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Equation Chapter 8 Section 1 Chapter 14 Potential Energy and 
Conservation of Energy 

 
 
There is a fact, or if you wish, a law, governing all natural phenomena 
that are known to date. There is no exception to this law — it is exact as 
far as we know. The law is called the conservation of energy. It states that 
there is a certain quantity, which we call energy that does not change in 
the manifold changes which nature undergoes. That is a most abstract 
idea, because it is a mathematical principle; it says that there is a 
numerical quantity, which does not change when something happens. It is 
not a description of a mechanism, or anything concrete; it is just a strange 
fact that we can calculate some number and when we finish watching 
nature go through her tricks and calculate the number again, it is the 
same. 1 
 
       Richard Feynman 

 
So far we have analyzed the motion of point-like objects under the action of forces using 
Newton’s Laws of Motion. We shall now introduce the Principle of Conservation of 
Energy to study the change in energy of a system between its initial and final states. In 
particular we shall introduce the concept of potential energy to describe the effect of 
conservative internal forces acting on the constituent components of a system.  
 
14.1 Conservation of Energy  
 
We shall just consider closed systems in which only energy can enter of leave the system. 
Recall from Chapter 13.1, the principle of conservation of energy. When a system and its 
surroundings undergo a transition from an initial state to a final state, the change in 
energy is zero, 
 
 

  
ΔE = ΔEsystem + ΔEsurroundings = 0 . (14.1) 

 

 
 

Figure 14.1 Diagram of a system and its surroundings 
 

                                                
1  Richard P. Feynman, Robert B. Leighton, and Matthew Sands, The Feynman Lectures on Physics, 
Vol. 1, p. 4.1. 
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We shall study types of energy transformations due to interactions both inside and across 
the boundary of a system.  
 
14.2 Conservative and Non-Conservative Forces 
 
Our first type of “energy accounting” involves mechanical energy. There are two types of 
mechanical energy, kinetic energy and potential energy. Our first task is to define what 
we mean by the change of the potential energy of a system. 
 
 We defined the work done by a force F


, on an object, which moves along a path 

from an initial position    
ri  to a final position fr

 , as the integral of the component of the 
force tangent to the path with respect to the displacement of the point of contact of the 
force and the object, 
 

    
W =


F ⋅dr

path
∫ . (14.1) 

 
 Does the work done on the object by the force depend on the path taken by the 
object?  
 

  
   (a)      (b) 

 
Figure 14.2 (a) and (b) Two different paths connecting the same initial and final points 

 
First consider the motion of an object under the influence of a gravitational force near the 
surface of the earth.  Let’s consider two paths 1 and 2 shown in Figure 14.2. Both paths 
begin at the initial point   (xi , yi ) = (0, yi )  and end at the final point   

(x f , y f ) = (x f ,0) . The 
gravitational force always points downward, so with our choice of coordinates, 

   

F = −mg ĵ . The infinitesimal displacement along path 1 (Figure 14.2a) is given by 

 d
r1 = dx1 î + dy1 ĵ . The scalar product is then  

 
     


F ⋅ dr1 = −mg ĵ ⋅ (dx1 î + dy1 ĵ) = −mgdy1 . (14.2) 

 
The work done by gravity along path 1 is the integral  
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W1 =


F ⋅dr

path 1 
∫ = −mgdy1

(0,yi )

(x f ,0)

∫ = −mg(0 − yi ) =  mgyi . (14.3) 

 
 Path 2 consists of two legs (Figure 14.2b), leg A goes from the initial point   (0, yi )  
to the origin  (0,0) , and leg B goes from the origin  (0,0)  to the final point   

(x f ,0) . We 
shall calculate the work done along the two legs and then sum them up. The infinitesimal 
displacement along leg A is given by  d

rA = dyA ĵ . The scalar product is then  
 
     


F ⋅ drA = −mg ĵ ⋅ dyA ĵ = −mgdyA . (14.4) 

 
The work done by gravity along leg A is the integral  
  

 
 
WA =


F ⋅drA

leg A
∫ = −mgdyA

(0,yi )

(0,0)

∫ = −mg(0 − yi ) =  mgyi . (14.5) 

  
The infinitesimal displacement along leg B is given by  d

rB = dxB î . The scalar product is 
then  
     


F ⋅ drB = −mg ĵ ⋅ dxB î = 0 . (14.6) 

 
Therefore the work done by gravity along leg B is zero, WB = 0 , which is no surprise 
because leg B is perpendicular to the direction of the gravitation force. Therefore the 
work done along path 2 is equal to the work along path 1, 
 
 W2 =WA +WB =  mgyi =W1 . (14.7) 
 
 Now consider the motion of an object on a surface with a kinetic frictional force 
between the object and the surface and denote the coefficient of kinetic friction by kµ . 
Let’s compare two paths from an initial point  xi  to a final point fx . The first path is a 
straight-line path. Along this path the work done is just 
 
 

    
W f =


F ⋅dr

path 1
∫ = Fx dx

path 1
∫ = −µk N s1 = −µk N Δx < 0 , (14.8) 

 
where the length of the path is equal to the displacement, 1s x= Δ . Note that the fact that 
the kinetic frictional force is directed opposite to the displacement, which is reflected in 
the minus sign in Equation (14.8).  The second path goes past fx  some distance and them 
comes back to fx  (Figure 14.3). Because the force of friction always opposes the motion, 
the work done by friction is negative, 
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W f =


F ⋅dr

path 2
∫ = Fx dx

path 2
∫ = −µk N s2 < 0 . (14.9) 

 
The work depends on the total distance traveled 2s , and is greater than the displacement 

2s x> Δ . The magnitude of the work done along the second path is greater than the 
magnitude of the work done along the first path.  
 

  
 

Figure 14.3 Two different paths from  xi  to fx . 
 
 These two examples typify two fundamentally different types of forces and their 
contribution to work. The work done by the gravitational force near the surface of the 
earth is independent of the path taken between the initial and final points. In the case of 
sliding friction, the work done depends on the path taken.  
 

Whenever the work done by a force in moving an object from an initial 
point to a final point is independent of the path, the force is called a 
conservative force.  
 

The work done by a conservative force cF


 in going around a closed path is zero. Consider 
the two paths shown in Figure 14.4 that form a closed path starting and ending at the 
point A  with Cartesian coordinates (1,0) .  

 
Figure 14.4 Two paths in the presence of a conservative force. 
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The work done along path 1 (the upper path in the figure, blue if viewed in color) from 
point A  to point B  with coordinates (0,1)  is given by  
 

 
    
W1 =


Fc (1) ⋅dr1

A

B

∫ . (14.10) 

 
The work done along path 2 (the lower path, green in color) from B  to A  is given by  
 

     
    
W2 =


Fc (2) ⋅dr2

B

A

∫ .    (14.11) 

 
The work done around the closed path is just the sum of the work along paths 1 and 2, 
  

 
    
W =W1 +W2 =


Fc (1) ⋅dr1

A

B

∫ +

Fc (2) ⋅dr2

B

A

∫ . (14.12) 

 
If we reverse the endpoints of path 2, then the integral changes sign, 
 

 
    
W2 =


Fc (2) ⋅dr2

B

A

∫ = −

Fc (2) ⋅dr2

A

B

∫ . (14.13) 

 
We can then substitute Equation (14.13) into Equation (14.12) to find that the work done 
around the closed path is  
 

 
    
W =


Fc (1) ⋅dr1

A

B

∫ −

Fc (2) ⋅dr2

A

B

∫ . (14.14) 

 
Since the force is conservative, the work done between the points A  to B  is independent 
of the path, so  

 c 1 c 2(1) (2)
B B

A A

d d⋅ = ⋅∫ ∫F r F r
   . (14.15) 

 
We now use path independence of work for a conservative force (Equation (14.15) in 
Equation (14.14)) to conclude that the work done by a conservative force around a closed 
path is zero, 
 

    

W =

Fc ⋅d
r

closed
path

∫ = 0 . (14.16) 

 
14.3 Changes in Potential Energies of a System 
 



 14-7 

Consider an object near the surface of the earth as a system that is initially given a 
velocity directed upwards. Once the object is released, the gravitation force, acting as an 
external force, does a negative amount of work on the object, and the kinetic energy 
decreases until the object reaches its highest point, at which its kinetic energy is zero. The 
gravitational force then does positive work until the object returns to its initial starting 
point with a velocity directed downward. If we ignore any effects of air resistance, the 
descending object will then have the identical kinetic energy as when it was thrown. All 
the kinetic energy was completely recovered.  
 
 Now consider both the earth and the object as a system and assume that there are 
no other external forces acting on the system. Then the gravitational force is an internal 
conservative force, and does work on both the object and the earth during the motion. As 
the object moves upward, the kinetic energy of the system decreases, primarily because 
the object slows down, but there is also an imperceptible increase in the kinetic energy of 
the earth. The change in kinetic energy of the earth must also be included because the 
earth is part of the system. When the object returns to its original height (vertical distance 
from the surface of the earth), all the kinetic energy in the system is recovered, even 
though a very small amount has been transferred to the Earth.  
 
 If we included the air as part of the system, and the air resistance as a non-
conservative internal force, then the kinetic energy lost due to the work done by the air 
resistance is not recoverable. This lost kinetic energy, which we have called thermal 
energy, is distributed as random kinetic energy in both the air molecules and the 
molecules that compose the object (and, to a smaller extent, the earth). 
 
 We shall define a new quantity, the change in the internal potential energy of the 
system, which measures the amount of lost kinetic energy that can be recovered during an 
interaction.  
 

When only internal conservative forces act in a closed system, the sum of 
the changes of the kinetic and potential energies of the system is zero.  

 
 Consider a closed system,   

ΔEsys = 0 , that consists of two objects with masses 1m  

and 2m  respectively. Assume that there is only one conservative force (internal force) 
that is the source of the interaction between two objects. We denote the force on object 1 
due to the interaction with object 2 by 

   

F2,1  and the force on object 2 due to the interaction 

with object 1 by 
   

F1,2 .  From Newton’s Third Law, 

 
   

F2,1 = −


F1, 2 . (14.1) 

  
The forces acting on the objects are shown in Figure 14.5. 
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Figure 14.5 Internal forces acting on two objects 
 
 Choose a coordinate system (Figure 14.6) in which the position vector of object 1 
is given by    

r1  and the position vector of object 2 is given by    
r2 . The relative position of 

object 1 with respect to object 2 is given by     
r2 ,1 =

r1 −
r2 . During the course of the 

interaction, object 1 is displaced by     d
r1  and object 2 is displaced by     d

r2 , so the relative 
displacement of the two objects during the interaction is given by     d

r2 ,1 = dr1 − dr2 .  
 

 
 

Figure 14.6 Coordinate system for two objects with relative position vector     
r2 ,1 =

r1 −
r2  

 
Recall that the change in the kinetic energy of an object is equal to the work done by the 
forces in displacing the object.  For two objects displaced from an initial state A  to a 
final state B , 

 
    
ΔKsys = ΔK1 + ΔK2 =Wc =


F2,1

A

B

∫ ⋅d r1 +

F1,2

A

B

∫ ⋅d r2 . (14.2) 

 
(In Equation (14.2), the labels “ A ” and “B ” refer to initial and final states, not paths.) 
 
From Newton’s Third Law, Equation (14.1), the sum in Equation (14.2) becomes 
 

 
    
ΔKsys =Wc =


F2,1 ⋅d

r1
A

B

∫ −

F2,1 ⋅d

r2
A

B

∫ =

F2,1 ⋅(d r1 − d r2 )

A

B

∫ =

F2,1 ⋅d

r2,1
A

B

∫  (14.3) 
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where     d
!r2 ,1 = d !r1 − d !r2  is the relative displacement of the two objects.  Note that since 

   

F2,1 = −


F1, 2  and 

    
dr2 ,1 = −d r1,2 , 

    


F2,1 ⋅ d

r2,1
A

B

∫ =

F1, 2 ⋅ d

r1, 2
A

B

∫ . 

 
 
 

Consider a system consisting of two objects interacting through a 
conservative force. Let 

   

F2,1  denote the force on object 1 due to the 

interaction with object 2 and let     d
r2 ,1 = d r1 − d r2  be the relative 

displacement of the two objects. The change in internal potential energy 
of the system is defined to be the negative of the work done by the 
conservative force when the objects undergo a relative displacement from 
the initial state A  to the final state B  along any displacement that 
changes the initial state A  to the final state B , 

 

 
    
ΔUsys = −Wc = −


F2,1 ⋅d

r2,1
A

B

∫ = −

F1,2 ⋅d

r1,2
A

B

∫ . (14.4) 

 
 Our definition of potential energy only holds for conservative forces, because the 
work done by a conservative force does not depend on the path but only on the initial and 
final positions. Because the work done by the conservative force is equal to the change in 
kinetic energy, we have that 
 
 

  
ΔUsys = −ΔKsys , (closed system with no non-conservative forces) . (14.5) 

 
 Recall that the work done by a conservative force in going around a closed path is 
zero  (Equation (14.16)); therefore the change in kinetic energy when a system returns to 
its initial state is zero. This means that the kinetic energy is completely recoverable.  
 
 In the Appendix 13A: Work Done on a System of Two Particles, we showed that 
the work done by an internal force in changing a system of two particles of masses 1m  
and 2m  respectively from an initial state A  to a final state B  is equal to  
 

 
  
W = 1

2
µ (vB

2 − vA
2 ) = ΔKsys , (14.6) 

 
where 2

Bv  is the square of the relative velocity in state B , 2
Av  is the square of the relative 

velocity in state A , and   µ = m1m2 / (m1 + m2 )  is a quantity known as the reduced mass of 
the system. 
 
14.3.1 Change in Potential Energy for Several Conservative Forces 
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When there are several internal conservative forces acting on the system we define a 
separate change in potential energy for the work done by each conservative force,  
 

 
    
ΔUsys, i = −Wc,i = −


Fc, i ⋅d

ri
A

B

∫ . (14.7) 

 
where c, iF


 is a conservative internal force and idr

  a change in the relative positions of 

the objects on which c, iF


 when the system is changed from state A  to state B . The work 
done is the sum of the work done by the individual conservative forces, 
 
   

Wc =Wc,1 +Wc, 2 + ⋅ ⋅ ⋅ . (14.8) 
 
Hence, the sum of the changes in potential energies for the system is the sum 
 
   

ΔUsys = ΔUsys,1 + ΔUsys,2 + ⋅⋅⋅ . (14.9) 
 
Therefore the change in potential energy of the system is equal to the negative of the 
work done 

 
    
ΔUsys = −Wc = −


Fc, i ⋅d

ri
A

B

∫
i
∑ . (14.10) 

 
If the system is closed (external forces do no work), and there are no non-conservative 
internal forces then Eq. (14.5) holds. 
 
14.4 Change in Potential Energy and Zero Point for Potential Energy 
 
We already calculated the work done by different conservative forces: constant gravity 
near the surface of the earth, the spring force, and the universal gravitation force. We 
chose the system in each case so that the conservative force was an external force. In 
each case, there was no change of potential energy and the work done was equal to the 
change of kinetic energy, 
 

  
Wext = ΔKsys . (14.1) 

 
We now treat each of these conservative forces as internal forces and calculate the change 
in potential energy of the system according to our definition 
 

 
    
ΔUsys = −Wc = −


Fc

A

B

∫ ⋅dr . (14.2) 

 
We shall also choose a zero reference potential for the potential energy of the system, so 
that we can consider all changes in potential energy relative to this reference potential. 
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14.4.1 Change in Gravitational Potential Energy Near Surface of the Earth 
 
Let’s consider the example of an object falling near the surface of the earth. Choose our 
system to consist of the earth and the object. The gravitational force is now an internal 
conservative force acting inside the system. The distance separating the object and the 
center of mass of the earth, and the velocities of the earth and the object specifies the 
initial and final states.  
 
Let’s choose a coordinate system with the origin on the surface of the earth and the y+ -
direction pointing away from the center of the earth. Because the displacement of the 
earth is negligible, we need only consider the displacement of the object in order to 
calculate the change in potential energy of the system.  
 
Suppose the object starts at an initial height  yi  above the surface of the earth and ends at 

final height fy . The gravitational force on the object is given by     

Fg = −mg ĵ , the 

displacement is given by     d
r = dy ĵ , and the scalar product is given by 

    

Fg ⋅ dr = −mg ĵ ⋅ dyĵ = −mgdy . The work done by the gravitational force on the object is 
then 

 
 
W g =


Fg ⋅dr

yi )

y f

∫ = −mgdy
yi )

y f

∫ = −mg(yf − yi ) . (14.3) 

 
The change in potential energy is then given by 
 
  

ΔU g = −W g = mg Δy = mg y f − mg yi . (14.4) 
 
We introduce a potential energy function U  so that 
 
  

ΔU g ≡U f
g − Ui

g . (14.5) 
 
Only differences in the function  U g  have a physical meaning. We can choose a zero 
reference point for the potential energy anywhere we like. We have some flexibility to 
adapt our choice of zero for the potential energy to best fit a particular problem.  Because 
the change in potential energy only depended on the displacement, yΔ . In the above 
expression for the change of potential energy (Eq. (14.4)), let  

y f = y  be an arbitrary 

point and   yi = 0  denote the surface of the earth. Choose the zero reference potential for 
the potential energy to be at the surface of the earth corresponding to our origin   y = 0 , 
with   U

g (0) = 0 . Then 
   ΔU g =U g ( y) −U g (0) =U g ( y) . (14.6) 
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Substitute   yi = 0 ,  
y f = y  and Eq. (14.6) into Eq. (14.4) yielding a potential energy as a 

function of the height  y  above the surface of the earth, 
 
   U

g ( y) = mgy, with U g ( y = 0) = 0 . (14.7) 
 
 
14.4.2 Hooke’s Law Spring-Object System 
 
Consider a spring-object system lying on a frictionless horizontal surface with one end of 
the spring fixed to a wall and the other end attached to an object of mass m  (Figure 
14.7). The spring force is an internal conservative force. The wall exerts an external force 
on the spring-object system but since the point of contact of the wall with the spring 
undergoes no displacement, this external force does no work.  
 

 
 

Figure 14.7 A spring-object system. 
 
 Choose the origin at the position of the center of the object when the spring is 
relaxed (the equilibrium position). Let x  be the displacement of the object from the 
origin. We choose the ˆ+i  unit vector to point in the direction the object moves when the 
spring is being stretched (to the right of 0x =  in the figure). The spring force on a mass 
is then given by    


Fs = Fx

s î = −kx î . The displacement is    d
r = dx î . The scalar product is 

    

F ⋅ dr = −kx î ⋅ dx î = −kx dx . The work done by the spring force on the mass is 
 

 
    
W s =

!
F⋅d!r

x=xi

x=x f

∫ = (−kx)dx = − 1
2x=xi

x=x f

∫ k(x f
2 − xi

2 ) . (14.8) 

 
We then define the change in potential energy in the spring-object system in moving the 
object from an initial position  xi  from equilibrium to a final position fx  from 
equilibrium by 

 
  
ΔU s ≡U s (x f ) −U s (xi ) = −W s =

1
2

k(x f
2 − xi

2 ) . (14.9) 

 
Therefore an arbitrary stretch or compression of a spring-object system from equilibrium 

  xi = 0  to a final position fx x=  changes the potential energy by 
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ΔU s =U s (x f ) −U s (0) =

1
2

k x2 . (14.10) 

 
For the spring-object system, there is an obvious choice of position where the potential 
energy is zero, the equilibrium position of the spring- object, 
 
   U

s (0) ≡ 0 . (14.11) 
 
Then with this choice of zero reference potential, the potential energy as a function of the 
displacement  x  from the equilibrium position is given by 
 

 
  
U s (x) =

1
2

k x2 , with U s (0) ≡ 0 . (14.12) 

 
14.4.3 Inverse Square Gravitation Force 
 
Consider a system consisting of two objects of masses 1m  and 2m  that are separated by a 
center-to-center distance  r2,1 . A coordinate system is shown in the Figure 14.8. The 
internal gravitational force on object 1 due to the interaction between the two objects is 
given by 

 
    


F2 ,1

G = −
G m1 m2

r2 ,1
2 r̂2 ,1 . (14.13) 

 
The displacement vector is given by 

    
dr2,1 = dr2,1 r̂2,1 . So the scalar product is  

 

 
    


F2 ,1

G ⋅ dr2 ,1 = −
G m1 m2

r2 ,1
2 r̂2 ,1 ⋅ dr2 ,1 r̂2 ,1 = −

G m1 m2

r2 ,1
2 dr2 ,1 . (14.14) 

 

 
 

Figure 14.8 Gravitational interaction 
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Using our definition of potential energy (Eq. (14.4)), we have that the change in the 
gravitational potential energy of the system in moving the two objects from an initial 
position in which the center of mass of the two objects are a distance  ri  apart to a final 
position in which the center of mass of the two objects are a distance  

rf  apart is given by  
 

  

    

ΔU G = −

F2,1

G ⋅ dr2,1
A

B

∫ = − −
G m1 m2

r2,1
2 dr2,1

ri

f

∫ = −
G m1 m2

r2,1 ri

rf

= −
G m1 m2

rf

+
G m1 m2

ri

.  (14.15) 

 
We now choose our reference point for the zero of the potential energy to be at infinity, 

 ri = ∞ , with the choice that   U
G (∞) ≡ 0 . By making this choice, the term 1/ r  in the 

expression for the change in potential energy vanishes when  ri = ∞ . The gravitational 
potential energy as a function of the relative distance  r  between the two objects is given 
by  

 
  
U G (r) = −

G m1 m2

r
, with U G (∞) ≡ 0 . (14.16) 

 
14.5 Mechanical Energy and Conservation of Mechanical Energy 
 

The total change in the mechanical energy of the system is defined to be 
the sum of the changes of the kinetic and the potential energies, 
 
   

ΔEm = ΔKsys + ΔUsys . (14.17) 

 
For a closed system with only conservative internal forces, and no energy entering or 
leaving the system, the total change in the mechanical energy is zero, 
 
   

ΔEm = ΔKsys + ΔUsys = 0 . (14.18) 
 
Equation (14.18) is the symbolic statement of what is called conservation of mechanical 
energy. Recall that the work done by a conservative force in going around a closed path 
is zero (Equation (14.16)), therefore both the changes in kinetic energy and potential 
energy are zero when the closed system with only conservative internal forces returns to 
its initial state. Throughout the process, the kinetic energy may change into internal 
potential energy but if the system returns to its initial state, the kinetic energy is 
completely recoverable. We shall refer to a closed system in which processes take place 
in which only conservative forces act as completely reversible processes.  
 
14.5.1 Change in Gravitational potential Energy Near Surface of the Earth  
 
Let’s consider the example of an object of mass  mo  falling near the surface of the earth  
(mass  me ). Choose our system to consist of the earth and the object. The gravitational 
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force is now an internal conservative force acting inside the system. The initial and final 
states are specified by the distance separating the object and the center of mass of the 
earth, and the velocities of the earth and the object. The change in kinetic energy between 
the initial and final states for the system is 
 
   

ΔKsys = ΔKe + ΔKo , (14.19) 
 

 
  
ΔKsys =

1
2

me (ve, f )2 − 1
2

me (ve,i )
2⎛

⎝⎜
⎞
⎠⎟
+ 1

2
mo(vo, f )2 − 1

2
mo(vo,i )

2⎛
⎝⎜

⎞
⎠⎟

. (14.20) 

 
The change of kinetic energy of the earth due to the gravitational interaction between the 
earth and the object is negligible. The change in kinetic energy of the system is 
approximately equal to the change in kinetic energy of the object,  
 

 
  
ΔKsys ≅ ΔKo =

1
2

mo(vo, f )2 − 1
2

mo(vo,i )
2 . (14.21) 

 
We now define the mechanical energy function for the system 
 

 
  
Em = K +U g = 1

2
mo(vb)2 + mogy, with U g (0) = 0 , (14.22) 

 
where K  is the kinetic energy and  U g  is the potential energy. The change in mechanical 
energy is then 
 

  
ΔEm ≡ Em, f − Em, i = (K f +U f

g ) − (Ki +Ui
g ) . (14.23) 

 
When the work done by the external forces is zero and there are no internal non-
conservative forces, the total mechanical energy of the system is constant,  
 
   

Em, f = Em, i , (14.24) 
or equivalently 
   

(K f +U f ) = (Ki +Ui ) . (14.25) 

 
14.6 Spring Force Energy Diagram 
 
The spring force on an object is a restoring force    


Fs = Fx

s î = −k x î  where we choose a 
coordinate system with the equilibrium position at   xi = 0  and x  is the amount the spring 
has been stretched ( 0)x >  or compressed ( 0)x <  from its equilibrium position. We 
calculate the potential energy difference Eq. (14.9) and found that  
 

 
  
U s(x) −U s(xi ) = − Fx

s dx
xi

x

∫ =
1
2

k(x2 − xi
2 ) . (14.1) 
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The first fundamental theorem of calculus states that  
 

 
  
U (x) −U (xi ) =

dU
d ′x

d ′x
′x = xi

′x = x

∫ . (14.2) 

 
Comparing Equation (14.1) with Equation (14.2) shows that the force is the negative 
derivative (with respect to position) of the potential energy, 
 

 
  
Fx

s = −
dU s(x)

dx
. (14.3) 

 
Choose the zero reference point for the potential energy to be at the equilibrium position, 

  U
s(0) ≡ 0 . Then the potential energy function becomes 

 

 
  
U s(x) =

1
2

k x2 . (14.4) 

 
From this, we obtain the spring force law as   
 

 
  
Fx

s = −
dU s(x)

dx
= −

d
dx

1
2

k x2⎛
⎝⎜

⎞
⎠⎟
= −k x . (14.5) 

 
In Figure 14.9 we plot the potential energy function Us (x)  for the spring force as 
function of  x  with   U

s(0) ≡ 0  (the units are arbitrary). 
 

 
 

Figure 14.9 Graph of potential energy function as function of  x  for the spring. 
 
The minimum of the potential energy function occurs at the point where the first 
derivative vanishes 

 
  

dU s(x)
dx

= 0 . (14.6) 
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From Equation (14.4), the minimum occurs at 0x = , 
 

 
  
0 =

dU s(x)
dx

= k x . (14.7) 

 
Because the force is the negative derivative of the potential energy, and this derivative 
vanishes at the minimum, we have that the spring force is zero at the minimum 0x =  
agreeing with our force law, 

  
Fx

s

x=0
= −k x

x=0
= 0 . 

 
 The potential energy function has positive curvature in the neighborhood of a 
minimum equilibrium point. If the object is extended a small distance 0x >  away from 
equilibrium, the slope of the potential energy function is positive, ( ) 0dU x dx > , hence 
the component of the force is negative because ( ) 0xF dU x dx= − < . Thus the object 
experiences a restoring force towards the minimum point of the potential. If the object is 
compresses with 0x <  then ( ) 0dU x dx < , hence the component of the force is positive, 

( ) 0xF dU x dx= − > , and the object again experiences a restoring force back towards the 
minimum of the potential energy as in Figure 14.10.  
 

 
 

Figure 14.10 Stability diagram for the spring force. 
 
 The mechanical energy at any time is the sum of the kinetic energy ( )K x

 
and the 

potential energy   U
s(x)  

   Em = K(x) +U s(x) . (14.8) 
 
Suppose our spring-object system has no loss of mechanical energy due to dissipative 
forces such as friction or air resistance. Both the kinetic energy and the potential energy 
are functions of the position of the object with respect to equilibrium. The energy is a 
constant of the motion and with our choice of   U

s(0) ≡ 0 , the energy can be either a 
positive value or zero. When the energy is zero, the object is at rest at the equilibrium 
position.  
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 In Figure 14.10, we draw a straight horizontal line corresponding to a non-zero 
positive value for the energy  Em  on the graph of potential energy as a function of x . The 
energy intersects the potential energy function at two points max max{ , }x x−  with max 0x > . 
These points correspond to the maximum compression and maximum extension of the 
spring, which are called the turning points. The kinetic energy is the difference between 
the energy and the potential energy, 
 
   K(x) = Em −U s(x) . (14.9) 
 
At the turning points, where   Em =U s(x) , the kinetic energy is zero. Regions where the 
kinetic energy is negative, maxx x< −  or maxx x>  are called the classically forbidden 
regions, which the object can never reach if subject to the laws of classical mechanics. In 
quantum mechanics, with similar energy diagrams for quantum systems, there is a very 
small probability that the quantum object can be found in a classically forbidden region.  
 
Example 14.1 Energy Diagram 
 
The potential energy function for a particle of mass  m , moving in the  x -direction is 
given by 

 

  

U (x) = −U1

x
x1

⎛

⎝⎜
⎞

⎠⎟

3

−
x
x1

⎛

⎝⎜
⎞

⎠⎟

2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

, (14.10) 

 
where   U1  and   x1  are positive constants and   U (0) = 0 . (a) Sketch 1( ) /U x U  as a function 
of 1/x x . (b) Find the points where the force on the particle is zero. Classify them as 
stable or unstable. Calculate the value of   U (x) / U1  at these equilibrium points. (c) For 
energies  E  that lies in   0 < E < (4 / 27)U1  find an equation whose solution yields the 
turning points along the x-axis about which the particle will undergo periodic motion. (d) 
Suppose   E = (4 / 27)U1  and that the particle starts at 0x =  with speed 0v . Find   v0 .  
 
Solution: a) Figure 14.11 shows a graph of   U (x)  vs. x , with the choice of values   x1 = 1.5 m , 

  U1 = 27 / 4 J , and   E = 0.2 J . 
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Figure 14.11 Energy diagram for Example 14.1 
 
b) The force on the particle is zero at the minimum of the potential which occurs at 
 

 
  
Fx (x) = −

dU
dx

(x) =U1

3
x1

3

⎛

⎝
⎜

⎞

⎠
⎟ x2 −

2
x1

2

⎛

⎝
⎜

⎞

⎠
⎟ x

⎛

⎝
⎜

⎞

⎠
⎟ = 0  (14.11) 

which becomes  
   x

2 = (2x1 / 3)x . (14.12) 
 
We can solve Eq. (14.12) for the extrema. This has two solutions 
 
   x = (2x1 / 3) and x = 0 . (14.13) 
 
The second derivative is given by  
 

 
  

d 2U
dx2 (x) = −U1

6
x1

3

⎛

⎝
⎜

⎞

⎠
⎟ x −

2
x1

2

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ . (14.14) 

 
Evaluating the second derivative at   x = (2x1 / 3)  yields a negative quantity 
 

 
  

d 2U
dx2 (x = (2x1 / 3)) = −U1

6
x1

3

⎛

⎝
⎜

⎞

⎠
⎟

2x1

3
−

2
x1

2

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ = −

2U1

x1
2 < 0 , (14.15) 

 
indicating the solution   x = (2x1 / 3)  represents a local maximum and hence is an unstable point. 
At   x = (2x1 / 3) , the potential energy is given by the value   U ((2x1 / 3)) = (4 / 27)U1 . Evaluating 
the second derivative at   x = 0  yields a positive quantity 
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d 2U
dx2 (x = 0) = −U1

6
x1

3

⎛

⎝
⎜

⎞

⎠
⎟ 0 −

2
x1

2

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ =

2U1

x1
2 > 0 , (14.16) 

 
indicating the solution   x = 0  represents a local minimum and is a stable point. At the local 
minimum   x = 0 , the potential energy   U (0) = 0 . 
 
c) Consider a fixed value of the energy of the particle within the range  
 

 
  
U (0) = 0 < E <U (2x1 / 3) =

4U1

27
. (14.17) 

 
If the particle at any time is found in the region   xa < x < xb < 2x1 / 3 , where  xa  and  xb  are the 
turning points and are solutions to the equation 
 

 

  

E =U (x) = −U1

x
x1

⎛

⎝⎜
⎞

⎠⎟

3

−
x
x1

⎛

⎝⎜
⎞

⎠⎟

2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

. (14.18) 

 
then the particle will undergo periodic motion between the values  xa < x < xb . Within 
this region  xa < x < xb , the kinetic energy is always positive because   K(x) = E −U (x) . 
There is another solution  xc  to Eq. (14.18) somewhere in the region   xc > 2x1 / 3 . If the 
particle at any time is in the region  x > xc  then it at any later time it is restricted to the 
region  xc < x < +∞ . 
 
 For   E >U (2x1 / 3) = (4 / 27)U1 , Eq. (14.18) has only one solution  xd . For all values of 

 x > xd , the kinetic energy is positive, which means that the particle can “escape” to 
infinity but can never enter the region  x < xd .  
 
For   E <U (0) = 0 , the kinetic energy is negative for the range  −∞ < x < xe  where  xe  
satisfies Eq. (14.18) and therefore this region of space is forbidden.  
 
(d) If the particle has speed 0v  at 0x =  where the potential energy is zero,   U (0) = 0 , the 
energy of the particle is constant and equal to kinetic energy 
 

 
  
E = K(0) =

1
2

mv0
2 . (14.19) 

Therefore 

 
  
(4 / 27)U1 =

1
2

mv0
2 , (14.20) 
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which we can solve for the speed 
   v0 = 8U1 / 27m . (14.21) 
 
14.7 Change of Mechanical Energy for Closed System with Internal 
Non-conservative Forces  
 
Consider a closed system that undergoes a transformation from an initial state to a final 
state by a prescribed set of changes.  
 

Whenever the work done by a force in moving an object from an initial point to a 
final point depends on the path, the force is called a non-conservative force.  

 
Suppose the internal forces are both conservative and non-conservative. The work  W  
done by the forces is a sum of the conservative work   Wc , which is path-independent, and 

the non-conservative work   Wnc , which is path-dependent,  
 
   W =Wc +Wnc . (14.1) 
 
The work done by the conservative forces is equal to the negative of the change in the 
potential energy 
   ΔU = −Wc . (14.2) 
 
Substituting Equation (14.2) into Equation (14.1) yields 
 
   W = −ΔU +Wnc . (14.3) 
 
The work done is equal to the change in the kinetic energy, 
 
  W = ΔK . (14.4) 
 
Substituting Equation (14.4) into Equation (14.3) yields 
 
   ΔK = −ΔU +Wnc . (14.5) 
which we can rearrange as 
   Wnc = ΔK + ΔU . (14.6) 
 
We can now substitute Equation (14.4) into our expression for the change in the 
mechanical energy, Equation (14.17), with the result 
 
   Wnc = ΔEm . (14.7) 
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The mechanical energy is no longer constant. The total change in energy of the system is 
zero,  
   

ΔEsystem = ΔEm −Wnc = 0 . (14.8) 
 
 
Energy is conserved but some mechanical energy has been transferred into non-
recoverable energy   Wnc . We shall refer to processes in which there is non-zero non-
recoverable energy as irreversible processes.  
 
14.7.1 Change of Mechanical Energy for a Closed System  
 
When energy enters or leaves the closed system, the change in energy of the system is 
equal to the negative of the change in energy of the surroundings (Eq. (14.1)),  
 
 

  
ΔEsystem = −ΔEsurroundings  (14.9) 

 
The change in energy of the system can be the result of work done by the surroundings 
on the system (which can be positive or negative), which we shall refer to as external 
work   Wext . This work will result in the system undergoing coherent motion. Note that 

  Wext > 0  if work is done on the system (
  
ΔEsurroundings < 0 ) and   Wext < 0  if the system does 

work on the surroundings (
  
ΔEsurroundings > 0 ). If the system is in thermal contact with the 

surroundings, then thermal energy can flow into or out of the system. This energy flow 
due to thermal contact is often denoted by  Q  with the convention that   Q > 0  if the 
energy flows into the system (

  
ΔEsurroundings < 0 ) and   Q < 0  if the energy flows out of the 

system (
  
ΔEsurroundings > 0 ). Then Eq. (14.9) can be rewritten as 

 
 

  
W ext +Q = ΔEsys  (14.10) 

 
Equation (14.10) is also called the first law of thermodynamics. 
 
This will result in either an increase or decrease in random thermal motion of the 
molecules inside the system,  
 
There may also be other forms of energy that enter the system, for example radiative 
energy. Several questions naturally arise from this set of definitions and physical 
concepts. Is it possible to identify all the conservative forces and calculate the associated 
changes in potential energies? How do we account for non-conservative forces such as 
friction that act at the boundary of the system? 
 
14.8 Dissipative Forces: Friction  
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Suppose we consider an object moving on a rough surface. As the object slides it slows 
down and stops. While the sliding occurs both the object and the surface increase in 
temperature. The increase in temperature is due to the molecules inside the materials 
increasing their kinetic energy. This random kinetic energy is called thermal energy. 
Kinetic energy associated with the coherent motion of the molecules of the object has 
been dissipated into kinetic energy associated with random motion of the molecules 
composing the object and surface.  
 
 If we define the system to be just the object, then the friction force acts as an 
external force on the system and results in the dissipation of energy into both the block 
and the surface. Without knowing further properties of the material we cannot determine 
the exact changes in the energy of the system.  
 
 Friction introduces a problem in that the point of contact is not well defined 
because the surface of contact is constantly deforming as the object moves along the 
surface. If we considered the object and the surface as the system, then the friction force 
is an internal force, and the decrease in the kinetic energy of the moving object ends up as 
an increase in the internal random kinetic energy of the constituent parts of the system. 
When there is dissipation at the boundary of the system, we need an additional model 
(thermal equation of state) for how the dissipated energy distributes itself among the 
constituent parts of the system.  
 
14.8.1 Source Energy  
 
Consider a person walking. The frictional force between the person and the ground does 
no work because the point of contact between the person’s foot and the ground undergoes 
no displacement as the person applies a force against the ground, (there may be some 
slippage but that would be opposite the direction of motion of the person). However the 
kinetic energy of the object increases. Have we disproved the work-energy theorem? The 
answer is no! The chemical energy stored in the body tissue is converted to kinetic 
energy and thermal energy. Because the person-air-ground can be treated as a closed 
system with no energy entering or leaving, we have that 
 
   

0 = ΔEsys = ΔEchemical + ΔEthermal + ΔEmechanical . (14.1) 
 
If we assume that there is no change in the potential energy of the system, then 

  ΔEmechanical = ΔK . Therefore some of the internal chemical energy has been transformed 
into thermal energy and the rest has changed into the kinetic energy of the system, 
 
 chemical thermalE E K−Δ = Δ + Δ . (14.2) 
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14.9 Worked Examples 
 
Example 14.2 Escape Velocity of Toro 
 
The asteroid Toro, discovered in 1964, has a radius of about   R = 5.0km  and a mass of 
about   mt = 2.0×1015 kg . Let’s assume that Toro is a perfectly uniform sphere. What is the 
escape velocity for an object of mass  m  on the surface of Toro? Could a person reach 
this speed (on earth) by running?   
 
Solution: The only potential energy in this problem is the gravitational potential energy. 
We choose the zero point for the potential energy to be when the object and Toro are an 
infinite distance apart, UG (∞) ≡ 0 . With this choice, the potential energy when the object 
and Toro are a finite distance  r  apart is given by  
 

 
  
U G (r) = −

Gmt m
r

 (14.1) 

 
with   U

G (∞) ≡ 0 . The expression escape velocity refers to the minimum speed necessary 
for an object to escape the gravitational interaction of the asteroid and move off to an 
infinite distance away. If the object has a speed less than the escape velocity, it will be 
unable to escape the gravitational force and must return to Toro. If the object has a speed 
greater than the escape velocity, it will have a non-zero kinetic energy at infinity. The 
condition for the escape velocity is that the object will have exactly zero kinetic energy at 
infinity. 
 
We choose our initial state, at time  ti , when the object is at the surface of the asteroid 
with speed equal to the escape velocity. We choose our final state, at time  

t f , to occur 
when the separation distance between the asteroid and the object is infinite. 
 
The initial kinetic energy is   Ki = (1/ 2)mvesc

2 . The initial potential energy is 

  Ui = −Gmt m / R , and so the initial mechanical energy is  
 

 
  
Ei = Ki +Ui =

1
2

mvesc
2 −

Gmt m
R

. (14.2) 

 
The final kinetic energy is   

K f = 0 , because this is the condition that defines the escape 

velocity. The final potential energy is zero,   
U f = 0  because we chose the zero point for 

potential energy at infinity. The final mechanical energy is then 
 
   

E f = K f +U f = 0 . (14.3) 
 
There is no non-conservative work, so the change in mechanical energy is zero 
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0 =Wnc = ΔEm = E f − Ei . (14.4) 
Therefore 

 
  
0 = − 1

2
mvesc

2 −
Gmt m

R
⎛
⎝⎜

⎞
⎠⎟

. (14.5) 

 
This can be solved for the escape velocity,  
 

 

  

vesc =
2Gmt

R

= 2(6.67 ×10−11N ⋅m2 ⋅kg−2 )(2.0×1015 kg)
(5.0×103 m)

= 7.3 m ⋅s−1.
 (14.6) 

 
Considering that Olympic sprinters typically reach velocities of  12 m ⋅ s−1 , this is an easy 
speed to attain by running on earth. It may be harder on Toro to generate the acceleration 
necessary to reach this speed by pushing off the ground, since any slight upward force 
will raise the runner’s center of mass and it will take substantially more time than on 
earth to come back down for another push off the ground.  
 
Example 14.3 Spring-Block-Loop-the-Loop 
 
A small block of mass  m  is pushed against a spring with spring constant  k  and held in 
place with a catch.  The spring is compressed an unknown distance  x  (Figure 14.12).  
When the catch is removed, the block leaves the spring and slides along a frictionless 
circular loop of radius  r . When the block reaches the top of the loop, the force of the 
loop on the block (the normal force) is equal to twice the gravitational force on the mass. 
(a) Using conservation of energy, find the kinetic energy of the block at the top of 
the loop. (b) Using Newton’s Second Law, derive the equation of motion for the block 
when it is at the top of the loop.  Specifically, find the speed topv  in terms of the 
gravitation constant  g  and the loop radius r . (c) What distance was the spring 
compressed? 

 
 

Figure 14.12 Initial state for spring-block-loop-the-loop system 
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Solution: a) Choose for the initial state the instant before the catch is released. The initial 
kinetic energy is   Ki = 0 . The initial potential energy is non-zero, Ui = (1 / 2)k x

2 . The 
initial mechanical energy is then 
 

 Ei = Ki +Ui =
1
2
k x2 . (14.7) 

 
Choose for the final state the instant the block is at the top of the loop. The final kinetic 
energy is 

  
K f = (1/ 2)mvtop

2 ; the block is in motion with speed topv . The final potential 

energy is non-zero,   
U f = (mg)(2R) .  The final mechanical energy is then 

 

 
  
E f = K f +U f = 2mgR +

1
2

mvtop
2 . (14.8) 

 
Because we are assuming the track is frictionless and neglecting air resistance, there is no 
non- conservative work. The change in mechanical energy is therefore zero,  
 
   

0 =Wnc = ΔEm = E f − Ei . (14.9) 
 
Mechanical energy is conserved,  

E f = Ei , therefore 
 

 
  
2mgR +

1
2

mvtop
2 =

1
2

k x2 . (14.10) 

 
From Equation (14.10), the kinetic energy at the top of the loop is 
 

 
  

1
2

mvtop
2 =

1
2

k x2 − 2mgR . (14.11) 

 
b) At the top of the loop, the forces on the block are the gravitational force of magnitude 
mg  and the normal force of magnitude N , both directed down.  Newton’s Second Law 
in the radial direction, which is the downward direction, is 
 

 
2
topmv

mg N
R

− − = − . (14.12) 

 
In this problem, we are given that when the block reaches the top of the loop, the force of 
the loop on the block (the normal force, downward in this case) is equal to twice the 
weight of the block,   N = 2mg . The Second Law, Eq. (14.12), then becomes 
 

 
2
top3

mv
mg

R
= . (14.13) 
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We can rewrite Equation (14.13) in terms of the kinetic energy as 
 

 2
top

3 1
2 2
mg R mv= . (14.14) 

 
The speed at the top is therefore 
 

  
vtop = 3mg R . (14.15) 

 
c) Combing Equations (14.11) and (14.14) yields 
 

 
  

7
2

mg R =
1
2

k x2 . (14.16) 

 
Thus the initial displacement of the spring from equilibrium is 
 

 7mg R
x

k
= . (14.17) 

 
Example 14.4 Mass-Spring on a Rough Surface 
 
A block of mass m  slides along a horizontal table with speed v0 . At x = 0  it hits a 
spring with spring constant k  and begins to experience a friction force. The coefficient of 
friction is variable and is given by µ = bx , where b  is a positive constant. Find the loss 
in mechanical energy when the block first momentarily comes to rest. 
 

 
 

Figure 14.13 Spring-block system 
 
Solution: From the model given for the frictional force, we could find the non-
conservative work done, which is the same as the loss of mechanical energy, if we knew 
the position 

 
x f  where the block first comes to rest.  The most direct (and easiest) way to 

find 
 
x f  is to use the work-energy theorem. The initial mechanical energy is   Ei = mvi

2 / 2  

and the final mechanical energy is 
  
E f = k x f

2 / 2  (note that there is no potential energy 
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term in  Ei  and no kinetic energy term in  
E f ). The difference between these two 

mechanical energies is the non-conservative work done by the frictional force, 
 

 
nc nc friction

0 0 0

2

0

1
.

2

f f f

f

x x x x x x

x x x

x

f

W F dx F dx N dx

b xmg dx bmg x

µ
= = =

= = =

= = − = −

= − = −

∫ ∫ ∫

∫
 (14.18) 

We then have that 

 

  

Wnc = ΔEm

Wnc = E f − Ei

− 1
2

bmg x f
2 = 1

2
k x f

2 − 1
2

mvi
2.

 (14.19) 

 
Solving the last of these equations for 

  
x f

2  yields 

 
  
x f

2 =
mv0

2

k + bmg
. (14.20) 

 
Substitute Eq. (14.20) into Eq. (14.18) gives the result that 
 

 
12 2

0 0
nc 1

2 2
bmg mv mv kW

k bmg bmg

−
⎛ ⎞

= − = − +⎜ ⎟+ ⎝ ⎠
. (14.21) 

 
It is worth checking that the above result is dimensionally correct.  From the model, the 
parameter  b  must have dimensions of inverse length (the coefficient of friction µ  must 
be dimensionless), and so the product  bmg  has dimensions of force per length, as does 
the spring constant  k ; the result is dimensionally consistent. 
 
Example 14.5 Cart-Spring on an Inclined Plane  
 
An object of mass  m  slides down a plane that is inclined at an angle θ  from the 
horizontal (Figure 14.14). The object starts out at rest. The center of mass of the cart is a 
distance  d  from an unstretched spring that lies at the bottom of the plane. Assume the 
spring is massless, and has a spring constant  k . Assume the inclined plane to be 
frictionless. (a) How far will the spring compress when the mass first comes to rest? (b) 
Now assume that the inclined plane has a coefficient of kinetic friction  µk . How far will 
the spring compress when the mass first comes to rest? The friction is primarily between 
the wheels and the bearings, not between the cart and the plane, but the friction force may 
be modeled by a coefficient of friction  µk . (c) In case (b), how much energy has been 
lost to friction? 
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Figure 14.14 Cart on inclined plane 

 
Solution: Let  x  denote the displacement of the spring from the equilibrium position. 
Choose the zero point for the gravitational potential energy   U

g (0) = 0  not at the very 
bottom of the inclined plane, but at the location of the end of the unstretched spring. 
Choose the zero point for the spring potential energy where the spring is at its 
equilibrium position,   U

s(0) = 0 . 
 
a) Choose for the initial state the instant the object is released (Figure 14.15). The initial 
kinetic energy is   Ki = 0 . The initial potential energy is non-zero,   Ui = mg d sinθ . The 
initial mechanical energy is then 
 
   Ei = Ki +Ui = mg d sinθ  (14.22) 
 
Choose for the final state the instant when the object first comes to rest and the spring is 
compressed a distance  x  at the bottom of the inclined plane (Figure 14.16). The final 
kinetic energy is   

K f = 0  since the mass is not in motion. The final potential energy is 

non-zero, 
  
U f = k x2 / 2− x mg sinθ . Notice that the gravitational potential energy is 

negative because the object has dropped below the height of the zero point of 
gravitational potential energy. 
 

  
 

Figure 14.15 Initial state    Figure 14.16 Final state 
 
The final mechanical energy is then 
 

 
  
E f = K f +U f =

1
2

k x2 − x mg sinθ . (14.23) 
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Because we are assuming the track is frictionless and neglecting air resistance, there is no 
non- conservative work. The change in mechanical energy is therefore zero,  
 
   

0 =Wnc = ΔEm = E f − Ei . (14.24) 
Therefore 

 
  
d mg sinθ =

1
2

k x2 − x mg sinθ . (14.25) 

 
This is a quadratic equation in  x , 
 

 
  
x2 −

2mg sinθ
k

x −
2d mg sinθ

k
= 0 . (14.26) 

 
In the quadratic formula, we want the positive choice of square root for the solution to 
ensure a positive displacement of the spring from equilibrium,  
 

 

  

x = mg sinθ
k

+ m2g 2 sin2θ
k 2 + 2d mg sinθ

k
⎛
⎝⎜

⎞
⎠⎟

1 2

= mg
k

(sinθ + 1+ 2(k d / mg)sinθ ).

 (14.27) 

 
(What would the solution with the negative root represent?) 
 
b) The effect of kinetic friction is that there is now a non-zero non-conservative work 
done on the object, which has moved a distance,  d + x , given by 
 
   Wnc = − fk (d + x) = −µk N (d + x) = −µkmg cosθ(d + x) . (14.28) 
 
Note the normal force is found by using Newton’s Second Law in the perpendicular direction  
to the inclined plane, 
   N − mg cosθ = 0 . (14.29) 
 
The change in mechanical energy is therefore  
 
   

Wnc = ΔEm = E f − Ei , (14.30) 
which becomes 

 
  
−µkmg cosθ(d + x) = 1

2
k x2 − x mg sinθ

⎛
⎝⎜

⎞
⎠⎟
− d mg sinθ . (14.31) 

 
Equation (14.31) simplifies to 
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0 = 1

2
k x2 − x mg(sinθ − µk cosθ )

⎛
⎝⎜

⎞
⎠⎟
− d mg(sinθ − µk cosθ ) . (14.32) 

 
This is the same as Equation (14.25) above, but with   sinθ → sinθ − µk cosθ . The 
maximum displacement of the spring is when there is friction is then 
 

 
  
x = mg

k
((sinθ − µk cosθ )+ 1+ 2(k d / mg)(sinθ − µk cosθ )) . (14.33) 

. 
c) The energy lost to friction is given by   Wnc = −µkmg cosθ(d + x) , where  x  is given in 
part b). 
 
Example 14.6 Object Sliding on a Sphere 
 
A small point like object of mass  m  rests on top of a sphere of radius  R . The object is 
released from the top of the sphere with a negligible speed and it slowly starts to slide 
(Figure 14.17). Let  g  denote the gravitation constant. (a) Determine the angle 1θ  with 
respect to the vertical at which the object will lose contact with the surface of the sphere. 
(b) What is the speed 1v  of the object at the instant it loses contact with the surface of the 
sphere. 

 
 

Figure 14.17 Object sliding on surface of sphere 
 
Solution: We begin by identifying the forces acting on the object. There are two forces 
acting on the object, the gravitation and radial normal force that the sphere exerts on the 
particle that we denote by  N . We draw a free-body force diagram for the object while it 
is sliding on the sphere. We choose polar coordinates as shown in Figure 14.18. 

 
Figure 14.18 Free-body force diagram on object 
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The key constraint is that when the particle just leaves the surface the normal force is 
zero, 
   N (θ1) = 0 , (14.34) 
 
where  θ1  denotes the angle  with respect to the vertical at which the object will just lose 
contact with the surface of the sphere. Because the normal force is perpendicular to the 
displacement of the object, it does no work on the object and hence conservation of 
energy does not take into account the constraint on the motion imposed by the normal 
force. In order to analyze the effect of the normal force we must use the radial component 
of Newton’s Second Law,  

 
  
N − mg cosθ = −m v2

R
. (14.35) 

 
Then when the object just loses contact with the surface, Eqs. (14.34) and (14.35) 
require that 

 
  
mg cosθ1 = m

v1
2

R
. (14.36) 

 
where 1v  denotes the speed of the object at the instant it loses contact with the surface of 
the sphere. Note that the constrain condition Eq. (14.36) can be rewritten as 
 
   mgRcosθ1 = mv1

2 . (14.37) 
 
We can now apply conservation of energy. Choose the zero reference point   U = 0  for 
potential energy to be the midpoint of the sphere.  
 
Identify the initial state as the instant the object is released (Figure 14.19). We can 
neglect the very small initial kinetic energy needed to move the object away from the top 
of the sphere and so   Ki = 0 . The initial potential energy is non-zero,  Ui = mgR . The 
initial mechanical energy is then 
 
  Ei = Ki +Ui = mgR . (14.38) 
 

 
 
Figure 14.19 Initial state 

 
 
Figure 14.20 Final state 
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Choose for the final state the instant the object leaves the sphere (Figure 14.20). The final 
kinetic energy is 

  
K f = mv1

2 / 2 ; the object is in motion with speed   v1 . The final potential 

energy is non-zero, 
  
U f = mgRcosθ1 .  The final mechanical energy is then 

 

 
  
E f = K f +U f =

1
2

mv1
2 + mgRcosθ1 . (14.39) 

 
Because we are assuming the contact surface is frictionless and neglecting air resistance, 
there is no non-conservative work. The change in mechanical energy is therefore zero,  
 
   

0 =Wnc = ΔEm = E f − Ei . (14.40) 
Therefore 

 
  
1
2

mv1
2 + mgRcosθ1 = mgR . (14.41) 

 
We now solve the constraint condition Eq. (14.37) into Eq. (14.41) yielding  
 

 
  
1
2

mgRcosθ1 + mgRcosθ1 = mgR . (14.42) 

 
We can now solve for the angle at which the object just leaves the surface 
 
  θ1 = cos−1(2 / 3) . (14.43) 
 
We now substitute this result into Eq. (14.37) and solve for the speed 
 
   v1 = 2gR / 3 . (14.44) 
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14A.1 Thermal Energy, Heat and Temperature 
 
 On a cold winter day, suppose you want to warm up by drinking a cup of tea. You 
start by filling up a kettle with water from the cold water tap (water heaters tend to add 
unpleasant contaminants and reduce the oxygen level in the water). You place the kettle 
on the heating element of the stove and allow the water to boil briefly. You let the water 
cool down slightly to avoid burning the tea leaves or creating bitter flavors and then pour 
the water into a pre-heated teapot containing a few teaspoons of tea; the tea leaves steep 
for a few minutes and then you enjoy your drink.  
 
 When the kettle is in contact with the heating element of the stove, energy flows 
from the heating element to the kettle and then to the water. The conduction of energy is 
due to the contact between the objects. The random motions of the atoms in the heating 
element are transferred to the kettle and water via collisions. We shall refer to this 
conduction process as ‘energy transferred thermally’. The term heat refers to energy 
transformed thermally has traditional been called heat. The energy associated with the 
random motions of the water molecules (and also the potential energy associated with the 
vibrational interactions intrinsic to water molecules and between molecules) is called 
thermal energy.  
 
The thermal unit for heat is the calorie and is defined to be the amount of heat required to 
raise the temperature of one gram of water from   14.5 0C  to   15.5 0C  (where we have yet 
to properly define the Celsius, a unit of temperature.) Another common unit is the Btu 
(British Thermal Unit), which is the amount of heat necessary to raise one pound of water 
from   63 !F  to   64 !F . Note that  1 Btu = 252 cal . 
 
 We can attribute different degrees of “hotness” (based on our experience of 
inadvertently touching the kettle and the water). Temperature is a measure of the 
“hotness” of a body. When two isolated objects that are initially at different temperatures 
are put in contact, the “colder” object heats up while the “hotter” object cools down, until 
they reach the same temperature, a state we refer to as thermal equilibrium. Temperature 
is that property of a system that determines whether or not a system is in thermal 
equilibrium with other systems. 
 
14A.1.1 Internal Energy 
 
 More generally, the internal energy  U  of a physical system is defined to be the 
sum of all contributions to the total energy of the system in a reference frame in which 
the center of mass of the system is at rest. For example the internal energy of a gas 
consist of the kinetic energy of the gas molecules, arising from the center-of-mass 
motions of the molecules relative to a container that is at rest in the reference frame, and 
kinetic energy of rotational motion of the molecules. These two motions have no 
potential energies associated to them. At sufficiently high temperatures, diatomic and 
polyatomic atoms also have vibrational motions due to interatomic forces, which like a 
spring have both kinetic and potential energies. Intermolecular forces contribute to the 
internal energy for solids and liquids, but make negligibly small contributions for gases. 
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 The internal energy also includes contributions due to the rest–mass energy of the 
constituents, and atomic and nuclear binding energies associated with the structure of the 
constituents. The internal energy includes does not include potential energies that are due 
to external interactions, for example the gravitational potential energy due to the 
interaction between the system and an external body such as Earth. Thermal energy is 
the sum of all the internal energies except the binding energies and rest energies.  
 
14A.1.2 Internal Energy of a Solid or Liquid: 
 
Generally, the potential energy of the intermolecular interaction between molecules is 
repulsive for small  r  and attractive for large  r , where  r  is the separation between 
molecules. At low temperatures, when the average kinetic energy is small, the molecules 
can form bound states with negative energy   Einternal < 0  and condense into liquids or 
solids. The intermolecular forces act like restoring forces about an equilibrium distance 
between atoms, a distance at which the potential energy is a minimum. For energies near 
the potential minimum, the atoms vibrate like springs. For larger (but still negative) 
energies, the atoms still vibrate but no longer like springs and with larger amplitudes, 
undergoing thermal expansion. At higher temperatures, due to larger average kinetic 
energies, the internal energy becomes positive,   Einternal > 0 . In this case, molecules have 
enough energy to escape intermolecular forces and become a gas. 
 
 
14A.2 Zeroth Law of Thermodynamics 
 
Temperature is a measure of the thermal energy of a system. At absolute zero 
temperature, the thermal energy of a gas is zero even though the internal energy is still a 
positive constant due the binding energies and rest energies.  
 
 Consider two systems A and B that are separated from each other by an adiabatic 
boundary (adiabatic = no heat passes through) that does not allow any thermal contact. 
Both A and B are placed in thermal contact with a third system C until thermal 
equilibrium is reached. If the adiabatic boundary is then removed between A and B, no 
energy will transfer thermally between A and B. Thus 
 

Zeroth Law of Thermodynamics: Two systems in thermal equilibrium with a third 
system are in thermal equilibrium with each other. 

 
Temperature  T  is that property of a system that determines whether or not a system is in 
thermal equilibrium with other systems. 
 
14A.3 Gas 
  
We begin our analysis of energy transformations by considering a vessel containing a 
gas; a system consisting of a very large number of particles (typically  1024  or many 
orders of magnitude more) occupying a volume of space that is very large compared to 
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the size ( 10−10 m ) of any typical atom or molecule. The state of the gas can be described 
by a few macroscopically measurable quantities that completely determine the system. 
The volume of the gas in a container can be measured by the size the container. The 
pressure of a gas can be measured using a pressure gauge. The temperature can be 
measured with a thermometer. The mass, or number of moles or number of molecules, is 
a measure of the quantity of matter. 
 
14A.3.1 Macroscopic vs. Atomistic Description of a Gas 
  
How can we use the laws of mechanics that describe the motions and interactions of 
individual atomic particles to predict macroscopic properties of the system such as 
pressure, volume, and temperature? In principle, each point-like atomic particle can be 
specified by its position and velocity (neglecting any internal structure). We cannot know 
exactly where and with what velocities all the particles are moving so we must take 
averages. In addition, we need quantum mechanical laws to describe how particles 
interact. In fact, the inability of classical mechanics to predict how the heat capacity of a 
gas varies with temperature was the first experimental suggestion that a new set of 
principles (quantum mechanics) operates at the scale of the size of atoms. However, as a 
starting point we shall make some simplifying assumptions about the properties of a gas, 
a model which we shall refer to as an ideal gas.  
 
14A.3.2 Ideal Gas  
 
Consider a gas consisting of a large number of molecules inside a rigid container. We 
shall assume that the volume occupied by the molecules is small compared to the volume 
occupied by the gas, that is, the volume of the container (dilute gas assumption). We also 
assume that the molecules move randomly and satisfy Newton’s Laws of Motion. The 
gas molecules collide with each other and the walls of the container. We shall assume 
that all the collisions are instantaneous and any energy converted to potential energy 
during the collision is recoverable as kinetic energy after the collision is finished. Thus 
the collisions are elastic and have the effect of altering the direction of the velocities of 
the molecules but not their speeds. We also assume that the intermolecular interactions 
contribute negligibly to the internal energy.  
 
An ideal monatomic gas atom has no internal structure, so we treat it as point particle. 
Therefore there are no possible rotational degrees of freedom or internal degrees of 
freedom; the ideal gas has only three degrees of freedom, and the internal energy of the 
ideal gas is 
 

 
  
Einternal = N 3

2
kT . (14A.1) 

 
Eq. (14A.1) is called the thermal equation of state of a monatomic ideal gas. The average 
kinetic energy of each ideal gas atom is then 
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1
2

m(v2 )ave =
3
2

kT  (14A.2) 

 
where   (v

2 )ave  is the average of the square of the speeds and is given by 
 

 
  
(v2 )ave =

3kT
m

 . (14A.3) 

 
The temperature of this ideal gas is proportional to the average kinetic of the ideal gas 
molecule. It is an incorrect inference to say that temperature is defined as the mean 
kinetic energy of gas.  At low temperatures or non-dilute densities, the kinetic energy is 
no longer proportional to the temperature. For some gases, the kinetic energy depends on 
number density and a more complicated dependence on temperature than that given in 
Eq. (14A.2). 
 
14A.3.3 Pressure of an Ideal Gas 
 
Consider an ideal gas consisting of a large number  N  of identical gas molecules, each of 
of mass  m , inside a container of volume  V  and pressure P . The number of gas 
molecules per unit volume is then   n = N / V . The density of the gas is  ρ = nm . The gas 
molecules collide elastically with each other and the walls of the container. The pressure 
that the gas exerts on the container is due to the elastic collisions of the gas molecules 
with the walls of the container. We shall now use concepts of energy and momentum to 
model collisions between the gas molecules and the walls of the container in order to 
determine the pressure of the gas in terms of the volume  V , particle number  N  and 
Kelvin temperature  T .   
 

 v

 v

î
ĵ

 
 

Figure 14A.1 Collision of a gas molecule with a wall of a container 
 
We begin by considering the collision of one molecule with one of the walls of the 
container, oriented with a unit normal vector pointing out of the container in the positive 
  ̂i -direction (Figure 14A.1). Suppose the molecule has mass  m  and is moving with 
velocity 

    
!v = vx î + vy ĵ+ vz k̂ . Because the collision with the wall is elastic, the  y -and  z -

components of the velocity of the molecule remain constant and the  x -component of the 
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velocity changes sign (Figure 29.2), resulting in a change of momentum of the gas 
molecule; 
 

    
Δpm = pm, f −

pm,i = −2mvx î . (14.1.4) 
 
Therefore the momentum transferred by the gas molecule to the wall is 
 
     Δ

pw = 2mvx î . (14.1.5) 
 
Now, let’s consider the effect of the collisions of a large number of randomly moving 
molecules.  For our purposes, “random” will be taken to mean that any direction of 
motion is possible, and the distribution of velocity components is the same for each 
direction.  
 

 
 

Figure 14A.2 Small volume adjacent to the wall of container 
 
Consider a small rectangular volume  ΔV = AΔx  of gas adjacent to one of the walls of the 
container as shown in Figure 14A.2. There are  nAΔx  gas molecules in this small volume. 
Let each group have the same  x -component of the velocity. Let  

nj  denote the number of 

gas molecules in the  j
th  group with  x -component of the velocity   

vx , j . Because the gas 
molecules are moving randomly, only half of the gas molecules in each group will be 
moving towards the wall in the positive  x -direction. Therefore in a time interval 

  
Δt j = Δx / vx , j , the number of gas molecules that strike the wall with  x -component of the 

velocity   
vx , j  is given by 

 
  
Δnj =

1
2

nj AΔx . (14.1.6) 

 
(During this time interval some gas molecules may leave the edges of the box, but 
because the number that cross the area per second is proportional to the area, in the limit 
as   Δx → 0 , the number leaving the edges also approaches zero.) The number of gas 
molecules per second is then 
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Δnj

Δt j

= 1
2

nj A
Δx
Δt j

= 1
2

nj Avx , j . (14.1.7) 

 
The momentum per second that the gas molecules in this group deliver to the wall is  
 

 
    

Δp j

Δt j

=
Δnj

Δt j

2mvx , j î = njmAvx , j
2 î . (14.1.8) 

 
By Newton’s Second Law, the average force on the wall due to this group of molecules is 
equal to the momentum per second delivered by the gas molecules to the wall; 
 

 
    
(

Fj ,w )ave =

Δp j

Δt j

= njmAvx , j
2 î . (14.1.9) 

 
The pressure contributed by this group of gas molecules is then 
 

 
    
Pj =

(

Fj ,w )ave

A
= njmvx , j

2 . (14.1.10) 

 
The pressure exerted by all the groups of gas molecules is the sum 
 

 
  
P = (Pj )ave

j=1

j=Ng

∑ = m nj vx , j
2

j=1

j=Ng

∑ . (14.1.11) 

 
The average of the square of the  x -component of the velocity is given by 
 

 
  
(vx

2 )ave =
1
n

nj vx , j
2

j=1

j=Ng

∑  , (14.1.12) 

 
where  n  is the number of gas molecules per unit volume in the container. Therefore we 
can rewrite Eq. (14.1.11) as 
   P = mn(vx

2 )ave = ρ(vx
2 )ave , (14.1.13) 

 
where ρ  is the density of the gas. Because we assumed that the gas molecules are 
moving randomly, the average of the square of the  x -,  y - and  z -components of the 
velocity of the gas molecules are equal, 
 
 

  
(vx

2 )ave = (vy
2 )ave = (vz

2 )ave . (14.1.14) 
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The average of the square of the speed   (v
2 )ave  is equal to the sum of the average of the 

squares of the components of the velocity, 
 
 

  
(v2 )ave = (vx

2 )ave + (vy
2 )ave + (vz

2 )ave . (14.1.15) 
Therefore  
   (v

2 )ave = 3(vx
2 )ave . (14.1.16) 

 
Substituting Eq. (14.1.16) into Eq. (14.1.13) for the pressure of the gas yields 
 

 
  
P = 1

3
ρ(v2 )ave . (14.1.17) 

 
The square root of   (v

2 )ave  is called the root-mean-square (“rms”) speed of the 
molecules. Substituting Eq. (14A.3) into Eq. (14.1.17) yields  
 

 
 
P = ρkT

m
 . (14.1.18) 

Recall that the density of the gas  

 
 
ρ = M

V
= Nm

V
 . (14.1.19) 

 
Therefore Eq. (14.1.18) can be rewritten as 
 

 
 
P = NkT

V
 . (14.1.20) 

Eq. (14.1.20) can be re-expressed as 
  PV = N kT . (14.1.21) 
 
Eq. (14.1.21) is known as the ideal gas equation of state also known as the Perfect Gas 
Law or Ideal Gas Law.  
 
The total number of molecules in the gas m AN n N=  where mn  is the number of moles 
and AN  is the Avogadro constant. The ideal gas law becomes 
 
 m APV n N kT= . (14.1.22) 
 
The universal gas constant is   R = k N A = 8.31J ⋅K−1 ⋅mol−1 .  The ideal gas law can be re-
expressed as 
 mPV n RT= . (14.1.23) 
 
Although we started with atomistic description of the collisions of individual gas 
molecules satisfying the principles of conservation of energy and momentum, we ended 
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up with a relationship between the macroscopic variables pressure, volume, number of 
moles, and temperature that are measurable properties of the system.  
 
One important consequence of the Ideal Gas Law is that equal volumes of different ideal 
gases at the same temperature and pressure must contain the same number of molecules,  
 

 1 PVN
k T

= . (14.1.24) 

 
When gases combine in chemical reactions at constant temperature and pressure, the 
numbers of each type of gas molecule combine in simple integral proportions. This 
implies that the volumes of the gases must always be in simple integral proportions. 
Avogadro used this last observation about gas reactions to define one mole of a gas as a 
unit for large numbers of particles.  
 
 
14A.3.3 Atoms, Moles, and Avogadro’s Number  
 
The Avogadro number was originally defined as the number of molecules in one gram of 
hydrogen. The number was then redefined to be the number of atoms in 12 grams of the 
carbon isotope carbon-12. Now the Avogadro number is the fixed numerical value of the 
Avogadro constant  N A  when expressed in the unit  mol−1  
 
   N A = 6.022140 76×1023 mol−1 . (14A.25) 
 
Recall that the mole is a base unit in the SI system of units for an amount of substance 
with symbol  [mol] . Based on the new definition of Avogadro constant  N A , one mole 

contains  6.022140 76×1023  elementary entities:  

 
  
1mol =

N A

6.02214076×1023
  (14A.26) 

 
14A.4 Degrees of Freedom 
 
An individual gas molecule can translate in any spatial direction. Multi-atomic gas 
molecules may undergo rotational motions associated with the structure of the molecule. 
Additionally, there may be intermolecular vibrational motion between nearby gas 
particles, and vibrational motion arising from intramolecular forces between atoms that 
form the molecules. Each of these independent contributions to the internal energy 
motions are called degree of freedoms.  
 
For gas molecules, there are three translational degrees of freedom associated with the 
center of mass motion in each direction. For diatomic gases like oxygen molecule ( O2 ) 
or carbon monoxide ( CO ), there are additional degrees of freedom: two rotational 
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degrees of freedom corresponding to independent rotations about axes that are 
perpendicular to the line connecting the centers of the two atoms, and two degrees of 
freedom corresponding to the kinetic and potential energies associated with vibrational 
motion about the center of mass, resulting in a total of seven degrees of freedom. Note 
the extra factor of two for the vibrational modes can be understood by modeling the 
vibrational motion of the molecules as an oscillating spring in one-dimension with two 
contributions to the internal energy,   Evibrational = (1/ 2)mv2 + (1/ 2)kx2 . For linear 

triatomic linear molecules like carbon dioxide  ( CO2 ): there are also two rotational 
degrees of freedom, and six degrees of freedom associated with the three vibrational 
modes of the molecule, totaling eleven degrees of freedom. For non-linear triatomic 
molecules, there is an extra rotational degree of freedom compared to the linear case, 
hence twelve degrees of freedom. For polyatomic molecules, there are many vibrational 
modes, so the number of degrees of freedom is greater than twelve.  
 
14A.5 Equipartition of Energy 
 
We shall make our first assumption about how the internal energy distributes itself 
among N  gas molecules, as follows: 
 
Each independent degree of freedom has an equal amount of energy equal to   (1/ 2)kT , 

 
where the constant  k  is called the Boltzmann constant and is defined by  
 

  k = 1.380649×10−23  J ⋅  K−1 . 
 

The total internal energy  U  of the ideal gas is then  
 

 
  
U = N (# of degrees of freedom)

1
2

kT . (14A.27) 

 
This equal division of the energy is called the equipartition of the energy.  
 
14A.5.1 Boltzamnn constant 
 
Recall that the Boltzmann constant is now one of the seven defining constants that 
determine the SI units and along with the constants  h ,  c  and  ΔνCs determine the unit 
kelvin. 
 

The kelvin, symbol  K , is the SI unit of thermodynamic temperature. It is 
defined by taking the fixed numerical value of the Boltzmann constant  k  
to be  1.380649×10−23  when expressed in the unit  J ⋅K

−1 , which is equal 
to  kg ⋅m2 ⋅s−2K−1 , where the kilogram, meter and second are defined in 
terms of  h ,  c  and  ΔνCs . 



 14-44 

 
This definition implies the exact relation   k = 1.380649×10−23J ⋅K−1 . Its 
effect is that one kelvin is equal to the change of thermodynamic 
temperature T that results in a change of thermal energy  kT  by 

 1.380649×10−23J . 2 
 

Therefore the unit kelvin is defined as 
 

 
  
1 K = 1.380649×10−23

k
⋅kg ⋅m2 ⋅s−2   (14A.28) 

 
Using the SI definitions for the kilogram, meter and second, Eq. (14A.28) 
becomes 
 

 

  

1 K = 1.380649×10−23

k
⎛

⎝
⎜

⎞

⎠
⎟ ⋅ 1.4755214×1040 hΔνCs

c2

⎛
⎝⎜

⎞
⎠⎟

⋅ 30.663314 9 c
ΔνCs

⎛

⎝⎜
⎞

⎠⎟

2

⋅ 9192 631770
 ΔνCs

⎛

⎝⎜
⎞

⎠⎟

−2   (14A.29) 

 
One kelvin is then equal to 

 
  
1 K = 2.266 665 265

hΔνCs
k

  (14A.30) 

 
14A.5.2 Freezing out Degrees of Freedom 
 
Vibrational modes generally do not occur at room temperature.  At higher temperatures, a 
diatomic gas molecule has a potential energy associated with the interaction between the 
two molecules. This potential energy acts like a spring between the two atoms 
contributing to a vibrational mode along the -axis. Analogous to a spring connected two 
objects, there are two degrees of freedom associated with a vibrational mode, the 
potential energy stored in the interaction and the kinetic energy associated with the 
vibration. Thus there are seven total degrees of freedom for the energy to partition 
among.   So in principle of all of these energy modes are accessible, then the total internal 
energy  U  for a diatomic gas consisting  N  molecules is 
 
   U = N (# of deg)((1/ 2)kT ) = N (7 / 2)kT   (14A.31) 
 
According to our classical theory of the gas, all these modes should be equally occupied 
at all temperatures but in fact they are not! This important deviation from classical 
physics was the first place that a more detailed model of the atom is needed to correctly 
describe experimental observations.  

                                                
2 https://www.bipm.org/en/measurement-units/base-units.html 
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14A.5.3 Example Diatomic Nitrogen Gas  
 
What is the internal energy of the diatomic  N2  gas at room temperature? 
 
Solution: At room temperature, the internal energy is due to only the five degrees of 
freedom associated with the three translational and two rotational degrees of freedom, 
 

 
  
U = 5

2
NkT . (14A.32) 

 
As discussed above, at temperatures well above room temperature, but low enough for 
nitrogen to form diatomic molecules, there is are two additional vibrational degree of 
freedoms. Therefore there are seven degrees of freedom and so the internal energy is 
 

 
  
U = N (# of degrees of freedom)

1
2

kT = 7
2

N kT . (14A.33) 

 
14A.6 Temperature, Scales, and Thermometers 
 
14A.6.1 Temperature  
 
 In our discussion so far, we have not defined precisely how we can measure 
temperature. In particular, we have not determined how the flow of thermal energy into a 
system raises its temperature. We begin with a macroscopic characterization of the 
temperature of a body. 
 
 To measure the temperature of a system, we need to measure a thermometric 
property of the system, one that varies with its hotness or coldness. There are many such 
properties; for example, electrical resistance of a filament, pressure of a gas, thermal 
electromotive force, radiant emittance, or magnetic susceptibility. Let  X  be any 
thermometric property of a material. Then we define the temperature scale so that the 
temperature θ  is linear proportional to  X  
 
   θ( X ) = aX .  (14A.34) 
 
where  a  is a constant of proportionality. By this linearity, the ratio of temperatures 
between any two states of the system is then the ratio of the thermometric properties of 
those states, 

 
  

θ1

θ2

=
X1

X2

 . (14A.35) 

 
 Traditionally, to determine temperature for any state, we need to define 
temperature for a standard state. The standard fixed state for thermometry is the 
triple point of water. This is the state in which ice, water, and water vapor coexist. 
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This occurs at   0.01!C  and at a water-vapor pressure of  610 Pa .  For historical 
and scientific reasons to be explained, we define the temperature of the triple 
point of water to be  273.16 K  on the Kelvin scale, which fixes the constant  a  as 
follows. Let  XTP  be the value of the thermometric property  X  at the triple point. 
Then 

 
  
a = 273.16 K

XTP
. (14A.36) 

 
Hence the temperature at any value of  X  is then 
 

 
  
θ( X ) = aX = a 273.16 K

XTP

 . (14A.37) 

14A.6.2 Temperature Scales 
 
 We use the Kelvin scale as a measure of absolute temperature. The commonly 
used Celsius scale employs the same size for each degree as the Kelvin scale, but the zero 
point is shifted by  273.15  degrees so that the triple point of water has a Celsius 
temperature of   0.01!C , 
    T ( !C) = θ(K)− 273.15 !C  , (14A.38) 
 
and the freezing point of water at standard atmospheric pressure to be   0

!C . The 
Fahrenheit scale is related to the Celsius scale by 
 

 
   
T ( !F) = 9

5
T ( !C)+ 32 !F  . (14A.39) 

 
The freezing point of pure water at standard atmospheric pressure occurs at   0

!C  and 

  32 !F . The boiling point of pure water at standard atmospheric pressure occurs at   100!C  

and   212 !F . 
 
14A.6.3 Example Gas Thermometer 
 
The gas thermometer measures temperature based on the pressure of a gas at constant 
volume and is used as the standard thermometer, because the variations between different 
gases can be greatly reduced when low pressures are used. A schematic device of a gas 
thermometer is shown in Figure 14A.3. The volume of the gas is kept constant by raising 
or lowering the mercury reservoir so that the mercury level on the left arm in Figure 
14A.3 just reaches the point  I . When the bulb is placed in thermal equilibrium with a 
system whose temperature is to be measured, the difference in height between the 
mercury levels in the left and right arms is measured. The bulb pressure is atmospheric 
pressure plus the pressure in mercury a distance  h  below the surface (Pascal’s Law). A 
thermometer needs to have two scale points, for example the height of the column of 
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mercury (the height is a function of the pressure of the gas) when the bulb is placed in 
thermal equilibrium with ice water and in thermal equilibrium with standard steam.  

 

 
Figure 14A.3 Constant volume gas thermometer  

 
At constant volume, and at ordinary temperatures, the pressure of gases is proportional to 
the temperature, 
  T ∝ P . (14A.40) 
 
We define a linear scale for temperature based on the pressure in the bulb by 
 
  T = a P  (14A.41) 
 
where a  is a positive constant. In order to fix the constant a  in Eq. (14A.41), a standard 
state must be chosen as a reference point. The standard fixed state for thermometry is the 
triple point of water, the state in which ice, water, and water vapor coexist. This state 
occurs at only one definite value of temperature and pressure. By convention, the 
temperature of the triple point of water is chosen to be exactly  273.16 K  on the Kelvin 
scale, at a water-vapor pressure of  610 Pa . Let   PTP  be the value of the pressure  P  at the 
triple point in the gas thermometer. Set the constant a  according to 
 

 
TP

273.16 Ka
P

= . (14A.42) 

 
Hence the temperature at any value of P  is then 
 

 
TP

273.16 K( )T P aP P
P

= = . (14A.43) 

 
The ratio of temperatures between any two states of a system is then measured by the 
ratio of the pressures of those states,  

 
  

T1

T2

=
P1

P2

. (14A.44) 
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14A.7 Conservation of Energy and Energy Transformations 
 
When we do work on a system, for example we can increase the speed of an object by 
pushing it, and the kinetic energy increases. We can do work compressing a spring, and 
the potential energy increases. We can also do work on a system in such a way that the 
mechanical energy stays constant, but we generate thermal energy. For example, we can 
slide an object along a surface at constant speed. If we consider the object and the surface 
as our system, then we do work on the sliding object, and increase the thermal energy of 
the system.  
 
We can also decrease both the kinetic energy and potential energy of a system, and 
increase the thermal energy. Consider the interaction between water falling over a 
waterfall and the earth. Between the top and bottom of a waterfall, there is a net loss in 
mechanical energy. As the water falls, it accelerates, an amount of gravitational potential 
energy transforms into kinetic energy. When the falling water strikes the surface, much of 
that kinetic energy is lost from the mechanical system. However the temperature of the 
water at the bottom of the fall will be higher than the temperature at the top. We can also 
increase or decrease the energy of a system by heating or cooling as we observed with 
warming a kettle of water. We shall study types of energy transformations due to 
interactions both inside and across the boundary of a system.  
 
14A.7.1 System, Boundary and Surroundings  
 
 Recall in Chapter 13, when we specify a system, we also specified the 
surroundings (everything else) and a boundary between the system and the surroundings. 
The boundaries are interfaces through which energy can be transferred. The above 
examples suggest that we can change the energy of the system by doing work on the 
system, or by the flow of “heat” into the system.  
 
Recall that a system is open if both energy and matter can enter of leave the system. A 
system is closed if only energy can be transferred to or from the surroundings. A closed 
system in which energy is constant may not be isolated. For example consider a 
compressed spring in which one end is attached to a cart and the other end attached to a 
wall. The cart is held in place on a frictionless air track. Choose as the system the cart and 
spring. Then release the cart. While the spring is expanding and the cart is accelerating, 
there is an external force of the wall on the spring so the system is not isolated but there 
is no transfer of energy to or from the system. The potential energy of the spring is 
transformed into kinetic energy of the cart. So the energy of the system is constant but it 
is not isolated.  
 
For a closed system, the change in energy of the system and the surroundings sum to 
zero,  
 
 

  
ΔE total = ΔEsystem + ΔEsurroundings = 0  (14A.45) 
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When a system undergoes a change from state  A , to state  B , the sum of the kinetic and 
potential energy (mechanical energy   ΔEmechanical ) may change, and the kinetic energy 

associated with random motions, (thermal energy   ΔEthermal ), may also change. In 

addition there may be other forms of energy   ΔEother  that may change as well. So the total 
change in energy of the system is the sum of these changes 
 
 

  
ΔEsystem = ΔEmechanical + ΔEthermal + ΔEother . (14A.46) 

 
If the total energy of the system changes, then the total energy of the surrounding must 
change by the opposite amount, 
 

  
ΔEsystem = −ΔEsurroundings  (14A.47) 

 
 If the energy is a system changes, then energy must flow across the boundary. We 
shall study two different types of energy flows across the boundaries of a system. The 
first type is when the surroundings do work on the system (or the system does work on 
the surroundings). Consider a closed cylinder of gas with a piston at one end.  Identify the 
gas as the system. If an external force pushes the piston inwards, then the surroundings 
do (external) work on the system, and the total energy of the system changes, 
 
 

  
ΔEsystem

(1) =Wexternal  . (14A.48) 
 
 A second type of energy flow through the boundary involves the flow of thermal 
energy, which we denote by  Q . We adapt the convention that   Q > 0  means that a 
positive amount of heat flows into the system, the energy of the system increases, 
therefore 
 

  
ΔEsystem

(2) = Q  . (14A.49) 
 
14A.8 First Law of Thermodynamics 
 
The energy of a closed system can increase or decrease either through external work done 
on or by the system, and by the flow of thermal energy into or out of the system.  
 
Let   Q > 0  represent a positive amount of thermal energy that flows into a system. If 

  Q < 0 , then thermal energy flows from the system to the surroundings. 
 
Let   Wext > 0  denote the work done by the surroundings on a system. (If   Wext < 0  then the 
system is doing work on the surroundings.) 
 
In what follows we shall denote the total change in internal energy of a system by ΔU . 
Then the first law of thermodynamics describes the sum of the change in energy due to 
heating and the work done by the surroundings on the system, 
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  ΔU =Wext +Q  . (14A.50) 
 
Whenever a closed system is divided into a system ( 1 ) and surroundings ( 2 ) that are in 
thermal contact, and there is a thermal energy flow from (1) to (2), then the thermal 
energy lost from (1) is gained by ( 2 ), 
 

   
Q1 = −Q 2   (14A.51) 

 
14A.8.1 Mechanical Equivalent of Heat 
 
 We have already used the joule as the unit for mechanical energy; we would like 
to determine the constant of proportionality  k  between the rate of loss of mechanical 
energy as measured in watts and the rate of the flow of thermal energy as measured in 
calories per sec 

 
 

dEmech

dt
= −k dQ

dt
 . (14A.52) 

 
James Joule in 1847  first measured this connection between mechanical energy and heat 
and found that  4.2 J = 1cal . The modern result at   15!C  is  4.186 J = 1cal . 
 
 When a mass slides along the table, work done by the contact friction generates 
thermal energy that is absorbed by both the mass and the table. So we must include the 
mass and the table as part of our system. In fact, the gas molecules near the table absorb 
some thermal energy, so strictly speaking they must also be included in the closed 
system. Is mechanical energy really ‘lost’ in a system? If we examine the individual 
molecules in our system, and we discover that their average kinetic energy increases 
along with an increase in the potential energy associated with their molecular 
interactions. Microscopically, energy is conserved!  

  
 If we immerse a light bulb in water, the electrical power delivered to the light 
bulb is dissipated into the water causing the thermal energy of the water to increase. 
Macroscopically we could measure this increased thermal energy by measuring the rise in 
the temperature of the water. 
 
 
14A.9 States of Matter 
 
14A.9.1 Heat Capacity and Specific Heat 
 
When thermal energy   Q > 0  flows into a system, the temperature of the system may or 
may not undergo a change. When the temperature does rise by an amount   ΔT > 0 , as we 
can observe by heating water with a light bulb, the average heat capacity of the system is 
defined to be the total amount of thermal energy that flows into the system divided by the 
rise in temperature, 
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C = Q

ΔT
  (14A.53) 

 
If we were to divide our system precisely in half, the same flow of thermal energy will 
induce double the temperature change, hence halving the heat capacity. If we divide heat 
capacity by the amount of mass present, then we have a property of the system that will 
not change when we halve the system. Thus we define the average specific heat as the 
heat capacity per mass, 

 
 
c = Q

mΔT
 . (14A.54) 

 
The units for specific heat are 

 
J ⋅kg-1 ⋅K-1⎡
⎣

⎤
⎦ . For water, the specific heat varies as a 

function of temperature. Figure 14A.4 shows the specific heat of water plotted as a 
function of temperature for the range 

  
0 !C, 100!C⎡
⎣

⎤
⎦ . 

 

 
 

Figure 14A.4 Specific heat of water as a function of temperature. 
 
For the range 14.5 0 C to 15.5 0 C, the value is  
 
 

  
cH2O

= 4.1860×103 J ⋅kg-1 ⋅K-1  . (14A.55) 

 
14A.9.2 Specific Heats of an Ideal Gas 
 
 The specific heat of a substance is the amount of heat required per unit mass per 
unit temperature change. When the unit of mass is the mole, the specific heat is called the 
molar heat capacity. A gas can have two types of molar heat capacities: at constant 
pressure,  CP , or at constant volume,  CV . 
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 Consider  nm  moles of an ideal gas that is in thermal contact with a reservoir of 
thermal energy. The temperature of the reservoir is slowly raised. The volume of the gas 
does not change during the process. Therefore no work is done on the gas. From the first 
law of thermodynamics, the change in the internal energy of the gas is due entirely to the 
flow of thermal energy into the gas, 
  ΔU = Q  . (14A.56) 
 
The amount of thermal energy required is equal to  
 
  Q = nmCVΔT . (14A.57) 
 
Therefore the change in internal energy is given by 
 
  ΔU = nmCVΔT .  (14A.58) 
 
For an ideal gas, the change in internal energy only depends on the temperature change 
 

 
  
ΔU = 3

2
nmRΔT  . (14A.59) 

 
Therefore comparing these expressions shows that the molar heat capacity at constant 
volume is 

 
  
CV = 3

2
R  . (14A.60) 

 
For a gas molecule with  D  degrees of freedom, the change in internal energy is 
 

 
  
ΔU = D

2
nmRΔT   (14A.61) 

and so the heat capacity is  

 
  
CV = D

2
R  . (14A.62) 

 
Table 14A.1 shows the molar specific heats for different gases at   15!C  and  1atm  
pressure.. 
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Table 14A.1 Constant Volume Molar Specific Heats for Different Gases. 
 

Gas 
Molar Specific 

Heat  CV    CV / R  

 Ar   12.5   1.50  

 He   12.5   1.50  

 CO   20.7   2.49  

 H2   20.4   2.45  

 HCl   21.4   2.57  

 N2   20.6   2.49  

 NO   20.9   2.51  

 O2   21.1   2.54  

 Cl2   24.8   2.98  

 CO2   28.2   3.40  

 CS2   40.9   4.92  

 H2S   25.4   3.06  

 N2O   28.5   3.42  

 SO2   31.3   3.76  
 
Figure 14A.5 shows the variation in the hydrogen molar specific heat at constant volume 
as a function of the temperature. The temperature scale is logarithmic. The classical 
theory does not agree with experiment! 
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   Figure 14A.5 Hydrogen molar specific heat at constant  
   volume as a function of temperature. 
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14A.9.3 Example Molar heat capacities of an ideal gas 
 
Consider an ideal gas undergoing a constant pressure expansion, with a temperature 
change  ΔT . The gas does work on the surroundings,  W = PΔV , and hence the 
surroundings do negative work on the gas. From the ideal gas law, the external work 
done is then 
  Wext = −PΔV = −nmRΔT  . (14A.63) 
 
According to the first law of thermodynamics, the change in the internal energy of the gas 
is 
  ΔU = Q +Wext = Q − PΔV  . (14A.64) 

 
The amount of thermal energy that flowed into the gas is then 
 
  Q = nmCPΔT  . (14A.65) 
 
So the change in internal energy for the constant pressure expansion is 
 
  ΔU = nmCPΔT − nmRΔT  . (14A.66) 
 
For an ideal gas, the change in internal energy only depends on the temperature change 
 

 
  
ΔU = 3

2
nmRΔT  . (14A.67) 

 
Therefore the change in internal energy is,  
 
  ΔU = nmCVΔT = nmCPΔT − nmRΔT  . (14A.68) 
 
The two molar heat capacities are related by solving this equation to yield  
 
  CP = CV + R  . (14A.69) 
 
Using the fact that   CV = (3 / 2)R , we find that the molar heat capacity at constant 
pressure for an ideal gas is then 

 
  
CP = CV + R = 3

2
R + R = 5

2
R  . (14A.70) 

 
Let   γ = CP / CV  denote the ratio of the heat capacities. Then for the ideal gas  
 
   γ = CP / CV = 5 / 3  . (14A.71) 
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The ideal gas law establishes a proportional of the product of the pressure with the 
volume to the temperature according to 
 
  PV = nmRT  . (14A.72) 
The internal energy of the gas is  
   U = (3 / 2)nmRT  . (14A.73) 
. 
Thus combining these equations yields 

 
  
PV = 2

3
U  . (14A.74) 

 
We can rewrite this last equation is terms of the ratio of the heat capacities,  
  
   PV = (γ −1)U   (14A.75) 

   
14A.9.4 Example Adiabatic compression of an ideal gas 
 
Suppose we compress the gas by an amount   dV < 0  so that there is no loss of energy as 
heat through the container, adiabatic compression. The work that is done on compressing 
the gas,  
   dW = −PdV = ΔU > 0  , (14A.76) 
  
 
will increase the internal energy. Note that the minus sign ensures that the work done on 
the gas is positive. Since the volume of the gas is decreasing, the pressure of the gas must 
increase. So using Eq. (14A.75), the differential rate of change of the internal energy of 
the gas is given by 
   (γ −1)ΔU = dPV + PdV   (14A.77) 
 
Thus substituting Eq. (14A.76) into Eq. (14A.77), yields 
 
   (γ −1)(−PdV ) = dPV + PdV  . (14A.78) 
Collecting terms yields 
  −γ PdV = dPV   (14A.79) 
 
This equation is separable  

 
 
−γ dV

V
= dP

P
 . (14A.80) 

. 
which can then be integrated 

 
 
−γ dV

VVi

V f

∫ = dP
PPi

Pf

∫   (14A.81) 

resulting in 
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γ ln(Vi / Vf ) = ln(Pf / Pi ) . (14A.82) 

 
Exponentiating both sides then yields 
 
 

  
(Vi / Vf )γ = (Pf / Pi )  . (14A.83) 

 
Thus the product of the pressure and the volume raised to the power γ  is a constant for 
the adiabatic compression of the gas, 
  

PVi
γ = PfVf

γ   (14A.84) 
 
 
 
 
 
 


