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Chapter 17 Two Dimensional Rotational Dynamics 
 

torque, n. 
 
a. The twisting or rotary force in a piece of mechanism (as a 
measurable quantity); the moment of a system of forces producing 
rotation. 

 
                                                                     Oxford English Dictionary 
 

17.1 Introduction 
 
 A body is called a rigid body if the distance between any two points in the body 
does not change in time. Rigid bodies, unlike point masses, can have forces applied at 
different points in the body.  For most objects, treating as a rigid body is an idealization, 
but a very good one. In addition to forces applied at points, forces may be distributed 
over the entire body. Forces that are distributed over a body are difficult to analyze; 
however, for example, we regularly experience the effect of the gravitational force on 
bodies. Based on our experience observing the effect of the gravitational force on rigid 
bodies, we shall demonstrate that the gravitational force can be concentrated at a point in 
the rigid body called the center of gravity, which for small bodies (so that g  may be 
taken as constant within the body) is identical to the center of mass of the body. 
 
 Let’s consider a rigid rod thrown in the air (Figure 17.1) so that the rod is 
spinning as its center of mass moves with velocity cmv

 . We have explored the physics of 
translational motion; now, we wish to investigate the properties of rotational motion 
exhibited in the rod’s motion, beginning with the notion that every particle is rotating 
about the center of mass with the same angular (rotational) velocity. 
 

 
 

Figure 17.1 The center of mass of a thrown rigid rod follows a parabolic trajectory while 
the rod rotates about the center of mass. 

 
 We can use Newton’s Second Law to predict how the center of mass will move. 
Because the only external force on the rod is the gravitational force (neglecting the action 
of air resistance), the center of mass of the body will move in a parabolic trajectory. 
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 How was the rod induced to rotate? In order to spin the rod, we applied a torque 
with our fingers and wrist to one end of the rod as the rod was released. The applied 
torque is proportional to the angular acceleration. The constant of proportionality is the 
moment of inertia. When external forces and torques are present, the motion of a rigid 
body can be extremely complicated while it is translating and rotating in space.  
 
 In order to describe the relationship between torque, moment of inertia, and 
angular acceleration, we will introduce a new vector operation called the vector product 
also know as the “cross product” that takes any two vectors and generates a new vector. 
The vector product is a type of “multiplication” law that turns our vector space (law for 
addition of vectors) into a vector algebra (a vector algebra is a vector space with an 
additional rule for multiplication of vectors).  
 
17.2 Vector Product (Cross Product) 
  

Let A


 and B


 be two vectors. Because any two non-parallel vectors form 
a plane, we denote the angle θ  to be the angle between the vectors A


 and 

B


 as shown in Figure 17.2. The magnitude of the vector product ×A B
 

 
of the vectors A


 and B


 is defined to be product of the magnitude of the 

vectors A


 and B


 with the sine of the angle θ  between the two vectors,  
 
 

   

A ×

B =


A

B sin(θ) . (17.2.1) 

 
The angle θ  between the vectors is limited to the values 0 θ π≤ ≤  
ensuring that sin( ) 0θ ≥ . 

 
 

Figure 17.2 Vector product geometry. 
 
 

The direction of the vector product is defined as follows. The vectors A


 
and B


 form a plane. Consider the direction perpendicular to this plane. 

There are two possibilities: we shall choose one of these two (the one 
shown in Figure 17.2) for the direction of the vector product ×A B

 
 using 

a convention that is commonly called the “right-hand rule”. 
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17.2.1 Right-hand Rule for the Direction of Vector Product 

 
The first step is to redraw the vectors A


 and B


 so that the tails are touching. Then draw 

an arc starting from the vector A


 and finishing on the vector B


. Curl your right fingers 
the same way as the arc. Your right thumb points in the direction of the vector product 

×A B
 

 (Figure 17.3).  

 
 

Figure 17.3 Right-Hand Rule. 
 
You should remember that the direction of the vector product ×A B

 
 is perpendicular to 

the plane formed by A


 and B


. We can give a geometric interpretation to the magnitude 
of the vector product by writing the magnitude as  
 
 

   

A ×

B =


A

B sinθ( ) . (17.2.2) 

 
The vectors A


 and B


 form a parallelogram. The area of the parallelogram is equal to the 

height times the base, which is the magnitude of the vector product. In Figure 17.4, two 
different representations of the height and base of a parallelogram are illustrated. As 
depicted in Figure 17.4a, the term 

   

B sinθ  is the projection of the vector B


 in the 

direction perpendicular to the vector B


. We could also write the magnitude of the vector 
product as  
 

   

A ×

B =


A sinθ( ) B . (17.2.3) 

 
The term 

   

A sinθ  is the projection of the vector A


 in the direction perpendicular to the 

vector B


 as shown in Figure 17.4(b). The vector product of two vectors that are parallel 
(or anti-parallel) to each other is zero because the angle between the vectors is 0  (or π ) 
and sin(0) 0=  (or sin( ) 0π = ). Geometrically, two parallel vectors do not have a unique 
component perpendicular to their common direction. 
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(a)      (b) 

 
Figure 17.4 Projection of  (a) B


 perpendicular to A


,  (b) of A


 perpendicular to B


 

 
 
17.2.2 Properties of the Vector Product 
  
(1) The vector product is anti-commutative because changing the order of the vectors 

changes the direction of the vector product by the right hand rule: 
 
 × = − ×A B B A

  
. (17.2.4) 

 
(2) The vector product between a vector cA


 where  c is a scalar and a vector B


 is 

 
 ( )c c× = ×A B A B

  
. (17.2.5) 

Similarly, 
 ( )c c× = ×A B A B

  
. (17.2.6) 

 
(3) The vector product between the sum of two vectors A


 and B


 with a vector C


 is 

 
 ( )+ × = × + ×A B C A C B C

     
 (17.2.7) 

Similarly, 
 ( )× + = × + ×A B C A B A C

     
. (17.2.8) 

 
17.2.3 Vector Decomposition and the Vector Product: Cartesian Coordinates 
 
We first calculate that the magnitude of vector product of the unit vectors î  and ĵ : 
  
 ˆ ˆ ˆ ˆ| | | || |sin( / 2) 1π× = =i j i j , (17.2.9) 
 
because the unit vectors have magnitude ˆ ˆ| | | | 1= =i j  and sin( / 2) 1π = . By the right hand 
rule, the direction of ˆ ˆ×i j  is in the ˆ+k  as shown in Figure 17.5.  Thus ˆ ˆ ˆ× =i j k . 
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Figure 17.5 Vector product of ˆ ˆ×i j  
 
We note that the same rule applies for the unit vectors in the y and z directions, 
 
 ˆ ˆ ˆ ˆˆ ˆ,× = × =j k i k i j . (17.2.10) 
 
By the anti-commutatively property (1) of the vector product, 
 
 ˆ ˆ ˆ ˆˆ ˆ,× = − × = −j i k i k j  (17.2.11) 
 
The vector product of the unit vector î  with itself is zero because the two unit vectors are 
parallel to each other, (sin(0) 0= ), 
 
 ˆ ˆ ˆ ˆ| | | || | sin(0) 0× = =i i i i . (17.2.12) 
 
The vector product of the unit vector ĵ  with itself and the unit vector k̂  with itself are 
also zero for the same reason, 
 ˆ ˆ ˆ ˆ0, 0× = × =j j k k . (17.2.13) 

 
With these properties in mind we can now develop an algebraic expression for the vector 
product in terms of components. Let’s choose a Cartesian coordinate system with the 
vector B


 pointing along the positive x-axis with positive x-component xB . Then the 

vectors A


 and B


 can be written as  
 
 ˆ ˆ ˆ

x y zA A A= + +A i j k


 (17.2.14) 

 ˆ
xB=B i


, (17.2.15) 

 
respectively. The vector product in vector components is 
 
 ˆ ˆ ˆˆ

x y z xA A A B× = + + ×A B ( i j k) i
 

. (17.2.16) 
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This becomes, 

 

ˆ ˆ ˆ ˆ ˆˆ( ) ( ) ( )
ˆ ˆ ˆ ˆ ˆˆ( ) ( ) ( )

ˆˆ

x x y x z x

x x y x z x

y x z x

A B A B A B

A B A B A B

A B A B

× = × + × + ×

= × + × + ×

= − +

A B i i j i k i

i i j i k i

k j

 

. (17.2.17) 

 
The vector component expression for the vector product easily generalizes for arbitrary 
vectors 
 

    

A = Ax î + Ay ĵ+ Az k̂  (17.2.18) 

 ˆ ˆ ˆ
x y zB B B= + +B i j k


, (17.2.19) 

to yield 
 ˆ ˆ ˆ( ) ( ) ( )y z z y z x x z x y y xA B A B A B A B A B A B× = − + − + −A B i j k

 
. (17.2.20) 

 
17.2.4 Vector Decomposition and the Vector Product: Cylindrical Coordinates 
 
Recall the cylindrical coordinate system, which we show in Figure 17.6. We have chosen 
two directions, radial and tangential in the plane, and a perpendicular direction to the 
plane. 

 
 

Figure 17.6 Cylindrical coordinates 
 
The unit vectors are at right angles to each other and so using the right hand rule, the 
vector product of the unit vectors are given by the relations 
 
   ̂r × θ̂ = k̂  (17.2.21) 
   θ̂ × k̂ = r̂  (17.2.22) 
   k̂ × r̂ = θ̂ . (17.2.23) 
 
Because the vector product satisfies   


A ×

B = −


B ×

A , we also have that 

 
   θ̂ × r̂ = −k̂  (17.2.24) 
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   k̂ × θ̂ = −r̂  (17.2.25) 
   r̂ × k̂ = −θ̂ . (17.2.26) 
Finally 
    ̂r × r̂ = θ̂ × θ̂ = k̂ × k̂ =


0 . (17.2.27) 

 
Example 17.1 Vector Products 
 
Given two vectors, ˆ ˆ ˆ2 3 7= + − +A i j k


 and ˆ ˆ ˆ5 2= + +B i j k


, find   


A ×

B . 

 
Solution:  

    


A ×

B = ( Ay Bz − Az By ) î + ( Az Bx − Ax Bz ) ĵ+ ( Ax By − Ay Bx ) k̂

= ((−3)(2)− (7)(1)) î + ((7)(5)− (2)(2)) ĵ+ ((2)(1)− (−3)(5)) k̂
= −13 î + 31 ĵ+17 k̂.

 

 
Example 17.2 Law of Sines 
 
For the triangle shown in Figure 17.7a, prove the law of sines, 

   

A / sinα =


B / sinβ =


C / sinγ , using the vector product.  

 
 

Figure 17.7 (a) Example 17.2 
 

 
 

Figure 17.7 (b) Vector analysis

Solution: Consider the area of a triangle formed by three vectors A


, B


, and C


, where 
0+ + =A B C

 
 (Figure 17.7b). Because 0+ + =A B C

 
, we have that 

0 ( )= × + + = × + ×A A B C A B A C
      

. Thus × = − ×A B A C
  

 or × = ×A B A C
  

. From 

Figure 17.7b we see that sin γ× =A B A B
  

 and sin β× =A C A C
   

. Therefore 

sin sinγ β=A B A C
  

, and hence / sin / sinβ γ=B C


. A similar argument shows that 

/ sin / sinβ α=B A


 proving the law of sines. 

 
Example 17.3 Unit Normal  
 
Find a unit vector perpendicular to ˆ ˆ ˆ= + −A i j k


 and ˆ ˆ ˆ2 3= − − +B i j k


. 
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Solution: The vector product ×A B
 

 is perpendicular to both A


 and B


. Therefore the 
unit vectors ˆ /= ± × ×n A B A B

  
 are perpendicular to both A


 and B


. We first calculate  

 

    


A ×

B = ( Ay Bz − Az By ) î + ( Az Bx − Ax Bz ) ĵ+ ( Ax By − Ay Bx ) k̂

= ((1)(3)− (−1)(−1)) î + ((−1)(2)− (1)(3)) ĵ+ ((1)(−1)− (1)(2)) k̂
= 2 î −5 ĵ− 3 k̂.

 

 
We now calculate the magnitude 
 

   

A ×

B = (22 +52 + 32 )1/2 = (38)1/2 . 

 
Therefore the perpendicular unit vectors are  
 

   
n̂ = ±


A ×

B /

A ×

B = ±(2 î −5 ĵ− 3 k̂) / (38)1/2 . 

 
Example 17.4 Volume of Parallelepiped 
 
Show that the volume of a parallelepiped with edges formed by the vectors A


, B


, and 
C


 is given by ( )⋅ ×A B C
 

. 
 
Solution: The volume of a parallelepiped is given by area of the base times height. If the 
base is formed by the vectors B


 and C


, then the area of the base is given by the 

magnitude of ×B C


. The vector ˆ× = ×B C B C n
  

 where n̂  is a unit vector perpendicular 

to the base (Figure 17.8).  

 
 

Figure 17.8 Example 17.4 
 
The projection of the vector A


 along the direction n̂  gives the height of the 

parallelepiped. This projection is given by taking the dot product of A


 with a unit vector 
and is equal to ˆ height⋅ =A n


. Therefore 

  

    

A ⋅ (

B ×

C) =


A ⋅ (

B ×

C )n̂ = (


B ×

C )

A ⋅ n̂ = (area)(height) = (volume) . 
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Example 17.5 Vector Decomposition 
 
Let A


 be an arbitrary vector and let n̂  be a unit vector in some fixed direction. Show 

that    

A = (


A ⋅ n̂)n̂ + (n̂ ×


A) × n̂ . 

 
Solution: Let 

    

A = An̂ + A⊥ ê  where 

  
A  is the component A


 in the direction of n̂ , ê  is 

the direction of the projection of A


 in a plane perpendicular to n̂ , and  A⊥  is the 

component of A


 in the direction of ê . Because ˆ ˆ 0⋅ =e n , we have that 
    

A ⋅ n̂ = A . Note 

that 

    
n̂ ×

A = n̂ × ( An̂ + A⊥ ê) = n̂ × A⊥ ê = A⊥ (n̂ × ê) . 

 
The unit vector ˆ ˆ×n e  lies in the plane perpendicular to n̂  and is also perpendicular to ê . 
Therefore   (n̂ × ê) × n̂  is also a unit vector that is parallel to ê  (by the right hand rule. So 

    (n̂ ×

A) × n̂ = A⊥ ê . Thus  

 

    

A = An̂+ A⊥ê = (


A ⋅ n̂)n̂+ (n̂×


A)× n̂ . 

 
17.3 Torque 
 
17.3.1 Definition of Torque about a Point  
 
In order to understand the dynamics of a rotating rigid body we will introduce a new 
quantity, the torque. Let a force PF


 with magnitude PF = F


 act at a point P . Let ,S Pr

  

be the vector from the point S  to a point P , with magnitude ,S Pr = r .  The angle 

between the vectors ,S Pr
  and PF


 is θ  with [0 ]θ π≤ ≤  (Figure 17.9).  

 
 

Figure 17.9 Torque about a point S  due to a force acting at a point P  
 

The torque about a point S  due to force PF


 acting at P , is defined by   
 
                                           

    

τS =
rS , P ×


FP .                                  (17.2.28) 
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The magnitude of the torque about a point S  due to force PF


 acting at P , 
is given by  
                                   τ S ≡


τS = r F sinθ .                              (17.2.29) 

 
 
The SI units for torque are [N m]⋅ . The direction of the torque is perpendicular to the 
plane formed by the vectors ,S Pr

  and PF


 (for [0 ]θ π< < ), and by definition points in 
the direction of the unit normal vector to the plane ˆ RHRn  as shown in Figure 17.10. 

 

 
 

Figure 17.10 Vector direction for the torque 
 
Figure 17.11 shows the two different ways of defining height and base for a 
parallelogram defined by the vectors ,S Pr

  and PF


. 
 

 
Figure 17.11 Area of the torque parallelogram. 

 
 Let sinr r θ⊥ =  and let sinF F θ⊥ =  be the component of the force PF


 that is 

perpendicular to the line passing from the point S  to P . (Recall the angle θ  has a range 
of values 0 θ π≤ ≤  so both 0r⊥ ≥  and 0F⊥ ≥ .) Then the area of the parallelogram 

defined by ,S Pr
  and PF


 is given by 

 
 Area sinS r F r F r Fτ θ⊥ ⊥= = = = . (17.2.30) 



 17-11 

 
We can interpret the quantity r⊥  as follows. 

 
 

Figure 17.12 The moment arm about the point S  and line of action of force passing 
through the point P  

 
We begin by drawing the line of action of the force PF


. This is a straight line passing 

through P , parallel to the direction of the force PF


. Draw a perpendicular to this line of 
action that passes through the point S (Figure 17.12). The length of this perpendicular, 

sinr r θ⊥ = , is called the moment arm about the point S of the force PF


.   
 

You should keep in mind three important properties of torque: 
 

1. The torque is zero if the vectors ,S Pr
  and PF


 are parallel ( 0)θ =  or anti-parallel 

( )θ π= . 
 
2. Torque is a vector whose direction and magnitude depend on the choice of a point 

S  about which the torque is calculated.  
 
3. The direction of torque is perpendicular to the plane formed by the two vectors, 

PF


 and ,S Pr = r  (the vector from the point S  to a point P ).  

 
17.3.2 Alternative Approach to Assigning a Sign Convention for Torque 
 
In the case where all of the forces iF


 and position vectors ,i Pr

  are coplanar (or zero), we 
can, instead of referring to the direction of torque, assign a purely algebraic positive or 
negative sign to torque according to the following convention. We note that the arc in 
Figure 17.13a circles in counterclockwise direction.  (Figures 17.13a and 17.13b use the 
simplifying assumption, for the purpose of the figure only, that the two vectors in 
question, PF


 and ,S Pr

  are perpendicular.  The point S  about which torques are calculated 
is not shown.)  
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(a)      (b) 

 
Figure 17.13 (a) Positive torque out of plane, (b) positive torque into plane 

 
We can associate with this counterclockwise orientation a unit normal vector   n̂  
according to the right-hand rule: curl your right hand fingers in the counterclockwise 
direction and your right thumb will then point in the   n̂1  direction (Figure 17.13a).  The 
arc in Figure 17.13b circles in the clockwise direction, and we associate this orientation 
with the unit normal   n̂2 . 
 
 It’s important to note that the terms “clockwise” and “counterclockwise” might be 
different for different observers.  For instance, if the plane containing PF


 and ,S Pr

  is 
horizontal, an observer above the plane and an observer below the plane would disagree 
on the two terms.  For a vertical plane, the directions that two observers on opposite sides 
of the plane would be mirror images of each other, and so again the observers would 
disagree. 
 

1. Suppose we choose counterclockwise as positive. Then we assign a positive sign 
for the component of the torque when the torque is in the same direction as the 
unit normal   n̂1 , i.e. 

   

τS = rS ,P ×


FP = + rS ,P


FP n̂1 , (Figure 17.13a). 

 
2. Suppose we choose clockwise as positive. Then we assign a negative sign for the 

component of the torque in Figure 17.13b because the torque is directed opposite 
to the unit normal   n̂2 , i.e. 

   

τS = rS ,P ×


FP = − rS ,P


FP n̂2 .  

 
Example 17.6 Torque and Vector Product 
 
Consider two vectors P,F x̂=r i  with 0x >  and ˆ ˆ

x zF F= +F i k


 with 0xF >  and 0zF > . 

Calculate the torque P,F ×r F
 . 

 
Solution: We calculate the vector product noting that in a right handed choice of unit 
vectors, ˆ ˆ× =i i 0


 and ˆ ˆˆ× = −i k j , 

 

 
rP,F ×


F = xî × (Fx î + Fzk̂) = (xî × Fx î)+ (xî × Fzk̂) = −xFz ĵ . 
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Because  0x >  and 0zF > , the direction of the vector product is in the negative  y -
direction. 
 
Example 17.7 Calculating Torque 
 
In Figure 17.14, a force of magnitude F is applied to one end of a lever of length L. What 
is the magnitude and direction of the torque about the point S?  
 

 
 

Figure 17.14 Example 17.7 
 

 
 
Figure 17.15 Coordinate system  

Solution: Choose units vectors such that   î × ĵ = k̂ , with î  pointing to the right and ĵ  
pointing up (Figure 17.15). The torque about the point S  is given by 

    

τS = rS ,F ×


F , 

where     
rSF = Lcosθ î + Lsinθ ĵ  and     


F = −Fĵ  then 

 

    

τS = (Lcosθ î + Lsinθ ĵ) × −F ĵ = −FLcosθ k̂ . 

 
 
Example 17.8 Torque and the Ankle 
 
A person of mass  m  is crouching with their weight evenly distributed on both tiptoes.  
The free-body force diagram on the skeletal part of the foot is shown in Figure 17.16. The 
normal force   


N  acts at the contact point between the foot and the ground. In this position, 

the tibia acts on the foot at the point  S  with a force F


 of an unknown magnitude F = F


 
and makes an unknown angle β  with the vertical. This force acts on the ankle a 
horizontal distance  s  from the point where the foot contacts the floor.  The Achilles 
tendon also acts on the foot and is under considerable tension with magnitude 

   
T ≡

T  and 

acts at an angle α  with the horizontal as shown in the figure. The tendon acts on the 
ankle a horizontal distance  b  from the point  S  where the tibia acts on the foot. You may 
ignore the weight of the foot. Let  g  be the gravitational constant. Compute the torque 
about the point  S  due to (a) the tendon force on the foot; (b) the force of the tibia on the 
foot; (c) the normal force of the floor on the foot.  
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Figure 17.16 Force diagram and coordinate system for ankle 
 
 
Solution: (a) We shall first calculate the torque due to the force of the Achilles tendon on 
the ankle. The tendon force has the vector decomposition ˆ ˆcos sinT Tα α= +T i j


.  

 

 
 

Figure 17.17 Torque diagram for tendon 
force on ankle 

 

 
 
 

Figure 17.18 Torque diagram for normal 
force on ankle 

    
rS ,N  

 
The vector from the point S  to the point of action of the force is given by ,

ˆ
S T b= −r i

 

(Figure 17.17).  Therefore the torque due to the force of the tendon T


 on the ankle about 
the point S  is then 
 

    

τ S ,T = rS ,T ×


T = −bî × (T cosα î +T sinα ĵ) = −bT sinα k̂ . 

 
(b) The torque diagram for the normal force is shown in Figure 17.18. The vector from 
the point S  to the point where the normal force acts on the foot is given by 
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rS ,N = (sî − hĵ) . Because the weight is evenly distributed on the two feet, the normal force 
on one foot is equal to half the weight, or   N = (1 / 2)mg . The normal force is therefore 
given by     


N = N ĵ= (1/ 2)mg ĵ . Therefore the torque of the normal force about the point 

S  is 
 

, ,
ˆ ˆ ˆ ˆ ˆ ˆ( ) (1/ 2)S N S N N s h N s N smgτ = × = − × = =r j i j j k k . 

 
(c) The force F


 that the tibia exerts on the ankle will make no contribution to the torque 

about this point S  since the tibia force acts at the point S  and therefore the vector 

,S F =r 0


. 

 
17.4 Torque, Angular Acceleration, and Moment of Inertia 
 
17.4.1 Torque Equation for Fixed Axis Rotation 
 
For fixed-axis rotation, there is a direct relation between the component of the torque 
along the axis of rotation and angular acceleration. Consider the forces that act on the 
rotating body.  Generally, the forces on different volume elements will be different, and 
so we will denote the force on the volume element of mass imΔ  by iF


. Choose the z -

axis to lie along the axis of rotation. Divide the body into volume elements of mass imΔ . 
Let the point S  denote a specific point along the axis of rotation (Figure 17.19). Each 
volume element undergoes a tangential acceleration as the volume element moves in a 
circular orbit of radius 

   
ri =
ri  about the fixed axis.  

 

 
Figure 17.19: Volume element undergoing fixed-axis rotation about the z -axis. 

 
The vector from the point S  to the volume element is given by 
 
 

    
rS , i = zi k̂ + ri = zi k̂ + ri r̂  (17.3.1) 
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where iz  is the distance along the axis of rotation between the point S  and the volume 

element. The torque about S  due to the force iF


 acting on the volume element is 
given by 
 

    

τS , i =

rS , i ×

Fi . (17.3.2) 

 
Substituting Eq. (17.3.1) into Eq. (17.3.2) gives 
 
 

    

τS , i = (zi k̂ + ri r̂)×


Fi . (17.3.3) 

 
For fixed-axis rotation, we are interested in the z -component of the torque, which must 
be the term 
 

    
(

τS , i )z = (ri r̂ ×


Fi )z  (17.3.4) 

 
because the vector product ˆ

i iz ×k F


 must be directed perpendicular to the plane formed 

by the vectors k̂  and iF


, hence perpendicular to the z -axis. The force acting on the 
volume element has components  
 
 

    

Fi = Fr , i r̂ + Fθ , i θ̂ + Fz , i k̂ . (17.3.5) 

 
The z -component ,z iF  of the force cannot contribute a torque in the z -direction, and so 
substituting Eq. (17.3.5) into Eq. (17.3.4) yields 
 
 

    
(

τS , i )z = (ri r̂ × (Fr ,i r̂ + Fθ ,i θ̂))z . (17.3.6) 

 

 
 

Figure 17.20 Tangential force acting on a volume element. 
 
The radial force does not contribute to the torque about the z -axis, since 
 
 

    
ri r̂ × Fr , i r̂ =


0 . (17.3.7) 
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So, we are interested in the contribution due to torque about the z -axis due to the 
tangential component of the force on the volume element (Figure 17.20). The component 
of the torque about the z -axis is given by 
 
 

    
(

τS , i )z = (ri r̂ × Fθ ,i θ̂)z = ri Fθ ,i . (17.3.8) 

 
The z -component of the torque is directed upwards in Figure 17.20, where   

Fθ , i  is 
positive (the tangential force is directed counterclockwise, as in the figure). Applying 
Newton’s Second Law in the tangential direction, 
 
   

Fθ , i = Δmi aθ , i . (17.3.9) 
 
Using our kinematics result that the tangential acceleration is   

aθ , i = r iα z , where  α z  is 
the  z -component of angular acceleration, we have that  
 
   

Fθ , i = Δmi riα z . (17.3.10) 
 
From Eq. (17.3.8), the component of the torque about the z -axis is then given by 
 
 

   
(

τS , i )z = r i Fθ , i = Δmi ri

2α z . (17.3.11) 
 
The component of the torque about the z -axis is the summation of the torques on all the 
volume elements, 

 

   

(

τS )z = (


τS , i )z

i=1

i=N

∑ = r⊥ , i Fθ , i
i=1

i=N

∑

= Δmiri
2α z .

i=1

i=N

∑
 (17.3.12) 

 
Because each element has the same  z -component of angular acceleration,  α z , the 
summation becomes 

 
   
(

τS )z = Δmi ri

2

i=1

i=N

∑⎛⎝⎜
⎞
⎠⎟
α z . (17.3.13) 

 
Recalling our definition of the moment of inertia, (Chapter 16.3) the z -component of the 
torque is proportional to the  z -component of angular acceleration, 
 
   

τ S ,z = IS α z , (17.3.14) 
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and the moment of inertia, SI , is the constant of proportionality. The torque about the 
point  S  is the sum of the external torques and the internal torques 
 
    


τSS =

τSS

ext +

τSS

int . (17.3.15) 
 
The external torque about the point  S  is the sum of the torques due to the net external 
force acting on each element 

 
    


τSS

ext =

τS ,i

ext

i=1

i=N

∑ = rS ,i ×

Fi

ext

i=1

i=N

∑ . (17.3.16) 

 
The internal torque arise from the torques due to the internal forces acting between pairs 
of elements 

 

    


τSS

int =

τS , jS

int

i=1

N

∑ =

τS , j , i

int

j=1
j≠ i

j=N

∑
i=1

i=N

∑ = rS ,i ×

Fj , i

j=1
j≠ i

j=N

∑
i=1

i=N

∑ . (17.3.17) 

 
We know by Newton’s Third Law that the internal forces cancel in pairs, 

    

Fj ,i = −


Fi, j , and 

hence the sum of the internal forces is zero 
 

 

    


0 =


Fj , i

j=1
j≠ i

j=N

∑
i=1

i=N

∑ . (17.3.18) 

 
Does the same statement hold about pairs of internal torques? Consider the sum of 
internal torques arising from the interaction between the  ith  and  j

th  particles 
 
 

    

τS , j , i

int +

τS ,i, j

int = rS ,i ×

Fj , i +

rS , j ×

Fi, j . (17.3.19) 

 
By the Newton’s Third Law this sum becomes 
 
 

    

τS , j , i

int +

τS , i, j

int = (rS ,i −
rS , j ) ×


Fj , i . (17.3.20) 

 
In the Figure 17.21, the vector 

    
rS ,i −

rS , j  points from the  j
th  element to the  ith  element. If 

the internal forces between a pair of particles are directed along the line joining the two 
particles then the torque due to the internal forces cancel in pairs. 
 
 

    

τS , j , i

int +

τS , i, j

int = (rS ,i −
rS , j ) ×


Fj , i =


0 . (17.3.21) 
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Figure 17.21 The internal force is directed along the line connecting the  ith  and  j
th  

particles 
 
 
This is a stronger version of Newton’s Third Law than we have so far since we have 
added the additional requirement regarding the direction of all the internal forces between 
pairs of particles. With this assumption, the torque is just due to the external forces 
 
    


τSS =

τSS

ext . (17.3.22) 
Thus Eq. (17.3.14) becomes 
   (τ S

ext )z = IS α z , (17.3.23) 
 
This is very similar to Newton’s Second Law: the total force is proportional to the 
acceleration, 
    


F = ma . (17.3.24) 

 
where the mass,  m ,  is the constant of proportionality. 
 
17.4.2 Torque Acts at the Center of Gravity 
 
Suppose a rigid body in static equilibrium consists of N  particles labeled by the index 
1, 2, 3, ...,i N= .  Choose a coordinate system with a choice of origin O  such that mass im  has 

position ir
 . Each point particle experiences a gravitational force gravity,i im=F g

  . The total 
torque about the origin is then zero (static equilibrium condition), 
 

 
    


τO =


τO ,i

i=1

i=N

∑ = ri
i=1

i=N

∑ ×

Fgravity,i =

ri
i=1

i=N

∑ × mi
g =

0 . (17.3.25) 

 
If the gravitational acceleration g  is assumed constant, we can rearrange the summation 
in Eq. (17.3.25) by pulling the constant vector g  out of the summation (g  appears in 
each term in the summation), 
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
τO = ri

i=1

i=N

∑ × mi
g = mi

ri
i=1

i=N

∑⎛⎝⎜
⎞
⎠⎟
× g =


0 . (17.3.26) 

 
We now use our definition of the center of the center of mass, Eq. (10.5.3), to rewrite Eq. 
(17.3.26) as  

 
    


τO = ri

i=1

i=N

∑ × mi
g = MT


Rcm × g =


Rcm × MT

g =

0 . (17.3.27) 

 
Thus the torque due to the gravitational force acting on each point-like particle is 
equivalent to the torque due to the gravitational force acting on a point-like particle of 
mass TM  located at a point in the body called the center of gravity, which is equal to the 
center of mass of the body in the typical case in which the gravitational acceleration g  is 
constant throughout the body.  
 
Example 17.9 Turntable 
 
The turntable in Example 16.1, of mass 1.2 kg  and radius 11.3 10 cm× , has a moment of 
inertia 2 21.01 10 kg mSI

−= × ⋅  about an axis through the center of the turntable and 
perpendicular to the turntable. The turntable is spinning at an initial constant frequency 

  fi = 33cycles ⋅min−1 . The motor is turned off and the turntable slows to a stop in 8.0 s  
due to frictional torque. Assume that the angular acceleration is constant. What is the 
magnitude of the frictional torque acting on the turntable?  
 
Solution: We have already calculated the angular acceleration of the turntable in 
Example 16.1, where we found that  
 

 
  
α z =

Δω z

Δt
=
ω f −ω i

t f − ti

= −3.5 rad ⋅s−1

8.0 s
= −4.3×10−1 rad ⋅s−2  (17.3.28) 

 
and so the magnitude of the frictional torque is 
 

 
  

τ z
fric = IS α z = (1.01×10−2 kg ⋅m2 )(4.3×10−1 rad ⋅s−2 )

= 4.3×10−3 N ⋅m.
 (17.3.29) 

 
Example 17.10 Pulley and blocks 
 
A pulley of mass pm , radius  R , and moment of inertia about its center of mass cmI , is 
attached to the edge of a table. An inextensible string of negligible mass is wrapped 
around the pulley and attached on one end to block 1 that hangs over the edge of the table 
(Figure 17.22). The other end of the string is attached to block 2 that slides along a table. 
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The coefficient of sliding friction between the table and the block 2 is kµ . Block 1 has 
mass   m1  and block 2 has mass 2m , with 1 2km mµ> . At time   t = 0 , the blocks are 
released from rest and the string does not slip around the pulley. At time 1t t= , block 1 
hits the ground. Let g  denote the gravitational constant. (a) Find the magnitude of the 
acceleration of each block. (b) How far did the block 1 fall before hitting the ground?  
 

 
 

Figure 17.22 Example 17.10 
 

 
 

Figure 17.23 Torque diagram for pulley 

 
Solution: The torque diagram for the pulley is shown in the figure below where we 
choose k̂  pointing into the page. Note that the tensions in the string on either side of the 
pulley are not equal. The reason is that the pulley is massive. To understand why, 
remember that the difference in the magnitudes of the torques due to the tension on either 
side of the pulley is equal to the moment of inertia times the magnitude of the angular 
acceleration, which is non-zero for a massive pulley. So the tensions cannot be equal. 
From our torque diagram, the torque about the point O  at the center of the pulley is given 
by 
 

    

τO = rO ,1 ×


T1 +
rO ,2 ×


T2 = R(T1 − T2 )k̂ . (17.3.30) 

 
Therefore the torque equation (17.3.23) becomes 
 
   R(T1 − T2 ) = Izα z . (17.3.31) 
 
The free body force diagrams on the two blocks are shown in Figure 17.23. 

 

  
(a)  

 
 (b) 

 
Figure 17.23 Free-body force diagrams on (a) block 2, (b) block 1 
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Newton’s Second Law on block 1 yields 
 
   

m1g − T1 = m1ay1 . (17.3.32) 
 
Newton’s Second Law on block 2 in the ĵ  direction yields 
 
   N − m2g = 0 . (17.3.33) 
 
Newton’s Second Law on block 2 in the î  direction yields 
 
   T2 − fk = m2ax2 . (17.3.34) 
The kinetic friction force is given by 
 
   fk = µk N = µk m2g  (17.3.35) 
Therefore Eq. (17.3.34) becomes 
   T2 − µk m2g = m2ax2 . (17.3.36) 
 
Block 1 and block 2 are constrained to have the same acceleration so 
 
   a ≡ ax1 = ax2 . (17.3.37) 
 
We can solve Eqs. (17.3.32) and (17.3.36) for the two tensions yielding 
 
   T1 = m1g − m1a , (17.3.38) 
   T2 = µk m2g + m2a . (17.3.39) 
 
At point on the rim of the pulley has a tangential acceleration that is equal to the 
acceleration of the blocks so 
  a = aθ = Rα z . (17.3.40) 
 
The torque equation (Eq. (17.3.31)) then becomes 
 

 
  
T1 − T2 =

Iz

R2 a . (17.3.41) 

 
Substituting Eqs. (17.3.38) and (17.3.39) into Eq. (17.3.41) yields 
 

 
  
m1g − m1a − (µk m2g + m2a) =

Iz

R2 a , (17.3.42) 

 
which we can now solve for the accelerations of the blocks 
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a =

m1g − µk m2g
m1 + m2 + Iz / R2

. (17.3.43) 

 
Block 1 hits the ground at time 1t , therefore it traveled a distance 
 

 
  
y1 =

1
2

m1g − µk m2g
m1 + m2 + Iz / R2

⎛

⎝
⎜

⎞

⎠
⎟ t1

2 . (17.3.44) 

 
Example 17.11 Experimental Method for Determining Moment of Inertia 
 
A steel washer is mounted on a cylindrical rotor of radius 12.7 mmr = . A massless 
string, with an object of mass 0.055 kgm =  attached to the other end, is wrapped around 
the side of the rotor and passes over a massless pulley (Figure 17.24). Assume that there 
is a constant frictional torque about the axis of the rotor. The object is released and falls. 
As the object falls, the rotor undergoes an angular acceleration of magnitude 1α . After 
the string detaches from the rotor, the rotor coasts to a stop with an angular acceleration 
of magnitude 2α . Let 29.8 m sg −= ⋅  denote the gravitational constant. Based on the data 
in the Figure 17.25, what is the moment of inertia RI  of the rotor assembly (including the 
washer) about the rotation axis?  
 

 
 

Figure 17.24 Steel washer, rotor, pulley, 
and hanging object 
 

 
 

Figure 17.26 Graph of angular speed vs. 
time for falling object 

 
Solution: We begin by drawing a force-torque diagram (Figure 17.26a) for the rotor and 
a free-body diagram for hanger (Figure 17.26b). (The choice of positive directions are 
indicated on the figures.) The frictional torque on the rotor is then given by 

    

τ f = −τ f k̂  

where we use fτ  as the magnitude of the frictional torque. The torque about the center of 

the rotor due to the tension in the string is given by     

τT = rT k̂  where  r  is the radius of 
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the rotor. The angular acceleration of the rotor is given by    

α1 = α1 k̂  and we expect that 

 α1 > 0  because the rotor is speeding up.  

 
(a) 

 
(b)

Figure 17.26 (a) Force-torque diagram on rotor and (b) free-body force diagram on 
hanging object 
 
While the hanger is falling, the rotor-washer combination has a net torque due to the 
tension in the string and the frictional torque, and using the rotational equation of motion, 
 
 1f RTr Iτ α− = . (17.4.1) 
  
We apply Newton’s Second Law to the hanger and find that  
 
 1 1mg T ma m rα− = = , (17.4.2) 
 
where   a1 = rα1  has been used to express the linear acceleration of the falling hanger to 
the angular acceleration of the rotor;  that is, the string does not stretch. Before 
proceeding, it might be illustrative to multiply Eq. (17.4.2) by r  and add to Eq. (17.4.1) 
to obtain 
   

mgr − τ f = (IR + mr 2 )α1 . (17.4.3) 
 
Eq. (17.4.3) contains the unknown frictional torque, and this torque is determined by 
considering the slowing of the rotor/washer after the string has detached.   
 

 
Figure 17.27 Torque diagram on rotor when string has detached 
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The torque on the system is just this frictional torque (Figure 17.27), and so 
 
   

−τ f = IRα2  (17.4.4) 
 
Note that in Eq. (17.4.4),   

τ f > 0  and  α2 < 0 . Subtracting Eq. (17.4.4) from Eq. (17.4.3) 

eliminates fτ ,  

   mgr = mr 2α1 + IR (α1 −α2 ) . (17.4.5) 
 
We can now solve for RI  yielding 

 
  
IR =

mr(g − rα1)
α1 −α 2

. (17.4.6) 

 
For a numerical result, we use the data collected during a trial run resulting in the graph 
of angular speed vs. time for the falling object shown in Figure 17.25.  The values for  α1  
and 2α  can be determined by calculating the slope of the two straight lines in Figure 
17.28 yielding  

 

α1 = (96rad ⋅s−1) / (1.15s) = 83 rad ⋅s−2 ,

α 2 = −(89rad ⋅s−1) / (2.85s) = − 31rad ⋅s−2.
 

 
Inserting these values into Eq. (17.4.6) yields 
 
 5 25.3 10 kg mRI

−= × ⋅ . (17.4.7) 
 
17.5 Torque and Rotational Work 
 
When a constant torque   

τ s,z  is applied to an object, and the object rotates through an 
angle θΔ  about a fixed  z -axis through the center of mass, then the torque does an 
amount of work   

ΔW = τ S ,z Δθ  on the object. By extension of the linear work-energy 
theorem, the amount of work done is equal to the change in the rotational kinetic energy 
of the object,  

 
  
Wrot =

1
2

Icmω f
2 − 1

2
Icmω i

2 = Krot, f − Krot,i . (17.4.8) 

 
The rate of doing this work is the rotational power exerted by the torque,  
 

 
  
Prot ≡

dWrot

dt
= lim

Δt→0

ΔWrot

Δt
= τ S ,z

dθ
dt

= τ S ,zω z . (17.4.9) 
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17.5.1 Rotational Work 
 
Consider a rigid body rotating about an axis. Each small element of mass imΔ  in the rigid 
body is moving in a circle of radius   

(rS , i )⊥  about the axis of rotation passing through the 
point S . Each mass element undergoes a small angular displacement θΔ  under the 
action of a tangential force, 

    

Fθ , i = Fθ , i θ̂ , where θ̂  is the unit vector pointing in the 

tangential direction (Figure 17.20). The element will then have an associated 
displacement vector for this motion, 

    
ΔrS , i = riΔθ θ̂  and the work done by the tangential 

force is 
 

    
ΔWrot,i =


Fθ ,i ⋅ Δ

rS ,i = (Fθ ,i θ̂) ⋅(riΔθ θ̂) = ri Fθ ,iΔθ . (17.4.10) 
 
Recall the result of Eq. (17.3.8) that the component of the torque (in the direction along 
the axis of rotation) about S  due to the tangential force, 

    

Fθ , i , acting on the mass element 

imΔ  is 
   

(τ S ,i )z = ri Fθ ,i , (17.4.11) 
and so Eq. (17.4.10) becomes 
 

  
ΔWrot, i = (τ S ,i )zΔθ . (17.4.12) 

 
Summing over all the elements yields 
 
 

  
Wrot = ΔWrot, i

i
∑ = (τ S ,i )z( )Δθ = τ S ,zΔθ , (17.4.13) 

 
the rotational work is the product of the torque and the angular displacement. In the limit 
of small angles,  Δθ → dθ ,   ΔWrot → dWrot  and the differential rotational work is 
 
 

  
dWrot = τ S ,zdθ . (17.4.14) 

 
We can integrate this amount of rotational work as the angle coordinate of the rigid body 
changes from some initial value  θ = θ i  to some final value fθ θ= , 
 

 
  
Wrot = dWrot∫ = τ S ,z dθ

θi

θ f∫ . (17.4.15) 

 
17.5.2 Rotational Work-Kinetic Energy Theorem 
 
We will now show that the rotational work is equal to the change in rotational kinetic 
energy. We begin by substituting our result from Eq. (17.3.14) into Eq. (17.4.14) for the 
infinitesimal rotational work, 
 

  
dWrot = ISα z dθ . (17.4.16) 
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Recall that the rate of change of angular velocity is equal to the angular acceleration, 

 α z ≡ dω z dt  and that the angular velocity is  ω z ≡ dθ dt . Note that in the limit of small 
displacements,  

 
 

dω z

dt
dθ = dω z

dθ
dt

= dω zω z . (17.4.17) 

 
Therefore the infinitesimal rotational work is 
 

 
  
dWrot = ISα z dθ = IS

dω z

dt
dθ = IS dω z

dθ
dt

= IS dω zω z . (17.4.18) 

 
We can integrate this amount of rotational work as the angular velocity of the rigid body 
changes from some initial value   

ω z =ω z ,i  to some final value   
ω z =ω z , f , 

 

 
  
Wrot = dWrot∫ = IS dω z ω zω z ,i

ω z , f∫ = 1
2

IS ω z , f
2 − 1

2
IS ω z ,i

2 . (17.4.19) 

 
When a rigid body is rotating about a fixed axis passing through a point S  in the body, 
there is both rotation and translation about the center of mass unless S  is the center of 
mass. If we choose the point S  in the above equation for the rotational work to be the 
center of mass, then  
 

 
  
Wrot =

1
2

Icmω cm, f
2 − 1

2
Icmω cm,i

2 = Krot, f − Krot,i ≡ ΔKrot . (17.4.20) 

 
Note that because the  z -component of the angular velocity of the center of mass appears 
as a square, we can just use its magnitude in Eq. (17.4.20). 
 
17.5.3 Rotational Power 
 
The rotational power is defined as the rate of doing rotational work, 
 

 rot
rot

dWP
dt

≡ . (17.4.21) 

 
We can use our result for the infinitesimal work to find that the rotational power is the 
product of the applied torque with the angular velocity of the rigid body, 
 

 
  
Prot ≡

dWrot

dt
= τ S ,z

dθ
dt

= τ S ,zω z . (17.4.22) 
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Example 17.12 Work Done by Frictional Torque  
 
A steel washer is mounted on the shaft of a small motor. The moment of inertia of the 
motor and washer is   I0 . The washer is set into motion. When it reaches an initial 
angular velocity  ω0 , at   t = 0 , the power to the motor is shut off, and the washer slows 
down during a time interval   Δt1 = ta  until it reaches an angular velocity of  ω a  at time  ta . 
At that instant, a second steel washer with a moment of inertia  Iw  is dropped on top of 
the first washer. Assume that the second washer is only in contact with the first washer.  
The collision takes place over a time   Δtint = tb − ta  after which the two washers and rotor 

rotate with angular speed  ωb . Assume the frictional torque on the axle (magnitude  
τ f ) is 

independent of speed, and remains the same when the second washer is dropped. (a) 
What angle does the rotor rotate through during the collision? (b) What is the work done 
by the friction torque from the bearings during the collision? (c) Write down an equation 
for conservation of energy. Can you solve this equation for  ωb? (d) What is the average 
rate that work is being done by the friction torque during the collision? 
 
Solution: We begin by solving for the frictional torque during the first stage of motion 
when the rotor is slowing down. We choose a coordinate system shown in Figure 17.29. 
 

 
 

Figure 17.29 Coordinate system for Example 17.12 
 
The component of average angular acceleration is given by 
 

α1 =
ωa −ω0

ta
< 0 . 

 
We can use the rotational equation of motion, and find that the frictional torque satisfies 
 

−τ f = I0
ωa −ω0

Δt1

⎛
⎝⎜

⎞
⎠⎟
. 
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During the collision, the component of the average angular acceleration of the rotor is 
given by 

α2 =
ωb −ωa

(Δtint )
< 0 . 

 
The angle the rotor rotates through during the collision is (analogous to linear motion 
with constant acceleration) 
 

Δθ2 =ωaΔtint +
1
2
α2Δtint

2 =ωaΔtint +
1
2

ωb −ωa

Δtint

⎛
⎝⎜

⎞
⎠⎟
Δtint

2 =
1
2
(ωb +ωa )Δtint > 0 . 

 
The non-conservative work done by the bearing friction during the collision is 
 

Wf ,b = −τ fΔθrotor = −τ f
1
2
(ωa +ωb )Δtint . 

 
Using our result for the frictional torque, the work done by the bearing friction during the 
collision is 

Wf ,b =
1
2
I0

ωa −ω0

Δt1

⎛
⎝⎜

⎞
⎠⎟
(ωa +ωb )Δtint < 0 . 

 
The negative work is consistent with the fact that the kinetic energy of the rotor is 
decreasing as the rotor is slowing down. Using the work energy theorem during the 
collision the kinetic energy of the rotor has deceased by  
 

Wf ,b =
1
2
(I0 + Iw )ωb

2 −
1
2
I0ωa

2 . 

 
Using our result for the work, we have that 
 

1
2
I0

ωa −ω0

Δt1

⎛
⎝⎜

⎞
⎠⎟
(ωa +ωb )Δtint =

1
2
(I0 + Iw )ωb

2 −
1
2
I0ωa

2 . 

 
This is a quadratic equation for the angular speed ωb  of the rotor and washer 
immediately after the collision that we can in principle solve. However remember that we 
assumed that the frictional torque is independent of the speed of the rotor. Hence the best 
practice would be to measure ω0 , ωa , ωb , Δt1 , Δtint , I0 , and Iw  and then determine 
how closely our model agrees with conservation of energy. The rate of work done by the 
frictional torque is given by 
 

Pf =
Wf ,b

Δtint
=
1
2
I0

ωa −ω0

Δt1

⎛
⎝⎜

⎞
⎠⎟
(ωa +ωb ) < 0 . 


