and the meter was 
redefined in terms of the distance that light traveled in  1/ 299 792 458  of a second. 

 
The meter, symbol  m , is the SI unit of length. It is defined by taking the 
fixed numerical speed of light in vacuum  c  to be  299 792 458  when 

expressed in the unit  m ⋅s−1 , where the second is defined in terms of the 
cesium frequency  ΔνCs . 7 

 
The definition of the speed of light states that 
 
   c = 299 792 458 m ⋅s−1   (2.3) 
 
The meter is therefore defined by 

 
  
1m = c

299 792 458
⋅1s   (2.4) 

 
The second is defined by Eq. (2.2). Therefore Eq. (2.4) becomes 
 

 
  
1m = c

299 792 458
⋅  9192 631770

ΔνCs
= 30.663314 9 c

ΔνCs
  (2.5) 

This new definition, opens the way to major improvements in the precision with which 
the meter can be realized using laser wavelength and frequency measurement 
techniques. It is worth noting that the new definition has only become practicable with 
the development of techniques for the measurement of frequencies of electromagnetic 
radiations in the visible and near infrared. These can now be measured directly in terms 
of the frequency of the cesium standard which is used in the definition of the second.”8 

2.1.2.1 Worked Example: Krypton Frequency Transition 

The experimental value for frequency of the transition between the levels  2p10  and 

 5d5 of the  86 Kr is equal to   f = 494886516.5 MHz . Using the definition of the speed of 

                                                
7 https://www.bipm.org/utils/en/pdf/si-mep/SI-App2-metre.pdf 

1. 8 “Documents concerning the New Definition of the Metre”, Metrologia 19 (1984) 163. DOI: 
10.1088/0026-1394/19/4/004  

 



light,   c = 299 792 458 m ⋅s−1 , (i) calculate the wavelength corresponding to this 
transition, (ii) How does this frequency compare to the frequency derived from the 
wavelength  λKr = (1/ 1650763.73) m  in the 1960 definition of the meter? 

Answer: (i) 
  
λ = c

f
= 299 792 458 m ⋅s−1

494886516.5 MHz
= 605780210.2 fm  

(ii) In the 1960 definition, the wavelength was equal to  λKr = (1/ 1650763.73) m . Using 

  c = 299 792 458 m ⋅s−1 . The frequency is then 

  
fKr =

c
λKr

= 299 792 458 m ⋅s−1

605780210.6 fm
= 494886516.2 MHz . 

 
2.1.3 Definition of the kilogram 
 

The kilogram was the last base unit in the International System of Units (SI) that 
was replaced in Nov 18, 2018 by a new definition in terms of the constants. The old 
kilogram was a physical artifact, known as the “International Prototype of the Standard 
Kilogram.” George Matthey (of Johnson Matthey) made the prototype in 1879 in the 
form of a cylinder, 39 mm high and 39 mm in diameter, consisting of an alloy of 90 % 
platinum and 10 % iridium. The international prototype is kept in the Bureau 
International des Poids et Mèsures (BIPM) at Sevres, France, under conditions specified 
by the 1st Conférence Générale des Poids et Mèsures (CGPM) in 1889 when it 
sanctioned the prototype and declared “This prototype shall henceforth be considered to 
be the unit of mass.” It is stored at atmospheric pressure in a specially designed triple 
bell-jar. The prototype is kept in a vault with six official copies.  
 
The 3rd Conférence Générale des Poids et Mèsures CGPM (1901), in a declaration 
intended to end the ambiguity in popular usage concerning the word “weight” 
confirmed that: the kilogram is the unit of mass; it is equal to the mass of the 
international prototype of the kilogram. As of Nov 18, 2018, the kilogram is now 
defined as follows: 
 

The kilogram, symbol  kg , is the SI unit of mass. It is defined by taking the 
fixed numerical value of the Planck constant  h  to be  6.62607015×10−34  
when expressed in the unit  J ⋅s , which is equal to  kg ⋅m2 ⋅s−1  where the 
meter and second are defined in terms of  c  and  ΔνCs .  
 



Thus the Planck constant  h is exactly   h = 6.626 07015×10−34 J ⋅s . This 
numerical value of h defines the unit joule second in the SI and, in 
combination with the SI second and meter, defines the kilogram. The 
numerical value of  h  given in the definition of the kilogram has ensured 
the continuity of the unit of mass with the previous definition of the 
kilogram.9 

 
 

Example 2.1.3.1 Definition of the kilogram in terms of the SI constants 
 
Find an expression for the unit kilogram in terms of the defining constants  h ,  c  
and  ΔνCs . 
 
Answer:  The Planck constant is exactly defined as  
 
   h = 6.626 07015×10−34 J ⋅s = 6.626 07015×10−34 kg ⋅m2 ⋅s−1   (2.6) 
 
Therefore the kilogram is defined to be 
 

 
  
1kg = h

6.626 07015×10−34 ⋅m
−2 ⋅s1   (2.7) 

 
Using the definitions of the second (Eq. (2.2) and meter (Eq. (2.5)), Eq. (2.7) becomes 
 

 
  
1kg = h

6.626 07015×10−34 ⋅m
−2 ⋅s1 ⋅ 30.663314 9 c

ΔνCs

⎛

⎝⎜
⎞

⎠⎟

2

⋅
 ΔνCs

9192 631770
  (2.8) 

Therefore 

 
  
1kg = 1.4755214×1040 hΔνCs

c2   (2.9) 

 
Realizing the kilogram requires practical methods that are describes in an article in 
Physics Today by Wolfgang Ketterle (MIT) and Alan Jamison (Institute for Quantum 
Computing at the University of Waterloo).10  They begin by using the above definition 
to count photons and then describe a series of more practical methods. 
 
The internal energy  E  of an object is proportional to the rest mass according to 
 
   E = mc2  , (2.10) 
                                                
9 https://www.bipm.org/utils/en/pdf/si-mep/SI-App2-kilogram.pdf 
10 https://physicstoday.scitation.org/doi/10.1063/PT.3.4472 



 
where  c  is the speed of the light. The energy of a light particle (photon) is proportional 
to the frequency of oscillation of the monochromatic classical wave associated to the 
photon, 

 
 
E = hf = hc

λ
 , (2.11) 

 
where  h is Planck’s constant.  The photon is a massless particle but we can define an 
effective mass by equating Eqs. (2.10) and (2.11), 
 
   mc2 = hf  , (2.12) 
yielding an effective mass 

 
  
m = hf

c2  . (2.13) 

 
The mass equivalence of a photon emitted due to the hyperfine transition between two 
hyperfine ground states of cesium-133 atoms with frequency   f = ΔνCs  is then 
 

 

  

m =
hΔνCs

c2 = (6.62607015×10−34 kg ⋅m2 ⋅s-1)(9192631770 s−1)
(2.99792458 ×108 m ⋅s-1)2

= 6.77726531×10−41 kg
  (2.14) 

 
The number  N  of photons, emitted due to the hyperfine transition between two 
hyperfine ground states of cesium-133 atoms, needed in order for their total mass to 
equal one kilogram is then 

 
  
N = 1

6.77726531×10−41 = 1.4755214 ×1040   (2.15) 

 
One kilogram is now equal to the mass of  1.4755214×1040 photons at the cesium 
hyperfine frequency.  

 
  
1kg = 1.4755214×1040 hΔνCs

c2   (2.16) 

 
2.1.4 Definition of the ampere 
 

The ampere, symbol  A , is the SI unit of electric current. It is defined by 
taking the fixed numerical value of the elementary charge  e  to be 



 1.602176634×10−19  when expressed in the unit  C , which is equal to  A ⋅s , 
where the second is defined in terms of  ΔνCs . 11 
 

Example 2.1.4.1 Ampere  
 
Find an expression for the unit ampere in terms of the defining constants  e  and 

 ΔνCs . 
 
Answer:  The exact definition of the elementary charge is  
 
   e = 1.602176634×10−19 C = 1.602176634×10−19 A ⋅s  . (2.17) 
 
Therefore the unit ampere is defined to be 
 

 
  
1A = e

1.602176634×10−19 ⋅(1s)−1 = e
1.602176634×10−19 ⋅

 ΔνCs
9192 631770

  (2.18) 

Hence 
   1A = 6.789687 ×108 eΔνCs   (2.19) 
 
 
2.1.5 Definition of the kelvin 
 
 

The kelvin, symbol  K , is the SI unit of thermodynamic temperature. It is 
defined by taking the fixed numerical value of the Boltzmann constant  k  
to be  1.380649×10−23  when expressed in the unit  J ⋅K

−1 , which is equal 
to  kg ⋅m2 ⋅s−2K−1 , where the kilogram, meter and second are defined in 
terms of  h ,  c  and  ΔνCs . 
 
This definition implies the exact relation   k = 1.380649×10−23J ⋅K−1 . Its 
effect is that one kelvin is equal to the change of thermodynamic 
temperature T that results in a change of thermal energy  kT  by 

 1.380649×10−23J . 12 
 
2.1.5.1 Example Kelvin  
 

                                                
11 https://www.bipm.org/en/measurement-units/base-units.html 
12 https://www.bipm.org/en/measurement-units/base-units.html 



Find an expression for the unit kelvin in terms of the defining constants  k ,  h ,  c  and 

 ΔνCs . 
 
Answer:  The Boltzmann constant is exactly 
 
   k = 1.380649×10−23kg ⋅m2 ⋅s−2 ⋅K−1   (2.20) 
 
Therefore the unit kelvin is defined as 
 

 
  
1 K = 1.380649×10−23

k
⋅kg ⋅m2 ⋅s−2   (2.21) 

 
Using our above definitions for the kilogram, meter and second, Eq. (2.21) 
becomes 
 

 

  

1 K = 1.380649×10−23

k
⎛

⎝
⎜

⎞

⎠
⎟ ⋅ 1.4755214×1040 hΔνCs

c2

⎛
⎝⎜

⎞
⎠⎟

⋅ 30.663314 9 c
ΔνCs

⎛

⎝⎜
⎞

⎠⎟

2

⋅ 9192 631770
 ΔνCs

⎛

⎝⎜
⎞

⎠⎟

−2   (2.22) 

 
One kelvin is then equal to 

 
  
1 K = 2.266 665 265

hΔνCs
k

  (2.23) 

 
2.1.6 Definition of the mole 
 

The mole, symbol  mol , is the SI unit of amount of substance. One mole contains 
exactly  6.02214076×1023  elementary entities. This number is the fixed 
numerical value of the Avogadro constant,  NA , when expressed in the unit 

 mol−1  and is called the Avogadro number.  
 
The amount of substance, symbol  n , of a system is a measure of the number of 
specified elementary entities. An elementary entity may be an atom, a molecule, 
an ion, an electron, any other particle or specified group of particles. 13 

 
Example 2.1.6.1 Mole  
 

                                                
13 https://www.bipm.org/en/measurement-units/base-units.html 



Find an expression for the unit mole in terms of the defining constant  N A . 
 
Answer:  

The Avogadro number is exactly defined as 

   N A = 6.02214076×1023 mol−1   (2.24) 
 
Therefore, 1 mole is given by the expression: 
 

 
  
1mol = 6.02214076×1023 1

N A
  (2.25) 

 
2.1.7 Radians 
 
Consider the triangle drawn in Figure 2.1. The basic trigonometric functions of an angle 
θ  in a right-angled triangle  ONB  are   sin(θ ) = y / r ,   cos(θ) = x / r , and   tan(θ) = y / x . 
    

 

 O

r
B

y s

ANx X

P

 
Figure 2.1 Trigonometric relations 

 
It is very important to become familiar with using the measure of the angle θ  

itself as expressed in radians [rad].  Let θ  be the angle between two straight lines  OX  
and  OP . Draw a circle of radius  r  centered at  O . The lines  OP  and  OX  cut the 
circle at the points  A  and  B  where  OA = OB = r .  Denote the length of the arc  AB  
by  s , then the radian measure of θ  is given by  

 
   θ = s / r ,  (2.26) 
 
and the ratio is the same for circles of any radii centered at  O   -- just as the ratios   y / r  
and   y / x   are the same for all right triangles with the angle θ  at  O .   As  θ  
approaches   360 ,  s  approaches the complete circumference   2πr  of the circle, so that 

  360 = 2π rad .  
 



tan( )

sin( )

/ 2
0

1.0

/ 2

 
 

Figure 2.2 Radians compared to trigonometric functions. 
 
Let’s compare the behavior of  sin(θ) ,  tan(θ)  and θ  itself for small angles.  

One can see from Figure 2.1 that   s / r > y / r . It is less obvious that   y / x > θ . It is very 
instructive to plot  sin(θ) ,  tan(θ) , and θ  as functions of θ   [rad]  between  0  and  π / 2  
on the same graph (see Figure 2.2). For small θ , the values of all three functions are 
almost equal. But how small is “small”? An acceptable condition is for  θ << 1  in 
radians.  
 
We can show this with a few examples. Recall that   360 = 2π rad ,   57.3 = 1rad , so an 
angle    6

 ≅ (6 )(2π rad / 360o ) ≅ 0.1 rad  when expressed in radians. In Table 2.2 we 
compare the value of θ  (measured in radians) with  sin(θ ) ,  tan(θ ) ,  (θ − sinθ ) /θ , and 

 (θ − tanθ ) /θ , for  θ = 0.1 rad ,  0.2 rad ,  0.5 rad , and  1.0 rad . 
 



Table 2.3 Small Angle Approximation 
 
 θ [rad]   θ [deg]   sin(θ )   tan(θ )   (θ − sinθ ) /θ   (θ − tanθ ) /θ  

0.1 5.72958 0.09983 0.10033 0.00167 -0.00335 
0.2 11.45916 0.19867 0.20271 0.00665 -0.01355 
0.5 28.64789 0.47943 0.54630 0.04115 -0.09260 
1.0 57.29578 0.84147 1.55741 0.15853 -0.55741 

 
The values for  (θ − sinθ ) /θ , and  (θ − tanθ ) /θ , for  θ = 0.2 rad  are less than  ±1.4% . 
Provided that θ  is not too large, the approximation that 
 
   sin(θ ) ! tan(θ ) ! θ , (2.27) 
 
called the small angle approximation, can be used almost interchangeably, within 
some small percentage error.  This is the basis of many useful approximations in 
physics calculations. 
 
Example 2.1.7.1 Parsec  
 
A standard astronomical unit is the  parsec . Consider two objects that are separated by a 
distance of one astronomical unit,  1AU = 1.50×1011 m , which is the mean distance 
between the earth and sun. (One astronomical unit is roughly equivalent to eight light 
minutes,  1AU = 8.3light-minutes .) One parsec is the distance at which one 
astronomical unit subtends an angle  θ = 1arcsecond = (1/ 3600) degree .  
 
Suppose is a spacecraft is located in a space a distance  1 parsec  from the Sun as shown 
in Figure 2.3. How far is the spacecraft in terms of light years and meters? 
 

1 parsec

Earth

Sun

1 AU 1 arcsecond

spacecraft

 
 

Figure 2.3 Example 2.1.7.1 
 
Because one arc second corresponds to a very small angle, one parsec is therefore equal 
to distance divided by angle, hence 
  



 

1pc = (1AU)
(1/3600)

= (2.06×105 AU) 1.50×1011 m
1AU

⎛
⎝⎜

⎞
⎠⎟
= 3.09×1016  m

= (3.09×1016  m) 1ly
9.46×1015 m

⎛
⎝⎜

⎞
⎠⎟
= 3.26 ly

. (2.28) 

 
2.1.8 Steradians 
 
The steradian [sr] is the unit of solid angle that, having its vertex in the center of a 
sphere, cuts off an area of the surface of the sphere equal to that of a square with sides 
of length equal to the radius of the sphere. The conventional symbol for steradian 
measure is Ω , the uppercase Greek letter “Omega.”  The total solid angle  

Ωsph  of a 
sphere is then found by dividing the surface area of the sphere by the square of the 
radius, 
 
   

Ωsph = 4πr2 / r2 = 4π  (2.29) 
 
This result is independent of the radius of the sphere.   
 
2.1.9 Definition of the candela 
 

The candela, symbol  cd , is the SI unit of luminous intensity in a given 
direction. It is defined by taking the fixed numerical value of the 
luminous efficacy of monochromatic radiation of frequency 
 540×1012Hz ,  Kcd , to be  683  when expressed in the unit  1m ⋅W−1 , 

which is equal to  cd ⋅sr ⋅W−1  or  cd ⋅sr ⋅kg−1 ⋅m−2 ⋅s3  where the 
kilogram, meter and second are defined in terms of  h ,  c  and  ΔνCs . 

 
The candela is the SI base unit for the photometric quantity luminous 
intensity. The definition of the candela is based on the SI defining constant 
 Kcd  which links the photometric units to the corresponding radiometric 
units14 

 
Example 2.1.9.1 Candela 
 
Find an expression for the unit candela in terms of the defining constants , 
 h , and  ΔνCs . 
 

                                                
14 https://www.bipm.org/en/measurement-units/base-units.h 



Answer: One candela expressed in terms of the defining constants by inverting  Kcd , 

the luminous efficacy of monochromatic radiation of frequency  540×1012Hz . Starting 
with 

  Kcd = 683cd ⋅sr ⋅kg−1 ⋅m−2 ⋅s3 , 
we have that  

  
1cd =

Kcd
683

sr−1 ⋅kg ⋅m−2 ⋅s−3  

 
substituting the units  kg , m , and  s  by their corresponding expressions in terms of the 
defining constants: 

  

1cd =
Kcd
683

sr−1 ⋅kg ⋅m−2 ⋅s−3

1cd =
Kcd
683

1.4755214×1040 hΔνCs

c2

⎛
⎝⎜

⎞
⎠⎟

30.6633149 c
ΔνCs

⎛

⎝⎜
⎞

⎠⎟

2

⋅  9192 631770
ΔνCs

⎛

⎝⎜
⎞

⎠⎟

−3

1cd = (1.4755214×1040)(30.6633149)2(9192 631770)−3

683
Kcd hΔνCs

2

1cd = 2.614830×1010 Kcd hΔνCs
2

 

 
The effect of this definition is that one candela is the luminous intensity, in a given 
direction, of a source that emits monochromatic radiation of frequency  540×1012Hz  
and has a radiant intensity in that direction of  (1/ 683)W ⋅sr−1 .15 

                                                
15 https://www.bipm.org/en/measurement-units/base-units.html 



2.2 Dimensions of Commonly Encountered Quantities 
 
Introduction 
 
Many physical quantities are derived from the base quantities by a set of algebraic 
relations defining the physical relation between these quantities. We shall refer to the 
dimension of the base quantity by the quantity itself, for example 
 
  dim (length) ≡ length ≡ L, dim (mass) ≡ mass ≡ M, dim (time) ≡ time ≡ T.  (2.1) 
 
The dimension of a derived quantity is written as a power of the dimensions of the base 
quantities. For example velocity is a derived quantity and the dimension is given by the 
relationship  
  dim velocity = (length)/(time) = L ⋅T-1 . (2.2) 
 
where  L ≡ length ,  T ≡ time . Force is also a derived quantity and has dimension  
 

 
 
dim force = (mass)(dim velocity)

(time)
. (2.3) 

 
where   M ≡ mass . We can also express force in terms of mass, length, and time by the 
relationship 

 
 
dim force =

(mass)(length)
(time)2

= M ⋅L ⋅T-2 . (2.4) 

 
The derived dimension of kinetic energy is 
 
  dim kineticenergy = (mass)(dim velocity)2 , (2.5) 
 
which in terms of mass, length, and time is 
 

 
 
dim kineticenergy =

(mass)(length)2

(time)2 = M ⋅L2 ⋅T-2 . (2.6) 

 
The derived dimension of work is 
 
  dim work = (dim force)(length) , (2.7) 
 
which in terms of our fundamental dimensions is 
 



 
 
dim work =

(mass)(length)2

(time)2
= M ⋅L2 ⋅T-2 . (2.8) 

 
So work and kinetic energy have the same dimensions. Power is defined to be the rate 
of change in time of work so the dimensions are 
 

 
 
dim power = dim work

time
=

(dim force)(length)
time

=
(mass)(length)2

(time)3 = M ⋅L2 ⋅T-3  .(2.9) 

 
In Table 2.4 we include the derived dimensions of some common mechanical quantities 
in terms of mass, length, and time. 
 

Table 2.4 Dimensions of Some Common Mechanical Quantities 

 M ≡ mass ,  L ≡ length ,  T ≡ time  
 

Quantity Dimension MKS unit 
Angle dimensionless Dimensionless =  radian 
Solid Angle dimensionless Dimensionless =  sterradian 

Area  L2   m2  
Volume  L3   m3  
Frequency  T-1  

 s
−1 = hertz = Hz  

Velocity  L ⋅T-1  
 m ⋅ s−1  

Acceleration  L ⋅T-2  
 m ⋅ s−2  

Angular Velocity  T-1  
 rad ⋅ s−1  

Angular Acceleration  T-2  
 rad ⋅ s−2  

Density  M ⋅L-3  
 kg ⋅m−3  

Momentum  M ⋅L ⋅T-1  
 kg ⋅m ⋅ s−1  

Angular Momentum  M ⋅L2 ⋅T-1  
 kg ⋅m2 ⋅ s−1  

Force  M ⋅L ⋅T-2  
  kg ⋅m ⋅s−2 = newton= N  

Work, Energy   M ⋅L2 ⋅T-2  
 kg ⋅m2 ⋅ s−2 = joule=J   

Torque  M ⋅L2 ⋅T-2  
 kg ⋅m2 ⋅ s−2  

Power  M ⋅L2 ⋅T-3  
 kg ⋅m2 ⋅ s−3= watt = W  

Pressure  M ⋅L-1 ⋅T-2  
 kg ⋅m−1 ⋅ s−2 = pascal= Pa   

  



 
2.2.1 Dimensions of Fundamental Constants  
 
A number of fundamental constants appear in the fundamental laws of physics. The 
values of these constants depend on the choice of units. We denote the dimension of a 
quantity * by square brackets  *⎡⎣ ⎤⎦ : for example the dimension of frequency is denoted 

by  f⎡⎣ ⎤⎦  and is equal to 

  f⎡⎣ ⎤⎦ = 1/ (time) . 
 
In what follows all constants will be given in SI units. 
 
Example 2.2.1.1 Dimension of the Universal Gravitation Constant  G  
 

Newton’s Universal Law of Gravitation describes the gravitational force 
between two bodies with masses,   m1  and   m2 . This force points along the line 
connecting the bodies, is attractive, and its magnitude is proportional to the inverse 
square of the distance, 

  
r1,2 , between the bodies.  

    

!
F = G

m1m2

r1,2
2 , 

 
where   G = 6.6742(10) ×10−11N ⋅m2 ⋅kg-2 . The dimensions of the Universal Gravitation 
Constant  G  are then  

  

G⎡⎣ ⎤⎦ =
length( )3

mass( ) time( )2 . 

 
Example 2.2.1.2 Dimensions of Coulomb’s constant  1/ 4πε0   
 

Coulomb’s Law describes the electric force between two charged bodies   q1  and 

  q2 , separated by a distance 
  
r1,2 . The fundamental charge has magnitude 

  e = 1.602176634×10−19 C . The magnitude of the force exerted on an electron with 
charge   q1 = −e  due to the interaction between and electron and a proton with charge 

  q2 = e  is given by, 

 
    

!
F1,2 = 1

4πε0

e2

r1,2
2 . 

The vacuum permittivity is defined as 



  
ε0 =

1
µ0c

2 , 

 
where the speed of light   c = 2.99792458 ×108 m ⋅s-1 , in the new definitions of SI units,  
the vacuum permeability is experimentally determined with a value  

 µ0 = 1.25663706212(19)×10−6 N ⋅C−2 ⋅s2 .  

(Note that before the new definitions of units,  µ0 = 4π ×10−7 N ⋅C−2 ⋅s2 ). 
 
Therefore  ε0 = 8.8541878128(13)×10−12 N-1 ⋅m-2 ⋅C2 .  Note that 

 1/ 4πε0 = 8.9875517923×109 N ⋅m2 ⋅C-2 . Therefore the dimensions of  

  
[1/ 4πε0]= ( force)(length)2

(charge)2 . 

 
Example 2.2.1.3 Dimensions of the Planck constant 
 
The internal energy of an object is proportional to the rest mass according to 
 

  E = mc2 . 
 
The energy of a light particle (photon) is proportional to the frequency of oscillation of 
the monochromatic classical wave associated to the photon, 
 

 
E = hf = hc

λ
, 

 
where Planck’s constant is defined to be exactly   h = 6.62607015×10−34 kg ⋅m2 ⋅s-1 . The 
dimensions of Planck’s constant can be determined from the relation 
 

  h = E / f . 
 
The dimension of energy can be determined form the relation   E = mc2 :  
 

  
E⎡⎣ ⎤⎦ =

(mass)(length)2

(time)2 . 

 
The dimension of Planck’s constant is therefore 

  
h⎡⎣ ⎤⎦ = energy( ) time( ) = mass( ) length( )2

time( ) . 



2.3 Dimensional Analysis 
 
There are many phenomena in nature that can be explained by simple relationships 
between the observed phenomena.  
 
Example 2.3.1 Period of a Pendulum 
  
Consider a simple pendulum consisting of a massive bob suspended from a fixed point 
by a string. Let  T  denote the time interval (period of the pendulum) that it takes the bob 
to complete one cycle of oscillation.  How does the period of the simple pendulum 
depend on the quantities that define the pendulum and the quantities that determine the 
motion?  
 
Solution: What possible quantities are involved? The length of the pendulum  l , the 
mass of the pendulum bob  m , the gravitational acceleration  g , and the angular 
amplitude of the bob  θ0  are all possible quantities that may enter into a relationship for 
the period of the swing. Have we included every possible quantity? We can never be 
sure but let’s first work with this set and if we need more than we will have to think 
harder! Our problem is then to find a function  f  such that   
 
   T = f (l,m,g,θ0 )  (2.10) 
 
We first make a list of the dimensions of our quantities as shown in Table 2.5.  
 

Table 2.5 Dimensions of Quantities Relevant to the Period of Pendulum 
 

Name of Quantity Symbol Dimensional Formula 
Time of swing  t   T  
Length of pendulum  l   L  
Mass of pendulum  m   M  
Gravitational acceleration   g   L ⋅T-2  
Angular amplitude of swing  

 θ0   No dimension 

 
  
 Our first observation is that the mass of the bob cannot enter into our 
relationship, as our final quantity has no dimensions of mass and no other quantity has 
dimensions of mass. Let’s focus on the length of the string and the gravitational 
acceleration. In order to eliminate length, these quantities must divide each other when 
appearing in some functional relation for the period  T . If we choose the combination 
  l / g , the dimensions are 



 
  
dim[l / g] =

length
length/(time)2 = (time)2  (2.11) 

 
It appears that the time of swing may proportional to the square root of this ratio. Thus 
we have a candidate formula 

 
   
T  l

g
⎛
⎝⎜

⎞
⎠⎟

1/2

.  (2.12) 

 
(in the above expression, the symbol “   ” represents a proportionality, not an 
approximation). Because the angular amplitude  θ0  is dimensionless, it may or may not 
appear. We can account for this by introducing some function   y(θ0 )  into our 
relationship, which is beyond the limits of this type of analysis. The period is then 
 

 
  
T = y(θ0 ) l

g
⎛
⎝⎜

⎞
⎠⎟

1/2

.  (2.13) 

 
We shall discover later on that   y(θ0 )  is nearly independent of the angular amplitude  θ0  
for very small amplitudes and is equal to   y(θ0 ) = 2π , 
 

  
T = 2π l

g
⎛
⎝⎜

⎞
⎠⎟

1/2

 
 
Example 2.3.3 Planck Length 
 
Suppose the Universal Gravitational Constant is fixed at   G = 6.6742×10−11N ⋅m2 ⋅kg-2  

and the Cesium hyperfine frequency is removed as a fundamental constant. The set of 
defining constants are now:  

Table 2.2a Defining Constants  
 

Quantity Symbol Numerical Value SI Units 
Gravitational constant  G   6.6742×10−11   N ⋅m2 ⋅kg-2  
Speed of light in 
vacuum  c   299 792 458   m ⋅s−1  

Planck constant  h   6.626 07015×10−34   kg ⋅m2 ⋅s−1  
 



Physicists often use    ! = h / 2π = 1.05457182×10−34 kg ⋅m2 ⋅s−1 instead of the Planck 
constant. 
 

(a) Using dimensional analysis, find a combination of the defining constants  ! ,  c , 
and  G , that has the dimensions of length, called the Planck length,  

lp . 

(b) What is the value of the Planck length,  
lp ? 

(c) Find an expression for the unit meter in terms of the defining constants  ! ,  c , 
and  G . 

Answer: 
(a) Let 

   
lp = ca1!a2Ga3  such that   

[lp ]= L  has the dimensions of length. Therefore in order 
for the dimensions to match 
 

  L = (L ⋅T-1)a1 (M ⋅L2 ⋅T-1)a2 (L3 ⋅T-2 ⋅M−1)a3 = La1+2a2+3a3 ⋅Ma2−a3 ⋅T-a1−a2−2a3  
 
Therefore we have three conditions 
 

  

1= a1 + 2a2 + 3a3

0 = a2 − a3

0 = −a1 − a2 − 2a3

 

 
We can solve these equations and find that 

  

a2 = a3 = 1/ 2
a1 = −3a3 = −3/ 2

 

Thus the combination  

   
lp = c−3/2!1/2G1/2 = G!

c3  

has the dimensions of length. 
 

(b) The magnitude of the Planck length unit in SI units is 
 

   

lp =
!G
c3

⎛
⎝⎜

⎞
⎠⎟

1 2

= (1.05457182×10−34 kg ⋅m2 ⋅s−1)(6.6742×10−11N ⋅m2 ⋅kg-2 )
(2.99792458 ×108 m ⋅s-1)3

⎛
⎝⎜

⎞
⎠⎟

1 2

= 1.61624×10−35m

 

 



(c) Because 
  
lp = 1.61624×10−35m . Therefore 

   
1m =

lp

1.61624×10−35m
= 6.18719×1034 !G

c3

⎛
⎝⎜

⎞
⎠⎟

1 2

. 

 
Example 2.3.3 Fine Structure Constant 
 
(a) What combination of constants  h ,  c ,  e , and  ε0  gives a dimensionless quantity? 

Hint: Let   γ = ha1ca2ea3ε0
a4  and find   a1,a2 ,a3, and a4  such that  [γ ]  is dimensionless.   

 
Answer: 
Let   γ = ha1ca2ea3ε0

a4  such that  [γ ]  is dimensionless.  This means that  
 

  γ = (kg ⋅m2 ⋅s-1)a1 (m ⋅s-1)a2 (C)a3 (kg−1 ⋅s2 ⋅m−3 ⋅C2 )a4  
 
must has no units.  Therefore  
 

  

a1 − a4 = 0
2a1 + a2 − 3a4 = 0
−a1 − a2 + 2a4 = 0
a3 + 2a4 = 0

 

 
We can solve these equations and find that 

  

a1 = a2 = a4

a3 = −2a1

 

The smallest integer solution for a positive value of   a1  is given by 

  

a1 = a2 = a4 = 1
a3 = −2

 

Therefore 

  
γ =

hcε0

e2  

 (b) Fine structure constant 
 
Define   β = (h / 2π )c(4πε0 ) / e2 . Find the value of the fine structure constant α  given 
by 



  
α = 1

β
= e2

2ε0ch
=
µ0ce2

2h
. 

Answer: 

  
α ! 1

137
 

 
Example 2.3.4 Rydberg constant  
 
The Rydberg constant is named after a Swedish physicist Johannes Rydberg. It 
corresponds to the wavenumber (inverse wavelength) of the lowest-energy photon that 
can ionize an atom from its ground state. It’s expressed as  RH  for the hydrogen atom 
and as  R∞  for any atom whose nucleus is infinitely heavier than a single orbiting 
electron.  
 
According to the CODATA16, the value of the Rydberg constant for heavy atoms is: 
 

  

R∞ =
2π 2me e4

4πε0( )2
h3c

= 10 973731.568160 m−1  

 
where   me = 9.109 3837015×10−31 kg  is the rest mass of the electron,  is the 

elementary charge,   ε0  is the permittivity of free space,  h  is the Planck constant, and  c  
is the speed of light in vacuum. 
 
In atomic physics, the Rydberg unit of energy,  

Ry , describes the energy of the photon 
with a wavenumber equal to , thus corresponding to the ionization energy of the 
hydrogen atom. It’s expressed as follows:  
 

  

Ry = hcR∞ =
2π 2me e4

4πε0( )2
h2

= 1
2

(mec
2 )α 2  

 
Find the numerical value of the Rydberg unit of energy.  
 
Answer: The exact value, provided by the CODATA, is: 

                                                
16 https://physics.nist.gov/cgi-bin/cuu/Value?ryd 



  

Ry =
me e4

8ε0
2h2 = 2.179 872 3611035×10−18 J

Ry =13.605 693122 994 eV
, 

 
2.4 Order of Magnitude Estimates - Fermi Problems 
 
Counting is the first mathematical skill we learn. We came to use this skill by 
distinguishing elements into groups of similar objects, but counting becomes 
problematic when our desired objects are not easily identified, or there are too many to 
count. Rather than spending a huge amount of effort to attempt an exact count, we can 
try to estimate the number of objects. For example, we can try to estimate the total 
number of grains of sand contained in a bucket of sand. Because we can see individual 
grains of sand, we expect the number to be very large but finite. Sometimes we can try 
to estimate a number, which we are fairly sure but not certain is finite, such as the 
number of particles in the universe. 
 
 We can also assign numbers to quantities that carry dimensions, such as mass, 
length, time, or charge, which may be difficult to measure exactly. We may be 
interested in estimating the mass of the air inside a room, or the length of telephone 
wire in the United States, or the amount of time that we have slept in our lives. We 
choose some set of units, such as kilograms, miles, hours, and coulombs, and then we 
can attempt to estimate the number with respect to our standard quantity.  
 
 Often we are interested in estimating quantities such as speed, force, energy, or 
power. We may want to estimate our natural walking speed, or the force of wind acting 
against a bicycle rider, or the total energy consumption of a country, or the electrical 
power necessary to operate a university. All of these quantities have no exact, well-
defined value; they instead lie within some range of values. 
 
 When we make these types of estimates, we should be satisfied if our estimate is 
reasonably close to the middle of the range of possible values. But what does 
“reasonably close” mean? Once again, this depends on what quantities we are 
estimating. If we are describing a quantity that has a very large number associated with 
it, then an estimate within an order of magnitude should be satisfactory. The number of 
molecules in a breath of air is close to  1022 ; an estimate anywhere between  1021  and 
 1023  molecules is close enough. If we are trying to win a contest by estimating the 
number of marbles in a glass container, we cannot be so imprecise; we must hope that 
our estimate is within 1% of the real quantity. These types of estimations are called 
Fermi problems. The technique is named after the physicist Enrico Fermi, who was 
famous for making these sorts of “back of the envelope” calculations.  
 



Methodology for Estimation Problems 
 
Estimating is a skill that improves with practice. Here are two guiding principles that 
may help you get started. 
 

(1) You must identify a set of quantities that can be estimated or calculated.  
 
(2) You must establish an approximate or exact relationship between these 

quantities and the quantity to be estimated in the problem. 
 
Estimations may be characterized by a precise relationship between an estimated 
quantity and the quantity of interest in the problem. When we estimate, we are drawing 
upon what we know. But different people are more familiar with certain things than 
others. If you are basing your estimate on a fact that you already know, the accuracy of 
your estimate will depend on the accuracy of your previous knowledge. When there is 
no precise relationship between estimated quantities and the quantity to be estimated in 
the problem, then the accuracy of the result will depend on the type of relationships you 
decide upon. There are often many approaches to an estimation problem leading to a 
reasonably accurate estimate. So use your creativity and imagination! 
 
Example 2.4.1 Fermi’s Problem Piano Tuners 

A famous type of estimation problem is named after the physicist Enrico Fermi. One of 
his favorite examples was estimating the number of piano tuners in Chicago with the 
only given information the population of Chicago which at the time was approximately 
3 million people. 

 

Solution: Our estimate will be based on how many individual living units there are in 
Chicago. Assume that on average 5 people live together. Then there are 600,000 living 
units. Assume that one in ten living units has a piano, which amounts to 60,000 pianos. 
Suppose a piano tuner can tune three pianos a day. If a tuner works a 50 week year, five 
days a week, then each tuner can tune 750 pianos per year. Therefore there is an need 
for  60,000 / 750 = 80 , so we estimate there are 100 piano tuners in Chicago.  

Example 2.4.1 One Kilometer Line of Pennies 
 
In this example our goal is to estimate the number of pennies needed to mark off 1 
kilometer. 
 
Solution: The first step is to consider what type of quantity is being estimated. In this 
example we are estimating a dimensionless scalar quantity, the number of pennies. We 



can now give a precise relationship for the number of pennies needed to mark off 1 
kilometer 

 
 
# of pennies = totaldistance

diameter of penny
.  (2.14) 

 
We can estimate a penny to be approximately 2 centimeters wide. Therefore the number 
of pennies is 

 

 

# of pennies=
totaldistance

lengthof a penny
= (1km)

(2 cm)(1km / 105 cm)

= 50,000 pennies = 5×104 pennies.

  (2.15) 

 
 When applying numbers to relationships we must be careful to convert units 
whenever necessary. How accurate is this estimation? If you measure the size of a 
penny, you will find out that the width is  1.9 cm , so our estimate was accurate to within 
5%. This accuracy was fortuitous. Suppose we estimated the length of a penny to be 1 
cm. Then our estimate for the total number of pennies would be within a factor of 2, a 
margin of error we can live with for this type of problem. 
 
Example 2.4.3 Estimation of Mass of Water on Surface of Earth  
 
Estimate the mass of the water on the surface of the Earth. 
 
Solution: In this example we are estimating mass, a quantity that is a fundamental in SI 
units, and is measured in kg. We start by approximating that the amount of water on 
Earth is approximately equal to the amount of water in all the oceans. Initially we will 
try to estimate two quantities: the density of water and the volume of water contained in 
the oceans. Then the relationship we want is 
 
  mass = (density)(volume) .  (2.16) 
 
One of the hardest aspects of estimation problems is to decide which relationship 
applies. One way to check your work is to check dimensions. Density has dimensions of 
mass/volume, so our relationship is correct dimensionally. 
 
 The density of fresh water is  ρ = 1.0 g ⋅cm−3 ; the density of seawater is slightly 
higher, but the difference won’t matter for this estimate. You could estimate this density 
by estimating how much mass is contained in a one-liter bottle of water. (The density of 
water is a point of reference for all density problems. Suppose we need to estimate the 
density of iron. If we compare iron to water, we might estimate that iron is 5 to 10 times 
denser than water. The actual density of iron is  ρiron = 7.8 g ⋅cm-3 ). 
 



 Because there is no precise relationship, estimating the volume of water in the 
oceans is much harder. Let’s model the volume occupied by the oceans as if the water 
completely covers the earth, forming a spherical shell of radius  RE  and thickness  d  
(Figure 2.4, which is decidedly not to scale), where  RE  is the radius of the earth and  d  
is the average depth of the ocean. The volume of that spherical shell is  
 
   volume ≅ 4πRearth

2 d . (2.17) 
 

RE

d

 
Figure 2.4 A model for estimating the mass of the water on the surface of the Earth. 

 
We also estimate that the oceans cover about 75% of the surface of the earth. So we can 
refine our estimate that the volume of the oceans is 
 
   volume ≅ (0.75)(4πRE

2d) . (2.18) 
 
We therefore have two more quantities to estimate, the average depth of the ocean, 
which we can estimate as   d ≅ 1km , and the radius of the earth, which is 
approximately   RE ≅ 6×103km . (The quantity that you may remember is the 
circumference of the earth, about  25,000 miles . Historically the circumference of the 
earth was defined to be  4 ×107 m ). The radius  RE  and the circumference  s  are exactly 
related by  
   s = 2πRE . (2.19) 
Thus 

 
  
RE = s

2π
=

2.5×104 mi( ) 1.6 km ⋅mi-1( )
2π

= 6.4×103 km   (2.20) 

 
We will use   RE ≅ 6×103km ; additional accuracy is not necessary for this problem, 
since the ocean depth estimate is clearly less accurate.  In fact, the factor of  75%  is not 



needed, but included more or less from habit. Altogether, our estimate for the mass of 
the oceans is 

 

  

mass = (density)(volume) ≅ ρ(0.75)(4πRE
2d)

mass ≅ 1g
cm3

⎛
⎝⎜

⎞
⎠⎟

1kg
103 g

⎛
⎝⎜

⎞
⎠⎟

(105 cm)3

(1km)3

⎛
⎝⎜

⎞
⎠⎟

(0.75)(4π )(6×103 km)2(1km)

mass ≅ 3×1020 kg ≅ 1020 kg.

 (2.21) 

 
An interesting question is what is the origin of this water? 
 
Example 2.4.4 Lao-Tzu’s Last Breath 
 
What is the probability that none of the molecules in your next breath were in the last 
breath of Lao-Tzu (b. 551 B.C.E.), author of the Tao Te Ching, who expired in 471 
B.C.E.? 
 
Answer: We begin by making a few notational definitions. 
 
Let  N  be the number of molecules in a breath. 
 
Let  p  be the probability that one molecule in your next breath was contained in Lao-
Tzu’s last breath. 
 
Let   q = 1− p  be the probability that one molecule in your next breath was not 
contained in Lao-Tzu’s last breath. 
 
The probability  P  that none of the molecules in your next breath were contained in 
Lao-Tzu’s last breath is therefore 
 ( )1 NNP q p= = − . (2.22) 
 
We would like to estimate the number of molecules,  N , in a breath, and the 
probability, p , that one molecule in your next breath was also contained in Lao-Tzu’s 
last breath. We shall estimate the number of molecules in one breath by first estimating 
the volume breathV  of one breath, and then converting this to moles,  m , at STP (Standard 
Temperature and Pressure). I estimate that the volume of one breath is approximately 1 
L. At STP, one mole of an ideal gas (which is a good approximation for the actual 
properties of air) occupies 22.4 L, so the number of moles of air in one breath is 
 

 2breath 1L 4 10 mole
22.4L mole 22.4L mole
Vm −≅ ≅ ≅ × . (2.23) 

 
Then we calculate the number of molecules,  N , in one breath to be 



 
 ( )( )23 2 226 10 molecules mole 4 10 mole 3 10 moleculesAN N m −= ≅ × × ≅ ×  (2.24) 
 
where   N A ≅ 6 ×1023 molecules mole  is the Avogadro constant. 
 
We shall estimate the probability  p  as the ratio of the volume of a breath to the volume 
of the atmosphere: 

 breath

atmo

volume of one breath
volume of atmosphere

Vp
V

≅ = . (2.25) 

 
In order to estimate the volume atmoV of the earth’s atmosphere, let’s assume that the 
atmosphere is a uniform spherical shell of thickness  t  and radius r ; this is the same 
model used for the volume of the oceans in another example. Then the volume of the 
shell is approximately 
 2

atmo 4V r tπ≅ . (2.26) 
 
We need to make two estimations. Let’s suppose: 
 

1) the thickness of the shell is approximately   t ≅ 10km = 104 m ; 
2) the radius  r = Re , the radius of the earth, which we estimate as 

  Re ≅ 6 ×103 km = 6 ×106 m . 
 
Note that we have et R= , a necessary condition for using the spherical shell 
approximation as given above. Then our estimate for the volume of the earth’s 
atmosphere is 
 

 ( ) ( )22 6 4 18 3
atmo 4 4 6 10 m 10 m 4 10 mV r tπ π≅ = × = × . (2.27) 

 
We estimated the volume of one breath as  1 L ; let’s convert this to cubic meters: 
 

 
( )32

3 3
breath 3 3 3

1 10 m1L1L =1 10 m
1 10 cm 1cm

V
−

−
⎛ ⎞×⎛ ⎞⎜ ⎟≅ = ×⎜ ⎟⎜ ⎟×⎝ ⎠⎝ ⎠

. (2.28) 

  
So the probability that one specific molecule in your next breath was contained in Lao-
Tzu’s last breath is estimated as 
 



 
3 3

21breath
18 3

atmo

volume of one breath 1 10 m 1 10
volume of atmosphere 4 10 m

Vp
V

−
−×≅ = ≅ ≅ ×

×
. (2.29) 

 
 
The probability,   q = 1− p , that one specific molecule in your next breath was not 
contained in Lao-Tzu’s last breath, is essentially one: 
 
 211 1 10q p −= − ≅ − . (2.30) 
 

The total probability  P  that none of the molecules in your next breath were 
contained in Lao-Tzu’s last breath is then 
 

 ( ) ( )
223 10211 1 10NNP q p

×−= = − ≅ − , (2.31) 
or alternately,  

 ( ) ( )
22

22
3 1013 1021

22

3 101 1 10 1
3 10

NNP q p
×

×− ⎛ ⎞×= = − ≅ − = −⎜ ⎟×⎝ ⎠
. (2.32) 

 
To simplify the calculation, we can now use a representation for the exponential 
function (see Example 2.4.4. for a proof of this result), 
 

 lim 1
N

x

N

xe
N

−

→∞

⎛ ⎞= −⎜ ⎟⎝ ⎠
. (2.33) 

Thus  

 
  
P ≅ 1− 3×101

3×1022

⎛
⎝⎜

⎞
⎠⎟

3×1022

≅ e−3×101

= 1×10−13 ≅ 0 . (2.34) 

 
So the probability  P  is nearly zero that none of the molecules in your next breath were 
contained in Lao-Tzu’s last breath. From this, we see that it is certain that at least one 
molecule of air you inhale was in Lao-Tzu’s last gasp. 
 

Note one key assumption that we make in this problem: in 2500 years, the 
atmosphere has re-circulated to the point that Lao-Tzu’s final exhalation is equally 
distributed throughout the world. Recently, a 3 km− ice core sample had been drilled 
from the Antarctic ice sheet. What is the probability that an air bubble in the ice at the 
bottom of the sample contains an atom in Lao-Tzu’s final exhalation?  
 
 
Example 2.4.5 Representation of the exponential function 
 



Show that 

 
  
lim
N→∞

1− a
N

⎛
⎝⎜

⎞
⎠⎟

N

= e−a   (3.35) 

 
Proof: Let’s begin by proving that 
 

 
  
lim
y→0

ln(1− ay)
y

= −a   (3.36) 

 
This is an indetermine form so we apply the Taylor formula to the numerator 
 
 

 
  
ln(1− ay) = −ay − 1

2
(ay)2 +O( y3)   (3.37) 

Then  
 
 

 
  
lim
y→0

ln(1− ay)
y

= lim
y→0

−ay − 1
2

(ay)2 +O( y3)

y
= −a   (3.38) 

 
Define  bx  for all   b > 0  raised to any real number  x  by  
 
   bx = ex lnb   (3.39) 
 
Let   b = ln(1− ay)  and   ln(1− ay)1/ y = e(1/ y ) ln(1−ay ) . Thus 
 
 

  
lim
y→0

ln(1− ay)1/ y = exp(lim
x→0

((1/ y) ln(1− ay)) = e−a   (3.40) 

Let   y = 1/ N . Then  

 
  
lim
N→∞

ln(1− a
N

)N = e−a   (3.41) 

 



 
 


