
My malloc using mmap

Johan Montelius

HT2016

1 Introduction

This is a version of the Mylloc experiment but here we will use the system
call mmap() instead of the system call sbrk() when we're asking for memory
from the operating system. If you're running on an OSX machine this is
probably what you want to do since sbrk() is deprecated and if it is used,it
is implemented in terms of mmap(). It can also be interesting to look at even
if you have completed the �rst assignment using sbrk() since you will learn
how to use mmap() to do what we want.

You need to read this tutorial together with the original tutorial. In this
short tutorial we will implement our own version of sbrk() so that the rest
of the Mylloc system can run without any modi�cations. If one would do a
mmap() solution from scratch this is probably not the most straight forward
solution.

2 Implement sbrk()

We will implement the �rst simple version of malloc as described in the
Mylloc paper. What we need is therefore an implementation of sbrk(), if
we can fake this we're home. Create a �le called sbrk.c and start coding.

In the �rst part of sbrk.c we use a GCC extension to the C language.
We're declaring a function, init(), to be a constructor. This means that the
function will be called when the program is loaded. The feature is normally
used by shared libraries but we will make use of it in our experiment (does
this work using Clang?).

#include <s t d l i b . h>
#include <sys /mman. h>

#define MAX_HEAP 64*1024*4096

char *heap ;

char *brkp = NULL;
char *endp = NULL;

stat ic void i n i t () __attribute__ ((con s t ruc to r)) ;

1

void i n i t () {
heap = (char *)mmap(NULL, MAX_HEAP,

(PROT_READ | PROT_WRITE) ,
(MAP_PRIVATE | MAP_ANONYMOUS) , −1,

0) ;
brkp = heap ;
endp = brkp + MAX_HEAP;

}

What we will do in the initialization is to allocate a heap of our own. We
do this with a call to the mmap() system call. The procedure will allocate a
huge area (MAX_HEAP big) that is read and writable. It is a private area and
is not the mapping of a �le i.e. simply new virtual memory.

Once we know this we can implement a procedure sbrk() that when
requested will increment the brkp pointer and return a pointer to the start
of the allocated block.

void * sbrk (s i ze_t s i z e) {
i f (s i z e == 0) {
return (void *) brkp ;

}
void * f r e e = (void *) brkp ;

brkp += s i z e ;
i f (brkp >= endp) {
return NULL;

}
return f r e e ;

}

We know that sbrk() should return the top of the heap when called with
a zero argument so this is what we do. If we have reached the end of the
heap we return NULL which is also �ne according to the documentation. We
could of course do another call to mmap() to get more memory but this is
�ne for our purposes.

If you now compile this �le we will have an object �le that implements
sbrk().

> gcc -c sbrk.c

We can then link everything together and doing so the call to sbrk() in
mylloc.c will use our version.

> gcc -o bench sbrk.o rand.o mylloc.o bench.c -lm

If you look carefully you will notice that our mmapped heap is not located
at the same place as the regular heap.

2

