
pthread Tutorial

c© Copyright 2008 by Peter C. Chapin

August 31, 2008

Contents

1 Introduction 2

2 Creating and Destroying Threads 3

2.1 Creating Threads . 3

2.2 Returning Results from Threads 5

3 Thread Synchronization 8

3.1 Mutual Exclusion . 8

3.2 Condition Variables . 10

3.3 Semaphores . 14

3.4 Reader/Writer Locks . 17

4 Thead Models 18

4.1 Boss/Worker Model . 19

4.2 Pipeline Model . 20

4.3 Background Task Model . 20

4.4 Interface/Implementation Model 21

4.5 General Comments . 22

5 Thread Safety 23

5.1 Levels of Thread Safety . 23

5.2 Writing Thread Safe Code . 25

5.3 Exception Safety vs Thread Safety 26

1

6 Rules for Multithreaded Programming 26

6.1 Shared Data . 27

6.1.1 What data is shared? . 27

6.1.2 What data is not shared? 27

6.1.3 What type of simultaneous access causes a problem? . . . 27

6.1.4 What type of simultaneous access is safe? 28

6.2 What can I count on? . 28

Legal

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.1 or any later version
published by the Free Software Foundation; with no Invariant Sections, with no
Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is
included in the file GFDL.txt distributed with the LATEX source of this document.

1 Introduction

This document is intended to be a short but useful tutorial on how to use POSIX
threads (pthreads). In this document I do not attempt to give a full description
of all pthread features. Instead I hope to give you enough information to use
pthreads in a basic, yet effective way. Please refer to a text on pthreads for the
more esoteric details of the standard.

In addition to talking about the pthread interface itself, I also spend time in
this document discussing issues regarding concurrent programming in general.
While such issues are not specific to pthreads, it is a must that you understand
them if you are to use pthreads—or any thread library—effectively.

I will assume that you are compiling pthreads programs on a Unix system.
However, you should be aware that the pthreads interface is not necessarily
specific to Unix. It is a standard application program interface that could
potentially be implemented on many different systems. However, pthreads is
the usual way multi-threaded support is offered in the Unix world. Although
many systems support their own internal method of handling threads, virtually
every Unix system that supports threads at all offers the pthreads interface.

The pthreads API can be implemented either in the kernel of the operating
system or in a library. It can either be preemptive or it can be non-preemptive.

2

A portable program based on pthreads should not make any assumptions about
these matters.

When you compile a program that uses pthreads, you will probably have to set
special options on the compiler’s command line to indicate extra (or different)
libraries and/or alternative code generating stratagies. Consult your compiler’s
documentation for more information on this. Often you can indicate your desire
to use pthreads by supplying the “-pthread” option at the end of the compiler
command line. For example

$ gcc -o myprog myprog.c -pthread

This single option specifies that the pthreads library should be linked and also
causes the compiler to properly handle the multiple threads in the code that it
generates.

2 Creating and Destroying Threads

Clearly the first step required in understanding how to build a multithreaded
program is to understand how to create and destroy threads. There are a
number of subtle issues associated with this topic. Normally one wants to not
only create a thread but also to send that thread one or more parameters. When
a thread ends, one normally wants to be able to retieve one or more values that
are returned from the thread. In this section I will describe how these things
can be done with pthreads.

2.1 Creating Threads

To create a new thread you need to use the pthread create() function. Listing
1 shows a skeleton program that creates a thread that does nothing and then
waits for the thread to terminate.

The pthread create() function gives back a thread identifier that can be used
in other calls. The second parameter is a pointer to a thread attribute object
that you can use to set the thread’s attributes. The null pointer means to use
default attributes. The third parameter is a pointer to the function the thread is
to execute. The final parameter is the argument to the function. By using void
pointers here, any sort of data could potentially be sent to the thread function
provided proper casts are applied. In the skeleton example I show how a single
integer can be used as a thread argument, but in practice one might send a
pointer to a structure containing multiple arguments to the thread.

3

Listing 1: Skeleton Thread Program
#include <pthread . h>

/*

* The function to be executed by the thread should take a

* void* parameter and return a void* exit status code.

*/

void ∗ th r ead func t i on (void ∗ arg)
{

// Cast the parameter into what is needed.

int ∗ incoming = (int ∗) arg ;

// Do whatever is necessary using *incoming as the argument.

// The thread terminates when this function returns.

return NULL;
}

int main (void)
{

pthread t thread ID ;
void ∗ e x i t s t a t u s ;
int value ;

// Put something meaningful into value.

value = 42 ;

// Create the thread , passing &value for the argument.

pthr ead c r ea t e (&thread ID , NULL, thread funct i on , &value) ;

// The main program continues while the thread executes.

// Wait for the thread to terminate.

pth r ead j o i n (thread ID , &e x i t s t a t u s) ;

// Only the main thread is running now.

return 0 ;
}

4

You should plan to collect the exit status of all the threads you create by calling
pthread join() on each thread eventually. Alternatively you can create a de-
tached thread. The exit status for such threads are thrown away. The problem
with detached threads is that, unless you make special arrangements, you are
never sure when they complete. Usually you want to make sure all your threads
have terminated cleanly before you end the process by returning from main().

If you want to kill a thread before its thread function returns normally, you can
use pthread cancel(). However, there are difficulties involved in doing that.
You must be sure the thread has released any resources that it has obtained
before it actually dies. For example if a thread has dynamcially allocated mem-
ory and you cancel it before it can free that memory, your program will have a
memory leak. This is different than when you kill an entire process. The op-
erating system will typically clean up (certain) resources that are left dangling
by the process. In particular, the entire address space of a process is recovered.
However, the operating system will not do that for a thread since all the threads
in a process share resources. For all the operating system knows, the memory
allocated by one thread will be used by another thread. This situation makes
canceling threads carelessly a bad idea.

Exercies

1. Write a program that creates 10 threads. Have each thread execute the
same function and pass each thread a unique number. Each thread should
print “Hello, World (thread n)” five times where ‘n’ is replaced by the
thread’s number. Use an array of pthread t objects to hold the various
thread IDs. Be sure the program doesn’t terminate until all the threads
are complete. Try running your program on more than one machine. Are
there any differences in how it behaves?

2.2 Returning Results from Threads

The example in the last section illustrated how you can pass an argument into
your thread function if necessary. In this section I will describe how to return
results from thread functions.

Note that the thread functions are declared to return a pointer to void. How-
ever, there are some pitfalls involved in using that pointer appropriately. The
code below shows one attempt at returning an integer status code from a thread
function.

void ∗ th r ead func t i on (void ∗)
{

int code = DEFAULT VALUE;

// Set the value of ’code’ as appropriate.

5

return (void ∗) code ;
}

This method will only work on machines where integers can be converted to
a pointer and then back to an integer without loss of information. On some
machines such conversions are dangerous. In fact this method will fail in all
cases where one attempts to return an object, such as a structure, that is larger
than a pointer.

In contrast, the code below doesn’t fight the type system. It returns a pointer
to an internal buffer where the return value is stored. While the example shows
an array of characters for the buffer, one can easily imagine it being an array
of any necessary type, or a single object such as an integer status code or a
structure with many members.

void ∗ th r ead func t i on (void ∗)
{

char bu f f e r [6 4] ;

// Fill up the buffer with something good.

return bu f f e r ;
}

Alas, the code above fails because the internal buffer is automatic and it vanishes
as soon as the thread function returns. The pointer given back to the calling
thread points at undefined memory. This is another example of the classic
dangling pointer error.

In the next attempt the buffer is made static so that it will continue to exist
even after the thread function terminates. This gets around the dangling pointer
problem.

void ∗ th r ead func t i on (void ∗)
{

stat ic char bu f f e r [6 4] ;

// Fill up the buffer with something good.

return bu f f e r ;
}

This method might be satisfactory in some cases, but it doesn’t work in the
common case of multiple threads running the same thread function. In such a
situation the second thread will overwrite the static buffer with its own data
and destroy that left by the first thread. Global data suffers from this same
problem since global data always has static duration.

The version below is the most general and most robust.

6

void ∗ th r ead func t i on (void ∗)
{

char ∗ bu f f e r = (char ∗) mal loc (6 4) ;

// Fill up the buffer with something good.

return bu f f e r ;
}

This version allocates buffer space dynamically. This approach will work cor-
rectly even if multiple threads execute the thread function. Each will allocate
a different array and store the address of that array in a stack variable. Every
thread has its own stack so automatic data objects are different for each thread.

In order to receive the return value of a thread the higher level thread must join
with the subordinate thread. This is shown in the main function of Listing 1.
In particular

void ∗ e x i t s t a t u s ;

// Wait for the thread to terminate.

pth r ead j o i n (thread ID , &e x i t s t a t u s) ;

The pthread join() function blocks until the thread specified by its first ar-
gument terminates. It then stores into the pointer pointed at by its second
argument the value returned by the thread function. To use this pointer, the
higher level thread must cast it into an appropriate type and dereference it. For
example

char ∗ t h r e a d r e s u l t ;

t h r e a d r e s u l t = (char ∗) e x i t s t a t u s ;
p r i n t f ("I got %s back from the thread.\n" , t h r e a d r e s u l t) ;
f r e e (e x i t s t a t u s) ;

If the thread function allocated the space for the return value dynamically then
it is essential for the higher level thread to free that space when it no longer
needs the return value. If this isn’t done the program will leak memory.

Exercises

1. Write a program that computes the square roots of the integers from 0
to 99 in a separate thread and returns an array of doubles containing the
results. In the meantime the main thread should display a short message
to the user and then display the results of the computation when they are
ready.

7

2. Imagine that the computations done by the program above were much
more time consuming than merely calculating a few square roots. Imagine
also that displaying the ”short message” was also fairly time consuming.
For example, perhaps the message needed to be fetched from a network
server as HTML and then rendered. Would you expect the multithreaded
program to perform better than a single threaded program that, for ex-
ample, did the calculations first and then fetched the message? Explain.

3 Thread Synchronization

In order to effectively work together the threads in a program usually need
to share information or coordinate their activity. Many ways to do this have
been devised and such techniques usually go under the name of thread syn-
chronization. In this section I will outline several common methods of thread
synchronization and show how they can be done using POSIX threads.

3.1 Mutual Exclusion

When writing multi-threaded programs it is frequently necessary to enforce
mutually exclusive access to a shared data object. This is done with mutex
objects. The idea is to associate a mutex with each shared data object and then
require every thread that wishes to use the shared data object to first lock the
mutex before doing so. Here are the particulars

1. Declare an object of type pthread mutex t.

2. Initialize the object by calling pthread mutex init().

3. Call pthread mutex lock() to gain exclusive access to the shared data
object.

4. Call pthread mutex unlock() to release the exclusive access and allow
another thread to use the shared data object.

5. Get rid of the object by calling pthread mutex destroy().

The program of Listing 2 demonstrates the basic approach. It is important to
understand that if a thread attempts to lock the mutex while some other thread
has it locked, the second thread is blocked until the first releases the mutex with
pthread mutex unlock().

The code above uses dynamic initialization. However, it is also possible to
initialize a mutex object statically using the special symbol PTHREAD MUTEX -
INITIALIZER as the initializer.

Be sure to observe these points

8

Listing 2: Mutex Example
#include <pthread . h>
#include <uni s td . h>

pthread mutex t l ock ;
int shared data ;

// Often shared data is more complex than just an int.

void ∗ th r ead func t i on (void ∗ arg)
{

int i ;

for (i = 0 ; i < 1024∗1024; ++i) {
// Access the shared data here.

pthread mutex lock(& lock) ;
shared data++;
pthread mutex unlock(& lock) ;

}
return NULL;

}

int main (void)
{

pthread t thread ID ;
void ∗ e x i t s t a t u s ;
int i ;

// Initialize the mutex before trying to use it.

pthread mutex in i t (&lock , NULL) ;

p th r ead c r ea t e (&thread ID , NULL, thread funct i on , NULL) ;

// Try to use the shared data.

for (i = 0 ; i < 10 ; ++i) {
s l e e p (1) ;
pthread mutex lock(& lock) ;
p r i n t f ("\rShared integer’s value = %d\n" , shared data) ;
pthread mutex unlock(& lock) ;

}
p r i n t f ("\n") ;

p th r ead j o i n (thread ID , &e x i t s t a t u s) ;

// Clean up the mutex when we are finished with it.

pthread mutex destroy(& lock) ;
return 0 ;

}

9

1. No thread should attempt to lock or unlock a mutex that has not been
initialized.

2. The thread that locks a mutex must be the thread that unlocks it.

3. No thread should have the mutex locked when you destroy the mutex.

4. Any mutex that is initialized should eventually be destroyed, but only after
any thread that uses it has either terminated or is no longer interesting in
using it.

In practice it is sometimes the case that threads are blocked on mutex objects
when the program wishes to terminate. In such a situation it might make sense
to pthread cancel() those threads before destroying the mutex objects they
are blocked on. Coordinating this properly can be tricky, however.

Notice that it is possible to assign special “mutex attributes” to a mutex ob-
ject when it is created. This is done by creating a mutex attributes object,
assigning attributes to the object, and then passing a pointer to the attributes
object into pthread mutex init(). The program in Listing 2 just calls for
default attributes by providing a NULL pointer instead. In many cases this is
perfectly adequate. The use of mutex attribute objects is beyond the scope of
this document.

Exercises

1. Enter the program in Listing 2 and try it out. Does it behave the way you
expected? Try different values for the maximum loop index in the thread
function and different sleep times in the main function. Try removing the
call to sleep() entirely. Try the program on different machines. Can you
explain what is happening?

2. Suppose you are building a C++ string class that you intend to use in
a multi-threaded program. You are worried about your string objects
possibly getting corrupted if they are updated by more than one thread
at a time. You consider adding a mutex as a member of each string
and locking that mutex whenever any string method is called. Discuss
the implications of this design. Be careful: this question is considerably
trickier than it may appear!

3.2 Condition Variables

If you want one thread to signal an event to another thread, you need to use
condition variables. The idea is that one thread waits until a certain con-
dition is true. First it tests the condition and, if it is not yet true, calls

10

pthread cond wait() to block until it is. At some later time another thread
makes the condition true and calls pthread cond signal() to unblock the first
thread.

Every call to pthread cond wait() should be done as part of a conditional
statement. If you aren’t doing that, then you are most likely using condition
variables incorrectly. For example

i f (f l a g == 0) pthread cond wait (. . .) ;

Here I’m waiting until the flag is not zero. You can test conditions of any
complexity. For example

x = a + b − (2 ∗ c) ;
i f (x < 0 | | x > 9) pthread cond wait (. . .) ;

Here I’m waiting until x is in the range from zero to nine inclusive where x is com-
puted in some complex way. Note that pthread cond wait() is only called if the
condition is not yet true. If the condition is already true, pthread cond wait()
is not called. This is necessary because condition variables do not remember
that they have been signaled.

If you look at my examples, you will see that there is a serious race condition in
them. Suppose the condition is not true. Then suppose that after the condition
is tested but before pthread cond wait() is called, the condition becomes true.
The fact that the condition is signaled (by some other thread) will be missed
by pthread cond wait(). The first thread will end up waiting on a condition
that is already true. If the condition is never signaled again the thread will be
stuck waiting forever.

To deal with this problem, every time you use a condition variable you must
also use a mutex to prevent the race condition. For example:

pthread mutex lock(&mutex) ;
i f (f l a g == 0) pthread cond wait (&condi t ion , &mutex) ;
pthread mutex unlock(&mutex) ;

The thread that signals this condition will use the same mutex to gain exclusive
access to the flag. Thus there is no way that the signaling could occur between
the test of the flag and the waiting on the condition.

For the above to work, pthread cond wait() needs to wait on the condition
and unlock the mutex as an atomic action. It does this, but it needs to
know which mutex to unlock. Hence the need for the second parameter of
pthread cond wait(). When the condition is signaled, pthread cond wait()
will lock the mutex again before returning so that the pthread mutex unlock()
in the above example is appropriate regardless of which branch of the if is taken.

Here is how the signaling thread might look

11

pthread mutex lock(&mutex) ;
f l a g = 1 ;
pthread mutex unlock(&mutex) ;
p th r ead cond s i gna l (&cond i t i on) ;

Before setting the flag, and thus making the condition true, the signaling thread
locks the mutex to make sure the waiting thread can’t get caught in a race
condition.

There is a further subtlety regarding the use of condition variables. Under
certain conditions the wait function might return even though the condition
variable has not actually been signaled. For example, if the Unix process in
general receives a signal, the thread blocked in pthread cond wait() might be
elected to process the signal handling function. If system calls are not restarting
(the default in many cases) the pthread cond wait() call might return with
an interrupted system call error code1. This has nothing to do with the state of
the condition so proceeding as if the condition is true would be inappropriate.

The solution to this problem is to simply retest the condition after pthread-
cond wait() returns. This is most easily done using a while loop. For example

pthread mutex lock(&mutex) ;
while (f l a g == 0) pthread cond wait (&condi t ion , &mutex) ;
pthread mutex unlock(&mutex) ;

Of course this assumes you want to ignore any spurious returns from the wait
function. In a more complex application you might want to process the error
codes in various ways depending on the situation.

The pthread cond signal function releases only one thread at a time. In some
cases it is desirable to release all threads waiting on a condition. This can be
accomplished using pthread cond broadcast. For example

pthread mutex lock(&mutex) ;
f l a g = 1 ;
pthread mutex unlock(&mutex) ;
pthread cond broadcast (&cond i t i on) ;

The example in listing 3 illustrates the use of condition variables in the con-
text of a program. Although contrived, this example is at least complete and
compilable.

Notice that in this program the condition variables are also initialized and de-
stroyed by calls to appropriate functions. As with mutex variables you can also
initialize condition variables statically using a special symbol: PTHREAD COND -
INITIALIZER.

1Of course this assumes you are dealing with an actual kernel thread. If the thread is
purely a user mode thread such unexpected returns won’t occur.

12

Listing 3: Condition Variable Example
#include <pthread . h>
#include <uni s td . h>

pthread cond t i s z e r o ;
pthread mutex t mutex ; // Condition variables needs a mutex.

int shared data = 32767 ; // Or some other large number.

void ∗ th r ead func t i on (void ∗ arg)
{

// Imagine doing something useful.

while (shared data > 0) {
// The other thread sees the shared data consistently.

pthread mutex lock(&mutex) ;
−−shared data ;
pthread mutex unlock(&mutex) ;

}

// Signal the condition.

pth r ead cond s i gna l (& i s z e r o) ;
return NULL;

}

int main (void)
{

pthread t thread ID ;
void ∗ e x i t s t a t u s ;
int i ;

p th r e ad cond in i t (& i s z e r o , NULL) ;
pthread mutex in i t (&mutex , NULL) ;

p th r ead c r ea t e (&thread ID , NULL, thread funct i on , NULL) ;

// Wait for the shared data to reach zero.

pthread mutex lock(&mutex) ;
while (shared data != 0)

pthread cond wait (& i s z e r o , &mutex) ;
pthread mutex unlock(&mutex) ;

p th r ead j o i n (thread ID , &e x i t s t a t u s) ;

pthread mutex destroy(&mutex) ;
pthread cond des t roy (& i s z e r o) ;
return 0 ;

}

13

Exercises

1. Modify the program in listing 3 to print messages and add delays (or wait
for user input) at various places so you can verify that the thread is, in
fact, waiting for the condition as appropriate. Verify that the thread does
not wait if the condition is already true when it is first tested.

2. In the text above, when a condition is signaled the signaling thread releases
the mutex before calling pthread cond signal(). However, it is also
possible swap those operations as shown below.

pthread mutex lock(&mutex) ;
f l a g = 1 ;
p th r ead cond s i gna l (&cond i t i on) ;
pthread mutex unlock(&mutex) ;

Does this result in the same behavior as before? Are any race conditions
introduced (or fixed) by this change? How does this approach impact
application performance?

3.3 Semaphores

Semaphore are essentially glorified integer counters. They support two primary
operations. One operation, called down or wait, attempts to decrement the
counter. The other operation, called up or signal, attempts to increment the
counter. What makes semaphores special is that if a thread tries to wait on
a zero semaphore it is blocked instead. Later when another thread signals the
semaphore the blocked thread is activated while the semaphore remains at zero.
In effect, the signaling causes the semaphore to be incremented but then the
thread that was blocked trying to do a wait is allowed to proceed, causing the
semaphore to be immediately decremented again.

If multiple threads are blocked waiting on a semaphore then the system chooses
one to unblock. Exactly how this choice is made is generally system dependent.
You can not assume that it will be in FIFO order2. However, the order in which
the threads are unblocked is not normally a concern. If it is, then your program
may not be very well designed.

A semaphore with an initial value of one can be used like a mutex. When a
thread wishes to enter its critical section and access a shared data structure,
it does a wait operation on the semaphore. If no other thread is in its critical
section, the semaphore will have its initial value of one and the wait will return
immediately. The semaphore will then be zero. If another thread tries to
wait on the semaphore during this time it will be blocked. When the first
thread is finished executing its critical section it does a signal operation on the

2If threads have different priorities, normally the highest priority thread is allowed to go
first.

14

semaphore. This will unblock one waiting thread or, if there are no waiting
threads, increment the semaphore back to its initial value of one. A semaphore
used in this way is called a binary semaphore because it has exactly two states.

However, because semaphores are integers they can take on values larger than
one. Thus they are often used to count scarce resources. For example a thread
might wait on a semaphore to effective reserve one item of a resource. If there
are no items left, the semaphore will be zero and the wait operation will block.
When a thread is finished using an item of a resource it signals the semaphore
to either increment the count of available items or to allow a blocked thread to
access the now free item. A semaphore used in this way is called a counting
semaphore.

The POSIX semaphore API is not really part of the normal pthread API. Instead
POSIX standardizes semaphores under a different API. Traditional Unix sys-
tems support shared memory, message queues, and semaphores as part of what is
called “System V Interprocess Communication” (System V IPC). POSIX also
provides shared memory, message queues, and semaphores as a package that
competes with, or replaces, the older standard. The functionality of the two
systems is similar although the details of the two APIs are different.

Note that POSIX semaphores, like System V IPC semaphores, can be used
to synchronize two or more separate processes. This is different than pthread
mutexes. A mutex can only be used by threads in the same process. Because
POSIX semaphores can be used for interprocess communication, they have the
option of being named. One process can create a semaphore under a particular
name and other processes can open that semaphore by name. In this tuto-
rial, however, I will focus only on synchronizing threads in the same process.
Thus here I will only go over what that requires and skip matters of semaphore
naming.

The skeleton program in Listing 4 shows how to initialize, clean up, and use a
POSIX semaphore. For brevity the skeleton program does not show the threads
being created or joined nor does it show any error handling. See the manual
pages for the various functions for more information on error returns.

Another difference between a pthread mutex and a semaphore is that, unlike a
mutex, a semaphore can be signaled in a different thread than the thread that
does the wait operation. This is necessary when using a semaphore to count
instances of a scarce resource. The skeleton program in Listing 4 is using a
semaphore like a mutex. I did this to simplify the listing so that the functions
used to manipulate the semaphore would be clear. In a later version of this
tutorial I may show an example of how to use a semaphore to count scarce
resources.

15

Listing 4: Semaphore Example
#include <semaphore . h>

int shared ;
sem t binary sem ; // Used like a mutex.

void ∗ th r ead func t i on (void ∗ arg)
{

sem wait(&binary sem) ; // Decrements count.

// Used shared resource.

s em s igna l (&binary sem) ; // Increments count.

}

void main (void)
{

s em in i t (&binary sem , 1) ; // Give semaphore initial count.

// Start threads here.

sem wait(&binary sem) ;
// Use shared resource.

s em s igna l (&binary sem) ;

// Join with threads here.

sem destroy(&binary sem) ;
return 0 ;

}

Exercises

1. Using POSIX mutex and condition variables, implement a semaphore ab-
stract type. For example, consider a header file containing the following.

struct semaphore {
// Fill in members as appropriate.

} ;

void s emaphore in i t (
struct semaphore ∗ s , int i n i t i a l c o u n t) ;

void semaphore destroy (struct semaphore ∗ s) ;
void semaphore wait (struct semaphore ∗ s) ;
void semaphore s igna l (struct semaphore ∗ s) ;

Implement the functions declared above. This shows that semaphores are
not strictly necessary as part of a low level API.

2. Some semaphore APIs (such as the Win32 API) allow the signal operation

16

to advance the value of a semaphore by more than one. This can be
implemented by executing a basic signal operation multiple times in a
loop. However, such an approach is inefficient if the number to be added
to the semaphore is large. Extend your solution for the question above so
that semaphore signal takes an additional integer parameter specifying
the how much the semaphore value is to be advanced. Try to use an
efficient method of handling large advances. Make sure your solution works
properly and does not suffer from any race conditions even when there are
multiple threads waiting on the semaphore.

3.4 Reader/Writer Locks

Mutex objects provide mutually exclusive access to a shared resource. But
sometimes complete mutual exclusion is unnecessarily restrictive. If two threads
are only interested in reading a shared resource, it should be possible to allow
both to access the resource at the same time. If neither thread tries to modify
the resource, the resource will never be in an inconsistent state and simultaneous
access is safe. Indeed, it is common for there to be multiple threads trying to
read a shared resource where updates to that resource are uncommon. For
example a tree data structure might be used many times by multiple threads to
look up information and yet updated only rarely by a single thread.

To support this usage POSIX provides reader/writer locks. Multiple readers
can lock such an object without blocking each other, but when a single writer
acquires the lock it has exclusive access to the resource. All following readers
or writers will block as long as a writer holds the lock.

The skeleton program in Listing 5 shows the basic structure. By now the pattern
of initialization, destruction, and use should look familiar. In a more typical
program the thread function where the read lock is acquired might be executed
by many threads while the main function where the write lock is needed might
be executed by only one thread. Notice in this case that the same function is
used to unlock both read locks and write locks.

Depending on the implementation, a steady stream of readers might perma-
nently lock out a writer. This situation is called writer starvation. On the other
hand if the implementation favors writers in the sense of letting waiting writers
obtain the lock as soon as possible, reader starvation may occur. The POSIX
standard favors writers, depending on specific thread priorities. This behavior
is reasonable because writers are presummed to be rare and the updates they
want to do are presummed to be important.

Exercises

1. I need something here.

17

Listing 5: Reader/Writer Lock Example
#include <pthread . h>

int shared ;
p thread rw lock t l ock ;

void ∗ th r ead func t i on (void ∗ arg)
{

pthread rw lock rd lo ck (& lock) ;
// Read from the shared resource.

pthread rwlock un lock (& lock) ;
}

void main (void)
{

p th r e ad rw l o ck i n i t (&lock , NULL) ;

// Start threads here.

pthread rwlock wr lock (& lock) ;
// Write to the shared resource.

pthread rwlock un lock (& lock) ;

// Join with threads here.

pthread rw lock des t roy (&binary sem) ;
return 0 ;

}

4 Thead Models

In this section I will describe some ways that threads can be used in real pro-
grams. The goal is to give you a feeling for the kind of design ideas that
lend themselves to a threaded solution. It is usually possible to build a single
threaded program that solves the same problem, but in some cases the sin-
gle threaded solution is awkward and difficult to manage. Be aware, however,
that single threaded solutions are often the most appropriate. There can be
a significant amount of overhead associated with synchronizing threads; mul-
tiple threads, poorly applied, can easily result in a slower and more confusing
program.

18

4.1 Boss/Worker Model

Here the idea is to have a single boss thread that creates work and several
worker threads that process the work. Typically the boss thread creates a
certain number of workers right away—even before any work has arrived. The
worker threads form a thread pool and are all programed to block immediately.
When the boss thread generates some work, it arranges to have one worker
thread unblock to handle it. Should all workers be busy the boss thread might

1. Queue up the work to be handled later as soon as a worker is free.

2. Create more worker threads.

3. Block until a worker is free to take the new work.

If no work has arrived recently and there are an excessive number of worker
threads in the thread pool, the boss thread might terminate a few of them to
recover resources. In any case, since creating and terminate threads is relatively
expensive (compared to, say, blocking on a mutex) it is generally better to avoid
creating a thread for each unit of work produced.

You have already seen this model in action many times. Consider a bank. When
you arrive you have work that needs doing. You get in a queue and wait for a free
teller (worker thread). When a teller is available that teller handles your work
while other tellers are handling other work at the same time. Should someone in
line have an unusually complicated transaction, it won’t hold up the line. Only
one teller will be tied up dealing with the large work item. The other tellers will
be available to handle other people’s work normally. Thus the response time is
reasonable even when some work items are very time consuming.

A web server is another excellent example of where the boss/worker model can
be used. The boss thread listens to the network for incoming connections. When
a connection is made, the boss thread directs a worker thread to handle that
connection. The boss thread then returns to listening to the network again.
In this way many connections can be handled at once. If a particularly time
consuming connection is active, it won’t prevent the program for dealing with
other connections as well.

This model works the best when the work items are independent of each other.
If the work items depend on each other or have to be processed in a particular
sequence the worker threads have to talk to each other and the overall efficiency
of this model is much reduced. Also, if you run a boss/worker program on
a single processor machine it is important that servicing a work item involves
a fair amount of blocking. If the work items are all 100% CPU bound then
there won’t be any performance enhancement. A single thread servicing all the
items in sequence would be just as fast as having multiple threads servicing
several items at once. However, if servicing an item requires a lot of blocking,

19

then another thread can use the CPU while the first is blocked and the overall
performance is better (often drastically so).

4.2 Pipeline Model

Many programs take some input, transform it in several stages, and then output
the result. Instead of having a single thread perform each step in sequence you
could have a separate thread handling each stage. The result is much like an
assembly line. The data flows from one worker to another and each worker
performs their particular operation on the data. By the time the data reaches
the end of the line it has been fully transformed into the desired output.

Usually writing a single threaded program to process sequential data in stages
is fairly straightforward. However, a multithreaded pipeline has the potential to
outperform the single threaded solution. In general, if there are N stages to the
pipeline there can be N items being operated on at once by the multithreaded
program and the result will be N times faster. In practice it rarely works
out this well. To obtain its full efficiency the time required for every stage
must be identical and the processing of one stage can’t in any way slow down
the processing of the others. If the program runs on a single processor the
operations being done in each stage must block frequently so that the CPU can
excute another stage while the blocked stages are waiting.

To balance the load between the stages, the programmer might need to use
profiling tools to find out which stages are taking shorter or longer amounts of
time. Stages that are very short can be combined with the stage on either side
while stages that are very long can be split into multiple stages (ideally with
blocking operations divided evenly between the stages). Getting this balance
just right is difficult yet without it the multithreaded solution to the pipeline
model will hardly be any faster than the single threaded solution. In fact,
because of locking overhead, it may even be slower3.

4.3 Background Task Model

Many programs have tasks that they would like to complete “in the back-
ground.” For example a program might want to backup its data files every
10 minutes or update a special status window every 5 seconds. It is awkward
to program such things with only a single thread. The program must remem-
ber to check the time regularly and call the background function whenever an
appropriate amount of time has elapsed. Since that might happen at any point
in the program’s execution, the program’s logic must be littered with calls to
functions that are largely unrelated to the main flow of the program.

3The buffers between the stages must be careful to avoid race conditions and overflow/un-
derflow conditions. This involves a significant amount of locking activity.

20

With multiple threads, however, this model is quite easy to program. A back-
ground thread can be created when the program initializes itself. That thread
can sleep for a certain fixed time and then, when it wakes up, perform the nec-
essary background operation. The thread would then just loop back and sleep
again until the next time interval has expired. This can happen independently
of the main program’s logic. The main complication involved with programming
this model is in making sure that the background access is properly synchronized
with the main access.

In this approach the threads are used in a manner similar to the way interrupt
service routines are used. They provide background services that the main
program does not have to explicity invoke. Many useful tasks can be effectively
handled in this way.

4.4 Interface/Implementation Model

Most graphical environments are event driven. Each action taken by the user is a
separate event that the program must handle. Examples of events include mouse
clicks, menu selections, keystrokes, and so forth. Typically the program contains
a single function that is called by the system whenever an event happens. That
function must process the event and then return before the system calls the
function with the next event. If the event handling function does not return
quickly enough events will back up and the user will precieve the program as
unresponsive and sluggish. In an extreme case the program will even appear to
be dead.

To avoid this the program can use multiple threads. If handling an event is
going to be time consuming and difficult (and involve a lot of blocking), the
event handling function can just create a thread to deal with it and then return
at once. This gives the event handling function the opportunity to handle
additional events while past events are being processed by other threads. The
result is that the program’s interface remains responsive even if some of the
operations requested are very time consuming.

It is not necessary for an entire program to be organized this way. Internal
modules in a program can use the same trick. When a function is called in
such a module, the function might create a thread to carry out the requested
operation and then return at once. The calling program will see the function as
very quick and responsive even though the actual work requested hasn’t really
been completed when the function returns.

The difficulty with this model is that eventually the user of an interface will
usually need know for sure when certain operations requested in the past have
actually completed. Some way of coordinating that information must be pro-
vided. Also it is difficult for the program to report errors effectively with this
model because an error might occur long after the operation was requested and
apparently handled.

21

Many operating systems themselves use this model extensively. For example,
when a program writes to a file, the file is typically not put onto the disk at
once. Instead it is just put into a cache (faster) and written to disk latter
when the system is less busy. In effect, the operating system writes to disk in
a separate thread that is independent of the thread that actually requested the
write operation in the first place.

4.5 General Comments

In general, multithreaded programs work best if the threads are as independent
as possible. The less the threads have to talk with each other the better. When-
ever threads have to synchronize or share data there will be locking overhead and
time spent waiting for other threads. Time blocked while waiting for another
thread is time wasted. Such a thread is not doing anything useful. In contrast,
if a thread is blocked waiting for I/O it is doing something that the program
needs done. Such blocking is good because it allows other threads to get the
CPU. But if a thread waits for another thread then it is not accomplishing any-
thing that the program needs. The more threads interact with each other the
more time they will spend waiting for each other and the more inefficient the
program will be.

It is easy to understand this idea when you think about working with another
person. If you and your partner can do two largely independent activities you
can both work without getting in each other’s way and you can get twice as
much work done. But if you try to work too closely then one of you will simply
be waiting for the other and the work won’t get done any more quickly than
it would by a single person alone. Consider what would happen if you decided
to type a paper with your partner but that you and your partner had to alter-
nate keystrokes on the keyboard. To type “Hello” first you type ‘H’ then your
partner types ‘e’ then you type ‘l’ and so on. Obviously this would be very ineffi-
cient. You would spend more time getting the alternation right than you would
actually typing keys. The exact same issues arise in multithreaded programs.
An improperly written multithreaded program can be slower—sometimes a lot
slower—than its single threaded equivalent.

If two tasks are very independent, they can often be handled by two entirely sep-
arate processes. Large software systems are often composed of many executable
files, each taking care of a single aspect of the system. At this level the system
is “multithreaded” even if the individual programs are not. However, multiple
processes can find it difficult to share information effectively. Putting multiple
threads into a single process makes the parallelism more fine grained and allows
the threads to interact more closely and share more resources. This can be a
good thing. But if taken to extreme it causes inefficiencies as I described above.
A good multithreaded program will strike the right balance between sharing
and independence. That balance is often difficult to find.

22

5 Thread Safety

Typically when a complicated object is operated on, it goes through several
intermediate, invalid states before the operation is complete. As an analogy
consider what a surgeon does when he operates on a person. Although the
purpose of the operation is to increase the patient’s health, the surgeon performs
several steps that would greatly decrease the patient’s health if they were left
incomplete. Imagine what would happen if a surgeon cut open a patient’s chest
and then decided to go on vacation for three weeks! Similarly a function that
operates on an object will often temporary put that object into an unusable
state while it performs the update. Once the update is complete, the function
(if written correctly) will leave the object is a fully functional state again.

Should another thread try to use an object while it is in an unusable state
(often called an inconsistent state) the object will not respond properly and the
result will be undefined. Keeping this from happening is the essential problem
of thread safety. The problem doesn’t come up in a single threaded program
because there is no possibility of another thread trying to access the object
while the first thread is updating it. (Unless exceptions are a possibility. In
that case the updating thread might abort the update and then later try to
access the incompletely updated object. This causes pretty much the same sort
of problems to occur).

5.1 Levels of Thread Safety

One of the problems people have discussing thread safety is that there are many
different levels of safety one might want to talk about. Just saying that a piece
of code is thread safe doesn’t really say all that much. Yet most people have
certain natural expectations about thread safety. Sometimes those expectations
are reasonable and valid, but sometimes they are not. Here are some of those
expectations.

• Reading an object’s value with multiple threads is not normally expected
to be a problem. Problems only occur when an object is updated since
it is only then that it has to be modified and run the risk of entering
inconsistent states.

However some objects have internal state that gets modified even when
its value is read (think about an object that has an internal cache). If
two threads try to read such an object there might be problems unless the
read operations on that object have been designed to handle the multiple
threads properly.

• Updating two independent objects, even of the same type, is not normally
expected to be a problem. It is usually assumed that objects that appear

23

to be independent are, in fact, independent and thus the inconsistent states
of one such object have no impact on the other.
However some objects share information behind the scenes (static class
data, global data, etc) that causes them to be linked internally even when
they do not appear to be linked from a logical point of view. In that
case, modifying two “independent” objects might cause a problem anyway.
Consider:

void f () void g ()
{ {

std : : s t r i n g x ; std : : s t r i n g y ;

// Modify x. // Modify y.

} }

If one thread is in function f() modifying the string x and another is
in function g() modifing string y, will there be a problem? Most of the
time you can assume that the two apparently independent objects can be
simultaneously modified without a problem. But it is possible, depending
on how std::string is implemented, that the two objects share some
data internally and that simultaneous modifications will cause a problem.
In fact, even if one of the functions merely reads the value of the string,
there might be a problem if they share internal data that is being updated
by the other function.

• Functions that acquire resources, even if from a common pool of resources,
are not normally exepected to be a problem. Consider:

void f () void g ()
{ {

char ∗p = new char [5 1 2] ; char ∗p = new char [5 1 2] ;

// Use the array p. // Use the array p.

} }

If one thread is in function f() and another thread is in function g(),
both threads might try to allocate memory simultaneously by invoking
the new operator. In a multi-threaded environment, it is safe to assume
that new has been written to work correctly in this case even though
both invocations of new are trying to take memory from the same pool
of memory. Internally new will synchronize the threads so that each call
will return a unique allocation and the internal memory pool will not be
corrupted. Similar comments can be made about functions that open files,
make network connections, and perform other resource allocation tasks.
However if the resource allocation functions are not designed with threads
in mind then they may well fail if invoked by multiple threads at once.

What people typically expect to cause problems is when a program tries to
access (update or read) an object while another thread is updating that same

24

object. Global objects are particularly prone to this problem. Local objects are
much less so. For example:

std : : s t r i n g x ;

void f ()
{

std : : s t r i n g y ;

// Modify x and y.

}

If two threads enter function f() at the same time, they will get different versions
of the string y. This is because every thread has its own stack and local objects
are allocated on the thread’s stack. Thus every thread has its own, independent
copy of the local objects. As a result, manipulating y inside f() will not cause
a problem (assuming that manipulating independent objects is safe). However,
since there is only one copy of the global x that both threads will be touching,
there could be a problem caused by those operations.

Local objects are not immune to problems since any function can start a new
thread and pass a pointer to a local object as a parameter to that thread. For
example

void f ()
{

std : : s t r i n g x ;

s t a r t t h r e ad (some funct ion , &x) ;
s t a r t t h r e ad (some funct ion , &x) ;

}

Here I assume there is a library function named start thread() that accepts
a pointer to a thread function (defined elsewhere) and a pointer to a parameter
for that function. In this case I start two threads executing some function(),
giving both of them a pointer to the string x. If some function() tries to modify
that string then two threads will be modifying the same object and problems are
likely. Note that this case is particularly insidious because some function() has
no particular reason to expect that it will be given the same parameter twice.
Thus it is unlikely to have any protection to handle such a case.

5.2 Writing Thread Safe Code

In theory the only way to control the actions of a thread is to use synchronization
primitives such as mutexes or semaphores. In languages that provide threads
as a part of the language, synchronization primitives of some kind are normally
provided by the language itself. In other cases, such as with C, they are library
functions, such as the Posix API, that interact with the operating system.

25

Normally you should write code that meets the usual expectations that people
have about thread safe code. If you are implementing a class, make sure that
multiple simultaneous reads on an object are safe. If you do update internal
data behind the caller’s back, you will probably have to protect those updates
yourself. Also make sure the simultaneous writes to independent objects are
safe. If you do make use of shared data, you will probably have to protect
updates to that shared data yourself. If you write a function that manages a
shared resource for multiple threads from a common pool, you will probably
have to protect that shared resource from corruption by multiple, simultaneous
requests. However, in general, you probably don’t have to bother protecting
every single object against simultaneous updates. Let the calling program worry
about that case. Such total safety is usually very expensive in terms of runtime
efficiency and not normally necessary or even appropriate.

5.3 Exception Safety vs Thread Safety

Both thread and exception safety share a number of common issues. Both are
concerned with objects that are in an inconsistent state. Both have to think
about resources (although in different ways... exception safety is concerned
with resource leaks, thread safety is concerned with resource corruption). Both
have several levels of safety that could be defined along with some common
expectations about what is and is not safe.

However, there is one important difference between the exception safety and
thread safety. Exceptions occur synchronously with the program’s execution
while threads are asynchronous. In other words, exceptions occur, in theory,
only at certain well defined times. Although it is not always clear which oper-
ations might throw an exception and which might not, in theory it is possible
to precisely define exactly when an exception might happen and when it can’t
happen. As a result it is often possible to make a function exception safe by
just reorganizing it. In contrast there is no way to control when two threads
might clash. Reorganzing a function is rarely helpful when it comes to mak-
ing it thread safe. This difference makes thread related errors very difficult to
reproduce and especially hard to manage.

6 Rules for Multithreaded Programming

In this section I’ll try to summarize a few “rules of thumb” that one should
keep in mind when building a multithreaded program. Although using multiple
threads can provide elegant and natural solutions to some programming prob-
lems, they can also introduce race conditions and other subtle, difficult to debug
problems. Many of these problems can be avoided by following a few simple
rules.

26

6.1 Shared Data

As I described in Section 3, when two threads try to access the same data object
there is a potential for problems. Normally modifying an object requires several
steps. While those steps are being carried out the object is typically not in a
well formed state. If another thread tries to access the object during that time,
it will likely get corrupt information. The entire program might have undefined
behavior afterwards. This must be avoided.

6.1.1 What data is shared?

1. Static duration data (data that lasts as long as the program does). This
includes global data and static local data. The case of static local data is
only significant if two (or more) threads execute the function containing
the static local at the same time.

2. Dynamically allocated data that has had its address put into a static
variable. For example, if a function uses malloc() or new to allocate an
object and then places the address of that object into a variable that is
accessible by more than one thread, the dynamically allocated object will
then be accessible by more than one thread.

3. The data members of a class object that has two (or more) of its member
functions called by different threads at the same time.

6.1.2 What data is not shared?

1. Local variables. Even if two threads call the same function they will have
different copies of the local variables in that function. This is because the
local variables are kept on the stack and every thread has its own stack.

2. Function parameters. In languages like C the parameters to functions are
also put on the stack and thus every thread will have its own copy of those
as well.

Since local variables and function parameters can’t be shared they are immune
to race conditions. Thus you should use local variables and function parameters
whenever possible. Avoid using global data.

6.1.3 What type of simultaneous access causes a problem?

1. Whenever one thread tries to update an object, no other threads should
be allowed to touch the object (for either reading or writing). Mutual
exclusion should be enforced with some sort of mutex-like object (or by
some other suitable means).

27

6.1.4 What type of simultaneous access is safe?

1. If multiple threads only read the value of an object, there should be no
problem. Be aware, however, that complicated objects often update in-
ternal information even when, from the outside, they are only being read.
Some objects maintain a cache or keep track of usage statistics internally
even for reads. Simultaneous reads on such an object might not be safe.

2. If one thread writes to one object while another thread touches a totally
independent object, there should be no problem. Be aware, however, that
many functions and objects do share some data internally. What appears
to be two separate objects might really be using a shared data structure
behind the scenes.

3. Certain types of objects are updated in an uninterruptable way. Thus
simultaneous reads and writes to such objects are safe because it is im-
possible for the object to be in an inconsistent state during the update.
Such updates are said to be atomic. The bad news is that the types that
support atomic updates are usually very simple (for example: int) and
there is no good way to know for sure exactly which types they are. The
C standard provides the type sig atomic t for this purpose. It is defined
in <signal.h> and is some kind of integer. Simultaneous updates to an
object declared to be volatile sig atomic t are safe. Mutexes are not
necessary in this case.

6.2 What can I count on?

Unless a function is specifically documented as being thread-safe, you should
assume that it is not. Many libraries make extensive use of static data internally
and unless those libraries were designed with multiple threads in mind that static
data is probably not being properly protected with mutexes.

Similarly you should regard the member functions of a class as unsafe for mul-
tiple threads unless it has been specifically documented to be otherwise. It is
easy to see that there might be problems if two threads try to manipulate the
same object. However, even if two threads try to manipulate different objects
there could still be problems. For various reasons, many classes use internal
static data or try to share implementation details among objects that appear
to be distinct from the outside.

You can count on the following:

1. The API functions of the operating system are thread-safe.

2. The Posix thread standard requires that most functions in the C standard
library be thread-safe. There are a few exceptions which are documented
as part of the standard.

28

3. Under Windows the C standard library is totally thread safe provided you
use the correct version of the library and you initialize it properly.

4. The thread safety of the C++ standard library is vauge and very much
dependent on the compiler you are using. The SGI criteria for thread
safety of the standard template library is gaining ground as the defacto
standard. It is not universal.

If you use a non thread-safe function in one of your functions, your function
will be rendered non thread-safe as well. However, you are free to use a non
thread-safe function in a multithreaded program provided it is never called by
two or more threads at the same time. You can either arrange to use such
functions in only one thread or protect calls to such functions with mutexes.
Keep in mind that many functions share data internally with other functions.
If you try to protect calls to a non thread-safe function with a mutex you must
also protect calls to all the other related functions with the same mutex. This
is often difficult.

29

	Introduction
	Creating and Destroying Threads
	Creating Threads
	Returning Results from Threads

	Thread Synchronization
	Mutual Exclusion
	Condition Variables
	Semaphores
	Reader/Writer Locks

	Thead Models
	Boss/Worker Model
	Pipeline Model
	Background Task Model
	Interface/Implementation Model
	General Comments

	Thread Safety
	Levels of Thread Safety
	Writing Thread Safe Code
	Exception Safety vs Thread Safety

	Rules for Multithreaded Programming
	Shared Data
	What data is shared?
	What data is not shared?
	What type of simultaneous access causes a problem?
	What type of simultaneous access is safe?

	What can I count on?

