
A guide to inter-process communicAtion in Linux ... cc BY-sA 4.0 ... opensource.com 1

A guide to inter-process
communication in Linux

Learn how processes synchronize
with each other in Linux.

By Marty Kalin

Opensource.com

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/

OpensOurce.cOm .

2 A guide to inter-process communicAtion in Linux ... cc BY-sA 4.0 ... opensource.com

AbOut OpensOurce.cOm

What is Opensource.com?

OpensOurce.cOM publishes stories about creating,
adopting, and sharing open source

solutions. Visit opensource.com to learn more about how the open source
way is improving technologies, education, business, government, health, law,
entertainment, humanitarian efforts, and more.

submit a story idea: opensource.com/story

email us: open@opensource.com

http://www.opensource.com
https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://www.Opensource.com
http://www.Opensource.com
https://www.Opensource.com
http://www.Opensource.com
https://opensource.com/story
mailto:open%40opensource.com?subject=Story%20Proposal
https://freenode.net/#opensource.com

A guide to inter-process communicAtion in Linux ... cc BY-sA 4.0 ... opensource.com 3

. About the Author

mArty KALin

I’M an acadeMIc In cOMputer scIence (college of computing and
digital media, depaul university) with wide

experience in software development, mostly in production planning and scheduling
(steel industry) and product configuration (truck and bus manufacturing). Details
on books and other publications are available at:
Marty Kalin’s hompage

FOLLOw mArty KALin

twitter: @kalin_martin

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://condor.depaul.edu/mkalin/
https://twitter.com/kalin_martin

OpensOurce.cOm .

4 A guide to inter-process communicAtion in Linux ... cc BY-sA 4.0 ... opensource.com

intrOductiOn

chApters

Get invOLved | AdditiOnAL resOurces

Introduction 5

Shared storage 6
Using pipes and message queues 12
Sockets and signals 19
Wrapping up this guide 24

Write for Us 25

http://www.opensource.com
https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

. IntroductIon

A guide to inter-process communicAtion in Linux ... cc BY-sA 4.0 ... opensource.com 5

thIs guIde Is aBOut interprocess communication (ipc) in Linux. the
guide uses code examples in c to clarify

the following ipc mechanisms:

• Shared files
• Shared memory (with semaphores)
• Pipes (named and unnamed)
• Message queues
• Sockets
• Signals

I’ll introduce you to some core concepts before moving on to the first two of these mech-
anisms: shared files and shared memory.

core concepts
A process is a program in execution, and each process has its own address space, which
comprises the memory locations that the process is allowed to access. A process has
one or more threads of execution, which are sequences of executable instructions: a
single-threaded process has just one thread, whereas a multi-threaded process has more
than one thread. Threads within a process share various resources, in particular, address
space. Accordingly, threads within a process can communicate straightforwardly through
shared memory, although some modern languages (e.g., go) encourage a more disci-
plined approach such as the use of thread-safe channels. of interest here is that different
processes, by default, do not share memory.

there are various ways to launch processes that then communicate, and two ways
dominate in the examples that follow:

• A terminal is used to start one process, and perhaps a different terminal is used to
start another.

• The system function fork is called within one process (the parent) to spawn another
process (the child).

The first examples take the terminal approach. The code examples [1] are available in a
ZIP file on my website.

Links
[1] http://condor.depaul.edu/mkalin

introduction

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://condor.depaul.edu/mkalin
http://condor.depaul.edu/mkalin

6 A guide to inter-process communicAtion in Linux ... cc BY-sA 4.0 ... opensource.com

prOgraMMers are
aLL tOO faMILIar with file access, including
the many pitfalls (non-existent files, bad file
permissions, and so on) that beset the use
of files in programs. Nonetheless, shared
files may be the most basic IPC mecha-
nism. consider the relatively simple case in
which one process (producer) creates and
writes to a file, and another process (con-
sumer) reads from this same file:

 writes +-----------+ reads

producer-------->| disk file |<-------consumer

 +-----------+

the obvious challenge in using this ipc
mechanism is that a race condition might
arise: the producer and the consumer might
access the file at exactly the same time,
thereby making the outcome indeterminate.
To avoid a race condition, the file must be
locked in a way that prevents a conflict be-
tween a write operation and any another
operation, whether a read or a write. the
locking API in the standard system library
can be summarized as follows:
• A producer should gain an exclusive lock

on the file before writing to the file. An ex-
clusive lock can be held by one process
at most, which rules out a race condition
because no other process can access the
file until the lock is released.

• A consumer should gain at least a shared
lock on the file before reading from the file.
multiple readers can hold a shared lock at
the same time, but no writer can access
a file when even a single reader holds a
shared lock.

A shared lock promotes efficiency. If one
process is just reading a file and not

shared
storage
Learn how processes synchronize with each
other in Linux.

shAred stOrAGe .

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>

#define FileName "data.dat"
#define DataString "Now is the winter of our discontent\nMade glorious summer by
#this sun of York\n"

void report_and_exit(const char* msg) {
 perror(msg);
 exit(-1); /* EXIT_FAILURE */
}

int main() {
 struct flock lock;
 lock.l_type = F_WRLCK; /* read/write (exclusive versus shared) lock */
 lock.l_whence = SEEK_SET; /* base for seek offsets */
 lock.l_start = 0; /* 1st byte in file */
 lock.l_len = 0; /* 0 here means 'until EOF' */
 lock.l_pid = getpid(); /* process id */

 int fd; /* file descriptor to identify a file within a process */
 if ((fd = open(FileName, O_RDWR | O_CREAT, 0666)) < 0) /* -1 signals an error */
 report_and_exit("open failed...");

 if (fcntl(fd, F_SETLK, &lock) < 0) /** F_SETLK doesn't block, F_SETLKW does **/
 report_and_exit("fcntl failed to get lock...");
 else {
 write(fd, DataString, strlen(DataString)); /* populate data file */
 fprintf(stderr, "Process %d has written to data file...\n", lock.l_pid);
 }

 /* Now release the lock explicitly. */
 lock.l_type = F_UNLCK;
 if (fcntl(fd, F_SETLK, &lock) < 0)
 report_and_exit("explicit unlocking failed...");

 close(fd); /* close the file: would unlock if needed */
 return 0; /* terminating the process would unlock as well */
}

example 1. the producer program

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

A guide to inter-process communicAtion in Linux ... cc BY-sA 4.0 ... opensource.com 7

. shAred stOrAGe

• If the producer gains the lock, the program writes two text
records to the file.

• After writing to the file, the producer changes the lock
structure’s l_type field to the unlock value:

lock.l_type = F_UNLCK;

 and calls fcntl to perform the unlocking operation. The
program finishes up by closing the file and exiting (see
example 2).

changing its contents, there is no reason to prevent other
processes from doing the same. Writing, however, clearly
demands exclusive access to a file.

the standard i/o library includes a utility function named
fcntl that can be used to inspect and manipulate both exclusive
and shared locks on a file. The function works through a file
descriptor, a non-negative integer value that, within a process,
identifies a file. (Different file descriptors in different processes
may identify the same physical file.) For file locking, Linux pro-
vides the library function flock, which is a thin wrapper around
fcntl. The first example uses the fcntl function to
expose Api details (see example 1).

the main steps in the producer program above
can be summarized as follows:
• The program declares a variable of type struct
flock, which represents a lock, and initializes the
structure’s five fields. The first initialization:

lock.l_type = F_WRLCK; /* exclusive lock */

 makes the lock an exclusive (read-write) rather
than a shared (read-only) lock. If the producer
gains the lock, then no other process will be
able to write or read the file until the produc-
er releases the lock, either explicitly with the
appropriate call to fcntl or implicitly by closing
the file. (When the process terminates, any
opened files would be closed automatically,
thereby releasing the lock.)

• The program then initializes the remaining fields.
the chief effect is that the entire file is to be
locked. However, the locking API allows only
designated bytes to be locked. For example, if
the file contains multiple text records, then a sin-
gle record (or even part of a record) could be
locked and the rest left unlocked.

• The first call to fcntl:

if (fcntl(fd, F_SETLK, &lock) < 0)

 tries to lock the file exclusively, checking wheth-
er the call succeeded. in general, the fcntl func-
tion returns -1 (hence, less than zero) to indicate
failure. the second argument F_SETLK means
that the call to fcntl does not block: the function
returns immediately, either granting the lock or in-
dicating failure. If the flag F_SETLKW (the W at
the end is for wait) were used instead, the call to
fcntl would block until gaining the lock was pos-
sible. in the calls to fcntl, the first argument fd is
the file descriptor, the second argument specifies
the action to be taken (in this case, F_SETLK for
setting the lock), and the third argument is the ad-
dress of the lock structure (in this case, &lock).

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>

#define FileName "data.dat"

void report_and_exit(const char* msg) {
 perror(msg);
 exit(-1); /* EXIT_FAILURE */
}

int main() {
 struct flock lock;
 lock.l_type = F_WRLCK; /* read/write (exclusive) lock */
 lock.l_whence = SEEK_SET; /* base for seek offsets */
 lock.l_start = 0; /* 1st byte in file */
 lock.l_len = 0; /* 0 here means 'until EOF' */
 lock.l_pid = getpid(); /* process id */

 int fd; /* file descriptor to identify a file within a process */
 if ((fd = open(FileName, O_RDONLY)) < 0) /* -1 signals an error */
 report_and_exit("open to read failed...");

 /* If the file is write-locked, we can't continue. */
 fcntl(fd, F_GETLK, &lock); /* sets lock.l_type to F_UNLCK if no write lock */
 if (lock.l_type != F_UNLCK)
 report_and_exit("file is still write locked...");

 lock.l_type = F_RDLCK; /* prevents any writing during the reading */
 if (fcntl(fd, F_SETLK, &lock) < 0)
 report_and_exit("can't get a read-only lock...");

 /* Read the bytes (they happen to be ASCII codes) one at a time. */
 int c; /* buffer for read bytes */
 while (read(fd, &c, 1) > 0) /* 0 signals EOF */
 write(STDOUT_FILENO, &c, 1); /* write one byte to the standard output */

 /* Release the lock explicitly. */
 lock.l_type = F_UNLCK;
 if (fcntl(fd, F_SETLK, &lock) < 0)
 report_and_exit("explicit unlocking failed...");

 close(fd);
 return 0;
}

example 2. the consumer program

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

8 A guide to inter-process communicAtion in Linux ... cc BY-sA 4.0 ... opensource.com

shAred stOrAGe .

the consumer program is more complicated than neces-
sary to highlight features of the locking API. In particular, the
consumer program first checks whether the file is exclusively
locked and only then tries to gain a shared lock. The relevant
code is:

lock.l_type = F_WRLCK;

...

fcntl(fd, F_GETLK, &lock); /* sets lock.l_type to F_UNLCK if no

write lock */

if (lock.l_type != F_UNLCK)

 report_and_exit("file is still write locked...");

the F_GETLK operation specified in the fcntl call checks
for a lock, in this case, an exclusive lock given as F_WRLCK
in the first statement above. If the specified lock does not
exist, then the fcntl call automatically changes the lock type
field to F_UNLCK to indicate this fact. If the file is exclusively
locked, the consumer terminates. (A more robust version of
the program might have the consumer sleep a bit and try
again several times.)

If the file is not currently locked, then the consumer tries
to gain a shared (read-only) lock (F_RDLCK). to shorten
the program, the F_GETLK call to fcntl could be dropped
because the F_RDLCK call would fail if a read-write lock
already were held by some other process. recall that a
read-only lock does prevent any other process from writing
to the file, but allows other processes to
read from the file. In short, a shared lock
can be held by multiple processes. After
gaining a shared lock, the consumer pro-
gram reads the bytes one at a time from
the file, prints the bytes to the standard
output, releases the lock, closes the file,
and terminates.

Here is the output from the two pro-
grams launched from the same terminal
with % as the command line prompt:

% ./producer

Process 29255 has written to data file...

% ./consumer

Now is the winter of our discontent

Made glorious summer by this sun of York

In this first code example, the data shared
through IPC is text: two lines from Shake-
speare’s play Richard III. Yet, the shared
file’s contents could be voluminous, arbi-
trary bytes (e.g., a digitized movie), which
makes file sharing an impressively flexible
IPC mechanism. The downside is that file
access is relatively slow, whether the ac-

cess involves reading or writing. As always, programming
comes with tradeoffs. the next example has the upside of
IPC through shared memory, rather than shared files, with a
corresponding boost in performance.

shared memory
Linux systems provide two separate Apis for shared mem-
ory: the legacy system V Api and the more recent posix
one. these Apis should never be mixed in a single appli-
cation, however. A downside of the posix approach is
that features are still in development and dependent upon
the installed kernel version, which impacts code portabil-
ity. For example, the POSIX API, by default, implements
shared memory as a memory-mapped file: for a shared
memory segment, the system maintains a backing file with
corresponding contents. shared memory under posix
can be configured without a backing file, but this may im-
pact portability. my example uses the posix Api with a
backing file, which combines the benefits of memory ac-
cess (speed) and file storage (persistence).

the shared-memory example has two programs, named
memwriter and memreader, and uses a semaphore to co-
ordinate their access to the shared memory. Whenever
shared memory comes into the picture with a writer, whether
in multi-processing or multi-threading, so does the risk of a
memory-based race condition; hence, the semaphore is used
to coordinate (synchronize) access to the shared memory.

/** Compilation: gcc -o memwriter memwriter.c -lrt -lpthread **/

#include <stdio.h>

#include <stdlib.h>

#include <sys/mman.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

#include <semaphore.h>

#include <string.h>

#include "shmem.h"

void report_and_exit(const char* msg) {

 perror(msg);

 exit(-1);

}

int main() {

 int fd = shm_open(BackingFile, /* name from smem.h */

 O_RDWR | O_CREAT, /* read/write, create if needed */

 AccessPerms); /* access permissions (0644) */

 if (fd < 0) report_and_exit("Can't open shared mem segment...");

 ftruncate(fd, ByteSize); /* get the bytes */

example 3. source code for the memwriter process

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

A guide to inter-process communicAtion in Linux ... cc BY-sA 4.0 ... opensource.com 9

. shAred stOrAGe

• The memwriter then calls the mmap function:

caddr_t memptr = mmap(NULL, /* let system pick where to

 put segment */

 ByteSize, /* how many bytes */

 PROT_READ | PROT_WRITE, /* access

 protections */

 MAP_SHARED, /* mapping visible to other

 processes */

 fd, /* file descriptor */

 0); /* offset: start at 1st byte */

 to get a pointer to the shared memory. (the memreader
makes a similar call.) The pointer type caddr_t starts
with a c for calloc, a system function that initializes dy-
namically allocated storage to zeroes. the memwriter
uses the memptr for the later write operation, using the
library strcpy (string copy) function.

the memwriter program should be started first in its own
terminal. the memreader program then can be started
(within a dozen seconds) in its own terminal. the output
from the memreader is:

This is the way the world ends...

Each source file has documentation at the top explaining the
link flags to be included during compilation.

Let’s start with a review of how semaphores work as a
synchronization mechanism. A general semaphore also is
called a counting semaphore, as it has a value (typically
initialized to zero) that can be incremented. consider a
shop that rents bicycles, with a hundred of them in stock,
with a program that clerks use to do the rentals. Every
time a bike is rented, the semaphore is incremented by
one; when a bike is returned, the semaphore is decre-
mented by one. rentals can continue until the value hits
100 but then must halt until at least one
bike is returned, thereby decrementing
the semaphore to 99.

A binary semaphore is a special case
requiring only two values: 0 and 1. In
this situation, a semaphore acts as a
mutex: a mutual exclusion construct.
the shared-memory example uses a
semaphore as a mutex. When the sema-
phore’s value is 0, the memwriter alone
can access the shared memory. After
writing, this process increments the
semaphore’s value, thereby allowing the
memreader to read the shared memory
(see example 3).

Here’s an overview of how the memwrit-
er and memreader programs communi-
cate through shared memory:
• The memwriter program, shown above,

calls the shm_open function to get
a file descriptor for the backing file
that the system coordinates with the
shared memory. At this point, no mem-
ory has been allocated. the subse-
quent call to the misleadingly named
function ftruncate:

ftruncate(fd, ByteSize); /* get the bytes */

 allocates ByteSize bytes, in this case,
a modest 512 bytes. the memwriter
and memreader programs access the
shared memory only, not the backing
file. The system is responsible for syn-
chronizing the shared memory and the
backing file.

 caddr_t memptr = mmap(NULL, /* let system pick where to put segment */

 ByteSize, /* how many bytes */

 PROT_READ | PROT_WRITE, /* access protections */

 MAP_SHARED, /* mapping visible to other processes */

 fd, /* file descriptor */

 0); /* offset: start at 1st byte */

 if ((caddr_t) -1 == memptr) report_and_exit("Can't get segment...");

 fprintf(stderr, "shared mem address: %p [0..%d]\n", memptr, ByteSize - 1);

 fprintf(stderr, "backing file: /dev/shm%s\n", BackingFile);

 /* semaphore code to lock the shared mem */

 sem_t* semptr = sem_open(SemaphoreName, /* name */

 O_CREAT, /* create the semaphore */

 AccessPerms, /* protection perms */

 0); /* initial value */

 if (semptr == (void*) -1) report_and_exit("sem_open");

 strcpy(memptr, MemContents); /* copy some ASCII bytes to the segment */

 /* increment the semaphore so that memreader can read */

 if (sem_post(semptr) < 0) report_and_exit("sem_post");

 sleep(12); /* give reader a chance */

 /* clean up */

 munmap(memptr, ByteSize); /* unmap the storage */

 close(fd);

 sem_close(semptr);

 shm_unlink(BackingFile); /* unlink from the backing file */

 return 0;

}

example 3. source code for the memwriter process (continued)

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

10 A guide to inter-process communicAtion in Linux ... cc BY-sA 4.0 ... opensource.com

shAred stOrAGe .

• At this point, the memwriter is ready for writing, but it first
creates a semaphore to ensure exclusive access to the
shared memory. A race condition would occur if the mem-
writer were writing while the memreader was reading. if the
call to sem_open succeeds:

sem_t* semptr = sem_open(SemaphoreName, /* name */

 O_CREAT, /* create the semaphore */

 AccessPerms, /* protection perms */

 0); /* initial value */

 then the writing can proceed. the SemaphoreName (any
unique non-empty name will do) identifies the semaphore
in both the memwriter and the memreader. the initial val-
ue of zero gives the semaphore’s creator, in this case, the
memwriter, the right to proceed, in this case, to the write
operation.

• After writing, the memwriter increments the semaphore
value to 1:

if (sem_post(semptr) < 0) ..

 with a call to the sem_post function. in-
crementing the semaphore releases the
mutex lock and enables the memreader
to perform its read operation. For good
measure, the memwriter also unmaps the
shared memory from the memwriter ad-
dress space:

munmap(memptr, ByteSize); /* unmap the storage *

 this bars the memwriter from further access
to the shared memory (see example 4).

in both the memwriter and memreader pro-
grams, the shared-memory functions of main in-
terest are shm_open and mmap: on success,
the first call returns a file descriptor for the back-
ing file, which the second call then uses to get
a pointer to the shared memory segment. the

calls to shm_open are similar in the two programs except that
the memwriter program creates the shared memory, whereas
the memreader only accesses this already created memory:

int fd = shm_open(BackingFile, O_RDWR | O_CREAT, AccessPerms);

 /* memwriter */

int fd = shm_open(BackingFile, O_RDWR, AccessPerms);

 /* memreader */

With a file descriptor in hand, the calls to mmap are the
same:

ca ddr_t memptr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_

SHARED, fd, 0);

The first argument to mmap is NULL, which means that the
system determines where to allocate the memory in virtual
address space. It’s possible (but tricky) to specify an address

example 4. source code for the memreader process
/** Compilation: gcc -o memreader memreader.c -lrt -lpthread **/
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <semaphore.h>
#include <string.h>
#include "shmem.h"

void report_and_exit(const char* msg) {
 perror(msg);
 exit(-1);
}

int main() {
 int fd = shm_open(BackingFile, O_RDWR, AccessPerms); /* empty to begin */
 if (fd < 0) report_and_exit("Can't get file descriptor...");

 /* get a pointer to memory */
 caddr_t memptr = mmap(NULL, /* let system pick where to put segment */
 ByteSize, /* how many bytes */
 PROT_READ | PROT_WRITE, /* access protections */
 MAP_SHARED, /* mapping visible to other processes */
 fd, /* file descriptor */
 0); /* offset: start at 1st byte */

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

A guide to inter-process communicAtion in Linux ... cc BY-sA 4.0 ... opensource.com 11

. shAred stOrAGe

the memreader, like the memwriter, accesses the sema-
phore through its name in a call to sem_open. But the mem-
reader then goes into a wait state until the memwriter incre-
ments the semaphore, whose initial value is 0:

if (!sem_wait(semptr)) { /* wait until semaphore != 0 */

once the wait is over, the memreader reads the Ascii bytes
from the shared memory, cleans up, and terminates.

the shared-memory Api includes operations explicitly to
synchronize the shared memory segment and the backing
file. These operations have been omitted from the example
to reduce clutter and keep the focus on the memory-sharing
and semaphore code.

the memwriter and memreader programs are likely to exe-
cute without inducing a race condition even if the semaphore
code is removed: the memwriter creates the shared memory
segment and writes immediately to it; the memreader cannot

even access the shared memory until this has
been created. However, best practice requires
that shared-memory access is synchronized
whenever a write operation is in the mix, and
the semaphore Api is important enough to be
highlighted in a code example.

Wrapping up
The shared-file and shared-memory exam-
ples show how processes can communicate
through shared storage, files in one case and
memory segments in the other. the Apis for
both approaches are relatively straightfor-
ward. do these approaches have a common
downside? modern applications often deal with
streaming data, indeed, with massively large
streams of data. Neither the shared-file nor the
shared-memory approaches are well suited for
massive data streams. channels of one type or
another are better suited. part 2 thus introduc-
es channels and message queues, again with
code examples in c.

instead. the MAP_SHARED flag indicates that the allocated
memory is shareable among processes, and the last argu-
ment (in this case, zero) means that the offset for the shared
memory should be the first byte. The size argument speci-
fies the number of bytes to be allocated (in this case, 512),
and the protection argument indicates that the shared mem-
ory can be written and read.

When the memwriter program executes successfully, the
system creates and maintains the backing file; on my sys-
tem, the file is /dev/shm/shMemEx, with shMemEx as my
name (given in the header file shmem.h) for the shared stor-
age. in the current version of the memwriter and memreader
programs, the statement:

shm_unlink(BackingFile); /* removes backing file */

removes the backing file. If the unlink statement is omitted,
then the backing file persists after the program terminates.

 if ((caddr_t) -1 == memptr) report_and_exit("Can't access segment...");

 /* create a semaphore for mutual exclusion */

 sem_t* semptr = sem_open(SemaphoreName, /* name */

 O_CREAT, /* create the semaphore */

 AccessPerms, /* protection perms */

 0); /* initial value */

 if (semptr == (void*) -1) report_and_exit("sem_open");

 /* use semaphore as a mutex (lock) by waiting for writer to increment it */

 if (!sem_wait(semptr)) { /* wait until semaphore != 0 */

 int i;

 for (i = 0; i < strlen(MemContents); i++)

 write(STDOUT_FILENO, memptr + i, 1); /* one byte at a time */

 sem_post(semptr);

 }

 /* cleanup */

 munmap(memptr, ByteSize);

 close(fd);

 sem_close(semptr);

 unlink(BackingFile);

 return 0;

}

example 4. source code for the memreader process (continued)

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

12 A guide to inter-process communicAtion in Linux ... cc BY-sA 4.0 ... opensource.com

usinG pipes And messAGe queues .

thIs sectIOn turns tO pIpes, which
are channels

that connect processes for communication. A channel has a
write end for writing bytes, and a read end for reading these
bytes in FIFO (first in, first
out) order. in typical use, one
process writes to the chan-
nel, and a different process
reads from this same chan-
nel. the bytes themselves
might represent anything:
numbers, employee records,
digital movies, and so on.

Pipes come in two flavors,
named and unnamed, and
can be used either interac-
tively from the command line
or within programs; examples are forthcoming. this section
also looks at memory queues, which have fallen out of fash-
ion—but undeservedly so.

The code examples in the first section acknowledged the
threat of race conditions (either file-based or memory-based)
in IPC that uses shared storage. The question naturally
arises about safe concurrency for the channel-based ipc,
which will be covered in this section. the code examples
for pipes and memory queues use APIs with the POSIX
stamp of approval, and a core goal of the posix standards
is thread-safety.

consider the man pages for the mq_open [1] function,
which belongs to the memory queue API. These pages in-
clude a section on Attributes [2] with this small table:

interface Attribute Value
mq_open() thread safety mt-safe

the value MT-Safe (with MT for multi-threaded) means that
the mq_open function is thread-safe, which in turn implies
process-safe: A process executes in precisely the sense that

one of its threads executes, and if a race condition cannot
arise among threads in the same process, such a condition
cannot arise among threads in different processes. the MT-
Safe attribute assures that a race condition does not arise in

invocations of mq_open. in
general, channel-based ipc
is concurrent-safe, although
a cautionary note is raised in
the examples that follow.

unnamed pipes
Let’s start with a contrived
command line example that
shows how unnamed pipes
work. On all modern sys-
tems, the vertical bar | rep-
resents an unnamed pipe at

the command line. Assume % is the command line prompt,
and consider this command:

% sleep 5 | echo "Hello, world!" ## writer to the left of |,

reader to the right

the sleep and echo utilities execute as separate processes,
and the unnamed pipe allows them to communicate. How-
ever, the example is contrived in that no communication oc-
curs. the greeting Hello, world! appears on the screen; then,
after about five seconds, the command line prompt returns,
indicating that both the sleep and echo processes have exit-
ed. What’s going on?

in the vertical-bar syntax from the command line, the pro-
cess to the left (sleep) is the writer, and the process to the
right (echo) is the reader. By default, the reader blocks until
there are bytes to read from the channel, and the writer—
after writing its bytes—finishes up by sending an end-of-
stream marker. (Even if the writer terminates prematurely, an
end-of-stream marker is sent to the reader.) The unnamed
pipe persists until both the writer and the reader terminate.

using pipes and
message queues
Learn how processes synchronize with each other in Linux.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://man7.org/linux/man-pages/man2/mq_open.2.html
http://man7.org/linux/man-pages/man2/mq_open.2.html#ATTRIBUTES

A guide to inter-process communicAtion in Linux ... cc BY-sA 4.0 ... opensource.com 13

. usinG pipes And messAGe queues

in the contrived example, the sleep process does not
write any bytes to the channel but does terminate after
about five seconds, which sends an end-of-stream mark-
er to the channel. in the meantime, the echo process im-
mediately writes the greeting to the standard output (the
screen) because this process does not read any bytes
from the channel, so it does no waiting. once the sleep
and echo processes terminate, the unnamed pipe—not
used at all for communication—goes away and the com-
mand line prompt returns.

Here is a more useful example using two unnamed pipes.
Suppose that the file test.dat looks like this:

this

is

the

way

the

world

ends

the command:

% cat test.dat | sort | uniq

pipes the output from the cat (con-
catenate) process into the sort pro-
cess to produce sorted output, and
then pipes the sorted output into the
uniq process to eliminate duplicate
records (in this case, the two occur-
rences of the reduce to one):

ends

is

the

this

way

world

the scene now is set for a program
with two processes that communi-
cate through an unnamed pipe (see
example 1).

the pipeUN program above uses
the system function fork to create a
process. Although the program has
but a single source file, multi-pro-
cessing occurs during (successful)
execution. Here are the particulars
in a quick review of how the library
function fork works:
• The fork function, called in the

parent process, returns -1 to the

parent in case of failure. in the pipeUN example, the
call is:

pid_t cpid = fork(); /* called in parent */

 the returned value is stored, in this example, in the variable
cpid of integer type pid_t. (every process has its own pro-
cess ID, a non-negative integer that identifies the process.)
Forking a new process could fail for several reasons, includ-
ing a full process table, a structure that the system maintains
to track processes. Zombie processes, clarified shortly, can
cause a process table to fill if these are not harvested.

#include <sys/wait.h> /* wait */
#include <stdio.h>
#include <stdlib.h> /* exit functions */
#include <unistd.h> /* read, write, pipe, _exit */
#include <string.h>

#define ReadEnd 0
#define WriteEnd 1

void report_and_exit(const char* msg) {
 perror(msg);
 exit(-1); /** failure **/
}

int main() {
 int pipeFDs[2]; /* two file descriptors */
 char buf; /* 1-byte buffer */
 const char* msg = "Nature's first green is gold\n"; /* bytes to write */

 if (pipe(pipeFDs) < 0) report_and_exit("pipeFD");
 pid_t cpid = fork(); /* fork a child process */
 if (cpid < 0) report_and_exit("fork"); /* check for failure */

 if (0 == cpid) { /*** child ***/ /* child process */
 close(pipeFDs[WriteEnd]); /* child reads, doesn't write */

 while (read(pipeFDs[ReadEnd], &buf, 1) > 0) /* read until end of byte stream */
 write(STDOUT_FILENO, &buf, sizeof(buf)); /* echo to the standard output */

 close(pipeFDs[ReadEnd]); /* close the ReadEnd: all done */
 _exit(0); /* exit and notify parent at once */
 }
 else { /*** parent ***/
 close(pipeFDs[ReadEnd]); /* parent writes, doesn't read */

 write(pipeFDs[WriteEnd], msg, strlen(msg)); /* write the bytes to the pipe */
 close(pipeFDs[WriteEnd]); /* done writing: generate eof */

 wait(NULL); /* wait for child to exit */
 exit(0); /* exit normally */
 }
 return 0;
}

example 1. two processes communicating through an unnamed pipe.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

14 A guide to inter-process communicAtion in Linux ... cc BY-sA 4.0 ... opensource.com

usinG pipes And messAGe queues .

One more aspect of the program needs clarification: the
call to the wait function in the parent code. once spawned,
a child process is largely independent of its parent, as even
the short pipeUN program illustrates. the child can execute
arbitrary code that may have nothing to do with the parent.
However, the system does notify the parent through a sig-
nal—if and when the child terminates.

What if the parent terminates before the child? in this
case, unless precautions are taken, the child becomes and
remains a zombie process with an entry in the process table.
the precautions are of two broad types. one precaution is
to have the parent notify the system that the parent has no
interest in the child’s termination:

signal(SIGCHLD, SIG_IGN); /* in parent: ignore notification */

A second approach is to have the parent execute a wait on
the child’s termination, thereby ensuring that the parent out-
lives the child. this second approach is used in the pipeUN
program, where the parent code has this call:

wait(NULL); /* called in parent */

this call to wait means wait until the termination of any child
occurs, and in the pipeUN program, there is only one child pro-
cess. (the NULL argument could be replaced with the address
of an integer variable to hold the child’s exit status.) There is a
more flexible waitpid function for fine-grained control, e.g., for
specifying a particular child process among several.

the pipeUN program takes another precaution. When the
parent is done waiting, the parent terminates with the call to
the regular exit function. By contrast, the child terminates
with a call to the _exit variant, which fast-tracks notification
of termination. in effect, the child is telling the system to noti-
fy the parent AsAp that the child has terminated.

if two processes write to the same unnamed pipe, can the
bytes be interleaved? For example, if process P1 writes:

foo bar

to a pipe and process p2 concurrently writes:

baz baz

to the same pipe, it seems that the pipe contents might be
something arbitrary, such as:

baz foo baz bar

the posix standard ensures that writes are not interleaved
so long as no write exceeds PIPE_BUF bytes. on Linux sys-
tems, PIPE_BUF is 4,096 bytes in size. my preference with
pipes is to have a single writer and a single reader, thereby
sidestepping the issue.

• If the fork call succeeds, it thereby spawns (creates) a
new child process, returning one value to the parent but a
different value to the child. Both the parent and the child
process execute the same code that follows the call to
fork. (the child inherits copies of all the variables declared
so far in the parent.) in particular, a successful call to fork
returns:
• Zero to the child process
• The child’s process ID to the parent

• An if/else or equivalent construct typically is used after a
successful fork call to segregate code meant for the par-
ent from code meant for the child. in this example, the con-
struct is:

if (0 == cpid) { /*** child ***/

...

}

else { /*** parent ***/

...

}

If forking a child succeeds, the pipeUN program proceeds as
follows. there is an integer array:

int pipeFDs[2]; /* two file descriptors */

to hold two file descriptors, one for writing to the pipe and
another for reading from the pipe. (the array element
pipeFDs[0] is the file descriptor for the read end, and the
array element pipeFDs[1] is the file descriptor for the write
end.) A successful call to the system pipe function, made
immediately before the call to fork, populates the array with
the two file descriptors:

if (pipe(pipeFDs) < 0) report_and_exit("pipeFD");

The parent and the child now have copies of both file de-
scriptors, but the separation of concerns pattern means that
each process requires exactly one of the descriptors. In this
example, the parent does the writing and the child does
the reading, although the roles could be reversed. The first
statement in the child if-clause code, therefore, closes the
pipe’s write end:

close(pipeFDs[WriteEnd]); /* called in child code */

and the first statement in the parent else-clause code closes
the pipe’s read end:

close(pipeFDs[ReadEnd]); /* called in parent code */

the parent then writes some bytes (Ascii codes) to the un-
named pipe, and the child reads these and echoes them to
the standard output.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

A guide to inter-process communicAtion in Linux ... cc BY-sA 4.0 ... opensource.com 15

. usinG pipes And messAGe queues

named pipes
An unnamed pipe has no backing file: the system main-
tains an in-memory buffer to transfer bytes from the writ-
er to the reader. once the writer and reader terminate,
the buffer is reclaimed, so the unnamed pipe goes away.
By contrast, a named pipe has a backing file and a dis-
tinct Api.

Let’s look at another command line example to get the gist
of named pipes. Here are the steps:
• Open two terminals. The working directory should be the

same for both.
• In one of the terminals, enter these two commands (the

prompt again is %, and my comments start with ##):

% mkfifo tester ## creates a backing file named tester

% cat tester ## type the pipe's contents to stdout

 At the beginning, nothing should appear
in the terminal because nothing has
been written yet to the named pipe.

• In the second terminal, enter the com-
mand:

% cat > tester ## redirect keyboard input

to the pipe

hello, world! ## then hit Return key

bye, bye ## ditto

<Control-C> ## terminate session with a

Control-C

 Whatever is typed into this terminal is
echoed in the other. once Ctrl+C is en-
tered, the regular command line prompt
returns in both terminals: the pipe has
been closed.

• Clean up by removing the file that imple-
ments the named pipe:

% unlink tester

As the utility’s name mkfifo implies, a
named pipe also is called a FIFO be-
cause the first byte in is the first byte
out, and so on. there is a library
function named mkfifo that creates a
named pipe in programs and is used
in the next example, which consists of
two processes: one writes to the named
pipe and the other reads from this pipe
(see example 2).

the fifoWriter program above can be
summarized as follows:
• The program creates a named pipe for

writing:

mkfifo(pipeName, 0666); /* read/write perms for user/group/others */

int fd = open(pipeName, O_CREAT | O_WRONLY);

 where pipeName is the name of the backing file passed
to mkfifo as the first argument. The named pipe then is
opened with the by-now familiar call to the open function,
which returns a file descriptor.

• For a touch of realism, the fifoWriter does not write all the
data at once, but instead writes a chunk, sleeps a ran-
dom number of microseconds, and so on. in total, 768,000
4-byte integer values are written to the named pipe.

• After closing the named pipe, the fifoWriter also unlinks
the file:

close(fd); /* close pipe: generates end-of-stream marker */

unlink(pipeName); /* unlink from the implementing file */

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <time.h>
#include <stdlib.h>
#include <stdio.h>

#define MaxLoops 12000 /* outer loop */
#define ChunkSize 16 /* how many written at a time */
#define IntsPerChunk 4 /* four 4-byte ints per chunk */
#define MaxZs 250 /* max microseconds to sleep */

int main() {
 const char* pipeName = "./fifoChannel";
 mkfifo(pipeName, 0666); /* read/write for user/group/others */
 int fd = open(pipeName, O_CREAT | O_WRONLY); /* open as write-only */
 if (fd < 0) return -1; /* can't go on */

 int i;
 for (i = 0; i < MaxLoops; i++) { /* write MaxWrites times */
 int j;
 for (j = 0; j < ChunkSize; j++) { /* each time, write ChunkSize bytes */
 int k;
 int chunk[IntsPerChunk];
 for (k = 0; k < IntsPerChunk; k++)
 chunk[k] = rand();
 write(fd, chunk, sizeof(chunk));
 }
 usleep((rand() % MaxZs) + 1); /* pause a bit for realism */
 }

 close(fd); /* close pipe: generates an end-of-stream marker */
 unlink(pipeName); /* unlink from the implementing file */
 printf("%i ints sent to the pipe.\n", MaxLoops * ChunkSize * IntsPerChunk);

 return 0;
}

example 2. the fifoWriter program

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

16 A guide to inter-process communicAtion in Linux ... cc BY-sA 4.0 ... opensource.com

usinG pipes And messAGe queues .

const char* file = "./fifoChannel";

int fd = open(file, O_RDONLY);

The file opens as read-only.
• The program then goes into a potentially infinite loop, try-

ing to read a 4-byte chunk on each iteration. The read call:

ssize_t count = read(fd, &next, sizeof(int));

 returns 0 to indicate end-of-stream, in which case the
fifoReader breaks out of the loop, closes the named
pipe, and unlinks the backing file before terminating.

• After reading a 4-byte integer, the fifoReader checks
whether the number is a prime. this represents the busi-
ness logic that a production-grade reader might perform on

the received bytes. on a sample run, there
were 37,682 primes among the 768,000 in-
tegers received.

on repeated sample runs, the fifoReader
successfully read all of the bytes that the
fifoWriter wrote. this is not surprising. the
two processes execute on the same host,
taking network issues out of the equation.
named pipes are a highly reliable and ef-
ficient IPC mechanism and, therefore, in
wide use.

Here is the output from the two programs,
each launched from a separate terminal but
with the same working directory:

% ./fifoWriter

768000 ints sent to the pipe.

###

% ./fifoReader

Received ints: 768000, primes: 37682

Message queues
Pipes have strict FIFO behavior: the first
byte written is the first byte read, the second
byte written is the second byte read, and so
forth. Message queues can behave in the
same way but are flexible enough that byte
chunks can be retrieved out of FIFO order.

As the name suggests, a message queue
is a sequence of messages, each of which
has two parts:
• The payload, which is an array of bytes

(char in c)
• A type, given as a positive integer value;

types categorize messages for flexible re-
trieval

consider the following depiction of a mes-
sage queue, with each message labeled with
an integer type:

 The system reclaims the backing file once every process
connected to the pipe has performed the unlink operation.
in this example, there are only two such processes: the
fifoWriter and the fifoReader, both of which do an unlink
operation.
the two programs should be executed in different termi-

nals with the same working directory. However, the fifoW-
riter should be started before the fifoReader, as the former
creates the pipe. the fifoReader then accesses the already
created named pipe (see example 3).

the fifoReader program above can be summarized as fol-
lows:
• Because the fifoWriter creates the named pipe, the fifoRe-

ader needs only the standard call open to access the pipe
through the backing file:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>

unsigned is_prime(unsigned n) { /* not pretty, but efficient */
 if (n <= 3) return n > 1;
 if (0 == (n % 2) || 0 == (n % 3)) return 0;

 unsigned i;
 for (i = 5; (i * i) <= n; i += 6)
 if (0 == (n % i) || 0 == (n % (i + 2))) return 0;

 return 1; /* found a prime! */
}

int main() {
 const char* file = "./fifoChannel";
 int fd = open(file, O_RDONLY);
 if (fd < 0) return -1; /* no point in continuing */
 unsigned count = 0, total = 0, primes_count = 0;

 while (1) {
 int next;
 int i;

 ssize_t count = read(fd, &next, sizeof(int));
 if (0 == count) break; /* end of stream */
 else if (count == sizeof(int)) { /* read a 4-byte int value */
 total++;
 if (is_prime(next)) primes_count++;
 }
 }

 close(fd); /* close pipe from read end */
 unlink(file); /* unlink from the underlying file */
 printf("Received ints: %u, primes: %u\n", total, primes_count);

 return 0;
}

example 3. the fifoReader program

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

A guide to inter-process communicAtion in Linux ... cc BY-sA 4.0 ... opensource.com 17

. usinG pipes And messAGe queues

 +-+ +-+ +-+ +-+

sender--->|3|--->|2|--->|2|--->|1|--->receiver

 +-+ +-+ +-+ +-+

of the four messages shown, the one labeled 1 is at the
front, i.e., closest to the receiver. next come two messag-
es with label 2, and finally, a message labeled 3 at the
back. If strict FIFO behavior were in play, then the mes-
sages would be received in the order 1-2-2-3. However,

the message queue allows other retrieval orders. For ex-
ample, the messages could be retrieved by the receiver in
the order 3-2-1-2.

the mqueue example consists of two programs, the send-
er that writes to the message queue and the receiver that
reads from this queue. Both programs include the header file
queue.h shown below in example 4:

The header file defines a structure type named queued-
Message, with payload (byte array) and type (integer)

fields. This file also defines symbolic constants
(the #define statements), the first two of which
are used to generate a key that, in turn, is used
to get a message queue ID. The ProjectId can
be any positive integer value, and the PathName
must be an existing, accessible file—in this case,
the file queue.h. the setup statements in both the
sender and the receiver programs are:

key_t key = ftok(PathName, ProjectId); /* generate key

*/

int qid = msgget(key, 0666 | IPC_CREAT); /* use key

to get

queue id */

the id qid is, in effect, the counterpart of a file
descriptor for message queues (see Example 5).

the sender program above sends out six mes-
sages, two each of a specified type: the first mes-
sages are of type 1, the next two of type 2, and
the last two of type 3. the sending statement:

msgsnd(qid, &msg, sizeof(msg), IPC_NOWAIT);

is configured to be non-blocking (the flag IPC_
NOWAIT) because the messages are so small.
The only danger is that a full queue, unlikely in
this example, would result in a sending failure. the
receiver program below also receives messages
using the IPC_NOWAIT flag (see Example 6).

the receiver program does not create the mes-
sage queue, although the API suggests as much.
in the receiver, the call:

int qid = msgget(key, 0666 | IPC_CREAT);

is misleading because of the IPC_CREAT flag, but
this flag really means create if needed, otherwise
access. the sender program calls msgsnd to
send messages, whereas the receiver calls ms-
grcv to retrieve them. in this example, the sender
sends the messages in the order 1-1-2-2-3-3, but
the receiver then retrieves them in the order 3-1-
2-1-3-2, showing that message queues are not
bound to strict FIFO behavior:

#define ProjectId 123
#define PathName "queue.h" /* any existing, accessible file would do */
#define MsgLen 4
#define MsgCount 6

typedef struct {
 long type; /* must be of type long */
 char payload[MsgLen + 1]; /* bytes in the message */
} queuedMessage;

Example 4. The header file queue.h

#include <stdio.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <stdlib.h>
#include <string.h>
#include "queue.h"

void report_and_exit(const char* msg) {
 perror(msg);
 exit(-1); /* EXIT_FAILURE */
}

int main() {
 key_t key = ftok(PathName, ProjectId);
 if (key < 0) report_and_exit("couldn't get key...");

 int qid = msgget(key, 0666 | IPC_CREAT);
 if (qid < 0) report_and_exit("couldn't get queue id...");

 char* payloads[] = {"msg1", "msg2", "msg3", "msg4", "msg5", "msg6"};
 int types[] = {1, 1, 2, 2, 3, 3}; /* each must be > 0 */
 int i;
 for (i = 0; i < MsgCount; i++) {
 /* build the message */
 queuedMessage msg;
 msg.type = types[i];
 strcpy(msg.payload, payloads[i]);

 /* send the message */
 msgsnd(qid, &msg, sizeof(msg), IPC_NOWAIT); /* don't block */
 printf("%s sent as type %i\n", msg.payload, (int) msg.type);
 }
 return 0;
}

example 5. the message sender program

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

18 A guide to inter-process communicAtion in Linux ... cc BY-sA 4.0 ... opensource.com

usinG pipes And messAGe queues .

% ./receiver

msg5 received as type 3

msg1 received as type 1

msg3 received as type 2

msg2 received as type 1

msg6 received as type 3

msg4 received as type 2

the output above shows that the sender and
the receiver can be launched from the same
terminal. the output also shows that the mes-
sage queue persists even after the sender
process creates the queue, writes to it, and
exits. The queue goes away only after the re-
ceiver process explicitly removes it with the
call to msgctl:

if (msgctl(qid, IPC_RMID, NULL) < 0) /* remove

 queue */

Wrapping up
The pipes and message queue APIs are fun-
damentally unidirectional: one process writes
and another reads. there are implementa-
tions of bidirectional named pipes, but my
two cents is that this ipc mechanism is at
its best when it is simplest. As noted earlier,
message queues have fallen in popularity—
but without good reason; these queues are
yet another tool in the ipc toolbox. part 3
completes this quick tour of the IPC toolbox
with code examples of IPC through sockets
and signals.

Links
[1] http://man7.org/linux/man-pages/man2/

mq_open.2.html
[2] http://man7.org/linux/man-pages/man2/

mq_open.2.html#ATTRIBUTES

% ./sender

msg1 sent as type 1

msg2 sent as type 1

msg3 sent as type 2

msg4 sent as type 2

msg5 sent as type 3

msg6 sent as type 3

#include <stdio.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <stdlib.h>
#include "queue.h"

void report_and_exit(const char* msg) {
 perror(msg);
 exit(-1); /* EXIT_FAILURE */
}

int main() {
 key_t key= ftok(PathName, ProjectId); /* key to identify the queue */
 if (key < 0) report_and_exit("key not gotten...");

 int qid = msgget(key, 0666 | IPC_CREAT); /* access if created already */
 if (qid < 0) report_and_exit("no access to queue...");

 int types[] = {3, 1, 2, 1, 3, 2}; /* different than in sender */
 int i;
 for (i = 0; i < MsgCount; i++) {
 queuedMessage msg; /* defined in queue.h */
 if (msgrcv(qid, &msg, sizeof(msg), types[i], MSG_NOERROR | IPC_NOWAIT) < 0)
 puts("msgrcv trouble...");
 printf("%s received as type %i\n", msg.payload, (int) msg.type);
 }

 /** remove the queue **/
 if (msgctl(qid, IPC_RMID, NULL) < 0) /* NULL = 'no flags' */
 report_and_exit("trouble removing queue...");

 return 0;
}

example 6. the message receiver program

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://man7.org/linux/man-pages/man2/mq_open.2.html
http://man7.org/linux/man-pages/man2/mq_open.2.html
http://man7.org/linux/man-pages/man2/mq_open.2.html#ATTRIBUTES
http://man7.org/linux/man-pages/man2/mq_open.2.html#ATTRIBUTES

A guide to inter-process communicAtion in Linux ... cc BY-sA 4.0 ... opensource.com 19

. sOcKets And siGnALs

the fIrst sectIOn focused on ipc through shared
storage (files and memory segments),

and the second section does the same for basic channels:
pipes (named and unnamed) and message queues. This
section moves from IPC at the high end (sockets) to IPC at
the low end (signals). Code examples flesh out the details.

Sockets
Just as pipes come in two fla-
vors (named and unnamed),
so do sockets. IPC sockets
(aka Unix domain sockets)
enable channel-based com-
munication for processes
on the same physical device
(host), whereas network
sockets enable this kind of
ipc for processes that can
run on different hosts, there-
by bringing networking into
play. Network sockets need
support from an underlying protocol such as tcp (transmis-
sion control protocol) or the lower-level udp (user data-
gram protocol).

By contrast, IPC sockets rely upon the local system kernel
to support communication; in particular, IPC sockets commu-
nicate using a local file as a socket address. Despite these
implementation differences, the IPC socket and network
socket APIs are the same in the essentials. The forthcoming
example covers network sockets, but the sample server and
client programs can run on the same machine because the
server uses network address localhost (127.0.0.1), the ad-
dress for the local machine on the local machine.

Sockets configured as streams (discussed below) are bi-
directional, and control follows a client/server pattern: the cli-
ent initiates the conversation by trying to connect to a server,
which tries to accept the connection. If everything works,
requests from the client and responses from the server then

can flow through the channel until this is closed on either
end, thereby breaking the connection.

An iterative server, which is suited for development only,
handles connected clients one at a time to completion: the
first client is handled from start to finish, then the second, and
so on. the downside is that the handling of a particular client
may hang, which then starves all the clients waiting behind.
A production-grade server would be concurrent, typically

using some mix of multi-pro-
cessing and multi-thread-
ing. For example, the Nginx
web server on my desktop
machine has a pool of four
worker processes that can
handle client requests con-
currently. the following code
example keeps the clutter to
a minimum by using an itera-
tive server; the focus thus re-
mains on the basic Api, not
on concurrency.

Finally, the socket API has evolved significantly over time
as various POSIX refinements have emerged. The current
sample code for server and client is deliberately simple but
underscores the bidirectional aspect of a stream-based
socket connection. Here’s a summary of the flow of control,
with the server started in a terminal then the client started in
a separate terminal:
• The server awaits client connections and, given a success-

ful connection, reads the bytes from the client.
• To underscore the two-way conversation, the server

echoes back to the client the bytes received from the cli-
ent. These bytes are ASCII character codes, which make
up book titles.

• The client writes book titles to the server process and then
reads the same titles echoed from the server. Both the
server and the client print the titles to the screen. Here is
the server’s output, essentially the same as the client’s:

sockets and signals
Learn how processes synchronize with each other in Linux.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

20 A guide to inter-process communicAtion in Linux ... cc BY-sA 4.0 ... opensource.com

sOcKets And siGnALs .

Listening on port 9876 for clients...

War and Peace

Pride and Prejudice

The Sound and the Fury

see example 1.
the server program above performs the

classic four-step to ready itself for client re-
quests and then to accept individual requests.
each step is named after a system function
that the server calls:

1. socket(…): get a file descriptor for the sock-
et connection

2. bind(…): bind the socket to an address on
the server’s host

3. listen(…): listen for client requests
4. accept(…): accept a particular client request

the socket call in full is:

int sockfd = socket(AF_INET, /* versus AF_LOCAL */

 SOCK_STREAM, /* reliable,

bidirectional */

 0); /* system picks

protocol (TCP) */

The first argument specifies a network sock-
et as opposed to an IPC socket. There are
several options for the second argument, but
SOCK_STREAM and SOCK_DGRAM (da-
tagram) are likely the most used. A stream-
based socket supports a reliable channel in
which lost or altered messages are reported;
the channel is bidirectional, and the payloads
from one side to the other can be arbitrary
in size. By contrast, a datagram-based sock-
et is unreliable (best try), unidirectional, and
requires fixed-sized payloads. The third ar-
gument to socket specifies the protocol. For
the stream-based socket in play here, there
is a single choice, which the zero represents:
tcp. Because a successful call to socket re-
turns the familiar file descriptor, a socket is
written and read with the same syntax as, for
example, a local file.

the bind call is the most complicated, as it
reflects various refinements in the socket API.
the point of interest is that this call binds the
socket to a memory address on the server
machine. However, the listen call is straight-
forward:

if (listen(fd, MaxConnects) < 0)

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/tcp.h>
#include <arpa/inet.h>
#include "sock.h"

void report(const char* msg, int terminate) {
 perror(msg);
 if (terminate) exit(-1); /* failure */
}

int main() {
 int fd = socket(AF_INET, /* network versus AF_LOCAL */
 SOCK_STREAM, /* reliable, bidirectional, arbitrary payload size */
 0); /* system picks underlying protocol (TCP) */
 if (fd < 0) report("socket", 1); /* terminate */

 /* bind the server's local address in memory */
 struct sockaddr_in saddr;
 memset(&saddr, 0, sizeof(saddr)); /* clear the bytes */
 saddr.sin_family = AF_INET; /* versus AF_LOCAL */
 saddr.sin_addr.s_addr = htonl(INADDR_ANY); /* host-to-network endian */
 saddr.sin_port = htons(PortNumber); /* for listening */

 if (bind(fd, (struct sockaddr *) &saddr, sizeof(saddr)) < 0)
 report("bind", 1); /* terminate */

 /* listen to the socket */
 if (listen(fd, MaxConnects) < 0) /* listen for clients, up to MaxConnects */
 report("listen", 1); /* terminate */

 fprintf(stderr, "Listening on port %i for clients...\n", PortNumber);
 /* a server traditionally listens indefinitely */
 while (1) {
 struct sockaddr_in caddr; /* client address */
 int len = sizeof(caddr); /* address length could change */

 int client_fd = accept(fd, (struct sockaddr*) &caddr, &len); /* accept blocks */
 if (client_fd < 0) {
 report("accept", 0); /* don't terminate, though there's a problem */
 continue;
 }

 /* read from client */
 int i;
 for (i = 0; i < ConversationLen; i++) {
 char buffer[BuffSize + 1];
 memset(buffer, '\0', sizeof(buffer));
 int count = read(client_fd, buffer, sizeof(buffer));
 if (count > 0) {
 puts(buffer);
 write(client_fd, buffer, sizeof(buffer)); /* echo as confirmation */
 }
 }
 close(client_fd); /* break connection */
 } /* while(1) */
 return 0;
}

Example 1. The socket server

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

A guide to inter-process communicAtion in Linux ... cc BY-sA 4.0 ... opensource.com 21

. sOcKets And siGnALs

The first argument is the socket’s file descriptor and
the second specifies how many client connections
can be accommodated before the server issues a
connection refused error on an attempted connec-
tion. (MaxConnects is set to 8 in the header file
sock.h.)

the accept call defaults to a blocking wait: the
server does nothing until a client attempts to connect
and then proceeds. the accept function returns -1 to
indicate an error. if the call succeeds, it returns anoth-
er file descriptor—for a read/write socket in contrast
to the accepting socket referenced by the first argu-
ment in the accept call. the server uses the read/
write socket to read requests from the client and to
write responses back. The accepting socket is used
only to accept client connections.

By design, a server runs indefinitely. Accordingly,
the server can be terminated with a Ctrl+C from the
command line (see example 2).

The client program’s setup code is similar to the
server’s. The principal difference between the two is
that the client neither listens nor accepts, but instead
connects:

if (connect(sockfd, (struct sockaddr*) &saddr,

sizeof(saddr)) < 0)

the connect call might fail for several reasons; for
example, the client has the wrong server address or
too many clients are already connected to the server.
if the connect operation succeeds, the client writes
requests and then reads the echoed responses in a
for loop. After the conversation, both the server and
the client close the read/write socket, although a
close operation on either side is sufficient to close the
connection. the client exits thereafter but, as noted
earlier, the server remains open for business.

The socket example, with request messages
echoed back to the client, hints at the possibilities
of arbitrarily rich conversations between the server
and the client. perhaps this is the chief appeal of
sockets. It is common on modern systems for client
applications (e.g., a database client) to communi-
cate with a server through a socket. As noted ear-
lier, local IPC sockets and network sockets differ
only in a few implementation details; in general,
IPC sockets have lower overhead and better per-
formance. the communication Api is essentially the
same for both.

signals
A signal interrupts an executing program and, in this
sense, communicates with it. most signals can be
either ignored (blocked) or handled (through desig-

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <netdb.h>
#include "sock.h"

const char* books[] = {"War and Peace",
 "Pride and Prejudice",
 "The Sound and the Fury"};

void report(const char* msg, int terminate) {
 perror(msg);
 if (terminate) exit(-1); /* failure */
}

int main() {
 /* fd for the socket */
 int sockfd = socket(AF_INET, /* versus AF_LOCAL */
 SOCK_STREAM, /* reliable, bidirectional */
 0); /* system picks protocol (TCP) */
 if (sockfd < 0) report("socket", 1); /* terminate */

 /* get the address of the host */
 struct hostent* hptr = gethostbyname(Host); /* localhost: 127.0.0.1 */
 if (!hptr) report("gethostbyname", 1); /* is hptr NULL? */
 if (hptr->h_addrtype != AF_INET) /* versus AF_LOCAL */
 report("bad address family", 1);

 /* connect to the server: configure server's address 1st */
 struct sockaddr_in saddr;
 memset(&saddr, 0, sizeof(saddr));
 saddr.sin_family = AF_INET;
 saddr.sin_addr.s_addr =
 ((struct in_addr*) hptr->h_addr_list[0])->s_addr;
 saddr.sin_port = htons(PortNumber); /* port number in big-endian */

 if (connect(sockfd, (struct sockaddr*) &saddr, sizeof(saddr)) < 0)
 report("connect", 1);

 /* Write some stuff and read the echoes. */
 puts("Connect to server, about to write some stuff...");
 int i;
 for (i = 0; i < ConversationLen; i++) {
 if (write(sockfd, books[i], strlen(books[i])) > 0) {
 /* get confirmation echoed from server and print */
 char buffer[BuffSize + 1];
 memset(buffer, '\0', sizeof(buffer));
 if (read(sockfd, buffer, sizeof(buffer)) > 0)
 puts(buffer);
 }
 }
 puts("Client done, about to exit...");
 close(sockfd); /* close the connection */
 return 0;
}

Example 2. The socket client

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

22 A guide to inter-process communicAtion in Linux ... cc BY-sA 4.0 ... opensource.com

sOcKets And siGnALs .

Signals can arise in user interaction. For example, a
user hits Ctrl+C from the command line to terminate a pro-
gram started from the command-line; Ctrl+C generates a
SIGTERM signal. SIGTERM for terminate, unlike SIGKILL,

can be either blocked or handled. One pro-
cess also can signal another, thereby mak-
ing signals an ipc mechanism.

consider how a multi-processing applica-
tion such as the nginx web server might be
shut down gracefully from another process.
the kill function:

in t kill(pid_t pid, int signum);

/* declaration */

can be used by one process to terminate
another process or group of processes. if
the first argument to function kill is greater
than zero, this argument is treated as the pid
(process id) of the targeted process; if the
argument is zero, the argument identifies the
group of processes to which the signal send-
er belongs.

the second argument to kill is either a
standard signal number (e.g., SIGTERM
or SIGKILL) or 0, which makes the call to
signal a query about whether the pid in the
first argument is indeed valid. The graceful
shutdown of a multi-processing application
thus could be accomplished by sending a
terminate signal—a call to the kill function
with SIGTERM as the second argument—to
the group of processes that make up the ap-
plication. (the nginx master process could
terminate the worker processes with a call to
kill and then exit itself.) the kill function, like
so many library functions, houses power and
flexibility in a simple invocation syntax (see
example 3).

the shutdown program above simulates
the graceful shutdown of a multi-processing
system, in this case, a simple one consisting
of a parent process and a single child pro-
cess. The simulation works as follows:
• The parent process tries to fork a child. If

the fork succeeds, each process executes
its own code: the child executes the func-
tion child_code, and the parent executes
the function parent_code.

• The child process goes into a potential-
ly infinite loop in which the child sleeps
for a second, prints a message, goes
back to sleep, and so on. It is precisely
a SIGTERM signal from the parent that

nated code), with SIGSTOP (pause) and SIGKILL (termi-
nate immediately) as the two notable exceptions. symbolic
constants such as SIGKILL have integer values, in this
case, 9.

#include <stdio.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

void graceful(int signum) {
 printf("\tChild confirming received signal: %i\n", signum);
 puts("\tChild about to terminate gracefully...");
 sleep(1);
 puts("\tChild terminating now...");
 _exit(0); /* fast-track notification of parent */
}

void set_handler() {
 struct sigaction current;
 sigemptyset(¤t.sa_mask); /* clear the signal set */
 current.sa_flags = 0; /* enables setting sa_handler, not sa_action */
 current.sa_handler = graceful; /* specify a handler */
 sigaction(SIGTERM, ¤t, NULL); /* register the handler */
}

void child_code() {
 set_handler();

 while (1) { /** loop until interrupted **/
 sleep(1);
 puts("\tChild just woke up, but going back to sleep.");
 }
}

void parent_code(pid_t cpid) {
 puts("Parent sleeping for a time...");
 sleep(5);

 /* Try to terminate child. */
 if (-1 == kill(cpid, SIGTERM)) {
 perror("kill");
 exit(-1);
 }
 wait(NULL); /** wait for child to terminate **/
 puts("My child terminated, about to exit myself...");
}

int main() {
 pid_t pid = fork();
 if (pid < 0) {
 perror("fork");
 return -1; /* error */
 }
 if (0 == pid)
 child_code();
 else
 parent_code(pid);
 return 0; /* normal */
}

example 3. the graceful shutdown of a multi-processing system

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

A guide to inter-process communicAtion in Linux ... cc BY-sA 4.0 ... opensource.com 23

puts("Parent sleeping for a time...");

sleep(5);

if (-1 == kill(cpid, SIGTERM)) {

...

if the kill call succeeds, the parent does a wait on the
child’s termination to prevent the child from becoming a
permanent zombie; after the wait, the parent exits.

• The child_code function first calls set_handler and then
goes into its potentially infinite sleeping loop. Here is the
set_handler function for review:

void set_handler() {

 struct sigaction current; /* current setup */

 sigemptyset(¤t.sa_mask); /* clear the signal set */

 current.sa_flags = 0; /* for setting sa_handler,

not sa_action */

 current.sa_handler = graceful; /* specify a handler */

 sigaction(SIGTERM, ¤t, NULL); /* register the handler */

}

The first three lines are preparation. The fourth statement sets
the handler to the function graceful, which prints some mes-
sages before calling _exit to terminate. The fifth and last state-
ment then registers the handler with the system through the
call to sigaction. The first argument to sigaction is SIGTERM
for terminate, the second is the current sigaction setup, and
the last argument (NULL in this case) can be used to save a
previous sigaction setup, perhaps for later use.

using signals for ipc is indeed a minimalist approach, but
a tried-and-true one at that. ipc through signals clearly be-
longs in the ipc toolbox.

causes the child to execute the signal-handling callback
function graceful. The signal thus breaks the child pro-
cess out of its loop and sets up the graceful termination of
both the child and the parent. the child prints a message
before terminating.
• The parent process, after forking the child, sleeps for

five seconds so that the child can execute for a while;
of course, the child mostly sleeps in this simulation. the
parent then calls the kill function with SIGTERM as the
second argument, waits for the child to terminate, and
then exits.
Here is the output from a sample run:

% ./shutdown

Parent sleeping for a time...

 Child just woke up, but going back to sleep.

 Child just woke up, but going back to sleep.

 Child just woke up, but going back to sleep.

 Child just woke up, but going back to sleep.

 Child confirming received signal: 15 ## SIGTERM is 15

 Child about to terminate gracefully...

 Child terminating now...

My child terminated, about to exit myself...

For the signal handling, the example uses the sigaction
library function (posix recommended) rather than the
legacy signal function, which has portability issues. Here
are the code segments of chief interest:

• If the call to fork succeeds, the parent executes the
parent_code function and the child executes the child_
code function. The parent waits for five seconds before
signaling the child:

. sOcKets And siGnALs

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

24 A guide to inter-process communicAtion in Linux ... cc BY-sA 4.0 ... opensource.com

thIs guIde On Ipc has covered the
following mech-

anisms through code examples:
• Shared files
• Shared memory (with semaphores)
• Pipes (named and unnamed)
• Message queues
• Sockets
• Signals
even today, when thread-centric languages such as Java,
c#, and go have become so popular, ipc remains appeal-
ing because concurrency through multi-processing has an
obvious advantage over multi-threading: every process,
by default, has its own address space, which rules out
memory-based race conditions in multi-processing unless
the ipc mechanism of shared memory is brought into play.
(Shared memory must be locked in both multi-processing
and multi-threading for safe concurrency.) Anyone who
has written even an elementary multi-threading program
with communication via shared variables knows how chal-
lenging it can be to write thread-safe yet clear, efficient
code. multi-processing with single-threaded processes

remains a viable—indeed, quite appealing—way to take
advantage of today’s multi-processor machines without
the inherent risk of memory-based race conditions.

There is no simple answer, of course, to the question of
which among the ipc mechanisms is the best. each involves
a trade-off typical in programming: simplicity versus function-
ality. signals, for example, are a relatively simple ipc mecha-
nism but do not support rich conversations among processes.
if such a conversion is needed, then one of the other choices
is more appropriate. Shared files with locking is reasonably
straightforward, but shared files may not perform well enough
if processes need to share massive data streams; pipes or
even sockets, with more complicated APIs, might be a better
choice. Let the problem at hand guide the choice.

Although the sample code (available on my website [1])
is all in c, other programming languages often provide thin
wrappers around these ipc mechanisms. the code exam-
ples are short and simple enough, i hope, to encourage you
to experiment.

Links
[1] https://condor.depaul.edu/mkalin/

wrapping up this guide

wrAppinG up this Guide .

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://condor.depaul.edu/mkalin/
https://condor.depaul.edu/mkalin/

. AdditionAl ResouRces

A guide to inter-process communicAtion in Linux ... cc BY-sA 4.0 ... opensource.com 25

In 2010, Red Hat CEO Jim Whitehurst announced the launch of Opensource.com
in a post titled Welcome to the conversation on Opensource.com. He explained,
“This site is one of the ways in which Red Hat gives something back to the open
source community. our desire is to create a connection point for conversations
about the broader impact that open source can have—and is having—even beyond
the software world.” he wrote, adding, “All ideas are welcome, and all participants
are welcome. This will not be a site for Red Hat, about Red Hat. Instead, this will be
a site for open source, about the future.”

By 2013, opensource.com was publishing an average of 46 articles per month,
and in March 2016, Opensource.com surpassed 1-million page views for the first
time. in 2019, opensource.com averages more than 1.5 million page views and
90 articles per month.

more than 60% of our content is contributed by members of open source communities,
and additional articles are written by the editorial team and other Red Hat contributors.
A small, international team of staff editors and Community Moderators work closely
with contributors to curate, polish, publish, and promote open source stories from
around the world.

Would you like to write for us? Send pitches and inquiries to open@opensource.com.

to learn more, read 7 big reasons to contribute to opensource.com.

write FOr us

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/should-be/10/1/welcome-conversation-opensourcecom
https://opensource.com/about
https://opensource.com/opensourcecom-team
https://opensource.com/how-submit-article
mailto:open%40opensource.com?subject=
https://opensource.com/life/15/7/7-big-reasons-contribute-opensourcecom

