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Chapter 10 Momentum, System of Particles, and Conservation 
of Momentum 

 
Law II: The change of motion is proportional to the motive force 
impressed, and is made in the direction of the right line in which that force 
is impressed. 
 
If any force generates a motion, a double force will generate double the 
motion, a triple force triple the motion, whether that force is impressed 
altogether and at once or gradually and successively. And this motion 
(being always directed the same way with the generating force), if the body 
moved before, is added or subtracted from the former motion, according as 
they directly conspire with or are directly contrary to each other; or 
obliquely joined, when they are oblique, so as to produce a new motion 
compounded from the determination of both. 1 

 
        Isaac Newton Principia 
10.1 Introduction  
 
When we apply a force to an object, through pushing, pulling, hitting or otherwise, we 
are applying that force over a discrete interval of time, tΔ .  During this time interval, the 
applied force may be constant, or it may vary in magnitude or direction. Forces may also 
be applied continuously without interruption, such as the gravitational interaction 
between the earth and the moon. In this chapter we will investigate the relationship 
between forces and the time during which they are applied, and in the process learn about 
the quantity of momentum, the principle of conservation of momentum, and its use in 
solving a new set of problems involving systems of particles. 
 
10.2 Momentum (Quantity of Motion) and Average Impulse 
 
Consider a point-like object (particle) of mass  m  that is moving with velocity   

!v  with 
respect to some fixed reference frame. The quantity of motion or the momentum, p , of 
the object is defined to be the product of the mass and velocity  
 
    

!p = m !v . (10.2.1) 
 
Momentum is a reference frame dependent vector quantity, with direction and magnitude. 
The direction of momentum is the same as the direction of the velocity. The magnitude of 
the momentum is the product of the mass and the instantaneous speed.  
 
Units: In the SI system of units, momentum has units of 1[kg m s ]−⋅ ⋅ . There is no special 
name for this combination of units.  
                                                
1 Isaac Newton. Mathematical Principles of Natural Philosophy. Translated by Andrew Motte (1729). 
Revised by Florian Cajori. Berkeley: University of California Press, 1934. p. 13. 
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During a time interval  Δt , a non-uniform force   

!
F  is applied to the particle. Because we 

are assuming that the mass of the point-like object does not change, Newton’s Second 
Law is then 

 
    

!
F = m!a = m d!v

dt
= d(m!v)

dt
. (10.2.2) 

 
Because we are assuming that the mass of the point-like object does not change, the 
Second Law can be written as 

 
   

!
F = d!p

dt
. (10.2.3) 

 
The impulse of a force acting on a particle during a time interval   [t,t + Δt]  is defined as 
the definite integral of the force from  t  to  t + Δt ,  
 

 
    

!
I =

!
F( ′t )d ′t

′t =t

′t =t+Δt

∫ . (10.2.4) 

 
The SI units of impulse are  [N ⋅m]= [kg⋅m⋅s−1]  which are the same units as the units of 
momentum.  
 
Apply Newton’s Second Law in Eq. (10.2.4) yielding 
 

 
    

!
I =

!
F( ′t )d ′t

′t =t

′t =t+Δt

∫ = d!p
d ′t

d ′t
′t =t

′t =t+Δt

∫ = d ! ′p
! ′p =!p(t )

! ′p =!p(t+Δt )

∫ = !p(t + Δt)− !p(t) = Δ!p . (10.2.5) 

 
Eq. (10.2.5) represents the integral version of Newton’s Second Law: the impulse applied 
by a force during the time interval   [t,t + Δt]  is equal to the change in momentum of the 
particle during that time interval. 
 
The average value of that force during the time interval  Δt  is given by the integral 
expression 

 
    

!
Fave =

1
Δt

!
F( ′t )d ′t

′t =t

′t =t+Δt

∫ . (10.2.6) 

 
The product of the average force acting on an object and the time interval over which it is 
applied is called the average impulse, 
  
 

    
!
Iave =

!
Fave Δt . (10.2.7) 
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Multiply each side of Eq. (10.2.6) by  Δt  resulting in the statement that the average 
impulse applied to a particle during the time interval   [t,t + Δt]  is equal to the change in 
momentum of the particle during that time interval, 
 
 

   
!
Iave = Δ!p.  (10.2.8) 

 
Example 10.1 Impulse for a Non-Constant Force 
 

Suppose you push an object for a time 

  

Δt = 1.0 s
bΔt / 2
F(t)t

 in the x+ -direction. For the first half of 

the interval, you push with a force that increases linearly with time according to 
 
     

!
F(t) = bt î, 0 ≤ t ≤ 0.5s  with  b = 2.0×101 N ⋅s−1 . (10.2.9) 

 
Then for the second half of the interval, you push with a linearly decreasing force, 
 
     

!
F(t) = (d − bt)î, 0.5s ≤ t ≤1.0s  with d = 2.0×101 N  (10.2.10) 

 
The force vs. time graph is shown in Figure 10.3. What is the impulse applied to the 
object? 

!

t

b t / 2

F(t)

t
t / 2  

 
Figure 10.3 Graph of force vs. time 

 
Solution: We can find the impulse by calculating the area under the force vs. time curve. 
Since the force vs. time graph consists of two triangles, the area under the curve is easy to 
calculate and is given by 
 

 

    


I = 1

2
(bΔt / 2)(Δt / 2)+ 1

2
(bΔt / 2)(Δt / 2)

⎡

⎣
⎢

⎤

⎦
⎥ î

= 1
4

b(Δt)2 î = 1
4

(2.0×101 N ⋅s−1)(1.0s)2 î = (5.0N ⋅s)î.
 (10.2.11) 
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10.3 External and Internal Forces and the Change in Momentum of a 
System 
 
So far we have restricted ourselves to considering how the momentum of an object 
changes under the action of a force. For example, if we analyze in detail the forces acting 
on the cart rolling down the inclined plane (Figure 10.4), we determine that there are 
three forces acting on the cart: the force 

   

Fspring, cart  the spring applies to the cart; the 

gravitational interaction 
   

Fearth, cart  between the cart and the earth; and the contact force 

   

Fplane, cart  between the inclined plane and the cart. If we define the cart as our system, then 
everything else acts as the surroundings. We illustrate this division of system and 
surroundings in Figure 10.4. 

 
 

Figure 10.4 A diagram of a cart as a system and its surroundings 
 
The forces acting on the cart are external forces. We refer to the vector sum of these 
external forces that are applied to the system (the cart) as the external force,  
 
 

   

Fext =


Fspring, cart +


Fearth, cart +


Fplane, cart . (10.3.1) 

 
Then Newton’s Second Law applied to the cart, in terms of impulse, is 
 

 
    
Δpsys =


Fext dt

t0

t f∫ ≡

Isys.  (10.3.2) 

 
Let’s extend our system to two interacting objects, for example the cart and the spring. 
The forces between the spring and cart are now internal forces. Both objects, the cart and 
the spring, experience these internal forces, which by Newton’s Third Law are equal in 
magnitude and applied in opposite directions. So when we sum up the internal forces for 
the whole system, they cancel. Thus the sum of all the internal forces is always zero, 
 
    


Fint =


0.  (10.3.3) 

 
External forces are still acting on our system; the gravitational force, the contact force 
between the inclined plane and the cart, and also a new external force, the force between 
the spring and the force sensor. The force acting on the system is the sum of the internal 
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and the external forces. However, as we have shown, the internal forces cancel, so we 
have that 
    


F =

Fext +


Fint =


Fext . (10.3.4) 

 
10.4 System of Particles 
 
Suppose we have a system of N  particles labeled by the index    i = 1, 2, 3, , N .  The 
force on the thi  particle is 

 
    


Fi =

Fi

ext +

Fi, j

j=1, j≠i

j=N

∑ .  (10.4.1) 

 
In this expression 

    

Fj ,i  is the force on the thi  particle due to the interaction between the thi  

and thj  particles. We sum over all j particles with j i≠  since a particle cannot exert a 
force on itself (equivalently, we could define ,i i =F 0


), yielding the internal force acting 

on the thi  particle,  

 
    


Fi

int =

Fj ,i

j=1, j≠i

j=N

∑ . (10.4.2) 

 
The force acting on the system is the sum over all i  particles of the force acting on each 
particle, 

 
    


F =


Fi

i=1

i=N

∑ =

Fi

ext

i=1

i=N

∑ +

Fj ,i

j=1, j≠i

j=N

∑
i=1

i=N

∑ =

Fext . (10.4.3) 

 
Note that the double sum vanishes, 

 
    


Fj ,i

j=1, j≠ i

j=N

∑
i=1

i=N

∑ =

0 , (10.4.4) 

 
because all internal forces cancel in pairs, 
 
 

    

Fj ,i +


Fi, j =


0 . (10.4.5) 

 
The force on the thi  particle is equal to the rate of change in momentum of the thi  
particle, 
 

 
    


Fi =

d pi

dt
.  (10.4.6) 

 
When can now substitute Equation (10.4.6) into Equation (10.4.3) and determine that that 
the external force is equal to the sum over all particles of the momentum change of each 
particle, 
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Fext =

d pi

dti=1

i=N

∑ . (10.4.7) 

 
The momentum of the system is given by the sum 
 

 
    

psys =
pi

i=1

i=N

∑ ; (10.4.8) 

 
momenta add as vectors. We conclude that the external force causes the momentum of 
the system to change, and we thus restate and generalize Newton’s Second Law for a 
system of objects as 

 
    


Fext =

d psys

dt
.  (10.4.9) 

 
In terms of impulse, this becomes the statement 
 

 
    
Δpsys =


Fext dt

t0

t f∫ ≡

I.  (10.4.10) 

 
10.5 Center of Mass  
 
Consider two point-like particles with masses 1m  and 2m . Choose a coordinate system 
with a choice of origin such that body 1 has position 1r

  and body 2  has position    
r2  

(Figure 10.5).  

 
 

Figure 10.5 Center of mass coordinate system. 
 
The center of mass vector, cmR


, of the two-body system is defined as 

 

 1 1 2 2
cm

1 2

m m
m m

+=
+

r rR
 

. (10.5.1) 

 
We shall now extend the concept of the center of mass to more general systems. Suppose 
we have a system of N  particles labeled by the index    i = 1, 2, 3, , N .  Choose a 
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coordinate system and denote the position of the thi  particle as ir
 . The mass of the system 

is given by the sum 

 
  
msys = mi

i=1

i=N

∑  (10.5.2) 

 
and the position of the center of mass of the system of particles is given by 
 

 
    


Rcm = 1

msys

mi
ri

i=1

i=N

∑ . (10.5.3) 

 
(For a continuous rigid body, each point-like particle has mass dm  and is located at the 
position ′r . The center of mass is then defined as an integral over the body,  
 

 body
cm

body

dm

dm

′
=
∫
∫

r
R




. (10.5.4) 

 
Example 10.2 Center of Mass of the Earth-Moon System  
 
The mean distance from the center of the earth to the center of the moon is 

83.84 10 memr = × . The mass of the earth is   me = 5.98 ×1024 kg  and the mass of the moon 

is 227.34 10 kgmm = × . The mean radius of the earth is   re = 6.37 ×106 m . The mean radius 
of the moon is 61.74 10 mmr = × . Where is the location of the center of mass of the earth-
moon system? Is it inside the earth’s radius or outside? 
 
Solution: The center of mass of the earth-moon system is defined to be 
 

 
    


Rcm = 1

msys

mi
ri

i=1

i=N
∑ = 1

me + mm

(me
re + mm

rm ) . (10.5.5) 

 
Choose an origin at the center of the earth and a unit vector î  pointing towards the moon, 
then e =r 0

 . The center of mass of the earth-moon system is then 
 

 1 ˆ( ) m em m em
cm e e m m

e m e m e m

m m rm m
m m m m m m

= + = =
+ + +

rR r r i
    (10.5.6) 

 

 
22 8

6
24 22

(7.34 10 kg)(3.84 10 m) ˆ ˆ4.66 10 m
(5.98 10 kg 7.34 10 kg)cm

× ×= = ×
× + ×

R i i


 (10.5.7) 
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The earth’s mean radius is   re = 6.37 ×106 m  so the center of mass of the earth-moon 
system lies within the earth.  
 
Example 10.3 Center of Mass of a Rod 
 
A thin rod has length  L  and mass  M .  

L

M
= M / L

a) uniform rod

L

M

b) non-uniform rod

(x) = 0

L2 x
2

 
 

Figure 10.6 a) Uniform rod and b) non-uniform rod 
 
(a) Suppose the rod is uniform (Figure 10.6a). Find the position of the center of mass 
with respect to the left end of the rod. (b) Now suppose the rod is not uniform (Figure 
10.6b) with a linear mass density that varies with the distance x  from the left end 
according to 

 
  
λ(x) =

λ0

L2 x2  (10.5.8) 

 
where 0λ  is a constant and has SI units -1[kg m ]⋅ . Find 0λ  and the position of the center 
of mass with respect to the left end of the rod. 
 
Solution: (a) Choose a coordinate system with the rod aligned along the  x -axis and the 
origin located at the left end of the rod. The center of mass of the rod can be found using 
the definition given in Eq. (10.5.4). In that expression  dm  is an infinitesimal mass 
element and r  is the vector from the origin to the mass element  dm  (Figure 10.6c). 
 

= M / L

dm = dx

x
+x

x = 0 x = L
 

 
Figure 10.6c Infinitesimal mass element for rod 

 
Choose an infinitesimal mass element  dm  located a distance  ′x  from the origin. In this 
problem  ′x  will be the integration variable.  Let the length of the mass element be  d ′x . 
Then  
  dm = λd ′x  (10.5.9) 
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The vector ˆx′=r i . The center of mass is found by integration 
 

 2 2

0body 0

1 1 1 1ˆ ˆ ˆ ˆ( 0)
2 2 2

x x L

cm xx

L
dm x dx x L

M L L L
′=

′=′=
′ ′ ′= = = = − =∫ ∫R r i i i i

  . (10.5.10) 

 
 
(b) For a non-uniform rod (Figure 10.6d),  

dm = dx

x
+x

x = 0 x = L

= 0

L2
x 2

(x )

(x )

 
 

Figure 10.6d Non-uniform rod 
 
the mass element is found using Eq. (10.5.8) 
 

 20
2( )dm x dx x dx
L
λλ λ′ ′ ′ ′= = = . (10.5.11) 

The vector ˆx′=r i . The mass is found by integrating the mass element over the length of 
the rod 
 

       2 3 30 0 0 0
2 2 20body 0 0

( ) ( 0)
3 3 3

x L x L x L

xx x
M dm x dx x dx x L L

L L L
λ λ λ λλ

= = ′=

′=′ ′= =
′ ′ ′ ′ ′= = = = = − =∫ ∫ ∫ . (10.5.12) 

 
Therefore  

 0
3M
L

λ =  (10.5.13) 

 
The center of mass is again found by integration 
 

 

    


Rcm = 1

M
r dm

body
∫ = 3

λ0L
λ( ′x ) ′x d ′x

′x =0

x

∫ î = 3
L3 ′x 3 d ′x

′x =0

x

∫ î


Rcm = 3

4L3 ′x 4

′x =0

′x =L
î = 3

4L3 (L4 − 0) î = 3
4

L î.
 (10.5.14) 

 . 
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10.6 Translational Motion of the Center of Mass 
 
 The velocity of the center of mass is found by differentiation, 
 

 
    


Vcm = 1

msys

mi
v i

i=1

i=N

∑ =
psys

msys

. (10.6.1) 

 
The momentum is then expressed in terms of the velocity of the center of mass by 
 
 

    
psys = msys


Vcm. (10.6.2) 

 
We have already determined that the external force is equal to the change of the 
momentum of the system (Equation (10.4.9)). If we now substitute Equation (10.6.2) into 
Equation (10.4.9), and continue with our assumption of constant masses im , we have that 
 

 
    


Fext =

d psys

dt
= msys

d

Vcm

dt
= msys


Acm , (10.6.3) 

 
where cmA


, the derivative with respect to time of cmV


, is the acceleration of the center of 

mass. From Equation (10.6.3) we can conclude that in considering the linear motion of 
the center of mass, the sum of the external forces may be regarded as acting at the center 
of mass. 
 
Example 10.4 Forces on a Baseball Bat  
 
Suppose you push a baseball bat lying on a nearly frictionless table at the center of mass, 
position 2, with a force   

!
F  (Figure 10.7). Will the acceleration of the center of mass be 

greater than, equal to, or less than if you push the bat with the same force at either end, 
positions 1 and 3  

cm

1 2 3

F F F

 
 

Figure 10.7 Forces acting on a baseball bat 
 
Solution: The acceleration of the center of mass will be equal in the three cases. From 
our previous discussion, (Equation (10.6.3)), the acceleration of the center of mass is 
independent of where the force is applied. However, the bat undergoes a very different 
motion if we apply the force at one end or at the center of mass. When we apply the force 
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at the center of mass all the particles in the baseball bat will undergo linear motion 
(Figure 10.7a).  
 

cm

F cm translates,
no rotation about cm  

 
Figure 10.7a Force applied at center of mass  

 
 
When we push the bat at one end, the particles that make up the baseball bat will no 
longer undergo a linear motion even though the center of mass undergoes linear motion. 
In fact, each particle will rotate about the center of mass of the bat while the center of 
mass of the bat accelerates in the direction of the applied force (Figure 10.7b).  
 

cm

Fcm translates and rotates  
 

Figure 10.7b Force applied at end of bat  
 

10.7 Constancy of Momentum and Isolated Systems  
 
Suppose we now completely isolate our system from the surroundings. When the external 
force acting on the system is zero, 

    

Fext =


0 . (10.7.1) 

 
the system is called an isolated system. For an isolated system, the change in the 
momentum of the system is zero, 
 
 

   
Δpsys =


0 (isolated system) , (10.7.2) 

 
therefore the momentum of the isolated system is constant. The initial momentum of our 
system is the sum of the initial momentum of the individual particles,  
 
 

    
psys,i = m1

v1,i + m2
v2,i + ⋅⋅⋅ . (10.7.3) 

 
The final momentum is the sum of the final momentum of the individual particles, 
 
 

    
psys, f = m1

v1, f + m2
v2, f + ⋅⋅⋅ . (10.7.4) 

 
Note that the right-hand-sides of Equations. (10.7.3) and (10.7.4) are vector sums. 
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When the external force on a system is zero, then the initial momentum of the 
system equals the final momentum of the system, 
 

 
    
psys,i =

psys, f . (10.7.5) 

 
10.8 Momentum Changes and Non-isolated Systems 
 
Suppose the external force acting on the system is not zero,  
 
    


Fext ≠


0.  (10.8.1) 

 
and hence the system is not isolated. By Newton’s Third Law, the sum of the force on the 
surroundings is equal in magnitude but opposite in direction to the external force acting 
on the system,  
    


Fsur = −


Fext . (10.8.2) 

 
It’s important to note that in Equation (10.8.2), all internal forces in the surroundings sum 
to zero. Thus the sum of the external force acting on the system and the force acting on 
the surroundings is zero, 
    


Fsur +


Fext =


0 . (10.8.3) 

 
We have already found (Equation (10.4.9)) that the external force    


Fext  acting on a system 

is equal to the rate of change of the momentum of the system.  Similarly, the force on the 
surrounding is equal to the rate of change of the momentum of the surroundings. 
Therefore the momentum of both the system and surroundings is always conserved.  
 

For a system and all of the surroundings that undergo any change of state, the 
change in the momentum of the system and its surroundings is zero, 
 

 
   
Δpsys + Δpsur =


0.  (10.8.4) 

 
Equation (10.8.4) is referred to as the Principle of Conservation of Momentum. 
 
10.9 Worked Examples  
 
10.9.1 Problem Solving Strategies 
 
When solving problems involving changing momentum in a system, we shall employ our 
general problem solving strategy involving four basic steps: 
 

1. Understand – get a conceptual grasp of the problem. 
2. Devise a Plan - set up a procedure to obtain the desired solution. 
3. Carry our your plan – solve the problem! 
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4. Look Back – check your solution and method of solution. 
 
We shall develop a set of guiding ideas for the first two steps. 
 
1. Understand – get a conceptual grasp of the problem 
 
The first question you should ask is whether or not momentum is constant in some 
system that is changing its state after undergoing an interaction. First you must identify 
the objects that compose the system and how they are changing their state due to the 
interaction. As a guide, try to determine which objects change their momentum in the 
course of interaction. You must keep track of the momentum of these objects before and 
after any interaction. Second, momentum is a vector quantity so the question of whether 
momentum is constant or not must be answered in each relevant direction. In order to 
determine this, there are two important considerations. You should identify any external 
forces acting on the system. Remember that a non-zero external force will cause the 
momentum of the system to change, (Equation (10.4.9) above), 
 

 
    


Fext =

d psys

dt
.  (10.9.1) 

 
Equation (10.9.1) is a vector equation; if the external force in some direction is zero, then 
the change of momentum in that direction is zero. In some cases, external forces may act 
but the time interval during which the interaction takes place is so small that the impulse 
is small in magnitude compared to the momentum and might be negligible. Recall that 
the  average external impulse changes the momentum of the system  
 
 

    

I =

FextΔtint = Δpsys.  (10.9.2) 

 
If the interaction time is small enough, the momentum of the system is constant, Δ →p 0

 . 
If the momentum is not constant then you must apply either Equation (10.9.1) or 
Equation (10.9.2). If the momentum of the system is constant, then you can apply 
Equation (10.7.5), 
 

    
psys, i =

psys, f . (10.9.3) 
 
If there is no net external force in some direction, for example the x -direction, the 
component of momentum is constant in that direction, and you must apply 
 
   

psys, x ,i = psys, x , f  (10.9.4) 
 
2. Devise a Plan - set up a procedure to obtain the desired solution 
 
Draw diagrams of all the elements of your system for the two states immediately before 
and after the system changes its state. Choose symbols to identify each mass and velocity 
in the system. Identify a set of positive directions and unit vectors for each state. Choose 
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your symbols to correspond to the state and motion (this facilitates an easy interpretation, 
for example   

(vx ,i )1  represents the x -component of the velocity of object 1 in the initial 

state and   
(vx , f )1  represents the x -component of the velocity of object 1 in the final state). 

Decide whether you are using components or magnitudes for your velocity symbols. 
Since momentum is a vector quantity, identify the initial and final vector components of 
the momentum. We shall refer to these diagrams as momentum flow diagrams. Based on 
your model you can now write expressions for the initial and final momentum of your 
system. As an example in which two objects are moving only in the x -direction, the 
initial x -component of the momentum is 
 
 

   
psys, x ,i = m1(vx ,i )1 + m2(vx ,i )2 +. (10.9.5) 

 
The final x -component of the momentum is 
 
 

   
psys, x , f = m1(vx , f )1 + m2(vx , f )2 + . (10.9.6) 

 
If the x -component of the momentum is constant then 
  
   

psys, x ,i = psys, x , f . (10.9.7) 
 
We can now substitute Equations (10.9.5) and (10.9.6) into Equation (10.9.7), yielding 
 
 

   
m1(vx ,i )1 + m2(vx ,i )2 += m1(vx , f )1 + m2(vx , f )2 +. (10.9.8) 

 
Equation (10.9.8) can now be used for any further analysis required by a particular 
problem. For example, you may have enough information to calculate the final velocities 
of the objects after the interaction. If so then carry out your plan and check your solution, 
especially dimensions or units and any relevant vector directions. 
  
Example 10.5 Exploding Projectile  
 
An instrument-carrying projectile of mass   m1  accidentally explodes at the top of its 
trajectory. The horizontal distance between launch point and the explosion is  xi . The 
projectile breaks into two pieces that fly apart horizontally. The larger piece, 3m , has 
three times the mass of the smaller piece, 2m . To the surprise of the scientist in charge, 
the smaller piece returns to earth at the launching station. Neglect air resistance and 
effects due to the earth’s curvature. How far away,   

x3, f , from the original launching point 
does the larger piece land?  
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Figure 10.8 Exploding projectile trajectories 
 
Solution: We can solve this problem two different ways. The easiest approach is utilizes 
the fact that the external force is the gravitational force and therefore the center of mass 
of the system follows a parabolic trajectory. From the information given in the problem 
2 1 / 4m m=  and 3 13 / 4m m= . Thus when the two objects return to the ground the center 

of mass of the system has traveled a distance   Rcm = 2xi . We now use the definition of 
center of mass to find where the object with the greater mass hits the ground. Choose an 
origin at the starting point. The center of mass of the system is given by 
 

2 2 3 3

2 3
cm

m m
m m

+=
+

r rR
 

. 

 
So when the objects hit the ground     

!
Rcm = 2xi î , the object with the smaller mass returns 

to the origin, 2 =r 0
 , and the position vector of the other object is 

    
!r3 = x3, f î .  So using 

the definition of the center of mass, 
 

   
2xi î =

(3m1 / 4)x3, f î
m1 / 4+ 3m1 / 4

=
(3m1 / 4)x3, f î

m1

= 3
4

x3, f î . 

Therefore 

  
x3, f =

8
3

xi . 
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Note that the neither the vertical height above ground nor the gravitational acceleration g  
entered into our solution. 
 
Alternatively, we can use conservation of momentum and kinematics to find the distance 
traveled. Because the smaller piece returns to the starting point after the collision, the 
velocity of the smaller piece immediately after the explosion is equal to the negative of 
the velocity of original object immediately before the explosion. Because the collision is 
instantaneous, the horizontal component of the momentum is constant during the 
collision. We can use this to determine the speed of the larger piece after the collision. 
The larger piece takes the same amount of time to return to the ground as the projectile 
originally takes to reach the top of the flight. We can therefore determine how far the 
larger piece traveled horizontally.  
 
 
We begin by identifying various states in the problem.  
 
Initial state, time   t0 = 0 : the projectile is launched.  
 
State 1 time   t1 : the projectile is at the top of its flight trajectory immediately before the 

explosion. The mass is 1m  and the velocity of the projectile is     
!v1 = v1î .  

 
 
State 2 time 2t : immediately after the explosion, the projectile has broken into two 
pieces, one of mass 2m  moving backwards (in the negative  x -direction) with velocity 

   
!v2 = −!v1 . The other piece of mass 3m  is moving in the positive  x -direction with velocity 

    
!v3 = v3î , (Figure 10.8). 
 
State 3: the two pieces strike the ground at time   

t f = 2t1 , one at the original launch site 

and the other at a distance   
x3, f  from the launch site, as indicated in Figure 10.8. The 

pieces take the same amount of time to reach the ground   Δt = t1  because both pieces are 
falling from the same height as the original piece reached at time   t1 , and each has no 
component of velocity in the vertical direction immediately after the explosion. The 
momentum flow diagram with state 1 as the initial state and state 2 as the final state are 
shown in the upper two diagrams in Figure 10.8.  
 
The initial momentum at time   t1  immediately before the explosion is 
 
     

!psys(t1) = m1
!v1 . (10.9.9) 

 
The momentum at time   t2  immediately after the explosion is 
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!psys(t2 ) = m2

!v2 + m3
!v3 = − 1

4
m1
!v1 +

3
4

m1
!v3  (10.9.10) 

 
During the duration of the instantaneous explosion, impulse due to the external 
gravitational force may be neglected and therefore the momentum of the system is 
constant.  In the horizontal direction, we have that 

 

 
    
m1
!v1 = − 1

4
m1
!v1 +

3
4

m1
!v3 . (10.9.11) 

 
Equation (10.9.11) can now be solved for the velocity of the larger piece immediately 
after the collision, 

 
   
!v3 =

5
3
!v1 . (10.9.12) 

The larger piece travels a distance  

 
  
x3, f = v3 t1 =

5
3

v1 t1 =
5
3

xi . (10.9.13) 

 
Therefore the total distance the larger piece traveled from the launching station is 
 

 
  
x f = xi +

5
3

xi =
8
3

xi , (10.9.14) 

 
in agreement with our previous approach.  

 
 
Example 10.6 Landing Plane and Sandbag 

 
 

Figure 10.9 Plane and sandbag 
 
A light plane of mass 1000 kg  makes an emergency landing on a short runway. With its 
engine off, it lands on the runway at a speed of -140 m s⋅ . A hook on the plane snags a 
cable attached to a 120 kg  sandbag and drags the sandbag along. If the coefficient of 
friction between the sandbag and the runway is 0.4kµ = , and if the plane’s brakes give 
an additional retarding force of magnitude 1400 N , how far does the plane go before it 
comes to a stop? 
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Solution: We shall assume that when the plane snags the sandbag, the collision is 
instantaneous so the momentum in the horizontal direction remains constant,  
 
   

px ,i = px ,1 . (10.9.15) 
  
We then know the speed of the plane and the sandbag immediately after the collision. 
After the collision, there are two external forces acting on the system of the plane and 
sandbag, the friction between the sandbag and the ground and the braking force of the 
runway on the plane. So we can use the Newton’s Second Law to determine the 
acceleration and then one-dimensional kinematics to find the distance the plane traveled 
since we can determine the change in kinetic energy. 
 
The momentum of the plane immediately before the collision is 
 
 

    
pi = mpvp,i î  (10.9.16) 

 
The momentum of the plane and sandbag immediately after the collision is 
 
 

    
p1 = (mp + ms )vp,1 î  (10.9.17) 

 
Because the  x - component of the momentum is constant, we can substitute Eqs. 
(10.9.16) and (10.9.17) into Eq. (10.9.15) yielding 
 
   

mpvp,i = (mp + ms )vp,1 . (10.9.18) 
 
The speed of the plane and sandbag immediately after the collision is 
 

 
  
vp,1 =

mpvp,i

mp + ms

 (10.9.19) 

 
The forces acting on the system consisting of the plane and the sandbag are the normal 
force on the sandbag,  
 

    

Ng ,s = Ng ,s ĵ , (10.9.20) 

 
the frictional force between the sandbag and the ground 
 
 

    

fk = − fk î = −µk Ng ,s î , (10.9.21) 

the braking force on the plane  
 

    

Fg , p = −Fg , p î , (10.9.22) 

 
and the gravitational force on the system, 
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(mp + ms )

g = −(mp + ms )gĵ . (10.9.23) 
 
Newton’s Second Law in the   ̂i -direction becomes 
 
   

−Fg , p − fk = (mp + ms )ax . (10.9.24) 
 
If we just look at the vertical forces on the sandbag alone then Newton’s Second Law in 
the ĵ -direction becomes 

  N − msg = 0 . 
 
The frictional force on the sandbag is then  
 
 

    

fk = −µk Ng ,s î = −µk msgî . (10.9.25) 

 
Newton’s Second Law in the   ̂i -direction becomes 
 

  
−Fg , p − µk msg = (mp + ms )ax . 

 
The  x -component of the acceleration of the plane and the sand bag is then 
 

 
  
ax =

−Fg , p − µk msg

mp + ms

 (10.9.26) 

 
We choose our origin at the location of the plane immediately after the collision, 

  
xp (0) = 0 . Set   t = 0  immediately after the collision. The  x -component of the velocity of 

the plane immediately after the collision is   
vx ,0 = vp,1 . Set  

t = t f  when the plane just 
comes to a stop. Because the acceleration is constant, the kinematic equations for the 
change in velocity is  

  
vx , f (t f ) − vp,1 = axt f . 

 
We can solve this equation for  

t = t f , where   
vx , f (t f ) = 0  

 

  
t f = −vp,1 / axt . 

 
Then the position of the plane when it first comes to rest is 
 

 
  
xp (t f ) − xp (0) = vp,1t f +

1
2

axt f
2 = −

1
2

vp,1
2

ax

. (10.9.27) 
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Then using   
xp (0) = 0  and substituting Eq. (10.9.26) into Eq. (10.9.27) yields  

 

 
  
xp (t f ) =

1
2

(mp + ms )vp,1
2

(Fg , p + µk msg)
. (10.9.28) 

 
We now use the condition from conservation of the momentum law during the collision, 
Eq. (10.9.19) in Eq. (10.9.28) yielding  
 

 
  
xp (t f ) =

mp
2vp,i

2

2(mp + ms )(Fg , p + µk msg)
. (10.9.29) 

 
Substituting the given values into Eq. (10.9.28) yields 
 

  
xp (t f ) =

(1000 kg)2(40 m ⋅ s-1)2

2(1000 kg +120 kg)(1400 N + (0.4)(120 kg)(9.8m ⋅ s-2 ))
= 3.8 ×102 m . (10.9.30) 


