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Chapter 12 Momentum and the Flow of Mass 
 

Even though the release was pulled, the rocket did not rise at first, but the 
flame came out, and there was a steady roar. After a number of seconds it 
rose, slowly until it cleared the flame, and then at express-train speed, 
curving over to the left, and striking the ice and snow, still going at a 
rapid rate. It looked almost magical as it rose, without any appreciably 
greater noise or flame, as if it said, “I've been here long enough; I think 
I'll be going somewhere else, if you don't mind.” 1 

 
Robert Goddard  

Preface: The Challenger Flight 
 
When the Rogers Commission in 1986 investigated the Challenger disaster, a 
commission member, physicist Richard Feynman, made an extraordinary demonstration 
during the hearings. 
 
“He (Feynman) also learned that rubber used to seal the solid rocket booster joints using 
O-rings, failed to expand when the temperature was at or below 32 degrees F (0 degrees 
C).  The temperature at the time of the Challenger liftoff was 32 degrees F. Feynman 
now believed that he had the solution, but to test it, he dropped a piece of the O-ring 
material, squeezed with a C-clamp to simulate the actual conditions of the shuttle, into a 
glass of ice water.  Ice, of course, is 32 degrees F.  At this point one needs to understand 
exactly what role the O-rings play in the solid rocket booster (SRB) joints.  When the 
material in the SRB start to heat up, it expands and pushes against the sides of the SRB.  
If there is an opening in a joint in the SRB, the gas tries to escape through that opening 
(think of it like water in a tea kettle escaping through the spout.)  This leak in the 
Challenger's SRB was easily visible as a small flicker in a launch photo.  This flicker 
turned into a flame and began heating the fuel tank, which then ruptured. When this 
happened, the fuel tank released liquid hydrogen into the atmosphere where it exploded. 
As Feynman explained, because the O-rings cannot expand in 32 degree weather, the gas 
finds gaps in the joints, which led to the explosion of the booster and then the shuttle 
itself.”2 
 
In the Report of the Presidential Commission on the Space Shuttle Challenger Accident 
(1986), Appendix F - Personal observations on the reliability of the Shuttle, Feynman 
wrote 
 
The Challenger flight is an excellent example. … The O-rings of the Solid Rocket 
Boosters were not designed to erode. Erosion was a clue that something was wrong. 
Erosion was not something from which safety can be inferred. There was no way, without 

                                                
1 describing the first rocket flight using liquid propellants at Aunt Effie's farm, 17 March 1926. 
 
2 http://www.fotuva.org/online/frameload.htm?/online/challenger.htm. 
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full understanding, that one could have confidence that conditions the next time might not 
produce erosion three times more severe than the time before. Nevertheless, officials 
fooled themselves into thinking they had such understanding and confidence, in spite of 
the peculiar variations from case to case. A mathematical model was made to calculate 
erosion. This was a model based not on physical understanding but on empirical curve 
fitting. To be more detailed, it was supposed a stream of hot gas impinged on the O-ring 
material, and the heat was determined at the point of stagnation (so far, with reasonable 
physical, thermodynamic laws). But to determine how much rubber eroded it was 
assumed this depended only on this heat by a formula suggested by data on a similar 
material. A logarithmic plot suggested a straight line, so it was supposed that the erosion 
varied as the .58 power of the heat, the .58 being determined by a nearest fit. At any rate, 
adjusting some other numbers, it was determined that the model agreed with the erosion 
(to depth of one-third the radius of the ring). There is nothing much so wrong with this as 
believing the answer! Uncertainties appear everywhere. How strong the gas stream might 
be was unpredictable, it depended on holes formed in the putty. Blow-by showed that the 
ring might fail even though not, or only partially eroded through. The empirical formula 
was known to be uncertain, for it did not go directly through the very data points by 
which it was determined. There were a cloud of points some twice above, and some twice 
below the fitted curve, so erosions twice predicted were reasonable from that cause alone. 
Similar uncertainties surrounded the other constants in the formula, etc., etc. When using 
a mathematical model careful attention must be given to uncertainties in the model. … 
 
In any event this has had very unfortunate consequences, the most serious of which is to 
encourage ordinary citizens to fly in such a dangerous machine, as if it had attained the 
safety of an ordinary airliner. The astronauts, like test pilots, should know their risks, and 
we honor them for their courage. Who can doubt that McAuliffe was equally a person of 
great courage, who was closer to an awareness of the true risk than NASA management 
would have us believe? Let us make recommendations to ensure that NASA officials deal 
in a world of reality in understanding technological weaknesses and imperfections well 
enough to be actively trying to eliminate them. …. For a successful technology, reality 
must take precedence over public relations, for nature cannot be fooled.3 

12.1 Introduction 
 
So far we have restricted ourselves to considering systems consisting of discrete objects 
or point-like objects that have fixed amounts of mass. We shall now consider systems in 
which material flows between the objects in the system, for example we shall consider 
coal falling from a hopper into a moving railroad car, sand leaking from railroad car fuel, 
grain moving forward into a railroad car, and fuel ejected from the back of a rocket, In 
each of these examples material is continuously flows into or out of an object. We have 
already shown that the total external force causes the momentum of a system to change, 
  
                                                
3 R. P. Feynman, Appendix F - Personal observations on the reliability of the Shuttle, Report of the 
PRESIDENTIAL COMMISSION on the Space Shuttle Challenger Accident (1986), 
http://history.nasa.gov/rogersrep/genindex.htm. 
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
Fext

total =
d psystem

dt
.  (12.2.1) 

 
We shall analyze how the momentum of the constituent elements our system change over 
a time interval   [t,t + Δt] , and then consider the limit as   Δt → 0 . We can then explicit 
calculate the derivative on the right hand side of Eq. (12.2.1) and Eq. (12.2.1) becomes 
 

 
    


Fext

total =
dpsystem

dt
= lim

Δt→0

Δpsystem

Δt
= lim

Δt→0

psystem (t + Δt) − psystem (t)
Δt

. (12.2.2) 

 
We need to be very careful how we apply this generalized version of Newton’s Second 
Law to systems in which mass flows between constituent objects. In particular, when we 
isolate elements as part of our system we must be careful to identify the mass  Δm  of the 
material that continuous flows in or out of an object that is part of our system during the 
time interval  Δt  under consideration.  
 
We shall consider four categories of mass flow problems that are characterized by the 
momentum transfer of the material of mass  Δm . 

12.1.1 Transfer of Material into an Object, but no Transfer of Momentum  
 
Consider for example rain falling vertically downward with speed  u  into car of mass  m  
moving forward with speed  v . A small amount of falling rain  Δmr  has no component of 
momentum in the direction of motion of the car. There is a transfer of rain into the car but 
no transfer of momentum in the direction of motion of the car (Figure 12.1). 

v
frictionless

umrrain

v
frictionless

u

 
 

Figure 12.1 Transfer of rain mass into the car but no transfer of momentum in direction 
of motion 

12.1.2 Transfer of Material Out of an Object, but no Transfer of Momentum  
 
The material continually leaves the object but it does not transport any momentum away 
from the object in the direction of motion of the object (Figure 12.2). Consider an ice 
skater gliding on ice at speed  v  holding a bag of sand that is leaking straight down with 
respect to the moving skater. The sand continually leaves the bag but it does not transport 
any momentum away from the bag in the direction of motion of the object. In Figure 
12.2, sand of mass  Δms  leaves the bag. 



 12-4 

 
Figure 12.2 Transfer of mass out of object but no transfer of momentum in direction of 

motion 

12.1.3 Transfer of Material Impulses Object Via Transfer of Momentum  
 
Suppose a fire hose is used to put out a fire on a boat of mass  mb . Assume the column of 
water moves horizontally with speed  u . The incoming water continually hits the boat 
propelling it forward. During the time interval  Δt , a column of water of mass  Δms  will 
hit the boat that is moving forward with speed  v  increasing it’s speed (Figure 12.3). 
 

 
Figure 12.3 Transfer of mass of water increases speed of boat 

12.1.4 Material Continually Ejected From Object results in Recoil of Object 
 
When fuel of mass  

Δmf  is ejected from the back of a rocket with speed  u  relative to the 

rocket, the rocket of mass  mr  recoils forward. Figure 12.4a shows the recoil of the rocket 
in the reference frame of the rocket. The rocket recoils forward with speed  Δvr . In a 
reference frame in which the rocket is moving forward with speed  vr , then the speed after 
recoil is  vr + Δvr .  The speed of the backwardly ejected fuel is  u − vr  (Figure 12.4b). 
 

          
(a)       (b)  
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Figure 12.4 Transfer of mass out of rocket provides impulse on rocket in (a) reference 
frame of rocket, (b) reference frame in which rocket moves with speed  vr  

 
We must carefully identify the momentum of the object and the material transferred at 
time  t  in order to determine 

    
psystem (t) . We must also identify the momentum of the object 

and the material transferred at time  t + Δt  in order to determine 
    
psystem (t + Δt)  as well. 

Recall that when we defined the momentum of a system, we assumed that the mass of the 
system remain constant.  Therefore we cannot ignore the momentum of the transferred 
material at time  t + Δt  even though it may have left the object; it is still part of our 
system (or at time  t  even though it has not flowed into the object yet). 

12.2 Worked Examples 

Example 12.1 Filling a Coal Car 
 
An empty coal car of mass 0m  starts from rest under an applied force of magnitude F . 
At the same time coal begins to run into the car at a steady rate b  from a coal hopper at 
rest along the track (Figure 12.5). Find the speed when a mass cm  of coal has been 
transferred.   

 
 

Figure 12.5 Filling a coal car 
 
Solution: We shall analyze the momentum changes in the horizontal direction, which we 
call the  x -direction. Because the falling coal does not have any horizontal velocity, the 
falling coal is not transferring any momentum in the  x -direction to the coal car. So we 
shall take as our system the empty coal car and a mass cm  of coal that has been 
transferred. Our initial state at 0t =  is when the coal car is empty and at rest before any 
coal has been transferred. The  x -component of the momentum of this initial state is zero,  
 
   px (0) = 0 . (12.3.1) 
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Our final state at ft t=  is when all the coal of mass c fm bt=  has been transferred into the 
car that is now moving at speed fv . The  x -component of the momentum of this final 
state is  
 
   

px (t f ) = (m0 + mc )v f = (m0 + bt f )v f . (12.3.2) 

 
There is an external constant force xF F=  applied through the transfer. The momentum 
principle applied to the  x -direction is 
 

 
  

Fxdt
0

t f

∫ = Δpx = px (t f ) − px (0) . (12.3.3) 

 
Because the force is constant, the integral is simple and the momentum principle becomes 
 
   

Ft f = (m0 + bt f )v f . (12.3.4) 

So the final speed is 

 
  
v f =

Ft f

(m0 + bt f )
. (12.3.5) 

Example 12.2 Emptying a Freight Car 
 
A freight car of mass cm  contains sand of mass sm . At 0t =  a constant horizontal force 
of magnitude F  is applied in the direction of rolling and at the same time a port in the 
bottom is opened to let the sand flow out at the constant rate /sb dm dt= . Find the speed 
of the freight car when all the sand is gone (Figure 12.6). Assume that the freight car is at 
rest at 0t = . 

 
 

Figure 12.6 Emptying a freight car 
 
Solution: Choose the positive  x -direction to point in the direction that the car is moving. 
Choose for the system the amount of sand in the fright car at time  t ,   mc(t) . At time  t , 
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the car is moving with velocity     
!vc(t) = vc(t)î . The momentum diagram for the system at 

time t  is shown in the diagram on the left in Figure 12.7.  
 

time time

vc(t) vc(t)+ vc

t + tt

mc(t)+ mcmc(t)

ms

vc(t)+ vc

 
 

Figure 12.7 Momentum diagram at time t and at time t t+ Δ  
 
The momentum of the system at time t  is given by 
 
 

    
!psys(t) = mc(t)!vc(t) . (12.3.6) 

 
During the time interval [ , ]t t t+ Δ , an amount of sand of mass smΔ  leaves the freight car 
and the mass of the freight car changes by   mc(t + Δt) = mc(t)+ Δmc , where  Δmc = −Δms .  
At the end of the interval the car is moving with velocity 

    
!vc(t + Δt) = !vc(t)+ Δ!vc = (vc(t)+ Δvc )î . The momentum diagram for the system at time 
 t + Δt  is shown in the diagram on the right in Figure 12.7.  The momentum of the system 
at time t t+ Δ  is given by 
 
 

    
!psys(t + Δt) = (Δms + mc(t)+ Δmc )(!vc(t)+ Δ!vc ) = mc(t)(!vc(t)+ Δ!vc ) .(12.3.7) 

 
Note that the sand that leaves the car is shown with velocity     

!vc(t)+ Δ!vc . This implies 
that all the sand leaves the car with the velocity of the car at the end of the interval. This 
is an approximation. Because the sand leaves continuous, the velocity will vary from 

    
!vc(t)  to     

!vc(t)+ Δ!vc  but so does the change in mass of the car and these two 
contributions to the system’s moment exactly cancel. The change in momentum of the 
system is then 
  
 

    
Δ!psys =

!psys(t + Δt)− !psys(t) = mc(t)(!vc(t)+ Δ!vc )− mc(t)!vc(t) = mc(t)Δ!vc .(12.3.8) 

 
Throughout the interval a constant force     

!
F = Fî  is applied to the system so the 

momentum principle becomes 
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!
F = lim

Δt→0

!psys(t + Δt)− !psys(t)
Δt

= lim
Δt→0

mc(t)
Δ!vc

Δt
= mc(t)

d!vc

dt
. (12.3.9) 

 
Because the motion is one-dimensional, Eq. (12.3.9) written in terms of  x -components 
becomes 

 
  
F = mc(t)

dvc

dt
. (12.3.10) 

 
Denote by initial mass of the car by ,0c c sm m m= +  where cm  is the mass of the car and 

sm  is the mass of the sand in the car at 0t = . The mass of the sand that has left the car at 
time t  is given by 

 
  
ms(t) =

dms

dt
dt

0

t

∫ = bdt
0

t

∫ = bt . (12.3.11) 

Thus 
   

mc(t) = mc,0 − bt = mc + ms − bt . (12.3.12) 

Therefore Eq. (12.3.10) becomes  

 
  
F = (mc + ms − bt)

dvc

dt
. (12.3.13) 

 
This equation can be solved for the  x -component of the velocity at time  t ,   vc(t) , (which 
in this case is the speed) by the method of separation of variables. Rewrite Eq. (12.3.13) 
as  

 
  
dvc =

Fdt
(mc + ms − bt)

. (12.3.14) 

 
Then integrate both sides of Eq. (12.3.14) with the limits as shown 
 

 
  

d ′vc
′vc=0

′vc=vc (t )

∫ = Fd ′t
mc + ms − b ′t′t =0

′t =t

∫ . (12.3.15) 

 
Integration yields the speed of the car as a function of time 
 

      
  
vc(t) = − F

b
ln(mc + ms − b ′t )

′t = 0

′t = t
= − F

b
ln

mc + ms − bt
mc + ms

⎛
⎝⎜

⎞
⎠⎟
= F

b
ln

mc + ms

mc + ms − bt
⎛
⎝⎜

⎞
⎠⎟

. (12.3.16) 
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In writing Eq. (12.3.16), we used the property that   ln(a) − ln(b) = ln(a / b)  and therefore 

  ln(a / b) = − ln(b / a) . Note that  mc + ms ≥ mc + ms − bt , so the term 

  
ln

mc + ms

mc + ms − bt
⎛

⎝⎜
⎞

⎠⎟
≥ 0 , and the speed of the car increases as we expect.  

Example 12.3 Filling a Freight Car 
 
Grain is blown into car A  from car B  at a rate of b  kilograms per second. The grain 
leaves the chute vertically downward, so that it has the same horizontal velocity, u  as car 
B , (Figure 12.8). Car A  is initially at rest before any grain is transferred in and has mass 

  
mA,0 . At the moment of interest, car A  has mass  mA  and speed v . Determine an 
expression for the speed car A  as a function of time  t .  
 

 
 

Figure 12.8 Filling a freight car 
 
Solution: Choose positive  x -direction to the right in the direction the cars are moving. 
Define the system at time  t  to be the car and grain that is already in it, which together has 
mass   mA(t) , and the small amount of material of mass  

Δmg  that is blown into car  A  

during the time interval   [t,t + Δt] . At time that is moving with  x -component of the 
velocity  vA . At time  t , car  A  is moving with velocity     

!v A(t) = vA(t)î , and the material 

blown into car is moving with velocity     
!u = uî  At time  t + Δt , car  A  is moving with 

velocity     
!v A(t)+ Δ!v A = (vA(t)+ ΔvA)î , and the mass of car A is   mA(t + Δt) = mA(t)+ ΔmA , 

where  
ΔmA = Δmg . The momentum diagram for times  t  and for  t + Δt  is shown in 

Figure 12.9.  

time time t + tt

î

mA(t)

mg

u

v A(t)

A

v A(t)+ v A

A mA(t)+ mA

 
Figure 12.9 Momentum diagram at times  t  and t t+ Δ  
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The momentum at time  t  is  
 

    
!
Psys(t) = mA(t)!v A(t)+ Δmg

!u  . (12.3.17) 

The momentum at time  t + Δt  is  
 
 

    
!
Psys(t + Δt) = (mA(t)+ ΔmA)(!v A(t)+ Δ!v A) .  (12.3.18) 

 
There are no external forces acting on the system in the  x -direction and the external 
forces acting on the system perpendicular to the motion sum to zero, so the momentum 
principle becomes 

 
    

!
0 = lim

Δt→0

!
Psys(t + Δt)−

!
Psys(t)

Δt
. (12.3.19) 

 
Using the results above (Eqs. (12.3.17) and (12.3.18), the momentum principle becomes 
 

 
    

!
0 = lim

Δt→0

(mA(t)+ ΔmA)(!v A(t)+ Δ!v A)− (mA(t)!v A(t)+ Δmg
!u)

Δt
. (12.3.20) 

 
which after using the condition that  

ΔmA = Δmg  and some rearrangement becomes 
 

 
    

!
0 = lim

Δt→0

mA(t)Δ!v A

Δt
+ lim

Δt→0

ΔmA(!v A(t)− !u)
Δt

+ lim
Δt→0

ΔmAΔ
!v A

Δt
. (12.3.21) 

 
In the limit as , the product    ΔmAΔ

!v A  is a second order differential (the product of two 
first order differentials) and the term     ΔmAΔ

!v A / Δt  approaches zero, therefore the 
momentum principle yields the differential equation 
 

 
    

!
0 = mA(t)

d!v A

dt
+

dmA

dt
(!v A(t)− !u) . (12.3.22) 

 
The  x -component of Eq. (12.3.22) is then 
 

 
  
0 = mA(t)

dvA

dt
+

dmA

dt
(vA(t)− u) . (12.3.23) 

 
Rearranging terms and using the fact that the material is blown into car A  at a constant 
rate   b ≡ dmA / dt , we have that the rate of change of the  x -component of the velocity of 
car  A  is given by 

 
  

dvA(t)
dt

=
b(u − vA(t))

mA(t)
. (12.3.24) 
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We cannot directly integrate Eq. (12.3.24) with respect to  dt  because the mass of the car 
 A  is a function of time. In order to find the  x -component of the velocity of car  A  we 
need to know the relationship between the mass of car  A  and the  x -component of the 
velocity of the car  A . There are two approaches. In the first approach we separate 
variables in Eq. (12.3.24) where we have suppressed the dependence on  t  in the 
expressions for  mA  and  vA  yielding 

 
 

dvA

u − vA

=
dmA

mA

, (12.3.25) 

which becomes the integral equation 
 

 

  

dvA
′

u − vA
′

vA
′ =0

vA
′ =vA (t )

∫ =
dmA

′

mA
′

mA
′ =mA ,0

mA
′ =mA (t )

∫ , (12.3.26) 

 
where   

mA,0  is the mass of the car before any material has been blown in. After integration 
we have that 

 
  
ln u

u − vA(t)
= ln

mA(t)
mA,0

. (12.3.27) 

Exponentiate both side yields 

 
  

u
u − vA(t)

=
mA(t)
mA,0

. (12.3.28) 

 
We can solve this equation for the  x -component of the velocity of the car  
 

 
  
vA(t) =

mA(t)− mA,0

mA(t)
u . (12.3.29) 

 
Because the material is blown into the car at a constant rate   b ≡ dmA / dt , the mass of the 
car as a function of time is given by 
   

mA(t) = mA,0 + bt . (12.3.30) 

 
Therefore substituting Eq. (12.3.30) into Eq. (12.3.29) yields the  x -component of the 
velocity of the car as a function of time 

 
  
vA(t) = bt

mA,0 + bt
u . (12.3.31) 

 
In a second approach, we substitute Eq. (12.3.30) into Eq. (12.3.24) yielding 
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dvA

dt
=

b(u − vA )
mA,0 + bt

. (12.3.32) 

Separate variables in Eq. (12.3.32): 

 
  

dvA

u − vA

=
bdt

mA,0 + bt
, (12.3.33) 

which then becomes the integral equation 
 

 

  

dvA
′

u − vA
′

vA
′ =0

vA
′ =vA (t )

∫ =
dt′

mA,0 + bt′t′ =0

t′ = t

∫ . (12.3.34) 

Integration yields 

 
  
ln

u
u − vA(t)

= ln
mA,0 + bt

mA,0

. (12.3.35) 

 
Again exponentiate both sides resulting in 

 
  

u
u − vA(t)

=
mA,0 + bt

mA,0

. (12.3.36) 

 
After some algebraic manipulation we can find the speed of the car as a function of time 

 
  
vA(t) = bt

mA,0 + bt
u . (12.3.37) 

in agreement with Eq. (12.3.31). 
 
Check result: 
 
We can rewrite Eq. (12.3.37) as  
   

(mA,0 + bt)vA(t) = btu , (12.3.38) 

 
which illustrates the point that the momentum of the system at time  t  is equal to the 
momentum of the grain that has been transferred to the system during the interval   [0,t] .  

Example 12.4 Boat and Fire Hose 
 
A burning boat of mass 0m  is initially at rest. A fire fighter stands on a bridge and sprays 
water onto the boat. The water leaves the fire hose with a speed u  at a rate α  (measured 
in -1kg s⋅ ).  Assume that the motion of the boat and the water jet are horizontal, that 
gravity does not play any role, and that the river can be treated as a frictionless surface. 
Also assume that the change in the mass of the boat is only due to the water jet and that 
all the water from the jet is added to the boat, (Figure 12.10). 
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Figure 12.10 Example 12.4 
 

a) In a time interval [ , ]t t t+ Δ , an amount of water mΔ  hits the boat. Choose a 
system. Is the total momentum constant in your system? Write down a differential 
equation that results from the analysis of the momentum changes inside your 
system. 

 
b) Integrate the differential equation you found in part a), to find the velocity ( )v m  

as a function of the increasing mass  m  of the boat, 0m , and u . 
 
Solution: Let’s take as our system the boat, the amount of water of mass  Δmw  that enters 
the boat during the time interval [ , ]t t t+ Δ  and whatever water is in the boat at time t . 
The water from the fire hose has a speed u . Denote the mass of the boat (including some 
water) at time  t  by   mb ≡ mb(t) , and the speed of the boat by   v ≡ vb(t) . At time  t + Δt  the 
speed of the boat is  v + Δv . Choose the positive  x - direction in the direction that the boat 
is moving. Then the  x -components of the momentum of the system at time t  and t t+Δ  
are shown in Figure 12.11. 

u v

t + t

t

mw

mw

v + v

mb

mb

 
Figure 12.11 Momentum diagrams for burning boat 

 
Because we are assuming that the burning boat slides with negligible resistance and that 
gravity has a negligible effect on the arc of the water jet, there are no external forces 
acting on the system in the  x -direction. Therefore the  x -component of the momentum of 
the system is constant during the interval [ , ]t t t+Δ  and so 
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0

( ) ( )0 lim x x

t

p t t p t
tΔ →

+Δ −=
Δ

. (12.3.39) 

 
Using the information from the figure above, Eq. (12.3.39) becomes 
 

 
0

( )( ) ( )0 lim b w w b

t

m m v v m u m v
tΔ →

+Δ +Δ − Δ +=
Δ

. (12.3.40) 

Eq. (12.3.40) simplifies to 

 
0 0 0 0

0 lim lim lim limw w w
bt t t t

m m v mvm v u
t t t tΔ → Δ → Δ → Δ →

Δ Δ Δ ΔΔ= + + −
Δ Δ Δ Δ

. (12.3.41) 

 
The third term vanishes when we take the limit 0tΔ →  because it is of second order in 
the infinitesimal quantities (in this case wm vΔ Δ ) and so when dividing by tΔ  the 
quantity is of first order and hence vanishes since both 0wmΔ →  and 0vΔ → .  Eq. 
(12.3.41) becomes 

 
0 0 0

0 lim lim limw w
bt t t

m mvm v u
t t tΔ → Δ → Δ →

Δ ΔΔ= + −
Δ Δ Δ

. (12.3.42) 

 
We now use the definition of the derivatives: 
 

 
0 0

lim ; lim w w

t t

m dmv dv
t dt t dtΔ → Δ →

ΔΔ = =
Δ Δ

. (12.3.43) 

 
in Eq. (12.3.42) to fund the differential equation describing the relation between the 
acceleration of the boat  and the time rate of change of the mass of water entering the 
boat  

 0 ( )w
b

dmdvm v u
dt dt

= + − . (12.3.44) 

 
The mass of the boat is increasing due to the addition of the water. Let ( )wm t  denote the 
mass of the water that is in the boat at time t . Then the mass of the boat can be written as 
 
   mb(t) = m0 + mw(t) , (12.3.45) 
 
where   m0  is the mass of the boat before any water entered. Note we are neglecting the 
effect of the fire on the mass of the boat. Differentiating Eq.  (12.3.45) with respect to 
time yields 

 b wdm dm
dt dt

= , (12.3.46) 

Then Eq. (12.3.44) becomes 

 0 ( )b
b

dmdvm v u
dt dt

= + − . (12.3.47) 
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(b) We can integrate this equation through the separation of variable technique. Rewrite 
Eq. (12.3.47) as (cancel the common factor dt ) 
 

 b

b

dmdv
v u m

= −
−

. (12.3.48) 

 
We can then integrate both sides of Eq. (12.3.48) with the limits as shown 
 

 
  

dv
v − uv=0

v(t )

∫ = −
dmb

mbm0

mb (t )

∫  (12.3.49) 

Integration yields 

 
  
ln v(t)− u

−u
⎛
⎝⎜

⎞
⎠⎟
= − ln

mb(t)
m0

⎛
⎝⎜

⎞
⎠⎟

 (12.3.50) 

 
Recall that ln( / ) ln( / )a b b a= −  so Eq. (12.3.50) becomes 

 
  
ln v(t)− u

−u
⎛
⎝⎜

⎞
⎠⎟
= ln

m0

mb(t)
⎛
⎝⎜

⎞
⎠⎟

 (12.3.51) 

 
Also recall that exp(ln( / )) /a b a b=  and so exponentiating both sides of Eq. (12.3.51) 
yields 
 

 
  

v(t)− u
−u

=
m0

mb(t)
 (12.3.52) 

 
So the speed of the boat at time t  can be expressed as 
 

 
  
v(t) = u 1−

m0

mb(t)
⎛
⎝⎜

⎞
⎠⎟

 (12.3.53) 

Check result: 
 
 We can rewrite Eq. (12.3.52) as  
 
   mb(t)(v(t)− u) = −m0u ⇒ mb(t)v(t) = (mb(t)− m0 )u  . (12.3.54) 
 
Recall that the mass of the water that enters the car during the interval   [0,t]  is 

  mw(t) = mb(t)− m0 . Therefore Eq. (12.3.54) becomes 
 
   mb(t)v(t) = mw(t)u  . (12.3.55) 
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During the interaction between the jet of water and the boat, the water transfers an 
amount of momentum   mw(t)u  to the boat and car producing a momentum   mb(t)v(t) . 
Because all the water that collides with the boat ends up in the boat, all the interaction 
forces between the jet of water and the boat are internal forces. The boat recoils forward 
and the water recoils backward and through collisions with the boat stays in the boat. 
Therefore if we choose as our system, all of the water that eventually ends up in the boat 
and the boat then the momentum principle states 
 
   

psys(t) = psys(0)  , (12.3.56) 

 
where   

psys(0) = mw(t)u  is the momentum of all of the water that eventually ends up in the 
boat. 
 
Note that the problem didn’t ask to find the speed of the boat as a function t . We shall 
now show how to find that. We begin by observing that 
 

 b wdm dm
dt dt

α= ≠  (12.3.57) 

 
where the constant α  is measured in -1kg s⋅  and is specified as a given constant 
according to the information in the problem statement. The reason is that α  is the rate 
that the water is ejected from the hose but not the rate that the water enters the boat.  

u t

m = u t

 
Figure 12.12 Mass per unit length of water jet 

 
Consider a small amount of water that is moving with speed  u  that, in a time interval  Δt , 
flows through a cross sectional area oriented perpendicular to the flow (see Figure 12.12). 
The area is larger than the cross sectional area of the jet of water. The amount of water 
that floes through the area element  Δm = λuΔt , where λ  is the mass per unit length of 
the jet and  uΔt  is the length of the jet that flows through the area in the interval Δt . The 
mass rate of water that flows through the cross sectional area element is then 
 

 
 
α = Δm

Δt
= λu  . (12.3.58) 
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In the Figure 12.13 we consider a small length  uΔt  of the water jet that is just behind the 
boat at time t . During the time interval [ , ]t t t+Δ , the boat moves a distance v tΔ .  
 

u t v

v t
(u v) t

t + t

t

 
Figure 12.13 Amount of water that enter boat in time interval   [t,t + Δt]  

 
Only a fraction of the length  uΔt  of water enters the boat and is given by 
 

 
  
Δmw = λ(u − v)Δt = α

u
(u − v)Δt  (12.3.59) 

  
Dividing Eq. (12.3.59) through by  Δt  and taking limits we have that  
 

 
  

dmw

dt
= lim

Δt→0

Δmw

Δt
= α

u
(u − v) =α (1− v

u
) . (12.3.60) 

 
Substituting Eq. (12.3.53) and Eq. (12.3.46) into Eq. (12.3.60) yields 
 

 
  

dmb

dt
=α (1− v

u
) =α

m0

mb(t)
. (12.3.61) 

 
We can integrate this equation by separating variables to find an integral expression for 
the mass of the boat as a function of time 
 

 
  

mb dmb
m0

mb (t )

∫ =αm0 dt
t=0

t

∫ . (12.3.62) 

 
We can easily integrate both sides of Eq. (12.3.62) yielding 
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1
2

mb(t)2 − m0
2( ) =αmb,0t . (12.3.63) 

 
The mass of the boat as a function of time is then 
 

 
  
mb(t) = m0 1+ 2αt

m0

. (12.3.64) 

 
We now substitute Eq. (12.3.64) into Eq. (12.3.65)yielding the speed of the burning boat 
as a function of time  

 

,0

1( ) 1
1 2

b

v t u
t

m
α

⎛ ⎞
⎜ ⎟
⎜ ⎟= −⎜ ⎟
⎜ ⎟+⎜ ⎟⎝ ⎠

 (12.3.66) 

12.3 Rocket Propulsion 
 
A rocket at time  t = ti  is moving with velocity 

    
!v r ,i  with respect to a fixed reference 

frame. During the time interval   
[ti ,t f ]  the rocket continuously burns fuel that is 

continuously ejected backwards with velocity   
!u  relative to the rocket. This exhaust 

velocity is independent of the velocity of the rocket. The rocket must exert a force to 
accelerate the ejected fuel backwards and therefore by Newton’s Third law, the fuel 
exerts a force that is equal in magnitude but opposite in direction accelerating the rocket 
forward. The rocket velocity is a function of time, 

    
!v r (t) .  Because fuel is leaving the 

rocket, the mass of the rocket is also a function of time,   mr (t) , and is decreasing at a rate 
/rdm dt . Let    

!
Fext  denote the total external force acting on the rocket. We shall use the 

momentum principle, to determine a differential equation that relates     d
!vr / dt , /rdm dt , 

  
!u , 

    
!v r (t) , and    

!
Fext , an equation known as the rocket equation. 

 
We shall apply the momentum principle during the time interval   [t,t + Δt]  with Δt  taken 
to be a small interval (we shall eventually consider the limit that Δt→ 0 ), and  

ti < t < t f . 
During this interval, choose as our system the mass of the rocket at time  t ,  
 
   

msys = mr (t) = mr ,d + mf (t) , (12.3.67) 

 
where   

mr ,d  is the dry mass of the rocket and   
mf (t)  is the mass of the fuel in the rocket at 

time  t . During the time interval [t,t + Δt] , a small amount of fuel of mass  
Δmf  (in the 
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limit that Δt→ 0 ,   
Δmf → 0 ) is ejected backwards with velocity   

!u  to the rocket. Before 
the fuel is ejected, it is traveling at the velocity of the rocket and so during the time 
interval [t,t + Δt] , the elected fuel undergoes a change in momentum and the rocket 
recoils forward. At time t + Δt  the rocket has velocity     

!v r (t + Δt) . Although the ejected 
fuel continually changes its velocity, we shall assume that the fuel is all ejected at the 
instant t + Δt  and then consider the limit as Δt→ 0 . Therefore the velocity of the ejected 
fuel with respect to the fixed reference frame is the vector sum of the relative velocity of 
the fuel with respect to the rocket and the velocity of the rocket,     

!u+ !vr (t + Δt) . Figure 
12.14 represents momentum diagrams for our system at time  t  and t + Δt  relative to a 
fixed inertial reference frame in which velocity of the rocket at time t  is 

    
!v r (t) . 

mr (t)
vr (t)

time 

mr (t)+ mrmf

vr (t + t)

time 

t

t + t

u+ vr (t + t)

 
 

Figure 12.14 Momentum diagrams for system at time t  and t + Δt  
 
The momentum of the system at time t  is  

 
  

!psys (t) = mr (t)
!v r (t) . (12.3.68) 

 
Note that the mass of the system at time t  is  

   
msys = mr (t) . (12.3.69) 

 
The momentum of the system at time  t + Δt  is 

 
  

!psys (t + Δt) = mr (t + Δt)!v r (t + Δt)+ Δmf (
!u+ !vr (t + Δt)) , (12.3.70) 

 
where   mr (t + Δt) = mr (t)+ Δmr . With this notation the mass of the system at time t + Δt  
is given by 
 msys = mr (t + Δt)+ Δmf = mr (t)+ Δmr + Δmf . (12.3.71) 

 
Because the mass of the system is constant, setting Eq. (12.3.69) equal to Eq. (12.3.71) 
requires that 
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 Δmr = −Δmf . (12.3.72) 

 
The momentum of the system at time  t + Δt  (Eq. (12.3.70)) can be rewritten as 
 
 

 
 

!psys (t + Δt) = (mr (t)+ Δmr )
!v r (t + Δt)− Δmr (

!u+ !vr (t + Δt))
!psys (t + Δt) = mr (t)

!v r (t + Δt)− Δmr
!u

, (12.3.73) 

 
We can now apply Newton’s Second Law in the form of the momentum principle,  
 

 

    

!
Fext = lim

Δt→0

(mr (t)!v r (t + Δt)− Δmr

!u)− mr (t)!v r (t)
Δt

= mr (t) lim
Δt→0

!v r (t + Δt)− !v r (t)
Δt

− lim
Δt→0

Δmr

Δt
!u

.. (12.3.74) 

 
We now take the limit as  

 
    

!
Fext = mr (t)

d!vr

dt
−

dmr

dt
!u . (12.3.75) 

  
Eq. (12.3.75) is known as the rocket equation.  
 
Suppose the rocket is moving in the positive  x -direction with an external force given by 

    
!
Fext = Fext ,x î  Then     

!u = −u î , where   u > 0  is the relative speed of the fuel and it is moving 

in the negative  x -direction, 
    
!v r = vr ,x î . Then the rocket equation (Eq. (12.3.75)) becomes 

 

 
  
Fext ,x = mr (t)

dvr ,x

dt
+

dmr

dt
u . (12.3.76) 

 
Note that the rate of decrease of the mass of the rocket,  dmr / dt , is equal to the negative 
of the rate of increase of the exhaust fuel 

 
 

dmr

dt
= −

dmf

dt
. (12.3.77) 

We can rewrite Eq. (12.3.76) as 

 
  
Fext ,x −

dmr

dt
u = mr (t)

dvr ,x

dt
. (12.3.78) 

 
The second term on the left-hand-side of Eq. (12.3.78) is called the thrust 
 



 12-21 

 
  
Fthrust ,x = −

dmr

dt
u =

dmf

dt
u . (12.3.79) 

 
Note that this is not an extra force but the result of the forward recoil due to the ejection 
of the fuel. Because we are burning fuel at a positive rate   

dmf / dt > 0  and the speed 

  u > 0 , the direction of the thrust is in the positive  x -direction. 

12.3.1 Rocket Equation in Gravity-free Space 
 

We shall first consider the case in which there are no external forces acting on the 
system, then Eq. (12.3.78) becomes 
 

 
  
−

dmr

dt
u = mr (t)

dvr ,x

dt
. (12.3.80) 

 
In order to solve this equation, we separate the variable quantities   

vr ,x (t)  and mr (t)  and 
multiply both sides by  dt  yielding 

 
  
dvr ,x = −u

dmr

mr (t)
. (12.3.81) 

 
We now integrate both sides of Eq. (12.3.81) with limits corresponding to the values of 
the  x -component of the velocity and mass of the rocket at times  ti  when the ejection of 
the burned fuel began and the time  

t f  when the process stopped,  
 

 
  

d ′vr ,x
′vr ,x =vr ,x ,i

′vr ,x =vr ,x , f

∫ = −
u
′mr

d ′mr
′mr =mr ,i

′mr =mr , f

∫ . (12.3.82) 

 
Performing the integration and substituting in the values at the endpoints yields 
 

 
  
vr ,x , f − vr ,x ,i = −u ln

mr , f

mr ,i

⎛

⎝
⎜

⎞

⎠
⎟ . (12.3.83) 

 
Because the rocket is losing fuel,   

mr , f < mr ,i , we can rewrite Eq. (12.3.83) as 
 

 
  
vr ,x , f − vr ,x ,i = u ln

mr ,i

mr , f

⎛

⎝
⎜

⎞

⎠
⎟ . (12.3.84) 
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We note   
ln(mr ,i / mr , f ) > 1 . Therefore   

vr ,x , f > vr ,x ,i , as we expect. After a slight 
rearrangement of Eq. (12.3.84), we have an expression for the  x -component of the 
velocity of the rocket as a function of the mass rm  of the rocket  
 

 
  
vr ,x , f = vr ,x ,i + u ln

mr ,i

mr , f

⎛

⎝
⎜

⎞

⎠
⎟ . (12.3.85) 

 
Let’s examine our result.  First, let’s suppose that all the fuel was burned and ejected. 
Then   

mr , f ≡ mr ,d  is the final dry mass of the rocket (empty of fuel). The ratio  

 
  
R =

mr ,i

mr ,d

 (12.3.86) 

 
is the ratio of the initial mass of the rocket (including the mass of the fuel) to the final dry 
mass of the rocket (empty of fuel). The final velocity of the rocket is then  
 
   

vr ,x , f = vr ,x ,i + u ln R . (12.3.87) 

 
This is why multistage rockets are used. You need a big container to store the fuel. Once 
all the fuel is burned in the first stage, the stage is disconnected from the rocket. During 
the next stage the dry mass of the rocket is much less and so  R  is larger than the single 
stage, so the next burn stage will produce a larger final speed then if the same amount of 
fuel were burned with just one stage (more dry mass of the rocket). In general rockets do 
not burn fuel at a constant rate but if we assume that the burning rate is constant where 
 

 
 
b =

dmf

dt
= −

dmr

dt
 (12.3.88) 

then we can integrate Eq. (12.3.88)  

 
  

d ′mr
′mr =mr ,i

′mr =mr (t )

∫ = −b d ′t
′t = ti

′t = t

∫  (12.3.89) 

 
and find an equation that describes how the mass of the rocket changes in time 
 
   

mr (t) = mr ,i − b(t − ti ) . (12.3.90) 

 
For this special case, if we set  

t f = t  in Eq. (12.3.85), then the velocity of the rocket as a 
function of time is given by  

 
  
vr ,x , f = vr ,x ,i + u ln

mr ,i

mr ,i − bt

⎛

⎝
⎜

⎞

⎠
⎟ . (12.3.91) 
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Example 12.4 Single-Stage Rocket 
 
Before a rocket begins to burn fuel, the rocket has a mass of 

  
mr ,i = 2.81×107 kg , of 

which the mass of the fuel is 
  
mf ,i = 2.46 ×107 kg . The fuel is burned at a constant rate 

with total burn time is  510 s  and ejected at a speed   u = 3000 m/s  relative to the rocket. If 
the rocket starts from rest in empty space, what is the final speed of the rocket after all 
the fuel has been burned? 
 
Solution: The dry mass of the rocket is 

  
mr ,d ≡ mr ,i − mf ,i = 0.35×107 kg , hence 

  
R = mr ,i / mr ,d = 8.03 . The final speed of the rocket after all the fuel has burned is  
 
   

vr , f = Δvr = u ln R = 6250 m/s  . (12.3.92) 

Example 12.5 Two-Stage Rocket 
 
Now suppose that the same rocket in Example 12.4 burns the fuel in two stages ejecting 
the fuel in each stage at the same relative speed. In stage one, the available fuel to burn is 

  
mf ,1,i = 2.03×107 kg  with burn time  150 s . Then the empty fuel tank and accessories 
from stage one are disconnected from the rest of the rocket. These disconnected parts 
have a mass   m = 1.4 ×106 kg . All the remaining fuel with mass is burned during the 
second stage with burn time of  360 s . What is the final speed of the rocket after all the 
fuel has been burned? 
 
Solution: The mass of the rocket after all the fuel in the first stage is burned is 

  
mr ,1,d = mr ,1,i − mf ,1,i = 0.78 ×107 kg  and   

R1 = mr ,1,i / mr ,1,d = 3.60 . The change in speed 
after the first stage is complete is 
 
                                                      

Δvr ,1 = u ln R1 = 3840 m/s .  (12.3.93) 
  
After the empty fuel tank and accessories from stage one are disconnected from the rest 
of the rocket, the remaining mass of the rocket is 

  
mr ,2,d = 2.1×106 kg . The remaining fuel 

has mass 
  
mf ,2,i = 4.3×106 kg . The mass of the rocket plus the unburned fuel at the 

beginning of the second stage is 
  
mr ,2,i = 6.4 ×106 kg . Then   

R2 = mr ,2,i / mr ,2,d = 3.05 . 
Therefore the rocket increases its speed during the second stage by an amount 
 
                                                      

Δvr ,2 = u ln R2 = 3340 m/s .  (12.3.94) 
 
The final speed of the rocket is the sum of the change in speeds due to each stage, 
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v f = Δvr = u ln R1 + u ln R2 = u ln(R1R2 ) = 7190 m/s ,  (12.3.95) 

 
which is greater than if the fuel were burned in one stage. Plots of the speed of the rocket 
as a function time for both one-stage and two-stage burns are shown Figure 12.15. 
  

 
 

Figure 12.15 Plots of speed of rocket for both one-stage burn and two-stage burn 

12.3.2 Rocket in a Constant Gravitational Field: 
 
Now suppose that the rocket takes off from rest at time   t = 0  in a constant gravitational 
field then the external force is  
     


Fext

total = mr
g . (12.3.96) 

 
Choose the positive  x -axis in the upward direction then Fext ,x (t) = −mr (t)g . Then the 
rocket equation (Eq. (12.3.75) becomes 
 

 
  
−mr (t)g −

dmr

dt
u = mr (t)

dvr ,x

dt
. (12.3.97) 

 
Multiply both sides of Eq. (12.3.97) by  dt , and divide both sides by mr (t) . Then Eq. 
(12.3.97) can be written as 

 
  
dvr ,x = −gdt −

dmr

mr (t)
u . (12.3.98) 

We now integrate both sides 
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d ′vr ,x
vr ,x ,i =0

vr ,x (t )

∫ = −u
d ′mr

′mrmr ,i

mr (t )

∫ − g d ′t
0

t

∫ , (12.3.99) 

 
where  mr ,i  is the initial mass of the rocket and the fuel. Integration yields 
 

 
  
vr ,x (t) = −u ln

mr (t)
mr ,i

⎛

⎝
⎜

⎞

⎠
⎟ − gt = u ln

mr ,i

mr (t)

⎛

⎝
⎜

⎞

⎠
⎟ − gt . (12.3.100) 

 
After all the fuel is burned at ft t= , the mass of the rocket is equal to the dry mass 

 
mr , f = mr ,d  and so  

   
vr ,x (t f ) = u ln R − gt f . (12.3.101) 

 
The first term on the right hand side is independent of the burn time. However the second 
term depends on the burn time. The shorter the burn time, the smaller the negative 
contribution from the third turn, and hence the rocket ends up with a larger final speed. 
So the rocket engine should burn the fuel as fast as possible in order to obtain the 
maximum possible speed. 
 
 
 
 


