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thIs guIde Is aBOut interprocess communication (ipc) in Linux. the 
guide uses code examples in c to clarify 

the following ipc mechanisms:

•  Shared files
•  Shared memory (with semaphores)
•  Pipes (named and unnamed)
•  Message queues
•  Sockets
•  Signals

I’ll introduce you to some core concepts before moving on to the first two of these mech-
anisms: shared files and shared memory.

core concepts
A process is a program in execution, and each process has its own address space, which 
comprises the memory locations that the process is allowed to access. A process has 
one or more threads of execution, which are sequences of executable instructions: a 
single-threaded process has just one thread, whereas a multi-threaded process has more 
than one thread. Threads within a process share various resources, in particular, address 
space. Accordingly, threads within a process can communicate straightforwardly through 
shared memory, although some modern languages (e.g., go) encourage a more disci-
plined approach such as the use of thread-safe channels. of interest here is that different 
processes, by default, do not share memory.

there are various ways to launch processes that then communicate, and two ways 
dominate in the examples that follow:

•  A terminal is used to start one process, and perhaps a different terminal is used to 
start another.

•  The system function fork is called within one process (the parent) to spawn another 
process (the child).

The first examples take the terminal approach. The code examples [1] are available in a 
ZIP file on my website.

Links
[1]  http://condor.depaul.edu/mkalin

introduction
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prOgraMMers are 
aLL tOO faMILIar with file access, including 
the many pitfalls (non-existent files, bad file 
permissions, and so on) that beset the use 
of files in programs. Nonetheless, shared 
files may be the most basic IPC mecha-
nism. consider the relatively simple case in 
which one process (producer) creates and 
writes to a file, and another process (con-
sumer) reads from this same file:

         writes  +-----------+  reads

producer-------->| disk file |<-------consumer

                 +-----------+

the obvious challenge in using this ipc 
mechanism is that a race condition might 
arise: the producer and the consumer might 
access the file at exactly the same time, 
thereby making the outcome indeterminate. 
To avoid a race condition, the file must be 
locked in a way that prevents a conflict be-
tween a write operation and any another 
operation, whether a read or a write. the 
locking API in the standard system library 
can be summarized as follows:
•  A producer should gain an exclusive lock 

on the file before writing to the file. An ex-
clusive lock can be held by one process 
at most, which rules out a race condition 
because no other process can access the 
file until the lock is released.

•  A consumer should gain at least a shared 
lock on the file before reading from the file. 
multiple readers can hold a shared lock at 
the same time, but no writer can access 
a file when even a single reader holds a 
shared lock.

A shared lock promotes efficiency. If one 
process is just reading a file and not 

shared 
storage
Learn how processes synchronize with each 
other in Linux.

shAred stOrAGe  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>

#define FileName "data.dat"
#define DataString "Now is the winter of our discontent\nMade glorious summer by 
#this sun of York\n"

void report_and_exit(const char* msg) {
  perror(msg);
  exit(-1); /* EXIT_FAILURE */
}

int main() {
  struct flock lock;
  lock.l_type = F_WRLCK;    /* read/write (exclusive versus shared) lock */
  lock.l_whence = SEEK_SET; /* base for seek offsets */
  lock.l_start = 0;         /* 1st byte in file */
  lock.l_len = 0;           /* 0 here means 'until EOF' */
  lock.l_pid = getpid();    /* process id */

  int fd; /* file descriptor to identify a file within a process */
  if ((fd = open(FileName, O_RDWR | O_CREAT, 0666)) < 0)  /* -1 signals an error */
    report_and_exit("open failed...");

  if (fcntl(fd, F_SETLK, &lock) < 0) /** F_SETLK doesn't block, F_SETLKW does **/
    report_and_exit("fcntl failed to get lock...");
  else {
    write(fd, DataString, strlen(DataString)); /* populate data file */
    fprintf(stderr, "Process %d has written to data file...\n", lock.l_pid);
  }

  /* Now release the lock explicitly. */
  lock.l_type = F_UNLCK;
  if (fcntl(fd, F_SETLK, &lock) < 0)
    report_and_exit("explicit unlocking failed...");

  close(fd); /* close the file: would unlock if needed */
  return 0;  /* terminating the process would unlock as well */
}

example 1. the producer program

https://creativecommons.org/licenses/by-sa/4.0/
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•   If the producer gains the lock, the program writes two text 
records to the file.

•   After writing to the file, the producer changes the lock 
structure’s l_type field to the unlock value:

lock.l_type = F_UNLCK;

 and calls fcntl to perform the unlocking operation. The 
program finishes up by closing the file and exiting (see 
example 2).

changing its contents, there is no reason to prevent other 
processes from doing the same. Writing, however, clearly 
demands exclusive access to a file.

the standard i/o library includes a utility function named 
fcntl that can be used to inspect and manipulate both exclusive 
and shared locks on a file. The function works through a file 
descriptor, a non-negative integer value that, within a process, 
identifies a file. (Different file descriptors in different processes 
may identify the same physical file.) For file locking, Linux pro-
vides the library function flock, which is a thin wrapper around 
fcntl. The first example uses the fcntl function to 
expose Api details (see example 1).

the main steps in the producer program above 
can be summarized as follows:
•   The program declares a variable of type struct 
flock, which represents a lock, and initializes the 
structure’s five fields. The first initialization:

lock.l_type = F_WRLCK; /* exclusive lock */

 makes the lock an exclusive (read-write) rather 
than a shared (read-only) lock. If the producer 
gains the lock, then no other process will be 
able to write or read the file until the produc-
er releases the lock, either explicitly with the 
appropriate call to fcntl or implicitly by closing 
the file. (When the process terminates, any 
opened files would be closed automatically, 
thereby releasing the lock.)

•   The program then initializes the remaining fields. 
the chief effect is that the entire file is to be 
locked. However, the locking API allows only 
designated bytes to be locked. For example, if 
the file contains multiple text records, then a sin-
gle record (or even part of a record) could be 
locked and the rest left unlocked.

•   The first call to fcntl:

if (fcntl(fd, F_SETLK, &lock) < 0)

 tries to lock the file exclusively, checking wheth-
er the call succeeded. in general, the fcntl func-
tion returns -1 (hence, less than zero) to indicate 
failure. the second argument F_SETLK means 
that the call to fcntl does not block: the function 
returns immediately, either granting the lock or in-
dicating failure. If the flag F_SETLKW (the W at 
the end is for wait) were used instead, the call to 
fcntl would block until gaining the lock was pos-
sible. in the calls to fcntl, the first argument fd is 
the file descriptor, the second argument specifies 
the action to be taken (in this case, F_SETLK for 
setting the lock), and the third argument is the ad-
dress of the lock structure (in this case, &lock).

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>

#define FileName "data.dat"

void report_and_exit(const char* msg) {
  perror(msg);
  exit(-1); /* EXIT_FAILURE */
}

int main() {
  struct flock lock;
  lock.l_type = F_WRLCK;    /* read/write (exclusive) lock */
  lock.l_whence = SEEK_SET; /* base for seek offsets */
  lock.l_start = 0;         /* 1st byte in file */
  lock.l_len = 0;           /* 0 here means 'until EOF' */
  lock.l_pid = getpid();    /* process id */

  int fd; /* file descriptor to identify a file within a process */
  if ((fd = open(FileName, O_RDONLY)) < 0)  /* -1 signals an error */
    report_and_exit("open to read failed...");

  /* If the file is write-locked, we can't continue. */
  fcntl(fd, F_GETLK, &lock); /* sets lock.l_type to F_UNLCK if no write lock */
  if (lock.l_type != F_UNLCK)
    report_and_exit("file is still write locked...");

  lock.l_type = F_RDLCK; /* prevents any writing during the reading */
  if (fcntl(fd, F_SETLK, &lock) < 0)
    report_and_exit("can't get a read-only lock...");

  /* Read the bytes (they happen to be ASCII codes) one at a time. */
  int c; /* buffer for read bytes */
  while (read(fd, &c, 1) > 0)    /* 0 signals EOF */
    write(STDOUT_FILENO, &c, 1); /* write one byte to the standard output */

  /* Release the lock explicitly. */
  lock.l_type = F_UNLCK;
  if (fcntl(fd, F_SETLK, &lock) < 0)
    report_and_exit("explicit unlocking failed...");

  close(fd);
  return 0;
}

example 2. the consumer program

https://creativecommons.org/licenses/by-sa/4.0/
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the consumer program is more complicated than neces-
sary to highlight features of the locking API. In particular, the 
consumer program first checks whether the file is exclusively 
locked and only then tries to gain a shared lock. The relevant 
code is:

lock.l_type = F_WRLCK;

...

fcntl(fd, F_GETLK, &lock); /*  sets lock.l_type to F_UNLCK if no 

write lock */

if (lock.l_type != F_UNLCK)

  report_and_exit("file is still write locked...");

the F_GETLK operation specified in the fcntl call checks 
for a lock, in this case, an exclusive lock given as F_WRLCK 
in the first statement above. If the specified lock does not 
exist, then the fcntl call automatically changes the lock type 
field to F_UNLCK to indicate this fact. If the file is exclusively 
locked, the consumer terminates. (A more robust version of 
the program might have the consumer sleep a bit and try 
again several times.)

If the file is not currently locked, then the consumer tries 
to gain a shared (read-only) lock (F_RDLCK). to shorten 
the program, the F_GETLK call to fcntl could be dropped 
because the F_RDLCK call would fail if a read-write lock 
already were held by some other process. recall that a 
read-only lock does prevent any other process from writing 
to the file, but allows other processes to 
read from the file. In short, a shared lock 
can be held by multiple processes. After 
gaining a shared lock, the consumer pro-
gram reads the bytes one at a time from 
the file, prints the bytes to the standard 
output, releases the lock, closes the file, 
and terminates.

Here is the output from the two pro-
grams launched from the same terminal 
with % as the command line prompt:

% ./producer

Process 29255 has written to data file...

% ./consumer

Now is the winter of our discontent

Made glorious summer by this sun of York

In this first code example, the data shared 
through IPC is text: two lines from Shake-
speare’s play Richard III. Yet, the shared 
file’s contents could be voluminous, arbi-
trary bytes (e.g., a digitized movie), which 
makes file sharing an impressively flexible 
IPC mechanism. The downside is that file 
access is relatively slow, whether the ac-

cess involves reading or writing. As always, programming 
comes with tradeoffs. the next example has the upside of 
IPC through shared memory, rather than shared files, with a 
corresponding boost in performance.

shared memory
Linux systems provide two separate Apis for shared mem-
ory: the legacy system V Api and the more recent posix 
one. these Apis should never be mixed in a single appli-
cation, however. A downside of the posix approach is 
that features are still in development and dependent upon 
the installed kernel version, which impacts code portabil-
ity. For example, the POSIX API, by default, implements 
shared memory as a memory-mapped file: for a shared 
memory segment, the system maintains a backing file with 
corresponding contents. shared memory under posix 
can be configured without a backing file, but this may im-
pact portability. my example uses the posix Api with a 
backing file, which combines the benefits of memory ac-
cess (speed) and file storage (persistence).

the shared-memory example has two programs, named 
memwriter and memreader, and uses a semaphore to co-
ordinate their access to the shared memory. Whenever 
shared memory comes into the picture with a writer, whether 
in multi-processing or multi-threading, so does the risk of a 
memory-based race condition; hence, the semaphore is used 
to coordinate (synchronize) access to the shared memory.

/** Compilation: gcc -o memwriter memwriter.c -lrt -lpthread **/

#include <stdio.h>

#include <stdlib.h>

#include <sys/mman.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

#include <semaphore.h>

#include <string.h>

#include "shmem.h"

void report_and_exit(const char* msg) {

  perror(msg);

  exit(-1);

}

int main() {

  int fd = shm_open(BackingFile,      /* name from smem.h */

                    O_RDWR | O_CREAT, /* read/write, create if needed */

                    AccessPerms);     /* access permissions (0644) */

  if (fd < 0) report_and_exit("Can't open shared mem segment...");

  ftruncate(fd, ByteSize); /* get the bytes */

example 3. source code for the memwriter process

https://creativecommons.org/licenses/by-sa/4.0/
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•   The memwriter then calls the mmap function:

caddr_t memptr = mmap(NULL,       /* let system pick where to

                                     put segment */

                      ByteSize,   /* how many bytes */

                      PROT_READ | PROT_WRITE, /* access 

                                                 protections */

                      MAP_SHARED, /* mapping visible to other 

                                     processes */

                      fd,         /* file descriptor */

                      0);         /* offset: start at 1st byte */

 to get a pointer to the shared memory. (the memreader 
makes a similar call.) The pointer type caddr_t starts 
with a c for calloc, a system function that initializes dy-
namically allocated storage to zeroes. the memwriter 
uses the memptr for the later write operation, using the 
library strcpy (string copy) function.

the memwriter program should be started first in its own 
terminal. the memreader program then can be started 
(within a dozen seconds) in its own terminal. the output 
from the memreader is:

This is the way the world ends...

Each source file has documentation at the top explaining the 
link flags to be included during compilation.

Let’s start with a review of how semaphores work as a 
synchronization mechanism. A general semaphore also is 
called a counting semaphore, as it has a value (typically 
initialized to zero) that can be incremented. consider a 
shop that rents bicycles, with a hundred of them in stock, 
with a program that clerks use to do the rentals. Every 
time a bike is rented, the semaphore is incremented by 
one; when a bike is returned, the semaphore is decre-
mented by one. rentals can continue until the value hits 
100 but then must halt until at least one 
bike is returned, thereby decrementing 
the semaphore to 99.

A binary semaphore is a special case 
requiring only two values: 0 and 1. In 
this situation, a semaphore acts as a 
mutex: a mutual exclusion construct. 
the shared-memory example uses a 
semaphore as a mutex. When the sema-
phore’s value is 0, the memwriter alone 
can access the shared memory. After 
writing, this process increments the 
semaphore’s value, thereby allowing the 
memreader to read the shared memory 
(see example 3).

Here’s an overview of how the memwrit-
er and memreader programs communi-
cate through shared memory:
•   The memwriter program, shown above, 

calls the shm_open function to get 
a file descriptor for the backing file 
that the system coordinates with the 
shared memory. At this point, no mem-
ory has been allocated. the subse-
quent call to the misleadingly named 
function ftruncate:

ftruncate(fd, ByteSize); /* get the bytes */

 allocates ByteSize bytes, in this case, 
a modest 512 bytes. the memwriter 
and memreader programs access the 
shared memory only, not the backing 
file. The system is responsible for syn-
chronizing the shared memory and the 
backing file.

  caddr_t memptr = mmap(NULL,       /* let system pick where to put segment */

                        ByteSize,   /* how many bytes */

                        PROT_READ | PROT_WRITE, /* access protections */

                        MAP_SHARED, /* mapping visible to other processes */

                        fd,         /* file descriptor */

                        0);         /* offset: start at 1st byte */

  if ((caddr_t) -1  == memptr) report_and_exit("Can't get segment...");

  fprintf(stderr, "shared mem address: %p [0..%d]\n", memptr, ByteSize - 1);

  fprintf(stderr, "backing file:       /dev/shm%s\n", BackingFile );

  /* semaphore code to lock the shared mem */

  sem_t* semptr = sem_open(SemaphoreName, /* name */

                           O_CREAT,       /* create the semaphore */

                           AccessPerms,   /* protection perms */

                           0);            /* initial value */

  if (semptr == (void*) -1) report_and_exit("sem_open");

  strcpy(memptr, MemContents); /* copy some ASCII bytes to the segment */

  /* increment the semaphore so that memreader can read */

  if (sem_post(semptr) < 0) report_and_exit("sem_post");

  sleep(12); /* give reader a chance */

  /* clean up */

  munmap(memptr, ByteSize); /* unmap the storage */

  close(fd);

  sem_close(semptr);

  shm_unlink(BackingFile); /* unlink from the backing file */

  return 0;

}

example 3. source code for the memwriter process (continued)
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•   At this point, the memwriter is ready for writing, but it first 
creates a semaphore to ensure exclusive access to the 
shared memory. A race condition would occur if the mem-
writer were writing while the memreader was reading. if the 
call to sem_open succeeds:

sem_t* semptr = sem_open(SemaphoreName, /* name */

                         O_CREAT,       /* create the semaphore */

                         AccessPerms,   /* protection perms */

                         0);            /* initial value */

 then the writing can proceed. the SemaphoreName (any 
unique non-empty name will do) identifies the semaphore 
in both the memwriter and the memreader. the initial val-
ue of zero gives the semaphore’s creator, in this case, the 
memwriter, the right to proceed, in this case, to the write 
operation.

•   After writing, the memwriter increments the semaphore 
value to 1:

if (sem_post(semptr) < 0) ..

 with a call to the sem_post function. in-
crementing the semaphore releases the 
mutex lock and enables the memreader 
to perform its read operation. For good 
measure, the memwriter also unmaps the 
shared memory from the memwriter ad-
dress space:

munmap(memptr, ByteSize); /* unmap the storage *

 this bars the memwriter from further access 
to the shared memory (see example 4).

in both the memwriter and memreader pro-
grams, the shared-memory functions of main in-
terest are shm_open and mmap: on success, 
the first call returns a file descriptor for the back-
ing file, which the second call then uses to get 
a pointer to the shared memory segment. the 

calls to shm_open are similar in the two programs except that 
the memwriter program creates the shared memory, whereas 
the memreader only accesses this already created memory:

int fd = shm_open(BackingFile, O_RDWR | O_CREAT, AccessPerms); 

         /* memwriter */

int fd = shm_open(BackingFile, O_RDWR, AccessPerms); 

         /* memreader */

With a file descriptor in hand, the calls to mmap are the 
same:

ca ddr_t memptr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_

SHARED, fd, 0);

The first argument to mmap is NULL, which means that the 
system determines where to allocate the memory in virtual 
address space. It’s possible (but tricky) to specify an address 

example 4. source code for the memreader process
/** Compilation: gcc -o memreader memreader.c -lrt -lpthread **/
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <semaphore.h>
#include <string.h>
#include "shmem.h"

void report_and_exit(const char* msg) {
  perror(msg);
  exit(-1);
}

int main() {
  int fd = shm_open(BackingFile, O_RDWR, AccessPerms);  /* empty to begin */
  if (fd < 0) report_and_exit("Can't get file descriptor...");

  /* get a pointer to memory */
  caddr_t memptr = mmap(NULL,       /* let system pick where to put segment */
                        ByteSize,   /* how many bytes */
                        PROT_READ | PROT_WRITE, /* access protections */
                        MAP_SHARED, /* mapping visible to other processes */
                        fd,         /* file descriptor */
                        0);         /* offset: start at 1st byte */

https://creativecommons.org/licenses/by-sa/4.0/
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the memreader, like the memwriter, accesses the sema-
phore through its name in a call to sem_open. But the mem-
reader then goes into a wait state until the memwriter incre-
ments the semaphore, whose initial value is 0:

if (!sem_wait(semptr)) { /* wait until semaphore != 0 */

once the wait is over, the memreader reads the Ascii bytes 
from the shared memory, cleans up, and terminates.

the shared-memory Api includes operations explicitly to 
synchronize the shared memory segment and the backing 
file. These operations have been omitted from the example 
to reduce clutter and keep the focus on the memory-sharing 
and semaphore code.

the memwriter and memreader programs are likely to exe-
cute without inducing a race condition even if the semaphore 
code is removed: the memwriter creates the shared memory 
segment and writes immediately to it; the memreader cannot 

even access the shared memory until this has 
been created. However, best practice requires 
that shared-memory access is synchronized 
whenever a write operation is in the mix, and 
the semaphore Api is important enough to be 
highlighted in a code example.

Wrapping up
The shared-file and shared-memory exam-
ples show how processes can communicate 
through shared storage, files in one case and 
memory segments in the other. the Apis for 
both approaches are relatively straightfor-
ward. do these approaches have a common 
downside? modern applications often deal with 
streaming data, indeed, with massively large 
streams of data. Neither the shared-file nor the 
shared-memory approaches are well suited for 
massive data streams. channels of one type or 
another are better suited. part 2 thus introduc-
es channels and message queues, again with 
code examples in c.

instead. the MAP_SHARED flag indicates that the allocated 
memory is shareable among processes, and the last argu-
ment (in this case, zero) means that the offset for the shared 
memory should be the first byte. The size argument speci-
fies the number of bytes to be allocated (in this case, 512), 
and the protection argument indicates that the shared mem-
ory can be written and read.

When the memwriter program executes successfully, the 
system creates and maintains the backing file; on my sys-
tem, the file is /dev/shm/shMemEx, with shMemEx as my 
name (given in the header file shmem.h) for the shared stor-
age. in the current version of the memwriter and memreader 
programs, the statement:

shm_unlink(BackingFile); /* removes backing file */

removes the backing file. If the unlink statement is omitted, 
then the backing file persists after the program terminates.

  if ((caddr_t) -1 == memptr) report_and_exit("Can't access segment...");

  /* create a semaphore for mutual exclusion */

  sem_t* semptr = sem_open(SemaphoreName, /* name */

                           O_CREAT,       /* create the semaphore */

                           AccessPerms,   /* protection perms */

                           0);            /* initial value */

  if (semptr == (void*) -1) report_and_exit("sem_open");

  /* use semaphore as a mutex (lock) by waiting for writer to increment it */

  if (!sem_wait(semptr)) { /* wait until semaphore != 0 */

    int i;

    for (i = 0; i < strlen(MemContents); i++)

      write(STDOUT_FILENO, memptr + i, 1); /* one byte at a time */

    sem_post(semptr);

  }

  /* cleanup */

  munmap(memptr, ByteSize);

  close(fd);

  sem_close(semptr);

  unlink(BackingFile);

  return 0;

}

example 4. source code for the memreader process (continued)
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thIs sectIOn turns tO pIpes, which 
are channels 

that connect processes for communication. A channel has a 
write end for writing bytes, and a read end for reading these 
bytes in FIFO (first in, first 
out) order. in typical use, one 
process writes to the chan-
nel, and a different process 
reads from this same chan-
nel. the bytes themselves 
might represent anything: 
numbers, employee records, 
digital movies, and so on.

Pipes come in two flavors, 
named and unnamed, and 
can be used either interac-
tively from the command line 
or within programs; examples are forthcoming. this section 
also looks at memory queues, which have fallen out of fash-
ion—but undeservedly so.

The code examples in the first section acknowledged the 
threat of race conditions (either file-based or memory-based) 
in IPC that uses shared storage. The question naturally 
arises about safe concurrency for the channel-based ipc, 
which will be covered in this section. the code examples 
for pipes and memory queues use APIs with the POSIX 
stamp of approval, and a core goal of the posix standards 
is thread-safety.

consider the man pages for the mq_open [1] function, 
which belongs to the memory queue API. These pages in-
clude a section on Attributes [2] with this small table:

interface Attribute Value
mq_open() thread safety mt-safe

the value MT-Safe (with MT for multi-threaded) means that 
the mq_open function is thread-safe, which in turn implies 
process-safe: A process executes in precisely the sense that 

one of its threads executes, and if a race condition cannot 
arise among threads in the same process, such a condition 
cannot arise among threads in different processes. the MT-
Safe attribute assures that a race condition does not arise in 

invocations of mq_open. in 
general, channel-based ipc 
is concurrent-safe, although 
a cautionary note is raised in 
the examples that follow.

unnamed pipes
Let’s start with a contrived 
command line example that 
shows how unnamed pipes 
work. On all modern sys-
tems, the vertical bar | rep-
resents an unnamed pipe at 

the command line. Assume % is the command line prompt, 
and consider this command:

%  sleep 5 | echo "Hello, world!" ## writer to the left of |, 

reader to the right

the sleep and echo utilities execute as separate processes, 
and the unnamed pipe allows them to communicate. How-
ever, the example is contrived in that no communication oc-
curs. the greeting Hello, world! appears on the screen; then, 
after about five seconds, the command line prompt returns, 
indicating that both the sleep and echo processes have exit-
ed. What’s going on?

in the vertical-bar syntax from the command line, the pro-
cess to the left (sleep) is the writer, and the process to the 
right (echo) is the reader. By default, the reader blocks until 
there are bytes to read from the channel, and the writer—
after writing its bytes—finishes up by sending an end-of-
stream marker. (Even if the writer terminates prematurely, an 
end-of-stream marker is sent to the reader.) The unnamed 
pipe persists until both the writer and the reader terminate.

using pipes and 
message queues
Learn how processes synchronize with each other in Linux.

https://creativecommons.org/licenses/by-sa/4.0/
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in the contrived example, the sleep process does not 
write any bytes to the channel but does terminate after 
about five seconds, which sends an end-of-stream mark-
er to the channel. in the meantime, the echo process im-
mediately writes the greeting to the standard output (the 
screen) because this process does not read any bytes 
from the channel, so it does no waiting. once the sleep 
and echo processes terminate, the unnamed pipe—not 
used at all for communication—goes away and the com-
mand line prompt returns.

Here is a more useful example using two unnamed pipes. 
Suppose that the file test.dat looks like this:

this

is

the

way

the

world

ends

the command:

% cat test.dat | sort | uniq

pipes the output from the cat (con-
catenate) process into the sort pro-
cess to produce sorted output, and 
then pipes the sorted output into the 
uniq process to eliminate duplicate 
records (in this case, the two occur-
rences of the reduce to one):

ends

is

the

this

way

world

the scene now is set for a program 
with two processes that communi-
cate through an unnamed pipe (see 
example 1).

the pipeUN program above uses 
the system function fork to create a 
process. Although the program has 
but a single source file, multi-pro-
cessing occurs during (successful) 
execution. Here are the particulars 
in a quick review of how the library 
function fork works:
•   The fork function, called in the 

parent process, returns -1 to the 

parent in case of failure. in the pipeUN example, the 
call is:

pid_t cpid = fork(); /* called in parent */

 the returned value is stored, in this example, in the variable 
cpid of integer type pid_t. (every process has its own pro-
cess ID, a non-negative integer that identifies the process.) 
Forking a new process could fail for several reasons, includ-
ing a full process table, a structure that the system maintains 
to track processes. Zombie processes, clarified shortly, can 
cause a process table to fill if these are not harvested.

#include <sys/wait.h> /* wait */
#include <stdio.h>
#include <stdlib.h>   /* exit functions */
#include <unistd.h>   /* read, write, pipe, _exit */
#include <string.h>

#define ReadEnd  0
#define WriteEnd 1

void report_and_exit(const char* msg) {
  perror(msg);
  exit(-1);    /** failure **/
}

int main() {
  int pipeFDs[2]; /* two file descriptors */
  char buf;       /* 1-byte buffer */
  const char* msg = "Nature's first green is gold\n"; /* bytes to write */

  if (pipe(pipeFDs) < 0) report_and_exit("pipeFD");
  pid_t cpid = fork();                                /* fork a child process */
  if (cpid < 0) report_and_exit("fork");              /* check for failure */

  if (0 == cpid) {    /*** child ***/                 /* child process */
    close(pipeFDs[WriteEnd]);                         /* child reads, doesn't write */

    while (read(pipeFDs[ReadEnd], &buf, 1) > 0)       /* read until end of byte stream */
      write(STDOUT_FILENO, &buf, sizeof(buf));        /* echo to the standard output */

    close(pipeFDs[ReadEnd]);                          /* close the ReadEnd: all done */
    _exit(0);                                         /* exit and notify parent at once  */
  }
  else {              /*** parent ***/
    close(pipeFDs[ReadEnd]);                          /* parent writes, doesn't read */

    write(pipeFDs[WriteEnd], msg, strlen(msg));       /* write the bytes to the pipe */
    close(pipeFDs[WriteEnd]);                         /* done writing: generate eof */

    wait(NULL);                                       /* wait for child to exit */
    exit(0);                                          /* exit normally */
  }
  return 0;
}

example 1. two processes communicating through an unnamed pipe.
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One more aspect of the program needs clarification: the 
call to the wait function in the parent code. once spawned, 
a child process is largely independent of its parent, as even 
the short pipeUN program illustrates. the child can execute 
arbitrary code that may have nothing to do with the parent. 
However, the system does notify the parent through a sig-
nal—if and when the child terminates.

What if the parent terminates before the child? in this 
case, unless precautions are taken, the child becomes and 
remains a zombie process with an entry in the process table. 
the precautions are of two broad types. one precaution is 
to have the parent notify the system that the parent has no 
interest in the child’s termination:

signal(SIGCHLD, SIG_IGN); /* in parent: ignore notification */

A second approach is to have the parent execute a wait on 
the child’s termination, thereby ensuring that the parent out-
lives the child. this second approach is used in the pipeUN 
program, where the parent code has this call:

wait(NULL); /* called in parent */

this call to wait means wait until the termination of any child 
occurs, and in the pipeUN program, there is only one child pro-
cess. (the NULL argument could be replaced with the address 
of an integer variable to hold the child’s exit status.) There is a 
more flexible waitpid function for fine-grained control, e.g., for 
specifying a particular child process among several.

the pipeUN program takes another precaution. When the 
parent is done waiting, the parent terminates with the call to 
the regular exit function. By contrast, the child terminates 
with a call to the _exit variant, which fast-tracks notification 
of termination. in effect, the child is telling the system to noti-
fy the parent AsAp that the child has terminated.

if two processes write to the same unnamed pipe, can the 
bytes be interleaved? For example, if process P1 writes:

foo bar

to a pipe and process p2 concurrently writes:

baz baz

to the same pipe, it seems that the pipe contents might be 
something arbitrary, such as:

baz foo baz bar

the posix standard ensures that writes are not interleaved 
so long as no write exceeds PIPE_BUF bytes. on Linux sys-
tems, PIPE_BUF is 4,096 bytes in size. my preference with 
pipes is to have a single writer and a single reader, thereby 
sidestepping the issue.

•   If the fork call succeeds, it thereby spawns (creates) a 
new child process, returning one value to the parent but a 
different value to the child. Both the parent and the child 
process execute the same code that follows the call to 
fork. (the child inherits copies of all the variables declared 
so far in the parent.) in particular, a successful call to fork 
returns:
•   Zero to the child process
•   The child’s process ID to the parent

•   An if/else or equivalent construct typically is used after a 
successful fork call to segregate code meant for the par-
ent from code meant for the child. in this example, the con-
struct is:

if (0 == cpid) {    /*** child ***/

...

}

else {              /*** parent ***/

...

}

If forking a child succeeds, the pipeUN program proceeds as 
follows. there is an integer array:

int pipeFDs[2]; /* two file descriptors */

to hold two file descriptors, one for writing to the pipe and 
another for reading from the pipe. (the array element 
pipeFDs[0] is the file descriptor for the read end, and the 
array element pipeFDs[1] is the file descriptor for the write 
end.) A successful call to the system pipe function, made 
immediately before the call to fork, populates the array with 
the two file descriptors:

if (pipe(pipeFDs) < 0) report_and_exit("pipeFD");

The parent and the child now have copies of both file de-
scriptors, but the separation of concerns pattern means that 
each process requires exactly one of the descriptors. In this 
example, the parent does the writing and the child does 
the reading, although the roles could be reversed. The first 
statement in the child if-clause code, therefore, closes the 
pipe’s write end:

close(pipeFDs[WriteEnd]); /* called in child code */

and the first statement in the parent else-clause code closes 
the pipe’s read end:

close(pipeFDs[ReadEnd]);  /* called in parent code */

the parent then writes some bytes (Ascii codes) to the un-
named pipe, and the child reads these and echoes them to 
the standard output.
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named pipes
An unnamed pipe has no backing file: the system main-
tains an in-memory buffer to transfer bytes from the writ-
er to the reader. once the writer and reader terminate, 
the buffer is reclaimed, so the unnamed pipe goes away. 
By contrast, a named pipe has a backing file and a dis-
tinct Api.

Let’s look at another command line example to get the gist 
of named pipes. Here are the steps:
•   Open two terminals. The working directory should be the 

same for both.
•   In one of the terminals, enter these two commands (the 

prompt again is %, and my comments start with ##):

% mkfifo tester  ## creates a backing file named tester

% cat tester    ## type the pipe's contents to stdout

 At the beginning, nothing should appear 
in the terminal because nothing has 
been written yet to the named pipe.

•   In the second terminal, enter the com-
mand:

% cat > tester  ## redirect keyboard input 

to the pipe

hello, world!   ## then hit Return key

bye, bye        ## ditto

<Control-C>      ## terminate session with a 

## Control-C

 Whatever is typed into this terminal is 
echoed in the other. once Ctrl+C is en-
tered, the regular command line prompt 
returns in both terminals: the pipe has 
been closed.

•   Clean up by removing the file that imple-
ments the named pipe:

% unlink tester

As the utility’s name mkfifo implies, a 
named pipe also is called a FIFO be-
cause the first byte in is the first byte 
out, and so on. there is a library 
function named mkfifo that creates a 
named pipe in programs and is used 
in the next example, which consists of 
two processes: one writes to the named 
pipe and the other reads from this pipe 
(see example 2).

the fifoWriter program above can be 
summarized as follows:
•   The program creates a named pipe for 

writing:

mkfifo(pipeName, 0666); /* read/write perms for user/group/others */

int fd = open(pipeName, O_CREAT | O_WRONLY);

 where pipeName is the name of the backing file passed 
to mkfifo as the first argument. The named pipe then is 
opened with the by-now familiar call to the open function, 
which returns a file descriptor.

•   For a touch of realism, the fifoWriter does not write all the 
data at once, but instead writes a chunk, sleeps a ran-
dom number of microseconds, and so on. in total, 768,000 
4-byte integer values are written to the named pipe.

•   After closing the named pipe, the fifoWriter also unlinks 
the file:

close(fd);     /* close pipe: generates end-of-stream marker */

unlink(pipeName); /* unlink from the implementing file */

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <time.h>
#include <stdlib.h>
#include <stdio.h>

#define MaxLoops         12000   /* outer loop */
#define ChunkSize           16   /* how many written at a time */
#define IntsPerChunk         4   /* four 4-byte ints per chunk */
#define MaxZs              250   /* max microseconds to sleep */

int main() {
  const char* pipeName = "./fifoChannel";
  mkfifo(pipeName, 0666);                      /* read/write for user/group/others */
  int fd = open(pipeName, O_CREAT | O_WRONLY); /* open as write-only */
  if (fd < 0) return -1;                       /* can't go on */

  int i;
  for (i = 0; i < MaxLoops; i++) {          /* write MaxWrites times */
    int j;
    for (j = 0; j < ChunkSize; j++) {       /* each time, write ChunkSize bytes */
      int k;
      int chunk[IntsPerChunk];
      for (k = 0; k < IntsPerChunk; k++)
        chunk[k] = rand();
      write(fd, chunk, sizeof(chunk));
    }
    usleep((rand() % MaxZs) + 1);           /* pause a bit for realism */
  }

  close(fd);           /* close pipe: generates an end-of-stream marker */
  unlink(pipeName);    /* unlink from the implementing file */
  printf("%i ints sent to the pipe.\n", MaxLoops * ChunkSize * IntsPerChunk);

  return 0;
}

example 2. the fifoWriter program
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const char* file = "./fifoChannel";

int fd = open(file, O_RDONLY);

The file opens as read-only.
•   The program then goes into a potentially infinite loop, try-

ing to read a 4-byte chunk on each iteration. The read call:

ssize_t count = read(fd, &next, sizeof(int));

 returns 0 to indicate end-of-stream, in which case the 
fifoReader breaks out of the loop, closes the named 
pipe, and unlinks the backing file before terminating.

•   After reading a 4-byte integer, the fifoReader checks 
whether the number is a prime. this represents the busi-
ness logic that a production-grade reader might perform on 

the received bytes. on a sample run, there 
were 37,682 primes among the 768,000 in-
tegers received.

on repeated sample runs, the fifoReader 
successfully read all of the bytes that the 
fifoWriter wrote. this is not surprising. the 
two processes execute on the same host, 
taking network issues out of the equation. 
named pipes are a highly reliable and ef-
ficient IPC mechanism and, therefore, in 
wide use.

Here is the output from the two programs, 
each launched from a separate terminal but 
with the same working directory:

% ./fifoWriter

768000 ints sent to the pipe.

###

% ./fifoReader

Received ints: 768000, primes: 37682

Message queues
Pipes have strict FIFO behavior: the first 
byte written is the first byte read, the second 
byte written is the second byte read, and so 
forth. Message queues can behave in the 
same way but are flexible enough that byte 
chunks can be retrieved out of FIFO order.

As the name suggests, a message queue 
is a sequence of messages, each of which 
has two parts:
•   The payload, which is an array of bytes 

(char in c)
•   A type, given as a positive integer value; 

types categorize messages for flexible re-
trieval

consider the following depiction of a mes-
sage queue, with each message labeled with 
an integer type:

 The system reclaims the backing file once every process 
connected to the pipe has performed the unlink operation. 
in this example, there are only two such processes: the 
fifoWriter and the fifoReader, both of which do an unlink 
operation.
the two programs should be executed in different termi-

nals with the same working directory. However, the fifoW-
riter should be started before the fifoReader, as the former 
creates the pipe. the fifoReader then accesses the already 
created named pipe (see example 3).

the fifoReader program above can be summarized as fol-
lows:
•   Because the fifoWriter creates the named pipe, the fifoRe-

ader needs only the standard call open to access the pipe 
through the backing file:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>

unsigned is_prime(unsigned n) { /* not pretty, but efficient */
  if (n <= 3) return n > 1;
  if (0 == (n % 2) || 0 == (n % 3)) return 0;

  unsigned i;
  for (i = 5; (i * i) <= n; i += 6)
    if (0 == (n % i) || 0 == (n % (i + 2))) return 0;

  return 1; /* found a prime! */
}

int main() {
  const char* file = "./fifoChannel";
  int fd = open(file, O_RDONLY);
  if (fd < 0) return -1; /* no point in continuing */
  unsigned count = 0, total = 0, primes_count = 0;

  while (1) {
    int next;
    int i;

    ssize_t count = read(fd, &next, sizeof(int));
    if (0 == count) break;                  /* end of stream */
    else if (count == sizeof(int)) {        /* read a 4-byte int value */
      total++;
      if (is_prime(next)) primes_count++;
    }
  }

  close(fd);       /* close pipe from read end */
  unlink(file);    /* unlink from the underlying file */
  printf("Received ints: %u, primes: %u\n", total, primes_count);

  return 0;
}

example 3. the fifoReader program
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          +-+    +-+    +-+    +-+

sender--->|3|--->|2|--->|2|--->|1|--->receiver

          +-+    +-+    +-+    +-+

of the four messages shown, the one labeled 1 is at the 
front, i.e., closest to the receiver. next come two messag-
es with label 2, and finally, a message labeled 3 at the 
back. If strict FIFO behavior were in play, then the mes-
sages would be received in the order 1-2-2-3. However, 

the message queue allows other retrieval orders. For ex-
ample, the messages could be retrieved by the receiver in 
the order 3-2-1-2.

the mqueue example consists of two programs, the send-
er that writes to the message queue and the receiver that 
reads from this queue. Both programs include the header file 
queue.h shown below in example 4:

The header file defines a structure type named queued-
Message, with payload (byte array) and type (integer) 

fields. This file also defines symbolic constants 
(the #define statements), the first two of which 
are used to generate a key that, in turn, is used 
to get a message queue ID. The ProjectId can 
be any positive integer value, and the PathName 
must be an existing, accessible file—in this case, 
the file queue.h. the setup statements in both the 
sender and the receiver programs are:

key_t key = ftok(PathName, ProjectId);   /*  generate key 

*/

int qid = msgget(key, 0666 | IPC_CREAT); /*  use key 

to get                                             

queue id */

the id qid is, in effect, the counterpart of a file 
descriptor for message queues (see Example 5).

the sender program above sends out six mes-
sages, two each of a specified type: the first mes-
sages are of type 1, the next two of type 2, and 
the last two of type 3. the sending statement:

msgsnd(qid, &msg, sizeof(msg), IPC_NOWAIT);

is configured to be non-blocking (the flag IPC_
NOWAIT) because the messages are so small. 
The only danger is that a full queue, unlikely in 
this example, would result in a sending failure. the 
receiver program below also receives messages 
using the IPC_NOWAIT flag (see Example 6).

the receiver program does not create the mes-
sage queue, although the API suggests as much. 
in the receiver, the call:

int qid = msgget(key, 0666 | IPC_CREAT);

is misleading because of the IPC_CREAT flag, but 
this flag really means create if needed, otherwise 
access. the sender program calls msgsnd to 
send messages, whereas the receiver calls ms-
grcv to retrieve them. in this example, the sender 
sends the messages in the order 1-1-2-2-3-3, but 
the receiver then retrieves them in the order 3-1-
2-1-3-2, showing that message queues are not 
bound to strict FIFO behavior:

#define ProjectId 123
#define PathName  "queue.h" /* any existing, accessible file would do */
#define MsgLen    4
#define MsgCount  6

typedef struct {
  long type;                 /* must be of type long */
  char payload[MsgLen + 1];  /* bytes in the message */
} queuedMessage;

Example 4. The header file queue.h

#include <stdio.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <stdlib.h>
#include <string.h>
#include "queue.h"

void report_and_exit(const char* msg) {
  perror(msg);
  exit(-1); /* EXIT_FAILURE */
}

int main() {
  key_t key = ftok(PathName, ProjectId);
  if (key < 0) report_and_exit("couldn't get key...");

  int qid = msgget(key, 0666 | IPC_CREAT);
  if (qid < 0) report_and_exit("couldn't get queue id...");

  char* payloads[] = {"msg1", "msg2", "msg3", "msg4", "msg5", "msg6"};
  int types[] = {1, 1, 2, 2, 3, 3}; /* each must be > 0 */
  int i;
  for (i = 0; i < MsgCount; i++) {
    /* build the message */
    queuedMessage msg;
    msg.type = types[i];
    strcpy(msg.payload, payloads[i]);

    /* send the message */
    msgsnd(qid, &msg, sizeof(msg), IPC_NOWAIT); /* don't block */
    printf("%s sent as type %i\n", msg.payload, (int) msg.type);
  }
  return 0;
}

example 5. the message sender program
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% ./receiver

msg5 received as type 3

msg1 received as type 1

msg3 received as type 2

msg2 received as type 1

msg6 received as type 3

msg4 received as type 2

the output above shows that the sender and 
the receiver can be launched from the same 
terminal. the output also shows that the mes-
sage queue persists even after the sender 
process creates the queue, writes to it, and 
exits. The queue goes away only after the re-
ceiver process explicitly removes it with the 
call to msgctl:

if (msgctl(qid, IPC_RMID, NULL) < 0) /* remove  

                                        queue */

Wrapping up
The pipes and message queue APIs are fun-
damentally unidirectional: one process writes 
and another reads. there are implementa-
tions of bidirectional named pipes, but my 
two cents is that this ipc mechanism is at 
its best when it is simplest. As noted earlier, 
message queues have fallen in popularity—
but without good reason; these queues are 
yet another tool in the ipc toolbox. part 3 
completes this quick tour of the IPC toolbox 
with code examples of IPC through sockets 
and signals.

Links
[1]  http://man7.org/linux/man-pages/man2/

mq_open.2.html
[2]  http://man7.org/linux/man-pages/man2/

mq_open.2.html#ATTRIBUTES

% ./sender

msg1 sent as type 1

msg2 sent as type 1

msg3 sent as type 2

msg4 sent as type 2

msg5 sent as type 3

msg6 sent as type 3

#include <stdio.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <stdlib.h>
#include "queue.h"

void report_and_exit(const char* msg) {
  perror(msg);
  exit(-1); /* EXIT_FAILURE */
}

int main() {
  key_t key= ftok(PathName, ProjectId); /* key to identify the queue */
  if (key < 0) report_and_exit("key not gotten...");

  int qid = msgget(key, 0666 | IPC_CREAT); /* access if created already */
  if (qid < 0) report_and_exit("no access to queue...");

  int types[] = {3, 1, 2, 1, 3, 2}; /* different than in sender */
  int i;
  for (i = 0; i < MsgCount; i++) {
    queuedMessage msg; /* defined in queue.h */
    if (msgrcv(qid, &msg, sizeof(msg), types[i], MSG_NOERROR | IPC_NOWAIT) < 0)
      puts("msgrcv trouble...");
    printf("%s received as type %i\n", msg.payload, (int) msg.type);
  }

  /** remove the queue **/
  if (msgctl(qid, IPC_RMID, NULL) < 0)  /* NULL = 'no flags' */
    report_and_exit("trouble removing queue...");

  return 0;
}

example 6. the message receiver program
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the fIrst sectIOn focused on ipc through shared 
storage (files and memory segments), 

and the second section does the same for basic channels: 
pipes (named and unnamed) and message queues. This 
section moves from IPC at the high end (sockets) to IPC at 
the low end (signals). Code examples flesh out the details.

Sockets
Just as pipes come in two fla-
vors (named and unnamed), 
so do sockets. IPC sockets 
(aka Unix domain sockets) 
enable channel-based com-
munication for processes 
on the same physical device 
(host ), whereas network 
sockets enable this kind of 
ipc for processes that can 
run on different hosts, there-
by bringing networking into 
play. Network sockets need 
support from an underlying protocol such as tcp (transmis-
sion control protocol) or the lower-level udp (user data-
gram protocol).

By contrast, IPC sockets rely upon the local system kernel 
to support communication; in particular, IPC sockets commu-
nicate using a local file as a socket address. Despite these 
implementation differences, the IPC socket and network 
socket APIs are the same in the essentials. The forthcoming 
example covers network sockets, but the sample server and 
client programs can run on the same machine because the 
server uses network address localhost (127.0.0.1), the ad-
dress for the local machine on the local machine.

Sockets configured as streams (discussed below) are bi-
directional, and control follows a client/server pattern: the cli-
ent initiates the conversation by trying to connect to a server, 
which tries to accept the connection. If everything works, 
requests from the client and responses from the server then 

can flow through the channel until this is closed on either 
end, thereby breaking the connection.

An iterative server, which is suited for development only, 
handles connected clients one at a time to completion: the 
first client is handled from start to finish, then the second, and 
so on. the downside is that the handling of a particular client 
may hang, which then starves all the clients waiting behind. 
A production-grade server would be concurrent, typically 

using some mix of multi-pro-
cessing and multi-thread-
ing. For example, the Nginx 
web server on my desktop 
machine has a pool of four 
worker processes that can 
handle client requests con-
currently. the following code 
example keeps the clutter to 
a minimum by using an itera-
tive server; the focus thus re-
mains on the basic Api, not 
on concurrency.

Finally, the socket API has evolved significantly over time 
as various POSIX refinements have emerged. The current 
sample code for server and client is deliberately simple but 
underscores the bidirectional aspect of a stream-based 
socket connection. Here’s a summary of the flow of control, 
with the server started in a terminal then the client started in 
a separate terminal:
•   The server awaits client connections and, given a success-

ful connection, reads the bytes from the client.
•   To underscore the two-way conversation, the server 

echoes back to the client the bytes received from the cli-
ent. These bytes are ASCII character codes, which make 
up book titles.

•   The client writes book titles to the server process and then 
reads the same titles echoed from the server. Both the 
server and the client print the titles to the screen. Here is 
the server’s output, essentially the same as the client’s:

sockets and signals
Learn how processes synchronize with each other in Linux.
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Listening on port 9876 for clients...

War and Peace

Pride and Prejudice

The Sound and the Fury

see example 1.
the server program above performs the 

classic four-step to ready itself for client re-
quests and then to accept individual requests. 
each step is named after a system function 
that the server calls:

1.  socket(…): get a file descriptor for the sock-
et connection

2.  bind(…): bind the socket to an address on 
the server’s host

3.  listen(…): listen for client requests
4.  accept(…): accept a particular client request

the socket call in full is:

int sockfd = socket(AF_INET,  /* versus AF_LOCAL */

                    SOCK_STREAM,  /*  reliable, 

bidirectional */

                    0);           /*  system picks 

protocol (TCP) */

The first argument specifies a network sock-
et as opposed to an IPC socket. There are 
several options for the second argument, but 
SOCK_STREAM and SOCK_DGRAM (da-
tagram) are likely the most used. A stream-
based socket supports a reliable channel in 
which lost or altered messages are reported; 
the channel is bidirectional, and the payloads 
from one side to the other can be arbitrary 
in size. By contrast, a datagram-based sock-
et is unreliable (best try), unidirectional, and 
requires fixed-sized payloads. The third ar-
gument to socket specifies the protocol. For 
the stream-based socket in play here, there 
is a single choice, which the zero represents: 
tcp. Because a successful call to socket re-
turns the familiar file descriptor, a socket is 
written and read with the same syntax as, for 
example, a local file.

the bind call is the most complicated, as it 
reflects various refinements in the socket API. 
the point of interest is that this call binds the 
socket to a memory address on the server 
machine. However, the listen call is straight-
forward:

if (listen(fd, MaxConnects) < 0)

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/tcp.h>
#include <arpa/inet.h>
#include "sock.h"

void report(const char* msg, int terminate) {
  perror(msg);
  if (terminate) exit(-1); /* failure */
}

int main() {
  int fd = socket(AF_INET,     /* network versus AF_LOCAL */
                  SOCK_STREAM, /* reliable, bidirectional, arbitrary payload size */
                  0);          /* system picks underlying protocol (TCP) */
  if (fd < 0) report("socket", 1); /* terminate */

  /* bind the server's local address in memory */
  struct sockaddr_in saddr;
  memset(&saddr, 0, sizeof(saddr));          /* clear the bytes */
  saddr.sin_family = AF_INET;                /* versus AF_LOCAL */
  saddr.sin_addr.s_addr = htonl(INADDR_ANY); /* host-to-network endian */
  saddr.sin_port = htons(PortNumber);        /* for listening */

  if (bind(fd, (struct sockaddr *) &saddr, sizeof(saddr)) < 0)
    report("bind", 1); /* terminate */

  /* listen to the socket */
  if (listen(fd, MaxConnects) < 0) /* listen for clients, up to MaxConnects */
    report("listen", 1); /* terminate */

  fprintf(stderr, "Listening on port %i for clients...\n", PortNumber);
  /* a server traditionally listens indefinitely */
  while (1) {
    struct sockaddr_in caddr; /* client address */
    int len = sizeof(caddr);  /* address length could change */

    int client_fd = accept(fd, (struct sockaddr*) &caddr, &len); /* accept blocks */
    if (client_fd < 0) {
      report("accept", 0); /* don't terminate, though there's a problem */
      continue;
    }

    /* read from client */
    int i;
    for (i = 0; i < ConversationLen; i++) {
      char buffer[BuffSize + 1];
      memset(buffer, '\0', sizeof(buffer));
      int count = read(client_fd, buffer, sizeof(buffer));
      if (count > 0) {
        puts(buffer);
        write(client_fd, buffer, sizeof(buffer)); /* echo as confirmation */
      }
    }
    close(client_fd); /* break connection */
  }  /* while(1) */
  return 0;
}

Example 1. The socket server

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


A guide to inter-process communicAtion in Linux ...   cc BY-sA 4.0 ...   opensource.com 21

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  sOcKets And siGnALs

The first argument is the socket’s file descriptor and 
the second specifies how many client connections 
can be accommodated before the server issues a 
connection refused error on an attempted connec-
tion. (MaxConnects is set to 8 in the header file 
sock.h.)

the accept call defaults to a blocking wait: the 
server does nothing until a client attempts to connect 
and then proceeds. the accept function returns -1 to 
indicate an error. if the call succeeds, it returns anoth-
er file descriptor—for a read/write socket in contrast 
to the accepting socket referenced by the first argu-
ment in the accept call. the server uses the read/
write socket to read requests from the client and to 
write responses back. The accepting socket is used 
only to accept client connections.

By design, a server runs indefinitely. Accordingly, 
the server can be terminated with a Ctrl+C from the 
command line (see example 2).

The client program’s setup code is similar to the 
server’s. The principal difference between the two is 
that the client neither listens nor accepts, but instead 
connects:

if ( connect(sockfd, (struct sockaddr*) &saddr, 

sizeof(saddr)) < 0)

the connect call might fail for several reasons; for 
example, the client has the wrong server address or 
too many clients are already connected to the server. 
if the connect operation succeeds, the client writes 
requests and then reads the echoed responses in a 
for loop. After the conversation, both the server and 
the client close the read/write socket, although a 
close operation on either side is sufficient to close the 
connection. the client exits thereafter but, as noted 
earlier, the server remains open for business.

The socket example, with request messages 
echoed back to the client, hints at the possibilities 
of arbitrarily rich conversations between the server 
and the client. perhaps this is the chief appeal of 
sockets. It is common on modern systems for client 
applications (e.g., a database client) to communi-
cate with a server through a socket. As noted ear-
lier, local IPC sockets and network sockets differ 
only in a few implementation details; in general, 
IPC sockets have lower overhead and better per-
formance. the communication Api is essentially the 
same for both.

signals
A signal interrupts an executing program and, in this 
sense, communicates with it. most signals can be 
either ignored (blocked) or handled (through desig-

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <netdb.h>
#include "sock.h"

const char* books[] = {"War and Peace",
                       "Pride and Prejudice",
                       "The Sound and the Fury"};

void report(const char* msg, int terminate) {
  perror(msg);
  if (terminate) exit(-1); /* failure */
}

int main() {
  /* fd for the socket */
  int sockfd = socket(AF_INET,      /* versus AF_LOCAL */
                      SOCK_STREAM,  /* reliable, bidirectional */
                      0);           /* system picks protocol (TCP) */
  if (sockfd < 0) report("socket", 1); /* terminate */

  /* get the address of the host */
  struct hostent* hptr = gethostbyname(Host); /* localhost: 127.0.0.1 */
  if (!hptr) report("gethostbyname", 1); /* is hptr NULL? */
  if (hptr->h_addrtype != AF_INET)       /* versus AF_LOCAL */
    report("bad address family", 1);

  /* connect to the server: configure server's address 1st */
  struct sockaddr_in saddr;
  memset(&saddr, 0, sizeof(saddr));
  saddr.sin_family = AF_INET;
  saddr.sin_addr.s_addr =
     ((struct in_addr*) hptr->h_addr_list[0])->s_addr;
  saddr.sin_port = htons(PortNumber); /* port number in big-endian */

  if (connect(sockfd, (struct sockaddr*) &saddr, sizeof(saddr)) < 0)
    report("connect", 1);

  /* Write some stuff and read the echoes. */
  puts("Connect to server, about to write some stuff...");
  int i;
  for (i = 0; i < ConversationLen; i++) {
    if (write(sockfd, books[i], strlen(books[i])) > 0) {
      /* get confirmation echoed from server and print */
      char buffer[BuffSize + 1];
      memset(buffer, '\0', sizeof(buffer));
      if (read(sockfd, buffer, sizeof(buffer)) > 0)
        puts(buffer);
    }
  }
  puts("Client done, about to exit...");
  close(sockfd); /* close the connection */
  return 0;
}

Example 2. The socket client
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Signals can arise in user interaction. For example, a 
user hits Ctrl+C from the command line to terminate a pro-
gram started from the command-line; Ctrl+C generates a 
SIGTERM signal. SIGTERM for terminate, unlike SIGKILL, 

can be either blocked or handled. One pro-
cess also can signal another, thereby mak-
ing signals an ipc mechanism.

consider how a multi-processing applica-
tion such as the nginx web server might be 
shut down gracefully from another process. 
the kill function:

in t kill(pid_t pid, int signum);  

/* declaration */

can be used by one process to terminate 
another process or group of processes. if 
the first argument to function kill is greater 
than zero, this argument is treated as the pid 
(process id) of the targeted process; if the 
argument is zero, the argument identifies the 
group of processes to which the signal send-
er belongs.

the second argument to kill is either a 
standard signal number (e.g., SIGTERM 
or SIGKILL) or 0, which makes the call to 
signal a query about whether the pid in the 
first argument is indeed valid. The graceful 
shutdown of a multi-processing application 
thus could be accomplished by sending a 
terminate signal—a call to the kill function 
with SIGTERM as the second argument—to 
the group of processes that make up the ap-
plication. (the nginx master process could 
terminate the worker processes with a call to 
kill and then exit itself.) the kill function, like 
so many library functions, houses power and 
flexibility in a simple invocation syntax (see 
example 3).

the shutdown program above simulates 
the graceful shutdown of a multi-processing 
system, in this case, a simple one consisting 
of a parent process and a single child pro-
cess. The simulation works as follows:
•   The parent process tries to fork a child. If 

the fork succeeds, each process executes 
its own code: the child executes the func-
tion child_code, and the parent executes 
the function parent_code.

•  The child process goes into a potential-
ly infinite loop in which the child sleeps 
for a second, prints a message, goes 
back to sleep, and so on. It is precisely 
a SIGTERM signal from the parent that 

nated code), with SIGSTOP (pause) and SIGKILL (termi-
nate immediately) as the two notable exceptions. symbolic 
constants such as SIGKILL have integer values, in this 
case, 9.

#include <stdio.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

void graceful(int signum) {
  printf("\tChild confirming received signal: %i\n", signum);
  puts("\tChild about to terminate gracefully...");
  sleep(1);
  puts("\tChild terminating now...");
  _exit(0); /* fast-track notification of parent */
}

void set_handler() {
  struct sigaction current;
  sigemptyset(&current.sa_mask);    /* clear the signal set */
  current.sa_flags = 0;              /* enables setting sa_handler, not sa_action */
  current.sa_handler = graceful;         /* specify a handler */
  sigaction(SIGTERM, &current, NULL);    /* register the handler */
}

void child_code() {
  set_handler();

  while (1) {   /** loop until interrupted **/
    sleep(1);
    puts("\tChild just woke up, but going back to sleep.");
  }
}

void parent_code(pid_t cpid) {
  puts("Parent sleeping for a time...");
  sleep(5);

  /* Try to terminate child. */
  if (-1 == kill(cpid, SIGTERM)) {
    perror("kill");
    exit(-1);
  }
  wait(NULL); /** wait for child to terminate **/
  puts("My child terminated, about to exit myself...");
}

int main() {
  pid_t pid = fork();
  if (pid < 0) {
    perror("fork");
    return -1; /* error */
  }
  if (0 == pid)
    child_code();
  else
    parent_code(pid);
  return 0;  /* normal */
}

example 3. the graceful shutdown of a multi-processing system
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puts("Parent sleeping for a time...");

sleep(5);

if (-1 == kill(cpid, SIGTERM)) {

...

if the kill call succeeds, the parent does a wait on the 
child’s termination to prevent the child from becoming a 
permanent zombie; after the wait, the parent exits.

•   The child_code function first calls set_handler and then 
goes into its potentially infinite sleeping loop. Here is the 
set_handler function for review:

void set_handler() {

  struct sigaction current;          /* current setup */

  sigemptyset(&current.sa_mask);     /* clear the signal set */

  current.sa_flags = 0;               /*  for setting sa_handler, 

not sa_action */

  current.sa_handler = graceful;      /* specify a handler */

  sigaction(SIGTERM, &current, NULL); /* register the handler */

}

The first three lines are preparation. The fourth statement sets 
the handler to the function graceful, which prints some mes-
sages before calling _exit to terminate. The fifth and last state-
ment then registers the handler with the system through the 
call to sigaction. The first argument to sigaction is SIGTERM 
for terminate, the second is the current sigaction setup, and 
the last argument (NULL in this case) can be used to save a 
previous sigaction setup, perhaps for later use.

using signals for ipc is indeed a minimalist approach, but 
a tried-and-true one at that. ipc through signals clearly be-
longs in the ipc toolbox.

causes the child to execute the signal-handling callback 
function graceful. The signal thus breaks the child pro-
cess out of its loop and sets up the graceful termination of 
both the child and the parent. the child prints a message 
before terminating.
•   The parent process, after forking the child, sleeps for 

five seconds so that the child can execute for a while; 
of course, the child mostly sleeps in this simulation. the 
parent then calls the kill function with SIGTERM as the 
second argument, waits for the child to terminate, and 
then exits.
Here is the output from a sample run:

% ./shutdown

Parent sleeping for a time...

        Child just woke up, but going back to sleep.

        Child just woke up, but going back to sleep.

        Child just woke up, but going back to sleep.

        Child just woke up, but going back to sleep.

        Child confirming received signal: 15  ## SIGTERM is 15

        Child about to terminate gracefully...

        Child terminating now...

My child terminated, about to exit myself...

For the signal handling, the example uses the sigaction 
library function (posix recommended) rather than the 
legacy signal function, which has portability issues. Here 
are the code segments of chief interest:

•   If the call to fork succeeds, the parent executes the 
parent_code function and the child executes the child_
code function. The parent waits for five seconds before 
signaling the child:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  sOcKets And siGnALs
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thIs guIde On Ipc has covered the 
following mech-

anisms through code examples:
•   Shared files
•   Shared memory (with semaphores)
•   Pipes (named and unnamed)
•   Message queues
•   Sockets
•   Signals
even today, when thread-centric languages such as Java, 
c#, and go have become so popular, ipc remains appeal-
ing because concurrency through multi-processing has an 
obvious advantage over multi-threading: every process, 
by default, has its own address space, which rules out 
memory-based race conditions in multi-processing unless 
the ipc mechanism of shared memory is brought into play. 
(Shared memory must be locked in both multi-processing 
and multi-threading for safe concurrency.) Anyone who 
has written even an elementary multi-threading program 
with communication via shared variables knows how chal-
lenging it can be to write thread-safe yet clear, efficient 
code. multi-processing with single-threaded processes 

remains a viable—indeed, quite appealing—way to take 
advantage of today’s multi-processor machines without 
the inherent risk of memory-based race conditions.

There is no simple answer, of course, to the question of 
which among the ipc mechanisms is the best. each involves 
a trade-off typical in programming: simplicity versus function-
ality. signals, for example, are a relatively simple ipc mecha-
nism but do not support rich conversations among processes. 
if such a conversion is needed, then one of the other choices 
is more appropriate. Shared files with locking is reasonably 
straightforward, but shared files may not perform well enough 
if processes need to share massive data streams; pipes or 
even sockets, with more complicated APIs, might be a better 
choice. Let the problem at hand guide the choice.

Although the sample code (available on my website [1]) 
is all in c, other programming languages often provide thin 
wrappers around these ipc mechanisms. the code exam-
ples are short and simple enough, i hope, to encourage you 
to experiment.

Links
[1]  https://condor.depaul.edu/mkalin/

wrapping up this guide
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In 2010, Red Hat CEO Jim Whitehurst announced the launch of Opensource.com 
in a post titled Welcome to the conversation on Opensource.com. He explained, 
“This site is one of the ways in which Red Hat gives something back to the open 
source community. our desire is to create a connection point for conversations 
about the broader impact that open source can have—and is having—even beyond 
the software world.” he wrote, adding, “All ideas are welcome, and all participants 
are welcome. This will not be a site for Red Hat, about Red Hat. Instead, this will be 
a site for open source, about the future.”

By 2013, opensource.com was publishing an average of 46 articles per month, 
and in March 2016, Opensource.com surpassed 1-million page views for the first 
time. in 2019, opensource.com averages more than 1.5 million page views and 
90 articles per month.

more than 60% of our content is contributed by members of open source communities, 
and additional articles are written by the editorial team and other Red Hat contributors. 
A small, international team of staff editors and Community Moderators work closely 
with contributors to curate, polish, publish, and promote open source stories from 
around the world.

Would you like to write for us? Send pitches and inquiries to open@opensource.com.

to learn more, read 7 big reasons to contribute to opensource.com.
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