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NOTE TO THE READER 

When I wrote this book 18 years ago, I volunteered to be one of the first O’Reilly authors to use 

DocBook semantic tagging to mark up the text, rather than the traditional troff formatting markup. 

Norman Walsh, Leonard Muellner, and Lar Kaufman at O’Reilly developed customized tools and 

gtroff macros to convert the SGML-tagged manuscript into something printable. It was an 

interesting time, as DocBook and the tools were evolving as I was writing the book. Unfortunately, 

in 2012, while the old O’Reilly tools and gtroff macro packages are still available, the tools they 
depended on (DocBook and groff, primarily) have evolved in ways that are not backward-

compatible (at least not without a lot of work). 

To produce this on-line version of the book, I had hoped to be able to use one of the several 

DocBook-to-Microsoft® Word conversion tools. Unfortunately, these tools are ridiculously 

complex, and at any rate, don’t appear to either (a) support older SGML DocBook versions 

(DocBook is XML now) or (b) fully support WordML (XML for Word). So, I was stuck doing 

things the hard way. This document is the result of preprocessing the original DocBook manuscript 

files, importing them into Word, and then applying appropriate paragraph styles and fonts to make 

the text look reasonably similar to the original book (and also make it similar to the electronic 

version of my earlier programming book, Using C on the UNIX System). With regard to content, I 

have corrected a couple of errors that were identified by readers after the book was published, but 

otherwise the manuscript is unchanged. The index has been omitted; use the search function. 

Please note that I have not made any attempt to update the text to match current UNIX (or Linux) 

systems. While most of the material is still accurate, you should expect to encounter some (usually 

minor) differences in include file locations, names of constants, and so forth. The compiler 

information in the preface is out of date, and later versions of Solaris got rid of the BSD Source 

Compatibility Package in favor of just including those routines in the standard libraries. The chapter 

on the Transport Layer Interface is probably of historical interest only; although it still exists, it 

never caught on, and nobody uses it. The material in the appendices is still generally accurate, but 

some of the details, such as the names of kernel variables, etc. have probably changed. 

This document is for your personal, non-commercial use only. You may also use it as a bibliographic 

reference in any works that you are writing. Any commercial use of this document, including 

printing and distribution to groups of people (such as a classroom) is prohibited without my prior 
written permission. 

I hope you find the information in this book useful. 

David A. Curry 

August 2014 
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Preface 

About This Book 

When I wrote Using C on the UNIX System in 1988, UNIX was used primarily on large timesharing 

systems. It was administered and programmed by centralized staffs, and the everyday users of the 

system had little if any need to perform systems programming tasks. However, because there was 

not a great deal of third-party software available for UNIX, it was often necessary to “roll your 

own.”  This meant that you needed to know all about the system calls and library routines provided 

by the UNIX operating system. That's what Using C taught you. 

Today, things are different. The large UNIX timesharing system is a dinosaur of the past, replaced 

by desktop workstations. Centralized staffs of administrators and programmers have diminished or 

vanished altogether, leaving the users of these workstations to fend for themselves. But because 

UNIX has become so widespread, so has the amount of software available for it—it's quite likely 

that as a user of a UNIX workstation you may never need to write a program yourself. Someone has 

already written just what you need, and you can either purchase it or obtain it for free via the Internet 
or USENET. However, you still need to know all about the system calls and library routines 

provided by the UNIX operating system, because many of these packages must be ported from one 

version of UNIX to another. 

Back in 1988, describing the UNIX programming environment required making allowances for 

three principal versions of UNIX: Version 7 (Seventh Edition), System V, and the Berkeley 

Software Distribution (BSD). There were no UNIX standards at the time, and each system did things 

in a slightly different way. Even within each major version things were different—4.2 BSD did 

things differently from 4.1 BSD, System V Release 3 did things differently from System V Release 

2, and so forth. This made for a rather messy and confusing book. 

Again, things are different today. Although there are more versions of UNIX than ever, they all 

share, thanks to standards such as POSIX, ANSI C, and X/Open, a fairly common programming 
interface. Unfortunately, as someone once said, “the nice thing about standards is that there are so 

many to choose from.”  Although most modern versions of UNIX are very similar, each vendor has 

added its own little twists, reintroducing the difficulties the standards were supposed to eliminate. 

The trick now, rather than describing how to do something on each version of UNIX, is to describe 

how to do it on a “standard” version of UNIX and then describe how to port code written on other 

versions to this standard version. That's what this book does. 

The principal focus of this book, our “standard” version of UNIX, is System V Release 4, henceforth 

abbreviated as SVR4. Released in late 1989, SVR4 was intended to merge the best features from 
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Berkeley-based systems such as SunOS with the best of System V, provide compatibility with 

Microsoft's XENIX system, and conform to the IEEE POSIX standards. Although practically 

nobody uses “pure” SVR4 as it was originally released by UNIX System Laboratories, three of the 

four largest UNIX workstation vendors (Sun, Hewlett-Packard, and Silicon Graphics) have chosen 

it as the base for their most recent operating system releases. Together, these three companies' 

products account for over 60% of the UNIX workstation market. 

In the following chapters, nearly every SVR4 system call and library routine related to systems 

programming is described (libraries for other purposes, such as the math library, are not discussed). 

Examples are provided via small code fragments, numerous short demonstration programs, and 

several “real world” applications that demonstrate a large number of functions working together. 

One of the major features of the book though, is the advice it offers on porting code between other 

versions of UNIX and SVR4-based systems. SVR4 is a completely new operating system. The 

amount of software currently running under these vendors' earlier, BSD-based systems that needs 

to be ported to SVR4 is simply staggering. There are millions of lines of code in the freely available 

software packages most people take for granted, such as GNU Emacs, the X Window System, and so 

forth. There are probably millions more lines of code in the locally-developed applications in use at 

each site. To help with the porting process, most of the chapters in this book contain special sections 

targeted specifically at porting code. These sections describe how a task is performed on different 
versions of UNIX, and then explain how to change the code for these versions to perform the same 

task under SVR4. The porting sections also discuss differences in function names and parameters 

between other versions of UNIX and SVR4. 

Scope of This Book 

The book has been organized in a “bottom up” fashion, first presenting the simple functions and 

concepts that form the building blocks for the more complex material at the end of the book. 

Chapter 1, Introduction to SVR4, provides a brief history of the development of the UNIX operating 

system, culminating in the release of SVR4. The standards with which SVR4 complies are then 

presented, followed by some short notes on compiler usage and the BSD Source Compatibility 

Package. 

Chapter 2, Utility Routines, introduces most of the utility routines provided for manipulating 

character strings, byte strings, and character classes, dynamically allocating memory, manipulating 

temporary files, and parsing command line arguments. Much of the material in this chapter will be 

familiar to many readers, but it provides a common base from which to start. 

Chapter 3, Low-Level I/O Routines, describes the low-level UNIX input/output paradigm, in which 

buffering and other mundane tasks must be performed by the programmer. 

Chapter 4, The Standard I/O Library, describes the high-level UNIX input/output paradigm, in 

which buffering and other mundane tasks are performed by a library of functions. 

Chapter 5, Files and Directories, introduces the UNIX file system. This includes an overview of 

how the file system works, how to examine and change file attributes, how to create and delete files 

and directories, and how to traverse directory trees. 
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Chapter 6, Special-Purpose File Operations, describes special-purpose operations on files such as 

processing multiple input streams, file and record locking, and memory-mapped files. 

Chapter 7, Time of Day Operations, describes how to examine the system's time of day clock, and 

the wide variety of functions for reading and printing time and date strings. 

Chapter 8, Users and Groups, explains the formats of the password, shadow password, and group 

files, and how to obtain information from them. It also describes how to determine who is logged 
in, when a user last logged in or out, and how to change a program's effective user-id or group-id. 

A special section is included on writing set-user-id programs. 

Chapter 9, System Configuration and Resource Limits, describes how to examine and change various 

system and user limits such as the host name, maximum number of characters in a file name, 

maximum size of a file in bytes, maximum number of open files per process, or the maximum 

amount of CPU time a process may consume. 

Chapter 10, Signals, explains the concept of signals, including how to send them, ignore them, and 

catch them. 

Chapter 11, Processes, describes how to create new processes, how to execute other programs, how 

to redirect input and output from one process to another, how to use the job control facilities, and 

how to time process execution. 

Chapter 12, Terminals, explains how to examine and change serial line characteristics such as baud 
rate, character echo, input buffering, and special characters. 

Chapter 13, Interprocess Communication, describes the mechanisms that allow processes on the 

same host to communicate: pipes, FIFOs, UNIX-domain sockets, message queues, semaphores, and 

shared memory. 

Chapter 14, Networking With Sockets, describes the most common UNIX network programming 

interface, Berkeley sockets. 

Chapter 15, Networking With TLI, describes the Transport Layer Interface, which is a less popular, 

but more flexible interface to network programming. 

Chapter 16, Miscellaneous Routines, describes all the “leftover” functions that are generally useful 

but don't fit into any of the preceding chapters. This includes routines for exiting, printing and 

logging error messages, searching, table lookup, pattern matching, passwords, database 
management, modem management, environment variables, random numbers, and regular 

expressions. 

The appendices provide information on topics that are of less general use than those in the main part 

of the book, but are nevertheless important. 

Appendix A, Significant Changes in ANSI C, provides a brief summary of the significant differences 

between ANSI C and the version of the language described by Kernighan and Ritchie. 

Appendix B, Accessing File System Data Structures, describes how to read raw file system data 

directly from the disk, as is done by programs such as df, fsck, and ufsdump. 
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Appendix C, The /proc File System, explains how to read information directly from process memory, 

as is done by programs such as ps. 

Appendix D, Pseudo-Terminals, describes how to allocate and use pseudo terminal devices for a 

variety of purposes. Both the SVR4 interface and the more common BSD interface are described. 

Appendix E, Accessing the Network at the Link Level, describes the Data Link Provider Interface 

(DLPI), used for sending and receiving raw network packets. This is used by programs such as 
snoop and in.rarpd. Conversion of programs using the SunOS 4.x Network Interface Tap (NIT) to 

DLPI is also described. 

Audience 

This book is intended to serve the following three groups of people: 

 UNIX systems programmers who are familiar with some version of UNIX other than SVR4, 

particularly SunOS 4.x or BSD, and who are now faced with the daunting task of porting every 

program they ever wrote to the new system. 

 People who aren’t systems programmers and don’t want to be, but nevertheless must port some 

piece of software from some other version of UNIX to SVR4. 

 C programmers who wish to move into the area of UNIX systems programming, either for fun 

or profit. 

Assumptions 

This book does not teach the C programming language—although fluency in the language is not 
required, it is assumed that you can at least read a C program and figure out what it does. 

All of the examples in this book are written in ANSI C. While there are some differences between 

ANSI C and K&R C, you shouldn't have any trouble following along even if you've never seen 

ANSI C before. However, if you are new to ANSI C, you may wish to skip ahead and read Appendix 

A, Significant Changes in ANSI C, first. 

It has also been assumed that you are a reasonably savvy UNIX user. You should be familiar with 

terms such as “file,” “directory,” “user-id,” “environment variable,” “process-id,” and so forth. You 

should also be familiar with your system's C compiler, debugger, and the make utility. If you haven't 

learned these things yet, or would like to refresh your memory, you may find the following books, 

also published by O'Reilly and Associates, helpful: 

 Learning the UNIX Operating System by Grace Todino, John Strang, and Jerry Peek 

 UNIX In a Nutshell: For System V and Solaris 2.0 by Daniel Gilly and the staff of O'Reilly and 
Associates 

 Managing Projects With Make by Andrew Oram and Steve Talbott 
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 Practical C Programming by Steve Oualline. 

See the pages at the end of this book for information on how to order these, as well as other O'Reilly 

and Associates titles. 

Font Conventions 

The following conventions are used in this book: 

Italic is used for directories and to emphasize new terms and concepts when 

they are introduced. Italic is also used to highlight comments in 

examples. 

Bold is used for C keywords. 

Constant Width is used for programs and the elements of a program and in examples to 

show the contents of files or the output from commands. A reference in 

text to a word or item used in an example of code fragment is also shown 

in constant width font. 

Constant Bold is used in examples to show commands or other text that should be typed 

literally by the user. (For example, rm foo means to type “rm foo” 

exactly as it appears in the text or the example.) 

Constant Italic is used in examples to show variables for which a context-specifc 

substitution should be made. (The variable filename, for example, 

would be replaced by some actual filename.) 

Quotation marks are used to identify system messages or code fragments in explanatory 

text. 

% is the UNIX C shell prompt. 

$ is the UNIX Bourne shell or Korn shell prompt. 

# is the UNIX superuser prompt (either Bourne or C shell). We usually use 

this for examples that should be executed only by root. 

[ ] surround optional values in a description of program syntax. (The 

bracked themselves should never be typed.) 

… stands for text (usually computer output) that’s been omitted for clarity 

or to save space. 

The notation CTRL-X or ^X indicates use of control characters. It means hold down the “control” 
key while typing the character “x”. We denote other keys similarly (e.g., RETURN indicates a 

carriage return). 

All examples of command lines are followed by a RETURN unless otherwise indicated. 
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Example Programs 

You can obtain the source code for the programs presented in this book from O’Reilly & Associates 

through their Internet server.* 

The example programs in this book are available electronically in a number of ways: by FTP, 

Ftpmail, BITFTP, and UUCP. The cheapest, fastest, and easiest ways are listed first. If you read 

from the top down, the first one that works for you is probably the best. Use FTP if you are directly 

on the Internet. Use Ftpmail if you are not on the Internet, but can send and receive electronic mail 

to Internet sites (this includes Compuserve users). Use BITFTP if you send electronic mail via 

BITNET. Use UUCP if none of the above works. 

FTP 

To use FTP, you need a machine with direct access to the Internet. A sample session is shown, with 

what you should type in boldface. 

% ftp ftp.uu.net 

Connected to ftp.uu.net 

220 FTP server (Version 6.21 Tue Mar 10 22:09:55 EST 1992) ready. 

Name (ftp.uu.net:joe): anonymous 

331 Gues login ok, send domain style e-mail address as password. 

Password: yourname@domain.name (use your user name and host here) 
230 Guest login ok, access restrictions apply. 

ftp> cd /published/oreilly/nutshell/sys.prog 

250 CWD command successful. 

ftp> binary (Very important! You must specify binary transfer for compressed files.) 

200 Type set to I. 

ftp> get examples.tar.gz 

200 PORT command successful. 

150 Opening BINARY mode data connection for examples.tar.gz. 

226 Transfer complete. 

ftp> quit 

221 Goodbye. 

% 

The file is a compressed tar archive; extract the files from the archive by typing: 

% gzcat examples.tar.gz | tar xvf – 

System V systems require the following tar command instead: 

% gzcat examples.tar.gz | tar xof – 

If gzcat is not available on your system, use separate gunzip and tar or shar commands. 

% gunzip examples.tar.gz 

% tar xvf examples.tar 

                                                
* [June 2012 update] The examples are available from the author’s web site, http://www.bitsinthewind.com. 
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Ftpmail 

Ftpmail is a mail server available to anyone who can send electronic mail to and receive it from 

Internet sites. This includes any company or service provider that allows email connections to the 

Internet. Here’s how you do it. 

You send mail to ftpmail@online.ora.com. In the message body, give the FTP commands you want 

to run. The server will run anonymous FTP for you and mail the files back to you. To get a complete 

help file, send a message with no subject and the single word “help” in the body. 

The following is a sample mail session that should get you the examples. This command send you 

a listing of the files in the selected directory and the requested example files. The listing is useful if 

there’s a later version of the examples you’re interested in. 

% mail ftpmail@oonline.ora.com 

Subject: 

reply-to username@domain.name     (where you want files mailed) 
open 

cd /published/oreilly/nutshell/sys.prog 

mode binary 

uuencode 

get examples.tar.gz 

quit 

. 

A signature at the end of the message is acceptable as long as it appears after “quit.” 

BITFTP 

BITFTP is a mail server for BITNET users. You send it electronic mail messages requesting files, 

and it sends you back the files by electronic mail. BITFTP currently serves only users who send it 

mail from nodes that are directly on BITNET, EARN, or NetNorth. BITFTP is a public service of 

Princeton University. Here’s how it works. 

To use BITFTP, send mail containing your FTP commands to BITFTP@PUCC. For a complete 
help file, send HELP as the message body. 

The following is the message body you send to BITFTP: 

FTP   ftp.uu.net NETDATA 

USER  anonymous 

PASS  myname@podunk.edu     Put your Internet email address here (not your BITNET address) 
CD    /published/oreilly/nutshell/sys.prog 

DIR 

BINARY 

GET   examples.tar.gz 

QUIT 

Once you’ve got the desired file, follow the directions under FTP to extract the files from the 

archive. Since you are probably not on a UNIX system, you may need to get versions of uudecode, 

uncompress, atob, and tar for your system. VMS, DOS, and Mac versions are available. 
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UUCP 

UUCP is standard on virtually all UNIX systems and is available for IBM-compatible PCs and 

Apple Macintoshes. The examples are available by UUCP via modem from UUNET; UUNET’s 

connect-time charges apply. 

You can get the examples from UUNET whether you have an account there or not. If you or your 

company has an account with UUNET, you have a system somewhere with a direct UUCP 

connection to UUNET. Find that system, and type: 

uucp uunet\!~/published/oreilly/nutshell/sys,prog/examples.tar.gz 

youhost\!~/yourname/ 

The backslashes can be omitted if you use the Bourne shell (sh) instead of csh. The file should 

appear some time later (up to a day or more) in the directory /usr/spool/uucppublic/yourname. If 

you don’t have an account, but would like one so that you can get electronic mail, contact UUNET 

at 703-204-8000. 

It’s a good idea to get the file /published/oreilly/ls-lR.Z as a short test file containing the filenames 

and sizes of all the files available. 

Once you’ve got the desired file, follow the directions under FTP to extract the files from the 

archive. 

Once you've obtained, uncompressed, and extracted the examples distribution, you will have a 

directory called examples which contains subdirectories for each chapter of the book. Within each 

chapter's subdirectory, there are four directories: the common directory contains example programs 

that work identically across all versions of the operating system discussed in this book, while the 

hpux, irix, and solaris directories contain the example programs that differ slightly between the 

various operating system versions. 

To compile the examples, first change to the examples directory. Then examine and/or edit one of 

the Makedefs files, as appropriate for your operating system. These files define the name of the 

compiler to use, and the flags to be given to it when compiling the examples. After you've done that, 

simply issue the command./build-examples. 

The examples in this book have been compiled and tested on the following platforms: 

Hardware Operating System Compiler 

Sun SPARCstation LX Solaris 2.3 GNU C 2.6.3 
Sun SPARCstation 5/70 Solaris 2.3 SPARCompiler C 3.0.1 

Sun SPARCstation 20/HS12 Solaris 2.4 SPARCompiler C 3.0.1 

Sun SPARCstation 5/85 Solaris 2.5 GNU C 2.7.2 

Sun SPARCstation 5/85 Solaris 2.5 SPARCompiler C 4.0 

HP 9000/819 HP-UX B.10.0 cc 

Silicon Graphics IRIS IRIX 5.3 cc 
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Comments and Questions 

Please address comments and questions concerning this book to the publisher: 

O’Reilly & Associates, Inc. 

101 Morris Street 

Sebastopol, CA 95472 

1-800-998-9938 (in the U.S. or Canada) 

1-707-829-0515 (international or local) 

1-707-829-0104 (FAX) 
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Chapter 1 
Introduction to SVR4 

Between 1969 and 1970, Ken Thompson, Dennis Ritchie, and other members of the Computer 

Research Group at Bell Laboratories designed and built the original UNIX operating system on the 

by now famous “little-used PDP-7 sitting in the corner.”  In 1970, UNIX was ported from the PDP-

7 to a PDP-11/20, along with a text editor and a program called roff, a predecessor to troff. This 

UNIX system, running with no memory protection and 500 Kbytes of disk, supported three 

concurrent users editing and formatting, and also the original group of people doing further UNIX 
development. The documentation for this system, dated November 1971, was labeled “First 

Edition.” 

Between 1971 and 1979, a number of UNIX variants were created inside Bell Laboratories. The 

main version, developed by Thompson and his coworkers, evolved through Version 4 (the first 

version written in C), Version 6 (the first version to be licensed outside Bell Labs), and finally 

Version 7. Most people would not recognize any of these versions, except perhaps Version 7, as 

looking much like the UNIX of today. During this same time, a number of other lesser-known 

versions were developed by various groups inside Bell Labs, including PWB/UNIX, MERT, RT, 

and CB UNIX. UNIX by this time had been ported to several varieties of PDP-11, the Interdata 

8/32, the IBM VM/370 environment, and even the IBM Series 1. Shortly after its release, Version 

7 was ported to the VAX and called UNIX 32V. 

Outside the Labs, UNIX development took place at several universities, one of the most notable 

being the University of California at Berkeley. The first Berkeley Software Distribution (BSD), 

based on UNIX Version 6 for the PDP-11, was released in 1977. Other notable releases from 

Berkeley included 4.0BSD for the VAX in 1980, 4.1BSD in 1981, 4.2BSD in 1983, and 4.3BSD in 

1984. Development continued on the PDP-11 as well, with 2.8BSD in 1982, 2.9BSD in 1983, and 

2.10BSD in 1987. These releases essentially ported most of the new software from the 4BSD 

releases to the aging PDP-11. In 1993, the Computer Science Research Group at Berkeley made its 

last release of UNIX, 4.4BSD, and disbanded. 

Meanwhile, back at Bell Laboratories, the UNIX System Development Laboratory had been created. 

Between 1977 and 1982, they took several internal variants of UNIX, predominantly PWB/UNIX, 

CB UNIX, and UNIX 32V, and merged them into a single commercial system known as System III. 

This was the last version of UNIX licensed by AT&T through Western Electric before divestiture 
caused by an antitrust suit brought by the U.S. Government broke AT&T into several pieces. As 
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part of divestiture, UNIX was given over to AT&T Information Systems, which in early 1983 

announced UNIX System V. System V Release 2 (SVR2) was released in 1984, and System V 

Release 3 (SVR3) in 1986. Both of these releases became very popular. 

In the late 1980s, AT&T and Sun Microsystems entered into a cooperative venture to develop a new 

version of UNIX. This version would merge the “best of the best” features from AT&T's SVR3, 

Berkeley's 4.3BSD, Sun's SunOS, and Microsoft's XENIX. In November 1989, UNIX System V 
Release 4 (SVR4), the result of this venture, was released. However, it would take two more years 

for a major computer vendor to release an SVR4-based operating system. Sun released Solaris 2.0 

in 1991, followed by Silicon Graphics' IRIX 5.0 in 1994, and Hewlett-Packard's HP-UX 10.0 in 

1995. 

Standards Compliance 

One of the principal features of SVR4 is standards compliance. Solaris 2.x, HP-UX 10.x, and IRIX 

5.x comply with the following standards: 

 ANSI X3.159-1989 (ANSI C). The ANSI C standard defines the syntax and semantics of the C 

programming language. It also specifies many of the library routines and header files used in C 

programs. Lastly, it specifies the interaction of a C program with the execution environment. 

The ANSI C standard was developed by the X3J11 Technical Committee on the C 

Programming Language under project 381-D of the American National Standards Committee 

on Computers and Information Processing (X3). 

 IEEE Std 1003.1-1990 Portable Operating System Interface Part 1 (POSIX.1). An outgrowth 

of the 1984 /usr/group Standard, POSIX.1 defines application interfaces to basic system 

services such as input/output, the file system, and process management using the C 

programming language. It is a set of library routines, system calls, and header files. POSIX.1 

has been adopted as International Standard ISO/IEC 9945-1:1990 by the International 
Organization for Standardization (ISO) and the International Electrotechnical Commission 

(IEC). 

 IEEE Std 1003.2 Portable Operating System Interface Part 2 (POSIX.2). Another part of the 

series of POSIX standards, POSIX.2 defines a set of standard shells and utility programs, and 

their interfaces (command-line arguments, exit codes, etc.). 

 X/Open Portability Guide, Issue 3 (XPG3). X/Open is an international consortium of system 

vendors, ISVs, and users. Its purpose is to adopt existing standards and adapt them into a single, 

consistent Common Applications Environment (CAE). By awarding the X/Open brand 

trademark to products that comply with the CAE, X/Open hopes to ensure portability and 

connectivity of applications. The XPG3 includes IEEE Std 1003.1-1988, and has seven volumes 

covering: system interface commands, utilities, system interfaces and headers, supplementary 
definitions, programming languages, data management, window management, and networking 

services. The current versions of Solaris 2.x, HP-UX 10.x, and IRIX 5.x also comply with 

XPG4, an updated version of the standard. 
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 System V Interface Definition, Third Edition (SVID3). First published by AT&T in 1985, the 

SVID specifies an operating system environment that allows users to create software that is 

independent of any particular computer hardware. It defines the components of the operating 

system and their functionality, but not their implementation. It specifies both the source-code 

interface and the run-time behavior of each component. An application using only SVID 

components will be compatible with and portable to any other computer that supports the SVID. 
SVR4 is compliant with the Base System component of SVID3 and all its extensions. 

 System V Release 4 Application Binary Interface (ABI). An ABI defines a standard format for 

application programs that are compiled and packaged for different hardware architectures. It 

includes a generic part that specifies the machine-independent parts of the format, and a 

processor-specific part that specifies the machine-dependent parts. A binary program produced 

in compliance with the ABI will run on any ABI-conformant operating system that supports the 

same ABI. For example, a program compiled on a SPARC system running Solaris 2.x should 

work without modification on a SPARC system running plain System V Release 4 from AT&T. 

 ANSI/IEEE 754-1985 Standard for Binary Floating-Point Arithmetic. This standard defines the 

format of floating-point data types, the arithmetic that can be performed on them (and how it is 

performed), and the exception handling used when performing the arithmetic. 

 Federal Information Processing Standard Publication 158: The User Interface Components of 

the Applications Portability Profile (FIPS PUBS 158). A U.S. Government standard, FIPS 158 

defines a standard set of tools for developing user interfaces for the Federal government. The 

standard is based on the X Window System, Version 11 Release 3. 

 International Standard: Information Processing—8-bit single-byte coded graphic character 

sets—Part 1: Latin alphabet No. 1 (ISO 8859-1). This standard specifies a set of 191 graphic 

characters, identified as Latin alphabet No. 1. The standard specifies the coding of each of these 

characters as a single 8-bit byte. The ASCII character set is a subset of ISO 8859-1. 

 International Standard: Information Processing—Volume and File Structure of CD-ROM for 

Information Interchange (ISO 9660-88). This standard specifies the file system structures for 

CD-ROM drives. The Rock Ridge Interchange Protocol, which defines support for the UNIX 
file system format on CD-ROMs, is also supported. 

Notes on Compilers 

Depending on what you're used to, compiling programs in an SVR4 may require you to go back and 

read the compiler documentation again. Because SVR4 provides ANSI C compliance in its include 

files, it is generally desirable to use the C compiler in an ANSI C mode. Furthermore, since the main 

goal of SVR4 is to promote interoperability through standards compliance, it is desirable to enable 

standards-compliance whenever you're developing a new program. 

This section briefly discusses the compilers available for each of the operating systems described in 

this book. The examples in the book have been compiled and tested using all of these compilers. 
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The HP-UX 10.x Compiler 

HP-UX 10.x uses an unbundled ANSI C compliant compiler called cc. The compiler accepts a 

plethora of options, most of which are not of interest to us here. However, there is one option that 

will be of importance to us. The compiler allows the user to select the degree of conformance to the 

ANSI C standard by using the -Ac option, where c is one of: 

a Pure ANSI C. 

c K&R C. 

e ANSI C with POSIX and UNIX extensions. 

The examples in this book have been compiled and tested using the -Ae option to the compiler. 

The IRIX 5.x Compiler 

IRIX 5.x ships with an ANSI C compliant compiler called cc. The compiler accepts a profuse 

number of options, most of which are not of interest in this book. However, the option that controls 

the language features supported by the compiler are of interest: 

-ansi Pure ANSI C. 

-ansiposix ANSI C plus the definition of the _POSIX_SOURCE constant; this enables the 
inclusion of function prototypes for POSIX-defined functions. 

-cckr K&R C, with some ANSI C extensions such as function prototypes and the 

void type. 

-xansi ANSI C with POSIX and UNIX extensions. This is the default mode of the 

compiler. 

The examples in this book have been compiled and tested using the -xansi mode of the compiler. 

The Solaris 2.x Compiler 

Solaris 2.x does not ship with a compiler; it must be purchased as a separate, unbundled product 

called SPARCompiler C, a commercial C compiler offered by SunSoft, a subsidiary of Sun 

Microsystems. SPARCompiler C is available either by itself, or as part of a package called 

SPARCworks, that includes a source-code debugger and other software. SPARCompiler C is fully 

compliant with the ANSI C standard; it will also accept programs written in the older dialect of the 

language described by Kernighan and Ritchie. 

SPARCompiler C offers a plethora of command-line options, almost all of which are beyond the 
scope of this book. However, there is one option that will be of importance to us. SPARCompiler C 

allows the user to select the degree of conformance to the ANSI C standard by using the -Xc option, 

where c is one of: 

a ANSI C with “Sun C” compatibility extensions and semantic changes required by ANSI 

C. In this mode, the compiler will accept both K&R C and ANSI C constructs. When it 

encounters a construct that has different semantics under K&R and ANSI C, it will issue a 

warning and then interpret the construct in accordance with the ANSI C definition. 
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c Fully conformant ANSI C, without “Sun C” compatibility extensions. In this mode, the 

compiler will reject constructs that are not ANSI C. In this mode, header files will not 

declare certain functions, or define certain macros, that are not required by the ANSI C 

standard. 

s  “Sun C.”  In this mode, the compiler functions essentially as a K&R C compiler. However, 

it will issue warnings about all constructs it encounters that have differing behavior 
between ANSI C and K&R C. 

t ANSI C with “Sun C” compatibility extensions, but not semantic changes required by 

ANSI C. In this mode, the compiler will accept both K&R C and ANSI C constructs. When 

it encounters a construct that has different semantics under K&R and ANSI C, it will issue 

a warning and then interpret the construct in accordance with the K&R C definition. 

The examples in this book have been compiled and tested using the -Xa mode of SPARCompiler C. 

The GNU C Compiler 

The GNU C Compiler is distributed by the Free Software Foundation, and is available without 

charge, in source or binary form, to anyone who wants it. It may be obtained via anonymous FTP 

from numerous hosts on the Internet; it may also be obtained on tape from the Free Software 

Foundation, or from companies such as Cygnus Support. GNU C is available for all three of the 

operating systems described in this book; it is particularly popular on Solaris 2.x, since that system 

does not ship with a C compiler of its own. 

GNU C is fully compliant with the ANSI C standard, and will also accept programs written in the 

older K&R dialect of the language. 

GNU C accepts a profuse number of options, most of which are beyond the scope of this book. 

However, the options that allow the user to select the degree of ANSI C conformance are of interest 
to us, and are described below: 

-ansi Enables support for all ANSI C programs. This turns off features of GNU C 

that are incompatible with ANSI C, and turns off predefined symbols such as 

sun and unix that allow you to identify the type of system you are using. 

The -ansi option also predefines the macro __STRICT_ANSI__ ; some 

header files may notice this and will not declare certain functions or define 
certain macros that are not part of the ANSI C standard. This option does not 

cause valid non-ANSI programs to be rejected however; for that the -pedantic 

option is also required. 

-ansi 

-pedantic 
Enables support for all ANSI C programs, and disables support for anything 

not specified in the ANSI C standard. Under this option, all warnings 

demanded by the ANSI C standard are issued, and any program that uses a 

forbidden extension will be rejected. Valid ANSI C programs will compile 

with or without this option, however. Note that this option is not intended to 

“verify” a program as ANSI-compliant. It will find some non-ANSI 

constructs, but only those for which the ANSI standard requires a diagnostic. 
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-traditional Attempt to support most of the apects of K&R C. This isn't really a “K&R 

mode” of the compiler, but by specifying this option, most K&R C programs 

can be compiled without changes. The option enables several old, 

undocumented preprocessor features that were never an official part of the 

language, but nevertheless came to be relied upon by many people. It also 

enables some features of K&R C that are not part of the ANSI C standard. 

The examples in this book have been compiled and tested using the GNU C compiler with none of 

the above options specified. 

NOTE 

Because the authors of the GNU C Compiler do not agree with the authors of SVR4 in the 

interpretation of the ANSI C standard's definition of the __STDC__  macro, attempting to 
use the GNU C Compiler with the normal SVR4 include files does not work properly. 

GNU C protects itself from this problem by generating its own version of the system 

include files with the fixincludes command. This command is run automatically by the 

GNU C installation procedure. However, when upgrading to a new version of the operating 

system, you must be sure to re-run fixincludes on the new system's include files, or 

compilation problems will result. 

The BSD Source Compatibility Package 

One of the transition tools provided by Solaris 2.x is the BSD Source Compatibility Package (SCP). 

The SCP provides many of the SunOS 4.x and BSD interfaces otherwise not included, or that differ 

in functionality between SunOS 4.x and Solaris 2.x. It is a collection of commands, libraries, and 

header files that, while they may also be present in the default Solaris 2.xenvironment, have different 

behavior between the two versions. Generally speaking, you should be able to take a program that 

compiles on SunOS 4.x and compile it under the SCP with no changes to obtain a working program. 

The SCP is installed in several directories: 

 The /usr/ucb directory contains source compatibility package commands that existed in the 

/usr/ucb, /usr/bin, and /usr/etc directories under SunOS 4.x. 

 The /usr/ucblib directory contains the source compatibility package libraries and SunOS 

4.x/BSD system calls that are implemented as library routines in the SCP. These interfaces 

existed in /usr/lib under SunOS 4.x. 

 The /usr/ucbinclude directory contains the source compatibility package header files, which 

existed in /usr/include under SunOS 4.x. 

By setting your search path to include the /usr/ucb directory, or by using the /usr/ucb/cc command, 

you will be using the SCP C compiler when you compile C programs. (The /usr/ucb/cc command is 

not a compiler in itself; you must still install an unbundled compiler. Rather, it is a wrapper around 

the C compiler that causes the SCP header files and libraries to be used.)  The SCP C compiler sets 

its default paths to pick up the following directories, in order: 
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 User-specified include directories and libraries. 

 The compatibility include directories and libraries. 

 The base Solaris 2.x include directories and libraries, if unresolved symbols remain. 

Use of the BSD Source Compatibility Package, while it can help you get a program up and running 

in a short amount of time, is not recommended, for the following reasons: 

 Programs running under the SCP suffer a performance penalty. SunOS 4.x/BSD system calls 
and library routines that are unavailable or have different functionality in Solaris 2.x are 

emulated in library routines. Although in many cases the cost of emulation is minimal, for some 

often-used functions the cost may be significant. 

 The SCP is intended as a transition tool only. It is intended to help you port your programs from 

SunOS 4.x to Solaris 2.x. As Solaris 2.x matures and SunOS 4.x becomes less wide-spread in 

the UNIX community, it is likely that the SCP will be removed from future versions of Solaris 

2.x. 

 Many of the programming interfaces offered by Solaris 2.x are more standard than their SunOS 

4.x/BSD counterparts. By changing your program to make use of these standard interfaces, the 

program will be more portable between different versions of UNIX. 

 Programs compilers with the SCP can encounter incompatibilities between the SCP and non-
SCP versions of some libraries, resulting in combinations that do not produce a working 

program. 

HP-UX 10.x and IRIX 5.x do not provide the SCP. 

None of the examples in this book depend on the SCP to compile. Because the focus of this book is 

to help you develop new programs in the SVR4 environment and to help you port your existing 

programs to SVR4, nothing more will be said about the SCP. 
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Chapter 2 
Utility Routines 

In this chapter, we will examine most of the commonly used utility routines offered by the SVR4 C 

library, and we will give brief examples of their use. The UNIX C library provides a large number 

of routines for performing common programming tasks such as comparing and copying strings, 

allocating memory, manipulating temporary files, and so forth. You are probably already familiar 

with many of these routines, but if you've been doing most of your programming in a BSD 

environment, several of them may be new to you. Many of these routines were first added to the C 
library in early versions of System V, and were later mandated by the ANSI C and POSIX standards. 

Since most commonly used versions of BSD UNIX predate these standards, these routines are often 

missing from those versions' C libraries. 

Manipulating Character Strings 

Probably the most often used utility routines are those that manipulate character strings. Because 

the C language does not provide any character string primitive operators, all operations must be 

performed with library routines. 

All of the routines described in this section operate on character strings, which are arrays of one or 

more non-zero bytes terminated by a null (zero) byte. Passing so-called “binary” data to these 

routines, in which null bytes are legal values rather than terminators, will not produce the desired 

results. 

In all of the examples in this chapter, we assume the existence of two functions that are not part of 

the standard C library: 

void outputLine(char *line); 

 

char *inputLine(void); 

outputLine prints the contents of the character array line on the standard output (the screen). 

inputLine reads one line of characters from the standard input (the keyboard) and returns a pointer 

to a character array containing the line. These two functions exist so that we can do input and output 
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without explaining the use of the UNIX I/O functions, which are described in the following two 

chapters. 

Computing the Length of a String 

The simplest function for computing the length of a string is strlen: 

#include <string.h> 

 

size_t strlen(const char *s); 

The single argument s is the null-terminated string whose length is to be computed; the length of 

the string in bytes, not including the null character, is returned. 

Two other functions, strspn and strcspn, are provided to compute the length of substrings: 

#include <string.h> 

 

size_t strspn(const char *s1, const char *s2); 

 

size_t strcspn(const char *s1, const char *s2); 

strspn returns the length of the initial segment of s1 that consists entirely of characters from the 

set contained in s2. strcspn does in some sense the opposite, returning the length of the initial 

segment of s1 that consists entirely of characters not in the set contained in s2. 

To demonstrate the use of strlen, Example 2-1 shows a program that implements a bubble sort. 
Bubble sort is a simple (but not very efficient) sorting algorithm that works by making several passes 

through the objects to be sorted, comparing items in adjacent locations and interchanging them if 

they are out of order. If on any pass through the data no items are interchanged, the data is 

completely sorted and the algorithm can stop. 

Example 2-1: bsort-length 

#include <string.h> 

 

#define NSTRINGS    16          /* max. number of strings       */ 

#define MAXLENGTH   1024        /* max. length of one string    */ 

 

void    bubbleSort(char **, int); 

void    outputLine(char *); 

char    *inputLine(void); 

 

int 

main(int argc, char **argv) 

{ 

    int n, nstrings; 

    char *p, *q, *line; 

    char *strptrs[NSTRINGS]; 

    char strings[NSTRINGS][MAXLENGTH]; 

 

    /* 
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     * Read in NSTRINGS strings from the standard input. 

     */ 

    for (nstrings = 0; nstrings < NSTRINGS; nstrings++) { 

        /* 

         * Get a line from the input. 

         */ 

        if ((line = inputLine()) == NULL) 

            break; 

 

        /* 

         * Copy the line. 

         */ 

        for (p = line, q = strings[nstrings]; *p != '\0'; p++, q++) 

            *q = *p; 

        *q = '\0'; 

 

        /* 

         * Save a pointer to the line. 

         */ 

        strptrs[nstrings] = strings[nstrings]; 

    } 

 

    /* 

     * Sort the strings. 

     */ 

    bubbleSort(strptrs, nstrings); 

 

    /* 

     * Print the strings. 

     */ 

    for (n = 0; n < nstrings; n++) 

        outputLine(strptrs[n]); 

 

    exit(0); 

} 

 

/* 

 * bubbleSort - implementation of the basic bubble sort algorithm. 

 */ 

void 

bubbleSort(char **strings, int nstrings) 

{ 

    int i, j; 

    char *tmp; 

    int notdone; 

 

    j = nstrings; 

    notdone = 1; 

 

    while (notdone) { 

        notdone = 0; 

        j = j - 1; 

 

        for (i = 0; i < j; i++) { 

            /* 

             * Use strlen() to compare the strings 

             * by length. 

             */ 
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            if (strlen(strings[i]) > strlen(strings[i+1])) { 

                tmp = strings[i+1]; 

                strings[i+1] = strings[i]; 

                strings[i] = tmp; 

                notdone = 1; 

            } 

        } 

    } 

} 

% cat input 

xxxxxx 

xxxxx 

xxxxxxx 

xx 

x 

xxxxxxxxx 

xxxx 

xxxxxxxx 

xxx 

xxxxxxxxxx 

% bsort-length < input 

x 

xx 

xxx 

xxxx 

xxxxx 

xxxxxx 

xxxxxxx 

xxxxxxxx 

xxxxxxxxx 

xxxxxxxxxx 

bsort-length begins by using inputLine to read in up to NSTRINGS lines of data and storing them 

in the strings array. The strptrs array points to the strings, so that by rearranging the pointers, 

we can achieve the sort. After reading in the strings, the bubbleSort function is called. 

bubbleSort makes several passes through the strings, comparing the lengths of adjacent strings 

with strlen. When the first string is longer than the second, the pointers to those two strings are 

exchanged. Finally, when the sort has finished, the strings are printed with outputLine. 

Comparing Character Strings 

To compare two character strings, the strcmp and strncmp functions are used: 

#include <string.h> 

 

int strcmp(const char *s1, const char *s2); 

 

int strncmp(const char *s1, const char *s2, size_t n); 

strcmp compares s1 and s2 and returns an integer less than, equal to, or greater than zero, based 

upon whether s1 is lexicographically less than, equal to, or greater than s2. strncmp makes the 
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same comparison, but looks at only the first n characters of each string. Characters following the 

null terminator of either string are not compared. 

On systems that use the ASCII character set, “lexicographically less than” and “lexicographically 

greater than” correspond to “alphabetically before” and ”alphabetically after.”  However, on systems 

that use character sets that do not preserve alphabetical order (such as EBCDIC), this relationship 

does not hold. 

Example 2-2 shows another version of our bubble sort program; this one sorts the strings into 

alphabetical order. 

Example 2-2: bsort-alpha 

#include <string.h> 

 

#define NSTRINGS    16          /* max. number of strings       */ 

#define MAXLENGTH   1024        /* max. length of one string    */ 

 

void    bubbleSort(char **, int); 

void    outputLine(char *); 

char    *inputLine(void); 

 

int 

main(int argc, char **argv) 

{ 

    int n, nstrings; 

    char *p, *q, *line; 

    char *strptrs[NSTRINGS]; 

    char strings[NSTRINGS][MAXLENGTH]; 

 

    /* 

     * Read in NSTRINGS strings from the standard input. 

     */ 

    for (nstrings = 0; nstrings < NSTRINGS; nstrings++) { 

        /* 

         * Get a line from the input. 

         */ 

        if ((line = inputLine()) == NULL) 

            break; 

 

        /* 

         * Copy the line. 

         */ 

        for (p = line, q = strings[nstrings]; *p != '\0'; p++, q++) 

            *q = *p; 

        *q = '\0'; 

 

        /* 

         * Save a pointer to the line. 

         */ 

        strptrs[nstrings] = strings[nstrings]; 

    } 

 

    /* 

     * Sort the strings. 
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     */ 

    bubbleSort(strptrs, nstrings); 

 

    /* 

     * Print the strings. 

     */ 

    for (n = 0; n < nstrings; n++) 

        outputLine(strptrs[n]); 

 

    exit(0); 

} 

 

/* 

 * bubbleSort - implementation of the basic bubble sort algorithm. 

 */ 

void 

bubbleSort(char **strings, int nstrings) 

{ 

    int i, j; 

    char *tmp; 

    int notdone; 

 

    j = nstrings; 

    notdone = 1; 

 

    while (notdone) { 

        notdone = 0; 

        j = j - 1; 

 

        for (i = 0; i < j; i++) { 

            /* 

             * Use strcmp() to compare the strings 

             * alphabetically. 

             */ 

            if (strcmp(strings[i], strings[i+1]) > 0) { 

                tmp = strings[i+1]; 

                strings[i+1] = strings[i]; 

                strings[i] = tmp; 

                notdone = 1; 

            } 

        } 

    } 

} 

% cat input 

one 

two 

three 

four 

five 

six 

seven 

eight 

nine 

ten 

% bsort-alpha < input 

eight 
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five 

four 

nine 

one 

seven 

six 

ten 

three 

two 

This program is identical to bsort-length, except that the strlen comparison has been replaced 

with a call to strcmp. 

Solaris 2.x, HP-UX 10.x, and IRIX 5.x provide two additional functions for comparing strings, 

strcasecmp and strncasecmp: 

#include <string.h> 

 

int strcasecmp(const char *s1, const char *s2); 

 

int strncasecmp(const char *s1, const char *s2, int n); 

These functions are similar to strcmp and strncmp, except that they ignore the case of letters in 
the strings. Unfortunately, these two functions are not very portable—systems that use the Domain 

Name System will probably have them, since they are used for comparing host names (in which 

case is not significant), but systems which do not use the DNS will probably not. 

Copying Character Strings 

To copy one character string to another, the strcpy and strncpy functions are used: 

#include <string.h> 

 

char *strcpy(char *dst, const char *src); 

 

char *strncpy(char *dst, const char *src, size_t n); 

In both cases, the string pointed to by src is copied into the array pointed to by dst, and dst is 

returned. The first function, strcpy, copies characters until it encounters the null byte terminating 

src. The second function, strncpy, copies characters until it either encounters the null byte in src 

or until n characters have been copied, whichever comes first. 

The string returned by strcpy will always be null terminated. However, the string returned by 

strncpy will not. If the number of characters in src is less than n, a null byte will be appended to 

dst. However, if there are n or more than n characters in src, then dst will not be null terminated. 

For this reason, it is customary to always explicitly place a null byte at the end of dst immediately 

following a call to strncpy, as shown below: 

char dst[SIZE]; 

 

strncpy(dst, src, SIZE-1); 



UNIX Systems Programming for SVR4 

26 FOR PERSONAL, NON-COMMERCIAL USE ONLY  
 

dst[SIZE-1] = '\0'; 

To append one string to another, the strcat and strncat functions are used: 

#include <string.h> 

 

char *strcat(char *dst, const char *src); 

 

char *strncat(char *dst, const char *src, size_t n); 

Both of these functions traverse dst until a null byte is found, copy src onto the end, and then 

return dst. strcat copies characters until it encounters a null byte in src, while strncpy copies 

characters until it either encounters a null byte in src or until n characters have been copied, 

whichever comes first. Both strcat and strncat always null-terminate dst. 

Example 2-3 shows a program that uses strcpy and strcat to make lists of strings. 

Example 2-3: make-a-list 

#include <string.h> 

 

void    outputLine(char *); 

char    *inputLine(void); 

 

int 

main(int argc, char **argv) 

{ 

    int len; 

    char *line; 

    char list[1024]; 

 

    len = sizeof(list) - 2; 

    list[0] = '\0'; 

 

    /* 

     * For each line in the input... 

     */ 

    while ((line = inputLine()) != NULL) { 

        /* 

         * Compute its length, plus room for a comma and a space. 

         */ 

        len += strlen(line) + 2; 

 

        /* 

         * If we don't have room in the buffer, output 

         * the buffer and start a new one.  Otherwise, 

         * add a comma and this line. 

         */ 

        if (len >= sizeof(list)) { 

            if (list[0] != '\0') 

                outputLine(list); 

 

            strcpy(list, line); 

            len = strlen(line); 
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        } 

        else { 

            strcat(list, ", "); 

            strcat(list, line); 

        } 

    } 

 

    /* 

     * Output the last part of the list. 

     */ 

    if (list[0] != '\0') 

        outputLine(list); 

 

    exit(0); 

} 

% cat input 

one 

two 

three 

four 

five 

six 

seven 

eight 

nine 

ten 

% make-a-list < input 

one, two, three, four, five, six, seven, eight, nine, ten 

The program reads lines until it encounters the end-of-file marker. It computes the length of each 

line using strlen, and then determines whether the current input will fit into the array holding the 

current list or not. If not, it outputs the current list, and then uses strcpy to begin a new list. If the 

line will fit in the current list, strcat is used to append a comma and a space to the list, and then 
to append the current line as well. 

All four of the functions described in this section assume that dst is large enough to hold the results 

of their work; no bounds checking is performed. If dst is not large enough, a memory access 

violation is likely to occur, resulting in abnormal program termination and a core dump. 

Searching Character Strings 

A number of routines are provided to search a character string for either a single character or a 

substring. The two simplest functions are strchr and strrchr: 

#include <string.h> 

 

char *strchr(const char *s, int c); 

 

char *strrchr(const char *s, int c); 

Both functions traverse the string s and return a pointer to the first occurrence of the character c, or 

the predefined constant NULL if the character is not found. strchr starts at the beginning of the 
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string and searches toward the end, while strrchr starts at the end of the string and searches toward 
the beginning. Example 2-4 shows a program that reads lines from its standard input and searches 

each line for the character given as the program's first argument. 

Example 2-4: search-char 

#include <string.h> 

 

void    markLine(char *, char *, char *); 

void    outputLine(char *); 

char    *inputLine(void); 

 

int 

main(int argc, char **argv) 

{ 

    char c; 

    char *p, *line; 

 

    if (argc != 2) { 

        outputLine("Usage: search-char character"); 

        exit(1); 

    } 

 

    c = argv[1][0]; 

 

    while ((line = inputLine()) != NULL) { 

        if ((p = strchr(line, c)) != NULL) { 

            outputLine(line); 

            markLine(line, p, p); 

            outputLine(line); 

        } 

    } 

 

    exit(0); 

} 

% cat input 

one 

two 

three 

four 

five 

six 

seven 

eight 

nine 

ten 

% search-char e < input 

one 

  ^ 

three 

   ^ 

five 

   ^ 

seven 
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 ^ 

eight 

^ 

nine 

   ^ 

ten 

 ^ 

In the example shown, we ask the program to search for the letter ‘e’ on each line. When it finds 

one, the program prints the line, and then uses the markLine function to mark the position in which 

the letter was found. The markLine function is defined as: 

#include <stdio.h> 

 

void 

markLine(char *line, char *start, char *stop) 

{ 

    char *p; 

 

    for (p = line; p < start; p++) 

        *p = ' '; 

 

    for (p = start; p <= stop; p++) 

        *p = '^'; 

 

    for (p = stop+1; *p != '\0'; p++) 

        *p = ' '; 

} 

If instead of a single character you need to search a string for the first occurrence of any of several 

characters, you can use strpbrk: 

#include <string.h> 

 

char *strpbrk(const char *s1, const char *s2); 

strpbrk searches the string s1, starting at the beginning, for the first occurrence of any character 

in the string s2. It returns a pointer to the character, or the predefined constant NULL if none of the 

characters are found. Example 2-5 shows another version of our searching program; this one uses 

strpbrk. 

Example 2-5: search-charset 

#include <string.h> 

 

void    markLine(char *, char *, char *); 

void    outputLine(char *); 

char    *inputLine(void); 

 

int 

main(int argc, char **argv) 

{ 
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    char *p, *line, *charset; 

 

    if (argc != 2) { 

        outputLine("Usage: search-charset character-set"); 

        exit(1); 

    } 

 

    charset = argv[1]; 

 

    while ((line = inputLine()) != NULL) { 

        if ((p = strpbrk(line, charset)) != NULL) { 

            outputLine(line); 

            markLine(line, p, p); 

            outputLine(line); 

        } 

    } 

 

    exit(0); 

} 

% cat input 

one 

two 

three 

four 

five 

six 

seven 

eight 

nine 

ten 

% search-charset onx < input 

one 

^ 

two 

  ^ 

four 

 ^ 

six 

  ^ 

seven 

    ^ 

nine 

^ 

ten 

  ^ 

To locate the first occurrence of a substring instead of a single character, the strstr function is 
used: 

#include <string.h> 

 

char *strstr(const char *s1, const char *s2); 
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strstr traverses the string s1 from the beginning, and returns a pointer to the start of the first 

occurrence of the substring s2, or the predefined constant NULL if no substring is found. Example 

2-6 shows a third version of our searching program; this one uses strstr to find the substring given 
as the program's first argument. 

Example 2-6: search-string 

#include <string.h> 

 

void    markLine(char *, char *, char *); 

void    outputLine(char *); 

char    *inputLine(void); 

 

int 

main(int argc, char **argv) 

{ 

    char *p, *line, *string; 

 

    if (argc != 2) { 

        outputLine("Usage: search-string string"); 

        exit(1); 

    } 

 

    string = argv[1]; 

 

    while ((line = inputLine()) != NULL) { 

        if ((p = strstr(line, string)) != NULL) { 

            outputLine(line); 

            markLine(line, p, p + strlen(string) - 1); 

            outputLine(line); 

        } 

    } 

 

    exit(0); 

} 

% cat input 

john smith 

sally jones 

bob johnson 

bill davis 

mary upjohn 

% search-string john < input 

john smith 

^^^^ 

bob johnson 

    ^^^^ 

mary upjohn 

       ^^^^ 

This example also shows another use of the strlen function, to compute the end of the matched 

sequence as an argument to the markLine function. 
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Our last string-searching function is really intended for breaking a string up into tokens, each 

separated from the others by some set of field-separator tokens such as spaces, tabs, colons, or 

periods. The function is called strtok: 

#include <string.h> 

 

char *strtok(char *s1, const char *s2); 

The string s1 is considered to be a sequence of zero or more text tokens separated by spans of one 

or more characters from the set contained in s2. The first call to strtok will place a null character 

into s1 immediately following the first token, and return a pointer to the token. 

strtok keeps track of its position in s1, and subsequent calls, made with the predefined constant 

NULL as the first argument (to tell strtok to continue using the same input string), will work 

through s1, extracting each token in turn. When no more tokens remain, strtok returns NULL. A 

sample usage of strtok is given in Example 2-7. 

Example 2-7: search-token 

#include <string.h> 

 

void    markLine(char *, char *, char *); 

void    outputLine(char *); 

char    *inputLine(void); 

 

int 

main(int argc, char **argv) 

{ 

    char copyline[1024]; 

    char *p, *line, *token, *fieldsep; 

 

    if (argc != 3) { 

        outputLine("Usage: search-token token fieldsep"); 

        exit(1); 

    } 

 

    token = argv[1]; 

    fieldsep = argv[2]; 

 

    /* 

     * For each line in the input... 

     */ 

    while ((line = inputLine()) != NULL) { 

        /* 

         * Save a copy of the line. 

         */ 

        strcpy(copyline, line); 

 

        /* 

         * Find the first token. 

         */ 

        if ((p = strtok(line, fieldsep)) == NULL) 

            continue; 
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        /* 

         * Search through all the tokens. 

         */ 

        do { 

            if (strcmp(p, token) == 0) { 

                outputLine(copyline); 

                markLine(copyline, copyline + (p - line), 

                         copyline + (p - line) + strlen(token) - 1); 

                outputLine(copyline); 

                p = NULL; 

            } 

            else { 

                p = strtok(NULL, fieldsep); 

            } 

        } while (p != NULL); 

    } 

 

    exit(0); 

} 

% cat input 

one,two:three,four:five,six 

ten:eight:six:four:two 

two,four:six,eight,ten 

one,two,three,four:five 

% search-token two , < input 

two,four:six,eight,ten 

^^^ 

one,two,three,four:five 

    ^^^ 

% search-token two : < input 

ten:eight:six:four:two 

                   ^^^ 

% search-token two ,: < input 

one,two:three,four:five,six 

    ^^^ 

ten:eight:six:four:two 

                   ^^^ 

two,four:six,eight,ten 

^^^ 

one,two,three,four:five 

    ^^^ 

This example shows the different results obtained on the same input file when different field 

separator characters are used. Note that when both characters are used together, another match is 

made that was not possible when using each character individually. Although not shown in this 

example, it is permissible to change the contents of the s2 string in between calls to strtok; for 

example, this might be necessary to extract a specific field from a line, and then extract a subfield 

from the field. This example also shows the use of the strcpy function discussed earlier. Because 

strtok destroys the string contained in s1 (by placing nulls into it), we make a copy of the string 

before searching it, so that we can print it out later. We also make use of the strcmp function to 

match our tokens with, and the strlen function to tell markLine how to highlight the match. 
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Non-Standard Character String Functions 

All of the functions described up until this point (except strcasecmp and strncasecmp) are 

specified in the ANSI C standard, and should be present on most modern UNIX systems. However,  
SVR4 provides a number of additional functions for manipulating character strings that are not part 

of the ANSI C or POSIX standards. These functions should not be used if portability is an issue, but 

they may be useful to you. 

All of the functions described in this section can be included in your program by linking with the -

lgen library on Solaris 2.x and IRIX 5.x; Hewlett-Packard elected not to include most of these 

functions in their version of the system. 

Searching Character Strings 

The strfind function is similar to strstr, described earlier: 

#include <libgen.h> 

 

int strfind(const char *s1, const char *s2); 

As with strstr, strfind searches the string s1 for the first occurrence of the string s2. However, 

instead of returning a pointer to the substring, strfind returns the integer offset of the beginning 

of the substring from the beginning of s1. If the substring cannot be found, strfind returns –1. 

The strfind function is only available in Solaris 2.x. 

The strrspn function is sort of the opposite of strpbrk: 

#include <libgen.h> 

 

char *strrspn(const char *s1, const char *s2); 

strrspn traverses the string s1, and returns a pointer to the first character not in the set contained 

in s2. If s1 contains only characters from s2, strrspn returns the predefined constant NULL. This 

function can be useful for trimming unwanted “junk” characters (such as whitespace) from the end 

of a string. 

The strrspn function is only available in Solaris 2.x. 

Processing Character Escape Sequences 

There are four functions provided to assist with expanding and compressing C-language escape 

codes such as ‘\n,’ ‘\t,’ ‘\001,’ and so forth: 

#include <libgen.h> 

 

char *strccpy(char *dst, const char *src); 

 

char *strcadd(char *dst, const char *src); 

 

char *strecpy(char *dst, const char *src, const char *except); 
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char *streadd(char *dst, const char *src, const char *except); 

The first two functions, strccpy and strcadd, copy the source string, src, to the destination 

string, dst. As they encounter multi-character C-language escapes, the functions compress the 

escapes to the single character they represent. Thus, the two characters ‘\’ and ‘n’ are replaced with 

a newline character, the four characters ‘\,’ ‘0,’ ‘1,’ and ‘0’ are replaced with a backspace character 

(‘\010’ is the octal representation for the ASCII CTRL-H), and so on. 

The second two functions, strecpy and streadd, do the reverse. They also copy the source string 

src to the destination string dst, but as they encounter special characters, they replace them with 

their multi-character C-language escapes. For example, a tab character will be replaced by the two-

character sequence ‘\t,’ and a CTRL-G will be replaced by the four-character sequence ‘\007.’  

The third argument to these functions, except, specifies characters that should not be expanded 

into their escape sequences. For example, if you did not want to have tabs expanded, you would 

place a tab character into except. 

strccpy and strecpy both return a pointer to the destination string, dst. strcadd and streadd 

on the other hand, return a pointer to the null byte terminating dst. This allows repeated calls to 

strcadd or streadd to be used to append to dst. Because these functions generate outputs of 

different sizes than their inputs, it is important that the dst string be sized appropriately. For 

strccpy and strcadd, dst should be at least as large as src, since if no translations are 

performed, the output will be the same size (otherwise it will be smaller). For strecpy and 

streadd, dst should be four times as large as src, since potentially each input character could be 

expanded to a four-character escape sequence (a backslash and three octal digits) on output. 

The strccpy, strcadd, strecpy, and streadd functions are not available in HP-UX 10.x. 

Breaking Up Delimited Strings 

To break up a string into individual words delimited by tabs or newlines, as is often necessary when 

parsing lines from configuration files, the bufsplit function can be used: 

#include <libgen.h> 

 

size_t bufsplit(char *buf, size_t n, char **a); 

bufsplit moves through the string contained in buf and replaces the delimiter characters (tab and 

newline) with null bytes. a is an array of n pointers that will be set to point at the start of each word 

in buf. bufsplit returns the number of words broken out (if there are more than n words in buf, 

then the last “word” will be the rest of the string). 

To change the delimiter characters used by bufsplit to something other than tab and newline, you 

can pass the new set of characters in as buf, with n and a set to zero. For example, to change the 

delimiters to period, comma, and colon, you would use a call like: 

bufsplit(".,:", 0, (char **) 0); 

The bufsplit function is not available in HP-UX 10.x. 
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Two other functions, useful when working with file and directory names, are basename and 

dirname: 

#include <libgen.h> 

 

char *basename(char *path); 

 

char *dirname(char *path); 

Given that path contains a file system path name, basename will return a pointer to the last element 

of path (the part after the last ‘/’), with any trailing slashes removed. dirname, on the other hand, 

will return all but the last element of path. Thus, dirname returns the name of the parent directory, 

and basename returns the name of the file in that directory. Unfortunately, dirname works by 

placing a null byte into path at the slash that separates the directory and file names, so if the full 

path name is needed later in the program, a copy should be made before calling this function. 

Translating Characters 

Our last function, strtrns, is used to replace one set of characters in a string with another set: 

#include <libgen.h> 

 

char *strtrns(const char *s1, const char *old, const char *new, char *s2); 

strtrns copies characters from s1 to s2, replacing any character contained in old with the 

character in the corresponding position in new. A pointer to s2 is returned. Example 2-8 shows a 

sample usage of strtrns. 

Example 2-8: translate 

#include <string.h> 

#include <libgen.h> 

 

void    outputLine(char *); 

char    *inputLine(void); 

 

int 

main(int argc, char **argv) 

{ 

    char newline[1024]; 

    char *p, *old, *new, *line; 

 

    if (argc != 3) { 

        outputLine("Usage: translate old new"); 

        exit(1); 

    } 

 

    old = argv[1]; 

    new = argv[2]; 

 

    if (strlen(old) != strlen(new)) { 
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        outputLine("old and new strings must be same length."); 

        exit(1); 

    } 

 

    while ((line = inputLine()) != NULL) { 

        p = strtrns(line, old, new, newline); 

        outputLine(p); 

    } 

 

    exit(0); 

} 

% cat input 

one 

two 

three 

four 

five 

six 

seven 

eight 

nine 

ten 

% translate onetwhrfuivsxg ONETWHRFUIVSXG < input 

ONE 

TWO 

THREE 

FOUR 

FIVE 

SIX 

SEVEN 

EIGHT 

NINE 

TEN 

The strtrns function is not available in HP-UX 10.x. 

Porting Notes 

The functions described in this section, except those in the -lgen library, strcasecmp, and 

strncasecmp, exist on most modern UNIX systems. However, when porting code from one system 
to another, bear the following notes in mind: 

 On “pure” BSD systems, do not expect to find any of the routines described in this section 

except strlen, strcpy, strncpy, strcat, strncat, strcmp, and strncmp. Most BSD-
based vendor systems should have the other functions, though. 

 On BSD-based systems, the include file for these functions is called strings.h, rather than 

string.h. In fact, you can usually use the presence or absence of the string.h file to determine 

whether or not all of the functions described in this section are present. Some systems, such as 

SunOS 4.x, provide both files but their contents are not the same. 
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On BSD-based systems, the strchr and strrchr functions are called index and rindex, 
respectively. The arguments and return values are the same however, and it usually sufficient 

to add the lines to your program when porting it from a BSD environment to SVR4: 

#define index(s,c)  strchr(s,c) 

#define rindex(s,c) strrchr(s,c) 

Manipulating Byte Strings 

The functions described in the previous section all operate on character strings, which are arrays of 

non-zero bytes terminated by a zero (null) byte. However, there are also times when similar 

operations need to be performed on strings in which the null byte is not a terminator, but a legal 

value. Because every byte value is legal, these strings, called byte strings, do not have a terminator 

character. Instead, they are always paired with an integer value indicating how many bytes are in 

the string. 

The routines described in this section, for manipulating byte strings, closely resemble the character 

string routines described in the previous section. However, these functions can be used not only with 

strings of characters (which are a subset of byte strings), but also with any other arbitrary “chunk” 

of memory such as a two-dimensional array, an array of pointers, an integer, an array of floating-

point numbers, a structure, or an array of structures (although some of the routines don't really make 

sense on all these data types). 

Comparing Byte Strings 

To compare two byte strings (areas of memory), the memcmp function is used: 

#include <string.h> 

 

int memcmp(const void *s1, const void *s2, size_t n); 

memcmp compares the first n bytes of the areas of memory pointed to by s1 and s2, and, just like 

strcmp, returns an integer less than, equal to, or greater than zero depending upon whether s1 is 

lexicographically less than, equal to, or greater than s2. Usually however, this distinction is not 

terribly meaningful for arbitrary “binary” data (what is the meaning of an array of floating point 

numbers being lexicographically greater than another array of floating point numbers?), and thus 

memcmp is usually just used to test for equivalence. 

Copying Byte Strings 

To copy one array of bytes to another, the memcpy function is used: 

#include <string.h> 

 

void *memcpy(void *dst, const void *src, size_t n); 

memcpy copies exactly n bytes from src into dst, and returns a pointer to dst. 
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memcpy is the preferred function for copying byte strings, but there is one case in which it will not 

work properly. If the areas pointed to by src and dst overlap, the internal algorithm used by 

memcpy will fail. For this purpose, the memmove function is provided: 

#include <string.h> 

 

void *memmove(void *dst, const void *src, size_t n); 

This function performs the same task as memcpy, but correctly handles the case where src and dst 

overlap. (There are two separate functions because the implementation of memcpy is more efficient 

than the implementation of memmove on some architectures, and so the faster implementation can 
be used when overlap is not a concern.) 

A third function for copying one byte string to another is called memccpy: 

#include <string.h> 

 

void *memccpy(void *dst, const void *src, int c, size_t n); 

memccpy copies bytes from src to dst, stopping after the first occurrence of a byte with the value 

in c has been copied, or after n bytes have been copied, whichever comes first. It returns a pointer 

to the next byte in src to be copied (the one after the byte with value c), or a null pointer if no bytes 

with value c were found. Unlike the rest of the functions described in this section, memccpy is not 

specified by the ANSI C standard. 

Searching Byte Strings 

To search an array of bytes for the first occurrence of a specific value, the memchr function is used: 

#include <string.h> 

 

void *memchr(const void *s, int c, size_t n); 

memchr searches the first n bytes of s, starting from the beginning, until a byte with value c 

(interpreted as an unsigned char) is found. It returns a pointer to the byte, or the predefined 

constant NULL if the byte cannot be found. 

When using integers as bit fields, where each bit is interpreted as a boolean true/false value, it is 

convenient to be able to find the first bit in the integer that is “set” (non-zero). To do this, the ffs 

function can be used: 

#include <string.h> 

 

int ffs(int i); 

ffs finds the first bit set in the argument it is passed, and returns the index of that bit. Bits are 
numbered starting with 1 (one) from the low order bit. A return value of zero indicates that no bits 
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are set (i.e., the value passed was equal to zero). This function is not specified by the ANSI C 

standard. 

Initializing Byte Strings 

When working with arrays of data, it is frequently necessary to initialize the entire array to a known 

value (often zero or null). To do this, the memset function is used: 

#include <string.h> 

 

void *memset(void *s, int c, size_t n); 

memset fills the area pointed to by s with n bytes of value c and returns a pointer to s. The value 

in c is interpreted as an unsigned character, so only values between 0 and 255 can be used. 

Porting Notes 

The functions described in this section were first introduced in System V UNIX, and therefore will 

exist on any System V-based system. Because they are a part of the ANSI C standard, they will exist 

on most modern versions of UNIX as well, regardless of whether or not it is System V-based. 

However, when porting code from BSD-based systems, there are a number of things you need to 

consider: 

 On BSD-based systems, the include file for these functions is called strings.h, rather than 

string.h. In fact, you can usually use the presence or absence of the string.h file to determine 

whether or not all of the functions described in this section are present. Some systems, such as 

SunOS 4.x, provide both files but their contents are not the same. 

 The BSD equivalent of the memcmp function is called bcmp: 

#include <strings.h> 

 

int bcmp(const char *s1, const char *s2, int n); 

bcmp returns 0 (zero) if the two strings are equal, and 1 (one) if they are not. 

 The BSD version of the memcpy and memmove functions is called bcopy: 

#include <strings.h> 

 

void bcopy(const char *src, char *dst, int n); 

Note that the src and dst arguments are in the opposite order from that used by memcpy and 

memmove. bcopy is more properly replaced by memmove, because it does properly handle the 
case in which the source and destination strings overlap. 

 The BSD version of the memset function is called bzero: 

#include <strings.h> 
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void bzero(char *s, int n); 

bzero initializes the array pointed to by s to zero; there is no choice of value as there is with 

memset. 

 There are no BSD equivalents for memchr or memccpy. 

 When porting from a BSD environment to SVR4, it is usually sufficient to add the following 

lines to your program. 

#define bcmp(b1, b2, n)        memcmp(b1, b2, n) 

#define bcopy(src, dst, n)     memmove(dst, src, n) 

#define bzero(b, n)            memset(b, '0', n) 

Manipulating Character Classes 

Particularly when parsing strings, it is often necessary to test characters for membership in particular 

sets, or character classes. The functions described in this section are provided for this purpose. 

Testing Character Class Membership 

The three functions isalpha, isupper, and islower test for three classes of letters: 

#include <ctype.h> 

 

int isalpha(int c); 

 

int isupper(int c); 

 

int islower(int c); 

isupper tests for any character that is an uppercase letter and returns non-zero if it is, or zero if it 

is not. islower tests for any character that is a lowercase letter, and returns non-zero if it is, or zero 

if it is not. isalpha returns non-zero for any character for which either isupper or islower is 
true, and zero otherwise. 

The two functions isdigit and isxdigit test for two classes of numbers: 

#include <ctype.h> 

 

int isdigit(int c); 

 

int isxdigit(int c); 

isdigit returns non-zero for any character that is a decimal digit, i.e., ‘0’ through ‘9.’ isxdigit 

returns non-zero for any character that is a hexadecimal digit, i.e., ‘0’ through ‘9,’ ‘A’ through ‘F,’ 

and ‘a’ through ‘f.’ 

The isalnum function tests for letters or digits: 
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#include <ctype.h> 

 

int isalnum(int c); 

It returns non-zero for any character that satisfies either isalpha or isdigit. 

The functions isspace, ispunct, and iscntrl test for non-alphanumeric characters: 

#include <ctype.h> 

 

int isspace(int c); 

 

int ispunct(int c); 

 

int iscntrl(int c); 

isspace returns non-zero for any space, tab, carriage return, newline vertical tab, or form feed and 

zero for anything else. ispunct returns non-zero for any printable character for which neither 

isspace or isalnum are true. This generally equates to the set of punctuation and other special 

symbols. iscntrl tests for any “control character,” as defined by the character set. For ASCII, 

these are the characters with decimal values 0 through 31 inclusive. 

The last three functions test for membership in broader character classes: 

#include <ctype.h> 

 

int isprint(int c); 

 

int isgraph(int c); 

 

int isascii(int c); 

isprint returns non-zero for any printable character (generally, this means any non-control 

character) including space. isgraph returns non-zero for any printable character not including 

space. isascii returns non-zero for any ASCII character; these are the characters with decimal 
values 0 through 127 inclusive. 

Changing Character Class Membership 

Three functions are available to move characters from one character class to another: 

#include <ctype.h> 

 

int toupper(int c); 

 

int tolower(int c); 

 

int toascii(int c); 

toupper, when given a lowercase letter as an argument, returns the corresponding uppercase letter. 

If the argument is not a lowercase letter, it is returned unchanged. tolower, when given an 
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uppercase letter as an argument, returns the corresponding lowercase letter. If the argument is not a 

lowercase letter, it is returned unchanged. toascii strips the eighth bit off any character it is passed, 
thus coercing the character into the ASCII character set. Example 2-9 shows a program that uses 

toupper and tolower to invert the case of all the letters in its input. 

Example 2-9: caseconv 

#include <ctype.h> 

 

void    outputChar(char); 

int     inputChar(void); 

 

int 

main(int argc, char **argv) 

{ 

    int c; 

 

    while ((c = inputChar()) >= 0) { 

        if (isupper(c)) 

            outputChar(tolower(c)); 

        else if (islower(c)) 

            outputChar(toupper(c)); 

        else 

            outputChar(c); 

    } 

 

    exit(0); 

} 

% cat input 

One 

Two 

Three 

Four 

Five 

Six 

Seven 

Eight 

Nine 

Ten 

% caseconv < input 

oNE 

tWO 

tHREE 

fOUR 

fIVE 

sIX 

sEVEN 

eIGHT 

nINE 

tEN 
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Porting Notes 

All of the functions described in this section, except for isascii and toascii, are specified by 

the ANSI C standard. They exist in all versions of UNIX, even those that predate ANSI C. 

On newer systems such as SVR4 that understand international character sets, isalpha, isupper, 

and islower will return the proper values even for non-ASCII values such as letters with umlauts 

and other diacritical marks. isspace and ispunct will also work properly for non-ASCII values 
such as the British “pound” symbol. On older UNIX systems however, these functions only work 

properly on the ASCII character set. 

On older versions of UNIX, toupper and tolower do not check their inputs before attempting to 
convert them to upper- or lowercase; this is the responsibility of the programmer. The ANSI C 

standard rectified this by prescribing that toupper and tolower should simply return their inputs 
if the conversion makes no sense. However, for portability, it is a good idea to always check the 

input yourself, as shown below: 

if (isupper(c)) 

    c = tolower(c); 

 

if (islower(c)) 

    c = toupper(c); 

On some older versions of UNIX, the isprint function returns false for the “space” character. 

Dynamic Memory Allocation 

Dynamic memory allocation allows a program to allocate memory for data storage on an as-needed 

basis. By using dynamic memory allocation instead of pre-allocated arrays, programs can be more 

flexible in the amount of data they can handle, as well as more efficient by using only the memory 

they need. 

The basic dynamic memory functions provided by all versions of UNIX are malloc and free: 

#include <stdlib.h> 

 

void *malloc(size_t size); 

 

void free(void *ptr); 

malloc attempts to allocate size bytes of memory, and returns a pointer to the allocated block, or 

a null pointer if the request could not be satisfied. The memory will be aligned for any use, meaning 

that any data type can be stored in it (many hardware architectures are “picky” about certain data 

types, especially floating point numbers, beginning at addresses that are multiples of some power 

of two, usually four). 

free releases memory that was previously allocated by malloc or one of the other memory 
allocation functions described below. The memory is not actually released by the process (removed 
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from its address space), but it is marked as available for re-use by future calls to the allocation 

functions. 

After calling free, the memory pointed to by ptr is no longer guaranteed to be valid, and the results 

of accessing this memory are undefined. Nevertheless, you will often see code fragments such as 

this used to free dynamically allocated linked lists: 

while (ptr != NULL) { 

    free(ptr); 

    ptr = ptr->next; 

} 

In most implementations of malloc and free, this will work acceptably, since free just performs 
bookkeeping tasks and doesn't actually do anything to the freed memory. However, the above is 

technically incorrect, and will not work in certain implementations. A more portable (and correct) 

way to do the same thing is shown below: 

while (ptr != NULL) { 

    nextptr = ptr->next; 

    free(ptr); 

    ptr = nextptr; 

} 

When allocating an array of items, the calloc function can be used instead of malloc: 

#include <stdlib.h> 

 

void *calloc(size_t nelem, size_t elsize); 

calloc allocates nelem contiguous elements of memory, each of size elsize, and returns a 

pointer to the first element, or a null pointer if the request could not be satisfied. This is exactly 

identical to calling malloc as follows: 

ptr = malloc(nelem * elsize); 

and would be rather pointless, except that calloc initializes the memory it allocates to zero, a 

service not performed by malloc. (By initialize to zero, we mean that all the bits are set to zero; 
this is not necessarily the same thing as “0” or “0.0” as far as the variable's data type is concerned.) 

To increase the size of a previously allocated memory segment, the realloc function is used: 

#include <stdlib.h> 

 

void *realloc(void *ptr, size_t size); 

ptr is a pointer to a segment of memory returned by a previous call to malloc, calloc, or 

realloc, and size is the desired new size, in bytes. realloc returns a pointer to the new memory 

segment, or a null pointer if the request cannot be satisfied. Note that in order to satisfy a request, 
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realloc may have to copy the existing block pointed to by ptr to a new (larger) area in memory. 

This means that after a call to realloc, any variables pointing into the old block may not be valid. 

For the specific purpose of saving a string in dynamically allocated memory, most modern UNIX 

systems provide a function called strdup: 

#include <string.h> 

 

char *strdup(const char *s); 

strdup allocates a block of memory large enough to hold s, copies s into it, and returns a pointer 

to the saved string, or a null pointer if no memory could be allocated. This is particularly useful for 

saving strings of arbitrary length (such as those entered in response to prompts from the program) 

without having to preallocate many arrays of the largest possible size. If you are writing a program 

that has to be portable to older UNIX systems, the following implementation of strdup can be 
included for portability: 

#include <string.h> 

 

char * 

strdup(char *s) 

{ 

    char *p; 

 

    if ((p = (char *) malloc(strlen(s) + 1)) != NULL) 

        strcpy(p, s); 

 

    return(p); 

} 

Look back at Examples 2-1 and 2-2 for a moment, and notice that they both work on only a pre-

defined number of lines (the NSTRINGS constant). This is fine for our examples, in which we used 
fairly small files. But, if we were to use these programs on larger files, they would only sort the first 

NSTRINGS lines of the file, and not even read the rest of the file in. Up to a point, we can simply 

increase the value of NSTRINGS to handle larger files, but after a while, things begin to get out of 
hand. It would be extremely inefficient to allocate enough memory to handle a 1,000,000-line file 

every time, even when we're normally sorting files that are much smaller. 

Example 2-10 shows a reworked version of Example 2-2 that uses dynamic memory allocation to 

allow the program to work on files of any arbitrary size (up to the maximum amount of memory 

available to a single program on your machine). 

Example 2-10: bsort-malloc 

#include <stdlib.h> 

#include <string.h> 

 

void    bubbleSort(char **, int); 

void    outputLine(char *); 

char    *inputLine(void); 
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int 

main(int argc, char **argv) 

{ 

    char *line; 

    char **strptrs = NULL; 

    int n, nstrings, nstrptrs; 

 

    nstrings = 0; 

    nstrptrs = 0; 

 

    /* 

     * For each line in the input... 

     */ 

    while ((line = inputLine()) != NULL) { 

        /* 

         * If we're full up, allocate some more pointers. 

         */ 

        if (nstrings == nstrptrs) { 

            if (nstrptrs == 0) { 

                nstrptrs = 8; 

                strptrs = malloc(nstrptrs * sizeof(char *)); 

            } 

            else { 

                nstrptrs += 8; 

                strptrs = realloc(strptrs, nstrptrs * sizeof(char *)); 

            } 

 

            if (strptrs == NULL) { 

                outputLine("out of memory."); 

                exit(1); 

            } 

        } 

 

        /* 

         * Save a pointer to the line, stored in dynamically 

         * allocated memory. 

         */ 

        strptrs[nstrings++] = strdup(line); 

    } 

 

    /* 

     * Sort the strings. 

     */ 

    bubbleSort(strptrs, nstrings); 

 

    /* 

     * Print the strings and free the memory. 

     */ 

    for (n = 0; n < nstrings; n++) { 

        outputLine(strptrs[n]); 

        free(strptrs[n]); 

    } 

 

    free(strptrs); 

    exit(0); 

} 
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/* 

 * bubbleSort - implementation of the standard bubble sort algorithm. 

 */ 

void 

bubbleSort(char **strings, int nstrings) 

{ 

    int i, j; 

    char *tmp; 

    int notdone; 

 

    j = nstrings; 

    notdone = 1; 

 

    while (notdone) { 

        notdone = 0; 

        j = j - 1; 

 

        for (i = 0; i < j; i++) { 

            /* 

             * Use strcmp() to compare the strings 

             * alphabetically. 

             */ 

            if (strcmp(strings[i], strings[i+1]) > 0) { 

                tmp = strings[i+1]; 

                strings[i+1] = strings[i]; 

                strings[i] = tmp; 

                notdone = 1; 

            } 

        } 

    } 

} 

As each line is read in, it is saved in dynamically allocated memory with a call to strdup. The 

return values from strdup are saved in dynamically allocated memory too; initially an array of 

eight pointers is allocated with malloc, and then as more pointers are needed, they are allocated 

eight more at a time with realloc. After sorting the lines, the strings allocated by strdup are freed 

as they are printed out, and then lastly, the array of pointers is freed. (It is not necessary to free 

memory before exiting, since the operating system will do it automatically, but it is “aesthetically 
pleasing” from a programming style viewpoint to do so.) 

Porting Notes 

Before ANSI C, most versions of malloc, calloc, and realloc were declared to return pointers 

of type char * instead of type void *. This can cause portability problems if you declare the 
functions yourself; it is always better to use the appropriate include file instead and then typecast as 

appropriate. Unfortunately, before the ANSI C standard specified that these functions would be 

declared in stdlib.h, various vendors used different include files to declare them. Often there will be 

a malloc.h, but if there isn't, you may have to search around for the proper file. 

Another memory allocation function, alloca, deserves special mention here: 

void *alloca(size_t size); 
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Like malloc, alloca returns a pointer to size bytes of memory, or a null pointer if the memory 

is unavailable. However, unlike malloc, which allocates the memory from the program's data 

segment, alloca allocates it from the program's stack segment. Thus, when the current function 
returns, the memory is automatically freed by being popped off the stack. This simplifies 

bookkeeping for programs that allocate large amounts of memory in numerous places. 

Unfortunately, it is also a portability nightmare. The implementation of alloca is very machine-, 
compiler-, and most of all, system-dependent. Some hardware architectures cannot implement it all. 

For this reason, alloca should never be used by a program that must be portable to many different 

systems. 

Manipulating Temporary Files 

When a program needs to create a temporary file, it is usually desirable to use a file name that is not 

likely to be used by another program, or by another invocation of the current program. For example, 

if the C compiler always used the temporary file /tmp/c-compile, then only one program could be 

compiled on the system at a time. If two people tried to compile programs simultaneously, they 

would both be writing to the same temporary file, and neither would get anything useful out of the 

experience. For this reason, UNIX offers several functions for creating temporary files with unique 
names. 

The most often-used function is mktemp. Although it is not specified by the ANSI C standard, it is 
nevertheless available on almost all modern UNIX platforms: 

#include <stdlib.h> 

 

char *mktemp(char *template); 

(In HP-UX 10.x, mktemp is declared in unistd.h instead of stdlib.h.) 

The template parameter points to a character string that contains a prototype temporary file name; 

this prototype must include six trailing ‘X’ characters, which will be replaced with a unique identifier 

(usually based on the process id number). Note that because mktemp modifies the string pointed to 

by template in place, constant strings as defined in ANSI C cannot be used. In other words, rather 

than using code like this: 

#include <stdlib.h> 

 

. 

. 

. 

 

    char *tempf; 

 

    tempf = mktemp("/tmp/mytempXXXXXX"); 

. 

. 

. 
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you should instead use code like this: 

#include <stdlib.h> 

 

. 

. 

. 

 

    char *tempf; 

    char *template[32]; 

 

    strcpy(template, "/tmp/mytempXXXXXX"); 

    tempf = mktemp(template); 

. 

. 

. 

If mktemp cannot construct a unique file name, it will assign the empty string to template. 

The ANSI C standard specifies two different functions for creating temporary files, called tmpnam 

and  tempnam: 

#include <stdio.h> 

 

char *tmpnam(char *s); 

 

char *tempnam(const char *dir, constr char *pfx); 

These functions also exist in most versions of System V UNIX, but are not usually present in BSD 

versions. tmpnam places its result in the character array pointed to by s; if s is null then the result 

is left in an internal area that is overwritten with each call. If s is not null, then it must point to an 

array of at least L_tmpnam (defined in stdio.h) bytes. The temporary file name generated by tmpnam 

will always have the path prefix defined as P_tmpdir in stdio.h; on SVR4 systems it is defined as 

“/tmp/.” 

tempnam allows the programmer to control the directory in which the temporary file is created by 

passing it in as dir. If dir is null, the path defined as P_tmpdir in stdio.h will be used. The pfx 

string allows the programmer to choose a prefix for the file names generated by tempnam; if it is 

null, no prefix will be used. If the environment variable TMPDIR is set, its value overrides any value 

specified by dir. 

A fourth function for creating a temporary file, also specified by the ANSI C standard, is called 

tmpfile: 

#include <stdio.h> 

 

FILE *tmpfile(void); 
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This function uses tmpnam to create a temporary file name, and then opens the file for reading and 
writing. It returns a Standard I/O Library file pointer (see Chapter 4, The Standard I/O Library) for 

the file. 

Porting Notes 

The most portable of these functions is probably mktemp. Although it is not specified by the ANSI 

C standard, it has existed in UNIX for the longest time, and is therefore likely to be present on 
almost any system. 

BSD UNIX provides one other function, called mkstemp: 

int mkstemp(char *template); 

The template parameter is used as described for mktemp, above. After the temporary file name is 

obtained, mkstemp opens the file for reading and writing, and returns a low-level I/O file descriptor 

(see Chapter 3, Low-Level I/O Routines) for the file. When porting programs that use this function 

to SVR4 systems, the following compatibility routine can be used: 

#include <sys/types.h> 

#include <stdlib.h> 

#include <fcntl.h> 

 

int 

mkstemp(char *template) 

{ 

    char *tempf; 

 

    tempf = mktemp(template); 

 

    if (strlen(template) == 0) 

        return(-1); 

 

    return(open(tempf, O_RDWR | O_CREAT | O_TRUNC, 0666)); 

} 

Parsing Command Line Arguments 

Almost every UNIX command has arguments, and most commands follow a generally accepted set 

of rules for how these arguments are formatted: 

1. Command names must be between two and nine characters long. 

2. Command names must include only lowercase letters and digits. 

3. Option names must be one character long. 

4. All options must be preceded by “–”. 

5. Options with no arguments may be grouped after a single ‘–’. This means that either “-a -b 

-c” or “-abc” may be used. 
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6. The first option argument following an option must be preceded by a tab or space character. 

This means that “-a arg” must be used; “-aarg” is not legal. 

7. Option arguments cannot be optional. This means that you cannot allow both “-a” and “-a 

arg.” 

8. Groups of option arguments following an option must either be separated by commas or 

separated by space or tab characters and quoted. This means that you must use either “-a 

xxx,yyy,zzz” or “-a "xxx yyy zzz".” 

9. All options must precede operands on the command line. This means that “command -a -b -

c filename” is legal, while “command -a filename -b -c” is not. 

10. A double dash (“––”) may be used to indicate the end of the options. This allows operands that 
begin with a dash. 

11. The order of the options relative to one another should not matter. 

12. The relative order of the operands may affect their significance in ways determined by the 

command with which they are used. This means that a command is allowed to assign meaning 

to the order of its operands; for example, the cp command takes its first operand as the input 

file, and its second operand as its output file. Reversing the order of these operands will produce 

different results. 

13. A dash (‘–’) preceded and followed by a space character should only be used to mean standard 

input. This is used to tell a program that generally reads from files, such as troff, to read from 

the standard input. It allows files to be read before processing the standard input. 

Depending on how long you've been using UNIX and how many versions you've used, most of these 

rules, except perhaps number 8, should look familiar. Early versions of System V provided a library 

routine, getopt, that enforced most of these rules, and allowed a program to easily parse command 
lines that followed the rules. Later versions provided a shell command, getopt, which enabled shell 

scripts to use these rules as well. 

In SVR4, the getopt command is available, as well as a newer command that is built in to the shell, 

called getopts. Two library routines are provided as well: getopt, which enforces the rules 

described  above and parses command lines that follow these rules, and getsubopt, which enforces 

rule number 8, and parses option arguments that follow that rule. These functions are called as 
follows: 

#include <stdlib.h> 

 

int getopt(int argc, char * const *argv, const char *optstring); 

 

extern char *optarg; 

extern int optind, opterr, optopt; 

 

int getsubopt(char **optionp, const char * const *tokens, char **valuep); 
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optstring contains a list of characters that are legal options for the command. If the option letter 

is to be followed by an option argument, then the letter should be followed by a colon (‘:’) in 

optstring. 

When getopt is called, it returns the next option letter in argv that matches one of the letters in 

optstring. If the option letter has an argument associated with it (as indicated by a colon character 

in optstring), getopt will set the external variable optarg to point to the option argument. 

The external variable optind contains the index into argv of the next argument to be processed; it 

is initialized to 1 before the first call to getopt. When all options have been processed, getopt 

returns –1. The special option “––” (two dashes) may be used to delimit the end of the options; when 

it is encountered, getopt will skip over it and return –1. This is used to stop option processing 

before encountering non-option arguments that begin with a dash. 

When getopt encounters an option letter not included in optstring or cannot find an argument 

after an option that should have one, it prints an error message and returns a question mark (‘?’). 

The character that caused the error is placed in the external variable optopt. To disable getopt's 

printing of the error message, the external variable opterr should be set to zero. 

getsubopt is used to parse the suboptions in an option argument initially parsed by getopt. These 

suboptions are separated by commas (unlike rule 8 above, getsubopt does not allow them to be 
separated by spaces), and consist either of a single token or a token-value pair, separated by an equal 

sign (‘=’). Since commas delimit suboptions in the option string, they are not allowed to be part of 

the suboption or the value of a suboption. 

When calling getsubopt, optionp is the address of a pointer to the suboption string, tokens is a 

pointer to an array of strings representing the possible token values the option string can contain, 

and valuep is the address of a character pointer that can be used to return any value following an 

equal sign. 

getsubopt returns the index of the token (in the tokens array) that matched the suboption in the 

option string, or –1 if there was no match. If the suboption has a value associated with it, getsubopt 

updates valuep to point at the first character of the value; otherwise it sets valuep to null. If 

optionp contains only one suboption, optionp will be updated to point to the null character at the 

end of the string. Otherwise, the suboption will be isolated by replacing the comma character with 

a null character, and optionp will be updated to point to the next suboption. 

All of this sounds relatively complicated, but is easily made clear with an example. Example 2-11 

shows a program that uses getopt and getsubopt to parse its command line. 

Example 2-11: parse-cmdline 

#include <stdlib.h> 

#include <string.h> 

 

/* 

 * Sub-options. 

 */ 

char    *subopts[] = { 
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#define COLOR   0 

    "color", 

#define SOLID   1 

    "solid", 

    NULL 

}; 

 

int 

main(int argc, char **argv) 

{ 

    int c; 

    char buf[1024]; 

    extern int optind; 

    extern char *optarg; 

    char *options, *value; 

 

    /* 

     * Process the arguments. 

     */ 

    while ((c = getopt(argc, argv, "cf:o:st")) != -1) { 

        switch (c) { 

        case 'c': 

            outputLine("circle"); 

            break; 

        case 'f': 

            strcpy(buf, "filename: "); 

            strcat(buf, optarg); 

            outputLine(buf); 

            break; 

        case 's': 

            outputLine("square"); 

            break; 

        case 't': 

            outputLine("triangle"); 

            break; 

        case '?': 

            outputLine("command line error"); 

            break; 

        case 'o': 

            options = optarg; 

 

            /* 

             * Process the sub-options. 

             */ 

            while (*options != '\0') { 

                switch (getsubopt(&options, subopts, &value)) { 

                case COLOR: 

                    if (value != NULL) { 

                        strcpy(buf, "color: "); 

                        strcat(buf, value); 

                    } 

                    else { 

                        strcpy(buf, "missing color"); 

                    } 

 

                    outputLine(buf); 

                    break; 

                case SOLID: 
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                    outputLine("solid"); 

                    break; 

                default: 

                    strcpy(buf, "unknown option: "); 

                    strcat(buf, value); 

                    outputLine(buf); 

                    break; 

                } 

            } 

 

            break; 

        } 

    } 

 

    /* 

     * Process extra arguments. 

     */ 

    for (; optind < argc; optind++) { 

        strcpy(buf, "extra argument: "); 

        strcat(buf, argv[optind]); 

        outputLine(buf); 

    } 

 

    exit(0); 

} 

% parse-cmdline -c -f picture.out -o solid 

circle 

filename: picture.out 

solid 

% parse-cmdline -o color=red,solid -t 

color: red 

solid 

triangle 

% parse-cmdline -s -z 

square 

parse-cmdline: illegal option -- z 

command line error 

This program represents the argument-parsing section for a hypothetical graphics program that will 

draw a circle, square, or triangle, as specified by the -c, -s, or -t arguments. The -f argument allows 

an output file to be specified, otherwise the program will write to the standard output. The -o 

argument allows two options to be specified: solid, which indicates that the figure should be filled 

in instead of hollow, and color, which allows a color to be specified for the figure. 

As shown in the third command invocation in the example, an illegal option (-z) produces an error 

message. As mentioned earlier, this message can be disabled by setting the external variable opterr 
to zero. Note that the program will also parse additional operands on the command line (for example, 

the command might require two additional arguments, the height and width of the figure); this is 

done by the last few lines of code. 
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Porting Notes 

The use of getopt has never really caught on. Some people use it, other people don't. One of the 

primary arguments against it is that the arguments to many commands simply don't fit into the set 

of rules that it enforces. Indeed, in SVR4, the modification of a number of commands to use getopt 

resulted in noticeable changes to the command lines most users are familiar with. 

Most versions of System V will have some version of getopt, but getsubopt is new to SVR4, 
and is thus not very portable. Older BSD systems usually do not have either function, although a 

number of vendors have added one or both of them to their System V compatibility libraries. 

However, there are several public domain implementations of getopt floating around; if you really 
want to use it, you may wish to consider obtaining one of these and distributing it with your program. 

Miscellaneous 

There are many more functions provided by the C library on most UNIX systems, especially on 

SVR4. This section describes a few of the more generally useful ones. For a complete list of all the 

functions provided by your system, you should read Chapter 3 of the UNIX Programmer's Manual, 

which describes the C library. 

String to Number Conversion 

There are several functions provided to convert character strings to numbers: 

#include <stdlib.h> 

 

int atoi(const char *str); 

 

long atol(const char *str); 

 

double atof(const char *str); 

 

long strtol(const char *str, char **ptr, int base); 

 

unsigned long strtoul(const char *str, char **ptr, int base); 

 

double strtod(const char *str, char **ptr); 

Both strtol and strtoul scan str up to the first character inconsistent with a number in the 

given base. Leading white space is ignored; a leading minus sign will produce a negative number. 

If ptr is non-null, then a pointer to the character in str that terminated the scan will be placed into 

it. Legal inputs to strtol and strtoul are determined by the value of base. If base is 10, decimal 

numbers are assumed; if base is 16, hexadecimal numbers are assumed, and so forth. Following an 

optional minus sign, leading zeros are ignored and, if base is 16, a leading “0X” or “0x” will be 

ignored too. If base is zero, the string itself determines the base: following an optional sign, a 

leading zero indicates octal (base 8), a leading “0X” or “0x” indicates hexadecimal, and anything 
else indicates decimal. 
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strtod scans str up to the first character inconsistent with a floating point number. If ptr is non-

null, then a pointer to the character in str that terminated the scan will be placed into it. After 

ignoring leading white space, strtod will accept an optional sign, a string of digits optionally 

containing a decimal point, and then an optional exponent part including an ‘E’ or ‘e,’ followed by 

an optional sign, followed by an integer. Thus, the string “123.456” represents the number 123.456, 

while the string “987.654e-2” represents the number 9.87654. The decimal point character 

defaults to period (‘.’), but may vary with international custom (for example, many European 
countries use a comma). 

The other three functions have been around much longer, and are generally provided only for 

backward compatibility. All three of them can be written in terms of the newer functions: 

#include <stdlib.h> 

 

int 

atoi(char *str) 

{ 

    return((int) strtol(str, (char **) 0, 10)); 

} 

 

long 

atol(char *str) 

{ 

    return(strtol(str, (char **) 0, 10)); 

} 

 

double 

atof(char *str) 

{ 

  return(strtod(str, (char **) 0)); 

} 

Printing Error Messages 

Every UNIX system call, and many of the library routines, returns an error code when something 

goes wrong. This error code is stored as a small integer in the external variable errno. The values 

that can be placed in errno are defined in the include file errno.h, and the manual page for each 
system call describes the errors that it can return. 

The errors defined in errno.h can vary between different versions of UNIX, although most versions 

have at least a subset of them in common. However, because the errors do vary, it is unwise for a 

program to interpret the numerical values of errno directly. Instead, only the constant names 
defined in errno.h should be used. Additionally, to provide some consistency between applications, 

programs should use a standard set of error messages to describe these errors. This is done by using 

the perror function: 

#include <stdio.h> 

 

void perror(const char *s); 
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perror prints the contents of the string s, followed by a colon, followed by a string describing the 

error in errno, followed by a newline character to the standard error output. For example, 

if (systemcall(...arguments...) < 0) { 

    perror("myprogram: systemcall"); 

    exit(1); 

} 

would print out the string “myprogram: systemcall:,” followed by a specific error message 

describing the way in which systemcall failed. 

ANSI C defines another function, strerror: 

#include <string.h> 

 

char *strerror(int errnum); 

This function takes the error number as an argument (simply pass in the value of errno) and returns 

a pointer to a character string that describes the error. This is often more flexible than perror, since 
the program has more control over what happens to the error message. 

Porting Notes 

perror is available on all UNIX systems, and should be used whenever appropriate. strerror, 
unfortunately, is not as widely available. On many older systems, an external character array called 

sys_errlist is defined; you can use errno as an index into this array to achieve the same result: 

char * 

strerror(int errnum) 

{ 

    extern int sys_nerr; 

    extern char *sys_errlist[]; 

 

    if (errnum < 0 || errnum >= sys_nerr) 

        return(NULL); 

 

    return(sys_errlist[errnum]); 

} 

Pausing a Program 

Sometimes a program needs to wait for something to happen, simply by “sitting there” for a few 

seconds. To do this, the sleep routine is used: 

#include <unistd.h> 

 

unsigned int sleep(unsigned int seconds); 

When called, sleep causes the program to pause for seconds seconds; when the time has expired, 

sleep returns. 
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Exiting a Program 

To exit a program, the exit function is used: 

#include <stdlib.h> 

 

void exit(int status); 

The lower eight bits of the status argument are passed to the parent process when the program 

terminates; the parent can use this value to determine whether the program terminated normally or 

abnormally. 

UNIX convention dictates that a zero exit status represents normal termination, while a non-zero 

status indicates abnormal termination. Some programs assign special meanings to their exit status 

values; for example, grep exits with status 0 if matches were found, status 1 if no matches were 

found, and status 2 if the command line contained syntax errors or one of the files it was told to 
search could not be opened. Most programs however, simply exit with status 0 if everything went 

fine, and status 1 if there was a problem. 

Chapter Summary 

In this chapter, we have discussed a number of utility routines offered by the C library on most 

UNIX systems. The routines described in this chapter will be used in the examples throughout the 

rest of this book, so you should try to familiarize yourself with most of them. However, the primary 

purpose of this chapter is to serve as a reference, so if you encounter a function in a later example 
that is not described in the surrounding text, check back here if you don't remember what it does. 

 





 

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 61 
 

Chapter 3 
Low-Level I/O Routines 

The C language, unlike PASCAL or FORTRAN, does not provide any built-in operators for 

performing input and output (I/O). Rather, all I/O services are offered to the programmer directly 

by the operating system, in the form of system calls and library routines. 

In this chapter, we will examine the I/O interface provided by all versions of UNIX, including SVR4. 

All of the functions described in this chapter, except for readv and writev, are specified by the 
POSIX 1003.1 standard. 

The routines described in this chapter are usually referred to as the low-level I/O interface, because 

they are a direct interface to the operating system and, to some extent, the hardware itself. In the 

next chapter we will discuss a high-level interface, the Standard I/O Library. 

File Descriptors 

All of the functions described in this chapter use a file descriptor to reference an open file. A file 

descriptor is simply a small integer that identifies the open file to the operating system. There are 

three file descriptors that are “predefined” when each program is invoked. The standard input, 

usually the keyboard, is identified by file descriptor 0. The standard output, usually the screen, is 

identified by file descriptor 1. And the standard error output, also usually the screen, is identified by 

file descriptor 2. 

File descriptors are allocated from a table maintained for each process by the operating system, and 

each file descriptor is simply an index into that table. Most older versions of UNIX limit the 

maximum number of files a process may have open at once to approximately 20. Newer versions 

have larger limits such as 32 or 64, and SVR4 allows up to 256. One of the features of this table-

based implementation is that opening a file always returns the lowest-numbered available file 

descriptor. Thus, since a process starts out with three open files (0, 1, and 2), the first file it opens 

will be attached to file descriptor 3. If the program later closes its standard input (file descriptor 0), 

then the next file it opens will be attached to file descriptor 0, not file descriptor 4. This behavior is 

found in all versions of UNIX, and is also specified by the POSIX standard. 
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Opening and Closing Files 

Before any data can be read from or written to a file, that file must be opened for reading or writing 

(or both). Opening a file causes the operating system to locate (or create) the file on the disk, allocate 

an entry in the process' open file table, and set up assorted internal structures for moving data 

between the file and your program. The function used to open a file is called open: 

#include <sys/types.h> 

#include <sys/stat.h> 

#include <fcntl.h> 

 

int open(const char *path, int oflag, /* mode_t mode */); 

The path argument is a character string containing the path name of the file to be opened, and 

oflag is a set of flags that control how the file is to be opened. oflag is constructed by or-ing 

together flags from the following list (the first three flags are mutually exclusive): 

O_RDONLY Open the file for reading only. 

O_WRONLY Open the file for writing only. 

O_RDWR Open the file for both reading and writing. 

O_APPEND If set, the read/write offset for the file (the point at which the next read or write 

will be performed) will be set to the end of the file prior to each write, thus 

causing all data written to be appended to the file. 

O_CREAT If the file exists, this option does nothing (except when O_EXCL is set; see 
below). If the file does not exist, this option tells the operating system to create 

it. The file will be created with the permission bits provided in the third 

argument, mode, as modified by the process' umask value (see Chapter 6, 

Special-Purpose File Operations). 

O_EXCL If O_CREAT is also set, check to see if the file already exists. If the file does not 

exist, it will be created. However, if the file does exist, the call to open will fail. 
This allows cooperating processes to make use of the same file, since only one 

process will be able to create the file at any given instant. 

If O_EXCL and O_CREAT are both set, and the last path component of the file 

name to be opened is a symbolic link, open will not follow the link. 

O_NDELAY or 
O_NONBLOCK  

These constants affect the behavior of future reads and writes to a file. If the 

file is a regular disk file, a read or write will return –1 immediately if no data 

can be read or written, and errno will be set to EAGAIN. This is true regardless 

of which flag (O_NDELAY or O_NONBLOCK) is used. 

If the file is a terminal device or a FIFO (see Chapter 13, Interprocess 
Communication), a read or write will still return immediately if no data can be 

read or written. If the O_NONBLOCK flag is used, the read or write will return –
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1 and set errno to EAGAIN. If the O_NDELAY flag is used however, the read or 
write will return 0 (which is not considered an error). 

O_NOCTTY If the file being opened is a terminal device, do not allocate that terminal as this 

process' controlling terminal. The controlling terminal is discussed in Chapter 

11, Processes, and Chapter 12, Terminals. 

O_DSYNC Normally, write operations complete once the data to be transferred has been 

successfully copied to an operating system buffer; the transfer from the buffer 

to the physical storage media takes place without the process' knowledge. If this 

option is set however, write operations on the descriptor will not complete until 
the data has been successfully transferred to the physical storage medium. This 

makes the process run much more slowly, but allows it to be absolutely sure 

that the data has been stored on the disk. 

This flag is not available in IRIX 5.x. 

O_RSYNC Normally, a read request is satisifed with whatever data is stored on the disk at 

the time the request is processed. If another process is writing to the file at the 

same time, it is indeterminate whether the read will retrieve the old data or the 

new data (this is subject to the order in which the operating system processes 

the requests). If this option is set however, the read request will not complete 

until any pending write operations affecting the data to be read have been 

processed. 

This flag is not available in IRIX 5.x. 

O_SYNC This option is similar to O_DSYNC, except that while O_DSYNC will allow a write 

to complete once only the data has been successfully updated, O_SYNC forces 
the write to wait until both the data and the file's attributes (modification time, 

etc.) have been updated. 

This flag is not available in IRIX 5.x. 

O_TRUNC If the file exists and is being opened for writing, truncate its length to zero, thus 

deleting any existing data in the file. 

If the file is opened successfully, open returns a file descriptor for the file. If the file cannot be 
opened, –1 is returned and an error code describing the reason for failure is placed into the external 

variable errno, where it can be examined or printed out with the perror function (see Chapter 2, 

Utility Routines). 

On older UNIX systems such as Version 7 and pre-4.2 versions of BSD UNIX, open only accepted 

three values for oflag: 0 to open the file for reading, 1 to open it for writing, and 2 to open it for 

reading and writing. (For backward compatibility, the constants O_RDONLY, O_WRONLY, and 

O_RDWR are defined as 0, 1, and 2 respectively.) All of the other options described above were not 

available, and furthermore, open only opened existing files—to create a file, a separate system call, 

creat, was provided: 

#include <sys/types.h> 
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#include <sys/stat.h> 

#include <fcntl.h> 

 

int creat(const char *path, mode_t mode); 

If the file named in path does not exist, creat will create it, with the permission bits set to those 

in mode, as modified by the process' umask value (see Chapter 6, Special-Purpose File Operations). 

If the file named in path already exists, and is writable, it will be truncated to zero length. If the 

file can be created successfully, creat returns a file descriptor (open for writing only) for the file. 

If the file cannot be created, creat returns –1, and places an error code describing the reason for 

failure into the external variable errno. 

Once a program has finished using a file, the file should be closed. This causes any data written to 

the file but not yet placed on the disk by the operating system to be flushed, and frees up the 

resources (buffers, file table entry, etc.) used by that file. The function to close a file is called close: 

#include <unistd.h> 

 

int close(int fd); 

If the file was closed successfully, close returns 0. If an error occurred during the closing process, 

–1 is returned and an error code is stored in the external variable errno. 

Porting Notes 

As mentioned previously, older versions of UNIX do not support all the various flags to the open 

system call. The O_NOCTTY and O_NONBLOCK options are new to POSIX implementations; the 

O_DSYNC, O_RSYNC, and O_SYNC options are new to SVR4 implementations. Thus they are not 
supported by BSD or pre-SVR4 systems. 

On BSD systems, the meaning of O_NDELAY applies only to the open call, and does not affect future 

reads and writes. 

The POSIX standard says that if O_EXCL is set when O_CREAT is not set, the result is 

implementation-defined. On some systems, it means the file is opened for exclusive use; only one 

process may open the file at a time. On SVR4 systems however, it simply has no effect. 

Finally, on BSD systems, the O_ constants are defined in the include file sys/file.h instead of fcntl.h. 

Input and Output 

To move data between a file and your program, the read and write functions are used: 

#include <unistd.h> 

 

ssize_t read(int fd, void *buf, size_t nbytes); 

 

ssize_t write(int fd, const void *buf, size_t nbytes); 
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The read function transfers up to nbytes bytes from the file referenced by fd and stores them in 

the area of memory pointed to by buf. The number of bytes actually read is returned. If 0 is returned, 

this indicates that end-of-file has been encountered and there is no data left to read. The write 

function transfers up to nbytes bytes of data from the area of memory pointed to by buf to the file 

referenced by fd. The number of bytes actually written is returned. Both routines return –1 if an 

error occurs, and store an error code in the external variable errno. 

Unlike languages in which the I/O instructions are built into the language, read and write do not 
perform any formatting or data conversion. Although you can pass a pointer to any C data type to 

both functions, you will be working with the actual contents of memory, not the human-readable 

form of those contents. For example, the program: 

main() 

{ 

    int n; 

 

    for (n = 1; n <= 3; n++) 

        write(1, &n, sizeof(int)); 

} 

will write twelve bytes (four bytes for each integer) to the standard output: 

00000000 00000000 00000000 00000001 

00000000 00000000 00000000 00000010 

00000000 00000000 00000000 00000011 

Contrast this with the PASCAL program: 

program x; 

    var n : integer; 

begin 

    for n := 1 to 3 do begin 

        writeln(n); 

    end 

end. 

or the FORTRAN program: 

    integer n 

 

    do 10 n = 1,3 

        print *, n 

10  continue 

    stop 

    end 

both of which print out the ASCII representations of the number n: 

1 

2 

3 



UNIX Systems Programming for SVR4 

66 FOR PERSONAL, NON-COMMERCIAL USE ONLY  
 

To accomplish the same thing with write, you need to convert the integer n to a character string, 

and then write it out: 

int n; 

char buf[32]; 

 

intToString(n, buf); 

write(1, buf, strlen(buf)); 

Similarly, if you use the read function to read in a number: 

int n; 

 

read(0, &n, sizeof(int)); 

you will have to enter four bytes containing the appropriate binary bits to give you a number of the 

appropriate value. If instead what you want is for the user to enter a number (say, “123”) and have 

that value stored in n, you'll need code like this: 

int i, n; 

char buf[32]; 

 

i = read(0, buf, sizeof(buf)); 

buf[i] = '\0'; 

n = atoi(buf); 

Note that because read does not automatically null-terminate the data it reads in, the program must 
do this explicitly. 

Example 3-1 shows a program that takes two file names as arguments. It opens the first file for 

reading and the second file for writing, and then appends the contents of the first file to the second 

file. 

Example 3-1: append 

#include <sys/types.h> 

#include <sys/stat.h> 

#include <unistd.h> 

#include <fcntl.h> 

 

int 

main(int argc, char **argv) 

{ 

    int n, in, out; 

    char buf[1024]; 

 

    if (argc != 3) { 

        write(2, "Usage: append file1 file2\n", 26); 

        exit(1); 

    } 
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    /* 

     * Open the first file for reading. 

     */ 

    if ((in = open(argv[1], O_RDONLY)) < 0) { 

        perror(argv[1]); 

        exit(1); 

    } 

 

    /* 

     * Open the second file for writing. 

     */ 

    if ((out = open(argv[2], O_WRONLY | O_APPEND)) < 0) { 

        perror(argv[2]); 

        exit(1); 

    } 

 

    /* 

     * Copy data from the first file to the second. 

     */ 

    while ((n = read(in, buf, sizeof(buf))) > 0) 

        write(out, buf, n); 

 

    close(out); 

    close(in); 

    exit(0); 

} 

% cat a 

file a line one 

file a line two 

file a line three 

% cat b 

file b line one 

file b line two 

file b line three 

% append a b 

% cat b 

file b line one 

file b line two 

file b line three 

file a line one 

file a line two 

file a line three 

Note the calls to read and write: when calling read, we pass the size of the buffer buf, but when 

calling write, we pass the number of bytes read, n. If we were to pass the size of the buffer instead, 

then we would end up writing out some number of correct bytes (the ones we read), and then a large 

number of “garbage” bytes. 

Two other functions for reading and writing, readv and writev, were introduced in BSD UNIX, 
and are also present in SVR4. These functions allow a program to perform “scatter-gather” I/O, by 

passing in the addresses of several buffers in one call. Because these functions are rarely used, and 

are not very portable anyway, they will not be discussed further. 
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Repositioning the Read/Write Offset 

One of the values the operating system associates with each file is the read/write offset, also called 

the file offset. The read/write offset specifies the “distance,” measured in bytes from the beginning 

of the file, at which the next read or write will take place. When a file is first opened or created, the 

file offset is zero; the first read or write will start at the beginning of the file. As reads and writes 

are performed, the offset is incremented by the number of bytes read or written each time. There is 

only one read/write offset for each file, so a read of ten bytes followed by a write of twenty bytes 

will leave the read/write offset at 30. 

To examine and change the value of the read/write offset, the lseek function is used: 

#include <sys/types.h> 

#include <unistd.h> 

 

off_t lseek(int fd, off_t offset, int whence); 

lseek sets the read/write offset to offset bytes from the position in the file specified by whence, 

which may have one of the following values: 

SEEK_SET Set the read/write offset to offset bytes from the beginning of the file. 

SEEK_CUR Set the read/write offset to offset bytes from the current offset. 

SEEK_END Set the read/write offset to offset bytes from the end of the file. 

On success, lseek returns the new read/write offset. On failure, it returns –1 and stores an error 

code in the external variable errno. Note that the offset parameter is a signed value, so negative 

seeks are permitted. 

To move to the beginning of a file, the call 

lseek(fd, 0, SEEK_SET); 

is used. To move to the end of a file, the call 

lseek(fd, 0, SEEK_END); 

is used. And to obtain the value of the current offset without changing it, the call 

off_t offset; 

 

offset = lseek(fd, 0, SEEK_CUR); 

is used. The concept of the “end” of a file is somewhat fluid—it is perfectly legal to seek past the 

end of the file and then write data. This creates a “hole” in the file which does not take up any 

storage space on the disk. When reading a file with holes in it however, the holes are read as zero-

valued bytes. This means that once a file with holes has been created, it is impossible to copy it 

precisely, since all the holes will be filled in when the copy takes place. (There are ways around 
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this, but they involve reading the raw disk blocks rather than simply opening the file and reading it 

directly.) 

Example 3-2 shows a program that writes five strings to a file, and then prompts for a number 

between 1 and 5. It seeks to the proper location for the string of that number, reads it from the file, 

and prints it out. Note the use of the mktemp function to create a temporary file name; mktemp was 
described in Chapter 2, Utility Routines. 

Example 3-2: seeker 

#include <sys/types.h> 

#include <sys/stat.h> 

#include <unistd.h> 

#include <stdlib.h> 

#include <fcntl.h> 

 

#define NSTRINGS    5 

#define STRSIZE     3 

 

char *strings[] = { 

    "aaa", "bbb", "ccc", "ddd", "eee" 

}; 

 

int 

main(int argc, char **argv) 

{ 

    int n, fd; 

    char *fname; 

    char buf[STRSIZE], answer[8], template[32]; 

 

    /* 

     * Create a temporary file name. 

     */ 

    strcpy(template, "/tmp/seekerXXXXXX"); 

    fname = mktemp(template); 

 

    /* 

     * Create the file. 

     */ 

    if ((fd = open(fname, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0) { 

        perror(fname); 

        exit(1); 

    } 

 

    /* 

     * Write strings to the file. 

     */ 

    for (n = 0; n < NSTRINGS; n++) 

        write(fd, strings[n], STRSIZE); 

 

    /* 

     * Until the user quits, prompt for a string and retrieve 

     * it from the file. 

     */ 

    for (;;) { 
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        /* 

         * Prompt for the string number. 

         */ 

        write(1, "Which string (0 to quit)? ", 26); 

        n = read(0, answer, sizeof(answer)); 

        answer[n-1] = '\0'; 

        n = atoi(answer); 

 

        if (n == 0) { 

            close(fd); 

            exit(0); 

        } 

 

        if (n < 0 || n > NSTRINGS) { 

            write(2, "Out of range.\n", 14); 

            continue; 

        } 

 

        /* 

         * Find the string and read it. 

         */ 

        lseek(fd, (n-1) * STRSIZE, SEEK_SET); 

        read(fd, buf, STRSIZE); 

 

        /* 

         * Print it out. 

         */ 

        write(1, "String ", 7); 

        write(1, answer, strlen(answer)); 

        write(1, " = ", 3); 

        write(1, buf, STRSIZE); 

        write(1, "\n\n", 2); 

    } 

} 

% seeker 

Which string (0 to quit)? 1 

String 1 = aaa 

Which string (0 to quit)? 5 

String 5 = eee 

Which string (0 to quit)? 3 

String 3 = ccc 

Which string (0 to quit)? 4 

String 4 = ddd 

Which string (0 to quit)? 2 

String 2 = bbb 

Which string (0 to quit)? 0 

Note the number of steps involved in printing the prompts in this program. This is one of the 

principal drawbacks to using low-level I/O; complex input and output formatting involves a lot of 

work. Contrast this example with the redesigned version shown in the following chapter. 

Porting Notes 

On most pre-POSIX systems, the constants used with lseek are called L_SET, L_INCR, and 

L_XTND. On even older UNIX systems; there are no constants defined at all, and the integers 0, 1, 



Low-level I/O Routines 

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 71 
 

and 2 are used instead. In either case, these can be replaced with the POSIX constants SEEK_SET, 

SEEK_CUR, and SEEK_END respectively. 

Duplicating File Descriptors 

Sometimes it is desirable to have more than one file descriptor referring to the same file, or to have 

a specific file descriptor refer to a file. This is most commonly needed when reassigning the standard 

input, standard output, and standard error output. There are two functions provided to duplicate file 

descriptors: 

#include <unistd.h> 

 

int dup(int fd); 

 

int dup2(int fd, int fd2); 

dup returns a new file descriptor that references the same file as fd. The new descriptor has the 

same access mode (read, write, or read/write) and the same read/write offset as the original. The file 

descriptor returned will be the lowest numbered one available. dup2 causes the file descriptor fd2 

to refer to the same file as fd. If fd2 refers to an already-open file, that file is closed first. 

The use of these functions is difficult to demonstrate without getting way ahead of ourselves, so we 

will defer their demonstration until Chapter 11, Processes. 

Chapter Summary 

In this chapter we examined the I/O interface offered by all versions of the UNIX operating system. 

This interface is frequently called a low-level interface because it does not provide any formatting 

or data conversion facilities (refer again to the seeker program in Example 3-2). In the next chapter, 

we will discuss the Standard I/O Library, which is a high-level interface comparable to the built-in 

I/O operators in languages such as PASCAL and FORTRAN. 
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Chapter 4 
The Standard I/O Library 

In the last chapter, we examined the low-level input and output interface provided by the UNIX 

operating system. Although as we'll see later in the book this interface is useful for a number of 

applications, it isn't very convenient to use for everyday programming. 

To understand why, think about writing a program that computes your monthly budget. This 

program will prompt you for budget items (strings) and monthly costs (numbers). It then performs 

some calculations, and displays a nice table of values. The table contains the names of the budget 
items (strings), and several columns of numbers, nicely lined up at the decimal point. Sounds pretty 

simple, until you realize that you will have to write not only the functions to compute your budget, 

but also a function to read in a string up to a newline character, a function to convert strings of 

characters like “123.456” to numbers, a function to line up all the numbers in columns and print 
them out, and so forth. These functions aren't terribly difficult, but imagine having to write them for 

every program you develop—you'd be spending more time writing input and output formatting 

routines than you would actually writing your program! 

Fortunately, the original developers of UNIX realized this too, and they developed a powerful set 

of functions called the Standard I/O Library. The primary purpose of the library is to separate out 

the mechanics of doing input and output, so that you can spend your time writing “real” code instead 

of writing mundane things like string-to-integer conversion functions. Specifically, the library 

performs three major tasks for you: 

 Input and output are automatically buffered. When reading or writing data, it is much more 

efficient to do so in large chunks, rather than one byte (or a few bytes) at a time. This is because 
each read or write request results in a call to the operating system, and then usually initiates 

action on the part of some piece of hardware, such as a disk. Reading or writing one byte at a 

time to a disk drive is horrendously inefficient—for each byte, the operating system has to tell 

the disk to seek to some address, wait for the disk to do so, request the disk to transfer a byte to 

or from memory, wait for the disk to do so, and then return the result to your program. Imagine 

hundreds of programs doing this at the same time, each with thousands of bytes of data. 

By buffering reads and writes, the Standard I/O Library makes programs more efficient. When 

a program reads a single character, the library routine will actually read a large bufferful of 

characters (using read) and then return the first character in the buffer to the program. The next 
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several one-character “reads” are filled from the same buffer, without making any request to 

the operating system (or to a device such as a disk drive). When the entire buffer has been used 

by the program, the next one-character read will cause the library to read another buffer full of 

characters, and so forth. Thus, assuming a buffer size of one kilobyte (1,024 characters), a 

program can read a ten kilobyte file a character at a time with only ten calls to the operating 

system's read function, instead of 10,240 calls. Writes are handled in a similar fashion—each 
time the program “writes” some data, the library routines transfer that data to a buffer. When 

the buffer fills up, it is written out using write and a new buffer is started. All of this happens 
invisibly to you, the programmer. 

 Input and output conversions can be performed. As you know, inside a computer data is stored 

in binary form. For example, the decimal integer 1234 is stored internally (on a 32-bit system) 

as 

00000000 00000000 00000100 11010010 

Floating point numbers are even more unwieldy—the decimal number 1234.5678 is stored 

internally (on a system using the IEEE 754 floating point format) as 

01000100 10011010 01010010 00101011 

Because human beings don't think very well in binary, it is necessary to convert between the 

binary system used by the computer and the decimal system used by people. The Standard I/O 

Library provides a number of convenient ways to do this. 

 Input and output may be formatted. Most programs that produce output intended to be read by 
humans make an effort to print their data in a format that is easy to read. For example, programs 

that produce large amounts of numerical data try to line that data up into columns; programs 

that produce lists try to make each line of the list line up somehow, and so forth. The Standard 

I/O Library makes it easy to perform these tasks. 

The Standard I/O Library exists in pretty much the same form on all versions of UNIX, although 

some of the more obscure options vary from release to release. The version of the library discussed 

in this chapter is the one specified by the ANSI C standard. 

Data Types and Constants 

When using the Standard I/O Library functions, an open file with its associated buffers is called a 

stream, and is referenced by a file pointer. A file pointer is a variable of type FILE *, as defined in 
the include file stdio.h. There are three predefined file pointers, associated with the three open files 

given to each process when it is invoked: stdin refers to the standard input file (usually the 

keyboard), stdout refers to the standard output file (usually the screen), and stderr refers to the 

standard error file (also usually the screen). 

The Standard I/O Library functions also make use of three constants defined in the include file 
stdio.h: 
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EOF Returned by most of the integer-valued functions upon encountering an end-of-file 

condition. 

NULL Returned by most of the pointer-valued functions, signifying a null pointer. 

BUFSIZ The size of buffers that should be used with most of the routines. Other buffer sizes 

may be used with some functions, but this constant serves as a useful value for 

declaring character arrays and other variables. 

Opening and Closing Files 

Before any data can be read from or written to a file, that file must be opened for reading or writing 

(or both). Opening a file causes the operating system to locate (or create) the file on the disk, allocate 

an entry in the process' open file table, and set up assorted internal structures for moving data 

between the file and your program. In the case of the Standard I/O Library, opening a file also 

allocates buffers internal to the library that will be used to move data between your program and the 

file in an efficient manner. The Standard I/O Library function for opening a file is called fopen: 

#include <stdio.h> 

 

FILE *fopen(const char *filename, const char *type); 

The character string filename contains the path name of the file to be opened, and the type 

character string describes the type of stream that is to be created. type may have any of the 

following values: 

r Open the file for reading only. The file must already exist. 

w Open the file for writing only. If the file does not exist, it will be created. If the file does 

exist, it will be truncated to zero length (any data already in the file will be lost). 

a Open the file for writing (appending). If the file does not exist, it will be created. If the file 

does exist, all writes to the file will be appended to the end (any data already in the file will 

not be lost). 

r+ Open the file for both reading and writing. The file must already exist. 

w+ Open the file for both reading and writing. If the file does not exist, it will be created. If 

the file does exist, it will be truncated to zero length. 

a+ Open the file for both reading and writing (appending). If the file does not exist, it will be 

created. If the file does exist, all writes to the file will be appended to the end. 

All type strings may also have a ‘b’ contained in them, as in “rb,” “w+b,” or “ab+.”  The ‘b’ 

informs the library routines that the file is a “binary” file (as opposed to a text file), which is 

necessary on some operating systems. Because UNIX does not distinguish between binary and text 

files, the ‘b’ is simply ignored. 
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If the file can be opened successfully, a file pointer to the open stream is returned. If the file cannot 

be opened, the constant NULL is returned, and an error code is placed in the external variable errno. 

Once a program is finished with a file, the file should be closed. This causes any buffered writes to 

be flushed to the disk, frees up memory in the library associated with the file's buffering, and frees 

up the operating system resources (buffers, file table entry, etc.) used by that file. The Standard I/O 

Library function to close a file is called fclose: 

#include <stdio.h> 

 

int fclose(FILE *stream); 

If the file referenced by stream is closed successfully, fclose returns zero. If the close fails, the 

constant EOF is returned, and an error code is placed in the external variable errno. 

Porting Notes 

As mentioned earlier, the Standard I/O Library has been around for a long time, and there aren't too 

many significant differences between versions. The ‘b’ character in the type argument was first 

introduced in XENIX, and may not be understood by older versions of the library. However, it is a 

part of the ANSI C standard, and so most newer versions should support it. To be safe though, 

always place the ‘+’ after the first type character, followed by the ‘b’. 

Some very old versions of the library may not understand the ‘+’ notation, but this should not be of 
concern on any modern system (i.e., don't worry about portability when using it). 

Character-Based Input and Output 

The simplest way to perform input and output is to treat a file as an unformatted stream of bytes. 

And the simplest way to process a stream of bytes is one byte at a time. The Standard I/O Library 
provides several functions to do this: 

#include <stdio.h> 

 

int fgetc(FILE *stream); 

 

int getc(FILE *stream); 

 

int getchar(void); 

 

int fputc(int c, FILE *stream); 

 

int putc(int c, FILE *stream); 

 

int putchar(int c); 

The getc function returns the next character (byte) from the file referenced by stream. If there are 

no more characters to read (end-of-file has been reached), or if an error occurs, getc returns the 

constant EOF. 
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The putc function converts c to an unsigned char and places it on stream. If it succeeds, putc 

returns c, otherwise it returns the constant EOF. 

The getchar and putchar functions are actually just macros, defined as: 

#define getchar()     getc(stdin) 

#define putchar(c)    putc(c, stdout) 

These are often used as short-hand in programs that read from the standard input and/or write to the 

standard output. 

The fgetc and fputc functions behave exactly like getc and putc. The difference is that getc 

and putc are usually implemented as preprocessor macros, while fgetc and fputc are 

implemented as genuine C-language functions. This means that fgetc and fputc run more slowly 

than getc and putc (because of the overhead incurred when making a function call), but they take 
up less space in the executable code because they are not expanded in-line as macros are. Their other 

advantage is that because they are functions, they can be passed as arguments to other functions. 

All of these functions use variables of type int to hold byte values, rather than type char. This is 

necessary to allow the functions to return the constant EOF, which is usually defined as –1. If the 

char type were used instead of int, then reading a character with decimal value 255 could 

erroneously cause a program to think end-of-file had been reached, because the char value –1 can 

get sign-extended to the int value –1 during comparisons. For this reason, it is important to always 

use variables of type int when working with these functions. 

Example 4-1 shows another version of our append program introduced in Chapter 3. The program 

takes two file names as arguments. It opens the first file for reading, and the second file for writing, 

and then appends the contents of the first file to the second file. 

Example 4-1: append-char 

#include <stdio.h> 

 

int 

main(int argc, char **argv) 

{ 

    int c; 

    FILE *in, *out; 

 

    if (argc != 3) { 

        fprintf(stderr, "Usage: append-char file1 file2\n"); 

        exit(1); 

    } 

 

    /* 

     * Open the first file for reading. 

     */ 

    if ((in = fopen(argv[1], "r")) == NULL) { 

        perror(argv[1]); 

        exit(1); 

    } 
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    /* 

     * Open the second file for writing. 

     */ 

    if ((out = fopen(argv[2], "a")) == NULL) { 

        perror(argv[2]); 

        exit(1); 

    } 

 

    /* 

     * Copy data from the first file to the second, a character 

     * at a time. 

     */ 

    while ((c = getc(in)) != EOF) 

        putc(c, out); 

 

    fclose(out); 

    fclose(in); 

    exit(0); 

} 

% cat a 

file a line one 

file a line two 

file a line three 

% cat b 

file b line one 

file b line two 

file b line three 

% append-char a b 

% cat b 

file b line one 

file b line two 

file b line three 

file a line one 

file a line two 

file a line three 

The internal buffering providing by the Standard I/O Library means that, even though this example 

“reads” and “writes” one character at a time, the data is actually being transferred to disk in large 

chunks. This is very important—it allows a program to process files one byte at a time while 

preserving the efficiency of reading and writing large buffers fulll of data. If the program in the 

example above were converted to use the low-level I/O routines described in the previous chapter, 

it would become too inefficient to use on all but the smallest input files. 

The buffering features provided by the Standard I/O Library allow the library to provide another 

interesting function, ungetc: 

#include <stdio.h> 

 

int ungetc(int c, FILE *stream); 
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This function is quite literally the reverse of getc, causing the character c to be placed back onto 

the input stream referenced by stream. The next call to getc will return the character contained in 

c. 

This function is often used in programs that read from a file until a special character is encountered. 

When the special character is read, the collection of input is stopped for the current token, and the 

character is placed back onto the input with ungetc, so that another part of the program can deal 

with it later. For example, consider a program that reads lists of words separated by colon (‘:’) 

characters: 

while ((c = getc(fp)) != EOF) { 

    if (c == ':') { 

        word[nchars] = '\0'; 

        ungetc(c, fp); 

        return; 

    } 

 

    word[nchars++] = c; 

} 

As each character is read, it is checked to see if it is the colon character, and if not, is appended to 

the current word. If the colon character is read, the word is terminated, the colon is placed back on 

the input stream, and the subroutine returns. The next character read from the input stream will be 

the colon character again. 

There is actually no requirement that the character passed to ungetc be the same character that was 
just read from the stream; in reality, any character can be placed onto the input. However, the library 

only guarantees that up to four characters may be pushed back on the input stream; it is not possible, 

for example, to “unread” an entire file. 

Line-Based Input and Output 

The Standard I/O Library also provides functions that can be used to process files a line at a time, 

where a line is defined as some sequence of bytes terminated by a newline character: 

#include <stdio.h> 

 

char *gets(char *s); 

 

char *fgets(char *s, int n, FILE *stream); 

 

int puts(const char *s); 

 

int fputs(const char *s, FILE *stream); 

The gets function reads characters from stdin and places them into s until either a newline 

character is read or end-of-file is encountered. The fgets function reads characters from stream 

and places them into s until a newline character is encountered, n–1 characters have been read, or 

end-of-file is encountered. Both functions terminate s with a null character and return s, or return 
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the constant NULL if end-of-file is encountered before any characters have been read. For historical 

reasons, gets discards the newline character, while fgets copies it into s. 

Note that there is a significant problem with gets: it has no way of knowing the size of the array 

pointed to by its argument, s. It will happily continue reading characters and copying them to 

memory, even after s has been filled, until it encounters a newline character or end-of-file. This has 

the unfortunate side effect of destroying the contents of whatever variables follow s in memory, 

resulting in unexpected program behavior. This “feature” of gets was used with great success by 

the 1988 Internet worm to gain unauthorized access to systems. Because of this problem, the gets 
function should be considered “evil” and its use should be avoided at all costs. 

The puts function writes the string pointed to by s, followed by a newline character, to the standard 

output. The fputs function writes the string pointed to by s to stream, but does not append a 

newline character. On success, both functions return the number of characters written; if an error 

occurs, they return the constant EOF. 

Example 4-2 shows another version of our file-appending program; this one uses fgets and fputs 
to process the file a line at a time. 

Example 4-2: append-line 

#include <stdio.h> 

 

int 

main(int argc, char **argv) 

{ 

    FILE *in, *out; 

    char line[BUFSIZ]; 

 

    if (argc != 3) { 

        fprintf(stderr, "Usage: append-line file1 file2\n"); 

        exit(1); 

    } 

 

    /* 

     * Open the first file for reading. 

     */ 

    if ((in = fopen(argv[1], "r")) == NULL) { 

        perror(argv[1]); 

        exit(1); 

    } 

 

    /* 

     * Open the second file for writing. 

     */ 

    if ((out = fopen(argv[2], "a")) == NULL) { 

        perror(argv[2]); 

        exit(1); 

    } 

 

    /* 

     * Copy data from the first file to the second, one line 

     * at a time. 
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     */ 

    while (fgets(line, sizeof(line), in) != NULL) 

        fputs(line, out); 

 

    fclose(out); 

    fclose(in); 

    exit(0); 

} 

% cat a 

file a line one 

file a line two 

file a line three 

% cat b 

file b line one 

file b line two 

file b line three 

% append-line a b 

% cat b 

file b line one 

file b line two 

file b line three 

file a line one 

file a line two 

file a line three 

Buffer-Based Input and Output 

A third input and output paradigm offered by the Standard I/O Library is that of buffer-based input 

and output, in which buffers full of characters are read and written in large chunks. This method is 

almost identical to the paradigm offered by the low-level interface described in Chapter 3, except 
that the library still provides internal buffering services, regardless of the size of the buffers used by 

the program. 

There are two functions for performing buffer-based I/O, fread and fwrite: 

#include <stdio.h> 

 

size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream); 

 

size_t fwrite(const void *ptr, size_t size, size_t nitems, FILE *stream); 

The fread function reads nitems of data, each of size size, from stream and places them into 

the array pointed to by ptr. It returns the number of items (not the number of bytes) read, zero if 

no items were read, or the constant EOF if end-of-file was encountered before any data was read. 

The fwrite function copies nitems of data, each of size size, from the array pointed to by ptr 

to the output stream stream. It returns the number of items (not the number of bytes) written, or 

EOF if an error occurs. 

Example 4-3 shows one last version of our file-appending program; this one uses fread and 

fwrite. 
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Example 4-3: append-buf 

#include <stdio.h> 

 

int 

main(int argc, char **argv) 

{ 

    int n; 

    FILE *in, *out; 

    char buf[BUFSIZ]; 

 

    if (argc != 3) { 

        fprintf(stderr, "Usage: append-line file1 file2\n"); 

        exit(1); 

    } 

 

    /* 

     * Open the first file for reading. 

     */ 

    if ((in = fopen(argv[1], "r")) == NULL) { 

        perror(argv[1]); 

        exit(1); 

    } 

 

    /* 

     * Open the second file for writing. 

     */ 

    if ((out = fopen(argv[2], "a")) == NULL) { 

        perror(argv[2]); 

        exit(1); 

    } 

 

    /* 

     * Copy data from the first file to the second, a buffer 

     * full at a time. 

     */ 

    while ((n = fread(buf, sizeof(char), BUFSIZ, in)) > 0) 

        fwrite(buf, sizeof(char), n, out); 

 

    fclose(out); 

    fclose(in); 

    exit(0); 

} 

% cat a 

file a line one 

file a line two 

file a line three 

% cat b 

file b line one 

file b line two 

file b line three 

% append-buf a b 

% cat b 

file b line one 

file b line two 

file b line three 
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file a line one 

file a line two 

file a line three 

Formatted Input and Output 

Up to this point, we have been discussing methods of performing unformatted input and output. The 

programs in Examples 4-1 through 4-3 simply read and write bytes, without assigning any particular 

meaning to them. Although this type of input and output is performed all the time, it is also necessary 

to be able to read or write data that is formatted in a particular way, usually to make it easier for 
human beings to understand and work with. The Standard I/O Library provides two sets of functions 

to do this: the printf functions handle writing formatted output, and the scanf functions handle 

reading formatted input. 

The printf Functions 

The printf functions allow data in a wide variety of formats to be printed in almost any format 
imaginable: 

#include <stdio.h> 

 

int printf(const char *format, ...); 

 

int fprintf(FILE *stream, const char *format, ...); 

 

int sprintf(char *s, const char *format, ...); 

All three functions convert, format, and print their arguments according to the instructions contained 

in the format string. The printf function writes to the standard output, the fprintf function 

writes to the referenced stream, and the sprintf function copies its output to the array of 

characters pointed to by s. The number of arguments passed to each of these functions may vary; 

the contents of the format string specify unambiguously how many arguments there are. Each 

function returns the number of characters written, or the constant EOF if an error occurs. 

The format string may contain three types of characters: 

1. Plain characters that are simply copied to the output; 

2. C-language escape sequences that represent non-graphic characters (‘\n,’ ‘\t,’ etc.); 

3. Conversion specifications. 

A conversion specification, in its simplest form, is a percent sign (‘%’) followed by a single character 
that indicates the type of conversion to be performed. For each conversion specification, another 

argument is passed to the printf function following format; the arguments are passed in the same 

order that their conversion specifications appear. 

There are three basic data types that can be specified in a conversion specification: integers, floating 

point numbers, and characters and character strings. 
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Integers 

The conversion specifications for integers are as follows: 

%d or %i The argument, of type int, is converted to a signed decimal number. The %i 
specification is specific to ANSI C. 

%o The argument, of type int, is converted to an unsigned octal number. 

%u The argument, of type int, is converted to an unsigned decimal number. 

%X or %x The argument, of type int, is converted to an unsigned hexadecimal number. The 

‘X’ conversion uses the letters “ABCDEF;” the ‘x’ conversion uses “abcdef.” 

Example 4-4 shows some examples of how these conversion specifications are used. 

Example 4-4: printf-int 

#include <stdio.h> 

 

#define N   4 

 

int numbers[N] = { 0, -1, 3, 169 }; 

 

int 

main(int argc, char **argv) 

{ 

    int i; 

 

    for (i = 0; i < N; i++) { 

        printf("Signed decimal:       %d\n", numbers[i]); 

        printf("Unsigned octal:       %o\n", numbers[i]); 

        printf("Unsigned decimal:     %u\n", numbers[i]); 

        printf("Unsigned hexadecimal: %x\n\n", numbers[i]); 

    } 

 

    exit(0); 

} 

% printf-int 

Signed decimal:       0 

Unsigned octal:       0 

Unsigned decimal:     0 

Unsigned hexadecimal: 0 

 

Signed decimal:       -1 

Unsigned octal:       37777777777 

Unsigned decimal:     4294967295 

Unsigned hexadecimal: ffffffff 

 

Signed decimal:       3 

Unsigned octal:       3 

Unsigned decimal:     3 

Unsigned hexadecimal: 3 

 

Signed decimal:       169 
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Unsigned octal:       251 

Unsigned decimal:     169 

Unsigned hexadecimal: a9 

An optional ‘h’ character may be used to indicate that the argument corresponding to one of the 

above conversions is a short int (e.g., “%hd”) or unsigned short int (e.g., “%hu”). Likewise, 

an optional ‘l’ character may be used to indicate a long int or unsigned long int. 

Floating-Point Numbers 

The conversion specifications for floating point numbers are as follows: 

%f The argument, of type double, is converted to decimal notation in the style 

[-]ddd.ddd. By default, six decimal digits are output. 

%E or %e The argument, of type double, is converted to decimal notation in the style 

[-]d.dddE±dd, where there is always one digit before the decimal point. By 

default, there will be six digits after the decimal point. The ‘E’ conversion causes an 

‘E’ to be used in the output; the ‘e’ conversion causes an ‘e’ to be used. 

%G or %g The argument, of type double, is converted to decimal notation in either of the 
above two styles, depending on the number of significant digits in the result. 

Example 4-5 shows some examples of how these conversion specifications are used. 

Example 4-5: printf-float 

#include <stdio.h> 

 

#define N   4 

 

double numbers[N] = { 0, -1.234, 67.890, 1234567.98765 }; 

 

int 

main(int argc, char **argv) 

{ 

    int i; 

 

    for (i = 0; i < N; i++) { 

        printf("f notation: %f\n", numbers[i]); 

        printf("e notation: %e\n", numbers[i]); 

        printf("g notation: %g\n\n", numbers[i]); 

    } 

 

    exit(0); 

} 

% printf-float 

f notation: 0.000000 

e notation: 0.000000e+00 

g notation: 0 

 

f notation: -1.234000 
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e notation: -1.234000e+00 

g notation: -1.234 

 

f notation: 67.890000 

e notation: 6.789000e+01 

g notation: 67.89 

 

f notation: 1234567.987650 

e notation: 1.234568e+06 

g notation: 1.23457e+06 

An optional ‘L’ character may be used to indicate that the argument corresponding to one of the 

above conversions is a long double (e.g., “%Lf”). 

Characters and Character Strings 

The conversion specifications for characters and character strings are as follows: 

%c The argument, of type int, is converted to an unsigned char and printed. 

%s The argument, a pointer to a character string, is copied to the output character-by-character 

up to (but not including) a terminating null character. 

%% This specification allows a percent sign to be printed; no argument is converted. 

Field Width and Precision 

Example 4-6 shows a small program that prints out the cost of purchasing some number of items. 

Example 4-6: cost 

#include <stdio.h> 

 

#define COST_PER_ITEM   1.25 

 

void    printCost(int); 

 

int 

main(int argc, char **argv) 

{ 

    int i; 

 

    for (i = 1; i < 1000; i *= 10) 

        printCost(i); 

 

    exit(0); 

} 

 

void 

printCost(int n) 

{ 

    printf("Cost of %d items at $%f each = $%f\n", n, COST_PER_ITEM, 

           n * COST_PER_ITEM); 

} 



The Standard I/O Library 

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 87 
 

% cost 

Cost of 1 items at $1.250000 each = $1.250000 

Cost of 10 items at $1.250000 each = $12.500000 

Cost of 100 items at $1.250000 each = $125.000000 

There are a couple of problems with this example. First, because the numbers representing the 

quantity of items we want to purchase are of different sizes, the equal signs don't line up, making 

the total prices difficult to compare easily. Second, since we're dealing with dollars and cents, we 

really only want two decimal places on each of the dollar amounts. 

The first of these problems can be solved by using a field width. A field width specifies how many 

character positions should be used by a specific output conversion. If we change the “%d” in our 

format string to “%3d, then we are telling printf to print each integer in a field three characters 
wide: 

Cost of   1 items at $1.250000 each = $1.250000 

Cost of  10 items at $1.250000 each = $12.500000 

Cost of 100 items at $1.250000 each = $125.000000 

Specifying a positive number as a field width causes the output to be right-justified in the field. If 

we use a negative number, as in “%-3d”, the output will be left justified: 

Cost of 1   items at $1.250000 each = $1.250000 

Cost of 10  items at $1.250000 each = $12.500000 

Cost of 100 items at $1.250000 each = $125.000000 

And, if we specify a leading zero in the field width, as in “%03d” the output will be padded with 

zeros instead of spaces: 

Cost of 001 items at $1.250000 each = $1.250000 

Cost of 010 items at $1.250000 each = $12.500000 

Cost of 100 items at $1.250000 each = $125.000000 

To fix our second problem, the number of decimal places, we can use a precision specification. The 

precision is specified with a decimal point and then a number, and indicates; 

 For the ‘d,’ ‘i,’ ‘o,’ ‘u,’ ‘x,’ and ‘X’ conversions, the minimum number of digits to appear (the 
field is padded with leading zeros), 

 For the ‘e,’ ‘E,’ and ‘f’ conversions, the number of digits to appear after the decimal point, 

 For the ‘g’ and ‘G’ conversions, the number of significant digits, and 

 For the ‘s’ conversion, the maximum number of characters to be copied from the string. 

So, we can fix the printing of the cost per item by changing the “%f” to “%.2f:” 

Cost of   1 items at $1.25 each = $1.250000 

Cost of  10 items at $1.25 each = $12.500000 

Cost of 100 items at $1.25 each = $125.000000 
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To fix the total cost, we need not only to print just two decimal digits, but we also need to get the 

decimal points to line up. To do this, we can use a field width and a precision. Since our largest 

number occupies six character positions, we can change the “%f” to “%6.2f.”  Example 4-7 shows 
the final result of all of these changes. 

Example 4-7: cost-fmt 

#include <stdio.h> 

 

#define COST_PER_ITEM   1.25 

 

void    printCost(int); 

 

int 

main(int argc, char **argv) 

{ 

    int i; 

 

    for (i = 1; i < 1000; i *= 10) 

        printCost(i); 

 

    exit(0); 

} 

 

void 

printCost(int n) 

{ 

    printf("Cost of %3d items at $%.2f each = $%6.2f\n", n, COST_PER_ITEM, 

           n * COST_PER_ITEM); 

} 

% cost-fmt 

Cost of   1 items at $1.25 each = $  1.25 

Cost of  10 items at $1.25 each = $ 12.50 

Cost of 100 items at $1.25 each = $125.00 

Both field widths and precisions may also be specified with an asterisk character (‘*’) instead of a 
number. In this case, the field width or precision is read from the next argument in the argument list. 

For example: 

double n; 

int fieldwidth, precision; 

 

fieldwidth = 10; 

precision = 4; 

 

printf("%*.*f\n", fieldwidth, precision, n); 

Note that the field width and precision precede the value to be printed in the argument list. 
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Variable Argument Lists 

Most newer versions of the Standard I/O Library offer a set of printf functions that accept 

varargs-style argument lists instead of explicit lists of arguments: 

#include <stdarg.h> 

#include <stdio.h> 

 

int vprintf(const char *format, va_list ap); 

 

int vfprintf(FILE *stream, const char *format, va_list ap); 

 

int vsprintf(char *s, const char *format, va_list ap); 

These functions make calling the functions from routines that accept a variable number of arguments 

much easier. For example, to create a function error that works just like printf except that it 
always prepends the name of the program to its output, the following code might be used: 

#include <stdarg.h> 

#include <stdio.h> 

 

void 

error(const char *format, ...) 

{ 

    va_list ap; 

    extern char *programName; 

 

    va_start(ap, format); 

 

    fprintf(stderr, "%s: ", programName); 

    vfprintf(stderr, format, ap); 

 

    va_end(ap); 

} 

The scanf Functions 

The scanf functions allow data in almost any format to be read: 

#include <stdio.h> 

 

int scanf(const char *format, ...); 

 

int fscanf(FILE *stream, const char *format, ...); 

 

int sscanf(const char *s, const char *format, ...); 

All three functions read characters, interpret them according to the instructions contained in the 

format string, and store the results in their arguments. The scanf function reads from the standard 

input, the fscanf function reads from the referenced stream, and the sscanf function copies its 

input from the array of characters pointed to by s. The number of arguments passed to each of these 

functions may vary; the contents of the format string specify unambiguously how many arguments 

there are. Each function returns the number of input items successfully matched and assigned; this 
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number may be zero if the input does not match the format string or if end-of-file is encountered 

prematurely. If end-of-file is encountered before the first matching failure or conversion is 

performed, the constant EOF is returned. 

The format string may contain three types of characters: 

1. Whitespace characters (spaces, tabs, newlines, and form feeds) that, except in two cases 

described below, cause input to be read up to the next non-whitespace character; 

2. An ordinary character (not ‘%’) that must match the next input character; 

3. Conversion specifications. 

A conversion specification, in its simplest form, is a percent sign (‘%’) followed by a single character 
that indicates the type of conversion to be performed. For each conversion specification, another 

argument is passed to the scanf function following format; the arguments are passed in the same 

order that their conversion specifications appear. 

There are three basic data types that can be specified in a conversion specification: integers, floating 

point numbers, and characters and character strings. 

Integers 

The conversion specifications for integers are as follows: 

%d Matches an optionally signed decimal integer. The corresponding argument should be a 

pointer to a variable of type int. 

%i Matches an optionally signed integer, whose format is interpreted in the same fashion as 

strtol with a base argument of 0 (strtol was described in Chapter 2, Utility Routines). 

That is, numbers starting with ‘0’ are taken to be octal, numbers starting with “0x” or “0X” 
are taken to be hexadecimal, and all others are taken to be decimal. The corresponding 

argument should be a pointer to a variable of type int. The %i specification is specific to 
ANSI C. 

%o Matches an optionally signed octal integer. The corresponding argument should be a 

pointer to a variable of type unsigned int. 

%u Matches an optionally signed decimal integer. The corresponding argument should be a 

pointer to a variable of type unsigned int. 

%x Matches an optionally signed hexadecimal integer. The corresponding argument should be 

a pointer to a variable of type unsigned int. 

Example 4-8 shows some an example of how the “%d” specification is used. It reads in lines telling 
how many quarters, dimes, and nickels we have, and prints out the total amount of money. 

Example 4-8: scanf-int 

#include <stdio.h> 
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int 

main(int argc, char **argv) 

{ 

    double total; 

    int n, quarters, dimes, nickels; 

 

    for (;;) { 

        printf("Enter a line like:\n"); 

        printf("%%d quarters, %%d dimes, %%d nickels\n"); 

        printf("--> "); 

 

        n = scanf("%d quarters, %d dimes, %d nickels", &quarters, &dimes, 

                  &nickels); 

 

        if (n != 3) 

            exit(0); 

 

        total = quarters * 0.25 + dimes * 0.10 + nickels * 0.05; 

 

        printf("You have: $ %.2f\n\n", total); 

    } 

} 

% scanf-int 

Enter a line like: 

%d quarters, %d dimes, %d nickels 

--> 3 quarters, 2 dimes, 1 nickels 

You have: $ 1.00 

 

Enter a line like: 

%d quarters, %d dimes, %d nickels 

--> 6 quarters, 0 dimes, 2 nickels 

You have: $ 1.60 

 

Enter a line like: 

%d quarters, %d dimes, %d nickels 

--> 0 quarters, 2 dimes, 9 nickels 

You have: $ 0.65 

 

Enter a line like: 

%d quarters, %d dimes, %d nickels 

--> ^D 

An optional ‘h’ may be used to indicate that the argument corresponding to one of the above 

conversions is a pointer to a short int (e.g., “%hd”) or unsigned short int (e.g., “%hu”). 

Likewise, an optional ‘l’ character may be used to indicate a long int or unsigned long int. 

Floating-Point Numbers 

The conversion specifications for floating-point numbers are as follows: 

%e or %f or %g Matches an optionally signed floating point number, in any of the formats 

produced by the corresponding printf output conversions. The 

corresponding argument should be a pointer to a variable of type float. 
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An optional ‘l’ character may be used to indicate that the argument corresponding to the above 

conversions is a pointer to type double (e.g., “%lf”). Likewise, an optional ‘L’ maye be used to 

indicate apointer to type long double. 

This brings up an important difference between printf and scanf. Since all floating-point 

arguments to printf are passed by value, it doesn't matter whether they are of type float or type 

double—either way, C's argument type promotion rules will make them all doubles inside 

printf. However, because scanf's arguments are all passed by reference (i.e., pointers are used), 

the type promotion rules do not apply, and you must specifically tell scanf whether you're giving 

it a pointer to an argument of type float or an argument of type double. This is a common source 
of problems that you should be careful to avoid. 

Characters and Character Strings 

The conversion specifications for characters and character strings are as follows: 

%c Matches a sequence of characters of the number specified by the field width 

(see below). If no field width is specified, matches one character. The 

corresponding argument should be a pointer of type char * that points to an 
array large enough to accept the sequence. No terminating null character is 

added. The normal skip over whitespace is suppressed during this conversion. 

%s A character string is expected; the corresponding argument should be a 

pointer of type char * and should point to an array of characters large 

enough to hold the string and a terminating null character. The input field is 
terminated by a whitespace character. 

%[scanlist] Matches a nonempty sequence of characters from a set of expected characters 

called the scanset. The corresponding argument should be a pointer of type 

char * and should point to an array of characters large enough to accept the 
sequence and a terminating null character. The characters between the 

brackets, called the scanlist, comprise the scanset unless the first character 

after the left bracket is a circumflex (‘^’), in which case the scanset comprises 
all the characters that do not appear in the scanlist. To place a right bracket 

in the scanlist, it must immediately follow the left bracket or the circumflex. 

A range of characters may be specified by separating the first and last 

characters in the range with a hyphen; for example, “%[0-9]” would match 
a string of digits. To place the hyphen character in the scanlist, it should be 

either the first or last character in the list. 

%% This specification allows a percent sign to be matched in the input; no 

argument assignment is performed. 

Field Widths 

As with printf, a field width can be used to tell scanf how wide an expected field should be. This 

is particularly useful with the “%c” conversion, which can be told how many characters to read in. 
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Note, however, that field widths used with the “%s” conversion do not work quite as you might 

expect. Many programmers expect “%12s” to read in the first 12 characters of a string, regardless 

of the string's length. However, this is not the case, since “%s” does not consider anything but 

whitespace as a field terminator. To obtain the desired behavior, “%12c” should be used instead. 

Don't forget that the “%c” does not add a terminating null character. 

Instead of a field width, an asterisk character (‘*’) can also be used. However, unlike the asterisk in 

printf, which indicates that the field width should be obtained from a parameter, this asterisk 
indicates that the field it is attached to should be skipped over in the input, rather than assigned to a 

variable. 

Porting Notes 

The printf and scanf functions are generally pretty standard across all platforms, provided that 

you stick to the conversions described in this chapter. The only exception to this is the “%i” 
conversion, which is specific to ANSI C. There are a number of other conversion specifications and 

modifiers that are much less widespread; indeed, the ANSI C standard introduced a number of them 

itself. These are described in the manual pages for your specific version of UNIX, and will not be 
used in this book. Although they are fine for local programs, those other conversions and modifiers 

should not be used if portability is an issue. 

Repositioning the Read/Write Offset 

One of the values the operating system associates with each file is the read/write offset, also called 

the file offset. The read/write offset specifies the “distance,” measured in bytes from the beginning 

of the file, at which the next read or write will take place. When a file is first opened or created, the 
file offset is zero (unless it was opened for appending); the first read or write will start at the 

beginning of the file. As reads and writes are performed, the offset is incremented by the number of 

bytes read or written each time. There is only one read/write offset for each file, so a read of ten 

bytes followed by a write of twenty bytes will leave the read/write offset at 30. 

The Standard I/O Library provides three primary functions for manipulating the read/write offset: 

#include <stdio.h> 

 

int fseek(FILE *stream, long offset, int whence); 

 

void rewind(FILE *stream); 

 

long ftell(FILE *stream); 

The fseek function sets the read/write offset to offset bytes from the position in the file specified 

by whence, which may have one of the following values: 

SEEK_SET Set the read/write offset to offset bytes from the beginning of the file. 

SEEK_CUR Set the read/write offset to offset bytes from the current offset. 
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SEEK_END Set the read/write offset to offset bytes from the end of the file. 

On success, fseek returns zero (this is different from lseek, described in Chapter 3, which returns 

the new read/write offset). On failure, the constant EOF is returned. Note that the offset is a signed 

value, so negative seeks are permitted. 

To move to the beginning of a file, the call 

fseek(stream, 0, SEEK_SET); 

can be used. The call 

rewind(stream); 

may also be used; this has the side effect of clearing any error condition (described later) on the 

stream. To move to the end of a file, the call 

fseek(stream, 0, SEEK_END); 

To obtain the value of the current offset without changing it, the call 

long offset; 

 

offset = ftell(stream); 

is used. Note that unlike lseek, the call 

offset = fseek(stream, 0, SEEK_CUR); 

cannot be used for this purpose, since fseek does not return the current offset. 

The concept of the “end” of a file is somewhat fluid—it is perfectly legal to seek past the end of the 

file and then write data. This creates a “hole” in the file which does not take up any storage space 
on the disk. When reading a file with holes in it however, the holes are read as zero-valued bytes. 

This means that once a file with holes has been created, it is impossible to copy it precisely, since 

all the holes will be filled in when the copy takes place. (There are ways around this, but they involve 

reading the raw disk blocks rather than simply opening the file and reading it directly.) 

Example 4-9 shows the Standard I/O Library version of the seeker program introduced in Chapter 

3. The program writes five strings to a file, and then prompts for a number between 1 and 5. It seeks 

to the proper location for the string of that number, reads it from the file, and prints it out. 

Example 4-9: seeker 

#include <stdlib.h> 

#include <stdio.h> 

 

#define NSTRINGS    5 

#define STRSIZE     3 
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char *strings[] = { 

    "aaa", "bbb", "ccc", "ddd", "eee" 

}; 

 

int 

main(int argc, char **argv) 

{ 

    int n; 

    FILE *fp; 

    char *fname; 

    char buf[STRSIZE], template[32]; 

 

    /* 

     * Create a temporary file name. 

     */ 

    strcpy(template, "/tmp/seekerXXXXXX"); 

    fname = mktemp(template); 

 

    /* 

     * Open the file. 

     */ 

    if ((fp = fopen(fname, "w+")) == NULL) { 

        perror(fname); 

        exit(1); 

    } 

 

    /* 

     * Write strings to the file. 

     */ 

    for (n = 0; n < NSTRINGS; n++) 

        fwrite(strings[n], sizeof(char), STRSIZE, fp); 

 

    /* 

     * Until the user quits, prompt for a string and retrieve 

     * it from the file. 

     */ 

    for (;;) { 

        /* 

         * Prompt for a string number. 

         */ 

        printf("Which string (0 to quit)? "); 

        scanf("%d", &n); 

 

        if (n == 0) { 

            fclose(fp); 

            exit(0); 

        } 

 

        if (n < 0 || n > NSTRINGS) { 

            fprintf(stderr, "Out of range.\n"); 

            continue; 

        } 

 

        /* 

         * Find the string and read it. 

         */ 

        fseek(fp, (n-1) * STRSIZE, SEEK_SET); 
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        fread(buf, sizeof(char), STRSIZE, fp); 

 

        /* 

         * Print it out. 

         */ 

        printf("String %d = %.*s\n\n", n, STRSIZE, buf); 

    } 

% seeker 

Which string (0 to quit)? 1 

String 1 = aaa 

Which string (0 to quit)? 5 

String 5 = eee 

Which string (0 to quit)? 3 

String 3 = ccc 

Which string (0 to quit)? 4 

String 4 = ddd 

Which string (0 to quit)? 2 

String 2 = bbb 

Which string (0 to quit)? 0 

Compare this version of seeker with the one in Chapter 3, and note how much less work this version 

has to do to print the prompts and results. This demonstrates one of the principal benefits of using 

the Standard I/O Library. 

The ANSI C standard specifies two additional functions for manipulating the read/write offset: 

#include <stdio.h> 

 

int fsetpos(FILE *stream, const fpos_t *pos); 

 

int fgetpos(FILE *stream, fpos_t *pos); 

The fgetpos function stores the current read/write offset for stream into the object pointed to by 

pos. The fsetpos function sets the current read/write offset to the value of the object pointed to 

by pos, which should be a value returned by a call to fgetpos on the same stream. If successful, 

both functions return zero; otherwise they return non-zero. 

These two functions allow a program to “save its place” in a file, to return to it later. However, they 

are new to ANSI C, and are therefore not portable to non-ANSI C environments. Fortunately, their 

behavior is easily duplicated using ftell and fseek. 

Reassigning a File Pointer 

Sometimes it is necessary to change the file that is associated with a specific file pointer. This is 

most often done with the pre-defined file pointers, stdin, stdout, and stderr. The function that 

does it is called freopen: 

#include <stdio.h> 

 

FILE *freopen(const char *filename, const char *type, FILE *stream); 
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The filename argument contains the path to the new file, and type indicates how the new file 

should be opened, as described earlier for fopen. The original file that stream referred to will be 

closed. If freopen succeeds it returns stream; if it fails, it returns the constant NULL. 

Buffering 

As mentioned previously, the Standard I/O Library buffers input and output internally. There are a 

number of quirks to the way things get buffered, which make things somewhat inconsistent. The 

quirks exist in an attempt to make the library “do the right thing” under all circumstances: 

 Disk files, both for reading and writing, are buffered in large chunks, usually 1,024 bytes or 

more. 

 The stdout stream is line-buffered if it refers to a terminal device, otherwise it is buffered like 

a disk file. This means that when stdout refers to a terminal, the buffer is flushed each time a 

newline character is printed. 

 The stderr stream is completely unbuffered (except on some BSD-based systems, where it is 

line-buffered). This means that writes to stderr appear immediately. This is necessary to allow 

errors to show up even when a program fails and dumps core; if the writes were buffered, they 

would not be flushed before the program was terminated. 

 If the stdin stream refers to a terminal device, the stdout stream is flushed automatically 

whenever a read from stdin is performed. This allows prompts (which typically do not contain 

newline characters) to appear. 

 A call to fseek or rewind flushes any write buffers that contain outstanding data. 

Usually, the library does what is expected (the “principle of least surprise”). However, there are 

situations in which the library's default behavior is not good enough. Thus, a number of routines are 

provided for overriding the library's buffering decisions: 

#include <stdio.h> 

 

int fflush(FILE *stream); 

 

void setbuf(FILE *stream, char *buf); 

 

void setvbuf(FILE *stream, char *buf, int type, size_t size); 

If stream is open for writing, fflush causes any buffered data waiting to be written to be written 

to the file. If stream is open for reading, fflush causes any unread data in the buffer to be 

discarded. If stream is NULL, fflush flushes data to disk for all streams that are open for writing. 

The setbuf function may be used after a stream has been opened but before it has been read or 

written. It causes the array pointed to by buf (which should be of size BUFSIZ) to be used instead 

of an automatically allocated buffer. If buf is NULL, the stream will be completely unbuffered. 
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The setvbuf function may also be used after a stream has been opened but before it has been read 

or written. The type argument indicates how stream will be buffered, using the following values: 

_IOFBF Causes input and output to be fully buffered. 

_IOLBF Causes output to be line buffered; the output will be flushed when a newline is 

written, the buffer is full, or input is requested. 

_IONBF Causes input and output to be completely unbuffered. 

If buf is not NULL, the array it points to will be used for buffering instead of an automatically 

allocated buffer. In this case, size specifies the size of buf in bytes. 

Porting Notes 

BSD UNIX provides two other buffering functions, setbuffer and setlinebuf. The setbuffer 

function is like setbuf, except that it also allows the size of the buffer to be specfied; it can be 
replaced with the call 

setvbuf(stream, buf, _IOFBF, sizeof(buf)); 

The setlinebuf function changes a stream to be line-buffered; it may be used any time the stream 
is active. It can be replaced with the call 

setvbuf(stream, NULL, _IOLBF, 0); 

which must be made before the stream is read or written. 

Stream Status 

The Standard I/O Library also provides functions for inquiring about and changing the status of a 

stream: 

#include <stdio.h> 

 

int ferror(FILE *stream); 

 

int feof(FILE *stream); 

 

void clearerr(FILE *stream); 

The ferror function returns non-zero when an error has previously occurred while reading from 

or writing to stream; otherwise it returns zero. The feof function returns non-zero when the end-

of-file condition has previously been detected while reading from stream; otherwise it returns zero. 

The clearerr function resets the error and end-of-file indicators on stream. 

One of the most common errors made with the Standard I/O Library is to read from a terminal 

device (usually stdin), allowing the user to indicate an end-of-file with CTRL-D (programs such 

as mail do this), and then attempt to read from the terminal again. The second read will immediately 
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fail, since the end-of-file condition has already been detected on the stream. The proper way to 

implement this is to call clearerr on the stream immediately after detecting end-of-file. 

This error is especially common in older programs being ported to newer systems, because the 

library used to automatically clear the end-of-file condition on stdin if it referred to a terminal 

device. This behavior was changed several years ago to make things more consistent. Fortunately, 

it's easy to detect the problem—if the program goes into an infinite loop of reprinting the prompt 

after you type CTRL-D, you need to add a call to clearerr. 

File Pointers and File Descriptors 

There are two functions provided for “translating” between file pointers and file descriptors: 

#include <stdio.h> 

 

int fileno(FILE *stream); 

 

FILE *fdopen(int fd, const char *type); 

The fileno function returns the file descriptor associated with stream. This is useful for 

performing specialized I/O operations on files with which the Standard I/O Library is being used 
(these operations are described in later chapters). 

The fdopen function allows a low-level file descriptor to be “converted” to a file pointer so that the 

library's buffering and formatting features may be used. The file descriptor is given in fd; type 

indicates how the stream should be opened. Note that type must match how the file descriptor was 

originally opened; for example, it won't work to specify a type of “w” if the file descriptor is only 

open for reading. 

Chapter Summary 

In this chapter we have examined how to open, close, and create files using the Standard I/O Library. 

We have also discussed how to perform both unformatted and formatted input and output on those 

files. We have seen how the library handles the tasks of input and output buffering, input and output 

conversion, and input and output formatting for us, saving us the trouble of doing these things 

ourselves. Input and output are the two most important things a program can do—without them, 

computers wouldn't be good for much more than heating up the room. 
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Chapter 5 
Files and Directories 

In Chapters 3 and 4, we learned how to open and create files, and how to transfer data between a 

program and a file. For many types of application programs, this is all there is to it. But for systems 

programming, there are a number of other tasks that may be necessary, such as discovering the 

contents of directories, changing the ownership and permission bits of files, determining the last 

modification time of a file, figuring out whether a user has the permissions necessary to access a 

file, and so forth. These topics are the subject of this chapter. 

File System Concepts 

A file system is the set of data types, data structures, and system calls used by an operating system 

to store data onto one or more disk drives. The simplest form of a file system, called a flat file system, 

is analogous to the “cardboard box” filing system used by some people to keep track of their bills 

for tax purposes. In the cardboard box method, each bill is simply tossed into a box, with more 

recent additions being placed on top of earlier ones. There is no sense of order within the box; 

mortgage bills, credit card bills, and utility bills are all intermixed in a random fashion. The only 
way to impose any type of order is to use multiple boxes: one for mortgage bills, one for credit card 

bills, and one for utility bills. A flat file system treats the disk like a cardboard box. Each file created 

in the file system is like a bill—it is simply created in an empty place on the disk, with no particular 

organization. Listing all the files is like dumping the cardboard box on the floor: system files, 

homework files, correspondence files, program files, and so forth are all mixed together. The only 

way to impose any type of order on a flat file system is to use multiple disks: one for system files, 

one for homework files, one for correspondence files, and so on. 

A flat file system is easy to implement. It doesn't require very much computation to figure out where 

a file is located, or where the next file should be stored. And it doesn't require very much memory 

to keep track of the file system bookkeeping. In the early days of computers, both of these 

characteristics were very important: most systems were capable of processing tens of thousands of 
instructions per second, and usually had memory sizes measured in the tens or perhaps hundreds of 

kilobytes. Hard disks, which were very expensive, usually held a few megabytes. Because the disks 

were not that large, it was not much of a problem to keep separate disks for each group of files, 

much like keeping separate cardboard boxes for each group of receipts. 
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Depending on your age, you will recognize the previous paragraph as a description of either the first 

personal computers of the early 1980s, or the first minicomputers of the early 1970s. In either case 

though, later systems had increased processing power, larger memories, and larger disks. This not 

only made more complex file systems possible, but also necessary. As disks became larger, the 

number of files they could store also increased. A flat file system was fine for storing a few dozen 

(or even a hundred or so) files. But now that disks were capable of storing many thousands of files, 
flat file systems became too difficult for humans to use. 

The operating system designers of the day recognized this, and in response, developed a new tool 

called a hierarchical file sytem. A hierarchical file system is analogous to the “file cabinet” method 

of filing. In this method, each drawer of the file cabinet is used to hold a different category of files. 

For example, one drawer is used to store bills, another to store correspondence, and so on. Within 

each drawer are a number of hanging folders, to futher subdivide the files: one for credit card bills, 

one for bank statements, one for utility bills, and so forth. Within each hanging folder, manila folders 

are used to further subdivide the bills; there is a folder for the gas company, a folder for the water 

company, and a folder for the telephone company. The hierarchical file system duplicates this 

structure by using directories to represent the file cabinet drawers, and subdirectories to represent 

the hanging folders and manila folders. Each directory or subdirectory contains other files and 

subdirectories, allowing a user to organize his data to his heart's content. 

The UNIX File System 

UNIX was not the first operating system to use a hierarchical file system, nor is it the last. Almost 

every modern operating system in use today has some type of hierarchical file system. 

When it was first developed, the UNIX file system was different from other file systems of the day, 

however. Unlike most systems, in which hardware devices were accessed via their own special 

abstractions, UNIX folded everything into the file system. Instead of using a special set of system 
calls to print a file on a printer or write data on a tape drive, the UNIX programmer could access 

these devices simply by opening a file in the file system and then writing data to it. This simplicity 

of the file system is one of the things that has made UNIX one of the most popular operating systems 

in the world. 

In the remainder of this section, we will discuss the different types of objects provided by the UNIX 

file system. 

Basic File Types 

There are three basic file types in the UNIX file system: regular files, special files, and directories. 

Regular Files 

The simplest object in the file system is a regular file. This object can contain whatever data the user 

chooses to place there; the operating system does not interpret it in any way. Unlike some other 

operating systems, which have several different types of files such as sequential, random access, 
fixed-length records, etc., UNIX does not impose any format on a regular file at all. Instead, the file 

is simply interpreted as a string of bytes, and these bytes may be read and written in any way the 
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user chooses. Certain programs, of course, expect this string of bytes to have a specific format. For 

example, the assembler generates an object file that must be in a particular format (header, followed 

by executable code, followed by initialized data) to be understood by the linker. But these formats 

are imposed by user-level programs, not the operating system. As far as UNIX is concerned, there 

is no difference whatsoever between a program's source code, its object code, its input, and its 

output. They're all just regular files, each of which contains a string of bytes. 

Special Files 

Special files, also called device files, are one of the most unusual aspects of the UNIX file system. 

Each input/output device connected to the computer system (disk drive, tape drive, serial port, 

printer, etc.) is associated with at least one such file. To access a device, a program simply opens 

the special file associated with the device, and then reads data from or writes data to the device as 

if it were a regular file. The difference between special files and regular files is that when reads and 
writes are performed on special files, the devices connected to the computer system do things. For 

example, reading from the special file associated with a tape drive causes the tape to spin, the drive 

to transfer data from the tape and into the computer's memory, and so forth. Writing to the special 

file associated with a printer causes the print head to move, the hammers to strike the ribbon, and 

letters to appear on the page. 

There are two types of special files: character-special files, also called “raw” devices, and block-

special files. The character-special file is the most like a regular file, because it simply transfers data 

between a program and a device in whatever units the program cares to use. For example, if a 

program reads one character at a time from the character-special file associated with a tape drive, 

the tape drive literally transfers a character at a time to the computer. If the program writes in blocks 

of several sizes to the tape drive, then the tape will contain an assortment of different block sizes. A 
block-special file on the other hand, is buffered by the operating system. If a program reads one 

character at a time from the block-special file associated with a tape drive, the operating system will 

tell the tape drive to transfer a block of data (usually some multiple of 512 bytes) to memory, and 

will then satisfy the program's read request from this buffer. After the program has read enough data 

to exhaust the buffer, another buffer will be requested from the tape drive. Similarly, if a program 

writes in several different quantities to the tape drive, the operating system will buffer that data, 

resulting in a tape with a uniform block size. 

Directories 

Directories provide the mapping between the names of files and the files themselves, thus imposing 

a structure on the file system as a whole. A directory contains some number of files; it may also 

contain other directories. A directory may be opened and read just like any other file; it is simply a 

stream of bytes with a meaningful format. But a directory may not be opened for writing by a 

program; all writes to a directory are handled by the operating system itself. 

The operating system maintains one special directory for each file system, called the root directory. 

This directory serves as the root of the file system hierarchy; every other file or directory in the file 

system is subordinate to the root directory. Any file in the file system can be located by specifying 

a path through a chain of directories starting at the root. 
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Each file in the file system is identified by a path name, a sequence of file names separated by slash 

(‘/’) characters, for example, “/dir/subdir/file.”  All names in a path name, except for the one 
following the last slash character, must be directories. If the path name begins with a slash character 

it is called an absolute path name, and specifies the path to the file beginning from the root directory. 

If the path name does not begin with a slash character, it is called a relative path name, and specifies 

the path to the file from the program's current working directory (see below). As limiting cases, the 

path name “/” refers to the root directory, and a null file name (e.g., “/a/b/”) refers to the directory 

whose name precedes the last slash. Multiple slashes (“///”) are interpreted as a single slash. 

A directory always has two entries, named “.” (“dot”) and “..” (“dotdot”). The special name “.” in a 
directory refers to the directory itself; this enables a program to open its current working directory 

for reading, without knowing its path name, by opening the file “.”. The special name “..” refers to 

the parent directory of the directory in which it appears, that is, the directory one level up in the 

hierarchy. A program may move from its current directory, regardless of where it is located in the 

hierarchy, to the root directory by repeatedly changing to the directory “..” until the root directory 

is reached. As a limiting case, in the root directory the “..” name is a circular link. 

Removable File Systems 

In its simplest case, the file system is a single directory hierarchy, contained on a single storage 

device. There is a single root directory, and under that directory are files and directories; these 

directories in turn contain more files and directories, and so on. But what happens when the storage 

device runs out of room, and more storage space must be added to the system?  Since a file system 

is a single directory hierarchy on a single device, does this mean that the existing disk must be 

replaced with a larger one, and that no file system may be larger than the largest capacity disk 

currently manufactured? 

Fortunately, no. But to explain this requires that we use the term file system to describe two different 

things. Our first definition is that a file system is the directory hierarchy that exists on a single 

storage device, composed of a root directory, files, and subdirectories, as described in the previous 
paragraph. Our second definition is a recursive one; a file system is a directory hierarchy composed 

of a root directory, files, subdirectories, and other file systems. This second definition is achieved 

by telling the operating system that whenever a reference is made to a specific directory, the system 

should move its frame of reference from the directory hierarchy stored on the first disk to the 

hierarchy stored on some other disk. 

This is best explained by an example. Suppose that we have a single disk on our system, and it 

contains the entirety of the UNIX file system: /, /etc, /usr, and so forth. Let us further assume that 

users' home directories, in which they keep all their personal files, are stored in the directory /home, 

with names such as /home/joe, /home/mary, and so on. Now suppose that our disk is running out of 

space, and we have just purchased a second disk. We would like to leave the system files on the first 

disk, but move all the user files to our new disk. There are four steps to this process: 

1. We use the newfs command to create a file system on the new disk. This process involves 

initializing a number of new data structures on the disk and creating a root directory to serve as 

the base of the directory hierarchy. For a discussion of the data structures that are actually placed 

on the disk in this step, see Appendix B, Accessing File System Data Structures. 
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2. We use the mount command to mount the new directory hierarchy into the file system, using 

the /mnt directory as a mount point. The mounting process tells the operating system that 

whenever a reference is made to a file whose path name from the root includes the directory 

/mnt, the system should look in the directory hierarchy stored on our second disk. The process 

of mounting a file system hierarchy on /mnt will cause any previous contents of /mnt to be 

hidden until the file system is again unmounted. 

3. Using any of a variety of tools, we copy the contents of the /home directory (on the old disk) to 

the /mnt directory (on the new disk). Then we delete the contents of the /home directory, 

removing the data from the old disk. 

4. Finally, we unmount the new disk's file system from /mnt, and mount it on /home instead. Now, 

whenever a file whose absolute path name contains the /home directory is referenced, the 

operating system will know to look for the file on the new disk, instead of the old one. 

The file system hierarchy created on the second disk is called a removable file system. It can be 

mounted or unmounted, and the system will still operate correctly. However, the files in /home will 

only be accessible when the hierarchy is mounted. Otherwise, /home will just be an empty directory. 

It doesn't have to be empty, but it makes little sense to store things there, since they will be 

inaccessible whenever the /home file system is mounted. 

File systems may be mounted on directories at any level in the file system hierarchy. For example, 
we could have mounted our new disk on /home/mary; this would mean that Joe's home directory 

(/home/joe) would be stored on the old disk, but Mary's home directory (/home/mary) would be 

stored on the new disk. Mounts may also be nested; for example, we could have one file system 

mounted on /home, and another file system mounted on /home/mary. But to do this, we are required 

to mount the file systems in a particular order: mounting the /home/mary disk before the /home disk 

would not produce the desired result. 

Device Numbers 

Each special file in the file system has two device numbers associated with it. The major device 

number is used to tell the operating system which device driver is to be used when the device is 

referenced. For example, a disk drive might have major device number 23, and a tape drive might 

have major device number 47. Whenever a reference is made to a file on the disk, the operating 

system looks up number 23 in a table, and then uses the disk device driver to access the data that 

has been requested. The minor device number is passed to the device driver. This number tells the 

device driver which physical device is to be used in the case of a driver that handles multiple devices, 

or how a device is to be accessed, in the case of devices like tape drives that support multiple 

densities. Several devices (e.g., all of the disks connected to the system) may have the same major 

device number, since they are all accessed with the same device driver, but they will each have a 
different minor device number. 

I-Numbers, the I-List, and I-Nodes 

As mentioned earlier, directories provide the mapping between the names of files and the files 

themselves. Each directory file contains a series of structures that perform this mapping. Each 

structure contains the name of a file, and a pointer to the file itself. The pointer is in the form of an 

integer called an i-number (for index number). When a file is accessed, the i-number is used as an 
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index into a system table (the i-list) where the entry for the file (the i-node) is stored. The i-node 

contains all the information about a file: 

 The user-id and group-id of the file's owner. 

 The protection bits for the file, specifying who may access it and in what modes. 

 The physical disk addresses of the data blocks that contain the file's contents. 

 The size of the file, in bytes. 

 The last time the file was modified (written), and the last time the file was accessed (read). 

 The last time the file's i-node was changed (for example, the last time the permission bits were 

changed). 

 A tag indicating the file's type (regular file, directory, character special file, etc.). 

One piece of information about a file is not stored in the i-node: the file's name. This information is 

stored in the directory file for the directory that contains the file, and nowhere else. 

The operating system maintains a separate i-list for each mounted file system. I-numbers are unique 

within each removable file system, but when several file systems are mounted, the i-number alone 

is not enough to distinguish a file uniquely. 

Recall however that each special file has two device numbers associated with it, a major device 

number and a minor device number. Since a file system is associated with a disk drive, it is therefore 
also associated with a special file. And, since each disk drive is unique, it must have a unique major 

and minor device number pair. Therefore, we can use a triple of (major device number, minor device 

number, i-number) to uniquely specify each file in the overall file system. 

Other File Types 

There are several other file types available in the UNIX file system besides the three basic types 

already presented. 

Hard Links 

It is possible to have more than one name refer to the same file by making a hard link to that file. 

The link is created by making a new entry in a directory file with the new name, and the i-number 

for the file. There may be any number of links to the same file; every link will have a different name, 

but the same i-number. Note however that because a hard link only uses the i-number of the file, it 
is impossible to make a hard link across two file systems; hard links must all reside on the same file 

system. It is possible, though, for the links to reside in different directories on that file system. 

Symbolic Links 

In 4.2BSD, a new type of file called a symbolic link was introduced to solve the problem of linking 

across file system boundaries. A symbolic link is a special file type that contains the path name of 

the file the link points to. The path name may either be an absolute path name, in which case the 
link's target is located from the root of the file system, or a relative path name, in which case the 
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link's target is located relative to the directory that contains the link's source. Because i-numbers are 

not involved in symbolic links, they may be used to make links across file system boundaries. 

FIFOs 

A FIFO (first-in, first-out), also called a named pipe, is a special type of file used for interprocess 

communication. A program creates a FIFO in the file system using a special library routine. After 

the FIFO has been created, other processes may open it, read from it, and write to it just as if it were 

a regular file. However, whenever a read is performed, the data will be transferred from the process 

owning the FIFO, not from the disk. And whenever a write is performed, the data will be transferred 

to the process owning the FIFO, not to the disk. When the process that created the FIFO exits, the 

FIFO may no longer be opened or used. However, it remains as an entry in the file system until it is 

explicitly removed. FIFOs were introduced in System V UNIX, and are often not available in BSD-

derived systems. 

UNIX-Domain Sockets 

A UNIX-domain socket serves more or less the same function as a FIFO, in that it is created by a 

process and results in an entry in the file system. After the socket has been created, other programs 

may communicate with the process that created the socket. However, unlike a FIFO, which 

preserves the open/read/write conventions of regular files, UNIX-domain sockets require a special 

set of system calls (the same set of system calls used for intermachine communication over Internet-
domain sockets). UNIX-domain sockets were introduced in BSD UNIX, and are often not available 

in System V-derived systems. 

Obtaining File Attributes 

One of the things systems-level programs need to do quite often is obtain information about files. 

For example, it's important to make sure that files are owned by the right user, that they have the 

right permission bits, and so forth. More will be said about this in the section on writing set-user-id 
programs in Chapter 8, Users and Groups. 

Getting Information From an I-Node 

As mentioned earlier, all of the information about a file, except its name, is contained in an on-disk 

structure called an i-node. There are three system calls used to obtain this information: 

#include <sys/types.h> 

#include <sys/stat.h> 

 

int stat(const char *path, struct stat *st); 

 

int lstat(const char *path, struct stat *st); 

 

int fstat(int fd, struct stat *st); 

The stat function is the most commonly used of the three; it obtains the information about the file 

whose name is given by path, and places the data into the variable pointed to by st, which should 
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be of type struct stat. The lstat function is identical to stat, except when the last component 

of the path name is a symbolic link. In that case, stat returns information about the file the link 

points to, while lstat returns information about the link itself. The fstat variant, rather than 
taking the name of a file, takes a file descriptor to an open file, and returns information about that 

file. 

In all cases, the file being asked about does not have to have any special permissions; i.e., it is 

possible to obtain information about an unreadable file, or an unwritable file. However, the file must 

be accessible to the calling program; this means that all directories along the path name contained 

in path must have the appropriate search permissions set. This is discussed in more detail later in 

this chapter. If stat, lstat, or fstat succeeds, a value of zero is returned. If an error occurs, –1 
is returned and an error code describing the reason for failure will be placed in the external variable 

errno. 

The struct stat data type is declared in the include file sys/stat.h; the file sys/types.h must also 

be included, to get the definitions of a number of basic operating system data types. The structure 

includes at least the following members: 

struct stat { 

    dev_t     st_dev; 

    ino_t     st_ino; 

    mode_t    st_mode; 

    nlink_t   st_nlink; 

    uid_t     st_uid; 

    gid_t     st_gid; 

    dev_t     st_rdev; 

    off_t     st_size; 

    time_t    st_atime; 

    time_t    st_mtime; 

    time_t    st_ctime; 

    long      st_blksize; 

    long      st_blocks; 

}; 

The elements of the structure are interpreted as: 

st_dev The major and minor device numbers of the device on which the i-node 

associated with this file (and therefore the file itself) is stored. The major and 

minor device numbers can be extracted from this field by using the major and 

minor macros, which are defined in sys/mkdev.h in Solaris 2.x and IRIX 5.x, 
and in sys/sysmacros.h in HP-UX 10.x. 

st_ino The i-node number of the file. The root directory of a file system will always 

have i-node number 2, and the special directory lost+found in each file system 

will always have i-node number 3. For historical reasons, i-node number 1 is 

never used. All other files in the file system will have i-node numbers greater 
than 3; they are usually allocated in a lowest-available-number fashion. 

st_mode A set of bits encoding the file's type and access permissions; see below for how 

to interpret this data. 
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st_nlink The number of links (file names) associated with the file; a just-created file will 

have the value 1 in this field; the field is incremented by one for every hard link 

made to it. Symbolic links to the file are not counted here (nor anywhere else). 

st_uid The user-id of the user owning the file. 

st_gid The group-id of the group owning the file. 

st_rdev If the file is a character-special or block-special device file, this field contains 

the major and minor device numbers of the file (as opposed to st_dev, which 

contains the major and minor device numbers of the device the file is stored 

on). If the file is not a character-special or block-special device file, the contents 
of this field are meaningless. 

st_size The size of the file, in bytes. 

st_atime The last time the file was accessed for reading, or in the case of an executable 

program, the last time the file was executed, stored in UNIX time format (see 

Chapter 7, Time of Day Operations). 

st_mtime The last time the file was modified (written). 

st_ctime The last time the i-node was changed. This time is updated whenever the file's 

owner, group, or permission bits are changed. It is also updated whenever the 

file's modification time is changed, but not when the file's access time is 

changed. Note that, contrary to popular belief (and contrary to many UNIX 

programming books), this field does not represent the time the file was created; 

file creation time is not recorded anywhere in the file system. 

st_blksize A “hint” to programs about the best buffer size to be used for I/O operations on 

this file. Generally speaking, it is most efficient to perform I/O with the same 

block size that is used by the file system itself (that way, the file system does 

not have to copy data between multiple buffers); this field allows programs that 

care to obtain this information. This field is undefined for character- and block-

special device files. 

st_blocks The total number of physical blocks, each of size 512 bytes, actually allocated 

on the disk for this file. Note that this number may be much smaller than 

(st_size / 512) if there are “holes” in the file. 

The st_mode field mentioned above is important, because it encodes both the file's type and its 
permission bits. These can be extracted using a number of constants defined in sys/stat.h: 

S_IFMT This constant extracts the file type bits from the st_mode word; st_mode 
should be anded with this and then compared against the following constants: 

S_IFREG Regular file. 

S_IFDIR Directory. 

S_IFCHR Character-special device file. 
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S_IFBLK Block-special device file. 

S_IFLNK Symbolic link. 

S_IFIFO FIFO file. 

S_IFSOCK UNIX-domain socket. 

Newer, POSIX-compliant systems also define a set of macros that can be used 

to determine file type: 

S_ISREG(st_mode) If true, the file is a regular file. 

S_ISDIR(st_mode) If true, the file is a directory. 

S_ISCHR(st_mode) If true, the file is a character-special device file. 

S_ISBLK(st_mode) If true, the file is a block-special device file. 

S_ISLNK(st_mode) If true, the file is a symbolic link. 

S_ISFIFO(st_mode) If true, the file is a FIFO file. 

S_ISSOCK(st_mode) If true, the file is a UNIX-domain socket. 
 

S_ISUID If the result of anding this constant with st_mode is non-zero, the file has the 
set-user-id-on-execution bit set (see below). 

S_ISGID If the result of anding this constant with st_mode is non-zero, the file has the 
set-group-id-on-execution bit set (see below). 

S_ISVTX If the result of anding this constant with st_mode is non-zero, the file has the 
“sticky bit” set (see below). 

S_IREAD By anding this constant with st_mode, it may be determined if the owner of 
the file has read permission. By right-shifting the constant three places (or left-

shifting st_mode three places) and anding the two, it may be determined if the 
group owner of the file has read permission. And by right-shifting the constant 

six places (or left-shifting st_mode six places) and anding, it may be 
determined if the rest of the world has read permission. Newer, POSIX-

compliant systems define three constants that may be used in place of shifting: 

S_IRUSR If the result of anding this contant with st_mode is non-zero, the 

owner has read permission for the file. 

S_IRGRP If the result of anding this constant with st_mode is non-zero, the 

group owner has read permission for the file. 

S_IROTH If the result of anding this constant with st_mode is non-zero, the 

world (everyone except the owner and group owner) has read 

permission for the file. 
 

S_IWRITE By anding this constant with st_mode, it may be determined if the owner of 
the file has write permission. By right-shifting the constant three places (or left-
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shifting st_mode three places) and anding the two, it may be determined if the 
group owner of the file has write permission. And by right-shifting the constant 

six places (or left-shifting st_mode six places) and anding, it may be 
determined if the rest of the world has write permission. Newer, POSIX-

compliant systems define three constants that may be used in place of shifting: 

S_IWUSR If the result of anding this contant with st_mode is non-zero, the 

owner has write permission for the file. 

S_IWGRP If the result of anding this constant with st_mode is non-zero, the 

group owner has write permission for the file. 

S_IWOTH If the result of anding this constant with st_mode is non-zero, the 

world (everyone except the owner and group owner) has write 

permission for the file. 
 

S_IEXEC By anding this constant with st_mode, it may be determined if the owner of 

the file has execute permission. By right-shifting the constant three places (or 

left-shifting st_mode three places) and anding the two, it may be determined 
if the group owner of the file has execute permission. And by right-shifting the 

constant six places (or left-shifting st_mode six places) and anding, it may be 
determined if the rest of the world has execute permission. Newer, POSIX-

compliant systems define three constants that may be used in place of shifting: 

S_IXUSR If the result of anding this contant with st_mode is non-zero, the 
owner has execute permission for the file. 

S_IXGRP If the result of anding this constant with st_mode is non-zero, the 

group owner has execute permission for the file. 

S_IXOTH If the result of anding this constant with st_mode is non-zero, the 

world (everyone except the owner and group owner) has execute 

permission for the file. 
 

 Note that the concept of “execute” permission only makes sense for files. For 

directories, this bit implies permission to search the directory. A file cannot be 

accessed unless the search (execute) bit is set on the directory that contains it. 

Note also that read permission on a directory only enables the ability to obtain 

the contents of the directory; it does not enable the ability to access them. A file 

may be accessible even though its parent directory is not readable; likewise, a 
file may be visible but inaccessible if its parent directory is not searchable. 

All of these constants can seem pretty overwhelming, and by now you're probably a little confused 

about just what it is you're supposed to do with them. Example 5-1 shows a program that uses lstat 
to obtain information about each file named on the command line, and print that information out. 

This will clarify the material presented in this section. In this example, we are doing things the “old-

fashioned way,” rather than using the POSIX-defined constants described above. The POSIX 

constants, while more convenient, are not portable to older systems, and any code that you will be 

porting to SVR4 is not likely to use them. 
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Example 5-1: lstat 

#include <sys/types.h> 

#include <sys/stat.h> 

#include <sys/mkdev.h> 

#include <stdio.h> 

 

char    *typeOfFile(mode_t); 

char    *permOfFile(mode_t); 

void     outputStatInfo(char *, struct stat *); 

 

int 

main(int argc, char **argv) 

{ 

    char *filename; 

    struct stat st; 

 

    /* 

     * For each file on the command line... 

     */ 

    while (--argc) { 

        filename = *++argv; 

 

        /* 

         * Find out about it. 

         */ 

        if (lstat(filename, &st) < 0) { 

            perror(filename); 

            putchar('\n'); 

            continue; 

        } 

 

        /* 

         * Print out the information. 

         */ 

        outputStatInfo(filename, &st); 

        putchar('\n'); 

    } 

 

    exit(0); 

} 

 

/* 

 * outputStatInfo - print out the contents of the stat structure. 

 */ 

void 

outputStatInfo(char *filename, struct stat *st) 

{ 

    printf("File Name:          %s\n", filename); 

    printf("File Type:          %s\n", typeOfFile(st->st_mode)); 

 

    /* 

     * If the file is not a device, print its size and optimal 

     * i/o unit; otherwise print its major and minor device 

     * numbers. 

     */ 

    if (((st->st_mode & S_IFMT) != S_IFCHR) && 
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        ((st->st_mode & S_IFMT) != S_IFBLK)) { 

        printf("File Size:          %d bytes, %d blocks\n", st->st_size, 

               st->st_blocks); 

        printf("Optimum I/O Unit:   %d bytes\n", st->st_blksize); 

    } 

    else { 

        printf("Device Numbers:     Major: %u   Minor: %u\n", 

               major(st->st_rdev), minor(st->st_rdev)); 

    } 

 

    /* 

     * Print the permission bits in both "ls" format and 

     * octal. 

     */ 

    printf("Permission Bits:    %s (%04o)\n", permOfFile(st->st_mode), 

           st->st_mode & 07777); 

 

    printf("Inode Number:       %u\n", st->st_ino); 

    printf("Owner User-Id:      %d\n", st->st_uid); 

    printf("Owner Group-Id:     %d\n", st->st_gid); 

    printf("Link Count:         %d\n", st->st_nlink); 

 

    /* 

     * Print the major and minor device numbers of the 

     * file system that contains the file. 

     */ 

    printf("File System Device: Major: %u   Minor: %u\n", 

           major(st->st_dev), minor(st->st_dev)); 

 

    /* 

     * Print the access, modification, and change times. 

     * The ctime() function converts the time to a human- 

     * readable format; it is described in Chapter 7, 

     * "Time of Day Operations." 

     */ 

    printf("Last Access:        %s", ctime(&st->st_atime)); 

    printf("Last Modification:  %s", ctime(&st->st_mtime)); 

    printf("Last I-Node Change: %s", ctime(&st->st_ctime)); 

} 

 

/* 

 * typeOfFile - return the english description of the file type. 

 */ 

char * 

typeOfFile(mode_t mode) 

{ 

    switch (mode & S_IFMT) { 

    case S_IFREG: 

        return("regular file"); 

    case S_IFDIR: 

        return("directory"); 

    case S_IFCHR: 

        return("character-special device"); 

    case S_IFBLK: 

        return("block-special device"); 

    case S_IFLNK: 

        return("symbolic link"); 

    case S_IFIFO: 
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        return("FIFO"); 

    case S_IFSOCK: 

        return("UNIX-domain socket"); 

    } 

 

    return("???"); 

} 

 

/* 

 * permOfFile - return the file permissions in an "ls"-like string. 

 */ 

char * 

permOfFile(mode_t mode) 

{ 

    int i; 

    char *p; 

    static char perms[10]; 

 

    p = perms; 

    strcpy(perms, "---------"); 

 

    /* 

     * The permission bits are three sets of three 

     * bits: user read/write/exec, group read/write/exec, 

     * other read/write/exec.  We deal with each set 

     * of three bits in one pass through the loop. 

     */ 

    for (i=0; i < 3; i++) { 

        if (mode & (S_IREAD >> i*3)) 

            *p = 'r'; 

        p++; 

 

        if (mode & (S_IWRITE >> i*3)) 

            *p = 'w'; 

        p++; 

 

        if (mode & (S_IEXEC >> i*3)) 

            *p = 'x'; 

        p++; 

    } 

 

    /* 

     * Put special codes in for set-user-id, set-group-id, 

     * and the sticky bit.  (This part is incomplete; "ls" 

     * uses some other letters as well for cases such as 

     * set-user-id bit without execute bit, and so forth.) 

     */ 

    if ((mode & S_ISUID) != 0) 

        perms[2] = 's'; 

 

    if ((mode & S_ISGID) != 0) 

        perms[5] = 's'; 

 

    if ((mode & S_ISVTX) != 0) 

        perms[8] = 't'; 

 

    return(perms); 

} 
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% lstat lstat.c 

File Name:          lstat.c 

File Type:          regular file 

File Size:          3571 bytes, 8 blocks 

Optimum I/O Unit:   8192 bytes 

Permission Bits:    rw-r----- (0640) 

Inode Number:       21558 

Owner User-Id:      40 

Owner Group-Id:     1 

Link Count:         1 

File System Device: Major: 32   Minor: 31 

Last Access:        Sun Feb 13 13:54:18 1994 

Last Modification:  Sun Feb 13 13:54:15 1994 

Last I-Node Change: Sun Feb 13 13:54:15 1994 

The results you get from running lstat on your version of lstat.c may vary a little from the example; 

the inode number, owner and group, file system device numbers, and of course the times may be 
different. You should experiment with running lstat on a number of different files on your system, 

to be sure you understand what it does. 

Getting Information From a Symbolic Link 

To find out what a symbolic link points to, the readlink function is used: 

#include <unistd.h> 

 

int readlink(const char *path, void *buf, size_t bufsiz); 

The contents of the symbolic link named by path are placed into the buffer buf, whose size is given 

by bufsiz. The contents are not null-terminated when they are returned. If readlink succeeds, 

the number of bytes placed in buf are returned; otherwise –1 is returned and an error code is placed 

in the external variable errno. 

Sometimes, it is desirable to convert a path name that may contain symbolic links into one that is 

known not to contain any symbolic links. One good reason for wanting to do this is that because 

symbolic links may cross file systems, the concept of the parent directory is a bit confusing. For 

example, on Solaris 2.x systems, /bin is a symbolic link to /usr/bin. Try executing the following 
commands: 

% cd /bin 

% cd .. 

% pwd 

Since the parent directory of /bin is /, you would expect the output from pwd to be /. But since /bin 

is actually a symbolic link to /usr/bin, the parent directory is actually /usr, which is what pwd tells 
you. 

To obtain a path that contains no symbolic links from one that may or may not contain symbolic 

links, SVR4 provides a function called realpath: 

#include <stdlib.h> 
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char *realpath(const char *filename, char *resolvedname); 

If no error occurs while processing the path name in filename, the “real” path will be placed in 

resolvedname and a pointer to it will be returned. If an error occurs, the constant NULL will be 

returned, and resolvedname will contain the name of the path name component that produced the 

error. 

The realpath function is not available in HP-UX 10.x. 

Determining the Accessibility of a File 

Determining the accessibilty of a file can be a tricky proposition. Certainly, the stat function can 

tell you the permission bits on a file. But that is not the same thing as telling you whether a file can 

actually be read (or written, or executed) by a user. For example, consider a world-readable file 

(mode 0444, or r--r--r--) that is in a directory that is searchable only by its owner (mode 0700, 

or rwx------). Certainly the owner can read the file. But another user cannot read the file, because 
even though the file has read permission for her, the directory that contains the file does not have 

access permission for her, so she cannot reach the file to open it. Thus, to properly test whether or 

not a file is accessible requires that the complete path to the file from the root of the file system be 

checked, one directory at a time. This requires some non-trivial programming to handle all the 
special cases. 

Fortunately, the designers of UNIX foresaw this problem, and they created a function called 

access: 

#include <unistd.h> 

 

int access(const char *path, int amode); 

The path parameter contains the path name of the file whose access is to be checked, and amode 

contains some combination of the following constants, ored together: 

R_OK Test for read permission. 

W_OK Test for write permission. 

X_OK Test for execute (search) permission. 

F_OK Test for existence of file. 

If the user running the program has the access permissions in question, access returns zero. If the 

user does not have the proper access permissions, –1 is returned and errno is set to indicate the 

reason why. Note that access works properly even when called from a set-user-id or set-group-id 
program (see Chapter 8, Users and Groups), because it uses the real user-id and group-id to make 

its checks, not the effective user-id and group-id. 
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Changing File Attributes 

Most of a file's attributes can be changed, and this is something that systems programs do quite 

often. This section describes how to change each of the following attributes: permissions, owner, 

group, size, access time, and modification time. In the next section, we will learn how to change one 

other attribute, the number of links. 

Changing a File's Permission Bits 

Each file or directory has three sets of permissions associated with it; one set for the user who owns 
the file, one set for the users in the group with which the file is associated (the “group owner” of the 

file), and one set for all other users (the “world” permissions). Each set of permissions contains three 

identical permission bits that control the following: 

read If set, the file or directory may be read. In the case of a directory, read permission 

allows a user to see the contents of the directory (the names of the files it contains), 

but not to access them. 

write If set, the file or directory may be written (modified). In the case of a directory, write 

permission implies the ability to create, delete, and rename files. Note that the ability 

to delete a file is not controlled by the file's permission bits, but rather by the 

permission bits on the directory containing the file. 

execute If set, the file or directory may be executed (searched). In the case of a file, execute 

permission implies the ability to run the program contained in that file. Executing 
compiled (binary) programs requires only execute permission on the file, while 

executing shell scripts requires both read and execute permission, since the shell 

must be able to read commands from the file. In the case of a directory, execute 

permission implies permission to search the directory, that is, permission to access 

the files contained therein. Note that access to files is not controlled by read 

permission on the directory (read permission controls whether the files are “visible,” 

not “accessible”). 

In addition, there is a fourth set of three bits that indicate special features associated with the file: 

set-user-id If set, this bit controls the “set-user-id” status of a file. Set-user-id status means 

that when a program is executed, it executes with the permissions of the user 

who owns the program, in addition to the permissions of the user running the 
program. For example, the sendmail command is usually set-user-id “root,” 

because it has to be able to write in the mail spool directory, which ordinary 

users are not allowed to do. This bit is meaningless on non-executable files, and 

on directories. 

set-group-id If set on an executable file, this bit controls the “set-group-id” status of a file. 

This behaves in exactly the same way as the set-user-id bit, except that the 

program operates with the permissions of the group associated with the file. On 

directories, it controls how the group associated with a file is determined. If set, 

the group associated with a newly-created file will be the same as the group 

associated with the directory. If not set, the group associated with a newly-
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created file will be the user's primary group id. If this bit is set on a file and the 

group execute bit is not set on that file, then manadatory file and record locks 

are enabled on that file (see Chapter 6, Special File Operations). 

sticky If set, the sticky bit originally told the operating system to keep the text segment 

of an executable file on the swap disk, so that the program would start more 

quickly. This use has been mostly discarded now that UNIX is a paging system 
instead of a swapping system. Now, the sticky bit is used on directories. If a 

directory is writable and has the sticky bit set, files in that directory can be 

removed or renamed only if one or more of the following conditions are true: 

 The user owns the file he is trying to rename or remove. 

 The user owns the directory itself. 

 The file is writable by the user (this condition is not checked by all versions 

of UNIX). 

 The user is the super-user. 

SunOS 4.x and Solaris 2.x also use the sticky bit on files that are used for 

swapping, to disable some file system cache operations. 

When specifying file permissions, octal numbers are usually used, since each octal digit corresponds 
to three bits. Table 5-1 shows the numbers that correspond to the various permissions. 

Table 5-1: File Permission Bits 

Permission Owner Group Others Permission Value 

read 0400 040 04 set-user-id 04000 

write 0200 020 02 set-group-id 02000 

execute 0100 010 01 sticky 01000 

none 0000 000 00 none 00000 

To determine the value to use for a specific set of permissions, we can just add these values together. 

For example, to create the value that grants the owner read, write, and execute permission, the group 

read and execute permission, and no permissions for all others, we would use: 

mode = 0400 + 0200 + 0100 + 040 + 010 + 0 

mode = 0700 + 050 + 0 

mode = 0750 

There are two functions provided for changing the mode of a file: 

#include <sys/types.h> 

#include <sys/stat.h> 

 

int chmod(const char *path, mode_t mode); 

 

int fchmod(int fd, mode_t mode); 
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The chmod function changes the permission bits on the file named in path to the bits contained in 

mode; the fchmod function changes the permission bits on the file referred to by the open file 

descriptor fd. The values for mode are chosen as described above. Note that although the chmod 

command will accept a number without a leading zero and interpret it as octal, the leading zero must 

always be used in C programs to tell the compiler that the number is octal and not decimal. Only the 

owner of a file or the super-user may change its permissions. Upon success, chmod and fchmod 

return 0. If an error occurs, they return –1 and place an error code in the external variable errno. 

Changing a File's Ownership 

Sometimes, it is necessary for a system program to change the ownership of a file. This is often the 

case when a program running as the super-user creates files; it must change the ownership of those 

files so that regular users can access them. There are three functions provided for changing the 

ownership of a file: 

#include <sys/types.h> 

#include <unistd.h> 

 

int chown(const char *path, uid_t owner, gid_t group); 

 

int lchown(const char *path, uid_t owner, gid_t group); 

 

int fchown(int fd, uid_t owner, gid_t group); 

The chown function changes the user-id of the file specified by path to the one contained in owner, 

and the group-id of the file to the one contained in group; the fchown function performs the same 

changes, but on the file referred to by the open file descriptor fd. The lchown function is exactly 

like chown, except when path refers to a symbolic link. In this case, lchown changes the user-id 

and group-id of the link itself, while chown changes the user-id and group-id of the file the link 

points to. If either owner or group are given as –1, then the corresponding user-id or group-id is 

not changed. All three functions return 0 if the changes succeed; if the changes fail, –1 is returned 

and the reason for failure is stored in the external integer errno. 

If chown, lchown, or fchown are invoked by a process that is not operating with super-user 
permissions, then the set-user-id and set-group-id bits on the file are cleared. 

On POSIX systems such as SVR4, there are two different ways in which these functions can be 

used, based on a system configuration option called _POSIX_CHOWN_RESTRICTED. If this option is 
not in effect, then the process calling these functions must either have the same effective user-id as 

the owner of the file, or be operating with super-user permissions, to be allowed to change the 

ownership of the file. It may change the owner and group of the file to any value. In effect, this 

allows a user to “give away” her files to any other user. Most System V systems behave in this way. 

If the _POSIX_CHOWN_RESTRICTED option is in effect, then only the super-user may change the 
owner of a file, and a process that is not running with super-user permissions may only change the 

group of a file to one of the groups of which that process is a member. This is the way most BSD 

systems behave; the original reason for this restriction was to make disk quotas possible. 
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The methods used to obtain the values for owner and group are discussed in Chapter 8, Users and 

Groups. 

Changing a File's Size 

Sometimes it is desirable to set a file's length to a specified size. There are two functions available 

to do this: 

#include <unistd.h> 

 

int truncate(const char *path, off_t length); 

 

int ftruncate(int fd, off_t length); 

The truncate function sets the size of the file named in path to length bytes, while ftruncate 

sets the size of the file referred to by the open file descriptor fd. If the file is longer than length 

bytes, the excess data is discarded. If the file is shorter than length bytes, it is padded on the end 

with zero bytes. The process must have write permission on the file (and fd must be open for 

writing) for these functions to succeed. If they succeed, 0 is returned; if an error occurs, –1 is 

returned and the reason for failure is stored in the external integer errno. 

Changing a File's Access and Modification Times 

It is also sometimes necessary to be able to change the access and modification times for a file; for 

example, the tar program does this to preserve the original access and modification times on files 

extracted from the archive. There are two functions available to do this: 

#include <sys/types.h> 

#include <utime.h> 

 

int utime(const char *path, const struct utimbuf *times); 

 

#include <sys/types.h> 

#include <sys/time.h> 

 

int utimes(const char *path, const struct timeval *tvp); 

The two functions are identical, except in the format of their second argument. The utime function 

is derived from System V versions of UNIX, while utimes is derived from BSD UNIX. SVR4 

provides both of them, but Hewlett-Packard has removed utimes from HP-UX 10.x. 

Both functions change the access and modification times on the file named by path to the times 

contained in their second argument. The second argument to utime is a pointer to type struct 

utimbuf: 

struct utimbuf { 

    time_t    actime; 

    time_t    modtime; 

}; 
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The actime element of the structure contains the desired new access time in UNIX time format, 

and modtime contains the desired new modification time. The second argument to utimes is a 

pointer to an array of two objects of type struct timeval: 

struct timeval { 

    long    tv_sec; 

    long    tv_usec; 

}; 

The tv_sec element of the structure contains the desired new time in UNIX time format (the 

tv_usec element is ignored); the first structure contains the access time, the second contains the 
modification time. UNIX time format is described in Chapter 7, Time of Day Operations. 

In order to change the times on a file, the process must either own the file or be executing with 

super-user permissions. If the change succeeds, 0 is returned. If it fails, –1 is returned and the reason 

for failure is stored in the external integer errno. Whenever the access and modification times of a 
file are changed, the file's inode change time is updated. 

Creating and Deleting Files and Directories 

In Chapters 3 and 4, we learned how to create files using the functions creat, open, and fopen. 
But it is also important to be able to delete files, create links, create and delete directories, and 

change the names of files and directories. 

Deleting Files 

The function provided to delete a file is called unlink: 

#include <unistd.h> 

 

int unlink(const char *path); 

This function removes the directory entry named by path and decrements the link count (st_nlink 

in the struct stat structure). When the link count reaches zero, and no processes have the file 
open, the space occupied by the file is deallocated and the file ceases to exist. If one or more 

processes has the file open when the last link is removed, the link is removed from its directory 

(making the file inaccessible), but the space is not freed until all references to the file have been 

closed. The process must have write permission in the directory that contains the file in order for 

unlink to succeed. If it does succeed, unlink returns 0; if it fails, it returns –1 and the reason for 

failure will be stored in the external integer errno. The unlink function is not used for deleting 

directories; the rmdir function (see below) is used for that purpose. 

The ANSI C standard specifies another function, called remove: 

#include <stdio.h> 

 

int remove(const char *path); 



UNIX Systems Programming for SVR4 

122 FOR PERSONAL, NON-COMMERCIAL USE ONLY  
 

The remove function is identical to unlink for files; for directories, it is identical to rmdir (see 

below). On success, remove returns 0, on failure it returns –1 and sets the external integer errno 
to the reason for failure. 

Creating and Deleting Directories 

To create a directory, the mkdir function is used: 

#include <sys/types.h> 

#include <sys/stat.h> 

 

int mkdir(const char *path, mode_t mode); 

The mkdir function creates a new directory with the name given in path. The directory will be 

empty except for entries for itself (“.”) and its parent (“..”). The permission bits on the directory are 

set from mode, which is specified as described earlier in this chapter and modified by the process' 

umask value (see Chapter 6, Special-Purpose File Operations). Upon successful completion, mkdir 

returns 0; on failure it returns –1 and sets errno to the reason for failure. 

To remove a directory, the rmdir function is used: 

#include <unistd.h> 

 

int rmdir(const char *path); 

The rmdir function removes the directory named by path. The directory must be empty except for 

“.” and “..”. When the directory's link count becomes zero and no process has the directory open, 

the space used by the directory is freed, and the directory ceases to exist. If one or more processes 

has the directory open when the last link is removed, “.” and “..” are removed and no new entries 

may be created in the directory, but the directory is not removed until all references to it have been 

closed. The process must have write permission in the directory's parent directory in order for rmdir 

to succeed. On success, rmdir returns 0; on failure it returns –1 and the reason for failure is placed 

into the external integer errno. 

Creating Links 

To create a hard link, the link function is provided: 

#include <unistd.h> 

 

int link(const char *existing, const char *new); 

The link function creates a new link (directory entry) with the name specified in new to an existing 

file whose name is given in existing. To create hard links, both files must be on the same 

removable file system. Only the super-user may create hard links to directories. Upon successful 

completion, link returns 0; it returns –1 on failure and stores the error indication in the external 

integer errno. 

To create a symbolic link, the symlink function is used: 
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#include <unistd.h> 

 

int symlink(const char *name1, const char *name2); 

The symlink function creates a symbolic link with the name specified in name2 that points to the 

file named in name1. Either name may be an arbitrary path name, they do not have to reside on the 

same file system, and the file named by name1 does not have to exist. If symlink is successful, it 

returns 0. If it fails, it returns –1 and stores the reason for failure in the external integer variable 

errno. 

Renaming Files and Directories 

To change the name of a file or directory, the rename function is provided: 

#include <stdio.h> 

 

int rename(const char *old, const char *new); 

The rename function changes the name of the file or directory whose name is contained in old to 

the name contained in new. If the file named in new already exists, it is deleted first. Files and 

directories may only be renamed within the same file system using this call; to move a file or 

directory between two different file systems, a copy operation must be performed. The rename 
function is implemented such that even if the system crashes in the middle of executing the function, 

at least one copy of the file or directory will always exist. If it succeeds, rename returns 0. If it fails, 

it returns –1 and stores the failure code in the external integer errno. 

Working With Directories 

Up to this point, we have been discussing how to manipulate files and directories from one place in 

the file system, the current working directory. However, it is often necessary for systems programs 

to be able to work with the entire file system hierarchy, traversing up and down directory trees. This 

section describes the tools needed to do this. 

Determining the Current Working Directory 

Each running program has an attribute associated with it called the current working directory. This 

is the path name of the directory in which the program can be said to “be;” when the program 

specifies a relative path name for a file, the name is taken relative to the current working directory. 

For example, if a program's current working directory was /one/two/three and it created a file called 

foo, the full path name to the file would be /one/two/three/foo. 

To allow a program to determine its current working directory, the getcwd function is used: 

#include <unistd.h> 

 

char *getcwd(char *buf, size_t size); 



UNIX Systems Programming for SVR4 

124 FOR PERSONAL, NON-COMMERCIAL USE ONLY  
 

When called, getcwd will determine the absolute path name of the current working directory and 

place it into the character string pointed to by buf, whose size is given by size. If buf is the null 

pointer, getcwd will allocate a string with malloc (see Chapter 2, Utility Routines), copy the path 

name to it, and return a pointer to the allocated string. If buf is not large enough or some other error 

occurs, getcwd returns the predefined constant NULL. 

Porting Notes 

BSD variants provide a slightly different function called getwd instead of getcwd: 

#include <sys/param.h> 

 

char *getwd(char *path); 

The path name of the current directory is placed into path, which should be of length MAXPATHLEN. 

If an error occurs, an error message is placed in path and getwd returns a null pointer, otherwise 

path is returned. 

Changing the Current Working Directory 

Two functions are provided for changing the current working directory: 

#include <unistd.h> 

 

int chdir(const char *path); 

 

int fchdir(int fd); 

The chdir function changes the current working directory to the directory named by path, which 

may be either an absolute or a relative path name. The fchdir function changes the current working 

directory to the directory referred to by the open file descriptor fd. Both functions return 0 on 

success, and –1 on failure, storing the reason for failure in the external integer errno. 

Reading Directories 

Many programs, even simple ones like ls, need to read directories to learn their contents. Very old 

UNIX systems required the programmer to read the directory “manually” a record at a time, but 

most newer versions provide a library of functions to do this: 

#include <dirent.h> 

 

DIR *opendir(const char *path); 

 

struct dirent *readdir(DIR *dp); 

 

long telldir(DIR *dp); 

 

void seekdir(DIR *dp, long pos); 

 

void rewinddir(DIR *dp); 
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int closedir(DIR *dp); 

The opendir function opens the directory named in path for reading, and returns a directory 

stream pointer of type DIR *. If the directory cannot be opened, NULL is returned. The closedir 

function closes the directory stream referred to by dp. 

The readdir function returns the next directory entry from the stream dp. The information is 

returned as a pointer to type struct dirent: 

struct dirent { 

    ino_t           d_ino; 

    off_t           d_off; 

    unsigned short  d_reclen; 

    char           *d_name; 

}; 

The d_ino field of the structure contains the inode number of the entry, d_off contains the offset 

of the record in the directory file, d_reclen contains the length of the directory entry record, and 

d_name contains the name of the entry. When readdir encounters the end of the directory file, it 

returns the constant NULL. 

The telldir function returns the current file offset in the directory file; the seekdir function sets 

the current offset to the value specified by pos. Both telldir and seekdir express the offset in 

bytes from the beginning of the directory file. The rewinddir function sets the current offset to 
zero. 

Example 5-2 shows a program that behaves much like the ls -l command; it reads each directory 

named on the command line and displays one line for each file in the directory. 

Example 5-2: listfiles 

#include <sys/types.h> 

#include <sys/stat.h> 

#include <sys/mkdev.h> 

#include <dirent.h> 

#include <stdio.h> 

 

char     typeOfFile(mode_t); 

char    *permOfFile(mode_t); 

void     outputStatInfo(char *, char *, struct stat *); 

 

int 

main(int argc, char **argv) 

{ 

    DIR *dp; 

    char *dirname; 

    struct stat st; 

    struct dirent *d; 

    char filename[BUFSIZ+1]; 

 

    /* 

     * For each directory on the command line... 
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     */ 

    while (--argc) { 

        dirname = *++argv; 

 

        /* 

         * Open the directory. 

         */ 

        if ((dp = opendir(dirname)) == NULL) { 

            perror(dirname); 

            continue; 

        } 

 

        printf("%s:\n", dirname); 

 

        /* 

         * For each file in the directory... 

         */ 

        while ((d = readdir(dp)) != NULL) { 

            /* 

             * Create the full file name. 

             */ 

            sprintf(filename, "%s/%s", dirname, d->d_name); 

 

            /* 

            * Find out about it. 

            */ 

            if (lstat(filename, &st) < 0) { 

                perror(filename); 

                putchar('\n'); 

                continue; 

            } 

 

            /* 

             * Print out the information. 

             */ 

            outputStatInfo(filename, d->d_name, &st); 

            putchar('\n'); 

        } 

 

        putchar('\n'); 

        closedir(dp); 

    } 

 

    exit(0); 

} 

 

/* 

 * outputStatInfo - print out the contents of the stat structure. 

 */ 

void 

outputStatInfo(char *pathname, char *filename, struct stat *st) 

{ 

    int n; 

    char slink[BUFSIZ+1]; 

 

    /* 

     * Print the number of file system blocks, permission bits, 

     * number of links, user-id, and group-id. 
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     */ 

    printf("%5d ", st->st_blocks); 

    printf("%c%s ", typeOfFile(st->st_mode), permOfFile(st->st_mode)); 

    printf("%3d ", st->st_nlink); 

    printf("%5d/%-5d ", st->st_uid, st->st_gid); 

 

    /* 

     * If the file is not a device, print its size; otherwise 

     * print its major and minor device numbers. 

     */ 

    if (((st->st_mode & S_IFMT) != S_IFCHR) && 

        ((st->st_mode & S_IFMT) != S_IFBLK)) 

        printf("%9d ", st->st_size); 

    else 

        printf("%4d,%4d ", major(st->st_rdev), minor(st->st_rdev)); 

 

    /* 

     * Print the access time.  The ctime() function is 

     * described in Chapter 7, "Time of Day Operations." 

     */ 

    printf("%.12s ", ctime(&st->st_mtime) + 4); 

 

    /* 

     * Print the file name.  If it's a symblic link, also print 

     * what it points to. 

     */ 

    printf("%s", filename); 

 

    if ((st->st_mode & S_IFMT) == S_IFLNK) { 

        if ((n = readlink(pathname, slink, sizeof(slink))) < 0) 

            printf(" -> ???"); 

        else 

            printf(" -> %.*s", n, slink); 

    } 

} 

 

/* 

 * typeOfFile - return the english description of the file type. 

 */ 

char 

typeOfFile(mode_t mode) 

{ 

    switch (mode & S_IFMT) { 

    case S_IFREG: 

        return('-'); 

    case S_IFDIR: 

        return('d'); 

    case S_IFCHR: 

        return('c'); 

    case S_IFBLK: 

        return('b'); 

    case S_IFLNK: 

        return('l'); 

    case S_IFIFO: 

        return('p'); 

    case S_IFSOCK: 

        return('s'); 

    } 
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    return('?'); 

} 

 

/* 

 * permOfFile - return the file permissions in an "ls"-like string. 

 */ 

char * 

permOfFile(mode_t mode) 

{ 

    int i; 

    char *p; 

    static char perms[10]; 

 

    p = perms; 

    strcpy(perms, "---------"); 

 

    /* 

     * The permission bits are three sets of three 

     * bits: user read/write/exec, group read/write/exec, 

     * other read/write/exec.  We deal with each set 

     * of three bits in one pass through the loop. 

     */ 

    for (i=0; i < 3; i++) { 

        if (mode & (S_IREAD >> i*3)) 

            *p = 'r'; 

        p++; 

 

        if (mode & (S_IWRITE >> i*3)) 

            *p = 'w'; 

        p++; 

 

        if (mode & (S_IEXEC >> i*3)) 

            *p = 'x'; 

        p++; 

    } 

 

    /* 

     * Put special codes in for set-user-id, set-group-id, 

     * and the sticky bit.  (This part is incomplete; "ls" 

     * uses some other letters as well for cases such as 

     * set-user-id bit without execute bit, and so forth.) 

     */ 

    if ((mode & S_ISUID) != 0) 

        perms[2] = 's'; 

 

    if ((mode & S_ISGID) != 0) 

        perms[5] = 's'; 

 

    if ((mode & S_ISVTX) != 0) 

        perms[8] = 't'; 

 

    return(perms); 

} 

% lsfiles /home/msw/a 

/home/msw/a: 
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    2 drwxr-sr-x   7     0/1           512 Dec 21 22:20 . 

    2 drwxr-xr-x   3     0/0           512 Dec 21 20:45 .. 

   16 drwx------   2     0/0          8192 Apr 19 16:04 lost+found 

    2 drwxr-sr-x  12    40/1          1024 Mar 12 10:16 davy 

    2 drwxr-sr-x   2    43/1           512 Apr 19 17:57 sean 

    2 drwxr-sr-x   3    42/1           512 Jan 12 19:59 trevor 

    2 drwxr-sr-x   6    41/1           512 Feb 22 13:34 cathy 

Porting Notes 

On BSD systems, the include file for the directory routines is called sys/dir.h instead of dirent.h, 

and the directory structure is of type struct direct instead of type struct dirent. 

BSD systems provide two other functions as part of the directory library that didn't make it into the 

POSIX standard: 

#include <sys/types.h> 

#include <sys/dir.h> 

 

int scandir(char *dirname, struct direct *(*namelist[]), 

        int (*select)(), int (*compare)()); 

 

int alphasort(struct direct *d1, struct direct *d2); 

The scandir function reads the entire contents of the directory dirname into a dynamically 

allocated array of structures pointed to by namelist. For each entry, it calls the user-defined 

select function with the name of the entry; select should return non-zero if the entry is of 

interest, and zero if it is not. The entire namelist will be sorted according to the comparison routine 

compare, which is passed pointers to two directory entries. It should return less than, equal to, or 
greater than zero depending on whether the first argument should be considered less than, equal to, 

or greater than the second argument in the sort. The alphasort function can be used for this 
purpose if alphabetical order is desired. 

There are public domain implementations of the directory library routines for use on very old UNIX 

systems that do not provide them; for portability reasons, these implementations are preferred over 

doing things “the hard way.” 

Chapter Summary 

In this chapter, we learned about how the UNIX file system is structured, the types of objects in the 

file system, and how file permission bits work. We also examined most of the general-purpose 

functions used for working in the file system. With just the tools described in this and the two 

preceding chapters, you can perform a dazzling number of tasks that you may never have thought 

about before. In the next chapter, we will learn about even more things that you can do with files. 
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Chapter 6 
Special-Purpose File Operations 

In previous chapters, we discussed the “regular” file operations: creating, opening, and closing files, 

reading and writing data, removing files, renaming files, setting file permissions, and so forth. We 

also discussed some common operations on file descriptors, such as setting the read/write offset, 

and duplicating a file descriptor. However, there are also a number of less common, yet nevertheless 

important, operations that we can perform when circumstances warrant. These special-purpose file 

operations are the subject of this chapter. 

File Descriptor Attributes 

Each open file descriptor has associated with it several attributes that can be examined and changed. 

We have already discussed one of these attributes, the read/write offset, which is examined and 

changed with the lseek function (or the fseek function, in the case of the Standard I/O Library). 
To examine and change the other file descriptor attributes, two other functions are used: 

#include <unistd.h> 

#include <sys/ioctl.h> 

 

int ioctl(int fd, int cmd, /* arg */ ...); 

 

#include <sys/types.h> 

#include <fcntl.h> 

 

int fcntl(int fd, int cmd, /* arg */ ...); 

The ioctl function was originally intended primarily for performing device control operations 
(e.g., telling a tape drive to rewind the tape). However, as the need for other similar control functions 

arose, more and more duties were added to ioctl until it became used not only for performing 
device control operations, but also for regular file operations, operations on file descriptors, and 

operations on network communications modules. Unfortunately, because it was only designed for 

device control, ioctl was not very well suited for some of the tasks it was being asked to perform. 

Fortunately, the designers of System V UNIX recognized this, and began working to reverse the 

trend of piling everything onto ioctl. They created the fcntl function, and moved all of the 
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operations on regular files and file descriptors out of ioctl's area of responsibility and into the new 
function. However, even the best laid plans don't go as well as they ought to. Because many vendors' 

operating systems were based on Berkeley UNIX, even though most of the vendors adopted fcntl 
(especially once it became a part of the POSIX standard), they still left some functionality under the 

control of ioctl. Thus, most versions of UNIX, and SVR4 is no exception, use both ioctl and 

fcntl to perform operations on files and file descriptors, with some overlap in functionality for 
reasons of backward compatibility. 

The ioctl function performs the request identified by cmd on the open file descriptor referenced 

by fd. The arg parameter is of varying type depending on the value of cmd, but will usually be 

either an integer or a pointer. In SVR4, the legal values for cmd are: 

FIOCLEX Set the close-on-exec flag for the file descriptor. This means that if the calling 

program executes another program with one of the exec system calls (see Chapter 
11, Processes), the file descriptor will automatically be closed before the new 

program is executed. The arg parameter is ignored by this command. 

FIONCLEX Clear the close-on-exec flag (see above) for the file descriptor. The arg parameter 

is ignored by this command. 

FIONBIO Set or clear non-blocking I/O on the file. The arg parameter is given as a pointer 

to an integer; if the integer's value is 1 then non-blocking I/O is enabled, if the 

integer's value is 0 then it is disabled. Non-blocking I/O means that reads and 

writes to the file will return immediately if no data is available to be read, or no 

space (in the operating system buffers or on the disk) is available to store the data. 

If non-blocking I/O is not set, then reads and writes will block, waiting for more 

data or space to become available. This attribute can also be set when the file is 

opened by using the O_NDELAY or O_NONBLOCK options. 

FIOASYNC Set or clear asynchronous I/O on the file. The arg parameter is given as a pointer 

to an integer; if the integer's value is 1 then asynchronous I/O is enabled, if the 

integer's value is 0, then it is disabled. Asynchronous I/O in this context means 

that when data becomes available for reading on the file descriptor, or when data 

can be written, the process will be sent a SIGIO signal (see Chapter 10, Signals) 
notifying it of the change in the descriptor's status. 

FIONREAD Determine the number of characters available to be read. The arg parameter is 

given as a pointer to an integer in which the value is returned. While this is a valid 

way of determining whether there is input to be read, the select and poll 
functions described later in this chapter are more efficient. 

FIOSETOWN Set the process-group identifier (see Chapter 11, Processes) that will subsequently 

receive SIGIO or SIGURG signals for the file descriptor. The arg parameter is a 

pointer to an integer containing the process-group identifier. 

This command is not available in HP-UX 10.x. 
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FIOGETOWN Get the process-group identifier that is receiving SIGIO or SIGURG signals for the 

file descriptor. The arg parameter is a pointer to an integer; after this call the 

integer will contain the process-group identifier. 

This command is not available in HP-UX 10.x. 

There are numerous other commands as well, but their use is less common, and beyond the scope 

of this chapter. 

The ioctl function returns a value greater than or equal to zero, depending on the value of cmd, on 

success. On failure, it returns –1 and stores the reason for failure in the external integer errno. 

The fcntl function performs the request identified by cmd on the open file descriptor referenced 

by fd. The arg parameter is of varying type depending on the value of cmd, but will usually be 

either an integer or a pointer. In SVR4, the legal values for cmd are: 

F_DUPFD Return a new file descriptor with the following characteristics: 

 Lowest numbered available file descriptor greater than or equal to the integer 

value given in arg. 

 Same open file (or pipe) as the original file. 

 Same read/write offset as the original file (that is, both file descriptors share the 

same read/write offset). 

 Same access mode (read, write, read/write) as the original file. 

 Shares any locks associated with the original file descriptor (see below). 

 Same file status flags (see below) as the original file (that is, both file 

descriptors share the same file status flags). 

 The close-on-exec flag associated with the new descriptor is cleared. 

F_GETFD Get the close-on-exec flag associated with the file descriptor fd. If the low-order bit 

of the return value is 0, the file will remain open across an exec, if the low-order 

bit is 1, the file will be closed on exec. 

F_SETFD Set the close-on-exec flag associated with the file descriptor fd to the low-order bit 

of the integer value given in arg, as described above. 

F_GETFL Get the current status flags (see below) for the file descriptor fd. 

F_SETFL Set the current status flags for the file descriptor fd to those contained in arg. Most 

of these flags can also be set when the file is opened with the open function 
described in Chapter 3, Low-Level I/O Routines; see the description there for more 

information on the meaning of each of these flags. The valid status flags are: 

FD_CLOEXEC Set the file descriptor's close-on-exec flag; this can also be set 

with F_SETFD, described above. 
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O_RDONLY Open for reading only (this can only be set by the open 

function, but can be returned by the F_GETFL command). 

O_WRONLY Open for writing only (this can only be set by the open 

function, but can be returned by the F_GETFL command). 

O_RDWR Open for reading and writing (this can only be set by the open 

function, but can be returned by the F_GETFL command). 

O_APPEND Append mode. 

O_NDELAY Non-blocking mode. 

O_NONBLOCK Non-blocking mode. 

O_DSYNC Synchronous write operations (data only). 

O_RSYNC Synchronous read operations. 

O_SYNC Synchronous write operations (data and file attributes). 
 

Both ioctl and fcntl have other uses besides those described in this section; we will encounter 

these functions in several chapters throught the rest of the book. 

Managing Multiple File Descriptors 

Sometimes a single program must be able to manage several file descriptors, acting immediately on 

any input received from them, and yet also performing other computations when no input is 

received. For example, consider a multi-player “Star Trek” game. While none of the players is 

typing, the program must draw the ships, planets, and so forth, and move them about on each player's 

screen. But when a player types a command (e.g., “turn left”), the program must immediately receive 

that input and act on it. 

Doing something like this is difficult with the functions we have learned about so far, primarily 

because the read function blocks until input is available. This means that when the program issues 

a read call, it becomes “stuck” until the player types something—it cannot perform its other duties, 
such as updating the screen. Fortunately, most modern versions of the UNIX operating system 

provide a way to handle this task. 

The select and poll functions provide a mechanism for a program to check on a group of file 
descriptors, and learn when any of those descriptors are ready to provide input, ready to receive 

output, or have an exceptional condition pending on them. The select function is usually provided 

on BSD-based systems; poll is usually provided on System V-based systems. SVR4 provides 

both—select is provided as a library emulation routine, and poll is provided as a system call. 

The select Function 

Although emulated with a library routine in SVR4, select is more frequently used than poll, so 

we will discuss it first. The select function is called as follows: 
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#include <sys/types.h> 

#include <sys/time.h> 

 

int select(int maxfd, fd_set *readfds, fd_set *writefds, 

        fd_set *exceptfds, struct timeval *timeout); 

 

void FD_SET(int fd, fd_set *fdset); 

 

void FD_CLR(int fd, fd_set *fdset); 

 

int FD_ISSET(int fd, fd_set *fdset); 

 

void FD_ZERO(fd_set *fdset); 

NOTE 

In HP-UX 10.0, the ANSI C function prototype is misdeclared as taking parameters of type 

int * instead of type fd_set *. This is a typographical error only; select still uses the 

fd_set type. 

When called, select examines the file descriptor sets pointed to by readfds, writefds, and 

exceptfds to see if any of their file descriptors are ready for reading, ready for writing, or have an 

exceptional condition pending on them. Out-of-band data (see Chapter 14, Networking With 

Sockets) is the only exceptional condition. When select returns, it will replace the file descriptor 
sets with subsets containing those file descriptors that are ready for the requested operation. 

Each file descriptor set is a bit field in which a non-zero bit indicates that the file descriptor of that 

number should be checked. The maxfd parameter indicates the highest-numbered bit that should be 

checked; the file descriptors from 0 to maxfd–1 will be examined in each file descriptor set. (Much 

of the documentation on select calls this parameter nfds, implying that it is the number of file 

descriptors to check. Although this is in some sense accurate, it is also confusing.)  If a particular 

condition is not of interest, any of readfds, writefds, and exceptfds may be given as null 

pointers. 

The FD_ZERO macro is used to clear all the bits in a file descriptor set; this should always be called 

before setting any bits. The FD_SET and FD_CLR macros are used to set and clear individual bits 

corresponding to file descriptors in a file descriptor set. The FD_ISSET macro returns non-zero if 

the bit corresponding to the file descriptor fd is set in the given file descriptor set, and zero 

otherwise. 

If timeout is not a null pointer, it specifies a maximum interval to wait for the requested operations 

to become ready. If timeout is given as a null pointer, then select will block indefinitely (this 

can be used to “just sit there” until something happens). To effect a poll, in which the select call 

just checks all the file descriptors and returns their status, timeout should be a non-null pointer to 

a zero-valued struct timeval structure. (The struct timeval structure is discussed in Chapter 
7, Time of Day Operations.) 

When select returns, it usually returns a number greater than zero, indicating the number of ready 
file descriptors contained in the file descriptor sets. If the timeout expires with none of the file 
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descriptors becoming ready, select returns 0. If an error occurs, select returns –1 and places an 

error code in the external integer errno. 

Example 6-1 shows a program that reads from three terminal devices. Each time something is typed 

on one of the terminals, the program reads it and prints it. If nothing is typed on any of the devices 

within ten seconds, the program prints a reminder to the user. When the string “S-T-O-P” is read 
from one of the terminals, the program exits. 

Example 6-1: select 

#include <sys/types.h> 

#include <sys/time.h> 

#include <fcntl.h> 

#include <stdio.h> 

 

#define NTTYS       3           /* number of ttys to use     */ 

#define TIMEOUT     10          /* number of seconds to wait */ 

 

int     fds[NTTYS];             /* file descriptors          */ 

char    *fileNames[NTTYS];      /* file names                */ 

 

int     openFiles(char **); 

void    readFiles(fd_set *); 

 

int 

main(int argc, char **argv) 

{ 

    fd_set readfds; 

    int i, n, maxfd; 

    struct timeval tv; 

 

    /* 

     * Check that we have the right number of arguments. 

     */ 

    if (argc != (NTTYS+1)) { 

        fprintf(stderr, "You must supply %d tty names.\n", NTTYS); 

        exit(1); 

    } 

 

    /* 

     * Open the files.  The highest numbered file descriptor 

     * (plus one) is returned in maxfd. 

     */ 

    maxfd = openFiles(++argv); 

 

    /* 

     * Forever... 

     */ 

    for (;;) { 

        /* 

         * Zero the bitmask. 

         */ 

        FD_ZERO(&readfds); 

 

        /* 



Special-Purpose File Operations 

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 137 
 

         * Set bits in the bitmask. 

         */ 

        for (i=0; i < NTTYS; i++) 

            FD_SET(fds[i], &readfds); 

 

        /* 

         * Set up the timeout. 

         */ 

        tv.tv_sec = TIMEOUT; 

        tv.tv_usec = 0; 

 

        /* 

         * Wait for some input. 

         */ 

        n = select(maxfd, &readfds, (fd_set *) 0, (fd_set *) 0, &tv); 

 

        /* 

         * See what happened. 

         */ 

        switch (n) { 

        case -1:            /* error           */ 

            perror("select"); 

            exit(1); 

        case 0:             /* timeout         */ 

            printf("\nTimeout expired.  Type something!\n"); 

            break; 

        default:            /* input available */ 

            readFiles(&readfds); 

            break; 

        } 

    } 

} 

 

/* 

 * openFiles - open all the files, return the highest file descriptor. 

 */ 

int 

openFiles(char **files) 

{ 

    int i, maxfd; 

 

    maxfd = 0; 

 

    /* 

     * For each file... 

     */ 

    for (i=0; i < NTTYS; i++) { 

        /* 

         * Open it. 

         */ 

        if ((fds[i] = open(*files, O_RDONLY)) < 0) { 

            perror(*files); 

            exit(1); 

        } 

 

        /* 

         * Make sure it's a tty. 

         */ 
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        if (!isatty(fds[i])) { 

            fprintf(stderr, "All files must be tty devices.\n"); 

            exit(1); 

        } 

 

        /* 

         * Save the name. 

         */ 

        fileNames[i] = *files++; 

 

        /* 

         * Save the highest numbered fd. 

         */ 

        if (fds[i] > maxfd) 

            maxfd = fds[i]; 

    } 

 

    return(maxfd + 1); 

} 

 

/* 

 * readFiles - read input from any files that have some. 

 */ 

void 

readFiles(fd_set *readfds) 

{ 

    int i, n; 

    char buf[BUFSIZ]; 

 

    /* 

     * For each file... 

     */ 

    for (i=0; i < NTTYS; i++) { 

        /* 

         * If it has some input available... 

         */ 

        if (FD_ISSET(fds[i], readfds)) { 

            /* 

             * Read the data. 

             */ 

            n = read(fds[i], buf, sizeof(buf)); 

            buf[n] = '\0'; 

 

            /* 

             * Print it out. 

             */ 

            printf("\nRead %d bytes from %s:\n", n, fileNames[i]); 

            printf("\t%s\n", buf); 

 

            /* 

             * Is it telling us to stop? 

             */ 

            if (strcmp(buf, "S-T-O-P\n") == 0) 

                exit(0); 

        } 

    } 

} 
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% select /dev/pts/3 /dev/pts/4 /dev/pts/5 

Running this program for yourself requires a bit of work to see how it works. It's best if you start up 

a window system such as X11 or OpenWindows, although you can also do it if you have access to 

several hard-wired terminals. To run the example, perform the following steps: 

1. Start up four terminal windows, or log in on four separate terminals. 

2. On each of the first three terminals, type tty. This command will tell you the name of the 

terminal divce file you are using. 

3. Again on each of the first three terminals, type sleep 1000000. This will allow our program to 

read from these terminals without competing for input with the shell process running on each 

terminal. When you are done with the demonstration, you can just interrupt out of this 

command. 

4. On the fourth terminal, type the select command followed by the device names of the other 

three terminals. Note that if you use the Korn shell, select is a special command to the shell, so 

you should use the command./select to invoke the example program. 

5. Now type something on each of the first three terminals, and watch what the program prints on 

the fourth terminal. Then don't type anything on the terminals for ten seconds, and watch the 

program print its timeout message. Finally, type the string “S-T-O-P” on any one of the 

terminals to make the program exit. 

The poll Function 

The poll function is similar to select, except that it uses a structure of type struct pollfd for 

each file descriptor, instead of file descriptor sets. 

#include <stropts.h> 

#include <poll.h> 

 

int poll(struct pollfd *fds, unsigned long nfds, int timeout); 

The fds parameter points to an array of nfds structures of type struct pollfd, one for each file 

descriptor of interest. The structure contains three elements: 

struct pollfd { 

    int   fd; 

    short events; 

    short revents; 

}; 

The fd element contains the file descriptor of interest. If fd is equal to –1, the structure is ignored; 

this allows particular descriptors to be turned “on” and “off” without rearranging the array. The 

events element contains a set of flags describing the events of interest for that file descriptor. The 

revents element will contain a subset of these flags, indicating the events that are actually set on 

that file descriptor. The flags in the events and revents elements are constructed by oring 
together the following values: 
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POLLIN Data other than high priority data may be read without blocking. 

POLLRDNORM Normal data (priority band 0) may be read without blocking. 

POLLRDBAND Data from a non-zero priority band may be read without blocking. 

POLLPRI High priority data may be read without blocking. 

POLLOUT Normal data may be written without blocking. 

POLLWRNORM The same as POLLOUT. 

POLLWRBAND Priority data (non-zero priority band) may be written. This event only examines 

bands that have been written to at least once. 

POLLERR An error has occurred on the device or stream. This flag is only valid in the 

revents element of the structure. 

POLLHUP A hangup has occurred on the stream. This event and POLLOUT are mutally 
exclusive; a stream is never writable once a hangup has occurred. This flag is 

only valid in the revents element of the strcture. 

POLLNVAL The specified fd value is not a valid file descriptor. This flag is only valid in 

the revents element of the structure. 

If none of the defined events have occurred on any of the selected file descriptors when poll is 

called, it waits for at least timeout milliseconds before returning. If the value of timeout is 

INFTIM, then poll will block until one of the selected events occurs. To effect a poll, timeout 

should be specified as zero. 

When poll returns, it normally returns a number greater than zero, indicating the number of file 

descriptors for which the revents element of their struct pollfd structure is non-zero. If the 

timeout expires before any selected events have occurred, poll returns 0. If an error occurs, poll 

returns –1 and places an error code in the external integer errno. When poll returns, the fd and 

events elements of the descriptor array are not modified; this allows the array to be immediately 
re-used without having to reinitialize it. 

Example 6-2 shows another program that reads from three terminal devices. Each time something 

is typed on one of the terminals, the program reads it and prints it. If nothing is typed on any of the 

devices within ten seconds, the program prints a reminder to the user. When the string “S-T-O-P” 
is read from one of the terminals, the program exits. 

Example 6-2: poll 

#include <stropts.h> 

#include <fcntl.h> 

#include <stdio.h> 

#include <poll.h> 

 

#define NTTYS       3           /* number of ttys to use     */ 

#define TIMEOUT     10          /* number of seconds to wait */ 
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int     fds[NTTYS];             /* file descriptors          */ 

char    *fileNames[NTTYS];      /* file names                */ 

 

int     openFiles(char **); 

void    readFiles(struct pollfd *); 

 

int 

main(int argc, char **argv) 

{ 

    int i, n, maxfd; 

    struct pollfd pfds[NTTYS]; 

 

    /* 

     * Check that we have the right number of arguments. 

     */ 

    if (argc != (NTTYS+1)) { 

        fprintf(stderr, "You must supply %d tty names.\n", NTTYS); 

        exit(1); 

    } 

 

    /* 

     * Open the files.  The highest numbered file descriptor 

     * (plus one) is returned in maxfd. 

     */ 

    maxfd = openFiles(++argv); 

 

    /* 

     * We only need to initialize these once. 

     */ 

    for (i=0; i < NTTYS; i++) { 

        pfds[i].fd = fds[i]; 

        pfds[i].events = POLLIN; 

    } 

 

    /* 

     * Forever... 

     */ 

    for (;;) { 

        /* 

         * Wait for some input. 

         */ 

        n = poll(pfds, NTTYS, TIMEOUT * 1000); 

 

        /* 

         * See what happened. 

         */ 

        switch (n) { 

        case -1:            /* error           */ 

            perror("poll"); 

            exit(1); 

        case 0:             /* timeout         */ 

            printf("\nTimeout expired.  Type something!\n"); 

            break; 

        default:            /* input available */ 

            readFiles(pfds); 

            break; 

        } 

    } 
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} 

 

/* 

 * openFiles - open all the files, return the highest file descriptor. 

 */ 

int 

openFiles(char **files) 

{ 

    int i, maxfd; 

 

    maxfd = 0; 

 

    /* 

     * For each file... 

     */ 

    for (i=0; i < NTTYS; i++) { 

        /* 

         * Open it. 

         */ 

        if ((fds[i] = open(*files, O_RDONLY)) < 0) { 

            perror(*files); 

            exit(1); 

        } 

 

        /* 

         * Make sure it's a tty. 

         */ 

        if (!isatty(fds[i])) { 

            fprintf(stderr, "All files must be tty devices.\n"); 

            exit(1); 

        } 

 

        /* 

         * Save the name. 

         */ 

        fileNames[i] = *files++; 

 

        /* 

         * Save the highest numbered fd. 

         */ 

        if (fds[i] > maxfd) 

            maxfd = fds[i]; 

    } 

 

    return(maxfd + 1); 

} 

 

/* 

 * readFiles - read input from any files that have some. 

 */ 

void 

readFiles(struct pollfd *pfds) 

{ 

    int i, n; 

    char buf[BUFSIZ]; 

 

    /* 

     * For each file... 
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     */ 

    for (i=0; i < NTTYS; i++) { 

        /* 

         * If it has some input available... 

         */ 

        if (pfds[i].revents & POLLIN) { 

            /* 

             * Read the data. 

             */ 

            n = read(fds[i], buf, sizeof(buf)); 

            buf[n] = '\0'; 

 

            /* 

             * Print it out. 

             */ 

            printf("\nRead %d bytes from %s:\n", n, fileNames[i]); 

            printf("\t%s\n", buf); 

 

            /* 

             * Is it telling us to stop? 

             */ 

            if (strcmp(buf, "S-T-O-P\n") == 0) 

                exit(0); 

        } 

    } 

} 

% poll /dev/pts/3 /dev/pts/4 /dev/pts/5 

Running this program requires a bit of work; follow the instructions given above for running 
Example 6-1. 

File and Record Locking 

When more than one process is writing the same file, or when one process is writing the file while 

another is reading it, it is usually necessary for the processes to coordinate their actions, or havoc 

may result. Consider, for example, what happens when two processes start at about the same time, 

and both open the same log file for writing. Each process will seek to the end of the file in order to 

append new log messages to the existing file. When the first process writes a log message, its 
read/write offset is advanced. However, the read/write offset of the second process is not advanced, 

and when this process writes a log message, it will overwrite the message written by the first process. 

One way to avoid this particular case is to open the file with the O_APPEND option (see Chapter 3, 
Low-Level I/O Routines), which guarantees that all writes to the file will be appended to the end of 

the file. The kernel takes care of advancing the read/write offset before writing the data if the file 

has grown since the last write. However, this option will not solve other problems that can occur. 

For example, if two processes were to attempt to update a database at the same time, they would 

probably destroy each others' work, and they would certainly leave the database in an unknown 

state. In order to prevent these situations, most modern UNIX systems provide some form of file 

locking. 
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There are two types of file locking: advisory and mandatory. Advisory file locks, which are provided 

by most versions of UNIX, allow cooperating processes to block each other out during critical 

periods (such as when one of the processes is writing the file). In advisory file locking, each process 

is required to check for the existence of a lock on the file before going ahead with its work. If a lock 

is present, the process should wait until the lock is removed, and then set a lock of its own and 

proceed. However, advisory file locking is only useful between processes that agree to follow the 
locking convention. Processes that do not care about file locks can still read or write the file, even 

if another process has a lock set. 

Manadatory file locks are provided by some versions of UNIX, including SVR4. When a mandatory 

lock is present on a file, the kernel will cause any calls to creat, open, read, and write issued by 

processes other than the one with the lock to fail, returning the EAGAIN error. This is more “secure,” 

in the sense that even processes that are not aware that the file must be accessed with a lock cannot 
access the file out of turn. However, manadatory file locks are also dangerous. If a process that holds 

a lock on some critical system file goes into an infinite loop or otherwise fails to remove the lock, it 

can cause the entire system to hang or even crash. For this reason, it is usually advisable to use 

advisory locks whenever possible. Manadatory locks are enabled on a per-file basis by setting the 

set-group-id bit and clearing the group execute bit in the file's permission modes (see Chapter 5, 

Files and Directories). This implies that it is not possible to set a manadatory file lock on a directory 

or an executable program. 

There are two functions used for setting and removing file locks in SVR4. The fcntl function, 

introduced earlier in this chapter, provides the POSIX interface, and the lockf function provides 
the System V interface. The two interfaces are very similar; the principal reason for continuing to 

supply the lockf interface is to provide backward compatibility with earlier operating system 
versions. 

Locking Files With fcntl 

As discussed earlier, the fcntl function is called as follows: 

#include <sys/types.h> 

#include <fcntl.h> 

 

int fcntl(int fd, int cmd, /* arg */ ...); 

The fd argument is a file descriptor referring to the file to be locked, the cmd argument indicates 

the operation to be performed, and the arg parameter is a pointer to a structure of type flock_t 

that describes the type of lock to be created. 

Legal values for the cmd argument that apply to file locking are: 

F_SETLK Set or clear a lock, according to the contents of the flock_t structure pointed to 

by arg (see below). If the lock cannot be created, fcntl immediately returns –1 

and stores the reason for failure in the external integer errno. 

F_SETLKW This command is identical to F_SETLK, except that if the lock cannot be created, 
the process will be blocked until it can be created. This allows a process to request 
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a lock and wait until it can be made, without having to repeatedly test to see if the 

file is unlocked. 

F_GETLK If the type of lock requested by the flock_t structure pointed to by arg can be 

created, then the structure is passed back unchanged, except that the lock type is 

set to F_UNLCK, and the l_whence field is set to SEEK_SET. 

If the lock cannot be created, then the structure is overwritten with a description 

of the first lock that is preventing its creation. The structure will also contain the 

process-id and system-id of the process holding the lock. 

This command never creates a lock; it only tests whether or not a particular lock 

could be created. 

Two different types of locks can be created with fcntl. A read lock prevents any process from 
write locking the protected area. More than one read lock may exist for a given segment of a file at 

any given time. The file descriptor on which the read lock is being placed must have been opened 

with read access. A write lock prevents any process from read locking or write locking the protected 

area. Only one write lock and no read locks may exist for a given segment of a file at any given 
time. The file descriptor on which the write lock is being placed must have been opened with write 

access. 

The lock itself is described by a structure of type flock_t, which is declared in the include file 
fcntl.h, and which contains at least the following members: 

typedef struct flock { 

    short    l_type; 

    short    l_whence; 

    off_t    l_start; 

    off_t    l_len; 

    long     l_sysid; 

    pid_t    l_pid; 

} flock_t; 

The l_type field of the structure specifies the type of lock, and may be equal to one of the 

following: 

F_RDLCK Establish a read lock. 

F_WRLCK Establish a write lock. 

F_UNLCK Remove a previously established lock. 

The l_start field specifies the offset of the beginning of the region to be locked, and the l_len 

field specifies the length of the region to be locked. The l_whence field specifies the point in the 

file from which the starting offset is referenced, and may take on the same values as the third 

argument to the lseek function: 

SEEK_SET The starting offset is relative to the beginning of the file. 

SEEK_CUR The starting offset is relative to the current position in the file. 
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SEEK_END The starting offset is relative to the end of the file. 

Locks may start and extend beyond the end of a file, but they may not be negative relative to the 

beginning of the file. A lock may be set to extend to the end of the file by setting l_len to zero; if 

such a lock also has l_whence and l_start set to zero, the whole file will be locked. 

Unlocking a segment in the middle of a larger locked segment leaves two locked segments, one at 

each end. Locking a segment that is already locked by the same process results in removing the old 

lock and installing the new one. 

Locks are removed from a file when the process removes them using F_UNLCK, when the process 
closes the file descriptor, or when the process terminates. Locks are not inherited by child processes. 

Locking Files With lockf 

The lockf function provides similar functionality to the file locking portion of fcntl, but is called 
differently: 

#include <unistd.h> 

 

int lockf(int fd, int function, long size); 

The fd argument is a file descriptor referencing the file to be locked; it must have been opened with 

either O_WRONLY or O_RDWR access permissions. 

The function argument indicates the function to be performed: 

F_ULOCK Unlock a previously locked section. 

F_LOCK Establish a lock on a section. If the section is already locked, the process will block 
until the lock can be established. 

F_TLOCK Test a section to see if it can be locked. If it can, establish the lock. If the section is 

already locked, this command will cause lockf to return –1 and store the reason for 

failure in errno. 

F_TEST Test a section to see if it can be locked. If it can, lockf returns 0; otherwise it returns 

–1 and stores the reason for the error in errno. 

The size argument indicates the number of contiguous bytes to be locked or unlocked. The region 

extends forward from the current read/write offset for a positive value of size, and backward from 

the current read/write offset for a negative value of size. If size is zero, the region from the current 

read/write offset through the current or any future end of the file is indicated. An area does need to 

exist in the file to be locked; locks may extend past the end of the file. 

It is possible for a lock to be established on a section that overlaps with a previously locked section, 

although this results in the sections being combined so that a single, larger section is now locked 

(locks are a finite resource; this practice conserves them). If a section to be unlocked is part of a 

larger locked section, this will result in two locked sections, one on either end of the unlocked area. 
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All locks held on a file by a process will be released when the process closes the file, or when the 

process terminates. Locks created by lockf are not inherited by children of the process creating the 
lock. 

Porting Notes 

BSD UNIX and vendor versions based on it offer another interface, called flock: 

#include <sys/file.h> 

 

int flock(int fd, int operation); 

This function allows advisory locks to be created on the file referenced by the file descriptor fd. 

Only entire files may be locked; there is no facility to lock only a portion of a file. The operation 

argument indicates the function to be performed: 

LOCK_SH Establish a shared lock on the file; more than one process may have a shared lock 

on the same file at the same time. This is analogous to a read lock as used with 

fcntl and lockf. 

LOCK_EX Establish an exclusive lock on the file; only one exclusive lock may be placed on 

the file at a time, and no shared locks on the file may exist while the exclusive lock 

is in place. This is analogous to a write lock as used with fcntl and lockf. 

LOCK_UN Remove a previously-established lock from the file. 

LOCK_NB This can be ored with LOCK_SH or LOCK_EX to make the operation non-blocking; 

otherwise these operations will block until the lock can be created. 

The flock function returns 0 on success; on failure it returns –1 and places the reason for failure in 

the external integer errno. 

Memory-Mapped Files 

The concept of memory-mapped files was first introduced in UNIX by Berkeley in 4.2BSD 

(although Berkeley did not actually implement the concept until 4.4BSD). It has since been adopted 

by most vendor versions of the operating system, including SVR4. A memory-mapped file is 

basically what its name implies: a file (or portion of a file) that has been mapped into a process' 
address space. 

Once a file has been mapped into memory, a process may access the contents of that file using 

address space manipulations (i.e. variables, pointers, array subscripts, etc.) instead of the read/write 

interface. The operating system takes care of transferring the file into memory (and, if the memory 

is modified, transferring it back to the file) through the virtual memory subsystem. In other words, 

as the process accesses the file, the operating system pages the file into and out of memory. This is 

usually (but not always) more efficient than reading the entire file into memory directly, especially 

when only small portions of the file's contents will actually be used. 
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One of the most important uses for memory-mapped files is in the implementation of dynamically-

loadable shared libraries. In the old days, when a program was linked, all the executable code for 

the library routines it called (the code for the routines described in this book) was copied into the 

executable file. This consumed a lot of disk space, and also took up a lot of memory, since there 

might be multiple copies of a routine (e.g., printf) in memory at any given time. The introduction 
of dynamically-loaded, shared libraries has solved both of these problems. Because the library is 

dynamically loaded, it does not have to be compiled into each program. Rather, when the program 

is executed, the system loads the library into memory and allows the program to transfer control to 

this area of memory. This conserves disk space by having only one copy of each library routine on 
the disk. Because the library is shared, each program that uses the library is using the same copy. 

Thus, there is only one copy of printf in memory at a time, and all programs that need it use the 

same copy. 

Dynamically-loadable shared libraries are implemented with memory-mapped files. When a 

program is linked, a “jump table” is created that contains an entry for each library routine. When 

the program is executed, the operating system maps the library into memory, and then edits the jump 

table to fill in the address of each function. As the program calls library functions, the operating 

system pages those parts of the library into memory and lets the program use them. If part of the 

library is never used (e.g., the part taken up by some obscure function), it is never loaded into 

memory. 

Memory-mapped files are useful for other purposes, too. For example, a program that retrieves data 

from a very large database might use some type of index into the database. It searches for an item 

in the index, and when it finds the item, uses information stored in the index entry to retrieve the 

data. Indexes for large databases are usually very large themselves. If the program must retrieve 
only one or two items from the database, it is unlikely that it will need to examine each and every 

entry in the index (depending on its search algorithm). Thus, it would be a waste of both time and 

memory to read the entire index into memory. Instead, the program can map the index into memory, 

access it as if it were an array (or whatever), and the operating system will only bring in those parts 

of the index the program actually needs. This both makes the program run faster and places less load 

on the system. 

Mapping a File Into Memory 

A file is mapped into memory with the mmap function: 

#include <sys/types.h> 

#include <sys/mman.h> 

 

caddr_t mmap(caddr_t addr, size_t len, int prot, int flags, 

        int fd, off_t offset); 

This function maps len bytes of the file referenced by fd, beginning at offset, into the process' 

address space. It returns a memory address that points to the start of the mapped segment on success, 

or (caddr_t) –1 on failure. If the call fails, errno will contain the reason for failure. 
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The mapped segment may extend past the end of the file, but any reference to addresses beyond the 

current end of the file will result in the delivery of a SIGBUS signal (see Chapter 10, Signals). This 

means that mmap cannot be used to implicitly extend the length of a file. 

NOTE 

Mappings established for fd are not removed when the file descriptor is closed. The 

munmap function (see below) must be called to remove a mapping. 

The prot parameter specifies the ways in which the mapped pages may be accessed. These values 

are ored together to produce the desired result: 

PROT_READ The page may be read (i.e., the contents of the page may be examined). 

PROT_WRITE The page may be written (i.e., the contents of the page may be changed). 

PROT_EXEC The page may be executed (i.e., the contents of the page may be executed as 

program code). 

PROT_NONE The page may not be accessed. 

Most implementations of mmap do not actually support all combinations of the above values; they 

usually map some of the simpler modes into more complex ones (e.g, PROT_WRITE is usually 

implemented as PROT_READ|PROT_WRITE). However, no implementation will allow a page to be 

written unless PROT_WRITE was specified. 

The flags parameter provides additional information about how the mapped pages should be 

treated: 

MAP_SHARED When changes are made to the mapped object, these changes will be shared 

among other processes that also have the object mapped. 

MAP_PRIVATE When changes are made to the mapped object, these changes will cause the 

system to create a private copy of the affected pages, making the changes 
in the copy. Other processes that have the object mapped will not be able 

to see the changes. 

MAP_FIXED Informs the system that the file is to be mapped into memory exactly at 

address addr (see below); the use of this flag is discouraged because it 

may prevent the system from making the most efficient use of system 

resources. 

MAP_NORESERVE Normally, when MAP_PRIVATE mappings are created, the system reserves 
swap space equivalent to the size of the mapping. This space is used to 

store the private copies of any modified pages. When this flag is specified, 

the system will not preallocate space for the modified pages. This means 

that if swap space for a newly modified page is unavailable, the process 

will receive a SIGBUS signal when it tries to modify that page. 

This flag is not available in HP-UX 10.x. 



UNIX Systems Programming for SVR4 

150 FOR PERSONAL, NON-COMMERCIAL USE ONLY  
 

The addr parameter specifies the suggested address at which the object is to be mapped. If addr is 

given as zero, the system is granted complete freedom to map the object wherever it wants for best 

efficiency. If addr is non-zero but MAP_FIXED is not specified, it is taken as a suggestion of an 

address near where the memory should be mapped. And, if addr is non-zero and MAP_FIXED is 

specified, it is taken as the exact address at which to map the object. 

Removing a Mapping 

A memory mapping is removed with the munmap function: 

#include <sys/types.h> 

#include <sys/mman.h> 

 

int munmap(caddr_t addr, size_t len); 

The mapping for the pages in the range addr to addr+len are removed. Further references to these 

pages will result in the delivery of a SIGSEGV signal to the process (see Chapter 10, Signals). If the 

unmapping is successful, munmap returns 0; otherwise it returns –1 and places the reason for failure 

in the external integer errno. 

Example 6-3 shows a program that uses mmap to read files and print them on the standard output 
(much like the cat command). 

Example 6-3: catmap 

#include <sys/types.h> 

#include <sys/stat.h> 

#include <sys/mman.h> 

#include <stdlib.h> 

#include <fcntl.h> 

#include <stdio.h> 

 

int 

main(int argc, char **argv) 

{ 

    int fd; 

    struct stat st; 

    caddr_t base, ptr; 

 

    /* 

     * For each file specified... 

     */ 

    while (--argc) { 

        /* 

         * Open the file. 

         */ 

        if ((fd = open(*++argv, O_RDONLY, 0)) < 0) { 

            perror(*argv); 

            continue; 

        } 

 

        /* 
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         * Find out how big the file is. 

         */ 

        fstat(fd, &st); 

 

        /* 

         * Map the entire file into memory. 

         */ 

        base = mmap(0, st.st_size, PROT_READ, MAP_SHARED, fd, 0); 

 

        if (base == MAP_FAILED) { 

            perror(*argv); 

            close(fd); 

            continue; 

        } 

 

        /* 

         * We can close the file now; we can access it 

         * through memory. 

         */ 

        close(fd); 

 

        /* 

         * Now print the file. 

         */ 

        for (ptr = base; ptr < &base[st.st_size]; ptr++) 

            putchar(*ptr); 

 

        /* 

         * Now unmap the file. 

         */ 

        munmap(base, st.st_size); 

    } 

 

    exit(0); 

} 

% catmap /etc/motd 

Sun Microsystems Inc.   SunOS 5.3       Generic September 1993 

Changing the Protection Mode of Mapped Segments 

The mprotect function allows a process to change the protection modes of a previously mapped 
segment: 

#include <sys/types.h> 

#include <sys/mman.h> 

 

int mprotect(caddr_t addr, size_t len, int prot); 

The addr and len parameters specify the starting address and length of the segment whose 

permissions are to be changed. The prot parameter specifies the new protection mode to be set on 

the segment using the PROT_READ, PROT_WRITE, PROT_EXEC, and PROT_NONE flags as described 

earlier. Upon successful completion, mprotect returns 0; otherwise it returns –1 and stores the 

reason for failure in errno. 



UNIX Systems Programming for SVR4 

152 FOR PERSONAL, NON-COMMERCIAL USE ONLY  
 

Providing Advice to the System 

Once a file is mapped into memory, the operating system's virtual memory subsystem is responsible 

for paging that file into memory. In order to make the mapping more efficient and consume fewer 

system resources, the madvise function allows a process to give “hints” to the system about how 
best to page the object into memory: 

#include <sys/types.h> 

#include <sys/mman.h> 

 

int madvise(caddr_t addr, size_t len, int advice); 

The addr and len parameters specify the starting address and length of the segment to which the 

advice applies. The advice parameter may contain one of the following: 

MADV_NORMAL The default mode. The kernel reads all the data from the object (or at 

least reads a “reasonable” amount) into pages which are used as a cache. 
System pages are a limited resource, and the kernel will steal pages from 

other mappings if necessary. This can adversely affect system 

performance when large amounts of memory are accessed, but in general 

is not a problem. 

MADV_RANDOM The process will be “jumping around” in the object, and may access a 

tiny bit here and then a tiny bit there. This tells the kernel to read in a 

minimum amount of data from the mapped object on any particular 

access, rather than reading larger amounts in anticipation of other 

accesses within the same locality. 

MADV_SEQUENTIAL The program is planning to access the object in order from lowest address 

to highest, and each address is likely to be only accessed once. The kernel 

will free the resources from the mapping as quickly as possible. This 
option could be used in the catmap program to increase performance. 

MADV_WILLNEED Tells the system that a specific address range will definitely be needed, 

so that it can start reading the specified range into memory. This can 

benefit programs that need to minimize the time needed to access 

memory the first time. 

MADV_DONTNEED Tells the kernel that a specific address range is no longer needed, so that 

it can begin freeing the resources associated with that part of the 

mapping. 

With the exception of MADV_DONTNEED, the above constants are not supported in IRIX 5.x. 

Synchronizing Memory With Physical Storage 

When an object is mapped, the system maintains both an image of the object in memory, and a copy 

of the image in backing storage. The backing storage copy is maintained so that the system can 

allow other processes to use the physical memory when it is their turn to run. The backing storage 

for a MAP_SHARED mapping is the file the mapping is attached to; the backing storage for a 
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MAP_PRIVATE mapping is its swap area. The msync function is used to tell the system to 
synchronize the in-memory copy of the mapping with its backing storage (the system does this 

periodically on its own, but some programs may need to have the object in a known state): 

#include <sys/types.h> 

#include <sys/mman.h> 

 

int msync(caddr_t addr, size_t len, int flags); 

The addr and len parameters specify the starting address and length of the segment to be 

synchronized. The flags parameter consists of one or more of the following values ored together: 

MS_ASYNC This causes all writes to be scheduled, after which msync will return. The 

writes will be completed a “short time” afterward. 

MS_SYNC All write operations will be performed before msync returns. This 

guarantees that the data is on disk before the process proceeds, but it also 
causes the process to wait for a longer period of time. 

MS_INVALIDATE Invalidates any cached copies of the segment in memory, so that any 

subsequent references to the pages will cause the system to bring them in 

from their backing storage locations. 

If msync succeeds, it returns 0. Otherwise, it returns –1 and places the error indication in errno. 

The /dev/fd File System 

The /dev/fd file system allows each process to access its open file descriptors as names in the file 

system. If file descriptor n is open, the following two calls have the same effect: 

fd = open("/dev/fd/n", mode); 

 

fd = dup(n); 

One of the most common uses for the /dev/fd file system is to “trick” programs that insist on reading 

from or writing to a file to read from the standard input or write to the standard output. For example, 

consider the following program: 

#include <stdio.h> 

#include <ctype.h> 

 

int 

main(int argc, char **argv) 

{ 

    int c; 

    FILE *fp; 

 

    if ((fp = fopen(*++argv, "r")) == NULL) { 

        perror(*argv); 

        exit(1); 
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    } 

 

    while ((c = getc(fp)) != EOF) { 

        if (islower(c)) 

            c = toupper(c); 

        putc(c, stdout); 

    } 

 

    fclose(fp); 

    exit(0); 

} 

This program opens the file named on its command line, reads the file, and prints it out in uppercase. 

Unfortunately, since this program insists on reading from a file, it cannot be used as part of a pipeline 

to convert the output from another command to uppercase. 

The /dev/fd file system remedies this by allowing the program's standard input to be specified as a 

file name. To use the above program in a pipeline then, we can do this: 

% somecommand | toupper /dev/fd/0 

The /dev/fd file system was originally developed in Research UNIX. Shortly thereafter, public-

domain implementations for BSD UNIX appeared, and it eventually appeared in SVR3. From there, 

it also became a part of SVR4. It is gradually appearing in other vendors' releases as well. 

The /dev/fd file system is not available in HP-UX 10.x. 

Miscellaneous Functions 

There are several other special-purpose functions that are occasionally useful as well. Some of these 

are described in this section. 

Controlling File Creation Modes 

When a file is created, its permission bits are specified in the call to creat or open. As indicated 
in Chapter 3, Low-Level I/O Routines, these bits are modified by the process' umask value. Quite 

simply, the umask value is a set of permission bits to turn back off in any file creation mode. When 

a file is created, the permission bits specified in the call to creat or open are anded with the 

complement of the umask value to determine the actual bits that will be set: 

actual_mode = create_mode & ~umask; 

Convention dictates that whenever a file is created with creat or open, the permission bits should 

be specified as 0666 (read/write for owner, group, and world). Each user can then use the umask 
value to control the actual permissions the file will be created with. For example, if a file is created 

with mode 0666 and the user's umask is 022, we get: 

actual_mode = create_mode & ~umask; 

actual_mode = 0666 & ~022; 
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actual_mode = 0666 & 0755; 

actual_mode = 0644; 

Thus, the file will be created readable and writable by the user, and readable by everyone else. If 

the user's umask is 077 instead, we get: 

actual_mode = create_mode & ~umask; 

actual_mode = 0666 & ~077; 

actual_mode = 0666 & 0700; 

actual_mode = 0600; 

The file will be created readable and writable by the user, and nobody else will be able to access it. 

A process' umask value is set with the umask function: 

#include <sys/types.h> 

#include <sys/stat.h> 

 

mode_t umask(mode_t cmask); 

The new value is specified by the cmask parameter; the old value is returned. The umask is inherited 

by child processes, so all of the shells provide a built-in umask command to set the umask value of 
the shell (and therefore of all processes started by the shell). 

The Root Directory 

UNIX allows a process to change its notion of where the root of the file system is, i.e., from where 

in the file system absolute pathnames begin. By default, each process uses / (the real root of the file 

system) as its root. However, in some instances, it is desirable to restrict a process to a specific area 

in the file system. 

To take one example, many sites allow users from all over the world to connect to their hosts via 

the File Transfer Protocol (FTP) and log in as “anonymous” for the purpose of downloading files. 

However, these sites obviously don't want to give the entire world access to every file on the system; 

rather, these users should only be allowed to access files in a specific area. Even when one of these 

users specifies an absolute path name (one that begins with a ‘/’), that path name should be taken 
relative to this specific area. 

To implement this, the chroot function is used: 

#include <unistd.h> 

 

int chroot(const char *path); 

 

int fchroot(int fd); 

The chroot function changes the calling process' root directory to the directory named in path. 

The fchroot function changes the calling process' root directory to the directory referenced by the 

file descriptor fd. Once this call has succeeded, all absolute path names will be taken relative to this 

directory. Note that on systems that do not offer fchroot (most of them), there is no way to undo 
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this call—since there is no way to reference a directory outside of the one named in path, there is 

no way to go back up. With fchroot however, the higher-level directory can be opened prior to 

calling chroot, and then can be used later to reset the root directory. Use of these two functions is 
restricted to the super-user. 

Synchronizing a File With the Disk 

When a process issues a write, the operating system transfers that data to a disk buffer and returns 

control to the process. At some later time (withing a few milliseconds), the data is actually written 

to disk. This makes the system run much more efficiently, by allowing processes to run without 

having to stop and wait on (relatively) slow devices, and also by allowing the system to optimize 
device accesses. However, there are times when a program needs to know that the data on the disk 

is an accurate representation of what has been written; it can't wait those extra few milliseconds. 

To do this, the program uses the fsync function: 

#include <unistd.h> 

 

int fsync(int fd); 

This function moves all modified data and attributes of the file referenced by the file descriptor fd 

to a storage device. When fsync returns, the calling process can be certain that all disk buffers 
associated with the file have been written to the physical storage medium. 

NOTE 

The fsync function is not simply an alternative form of the sync function. A call to sync 
causes all modified disk buffers (for all files, not just those belonging to the calling process) 

to be scheduled for writing to disk. However, the call returns as soon as scheduling is 

complete; it does not wait for all the writes to be performed. The fsync function, on the 

other hand, will cause the calling process to block until the disk buffers associated with fd 

have actually been written to the disk (or other device). 

Chapter Summary 

Although the title of this chapter might indicate that the functions just discussed are not used very 

often, this is only partially true. In particular, the select and poll functions are used frequently 

in programs that must manage multiple data streams; many network-based programs fall into this 

category. The fcntl function is also used fairly often, although only some of its options are used 
routinely. And finally, file and record locking is used with some regularity. 
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Chapter 7 
Time of Day Operations 

The UNIX operating system keeps track of the current date and time by maintaining the number of 

seconds that have elapsed since Thursday, January 1, 1970 00:00:00 UTC (Coordinated Universal 

Time, also called Greenwich Mean Time or Zulu Time). This number is stored in a signed long 

integer, which means that, assuming a 32-bit system, UNIX timekeeping will break on Tuesday, 

January 19, 2038 at 03:14:08 UTC when the value overflows and becomes negative. 

There are a number of systems programming applications that need to know how to convert the 
UNIX time format to something that can be understood by humans. We encountered one of these 

applications in Chapter 5, when we wanted to print out file access and modification times. In this 

chapter, we will examine the functions that are provided to convert between UNIX time format and 

human-readable date and time strings. 

The Complexities of Time 

Converting a quantity such as the number of seconds since some epoch time into a date and time 

string usable by humans is an extraordinarily difficult problem. If everyone used Coordinated 
Universal Time, it would be fairly simple. Divide the number of seconds since the epoch by 86,400 

(the number of seconds in a day), and you have the number of days since the epoch, and a remainder. 

Divide the remainder by 3,600 (the number of seconds in an hour) and you have the current hour. 

Divide the remainder of that by 60 and you have the current minute, and the remainder gives the 

current second. Divide the number of days by 365 and you have the current year (but don't forget 

leap years), and the remainder gives the current month and day, which can be separated just as 

easily. 

Unfortunately, everyone doesn't use Coordinated Universal Time. Coordinated Universal Time is 

the time of day at the Prime Meridian, which passes through Greenwich, England (hence the name 

Greenwich Mean Time). Local time in other parts of the world is determined by taking an offset, 

either positive or negative, from Greenwich Mean Time. If the location is east of Greenwich, the 
offset is negative (meaning local time is earlier than UTC); if the location is west of Greenwich, the 

offset is positive (meaning local time is later than UTC). For example, local time in New York City 

is five hours earlier than UTC. So when it's 8:00am in New York, it's already 1:00pm in Greenwich. 
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Each of these offsets is called a timezone. The purpose of timezones is to allow human beings to 

shift the clock such that it agrees with local day and night. For example, local noon should be the 

time at which the sun is at its highest point in the sky. But when it's local noon at Greenwich, 

England, it's still dark in Los Angeles, California. So Los Angeles shifts its local time by eight hours 

from UTC. In most parts of the world, the local timezone is offset by a whole number of hours from 

UTC. However, in some parts of the world, the local timezone is offset by some number of half 
hours from UTC; for example, in Adelaide, Australia, local time is 10.5 hours ahead of UTC. 

To complicate things even further, humans have invented another artificial time adjustment called 

Daylight Savings Time (DST). This adjustment shifts clocks forward by (usually) one hour in the 

spring, and shifts them back again in the fall. The purpose of this shift is to seemingly make daylight 

last longer each day during the summer, so that farmers and other people who have to work outdoors 

can get more done. (Of course, the number of daylight hours doesn't actually change, DST just 

makes it seem like the days are longer by moving “bedtime” ahead one hour.) 

In order to write a function that converts UNIX time format to a date and time string representing 

local time then, we have to keep track of a number of different things. First, we have to know what 

timezone we are in, and how that timezone is offset from UTC. This means that the conversion is 

different depending on whether we're in New York City, Los Angeles, or Moscow. Furthermore, 

we have to know the rules for Daylight Savings Time in this time zone; this is even more 
complicated. DST is determined differently in different parts of the world; some areas observe it, 

and some don't. Consider the United States' rules for DST observance. Prior to 1967, observance of 

DST was by local option except during World War I and II, when it was mandatory. Since 1967, 

DST has been observed by nearly the entire country. But even this has exceptions; the state of 

Indiana, with the exception of the northwest and southeast corners, does not observe DST. To further 

complicate matters, prior to 1987, DST began on the last Sunday in April; since 1987 it has begun 

on the first Sunday in April. DST ends on the last Sunday in October. This seems fairly straight 

forward. But in 1974 and 1975, because of the energy crisis, DST began on January 6 and February 

23, respectively. And in 1989, the U.S. House of Representatives passed a bill that would make DST 

in the Pacific timezone end on the first Sunday after November 7th in presidential election years, 

and on the last Sunday in October otherwise (this bill was never signed into law). 

Fortunately, this whole mess is taken care of for you by the UNIX library routines that manipulate 

time and date strings. However, we wanted to provide you with some idea of the complexity 

involved in making these conversions. Many older versions of UNIX had numerous problems with 

timezones. Some would only handle timezones that were whole hour offsets from UTC, some could 

not reliably convert between an offset and a timezone name, and so forth. More will be said about 

this below in the section on porting notes, but it's important to be aware that the routines described 

in the following sections, while they handle all time zone conversions known at the time they were 

released, may not handle conversions properly in the future. This is particularly true of the Daylight 

Savings Time corrections, which are subject to the whims of our lawmakers. 

Obtaining the Current Time 

To obtain the current time of day in UNIX time format, all versions of UNIX provide the same 

function: 
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#include <sys/types.h> 

#include <time.h> 

 

time_t time(time_t *tloc); 

The time function returns the number of seconds since January 1, 1970 00:00:00 UTC. If tloc is 

non-null, time also stores this value in the memory location pointed to by tloc. 

Porting Notes 

In 4.2 BSD, another function was introduced to obtain the current time: 

#include <sys/time.h> 

 

int gettimeofday(struct timeval *tp, struct timezone *tz); 

The gettimeofday function places the current time into the structure pointed to by tp, and the 

local timezone information into the structure pointed to by tz. The structures are defined in the 

include file sys/time.h: 

struct timeval { 

    long    tv_sec; 

    long    tv_usec; 

}; 

 

struct timezone { 

    int     tz_minuteswest; 

    int     tz_dsttime; 

}; 

The tv_sec and tv_usec elements store the time in seconds and microseconds since January 1, 

1970. The tz_minuteswest element stores the offset (positive or negative) from UTC in minutes, 

and the tz_dsttime element contains a flag indicating the type of DST correction (if any) to be 

applied. 

IRIX 5.x and versions of Solaris prior to Solaris 2.5 provide a single-argument version of 

gettimeofday for backward compatibility; the struct timezone argument is ignored. HP-UX 

10.x and versions of Solaris beginning with Solaris 2.5 provide a two-argument version. 

Obtaining the Local Timezone 

Timezone determination has varied with almost every version of UNIX, owing mostly to the 

continual need to handle more and more special cases. In SVR4, the local time zone is stored in the 

TZ environment variable, which contains a string such as “US/Eastern” or “Australia/West.”  In C 

programs, the program should first call the function tzset: 

#include <time.h> 

 

void tzset(void); 
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After calling tzset, four external variables are available for use: 

extern time_t timezone, altzone; 

extern char *tzname[2]; 

extern int daylight; 

The timezone variable contains the difference, in seconds, between UTC and local standard time; 

the altzone variable contains the difference, in seconds, between UTC and the alternate timezone 

(DST). The daylight variable is non-zero if Daylight Savings Time is in effect, zero otherwise. 

The tzname array contains the names (abbreviations) of the timezones for local standard time and 

Daylight Savings Time; for example, in New York City tzname[0] would contain “EST” and 

tzname[1] would contain “EDT.”  Prior to calling tzset, these four variables contain values that 
describe Coordinated Universal Time. 

HP-UX 10.x does not provide the altzone variable. 

Porting Notes 

In SVR2, the TZ environment variable had to contain a three letter timezone name, followed by a 
number indicating the difference between local time and UTC in hours, followed by an optional 

three letter name for a daylight time zone. When DST was in effect, the standard United States rules 

were applied. This means that SVR2 could not handle time zones that were half-hour offsets from 

UTC, or daylight time rules that differed from the United States'. Otherwise however, the interface 

is the same as that described above. 

SunOS 4.x provides the same interface as that described above, except that it also allows the 

timezone name to be obtained from the struct tm structure (described below). SunOS 4.x is the 
only operating system that allows the timezone name to be obtained in this manner. 

BSD UNIX and Version 7 offered two other functions for working with timezones: 

#include <sys/types.h> 

#include <sys/timeb.h> 

 

int ftime(struct timeb *tp); 

 

char *timezone(int zone, int dst); 

The ftime function placed the current time and timezone information into the structure of type 

struct timeb pointed to by tp and defined in sys/timeb.h: 

struct timeb { 

    time_t         time; 

    unsigned short millitim; 

    short          timezone; 

    short          dstflag; 

}; 

The time element contains the time in UNIX time format, the millitim element contains up to 

1,000 milliseconds of more precise information, the timezone element contains the local timezone 
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measured in minutes west of Greenwich, and the dstflag element is non-zero when Daylight 
Savings Time is in effect. 

The timezone function returns the name associated with the timezone that is zone minutes west 

of Greenwich; if dst is zero the standard timezone name is used, otherwise the daylight timezone 

name is used. This function has serious problems with returning the correct timezone name 

anywhere in the world, because there are multiple names for each zone depending on location. 

Converting Between UNIX Time and Human Time 

There are four functions provided to convert between UNIX time and human time: 

#include <time.h> 

 

struct tm *gmtime(const time_t *clock); 

 

struct tm *localtime(const time_t *clock); 

 

time_t mktime(struct tm *tp); 

 

double difftime(time_t t1, time_t t0); 

The gmtime function returns a structure of type struct tm that contains the broken out 

components of the date and time represented by the value of the variable pointed to by clock, which 

should contain a value such as that returned by the time function. The time represented in the 

struct tm function will be in Coordinated Universal Time. The localtime function makes the 

same conversion, but if the program has called the tzset function first, the resulting time will be 

corrected for the local timezone and daylight time. The struct tm structure is defined in the 
include file time.h: 

struct tm { 

    int    tm_sec; 

    int    tm_min; 

    int    tm_hour; 

    int    tm_mday; 

    int    tm_mon; 

    int    tm_year; 

    int    tm_wday; 

    int    tm_yday; 

    int    tm_isdst; 

}; 

The tm_sec element contains the seconds after the minute (0-61; the 61 is for leap seconds), the 

tm_min element contains the minutes after the hour (0-59), the tm_hour element contains the hours 

since midnight (0-23), the tm_mday element contains the day of the month (1-31), the tm_mon 

element contains the month (0-11, 0=January), the tm_year contains the year since 1900, the 

tm_wday element contains the day of the week (0-6, 0=Sunday), the tm_yday element contains the 
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day of the year (0-365, 0=January 1st), and the tm_isdst element is non-zero if daylight time is in 
effect. 

The mktime function performs the opposite conversion; taking a struct tm structure as input and 

returning the number of seconds since January 1, 1970 00:00:00 UTC. The mktime function also 
normalizes the time in the structure, so that the values do not have to be within the limits described 

above. For example, a tm_hour value of –1 indicates one hour before midnight. The conversions 

performed by mktime are corrected for the local time zone and daylight time; in general you'll want 

to set the tm_isdst field to –1 to avoid surprises. 

The difftime function computes the difference between two time values, t1 and t0, and returns 

the result as a double precision value. This function is required by the ANSI C standard, since there 

are no arithmetic operations defined on the time_t data type (not all systems use a long for 

time_t). 

One useful thing that gmtime (which should really be called utctime, but history prevails) can be 
used for is printing out the difference between two times in human-readable format. For example, 

if we have two times, a login time and a logout time, we can compute the duration of the login 

session as follows: 

#include <time.h> 

. 

. 

. 

 

struct tm *tp; 

time_t login, logout, session; 

. 

. 

. 

 

session = (time_t) difftime(logout, login); 

tp = gmtime(&session); 

printf("Session length: %d days, %d hours, %d minutes\n", 

    tp->tm_yday, tp->tm_hour, tp->tm_min); 

Porting Notes 

The difftime function is specific to ANSI C environments, although it's easy to define for other 
environments. 

The mktime function is a generalization of two other functions, timelocal and timegm, which 
have been introduced in a number of UNIX versions. 

There is disagreement between various versions of UNIX as to whether the include file for these 

functions belongs in time.h or sys/time.h. Some versions have it in one place, others have it in the 

other. Newer versions have sidestepped the issue by making it available in both places. 
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Formatting Date Strings 

Now that we can convert UNIX time to a struct tm structure and vice-versa, the next thing we 

need to do is convert the elements of this structure into something readable by human beings. There 

are five functions provided to do this: 

#include <time.h> 

 

char *ctime(const time_t *clock); 

 

char *asctime(const struct tm *tm); 

 

size_t *strftime(const char *s, size_t maxsize, const char *format, 

    const struct tm *tm); 

 

int cftime(char *s, const char *format, const time_t *clock); 

 

int ascftime(char *s, const char *format, const struct tm *tm); 

The asctime function converts the time contained in tm as returned by localtime or gmtime to 

a 26-character string and returns a pointer to that string. The string has the format 

DDD MMM dd hh:mm:ss yyyy\n\0 

for example, 

Thu Jan  1 00:00:00 1970\n\0 

The ctime function is equivalent to calling 

asctime(localtime(&clock)); 

The cftime, ascftime, and strftime functions all do essentially the same thing, with cftime 

being to ascftime as ctime is to asctime. The cftime and ascftime functions are obsolete, 

and strftime should be used instead. HP-UX 10.x does not provide cftime or ascftime. 

The strftime function copies characters into the array pointed to by s, which is of maxsize bytes 

in length. The contents of the string are controlled by the string contained in format. The format 

string is similar to a printf format string; all ordinary characters in the string (including the 

terminating null character) are copied into s, and characters in format that are preceded by a 

percent sign (‘%’) represent formatting directives. The strftime function has been 
internationalized, and will use values in formatting directives that are appropriate for the current 

locale. 

The valid formatting directives are as follows. If the format string is null, the locale's default format 

is used. 

%% A literal percent sign. 
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%a The locale's abbreviated weekday name. 

%A The locale's full weekday name. 

%b The locale's abbreviated month name. 

%B The locale's full month name. 

%c The locale's appropriate date and time representation. 

%C The locale's date and time representation as produced by the date command. 

%d The day of the month (01-31). 

%D The date as “%m/%d/%y.” 

%e The day of the month ( 1-31, single digits are preceded by a space). 

%h The locale's abbreviated month name. 

%H The hour (00-23). 

%I The hour (01-12). 

%j The day of the year (001-366). 

%k The hour ( 0-23, single digits are preceded by a space) (Solaris 2.x only). 

%l The hour ( 1-12, single digits are preceded by a space) (Solaris 2.x only). 

%m The month number (01-12). 

%M The minute (00-59). 

%n Same as ‘\n’. 

%p The locale's equivalent of “AM” or “PM.” 

%r The time as “%I:%M:%S [AM|PM].” 

%R The time as “%H:%M.” 

%S The second (00-61); allows for leap seconds. 

%t Same as ‘\t.’ 

%T The time as “%H:%M:%S.” 

%U The week number of the year (00-53); Sunday is the first day of week 01, days prior to the 

first Sunday in January are in week 00. 

%w The weekday number (0-6); Sunday is day 0. 

%W The week number of the year (00-53); Monday is the first day of week 01, days prior to 

the first Monday in January are in week 00. 

%x The locale's appropriate date representation. 
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%X The locale's appropriate time representation. 

%y The year within the century (00-99). 

%Y The year with the century (e.g., 1962). 

%Z The time zone name, or no characters if no time zone exists. 

Example 7-1 shows a small program that demonstrates the use of strftime and its output in several 
different locales (if your system does not have the internationalization options installed; all the 

output will be in English). The setlocale function is used to set the locale; it is described in more 
detail in Chapter 16, Miscellaneous Routines. 

Example 7-1: date 

#include <locale.h> 

#include <stdio.h> 

#include <time.h> 

 

/* 

 * Sample formats. 

 */ 

char *formats[] = { 

    "%A, %B %e, %Y, %H:%M:%S", 

    "%I:%M %p, %d-%b-%y", 

    "%x %X", 

    "%C", 

    "%c", 

    NULL 

}; 

 

char *locales[] = { 

    "C", "de", "fr", "it", "sv", NULL 

}; 

 

char *localeNames[] = { 

    "UNIX", "German", "French", "Italian", "Swedish", NULL 

}; 

 

int 

main(int argc, char **argv) 

{ 

    int i, j; 

    time_t clock; 

    struct tm *tm; 

    char buf[BUFSIZ]; 

 

    /* 

     * Get current time. 

     */ 

    time(&clock); 

    tm = gmtime(&clock); 

 

    /* 

     * For each locale... 
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     */ 

    for (i=0; locales[i] != NULL; i++) { 

        /* 

         * Print the locale name and set it. 

         */ 

        printf("%s:\n", localeNames[i]); 

        setlocale(LC_TIME, locales[i]); 

 

        /* 

         * For each format string... 

         */ 

        for (j=0; formats[j] != NULL; j++) { 

            strftime(buf, sizeof(buf), formats[j], tm); 

            printf("\t%-25s %s\n", formats[j], buf); 

        } 

 

        printf("\n"); 

    } 

 

    exit(0); 

} 

% date 

UNIX: 

    %A, %B %e, %Y, %H:%M:%S   Sunday, March 20, 1994, 22:38:19 

    %I:%M %p, %d-%b-%y        10:38 PM, 20-Mar-94 

    %x %X                     03/20/94 22:38:19 

    %C                        Sun Mar 20 22:38:19 GMT 1994 

    %c                        Sun Mar 20 22:38:19 1994 

 

German: 

    %A, %B %e, %Y, %H:%M:%S   Sonntag, März 20, 1994, 22:38:19 

    %I:%M %p, %d-%b-%y        10:38 PM, 20-Mär-94 

    %x %X                     20.03.94 22:38:19 

    %C                        Sonntag, 20. März 1994, 22:38:19 Uhr GMT 

    %c                        So 20 Mär 94, 22:38:19 GMT 

 

French: 

    %A, %B %e, %Y, %H:%M:%S   dimanche, mars 20, 1994, 22:38:19 

    %I:%M %p, %d-%b-%y        10:38 PM, 20-mar-94 

    %x %X                     20.03.94 22:38:19 

    %C                        dimanche, 20 mars 1994, 22:38:19 GMT 

    %c                        dim 20 mar 94, 22:38:19 GMT 

 

Italian: 

    %A, %B %e, %Y, %H:%M:%S   domenica, marzo 20, 1994, 22:38:19 

    %I:%M %p, %d-%b-%y        10:38 PM, 20-mar-94 

    %x %X                     20/03/94 22:38:19 

    %C                        domenica, 20 marzo 1994, 22:38:19 GMT 

    %c                        Dom 20 mar 94, 22:38:19 GMT 

 

Swedish: 

    %A, %B %e, %Y, %H:%M:%S   söndag, mars 20, 1994, 22:38:19 

    %I:%M %p, %d-%b-%y        10:38 EM, 20-mar-94 

    %x %X                     94-03-20 22:38:19 

    %C                        söndag, 20 mars 1994 kl 22:38:19 GMT 

    %c                        sön 20 mar 94 kl 22:38:19 GMT 
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To perform conversions in the other direction, from a string to an internal time representation, the 

getdate function can be used: 

#include <time.h> 

 

struct tm *getdate(const char *string); 

The getdate function converts user-defined date and time specifications pointed to by string 

into a struct tm structure. User-defined templates are used to parse and interpret the input string; 

the templates are text files created by the user and identified via the environment variable DATEMSK. 
Each line in the template file represents an acceptable date and/or time specification, using the same 

descriptors as described above for strftime. The first template that matches the input specification 

is used. If successful, getdate returns a pointer to a struct tm structure; if it fails, it returns NULL 

and sets the external variable getdate_err to indicate the error. 

The month and weekday names can contain any combination of uppercase and lowercase letters. If 

only the weekday is given, today is assumed if the given day is equal to the current day, otherwise 

next week is assumed. If only the month is given, the current month is assumed if the given month 

is equal to the current month, otherwise next year is assumed (unless a year is given). If no hour, 

minute, and second are given, the current hour, minute, and second are assumed. If no date is given, 

today is assumed if the given hour is later than the current hour, and tomorrow is assumed otherwise. 

Example 7-2 shows an example use of the getdate function. 

Example 7-2: getdate 

#include <stdio.h> 

#include <time.h> 

 

extern int getdate_err; 

 

int 

main(int argc, char **argv) 

{ 

    struct tm *tm; 

    char buf[BUFSIZ]; 

 

    for (;;) { 

        /* 

         * Prompt for a string. 

         */ 

        printf("? "); 

 

        /* 

         * Read the string. 

         */ 

        if (fgets(buf, sizeof(buf), stdin) == NULL) { 

            putchar('\n'); 

            exit(0); 

        } 
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        /* 

         * Convert it. 

         */ 

        if ((tm = getdate(buf)) != NULL) 

            printf("%s\n", asctime(tm)); 

        else 

            printf("Error (%d).\n", getdate_err); 

    } 

} 

% cat getdate.template 

%m 

%A %B %d %Y, %H:%M:%S 

%A 

%B 

%m/%d/%y %I %p 

%d,%m,%Y %H:%M 

at %A the %dst of %B in %Y 

run job at %I %p,%B %dnd 

%A den %d. %B %Y %H.%M Uhr 

% setenv DATEMSK getdate.template 

% getdate 

? 10/1/87 4 PM 

Thu Oct  1 16:00:00 1987 

?  Friday 

Fri Mar 25 18:13:17 1994 

?  Friday September 18 1987, 10:30:30 

Fri Sep 18 10:30:30 1987 

?  24,9,1986 10:30 

Wed Sep 24 10:30:00 1986 

?  at monday the 1st of december in 1986 

Mon Dec  1 18:13:23 1986 

?  run job at 3 PM, december 2nd 

Fri Dec  2 15:00:00 1994 

?  ^D 

Porting Notes 

The ctime and asctime functions are common to all versions of UNIX; the other functions are 
less wide-spread. 

The getdate function conflicts with a public domain function of the same name that is used in 

many programs. The public domain function attempts to produce a time_t given an arbitrary date 
string; it performs all the magic necessary to determine what format the string is in. The purpose of 

this function is to allow users to input dates and times in whatever format they're used to, without 
having to predetermine what format that is. Generally speaking, the public domain function is 

significantly more useful than the function provided by SVR4. 

Chapter Summary 

A number of systems programming applications need to be able to convert between the internal date 

and time format used by UNIX and the date and time strings that are used by humans. The library 

routines provided by the operating system encompass all the knowledge about complexities such as 
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timezones and daylight savings time, so the programmer does not have to worry about them. We 

will be making use of these functions in several of the examples in the remainder of this book. 
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Chapter 8 
Users and Groups 

Each user of a UNIX system has several pieces of information associated with him, including a 

login name, user-id, and one or more group-ids. The operating system uses this data to keep track 

of the privileges associated with each process (what files it may open, how many resources it may 

consume, etc.), who is currently logged in, when each user last logged in, and so on. In this chapter, 

we will examine the information maintained by the operating system about users, and what it may 

be used for. 

Login Names 

Each user of the system, when his or her account is created, is assigned a unique login name. The 

login name consists of from one to eight characters (some systems require a minimum of two; a few 

systems have been modified to allow more than eight). Usually, only lowercase letters and numbers 

are allowed in login names, although some systems will also allow some special characters such as 

a hyphen or underscore. 

The login name is used by user-level and system-level programs to identify individuals. Most 
importantly, the login name is used when logging in to identify yourself to the system. When 

presented with a “login:” prompt, you enter your login name, followed by your password to gain 

access. Another important use for the login name is in addressing electronic mail. At some point, all 
electronic mail is identified by the login name of the person who sent it, and by the login name(s) 

of the intended recipient(s). Although it has recently become popular to allow mail to be addressed 

as “Firstname.Lastname@host.domain” (or something similar), this is almost universally 

handled by mapping the “Firstname.Lastname” strings (e.g., “Robert M. Smith,” “Robert 

Smith,” “Bob Smith”) to the login name (e.g., “bmsmith”) internally. Other uses for the login 
name include identifying output on the printer, granting or removing privileges in permissions files, 

and so forth. 

There is one important part of the UNIX system that does not use the login name, however: the 
operating system kernel. The kernel instead uses your user-id number (described in the next section) 

to keep track of who you are and what you may do. The reason for this is quite simply that the 

underlying hardware makes it easier to deal with numbers than character strings. Numbers may be 

tested for equality, copied from memory location to memory location, and so forth with individual 
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machine instructions. Character strings (login names) on the other hand, must be handled in 

subroutines. Since the kernel checks every request you make for permission to make such a request 

(e.g., if this file is readable only by the owner, you cannot open it for reading unless you own it), it 

is vital that these checks be as efficient as possible. 

To obtain the login name of the user executing a program, all versions of UNIX provide the 

getlogin function: 

#include <unistd.h> 

 

char *getlogin(void); 

This function examines the /var/adm/utmp file (described later in this chapter), searching for the 

entry for the terminal line the program is attached to, and returns the login name contained in that 

entry. This method is prone to error: if the user has logged off, or is running the program without a 

terminal (for example, with the rsh command), getlogin will return a null pointer, indicating that 
it could not find the information. 

The creators of System V UNIX recognized this problem, and created another routine, cuserid, 
which is less prone to this problem: 

#include <stdio.h> 

 

char *cuserid(char *buf); 

This function also examines the /var/adm/utmp file, just like getlogin. However, if nothing is 

found, cuserid obtains the user-id number of the executing process, looks it up in the password 

file (how to do this is described later in this chapter), and returns the login name that way. If buf is 

a non-null pointer, the login name is copied into the array it points to. Otherwise, a pointer is returned 

to a static area that is overwritten with each call. If the login name cannot be found, a null pointer is 
returned. 

It should be noted that neither getlogin or cuserid should be trusted by programs that must know 

the name of the user executing a program. This includes any program that uses this information to 
perform permissions or authorization checking. The problem with both of these functions is that 

they rely on the contents of the utmp file first: whatever is written there is assumed to be correct. 

Unfortunately, the utmp file is world-writable on many systems. This means that an unscrupulous 

user could change his entry in the file to the name of an authorized user, and then run your program, 

and you would be none the wiser. Programs that must know the true identity of the executing user 

should only use the user-id number to identify that user. If they also need to know the user's login 

name, this information can be obtained from the password file. The method for doing this is 

described later in this chapter. 

The User-Id Number 

Each process executing on the system has associated with it two small integers called the real user-

id number and the effective user-id number. These numbers are used by the UNIX kernel to 
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determine the process' access permissions, record accounting information, and so on. The real user-

id always identifies the user executing the program, and is used for accounting purposes. Only the 

super-user may change his real user-id, thus becoming another user. The effective user-id is used to 

determine a process' access permissions. Normally, the effective user-id is equal to the real user-id. 

However, by changing its effective user-id, a process can gain the additional access permissions 

associated with the new user-id. It is possible for more than one login name to be associated with 
the same user-id, but as far as the operating system kernel is concerned, each user-id is unique and 

identifies one and only one person. Thus, the only purpose of multiple login names with the same 

user-id is to allow different people to access the same set of privileges with different passwords. 

A program uses the getuid and geteuid functions to obtain its real and effective user-ids, 
respectively: 

#include <sys/types.h> 

#include <unistd.h> 

 

uid_t getuid(void); 

 

uid_t geteuid(void); 

Both functions simply return the associated id. 

There are two ways in which a process may change its real and/or effective user-id. The first, which 

changes only the effective user-id, is to execute a program that has the set-user-id permission bit set 

(see Chapter 5, Files and Directories). The other way is to use the setuid and seteuid functions: 

#include <sys/types.h> 

#include <unistd.h> 

 

int setuid(uid_t uid); 

 

int seteuid(uid_t euid); 

The setuid function sets the real and effective user-ids of the calling process, plus a third value 

called the saved user-id (see below) to the value contained in uid. The seteuid function sets the 

effective user-id only of the calling process to the value contained in euid. Upon successful 

completion, both functions return 0. If an error occurs (usually the error is “permission denied”), –

1 is returned and the reason for failure is stored in the external integer errno. 

The seteuid function is not available in HP-UX 10.x. 

At login time, the real, effective, and saved user-ids are set to the user-id of the user responsible for 

the creation of the login process. When a process executes a program however, the user-id associated 

with that new process can change. If the file containing the program has the set-user-id bit set in its 

permission bits, then the effective user-id and saved user-id of the process are set to the user-id of 

the owner of the program file (the real user-id is not changed). With that in mind, the following four 

rules govern the behavior of the setuid and seteuid functions: 

1. If the effective user-id of the process calling setuid is that of the super-user, the real, effective, 

and saved user-ids are set to the value of uid. 
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2. If the effective user-id of the process calling setuid is not that of the super-user, but uid is 

equal to either the real user-id or the saved user-id of the calling process, the effective user-id 

is set to the value of uid. 

3. If the effective user-id of the process calling seteuid is that of the super-user, the effective 

user-id is set to the value of euid (this allows the super-user to change only the effective user-

id). 

4. If the effective user-id of the process calling seteuid is not that of the super-user, but euid is 

equal to either the real user-id or the saved user-id of the calling process, the effective user-id 

is set to the value of euid (setuid and seteuid behave identically for non-privileged 

processes). 

Thus, the saved user-id value is simply used to allow a process to alternate its effective user-id 

between the value obtained by executing a set-user-id program and the value of the executing user's 
real user-id. 

Porting Notes 

Berkeley-based versions of UNIX do not use the saved user-id idea. Instead, they provide a different 

function for changing the real and effective user-ids: 

int setreuid(int uid, int euid); 

This function is different, in that it allows a process to exchange its real and effective user-ids. 

Although this provides the same functionality as the saved user-id feature (allowing a process to 

alternate between its real and effective user-ids), it is also prone to error. If a process calls setreuid 
to exchange its real and effective user-ids (so that its effective user-id is now its real user-id and 

vice-versa) and then executes a subprocess (for example, a shell), that process will run with its real 

user-id set to the original effective user-id. This can present a serious security problem if the 

programmer is not careful. 

The Group-Id Number 

In addition to the real, effective, and saved user-ids, the operating system also associates with each 

process a real group-id number, an effective group-id number, and a saved group-id number. These 

values are also used to determine a process' access permissions, although they only affect the ability 

to access files (the user-id is also used to determine permissions to execute certain system calls, and 

for accounting purposes). There are an analogous set of functions provided for manipulating the 

group-id: 

#include <sys/types.h> 

#include <unistd.h> 

 

gid_t getgid(void); 

 

gid_t getegid(void); 
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int setgid(gid_t gid); 

 

int setegid(gid_t egid); 

All of these functions behave exactly like their user-id counterparts, including the rules for changing 

the real and effective group-id. 

The setegid function is not available in HP-UX 10.x. 

Group Membership 

In older versions of UNIX such as Version 7 and pre-SVR4 versions of System V, a user could only 

be a member of one group at a time. In order to change groups, a command called newgrp was 

provided that used setgid to change the process' real and effective group-ids. 

In 4.2BSD, Berkeley introduced the concept of a group set. This idea allows a user to be in all her 

groups at once, and processes execute with the combined permissions of all the groups, instead of 
just a single group. This is much more convenient, and has been adopted by a number of vendors. 

SVR4 allows the system administrator to configure either behavior into the system; the default “out 

of the box” configuration uses the group set. 

There are two system calls for manipulating the group set: 

#include <unistd.h> 

 

int getgroups(int gidsetsize, gid_t *grouplist); 

 

int setgroups(int ngroups, const gid_t *grouplist); 

The getgroups function gets the current group set and stores it in the array pointed to by 

grouplist, which has gidsetsize entries, and must be large enough to contain the entire list. 

The list can have a maximum of NGROUPS_MAX entries; this constant is defined in the include file. 

If gidsetsize is given as zero, getgroups will return the number of groups to which the calling 

process belongs without modifying the grouplist array. Upon successful completion, getgroups 

returns the number of groups placed into grouplist; –1 is returned if an error occurs and the reason 

for failure will be stored in errno. 

The setgroups function sets the group set to the list of group-ids contained in the array pointed to 

by grouplist, which contains ngroups elements (ngroups may not exceed NGROUPS_MAX). This 

function may only be invoked by the super-user. If setgroups succeeds, it returns 0. Otherwise, it 

returns –1 and places an error code in the external integer errno. 

Porting Notes 

Just as they do not use the saved user-id, Berkeley-based versions of UNIX do not use the saved 

group-id idea. Instead, they provide a different function for changing the real and effective group-

ids: 

int setregid(int gid, int egid); 
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This function has the same semantics, and the same problems, as the setreuid function described 
earlier. 

The Password File 

The password file, /etc/passwd, stores most of the commonly maintained information about each 
user of the system such as login name, user-id number, full name, home directory, and preferred 

login shell. On older versions of UNIX, this file also stored each user's encrypted password. 

However, most newer versions of UNIX have taken the encrypted password out of this file, storing 

it in another file called a shadow password file that is readable only by the super-user. This is 

described in the following section. 

Each line in the password file describes a single user, and is divided into several colon-separated 

fields. The include file pwd.h describes this format for programs with the struct passwd structure, 
which contains at least the following members: 

struct passwd { 

    char    *pw_name; 

    char    *pw_passwd; 

    uid_t    pw_uid; 

    gid_t    pw_gid; 

    char    *pw_age; 

    char    *pw_comment; 

    char    *pw_gecos; 

    char    *pw_dir; 

    char    *pw_shell; 

}; 

The meanings of the fields are: 

pw_name The user's login name. 

pw_passwd If the system does not use a shadow password file, this is the user's encrypted 

password. If the system does use a shadow password file, this field is 

meaningless. 

pw_uid The user's user-id number. 

pw_gid The user's login group-id number. 

pw_age On many BSD-based systems, this field is an integer called pw_quota. The 
field is not used for anything, and does not appear in the password file line. 

(Some System V-based systems do make use of this field for password aging, 

but this has been superceded in SVR4 by the aging information stored in the 

shadow password file.) 

pw_comment This field is also unused, and does not appear in the password file line. This 

field has been around since Version 7, has never been used, and yet nobody has 
ever removed it from the structure. 
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pw_gecos This field contains the user's full name. It derives its name (pronounced “JEE-

kohs”) from its original use at Bell Laboratories to define an accounting 

identifier that was used to submit remote jobs to a General Electric mainframe 

computer. The operating system on the mainframe was called GECOS (General 

Electric Comprehensive Operating System). (When General Electric's 

computer division was bought out by Honeywell, GECOS was renamed GCOS, 
but the password file field retained its original name.) 

On many systems, the pw_gecos field is used to store more than just the user's 

full name. This is done in a variety of ways, most of which are not defined 
outside of the local environment in which they are used. One method which is 

in widespread use however, is that used by most versions of BSD UNIX 

(although many vendors' BSD-based systems do not support it). On BSD 

systems, the pw_gecos field is further subdivided into four comma-separated 
fields. The first field is the user's full name, the second is the user's office 

telephone number, the third is the user's office room number, and the last is the 

user's home telephone number. Any of the fields may be left blank, but commas 

must appear between fields. Trailing commas may be dropped. 

pw_dir The absolute path name to the user's home directory. 

pw_shell The absolute path name to the user's login shell, the program that will be started 

when he logs in. If this field is left blank, the Bourne shell (/bin/sh) is assumed. 

The following functions are provided for reading the password file: 

#include <pwd.h> 

 

struct passwd *getpwnam(const char *name); 

 

struct passwd *getpwuid(uid_t uid); 

 

struct passwd *getpwent(void); 

 

void setpwent(void); 

 

void endpwent(void); 

The getpwnam function searches the password file for a line whose login name field is equal to 

name, and returns a pointer to a structure of type struct passwd containing the broken-out fields 

of the entry. The getpwuid function searches for a line whose user-id field is equal to uid. The 

getpwent function is used for reading the password file sequentially; each successive call returns 
the next entry in the file. All three functions return pointers to static data that is overwritten on each 

call; if the calling program needs to retain the data across successive calls, it must copy it to other 
storage. If an entry cannot be found, or if the end of the file is reached, the routines return the 

constant NULL. 
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The setpwent function opens the password file if it is not already open, and resets the read/write 

offset to the beginning of the file. All three of the functions described above call setpwent 

internally. The endpwent function closes the password file. 

System V-based versions of UNIX, including SVR4, provide another function, fgetpwent: 

#include <stdio.h> 

#include <pwd.h> 

 

struct passwd *fgetpwent(FILE *fp); 

This function reads a line from the file referenced by fp instead of the system password file, and 

returns a pointer to a structure of type struct passwd containing the broken-out fields. It returns 

the constant NULL when the end of the file is encountered. 

BSD-based systems, on the other hand, provide a somewhat more useful method for reading 

alternate password files: 

#include <pwd.h> 

 

void setpwfile(const char *filename); 

This changes the routines' notion of the name of the password file to the file name contained in 

filename. This has an advantage over the System V method, since it allows the program to 

continue to make use of the getpwnam and getpwuid functions. 

Example 8-1, shown later in this chapter, demonstrates the use of these functions. 

The Shadow Password File 

As mentioned previously, each user's encrypted password used to be stored in the password file, 

/etc/passwd. However, in recent years it has been recognized that this can be a security problem. 

Because the password file must be readable by everyone (programs such as ls and finger make use 

of it), it is possible for an unscrupulous user to write a program that attempts to guess each user's 

password by trying all possible combinations. Because the encrypted password is there in the file 
for all to see, the bad guy's program can simply encrypt each guess until it finds a matching string. 

The solution to this problem is to recognize that the encrypted password is only needed by programs 

run with super-user permissions for the purposes of performing user authentication. The encrypted 

password string can be taken out of the password file, and stored in another file that is readable only 

by the super-user. This file is usually called a shadow password file. Most newer UNIX systems 

offer shadow password files, and a public domain set of functions is available for those systems that 

do not. Because the format of the shadow password file varies from vendor to vendor, it is 

impossible to describe them all. The discussion in this section describes the format and functions 

provided by SVR4. 

In SVR4, as in some other vendor's versions, the shadow password file also stores information for 

implementing password aging. The idea is to force each user to change his or her password 
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periodically (say, every three months) so that even if an attacker gains access to the shadow 

password file, the knowledge will not be useful forever. Password aging has its pros and cons, and 

it is not our purpose to debate them here. Suffice it to say that, at least in SVR4, the use of password 

aging is optional. 

Like the password file, the shadow password file, /etc/shadow, contains lines of colon-separated 

fields, one line per user. The include file shadow.h describes these fields for programs with the 

struct spwd structure, which contains at least the following members: 

struct spwd { 

    char    *sp_namp; 

    char    *sp_pwdp; 

    long     sp_lstchg; 

    long     sp_min; 

    long     sp_max; 

    long     sp_warn; 

    long     sp_inact; 

    long     sp_expire; 

    unsigned long     sp_flag; 

}; 

The meanings of the fields are: 

sp_namp The user's login name. 

sp_pwdp A 13-character encrypted password for the user, a lock string (“*LK*”) 
indicating that the login is not accessible, or the empty string, indicating that 

the login may be accessed without providing a password. 

sp_lstchg The number of days between January 1, 1970 and the date that the password 

was last changed. This field is part of the password aging implementation, and 

may be blank if password aging is not in use. 

sp_min The minimum number of days required between password changes. This is 
provided to prevent a user from defeating the password aging system by 

changing her password to something new (the passwd program will not allow 

“changing” your password to the current password) and then immediately 

changing it back. 

sp_max The maximum number of days that the current password is valid. 

sp_warn The number of days before the current password expires that the user is warned 

of its expiration. This is an important part of password aging, because people 

typically cannot think up a good password without prior notice. Some password 

aging systems that do not warn users ahead of time that they will need to change 

their passwords have been plagued with easily-guessed passwords. 

sp_inact The number of days of inactivity allowed for this user. The idea here is to 

disable (lock) accounts that have been inactive for more than this number of 
days, so that an attacker cannot make use of the account (which nobody would 

notice, since the owner is not using it). 
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sp_expire An absolute date (in UNIX time format) after which the login may no longer be 

used. 

sp_flag This field is not currently used. 

The functions used to read the shadow password file are similar to those used for reading the regular 

password file, described above: 

#include <shadow.h> 

 

struct spwd *getspnam(const char *name); 

 

struct spwd *fgetspent(FILE *fp); 

 

struct spwd *getspent(void); 

 

void setspent(void); 

 

void endspent(void); 

The getspnam function searches the shadow password file for an entry with a login name field that 

matches name. The getspent function returns the next shadow password file entry on each call; 

fgetspent can be used to read an alternate shadow password file. All three of these functions 

return a pointer to a struct spwd structure with the fields of the entry broken out, or the constant 

NULL if the entry cannot be found or the end of the file is encountered. 

The fgetspent function is not available in HP-UX 10.x. 

The setspent and endspent functions are used to open and rewind the shadow password file, or 
close the shadow password file, respectively. 

Because the shadow password file is readable only by the super-user, all of these functions will fail 

if the calling program is not running with super-user permissions. 

On other systems, the shadow password file is handled in different ways. One popular method is for 

the getpwent function and its counterparts to check the effective user-id of the calling program—

if it is the super-user, the pw_passwd field in the struct passwd structure is filled in from the 
shadow file; otherwise it is left empty. 

The Group File 

The group file, /etc/group, contains one entry for each group on the system. Each entry is contained 

on a single line, and consists of several colon-separated fields. The last field is a comma-separated 

list of login names; these users are members of the group. The format of an entry is described for 

programs by the include file grp.h: 

struct group { 

    char     *gr_name; 

    char     *gr_passwd; 

    gid_t     gr_gid; 
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    char    **gr_mem; 

}; 

The meanings of the fields are: 

gr_name The name of the group. 

gr_passwd This field is usually blank. If it is not blank, it contains a 13-character encrypted 

password (just like the password file). When the newgrp command is executed, 

if a password is present, the user must enter that password to gain access to the 

new group. With the advent of group membership lists, in which a user is in all 

of his groups at once, this field has become mostly obsolete. 

gr_gid The group-id number of the group. 

gr_mem An array of pointers to character strings; each string contains the login name of 

one of the members of the group. The list is terminated by a null pointer. 

If you've been reading the previous sections, the functions for reading the group file should look 

very familiar: 

#include <grp.h> 

 

struct group *getgrnam(const char *name); 

 

struct group *getgrgid(gid_t gid); 

 

struct group *fgetgrent(FILE *fp); 

 

struct group *getgrent(void); 

 

void setgrent(void); 

 

void endgrent(void); 

The getgrnam function searches the group file for an entry with the group name contained in name. 

The getgrgid function searches for an entry with the group-id number equal to gid. To read the 

group file one entry at a time, getgrent is used; fgetgrent allows an alternate file to be read. All 

of these functions return a pointer to a structure of type struct group, or the constant NULL if an 
entry cannot be found or end-of-file is encountered. 

The setgrent function opens the group file and sets the read/write offset to the beginning of the 

file, while endgrent closes the file. 

In order to initialize a user's group membership list, the initgroups function is provided: 

#include <sys/types.h> 

#include <grp.h> 

 

int initgroups(const char *name, gid_t basegid); 



UNIX Systems Programming for SVR4 

182 FOR PERSONAL, NON-COMMERCIAL USE ONLY  
 

NOTE 

The initgroups function prototype is declared in unistd.h on HP-UX 10.x systems. 

The name parameter contains a login name, and basegid contains the login's primary group-id 

number from the password file. The initgroups function reads the group file, and for each group 

that lists name in its membership list, adds that group-id number to an array of group-id numbers. It 

then calls setgroups to initialize the group membership list. If the function is successful, 0 is 

returned. Otherwise, –1 is returned and the external integer errno is set to indicate the error. 

Example 8-1 shows a modified version of the listfiles program from Chapter 5. This program, you'll 

recall, reads each directory named on its command line and displays a line for each file in the 

directory, much like the ls -l command. In the original program, we printed out the numeric user-id 

and group-id for each file; in Example 8-1, we have modified the program to print out the login 

name and group name. 

Example 8-1: newlistfiles 

#include <sys/types.h> 

#include <sys/stat.h> 

#include <sys/mkdev.h> 

#include <dirent.h> 

#include <stdio.h> 

#include <pwd.h> 

#include <grp.h> 

 

char     typeOfFile(mode_t); 

char    *permOfFile(mode_t); 

void     outputStatInfo(char *, char *, struct stat *); 

 

int 

main(int argc, char **argv) 

{ 

    DIR *dp; 

    char *dirname; 

    struct stat st; 

    struct dirent *d; 

    char filename[BUFSIZ+1]; 

 

    /* 

     * For each directory on the command line... 

     */ 

    while (--argc) { 

        dirname = *++argv; 

 

        /* 

         * Open the directory. 

         */ 

        if ((dp = opendir(dirname)) == NULL) { 

            perror(dirname); 

            continue; 

        } 

 

        printf("%s:\n", dirname); 



Users and Groups 

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 183 
 

 

        /* 

         * For each file in the directory... 

         */ 

        while ((d = readdir(dp)) != NULL) { 

            /* 

             * Create the full file name. 

             */ 

            sprintf(filename, "%s/%s", dirname, d->d_name); 

 

            /* 

            * Find out about it. 

            */ 

            if (lstat(filename, &st) < 0) { 

                perror(filename); 

                putchar('\n'); 

                continue; 

            } 

 

            /* 

             * Print out the information. 

             */ 

            outputStatInfo(filename, d->d_name, &st); 

            putchar('\n'); 

        } 

 

        putchar('\n'); 

        closedir(dp); 

    } 

 

    exit(0); 

} 

 

/* 

 * outputStatInfo - print out the contents of the stat structure. 

 */ 

void 

outputStatInfo(char *pathname, char *filename, struct stat *st) 

{ 

    int n; 

    struct group *gr; 

    struct passwd *pw; 

    char login[16], group[16], slink[BUFSIZ+1]; 

 

    /* 

     * Print the number of file system blocks, permission bits, 

     * and number of links. 

     */ 

    printf("%5d ", st->st_blocks); 

    printf("%c%s ", typeOfFile(st->st_mode), permOfFile(st->st_mode)); 

    printf("%3d ", st->st_nlink); 

 

    /* 

     * Look up the owner's login name.  Use the user-id if we 

     * can't find it. 

     */ 

    if ((pw = getpwuid(st->st_uid)) != NULL) 

        strcpy(login, pw->pw_name); 
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    else 

        sprintf(login, "%d", st->st_uid); 

 

    /* 

     * Look up the group's name.  Use the group-id if we 

     * can't find it. 

     */ 

    if ((gr = getgrgid(st->st_gid)) != NULL) 

        strcpy(group, gr->gr_name); 

    else 

        sprintf(group, "%d", st->st_gid); 

 

    /* 

     * Print the owner and group. 

     */ 

    printf("%-8s %-8s ", login, group); 

 

    /* 

     * If the file is not a device, print its size; otherwise 

     * print its major and minor device numbers. 

     */ 

    if (((st->st_mode & S_IFMT) != S_IFCHR) && 

        ((st->st_mode & S_IFMT) != S_IFBLK)) 

        printf("%9d ", st->st_size); 

    else 

        printf("%4d,%4d ", major(st->st_rdev), minor(st->st_rdev)); 

 

    /* 

     * Print the access time.  The ctime() function is 

     * described in Chapter 7, "Time and Timers". 

     */ 

    printf("%.12s ", ctime(&st->st_mtime) + 4); 

 

    /* 

     * Print the file name.  If it's a symblic link, also print 

     * what it points to. 

     */ 

    printf("%s", filename); 

 

    if ((st->st_mode & S_IFMT) == S_IFLNK) { 

        if ((n = readlink(pathname, slink, sizeof(slink))) < 0) 

            printf(" -> ???"); 

        else 

            printf(" -> %.*s", n, slink); 

    } 

} 

 

/* 

 * typeOfFile - return the english description of the file type. 

 */ 

char 

typeOfFile(mode_t mode) 

{ 

    switch (mode & S_IFMT) { 

    case S_IFREG: 

        return('-'); 

    case S_IFDIR: 

        return('d'); 
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    case S_IFCHR: 

        return('c'); 

    case S_IFBLK: 

        return('b'); 

    case S_IFLNK: 

        return('l'); 

    case S_IFIFO: 

        return('p'); 

    case S_IFSOCK: 

        return('s'); 

    } 

 

    return('?'); 

} 

 

/* 

 * permOfFile - return the file permissions in an "ls"-like string. 

 */ 

char * 

permOfFile(mode_t mode) 

{ 

    int i; 

    char *p; 

    static char perms[10]; 

 

    p = perms; 

    strcpy(perms, "---------"); 

 

    /* 

     * The permission bits are three sets of three 

     * bits: user read/write/exec, group read/write/exec, 

     * other read/write/exec.  We deal with each set 

     * of three bits in one pass through the loop. 

     */ 

    for (i=0; i < 3; i++) { 

        if (mode & (S_IREAD >> i*3)) 

            *p = 'r'; 

        p++; 

 

        if (mode & (S_IWRITE >> i*3)) 

            *p = 'w'; 

        p++; 

 

        if (mode & (S_IEXEC >> i*3)) 

            *p = 'x'; 

        p++; 

    } 

 

    /* 

     * Put special codes in for set-user-id, set-group-id, 

     * and the sticky bit.  (This part is incomplete; "ls" 

     * uses some other letters as well for cases such as 

     * set-user-id bit without execute bit, and so forth.) 

     */ 

    if ((mode & S_ISUID) != 0) 

        perms[2] = 's'; 

 

    if ((mode & S_ISGID) != 0) 
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        perms[5] = 's'; 

 

    if ((mode & S_ISVTX) != 0) 

        perms[8] = 't'; 

 

    return(perms); 

} 

% newlistfiles /home/msw/a 

/home/msw/a: 

    2 drwxr-sr-x   7 root     other     512 Dec 21 22:20 . 

    2 drwxr-xr-x   3 root     root      512 Dec 21 20:45 .. 

   16 drwx------   2 root     root     8192 Apr 19 16:04 lost+found 

    2 drwxr-sr-x  12 davy     other    1024 May 29 10:19 davy 

    2 drwxr-sr-x   2 sean     other     512 Apr 19 17:57 sean 

    2 drwxr-sr-x   3 trevor   other     512 Jan 12 19:59 trevor 

    2 drwxr-sr-x   6 cathy    other     512 Mar 19 11:33 cathy 

Note that the method used in the example is awfully ineffecient. In a directory with a hundred files 

in it, all owned by the same user, the getpwnam function is called 100 times. A similar problem 
exists with group names. A more efficient method would be to store the information returned from 

these functions each time they are called, and to search the stored information first, calling the 

functions only when a user-id or group-id is encountered for the first time. 

The Utmp and Wtmp Files 

The files /var/adm/utmp (/etc/utmp on older systems) and /var/adm/wtmp (/usr/adm/wtmp or 

/etc/wtmp on older systems) record user and accounting information for commands such as who, 

finger, and login. The format of these files is substantially different between System V-based 

systems and all other versions of UNIX; the System V format is described here, and the more 

“traditional” format is described in the porting notes. 

The utmp file contains records that describe the current state of the system. This includes one record 

for each logged in user, and some additional records that will be described later. The login command 

writes a record to the utmp file each time a user logs in; the record is removed when the user logs 

out. The wtmp file contains historical data in the same format. Each time a user logs in a record is 

written to the file. Each time a user logs out, the same record is written to the file again, except that 

the login name field (ut_user or ut_name) is empty, and the ut_time field contains the logout 

time instead of the login time. Programs such as last can read this file, match up the entries with 

login names and those without, and produce a summary of when each user logged in and out. 

In System V versions of UNIX, the utmp file also records the execution of certain system processes 
such as a change in the system's run level or the programs that allow users to log in. This information 

is not transferred to the wtmp file. Two additional files, /var/adm/utmpx and /var/adm/wtmpx, are 

used to record additional information. These files have a slightly larger record than their 

counterparts; the primary difference is that the “x” files also contain the name of the remote host for 

users who log in via the network. (It probably would have made more sense to just add this 

information to the utmp and wtmp files, but this would have broken older programs that read these 

files.) 
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The record format for the utmp and wtmp files is described in the include file utmp.h: 

struct utmp { 

    char    ut_user[8]; 

    char    ut_id[4]; 

    char    ut_line[12]; 

    short   ut_pid; 

    short   ut_type; 

    struct exit_status    ut_exit; 

    time_t  ut_time; 

}; 

 

struct exit_status { 

    short    e_termination; 

    short    e_exit; 

}; 

The fields of the structure have the following meanings: 

ut_user The user's login name. Note that this field is not always null-terminated; an eight-

character login name has no room in the string for a terminating null byte. 

ut_id The id field from /etc/inittab for a process spawned by the init program. 

ut_line The name of the device on which the user is logged in; this string can be 

concatenated with “/dev/” to obtain the path name for the device. 

ut_pid The process-id of the described process. 

ut_type An indication of the type of data contained in this record. Legal values for this field 

are: 

EMPTY The record is empty. 

RUN_LVL This record indicates a change in the system run-level. The 

new level can be determined from the ut_id field. 

BOOT_TIME A system boot. The time is recorded in the ut_time field. 

OLD_TIME A change in the system time with the date command. This 

record stores the time prior to the change. 

NEW_TIME A change in the system time with the date command. The 

record stores the time after the change. 

INIT_PROCESS A process spawned by init. The process' name is stored in 

ut_name, its process-id number is stored in ut_pid. 

LOGIN_PROCESS A process waiting for a user to log in; there is usually one 

of these for each terminal connected to the system. 

USER_PROCESS A user login session. 
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DEAD_PROCESS A process that has exited. The exit status and return code 

are stored in ut_exit. 

ACCOUNTING An acocunting record (not implemented). 
 

ut_exit The termination and exit status of a process recorded in a DEAD_PROCESS record. 

ut_time The time at which this record was last modified. 

The record format for the utmpx file is described in the utmpx.h include file: 

struct utmpx { 

    char    ut_user[32]; 

    char    ut_id[4]; 

    char    ut_line[32]; 

    pid_t   ut_pid; 

    short   ut_type; 

    struct exit_status    ut_exit; 

    struct timeval    ut_tv; 

    long    ut_session; 

    long    pad[5]; 

    short   ut_syslen; 

    char    ut_host[257]; 

}; 

All of the common fields have the same meaning as those in the struct utmp structure. The new 
fields are: 

ut_tv The time this record was last modified (this is the same as ut_time, except a 
different format). 

ut_session The session-id number (see Chapter 11, Processes). 

pad Reserved for future use. 

ut_syslen The significant length, including the terminating null byte, of the ut_host 
field. 

ut_host The name of the remote host, if a user is logged in via the network (e.g., with 

rlogin or telnet). 

There are two essentially identical sets of functions provided for manipulating the utmp and utmpx 

files: 

#include <utmp.h> 

 

struct utmp *getutent(void); 

 

struct utmp *getutid(const struct utmp *id); 

 

struct utmp *getutline(const struct utmp *line); 

 

struct utmp *pututline(const struct utmp *utmp); 

 

void setutent(void); 
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void endutent(void); 

 

int utmpname(const char *filename); 

 

#include <utmpx.h> 

 

struct utmpx *getutxent(void); 

 

struct utmpx *getutxid(const struct utmpx *id); 

 

struct utmpx *getutxline(const struct utmpx *line); 

 

struct utmpx *pututxline(const struct utmpx *utmpx); 

 

void setutxent(void); 

 

void endutxent(void); 

 

int utmpxname(const char *filename); 

The getutent and getutxent functions read the next entry from a utmp-like or utmpx-like file. 

The getutid and getutxid functions search forward from the current location in the file for an 

entry whose ut_type field matches id->ut_type if the type is RUN_LVL, BOOT_TIME, 

OLD_TIME, or NEW_TIME. If the type is one of INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, 

or DEAD_PROCESS, then they search for an entry whose type is one of those four and whose ut_id 

field matches id->ut_id. The functions return the first entry found. The getutline and 

getutxline functions search forward from the current location in the file for an entry  of type 

LOGIN_PROCESS or USER_PROCESS whose ut_line field matches line->ut_line and return 

the first entry found. All of these functions return the constant NULL if no entry is found or end-of-

file is encountered. 

The pututline and pututxline functions write out the supplied entry to the file. They first use 

getutid or getutxid to find the correct location in the file; if no slot for the entry exists, it is 
added to the end of the file. 

The setutent and setutxent functions open the file and reset the read/write offset to the 

beginning of the file. The endutent and endutxent functions close the file. The utmpname and 

utmpxname functions allow the name of the file to be changed. 

There are also functions provided for converting between the two record types: 

#include <utmpx.h> 

 

void getutmp(struct utmpx *utmpx, struct utmp *utmp); 

 

void getutmpx(struct utmp *utmp, struct utmpx *utmpx); 

 

void updwtmp(char *wfile, struct utmp *utmp); 

 

void updwtmpx(char *wfilex, struct utmpx *utmpx); 
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The getutmp function copies the fields of the utmpx structure to the corresponding utmp structure. 

The getutmpx function does the reverse. The updwtmp and updwtmpx functions check the 
existence of the named file and its parallel file (named by adding or removing an “x”) in the file 

name. If only one of them exists, the other file is created and the contents of the existing file are 

copied to it. Then the utmp or utmpx structure is written to the file, and the corresponding structure 

written to the parallel file. 

Because the utmpx functions update the utmp file too, it is generally better to use them over their 

utmp counterparts. 

Example 8-2 shows a program that reads the utmpx file and prints a list of currently logged in users. 

For each user, the getpwnam function is used to obtain the user's real name. This program could 
just as easily use the utmp file, but then the remote host could not be printed. 

Example 8-2: whom 

#include <sys/types.h> 

#include <sys/time.h> 

#include <utmpx.h> 

#include <pwd.h> 

 

int 

main(void) 

{ 

    char name[64]; 

    struct passwd *pwd; 

    struct utmpx *utmpx; 

 

    printf("Login    Name             Line     Time             Host\n"); 

    printf("--------------------------------------------------------\n"); 

 

    /* 

     * Read each entry from the file. 

     */ 

    while ((utmpx = getutxent()) != NULL) { 

        /* 

         * Skip records that aren't logins. 

         */ 

        if (utmpx->ut_type != USER_PROCESS) 

            continue; 

 

        /* 

         * Get the real name. 

         */ 

        if ((pwd = getpwnam(utmpx->ut_user)) != NULL) 

            strcpy(name, pwd->pw_gecos); 

        else 

            strcpy(name, "?"); 

 

        /* 

         * Print stuff out. 

         */ 

        printf("%-8s %-16.16s %-8.8s %.12s", utmpx->ut_user, name, 

               utmpx->ut_line, ctime(&utmpx->ut_tv.tv_sec)+4); 
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        if (utmpx->ut_syslen > 0) 

            printf(" %s", utmpx->ut_host); 

 

        putchar('\n'); 

    } 

 

    exit(0); 

} 

% whom 

Login    Name             Line     Time             Host 

-------------------------------------------------------- 

davy     David A. Curry   console  May 29 10:19 

davy     David A. Curry   pts/1    May 29 10:19 

davy     David A. Curry   pts/0    May 29 10:19 

cathy    Cathy L. Curry   pts/2    May 29 15:30     big.school.edu 

This example only shows the use of  USER_PROCESS records. To see what the other types of records 
contain, the easiest thing to do is execute the who -a command. 

NOTE 

The utmpx functions are not provided in HP-UX 10.x, nor are the utmpx and wtmpx files. 

Instead, HP-UX 10.x provides an unsigned long ut_addr field in the struct utmp 
structure; this field contains the IP address of the remote host that a user has logged in 

from. 

Example 8-3 shows a modified version of the whom program from the previous example; this one 

has been rewritten for HP-UX 10.x to use the utmp file and functions. 

Example 8-3: whom 

#include <sys/types.h> 

#include <sys/socket.h> 

#include <sys/time.h> 

#include <netdb.h> 

#include <utmp.h> 

#include <pwd.h> 

 

int 

main(void) 

{ 

    char name[64]; 

    struct utmp *utmp; 

    struct passwd *pwd; 

    struct hostent *hp; 

 

    printf("Login    Name             Line     Time             Host\n"); 

    printf("--------------------------------------------------------\n"); 

 

    /* 

     * Read each entry from the file. 
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     */ 

    while ((utmp = getutent()) != NULL) { 

        /* 

         * Skip records that aren't logins. 

         */ 

        if (utmp->ut_type != USER_PROCESS) 

            continue; 

 

        /* 

         * Get the real name. 

         */ 

        if ((pwd = getpwnam(utmp->ut_user)) != NULL) 

            strcpy(name, pwd->pw_gecos); 

        else 

            strcpy(name, "?"); 

 

        /* 

         * Print stuff out. 

         */ 

        printf("%-8s %-16.16s %-8.8s %.12s", utmp->ut_user, name, 

               utmp->ut_line, 

               ctime(&utmp->ut_time)+4); 

 

        /* 

         * If there's a remote host, get its name and print it.  The 

         * gethostbyaddr() function is described in Chapter 14, 

         * Networking With Sockets. 

         */ 

        if (utmp->ut_addr != 0) { 

                hp = gethostbyaddr((char *) &utmp->ut_addr, sizeof(long), 

                        AF_INET); 

 

                if (hp != NULL) 

                        printf(" %s", hp->h_name); 

        } 

 

        putchar('\n'); 

    } 

 

    exit(0); 

} 

Porting Notes 

As mentioned earlier, non-System V versions of UNIX do not use the rather elaborate utmp file 

described above. Instead, they use a simple record format, described in the include file utmp.h: 

struct utmp { 

    char    ut_line[8]; 

    char    ut_name[8]; 

    char    ut_host[16]; 

    long    ut_time; 

}; 

The fields are: 
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ut_line The name of the device the user is logged in on, with the leading “/dev/” stripped 

off. 

ut_name The user's login name. If this field is empty, the port is not in use. 

ut_host The name of the remote host, if the user is logged in via the network. This field does 

not exist in all versions. 

ut_time The time the user logged in. 

There are no fancy functions provided for reading the utmp and wtmp files; instead, since each record 

is of fixed size, they can just be read with read or fread. 

In order to insert a record into the utmp file, the ttyslot function is used: 

#include <stdlib.h> 

 

int ttyslot(void); 

This function returns the index of the current user's entry in the utmp file. This is done by scanning 

the files in /dev for the device associated with the standard input, standard output, or standard error 

output, and then returning the index of the struct utmp that contains that device's name in its 

ut_line field. –1 is returned if an error is encountered. 

The Lastlog File 

On Solaris 2.x systems, the /var/adm/lastlog file is used to record the last login time of each user. 

This file is maintained by the login command. (Note that users who log in by using rsh to start a 
window system terminal emulator such as xterm do not pass through the login command, and hence 

do not appear in this file.) The file is indexed by user-id number, and contains one structure for each 

user. 

On IRIX 5.x systems, there is an individual file for each user called /var/adm/lastlog/username 

which contains a single structure for that user. 

This functionality is not provided in HP-UX 10.x. 

The struct lastlog structure is defined in the include file lastlog.h: 

struct lastlog { 

    time_t  ll_time; 

    char    ll_line[8]; 

    char    ll_host[16]; 

}; 

The fields are: 

ll_time The time the user last logged in. 

ll_line The name of the terminal device the user last logged in on. 
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ll_host The name of the host the user logged in from, if she logged in via the network. This 

field is 257 bytes long in IRIX 5.x. 

Example 8-4 shows a program that prints the last login time for each user named on its command 

line. This version is for Solaris 2.x. 

Example 8-4: lastlog 

#include <sys/types.h> 

#include <sys/time.h> 

#include <lastlog.h> 

#include <stdio.h> 

#include <pwd.h> 

 

int 

main(int argc, char **argv) 

{ 

    FILE *fp; 

    struct lastlog ll; 

    struct passwd *pwd; 

 

    /* 

     * Open the lastlog file. 

     */ 

    if ((fp = fopen("/var/adm/lastlog", "r")) == NULL) { 

        perror("/var/adm/lastlog"); 

        exit(1); 

    } 

 

    /* 

     * For each user named on the command line... 

     */ 

    while (--argc) { 

        /* 

         * Look up the user's user-id number. 

         */ 

        if ((pwd = getpwnam(*++argv)) == NULL) { 

            fprintf(stderr, "unknown user: %s\n", *argv); 

            continue; 

        } 

 

        /* 

         * Read the right structure. 

         */ 

        fseek(fp, pwd->pw_uid * sizeof(struct lastlog), 0); 

        fread(&ll, sizeof(struct lastlog), 1, fp); 

 

        /* 

         * Print it out. 

         */ 

        printf("%-8.8s %-8.8s %-16.16s %s", *argv, ll.ll_line, ll.ll_host, 

               ctime(&ll.ll_time)); 

    } 

 

    fclose(fp); 

    exit(0); 
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} 

% lastlog davy root cathy 

davy     pts/3                     Sun May 29 15:28:18 1994 

root     console                   Sun May 22 17:11:38 1994 

cathy    pts/2    big.school.edu   Thu May  5 12:16:32 1994 

Example 8-5 shows the same program as it would be written on an IRIX 5.x system. 

Example 8-5: lastlog 

#include <sys/types.h> 

#include <sys/time.h> 

#include <lastlog.h> 

#include <stdio.h> 

 

int 

main(int argc, char **argv) 

{ 

    FILE *fp; 

    struct lastlog ll; 

    char lastlogfile[1024]; 

 

    /* 

     * For each user named on the command line... 

     */ 

    while (--argc) { 

        /* 

         * Open the lastlog file. 

         */ 

        sprintf(lastlogfile, "/var/adm/lastlog/%s", *++argv); 

 

        if ((fp = fopen(lastlogfile, "r")) == NULL) { 

            perror(lastlogfile); 

            continue; 

        } 

 

        /* 

         * Read the structure. 

         */ 

        fread(&ll, sizeof(struct lastlog), 1, fp); 

 

        /* 

         * Print it out. 

         */ 

        printf("%-8.8s %-8.8s %-16.16s %s", *argv, ll.ll_line, ll.ll_host, 

               ctime(&ll.ll_time)); 

 

        fclose(fp); 

    } 

 

    exit(0); 

} 

% lastlog davy root cathy 
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davy     pts/3                     Sun May 29 15:28:18 1994 

root     console                   Sun May 22 17:11:38 1994 

cathy    pts/2    big.school.edu   Thu May  5 12:16:32 1994 

The Shells File 

The /etc/shells file exists so that a system administrator can list the valid shells on his system. This 

allows commands such as ftp to refuse access to users whose shells are not listed here. On systems 

that support the chsh command for changing a user's login shell, this file gives the legal values they 

may choose from. 

The /etc/shells file is simply a list, one per line, of the path names of the legal shells. However, if it 

is not present, then the legal values are the normal system shells, usually /bin/sh, /bin/csh, /bin/ksh, 

and sometimes /bin/rsh. In order to allow programs to deal with this in a portable fashion, three 

functions are provided: 

char *getusershell(void); 

 

void setusershell(void); 

 

void endusershell(void); 

The getusershell function returns a pointer to a character string containing the next shell listed 
in the file. If the file does not exist, it returns the next shell listed in the list of standard shells. The 

setusershell and endusershell functions open and rewind, and close the file, respectively. 

These functions are not available in IRIX 5.x. 

Writing Set-User-Id and Set-Group-Id Programs 

Set-user-id and set-group-id programs are extraordinarily useful tools (in fact, the set-user-id bit is 
the only part of the original UNIX operating system that was patented). They can make your system 

more secure by granting unprivileged users the ability to perform certain privileged tasks without 

“giving away the store” and letting everyone have the root password. 

Before undertaking the writing of a set-user-id or set-group-id program however, it is important to 

realize that there are several ways in which an unscrupulous user can attempt to trick these programs 

into granting him privileges that he should not have. This includes fooling the program into reading 

or writing files that the attacker does not have access to (e.g., the password file), getting the program 

to start an interactive shell with the wrong real or effective user-id, tricking the program into 

changing the permission bits on a file other than the one it thinks it's changing, making the program 

execute a command different from the one it thinks it's executing, and so forth. 

The simplest rule to follow in writing set-user-id and set-group-id programs is, “if there's another 
way, don't.”  These programs should not be used indiscriminately. If there is a secure method in 

which you can accomplish what you want without using a set-user-id or set-group-id program, use 
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that method instead. Don't create a set-user-id or set-group-id program just to save yourself the 

trouble of doing things right the first time. 

And while we're speaking of doing things right, if you do decide to write a set-user-id program, 

always begin the program as follows: 

int euid; 

 

int 

main(int argc, char **argv) 

{ 

    /* variable declarations */ 

 

    euid = geteuid(); 

    seteuid(getuid()); 

. 

. 

. 

This code causes the program to save its special privileges, but revert back to the calling user's 

“normal” privileges at once. In this way, if the program should encounter an error, it can only cause 

the damage that the user's privileges allow it to, it cannot cause extra damage because of its extra 

privileges. Then, when the program needs to do a privileged operation, the code for that can be 
bracketed as follows: 

/* non-privileged code */ 

 

seteuid(euid); 

 

/* privileged code */ 

 

seteuid(getuid()); 

 

/* non-privileged code */ 

In this way, the program only uses its special privileges when it absolutely has to, and the amount 

of code that has to be carefully examined for defects is much smaller. The same idea applies for set-

group-id programs. 

If you've read all the above and still think you need to write a program, follow the list of rules below. 

This list has been adapted and expanded from a paper by Matt Bishop entitled, How to Write a 

Setuid Program, which appeared in the January/February 1987 issue of ;login:, the newsletter of the 

USENIX Association. Some of these rules describe topics discussed later in the book; if you don't 

understand them now, don't worry. But be sure to come back and read this list if you ever should 
need to write a set-user-id or set-group-id program. 

1. The overall rule, upon which all the rest of these rules is based is, even paranoids have enemies. 

You cannot be too paranoid when writing these programs; one slip-up and the security of your 

system will be defeated. Don't trust anyone or anything, not even the operating system. Don't 

ever think, “this can't happen.”  Sooner or later it will, and your program had better be prepared 

for it. 
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2. Never, ever, write set-user-id or set-group-id interpreted scripts. Some versions of UNIX allow 

command scripts, such as shell scripts, to be made set-user-id or set-group-id. Unfortunately, 

the power and complexity of the interpreters makes them easy to trick into performing functions 

that were not intended. This rule applies to Bourne shell scripts, C shell scripts, Korn shell 

scripts, Perl scripts, Awk scripts, Tcl scripts, and indeed any other script that is processed by a 

command interpreter. 

3. Be as restrictive as possible in choosing the user-id and group-id. Don't give a program more 

privilege than it needs. For example, if a game program is made set-user-id root so that it can 

write its score file, and an attacker can figure out how to get the game to start a subshell (as 

many can), the set-user-id bit will give the attacker a super-user shell. On the other hand, if the 

game programs were all made set-user-id to the “games” account, then the attacker would be 

able to do much less with his set-user-id subshell (he could change the game's high score, but 

not much else). 

4. Reset the effective user-id and group-id before calling exec. This seems obvious, but is often 
overlooked. When it is, a user may find herself running a program with unexpected privileges. 

This is often a problem with programs that use the setreuid or setregid functions. It is 

important to remember that even if you don't call exec directly, some library routines such as 

popen and system call it for you. Whenever calling any function whose purpose is to execute 
another command as though that command were typed at the keyboard, the effective user-id 

and group-id should be reset as follows, unless there is a compelling reason not to: 

setuid(getuid()); 

setgid(getgid()); 

5. Close all unnecessary files before calling exec. If your set-user-id or set-group-id program uses 
its privileges to open a file that would otherwise be inaccessible to the user, and then executes 

another process (such as a shell) without closing that file, the new process will also be able to 

read and/or write that file, because files stay open by default across calls to exec. The easiest 
way to prevent this is to set the file's close-on-exec flag, as described in Chapter 6, Special-

Purpose File Operations, immediately after opening the file. 

6. Check ownership and access permissions on file descriptors, not file names. A favorite 

technique of attackers is to execute a set-user-id or set-group-id program that accesses one of 

their own files (programs that copy users' files into trusted areas such as spool directories are a 

prime example). The program uses stat or access to check the ownership or permissions on 

the file, and then opens the file and processes it. This creates a window between the time the 

program has checked things and the time it opens the file. The attacker can stop the program, 
replace the real file with a symbolic link to some other file, and then continue the program. The 

program, already satisfied that it has made its checks, continues on as if nothing is wrong. To 

avoid this, always open the file first. Then use fstat on the file descriptor to check ownership 
and permissions. This technique insures that even if the attacker is trying to fool you with a 

symbolic link, you will be checking the information about the file you will actually be using, 

and not the file he substituted. 
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7. Catch or ignore all signals. As mentioned in the previous rule, an attacker can use some signals 

(stop and continue, in that case) to confuse your program. She can let your program check that 

everything is “right” before doing something, stop the program, change things around so they 

are no longer “right,” and then let the program continue. Set-user-id and set-group-id programs 

should catch or ignore all signals possible. At the very minimum, the following signals should 

be caught or ignored: SIGHUP, SIGINT, SIGQUIT, SIGILL, SIGTRAP, SIGABRT (SIGIOT), 

SIGEMT, SIGFPE, SIGBUS, SIGSEGV, SIGSYS, SIGPIPE, SIGALRM, SIGTERM, SIGUSR1, 

SIGUSR2, SIGPOLL, SIGTSTP, SIGTTIN, SIGTTOU, SIGVTALRM, SIGPROF, SIGXCPU, 

SIGXFSZ. 

8. Never trust your inherited environment. Do not rely on the value of a users' environment 

variables, such as PATH, USER, LOGNAME, etc. When executing programs, always specify an 
absolute path name to the program to be executed. If you rely on the user's search path, he can 

use this to trick you into executing something you don't expect. When checking identity, use 

only the real user-id and the password file. If you rely on the environment variables or the 

results of getlogin or cuserid, the user can lie to you. Always set your umask explicitly. If 

you don't, the user can trick you into creating world-writable files. (Don't create the file and 

then rely on using chmod to fix its mode; the user can stop your program and change the files 
contents before you get to complete both steps.) 

9. Never pass on your inherited environment. This relates to the item above, but is more insidious. 

Especially with shared libraries, it is possible for an attacker to put things in the environment 

that do not affect your program, but do affect programs executed by your program. Always 

provide programs you execute from a set-user-id or set-group-id program with a “clean” 

environment. If you must copy values from the inherited environment into the new one, check 

their contents for validity before passing them on. 

10. Never trust your input. Never rely on the fact that your program's input is in the format you 

expect, or that it was created by whoever or whatever was supposed to have created it. If your 
program is given garbage as input, it should recognize this and discard it, rather than try to make 

sense of the garbage. If your program reads input from somewhere, make sure that it is not 

possible to overflow your program's buffers. Never assume an array is big enough to hold the 

input; if you read data into an array, refuse to read more data than the array will hold. Never, 

ever, use the gets function. 

11. Never trust system calls or library routines. Check the return values of everything, even those 

things that “can't happen.”  For example, it is often assumed that the close function cannot 
fail. But on an NFS file system, the only indication a process receives that a file system it tried 

to write to is full is delivered as a return code from close. 

12. Make only safe assumptions about error recovery. If your program detects an error over which 

it has no control (such as no more file descriptors), the proper thing to do is exit. Do not, under 

any circumstances, attempt to handle unexpected or unknown situations; you may be operating 

under incorrect assumptions. For example, a long time ago, the passwd program assumed that 

if the password file could not be opened, something was seriously wrong with the system, and 

the user should be given a super-user shell to fix the problem. Not a good assumption. 
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Following these rules will help you keep your set-user-id or set-group-id program safe from attack. 

But no list of rules is perfect. Always approach the writing of these programs with the utmost care, 

and always verify that they do only what you want them to do. And as mentioned before, if you 

don't really, really need one, don't write one. 

Chapter Summary 

In this chapter, we examined the user-id and the group-id. The methods for “converting” between 

these numbers to their text-based counterparts in the password and group files are used regularly by 

systems programs ranging from the ls command to the electronic mail system to the printer system. 

The methods for exchanging one user-id or group-id for another are frequently used by programs 

that must allow users to perform a privileged task; the last section of this chapter describes many of 

the pitfalls the programmer must watch out for when doing this. It is important to understand that 

almost everything the UNIX system does is tied, at some level, to the user-id and/or group-id. The 

importance of being able to handle these quantities properly is paramount. 
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Chapter 9 
System Configuration and 

Resource Limits 

Because of its wide variety of uses, from a single-user workstation system, to a network file server, 

to a multi-user timesharing system, the UNIX operating system has always offered the system 

administrator a number of parameters that can be “tuned” to make the system perform better under 

specific types of load. Some of these parameters are intended to control the behavior of the operating 

system kernel proper: how many file table entries to allocate, how much memory to allocate for 

interprocess communication, how many process table slots to use, and so forth. Other parameters 
are meant to control individual processes, to prevent a single process from consuming the entire 

system's resources: how many open files a process may have, how much memory it may use, how 

large a file it may create, etc. 

In early versions of the UNIX system, almost all of these parameters were defined using constants 

in system include files. This made it difficult to change one of the parameters, because after doing 

so, every program that used the parameter had to be recompiled. Gradually, particularly as third-

party vendors began selling software for the UNIX system, the values of more and more of these 

parameters could be determined, and sometimes changed, via system calls and library routines. This 

enabled software to be more portable: if a program could determine at runtime what its limits were, 

it did not have to be recompiled on each system where those limits were different. POSIX and other 

UNIX standardization efforts have improved this situation even more, by defining standard 
interfaces and standard resource names, enabling programs to portably determine almost any limit 

they may need to be aware of. 

In this chapter, we will examine the routines provided for obtaining and changing the values of 

system configuration parameters, and also the parameters themselves and what they are used for. 

We will also examine the calls available for getting and setting per-process resource limits, and will 

look at the routines available for determining how many system resources a process has used. 
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General System Information 

Each system maintains a number of general information parameters, including the host name, 

operating system name, operating system release number, hardware serial number, machine 

architecture, and so forth. The basic system call to obtain this information is called uname: 

#include <sys/utsname.h> 

 

int uname(struct utsname *name); 

This function places system configuration information in the structure pointed to by name and 

returns a non-negative value on success. If a failure occurs, –1 is returned and the external integer 

errno is set to indicate the error that occurred. 

The struct utsname structure has the following members: 

struct utsname { 

    char    sysname[SYS_NMLN]; 

    char    nodename[SYS_NMLN]; 

    char    release[SYS_NMLN]; 

    char    version[SYS_NMLN]; 

    char    machine[SYS_NMLN]; 

}; 

sysname A null-terminated string naming the current operating system. 

nodename A null-terminated string containing the name the system is known by on a 

communications network (its host name). 

release A null-terminated string identifying the operating system release. 

version A null-terminated string identifying the operating system version. 

machine A null-terminated string identifying the type of hardware the operating system is 

running on (the machine architecture). 

The uname call is specified by the POSIX standard, which adopted it from versions of System V 

UNIX. SVR4 also provides another call, sysinfo, that performs a similar function, but can provide 
some additional information: 

#include <sys/systeminfo.h> 

 

long sysinfo(int command, char *buf, long count); 

The sysinfo function copies information about the operating system, as requested by command, 

into buf. The count parameter specifies the length of buf; it should be at least 257 bytes in size. 

Upon successful completion, sysinfo returns the number of bytes in buf required to hold the return 

value and the terminating null character. If this value is less than or equal to count the whole value 

was copied, otherwise, count–1 bytes plus a terminating null character were copied. If an error 

occurs, –1 is returned and the reason for failure is stored in errno. 
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The legal values for command, defined in sys/systeminfo.h, are: 

SI_SYSNAME Return the operating system name. This is the same value returned by 

uname in the sysname field. 

SI_HOSTNAME Return the name of the current host, as it is known on a communications 

network. This is the same value returned by uname in the nodename 
field. 

SI_SET_HOSTNAME Set the system host name to the value contained in buf. This command 

is restricted to the super-user. 

SI_RELEASE Return the operating system release. This is the same value returned by 

uname in the release field. 

SI_VERSION Return the operating system version. This is the same value returned by 

uname in the version field. 

SI_MACHINE Return the machine type. This is the same value returned by uname in 

the machine field. 

SI_ARCHITECTURE Return the hardware instruction set architecture. 

SI_HW_PROVIDER Return the name of the hardware manufacturer. 

SI_HW_SERIAL Return the ASCII representation of the hardware-specific serial number 
of the physical machine. In common usage, this number is usually called 

the hostid, and does not necessarily represent the true serial number of 

the machine. However, it is assumed that when the two strings returned 

by SI_HW_PROVIDER and SI_HW_SERIAL are combined, the result will 
be unique. This value may contain non-numeric characters. Note that on 

Sun systems, this value is usually represented as a hexadecimal number, 

but sysinfo returns it as a decimal number. 

SI_SRPC_DOMAIN Return the Secure Remote Procedure Call domain name. 

SI_SET_SRPC_DOMAIN Set the Secure Remote Procedure Call domain name to the value 

contained in buf. 

The sysinfo function is not available in HP-UX 10.x. 

Example 9-1 shows a program that prints out the information obtained by uname and sysinfo. 

Example 9-1: systeminfo 

#include <sys/systeminfo.h> 

#include <sys/utsname.h> 

#include <stdio.h> 

 

typedef struct { 

    int     command; 

    char    *string; 
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} Info; 

 

Info info[] = { 

    SI_SYSNAME,         "SI_SYSNAME", 

    SI_HOSTNAME,        "SI_HOSTNAME", 

    SI_RELEASE,         "SI_RELEASE", 

    SI_VERSION,         "SI_VERSION", 

    SI_MACHINE,         "SI_MACHINE", 

    SI_ARCHITECTURE,    "SI_ARCHITECTURE", 

    SI_HW_PROVIDER,     "SI_HW_PROVIDER", 

    SI_HW_SERIAL,       "SI_HW_SERIAL", 

    SI_SRPC_DOMAIN,     "SI_SRPC_DOMAIN", 

    0,                  NULL 

}; 

 

int 

main(void) 

{ 

    Info *ip; 

    char buf[BUFSIZ]; 

    struct utsname name; 

 

    /* 

     * Request uname information. 

     */ 

    if (uname(&name) < 0) { 

        perror("uname"); 

        exit(1); 

    } 

 

    /* 

     * Print it out. 

     */ 

    printf("Uname information:\n"); 

    printf("\t sysname: %s\n", name.sysname); 

    printf("\tnodename: %s\n", name.nodename); 

    printf("\t release: %s\n", name.release); 

    printf("\t version: %s\n", name.version); 

    printf("\t machine: %s\n", name.machine); 

 

    /* 

     * Request and print system information. 

     */ 

    printf("\nSysinfo information:\n"); 

 

    for (ip = info; ip->string != NULL; ip++) { 

        if (sysinfo(ip->command, buf, sizeof(buf)) < 0) { 

            perror("sysinfo"); 

            exit(1); 

        } 

 

        printf("%16s: %s\n", ip->string, buf); 

    } 

 

    exit(0); 

} 
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% systeminfo 

Uname information: 

         sysname: SunOS 

        nodename: msw 

         release: 5.3 

         version: Generic 

         machine: sun4m 

 

Sysinfo information: 

      SI_SYSNAME: SunOS 

     SI_HOSTNAME: msw 

      SI_RELEASE: 5.3 

      SI_VERSION: Generic 

      SI_MACHINE: sun4m 

 SI_ARCHITECTURE: sparc 

  SI_HW_PROVIDER: Sun_Microsystems 

    SI_HW_SERIAL: 2147630684 

  SI_SRPC_DOMAIN: 

Porting Notes 

Most systems based on some version of System V will offer the uname system call, although they 

will not offer sysinfo. Versions based on BSD however, will offer two different calls that may be 
used to obtain only some parts of the information described above: 

int gethostname(char *name, int len); 

 

int sethostname(char *name, int len); 

 

long gethostid(void); 

The gethostname function copies the current name of the host as it is known on a communications 

network into the character array pointed to by name, which is len characters long. The 

sethostname function sets the current host name to the value contained in name. This call is 

restricted to the super-user. The gethostid function returns a 32-bit identifier for the system, 
which should be unique across all hosts. This value is equivalent to the one returned by the 

SI_HW_SERIAL command to the sysinfo function. (On early BSD systems such as the VAX, 
where the serial number was not available through software, this value was equal to the system's IP 

address.) 

System Resource Limits 

There are numerous limits imposed by both the operating system and by the native hardware 

architecture; these include such things as the maximum positive integer, the minimum decimal value 

of a floating-point number, the maximum number of characters in a terminal input buffer, the 

maximum length of a file name, and so forth. Prior to the POSIX standard, these limits were defined 

in various include files with various names, and the programmer just sort of had to know which 

things were defined where. 
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The POSIX standard specifies that most of these limits should be described, using standard constant 

names, in the include file limits.h. The standard also specifies three functions that can be used to 

determine the values of the more “interesting” of these values at runtime: 

#include <unistd.h> 

 

long sysconf(int name); 

 

long fpathconf(int fd, int name); 

 

long pathconf(const char *path, int name); 

The sysconf function returns the current value of a configurable system limit or option. If the call 

fails due to an error, it returns –1 and sets errno to indicate the error. If it fails due to an unknown 

value of name, it returns –1 but does not change the value of errno. 

The legal values for name and their meanings are: 

_SC_VERSION The version of the POSIX.1 standard supported by this 

system. 

_SC_XOPEN_VERSION The version of the X/Open standard supported by this 
system. 

_SC_JOB_CONTROL A Boolean value indicating whether or not job control is 

supported. 

_SC_SAVED_IDS A Boolean value indicating whether or not saved ids (used 

by setuid and setgid) are supported. 

_SC_ASYNCHRONOUS_IO A Boolean value indicating whether or not the system 

supports asynchronous input and output. 

_SC_FSYNC A Boolean value indicating whether or not the system 

supports file synchronization (the fsync system call). 

_SC_MAPPED_FILES A Boolean value indicating whether or not the system 

supports memory-mapped files. 

_SC_MEMLOCK A Boolean value indicating whether or not the system 

supports process memory locking. 

_SC_MEMLOCK_RANGE A Boolean value indicating whether or not the system 

supports process memory range locking. 

_SC_MEMORY_PROTECTION A Boolean value indicating whether or not the system 

supports memory protection. 

_SC_MESSAGE_PASSING A Boolean value indicating whether or not the system 

supports message passing. 
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_SC_PRIORITIZED_IO A Boolean value indicating whether or not the system 

supports prioritized input and output. 

_SC_PRIORITY_SCHEDULING A Boolean value indicating whether or not the system 

supports process scheduling. 

_SC_REALTIME_SIGNALS A Boolean value indicating whether or not the system 

supports the POSIX realtime signals extension. 

_SC_SEMAPHORES A Boolean value indicating whether or not the system 

supports semaphores. 

_SC_SHARED_MEMORY_OBJECTS A Boolean value indicating whether or not the system 

supports shared memory objects. 

_SC_SYNCHRONIZED_IO A Boolean value indicating whether or not the system 

supports synchronized input and output. 

_SC_TIMERS A Boolean value indicating whether or not the system 

supports timers. 

_SC_ARG_MAX The maximum combined size, in bytes, of argv and envp. 

_SC_CHILD_MAX The maxmimum number of processes allowed to an 

individual user-id. This is often called NPROC on older 
systems. 

_SC_CLK_TCK The number of clicks per second of the system clock. This 

is often called HZ on older systems. 

_SC_NGROUPS_MAX The maximum number of simultaneous groups a process 

may belong to. This is often called NGROUPS_MAX on older 
systems. 

_SC_OPEN_MAX The maximum number of open files per process. This is 

often called NOFILE on older systems. 

_SC_STREAM_MAX The maximum number of open streams per process. 

_SC_TIMER_MAX The maximum number of timers per process. 

_SC_MQ_OPEN_MAX The maximum number of open message queue descriptors 

per process. 

_SC_SEM_NSEMS_MAX The maximum number of semaphores per process. 

_SC_SIGQUEUE_MAX The maximum number of queued signals that a process 

may send and have pending at the receiver(s) at any time. 

_SC_LOGNAME_MAX The maximum number of characters in a login name. 

_SC_PASS_MAX The maximum number of significant characters in a 

password. 
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_SC_TZNAME_MAX The maximum length of a timezone name. 

_SC_NPROCESSORS_CONF The number of processors configured into the system. 

_SC_NPROCESSORS_ONLN The number of processors on line. 

_SC_PAGESIZE The system memory page size. This is not necessarily the 

same as the hardware memory page size. 

_SC_PHYS_PAGES The total number of pages of physical memory in the 
system. 

_SC_AVPHYS_PAGES The number of pages of physical memory not currently in 

use by the system. 

_SC_AIO_LISTIO_MAX The maximum number of I/O operations in a single list I/O 

call supported by the system. 

_SC_AIO_MAX The maximum number of outstanding asynchronous I/O 

operations supported by the system. 

_SC_AIO_PRIO_DELTA_MAX The maximum amount by which a process can decrease its 

asynchronous I/O priority level from its own scheduling 

priority. 

_SC_DELAYTIMER_MAX The maximum number of timer expiration overruns. 

_SC_MQ_PRIO_MAX The maximum number of message priorities supported by 
the system. 

_SC_RTSIG_MAX The maximum number of realtime signals reserved for 

application use in this implementation. 

_SC_SIGRT_MIN The lowest-numbered realtime signal available for 

application use. 

_SC_SIGRT_MAX The highest-numbered realtime signal available for 

application use. 

_SC_SEM_VALUE_MAX The maximum value a sempahore may have. 

The pathconf function returns the current value of a configurable limit or option associated with 

the file or directory named in path. The fpathconf function returns the same information, but 

about the file referenced by the open file descriptor fd. Both functions return –1 if an error occurs. 

The legal values for name and their meanings are: 

_PC_LINK_MAX The maximum number of links to a single file or directory. If 

path or fd refers to a directory, the value returned applies to the 

directory itself. 
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_PC_MAX_CANON The maximum number of bytes in a line of input from a terminal. 

If path or fd do not refer to a terminal device, the return value is 

meaningless. 

_PC_MAX_INPUT The maximum number of bytes in a terminal input queue. If path 

or fd do not refer to a terminal device, the return value is 

meaningless. 

_PC_NAME_MAX The maxmimum number of bytes in a file name. If path or fd do 

not refer to a directory, the return value is meaningless. 

Otherwise, the return value applies to the file names within the 

directory. 

_PC_PATH_MAX The maximum number of characters in a path name. If path or 

fd do not refer to a directory, the return value is meaningless. 

Otherwise, the value returned is the maximum length of a relative 

path name when the specified directory is the working directory. 

_PC_PIPE_BUF The maximum number of bytes that are atomic in a write to a pipe 

or FIFO. If path or fd refer to a pipe or FIFO, the return value 

applies to the pipe or FIFO. If path or fd refer to a directory, the 

return value applies to any FIFOs that exist or can be created in 

that directory. If path or fd refer to any other type of file, the 

value returned is meaningless. 

_PC_CHOWN_RESTRICTED A Boolean value indicating whether or not unprivileged users may 

use the chown system call to change the ownership of their files. 

If path or fd refer to a directory, the returned value applies to 

any files, other than directories, that exist or can be created within 

that directory. 

_PC_NO_TRUNC A Boolean value indicating whether or not path names whose 

components are longer than _PC_NAME_MAX will generate an 

error. If path or fd do not refer to a directory, the return value is 

meaningless. Otherwise, the return value applies to the file names 

within the directory. 

_PC_VDISABLE This value can be used to disable special terminal characters (see 

Chapter 12, Terminals) such as the interrupt character or the erase 

character. If path or fd do not refer to a terminal device, the 

return value is meaningless. 

_PC_ASYNC_IO A Boolean value indicating whether or not ansynchronous input 

and output may be performed on this file. If path or fd do not 

refer to a terminal device, the return value is meaningless. 
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_PC_PRIO_IO A Boolean value indicating whether or not prioritized input and 

output may be performed on this file. If path or fd do not refer 

to a terminal device, the return value is meaningless. 

_PC_SYNC_IO Indicate whether or not synchronous input and output may be 

performed on this file. If path or fd refer to a directory, the return 

value applies to the directory itself. 

Porting Notes 

BSD systems, because they predate POSIX, do not offer the functions described in this section. 

Instead, most of their configuration parameters are stored in include files. However, two functions 

are available: 

int getdtablesize(void); 

 

int getpagesize(void); 

The getdtablesize function returns the number of file descriptors available to the process; this 

is like the _SC_OPEN_MAX option to sysconf. The getpagesize function returns the system page 

size (not necessarily the same as the hardware page size); this is like the _SC_PAGESIZE option to 

sysconf. 

Process Resource Limits 

There are also several limits that are applied on a per-process basis. Many of these limits can be 
changed by the process, and are meant to aid in stopping “runaway” behavior. 

All versions of UNIX provide the ulimit system call, although its behavior is slightly different in 

SVR4: 

#include <ulimit.h> 

 

long ulimit(int cmd, long newlimit); 

The values of cmd are: 

UL_GETFSIZE Return the maximum file size, in 512-byte block units, that the process may 

create. Any size file may be read, irregardless of the value of this limit. 

UL_SETFSIZE Set the maximum file size limit to the value in newlimit. Any process may 

decrease this value, but only a process with super-user permissions may 

increase it. 

UL_GETMEMLIM Return the maximum amount of memory the process may use. This command 

is not available in HP-UX 10.x. 
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UL_GETMAXBRK Return the maximum amount of memory the process may use. This command 

is only available in HP-UX 10.x. 

UL_GETDESLIM Return the maximum number of files the process may have open. This 

command is not available in HP-UX 10.x. 

Upon successful completion, ulimit returns a non-negative value. If an error occurs, it returns –1 

and sets the external integer errno to describe the error. 

A more general interface to limits was first introduced by BSD UNIX, and later adopted by SVR4: 

#include <sys/time.h> 

#include <sys/resource.h> 

 

int getrlimit(int resource, struct rlimit *rlp); 

 

int setrlimit(int resource, const struct rlimit *rlp); 

Each call to either getrlimit or setrlimit applies to a single resource, identified by resource. 

There are two limits to each resource, a current (soft) limit, and a maximum (hard) limit. Soft limits 

may be changed by any process to any value less than or equal to the hard limit. Only a process with 
super-user permissions may raise the hard limit, but any process may (irreversibly) lower the hard 

limit. Limits may be specified as “infinity” by setting them to the constant RLIM_INFINITY; in this 

case, the operating system will set the maximum value. 

The rlp parameter is a pointer to a structure of type struct rlimit: 

struct rlimit { 

    rlim_t    rlim_cur; 

    rlim_t    rlim_max; 

}; 

The possible resources are: 

RLIMIT_CORE The maximum size of a core file, in bytes, that may be created by the 
process. A limit of 0 will prevent the creation of a core file. The writing of 

a core file will terminate when this size is reached, even if the file is 

incomplete. 

RLIMIT_CPU The maximum amount of processor time, in seconds, that may be used by 

the process. This is a soft limit only; there is no hard limit. When the limit 

is exceeded, the system will send the process a SIGXCPU signal (see 
Chapter 10, Signals). 

RLIMIT_DATA The maximum size of the process' data segment, in bytes. When this limit 

is reached, calls to malloc and other memory allocation routines will fail. 
This resource limit is not available in HP-UX 10.x. 
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RLIMIT_FSIZE The maximum size of a file, in bytes, that may be created by a process. A 

limit of 0 will prevent file creation. When this limit is exceeded, the process 

will receive a SIGXFSZ signal. 

RLIMIT_NOFILE The maximum number of file descriptors (and hence open files) that the 

process may create. When this limit is exceeded, further attempts to open 

files will fail. 

RLIMIT_STACK The maximum size, in bytes, of the process' stack. The system will not 

automatically grow the stack beyond this limit. When this limit is reached, 

the process will receive a SIGSEGV signal. This resource limit is not 
available in HP-UX 10.x. 

RLIMIT_VMEM The maximum size of the process' mapped address space, in bytes. When 

this limit is exceeded, further calls to malloc and other memory allocation 

functions will fail. Calls to mmap will also fail. And finally, the system will 
no longer automatically grow the process' stack. This resource limit is not 

available in HP-UX 10.x. 

Upon successful completion, both calls return 0. Otherwise, –1 is returned and errno is set to 
indicate the error. 

Porting Notes 

On older versions of UNIX, the ulimit function can only be used to change the maximum file size. 
It takes a single parameter, the new value of the limit. 

Resource Utilization Information 

Most versions of UNIX provide the times system call, which can be used to find out how much 
processor time the current process and its children have used: 

#include <sys/times.h> 

#include <limits.h> 

 

clock_t times(struct tms *buf); 

The struct tms structure is defined as: 

struct tms { 

    clock_t tms_utime; 

    clock_t tms_stime; 

    clock_t tms_cutime; 

    clock_t tms_cstime; 

}; 

The information returned describes the calling process and all of its terminated child processes (see 
Chapter 11, Processes) for which it has executed a wait routine. The specific fields are: 
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tms_utime The amount of processor time used while executing instructions in the user 

space of the calling process. 

tms_stime The amount of processor time used by the system on behalf of the calling 

process (i.e., the amount of time performing system calls). 

tms_cutime The sum of the tms_utime and tms_cutime values for the child process. 

tms_cstime The sum of the tms_stime and tms_cstime values for the child process. 

All times are reported in clock ticks; the number of clock ticks per second is defined as CLK_TCK in 

the limits.h include file, or may be obtained with sysconf. 

Upon successful completion, times returns the elapsed real time, in clock ticks, from some time in 
the past (usually system boot time). This point does not change between calls, so two successive 

calls to times will allow the elapsed time between calls to be computed. If the call fails, –1 is 

returned and an error code is placed in errno. 

Porting Notes 

On older systems, times reported times in seconds, rather than clock ticks. 

BSD-based systems offer a much more comprehensive facility for obtaining process resource 

consumption information: 

#include <sys/time.h> 

#include <sys/resource.h> 

 

int getrusage(int who, struct rusage *rusage); 

The who parameter may be given as either RUSAGE_SELF or RUSAGE_CHILDREN; the struct 

rusage structure is defined as follows: 

struct  rusage { 

    struct timeval ru_utime; 

    struct timeval ru_stime; 

    long    ru_maxrss; 

    long    ru_ixrss; 

    long    ru_idrss; 

    long    ru_isrss; 

    long    ru_minflt; 

    long    ru_majflt; 

    long    ru_nswap; 

    long    ru_inblock; 

    long    ru_oublock; 

    long    ru_msgsnd; 

    long    ru_msgrcv; 

    long    ru_nsignals; 

    long    ru_nvcsw; 

    long    ru_nivcsw; 

}; 

The fields contain: 
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ru_utime The total amount of time spent executing in user mode, in seconds and 

microseconds. 

ru_stime The total amount of time spent executing in system mode, in seconds and 

microseconds. 

ru_maxrss The maximum resident set size (amount of memory used), in pages. 

ru_idrss An “integral” value indicating the amount of memory in use by a process 
while the process is running. This is the sum of the resident set sizes of the 

process running when a clock tick occurs. The value is reported in pages 

times clock ticks. 

ru_minflt The number of minor page faults (faults that do not require physical I/O 

activity) serviced. 

ru_majflt The number of major page faults (faults the require physical I/O activity) 

serviced. 

ru_nswap The number of times the process was swapped out of main memory. 

ru_inblock The number of times the file system had to perform input when servicing a 

read request. 

ru_outblock The number of times the file system had to perform output when servicing a 

write request. 

ru_msgsnd The number of messages sent over sockets. 

ru_msgrcv The number of messages received over sockets. 

ru_nsignals The number of signals delivered to the process. 

ru_nvcsw The number of times a context switch resulted due to the process voluntarily 

giving up the processor before its time slice was completed (usually to wait 
on the availability of a resource). 

ru_nivcsw The number of times a context switch resulted due to a higher priority process 

becoming runnable or because the current process used up its time slice. 

Although some of these values are of dubious use, others are sometimes handy to know. This 

information can be obtained in SVR4 through the /proc file system, described in Appendix C. 

Beginning with Solaris 2.5, getrusage has been restored as a system call in Solaris 2.x. 

Chapter Summary 

Prior to the standardization of POSIX, most of the configuration limits and other values discussed 

in this chapter were defined as constants in various system include files. This required that programs 

be recompiled on each system they were moved to (in order to obtain the proper values for that 
system), and it also required that they be recompiled any time one of these values changed. Now 
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that these parameters are for the most part obtainable at run-time, it is possible to write programs 

that are not only more portable, but also more efficient. 
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Chapter 10 
Signals 

Signals are software interrupts. They provide asynchronous notification to a process that something 

has happened—either an unexpected problem has arisen, or a user (or another process) has requested 

that the process do something outside of its normal operational functions. Some signals, such as 

“illegal instruction” or “arithmetic exception,” have a direct relationship to the computer hardware. 

Other signals, such as “window size change” or “CPU time limit exceeded,” are purely software-

oriented. Most of the signals provided by the UNIX operating system cause a process to exit when 
they are received, unless the process takes steps to handle that signal. Some of the signals also cause 

the process' memory image to be placed on disk in the file core, allowing debuggers to examine the 

image in order to determine what caused the problem. 

UNIX signal handling used to be both simple to do and simple to explain—there was only one way 

to do things, and everyone followed it. However, as the need for more sophisticated signal handling 

increased, other ways of doing things evolved. As each new way was implemented, explaining 

things got harder—not only was there more to explain about how things worked, but it also became 

necessary to explain which methods were used for which situations. This problem has reached a 

peak in SVR4, which provides four different methods for handling signals: the original basic 

mechanism introduced in Version 7, the somewhat more robust mechanism introduced in SVR3, a 

compatibility library implementation of the Berkeley mechanism used by many vendors' operating 
systems, and, new to SVR4, the POSIX mechanism. 

In this chapter, we will discuss all four of these signal handling mechanisms. Fortunately, the uses 

of the four mechanisms fairly closely parallels their complexity. That is, basic signal handling is 

easily performed using the easy-to-understand mechanisms; the more complicated mechanisms are 

only needed for more advanced functionality. Thus, we begin by introducing the basic concepts of 

signal handling that are common to all four mechanisms. We then examine basic signal handling as 

it was originally implemented in Version 7. Following this we consider reliable signals, one of the 

most important changes in signal handling procedures. We next examine one of the more common 

uses for signals, implementing timeouts. After this, we move into the area of advanced signal 

handling, by looking at the sophisticated POSIX signal mechanism. We conclude with a detailed 

look at the Berkeley signal mechanism, upon which the POSIX mechanism is based. It is in this 

section that information on porting between the Berkeley mechanism and the others is discussed. 
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Signal Concepts 

As mentioned earlier, a signal is a software interrupt—an asynchronous notification that something 

has happened. Signals are delivered to a process by the operating system. They may result because 

of something the program did (e.g., an attempt to divide by zero), something a user did (e.g., press 

the interrupt key on the keyboard), or something another program did (processes may send signals 

to one another). 

For each signal defined by the operating system, a process may indicate the disposition of that signal. 

That is, the process can inform the operating system about how it wants to deal with that signal if 

and when it is received. There are four possible dispositions for a signal: 

 The signal may be ignored. This tells the operating system to immediately discard the signal, 

without delivering it to the process. The process is never told that a signal was even generated. 

Ignoring signals is useful when a process simply doesn't want to be bothered with them, or 

when it wants to continue performing its task regardless of what happens. 

 The signal may be blocked, or held. When a signal is blocked, it will not be delivered to the 

process, much as if it were being ignored. However, rather than simply discarding the signal, 

the operating system will place it on a queue of pending signals to be delivered to the process. 

If the process ever unblocks or releases the signal, it will be delivered at that time. Blocking 

signals is useful in programs that contain “critical sections” that must not be interrupted, but 

that otherwise wish to process the signals. 

 The signal may be caught, or trapped. The process may tell the operating system that whenever 

the signal is delivered, a user-defined function called a signal handler is to be called. When the 

signal is delivered, the operating system suspends the process' normal execution, and calls the 

signal handler function. When the handler function returns, the process' execution picks up 

where it left off. Catching signals is useful any time the programmer wants to deal with 
unexpected events in a special way. For example, text editors make sure to catch keyboard 

interrupt signals, so that an inadvertent keystroke doesn't terminate the editor without saving 

the file. 

 Each signal has a default disposition. As mentioned earlier, most signals' default dispositions 

are to terminate the process, sometimes with an accompanying core dump. Default dispositions 

are useful when there's nothing special the process needs to do with that signal; they are also 

useful for resetting the disposition of a signal that was previously being caught or ignored. 

Version 7 UNIX provided 15 different signals. As features such as job control, interprocess 

communication, and networking were added however, the list grew. In SVR4, 35 different “regular” 

signals are provided, along with several special-purpose signals used for realtime programming. The 

signals are described below. 

SIGHUP Hangup. This signal is sent to a process when its controlling terminal 

disconnects from the system (see Chapter 11, Processes). It is also commonly 

used to notify daemon processes to reread their configuration files; since 

daemon processes do not have controlling terminals, they would not normally 

receive this signal. The default disposition for this signal terminates the process. 
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SIGINT Interrupt. This signal is delivered to a process when the user presses the 

interrupt key (usually CTRL-C) on the keyboard. The default disposition for 

this signal terminates the process. 

SIGQUIT Quit. This signal is delivered to a process when the user presses the quit key 

(usually CTRL-\) on the keyboard. The default disposition for this signal 

terminates the process and produces a core file. 

SIGILL Illegal instruction. This signal is delivered to a process when it attempts to 

execute an illegal hardware instruction. The default disposition for this signal 

terminates the process and produces a core file. 

SIGTRAP Trace/breakpoint trap. The name for this signal is derived from the PDP-11 

“trap” instruction. This signal is delivered to a process when it is being traced 

by a debugger and encounters a breakpoint; this causes the process to stop and 

the parent process (the debugger) to be notified. If the process is not being 

traced, the default disposition for this signal terminates the process and 

produces a core file. 

SIGABRT Abort. This signal is generated by the abort function (see Chapter 16, 
Miscellaneous Functions). The default disposition for this signal terminates the 

process and produces a core file. 

SIGEMT Emulator trap. The name for this signal is derived from the PDP-11 “emulator 

trap” instruction. It is delivered to a process when an implementation-defined 

hardware fault is detected. The default disposition for this signal terminates the 
process and produces a core file. 

SIGFPE Arithmetic exception. (FPE stands for Floating Point Exception, but this signal 

is used for non-floating point arithmetic exceptions as well.)  This signal is 

delivered to a process when it attempts an illegal arithmetic operation, such as 

division by zero, floating point overflow, and so on. The default disposition for 

this signal terminates the process and produces a core file. 

SIGKILL Kill. This signal is used to terminate a process “with extreme prejudice.”  It 

cannot be caught, blocked, or ignored. The default (only) disposition for this 

signal terminates the process. 

SIGBUS Bus error. This signal is delivered to a process when an implementation-defined 

hardware fault is detected. It usually indicates an  attempt to use an improperly 
aligned address or to reference a non-existent physical memory address. The 

default disposition for this signal terminates the process and produces a core 

file. 

SIGSEGV Segmentation violation (or segmentation fault). This signal is delivered to a 

process when it attempts to access an invalid virtual memory address, or 

attempts to access memory that it does not have permission to use. The default 

disposition for this signal terminates the process and produces a core file. 
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SIGSYS Bad system call. This signal is delivered to a process when it somehow executes 

an instruction that the kernel thought was a system call, but the parameter with 

the instruction does not indicate a valid system call. The default disposition for 

this signal terminates the process and produces a core file. 

SIGPIPE Broken pipe. This signal is delivered to a process when it attempts to write on 

a pipe (see Chapter 13, Interprocess Communication) when there is no process 
on the other end to receive the data. The default disposition for this signal 

terminates the process. 

SIGALRM Alarm clock. This signal is delivered to a process when an alarm it has 

scheduled with the alarm or setitimer system calls (see below) goes off. 
The default disposition for this signal terminates the process. 

SIGTERM Software termination. This signal is used to tell a process to clean up whatever 

it's doing (close open files, etc.) and exit. It is the default signal sent by the kill 

command, and is also sent to all processes by the system shutdown procedure. 

The default disposition for this signal terminates the process. 

SIGUSR1 User-defined signal one. This signal may be used for any programmer-defined 

purpose. The default disposition for this signal terminates the process. 

SIGUSR2 User-defined signal two. This signal may be used for any programmer-defined 

purpose. The default disposition for this signal terminates the process. 

SIGCHLD Child status change. This signal indicates a change in a child process' status 

(see Chapter 11, Processes). It was introduced in Berkeley UNIX, and is 
delivered to a process whenever one of its children exits or is stopped or 

continued due to job control. The parent process can then use one of the wait 
system calls to determine what happened. The default disposition for this signal 

is to discard it; it is only delivered to a process if the process is catching it. 

Versions of System V prior to SVR3 have a similar signal, SIGCLD. 
Unfortunately, this signal has very strange semantics, unlike those of any other 

signal: 

 The default disposition of this signal is to discard it; it is only delivered to 

a process if the process is catching it. 

 If the process specifically sets the signal's disposition to ignore, then 

children of the calling process will not generate zombie processes (see 

Chapter 11, Processes). Instead, on termination, the exit status of these 

processes is just discarded. If the parent process issues a call to one of the 

wait functions, it will block until all its children have terminated, and then 

wait will return –1 and errno will be set to ECHILD. 

 If the process requests that the signal be caught, the operating system 

immediately checks if there are any child processes to be waited for, and 

if so, calls the SIGCLD handler. Thus, the signal is in a sense retroactive—
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processes that exited before its disposition was changed to a signal handler 

can result in the calling of the signal handler! 

In  SVR4, SIGCLD and SIGCHLD refer to the same signal. In order to provide 
backward compatibility with previous versions of System V, if the signal's 

disposition is set with either signal or sigset, the SIGCLD behavior is used. 

If its disposition is set with sigaction, the SIGCHLD behavior is used. This is 
of particular importance when porting programs from Berkeley-based versions 

of UNIX to SVR4. 

SIGPWR Power fail/restart. On systems connected to uninterruptible power supplies or 

that have battery backup, this signal can be sent to the init process to start an 

orderly system shutdown when power is lost or the batteries are about to fail. 

The default disposition for this signal is to discard it; it is only delivered to a 

process if the process is catching it. 

SIGWINCH Window size change. This signal is delivered to a process when the number of 

rows or columns of its controlling terminal are changed, as when a user resizes 
a window on a workstation. The default disposition for this signal is to discard 

it; it is only delivered to a process if the process is catching it. 

SIGURG Urgent socket condition. This signal is used to tell a process that an urgent 

condition (out of band data) exists on a network communications channel (see 

Chapter 14, Networking With Sockets). The default disposition for this signal is 

to discard it; it is only delivered to a process if the process is catching it. 

SIGPOLL Pollable event. This signal is delivered to a process when an event occurs on a 

pollable device. It is used in conjunction with the poll system call. The default 
disposition for this signal terminates the process. 

SIGSTOP Stop. This signal cannot be caught, blocked, or ignored. The default (only) 

disposition for this signal stops the process until a continue signal (SIGCONT) 
is received. 

SIGTSTP Stop. This signal is delivered to a process when the user presses the suspend 

key (usually CTRL-Z) on the keyboard. The default disposition for this signal 

stops the process until a continue signal (SIGCONT) is received. 

SIGCONT Continue. This signal can be caught, but it cannot be blocked or ignored. The 

default disposition for this signal starts the process if it was stopped, but it is 

otherwise discarded unless the process is catching it. 

SIGTTIN Stop for tty input. This signal is delivered to a process if it tries to read from the 

terminal while it is in the background. The default disposition for this signal 

stops the process until a continue signal (SIGCONT) is received. 

SIGTTOU Stop for tty output. This signal is delivered to a process if it tries to write to the 

terminal while it is in the background, and the terminal has the TOSTOP mode 
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set (see Chapter 12, Terminals). The default disposition for this signal stops the 

process until a continue signal (SIGCONT) is received. 

SIGVTALRM Virtual timer expiration. This signal is delivered to a process when a virtual 

timer alarm it has scheduled with the setitimer system call expires. The 
default disposition for this signal terminates the process. 

SIGPROF Profiling timer expiration. This signal is delivered to a process when a profiling 

timer alarm it has scheduled with the setitimer system call expires. The 
default disposition for this signal terminates the process. 

SIGXCPU CPU time limit exceeded. This signal is delivered to a process when it exceeds 

its CPU time limit (see Chapter 9, System Configuration and Resource Limits). 

The default disposition for this signal terminates the process and produces a 

core file. 

SIGXFSZ File size limit exceeded. This signal is delivered to a process when it exceeds 

its maximum file size limit (see Chapter 9, System Configuration and Resource 

Limits). The default disposition for this signal terminates the process and 
produces a core file. 

All versions of UNIX provide the first 15 signals in the list above. Most modern versions of UNIX 

provide the job control signals, and many provide the timer-related signals as well. The other signals 

are less common, and may or may not be present in other versions. In addition, other versions may 

offer signals that do not appear in the list above. 

Basic Signal Handling 

In this section, we describe the basics of signal handling in terms of the oldest and simplest signal 

interface. The functions described in this section are available in all versions of UNIX, and are 

adequate for most uses. 

Sending Signals 

To send a signal to a process, the kill function is used: 

#include <sys/types.h> 

#include <signal.h> 

 

int kill(pid_t pid, int sig); 

The pid parameter specifies the process or group of processes to send the signal to, and the sig 

parameter identifies the signal to be sent. If sig is zero, then error checking is performed, but no 

signal is delivered. This can be used to check the validity of pid. 

Unless the sending process has an effective user-id of super-user, the real or effective user-id of the 

sending process must match the real or saved user-id of the receiving process(es). The only 
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exception to this rule is SIGCONT, which may be sent to any process with the same session-id as the 
sending process (see Chapter 11, Processes). 

The pid parameter has a number of interpretations: 

 If pid is greater than zero, sig will be sent to the process whose process-id is equal to pid. 

 If pid is negative but not equal to –1, sig will be sent to all processes whose process group-id 

(see Chapter 11, Proceses) is equal to the absolute value of pid and for which the process has 

permission to send a signal. 

 If pid is equal to zero, sig will be sent to all processes whose process group-id is equal to that 

of the sender, except for special system processes (the scheduler, page daemon, file system 

flusher, and initialization process). 

 If pid is equal to –1 and the effective user-id of the sending process is not super-user, sig will 

be sent to all processes (except special system processes) whose real user-id is equal to the 

effective user-id of the sender. 

 If pid is equal to –1 and the effective user-id of the sending process is super-user, sig will be 

sent to all processes in the system except special system processes. 

Upon successful delivery of the signal, kill returns 0. If an error occurs, –1 is returned and the 

reason for failure is placed in the external integer errno. 

ANSI C defines another, not very useful, function for sending signals: 

#include <signal.h> 

 

int raise(int sig); 

Because the ANSI C standard does not recognize multiple processes, raise does not accept a pid 

argument. When called, raise sends the signal specified in sig to the calling process. 

Waiting for Signals 

Sometimes, a process wants to stop processing until a signal is received. For example, it might want 

to wait until a specified amount of time has passed, or until data becomes available on a file 

descriptor. To do this, the pause function is used: 

#include <unistd.h> 

 

int pause(void); 

The pause function simply suspends the calling process until it receives a signal. The signal must 
be one that is not currently blocked or ignored by the calling process. If the signal causes termination 

of the calling process, pause does not return (because the process exits). If the signal is caught by 

the calling process and control is returned from the signal handling function, pause returns –1 and 

errno is set to EINTR (interrupted system call). Execution of the process then continues from the 
point of suspension. 
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Printing Signal Information 

There are two functions for printing signal information, similar to perror and strerror: 

#include <siginfo.h> 

 

void psignal(int sig, const char *s); 

 

#include <string.h> 

 

char *strsignal(int sig); 

The psignal function prints the message contained in s, followed by a colon, followed by a string 

identifying the signal whose number is contained in sig, on the standard error output. The 

strsignal function returns a character string describing the signal contained in sig; this string is 

the same one printed by psignal. 

The psignal function is not available in HP-UX 10.x. An example of how to implement it is shown 

in the on-line example programs. The strsignal function is not available in HP-UX 10.x or IRIX 
5.x. 

Handling Signals 

The basic function for changing a signal's disposition is called signal, and is declared as follows: 

#include <signal.h> 

 

void (*signal(int sig, void (*disp)(int)))(int); 

This rather confusing prototype says that signal accepts two arguments, and returns a pointer to a 

function that returns nothing (void). The first argument, sig, is an integer, and represents the signal 

whose disposition is to be changed. The second argument, disp, is a pointer to a function that takes 

a single integer argument and returns nothing (void). This function is the signal handler for sig; 

whenever sig is received, the disp function will be called with sig as its argument (this allows a 

single handler function to handle multiple signals). The return value from signal is a pointer to the 

previous signal handler function. 

In addition to the address of a function, the disp parameter can be given one of the following values: 

SIG_IGN Sets the signal's disposition to ignore; all future occurences of sig will be ignored. 

SIG_DFL Sets the signal's disposition to the default disposition; any signal handler that was in 

place for this signal is discarded. 

Example 10-1 shows a small program that catches the SIGUSR1 and SIGUSR2 signals, waits for 
them to arrive, and prints a message when they are received. 

Example 10-1: signal1 

#include <signal.h> 
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#include <stdio.h> 

 

void handler(int); 

 

int 

main(void) 

{ 

    /* 

     * Send SIGUSR1 and SIGUSR2 to the handler function. 

     */ 

    if (signal(SIGUSR1, handler) == SIG_ERR) { 

        fprintf(stderr, "cannot set handler for SIGUSR1\n"); 

        exit(1); 

    } 

 

    if (signal(SIGUSR2, handler) == SIG_ERR) { 

        fprintf(stderr, "cannot set handler for SIGUSR2\n"); 

        exit(1); 

    } 

 

    /* 

     * Now wait for signals to arrive. 

     */ 

    for (;;) 

        pause(); 

} 

 

/* 

 * handler - handle a signal. 

 */ 

void 

handler(int sig) 

{ 

    /* 

     * Print out what we received. 

     */ 

    psignal(sig, "Received signal"); 

} 

% signal1 & 

 [1] 12345 

% kill -USR1 12345 

Received signal: Signal User 1 

% kill -USR2 12345 

Received signal: Signal User 2 

% kill 12345 

 [1] + Terminated     signal1 

The last kill command sends SIGTERM to the process; since it does not catch this signal and the 
default disposition is to terminate the process, it exits. 
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Unreliable Signals 

Signal handling in older versions of UNIX (Version 7, pre-SVR3 versions of System V, and pre-

4.2BSD versions of Berkeley UNIX) was unreliable. Signals could get lost—a signal could occur 

and the process would never find out about it. 

One of the most significant problems with these early implementations though, is that they reset a 

caught signal's disposition to its default each time the signal was delivered. If the signal arrived a 

second time, the default disposition would be taken, instead of calling the signal handler. To see the 

problems that this can cause, start signal1 again and send it two SIGUSR1 signals. The first one is 
caught as intended, but the second one causes the program to terminate! This is because the default 

disposition for SIGUSR1 terminates the process. 

The usual method to avoid this situation is to modify the handler function to reset the signal's 

disposition each time it is called, as shown in Example 10-2. 

Example 10-2: signal2 

#include <signal.h> 

#include <stdio.h> 

 

void handler(int); 

 

int 

main(void) 

{ 

    /* 

     * Send SIGUSR1 and SIGUSR2 to the handler function. 

     */ 

    if (signal(SIGUSR1, handler) == SIG_ERR) { 

        fprintf(stderr, "cannot set handler for SIGUSR1\n"); 

        exit(1); 

    } 

 

    if (signal(SIGUSR2, handler) == SIG_ERR) { 

        fprintf(stderr, "cannot set handler for SIGUSR2\n"); 

        exit(1); 

    } 

 

    /* 

     * Now wait for signals to arrive. 

     */ 

    for (;;) 

        pause(); 

} 

 

/* 

 * handler - handle a signal. 

 */ 

void 

handler(int sig) 

{ 

    /* 

     * Reset the signal's disposition. 
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     */ 

    signal(sig, handler); 

 

    /* 

     * Print out what we received. 

     */ 

    psignal(sig, "Received signal"); 

} 

% signal2 & 

 [1] 12345 

% kill -USR1 12345 

Received signal: Signal User 1 

% kill -USR2 12345 

Received signal: Signal User 2 

% kill -USR1 12345 

Received signal: Signal User 1 

% kill -USR2 12345 

Received signal: Signal User 2 

% kill 12345 

 [1] + Terminated     signal2 

Unfortunately, this solution is imperfect. There is a window of vulnerability between the time that 

the signal handler is called and the time it resets the signal's disposition during which the default 

disposition is still in effect. On very busy systems, or when signals are being sent rapid-fire to the 

process, it is possible for the signal to be missed by the signal handler, resulting in unintended 

behavior. 

NOTE 

As mentioned previously, the SIGCHLD signal is different from all the others. Because 

SIGCHLDs “reappear” as soon as the signal handler is reset, using the above approach of 
resetting the handler as soon as it is entered will not work. Instead, the following model 

should be used: 

void 

handler(int sig) 

{ 

    /* code */ 

. 

. 

. 

 

    signal(SIGCHLD, handler); 

} 

A second problem with the early implementations is that there was no way to turn a signal off when 

a process didn't want it to occur. The process could ignore the signal, but there was no way to say 

“don't deliver this signal right now, but save it for later when I'm ready.”  To see the problems this 

can cause, consider the following code fragment: 

int flag = 0; 
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void handler(int); 

int 

main(void) 

{ 

    ... 

    signal(SIGALRM, handler); 

    while (flag == 0) 

        pause(); 

    .... 

} 

void 

handler(sig) 

{ 

    signal(SIGALRM, handler); 

    flag = 1; 

} 

This program continually sits in pause until an alarm signal occurs, at which point flag will 

become 1 and it will exit the while loop. But, consider the case where the alarm signal arrives after 

the test of flag, but before the call to pause. The program will enter pause and never return (unless 

the signal is generated a second time). The signal has been lost. 

Reliable signals 

Because of the problems alluded to in the previous section, 4.2BSD, and later SVR3, introduced 

reliable signals. The reliable signal mechanism makes two major changes: first, signal dispositions 

are no longer reset when a signal handler is called. The disposition remains the same until the 

program explicitly changes it. The second change is the introduction of the ability to block a signal 

for later delivery. The signal is not delivered to the process immediately, but it is not ignored. The 

system remembers that the signal occurred, and if the process ever unblocks the signal, delivers it 

then. 

Both Berkeley and System V implemented reliable signals by inventing (different) new system calls. 

Berkeley also reimplemented the signal call in terms of reliable signals (the examples in the 

previous section will work correctly on a 4.2BSD or 4.3BSD system). In System V, signal 
provides the old, unreliable mechanism (which nevertheless is adequate for most needs) for 

backward compatibility. This is true in SVR4 as well. 

In this section, we will examine the reliable signal implementation offered by SVR3 and SVR4. The 
Berkeley reliable signal implementation is discussed at the end of the chapter. 

Terminology 

Before discussing reliable signals, it is necessary to introduce some terminology. This terminology 

will be used throughout the remainder of this chapter. 

A signal is generated for a process when the event that causes the signal occurs. When the signal is 
generated, the operating system usually sets a flag of some sort in the process' state information. 
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A signal is delivered to a process when the action for that signal is actually taken. During the time 

between the generation of a signal and the time it is delivered, the signal is said to be pending. 

In addition to the default disposition, ignoring a signal, and catching it, a process now also has the 

option of blocking a signal. If a blocked signal is generated for the process and that signal's 

disposition is either the default or to catch the signal, then the signal remains pending until the 

process either unblocks the signal or changes the disposition to ignore the signal. The action for a 
signal is determined when it is delivered, not when it is generated. This allows the process to change 

the signal's disposition before accepting its delivery. 

If a blocked signal is generated more than once for a process before it is unblocked, the operating 

system has the option of either queueing the signals, or just delivering a single signal. Most UNIX 

systems choose the simpler of these, and deliver the signal only once. If more than one signal is 

pending for a process, there is no specified order in which the signals should be delivered. However, 

POSIX does suggest that signals relating to the current state of the process (e.g., SIGSEGV) should 
be delivered first. 

Each process has a signal mask that defines the set of signals currently being blocked. The signal 

mask is simply a set of bits, one for each signal. If the bit is on, the signal is blocked, if it is off, the 

signal may be delivered. 

The sigset Function 

The sigset function is the reliable signal mechanism's counterpart to the unreliable signal 
function: 

#include <signal.h> 

 

void (*sigset(int sig, void (*disp)(int)))(int); 

NOTE 

In order to make use of sigset in HP-UX 10.x, the _SVR2 constant must be defined at 
compile time, and the program must be linked with -lV3. 

As with signal, sig specifies the signal whose disposition is to be changed, and disp specifies a 

pointer to the signal handler function. As with signal, the disp parameter may be given one of 

the values SIG_DFL or SIG_IGN. It may also be given the value SIG_HOLD, in which case the signal 
is added to the process' signal mask and its disposition remains unchanged. 

When a signal that is being caught is delivered, the operating system adds the signal to the process' 

signal mask, and then calls the signal handler function. When (if) the handler function returns, the 

signal mask is restored to its state prior to the delivery of the signal. The signal's disposition is no 

longer changed by the operating system, as it was with signal. This behavior solves the first 
problem mentioned in the previous section; the window of vulnerability has been eliminated. 

Porting Note 

Recall from above that Berkeley, when implementing reliable signals, redefined their signal 

function in terms of the new mechanism. But signal does not provide reliable signals in SVR4; it 
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provides the old, unreliable mechanism. This means that signal-handling code in programs that were 

written for Berkeley-based systems will not work properly on SVR4. 

Fortunately, the sigset function accepts exactly the same arguments that signal does, and has 
the same return value. This means that, when porting code from Berkeley-based systems to SVR4, 

it is usually sufficient to add the line 

#define signal sigset 

to the top of the program. The only case in which this is not sufficient is when the program is 

working with SIGCHLD; properly handling that case requires use of the sigaction function, 

described later in this chapter. 

Other Functions 

The SVR3 reliable signal mechanism provides several other functions as well: 

#include <signal.h> 

 

int sighold(int sig); 

 

int sigrelse(int sig); 

 

int sigignore(int sig); 

 

int sigpause(int sig); 

The sighold function adds sig to the process' signal mask. The sigrelse function removes sig 

from the process' signal mask. The sigignore function sets the disposition of sig to SIG_IGN. 

The sigpause function removes sig from the calling process' signal mask and then suspends the 

calling process until a signal is received. This is not the same as calling sigrelse followed by 

pause; sigpause is an atomic operation that cannot be interrupted in between the change in the 

signal mask and the suspension of the process. 

We can use these functions to fix the second problem described in the previous section: 

void handler(int); 

int flag = 0; 

int 

main(void) 

{ 

    ... 

    sighold(SIGALRM); 

    sigset(SIGALRM, handler); 

    while (flag == 0) 

        sigpause(SIGALRM); 

    .... 

} 

void 

handler(sig) 

{ 
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    flag = 1; 

} 

The initial call to sighold adds the alarm signal to the process' signal mask; this means the signal 

can only be delivered when the process is ready for it. The call to sigpause removes the alarm 
signal from the signal mask and suspends the program. Because the signal is normally blocked, it is 

not possible for it to arrive after the test of flag and before the call to sigpause. 

Example 10-3 shows a reimplementation of our signal program using reliable signals. 

Example 10-3: signal3 

#include <signal.h> 

#include <stdio.h> 

 

void handler(int); 

 

int 

main(void) 

{ 

    /* 

     * Send SIGUSR1 and SIGUSR2 to the handler function. 

     */ 

    if (sigset(SIGUSR1, handler) == SIG_ERR) { 

        fprintf(stderr, "cannot set handler for SIGUSR1\n"); 

        exit(1); 

    } 

 

    if (sigset(SIGUSR2, handler) == SIG_ERR) { 

        fprintf(stderr, "cannot set handler for SIGUSR2\n"); 

        exit(1); 

    } 

 

    /* 

     * Now wait for signals to arrive. 

     */ 

    for (;;) 

        pause(); 

} 

 

/* 

 * handler - handle a signal. 

 */ 

void 

handler(int sig) 

{ 

    /* 

     * Print out what we received. 

     */ 

    psignal(sig, "Received signal"); 

} 

% signal3 & 

 [1] 12345 
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% kill -USR1 12345 

Received signal: Signal User 1 

% kill -USR2 12345 

Received signal: Signal User 2 

% kill -USR1 12345 

Received signal: Signal User 1 

% kill -USR2 12345 

Received signal: Signal User 2 

% kill 12345 

 [1] + Terminated     signal3 

Signals and System Calls 

System calls (functions that call the operating system to perform some task on behalf of the program, 

such as transferring data to or from a disk) can be divided into two categories: those that are “slow” 

and those that aren't. A slow system call is one that can block forever. This category includes: 

 opens of files that block until some condition occurs (e.g., an open of a terminal device that 

waits until a modem answers the phone), 

 reads from certain types of files, such as pipes, terminal devices, and network connections, that 

can block forever if no data is present, 

 writes to these same types of files, that can block if the data cannot be immediately accepted, 

 the pause system call, which by definition blocks until a signal arrives, 

 the wait system call, which blocks until a child process completes, 

 certain ioctl operations (see Chapter 12, Terminals), 

 selected interprocess communications functions. 

Note that operations pertaining to disk input and output are not considered slow system calls. 

Although these operations do block the caller temporarily while the data is moved to or from disk, 

unless a hardware failure occurs, the operation always returns and unblocks the caller quickly. 

In earlier versions of UNIX, if a process caught a signal while it was blocked in one of these slow 

system calls, the system call was interrupted. It would return an error, and errno would contain 

EINTR. The thinking behind this is that if a signal arrives and the process is catching it, this is 
probably significant enough to justify breaking out of the system call. 

The problem with interruptible system calls is that programs now have to handle this case explicitly. 

If every time a signal arrives a system call can get interrupted, then anywhere the application doesn't 
want to be interrupted, it needs code like this: 

again: 

    if ((n = read(fd, buf, sizeof(buf))) < 0) { 

        if (errno == EINTR) 

            goto again; 

        ... 

    } 
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In an effort to ease the burden on programmers, 4.2BSD introduced the automatic restarting of 

certain system calls. The system calls that are automatically restarted are: ioctl, read, readv, 

write, writev, wait, and waitpid. If any of these calls is interrupted by a signal, it is 
automatically restarted when the signal handler function returns. Unfortunately, while this alleviated 

the need for writing code like that shown above, it broke just about every program that relied on the 

system call being interrupted!  To solve this new problem, 4.3BSD allowed the programmer to 

disable this feature on a per-signal basis. 

System V has historically never restarted system calls. However, in SVR4, it is possible to enable 

the automatic restart of system calls on a per-signal basis. This preserves backward compatibility 

with previous versions, yet allows the programmer access to the sometimes more desirable 

automatic restart behavior. 

Using Signals for Timeouts 

One of the more common uses for signals is the implementation of timeouts. For example, suppose 

that a process wants to stop for a short period of time, and then continue. This might be necessary 

in a program that prints a large amount of output—if an error occurs, the error message should be 

printed and then the program should pause for a moment to give the user time to read the error 

message before it disappears from the screen. 

To do this, we can use the alarm function: 

#include <unistd.h> 

 

unsigned int alarm(unsigned int seconds); 

The alarm function tells the operating system to deliver a SIGALRM signal to the process after 

seconds seconds have elapsed. There is only one alarm clock for each process; if a second call to 

alarm is made before the first one has expired, the clock is reset to the second value of seconds. 

If seconds is 0, any previously made alarm request is cancelled. The alarm function returns the 

amount of time remaining in the alarm clock from the previous request. Using alarm, we can 
implement our pause-after-an-error-message function: 

#include <signal.h> 

#include <unistd.h> 

 

static void handler(int); 

 

void 

stop(int seconds) 

{ 

    signal(SIGALRM, handler); 

    alarm(seconds); 

    pause(); 

} 

 

void 

handler(int sig) 
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{ 

    return; 

} 

By calling stop with the number of seconds we wish to pause for, we can allow the user to read an 

error message. The function sets up a signal handler for SIGALRM, and then requests, using alarm, 

that the operating system send a SIGALRM after seconds seconds have elapsed. It then simply calls 

pause to suspend execution until the signal arrives. The signal handler doesn't actually have to do 

anything, it just exists so that we can get out of pause. 

The stop function, while it certainly works, is terribly naive. It would not be suitable for inclusion 
in a system programming library, for example. Some of the problems with this function include: 

 The disposition of the SIGALRM signal is altered. If the programmer had already set up his own 

disposition for this signal, it is lost once he calls stop. A more polite function would save the 

old disposition of the signal (returned by the call to signal), and restore it when the function 

returns. 

 If the caller has already scheduled an alarm with alarm, that alarm is erased by the call to 

alarm within stop. This can be corrected by saving the return value from alarm. If it is less 

than seconds, then we should wait only until the previously set alarm expires. If it is greater 

than seconds, then before returning, we should reset the alarm to occur at its designated time. 

 Finally, there is the problem of what happens when the alarm goes off and the signal handler is 

called before we call pause. If this happens, then stop will be aptly named; the program will 
stop “forever.” 

Because these problems tend to make implementing stop more difficult, especially in a portable 
fashion, all versions of UNIX provide a library routine that handles them for you. This routine is 

called sleep: 

#include <unistd.h> 

 

unsigned int sleep(unsigned int seconds); 

This function causes the program to suspend itself for seconds seconds, and then returns. The 

number of unslept seconds is returned. This value may be non-zero if another signal arrives while 

the process is suspended (since pause returns after the receipt of any signal, not just SIGALRM), or 
if the calling program had another alarm scheduled to go off before the end of the requested sleep. 

Timeouts are also useful for breaking out of operations that would otherwise block indefinitely. For 

example, consider the following code fragment: 

printf("Enter a string: "); 

fgets(buf, sizeof(buf), stdin); 

If the user walks away from the terminal, the program using this code will sit there forever, waiting 

for him to come back. But let's suppose that the program can assume a reasonable default value for 

the string, and if the user doesn't enter one of his own, the program can use that default. Now all 
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that's necessary is to give the user a chance to enter his string, and if he doesn't do so in a certain 

amount of time, just continue about our business using the default value. Example 10-4 shows a 

program that does just that. 

Example 10-4: timeout1 

#include <signal.h> 

#include <unistd.h> 

#include <stdio.h> 

 

int     flag = 0; 

 

void    handler(int); 

 

int 

main(void) 

{ 

    char buf[BUFSIZ]; 

    char *defstring = "hello"; 

 

    /* 

     * Set up a timeout of 10 seconds. 

     */ 

    signal(SIGALRM, handler); 

    alarm(10); 

 

    /* 

     * Prompt for a string and remove the newline. 

     */ 

    printf("Enter a string: "); 

    fgets(buf, sizeof(buf), stdin); 

    buf[strlen(buf)-1] = '\0'; 

 

    /* 

     * Turn off the alarm, they typed something. 

     */ 

    alarm(0); 

 

    /* 

     * If flag is 1, the alarm went off.  Assume default string. 

     */ 

    if (flag == 1) { 

        strcpy(buf, defstring); 

        putchar('\n'); 

    } 

 

    /* 

     * Display the string we're using. 

     */ 

    printf("Using string \"%s\"\n", buf); 

    exit(0); 

} 

 

/* 

 * handler - catch alarm signal and set flag. 
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 */ 

void 

handler(int sig) 

{ 

    flag = 1; 

} 

% timeout1 

Enter a string: howdy 

Using string "howdy" 

% timeout1 

Enter a string: 

Using string "hello" 

This program uses alarm to set a ten-second timeout, and then prompts for the string. If the user 

enters a string, the read (fgets) returns, the alarm is turned off, the flag variable is still 0, and the 

program uses the string the user entered. However, if the user doesn't type anything, the alarm goes 

off, resulting in a call to handler, which sets flag to 1. The signal handler returns, the test of flag 

results in copying the default string value into buf, and the program continues. 

Unfortunately, this program doesn't always work. If we try to use it on a system that offers automatic 

restarting of system calls, such as 4.2BSD or 4.3BSD, the read from the terminal will be restarted 

when handler returns, and we'll be right back where we started. Thus, for portability, we need 
some way to get out of the read even on systems that restart it after a signal arrives. 

The setjmp and longjmp Functions 

If C allowed us to goto a label in another function, we could solve this problem easily. Simply 

place a label after the call to fgets, and then instead of doing a return from handler, call goto 
with that label as an argument. Unfortunately, we can't do this. 

However, UNIX provides two functions that do allow this type of non-local branching: 

#include <setjmp.h> 

 

int setjmp(jmp_buf env); 

 

void longjmp(jmp_buf env, int val); 

The setjmp function is called first, and saves the current program state in the variable env. When 

called directly, setjmp returns 0. In order to return to the point in the program at which we called 

setjmp, the longjmp function is used. The first argument, env, is the same one we passed to 

setjmp. The second argument, val, is a nonzero value that becomes the return value from setjmp. 

This second argument allows us to have more than one longjmp for a single setjmp. 

Example 10-5 shows a re-implementation of our timeout program, this time using setjmp and 

longjmp. 
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Example 10-5: timeout2 

#include <signal.h> 

#include <unistd.h> 

#include <setjmp.h> 

#include <stdio.h> 

 

jmp_buf env; 

 

void    handler(int); 

 

int 

main(void) 

{ 

    char buf[BUFSIZ]; 

    char *defstring = "hello"; 

 

    /* 

     * Set up signal handler. 

     */ 

    signal(SIGALRM, handler); 

 

    /* 

     * If setjmp returns 0, we're going through the first time. 

     * Otherwise, we're going through after a longjmp. 

     */ 

    if (setjmp(env) == 0) { 

        /* 

         * Set an alarm for 10 seconds. 

         */ 

        alarm(10); 

 

        /* 

         * Prompt for a string and strip the newline. 

         */ 

        printf("Enter a string: "); 

        fgets(buf, sizeof(buf), stdin); 

        buf[strlen(buf)-1] = '\0'; 

 

        /* 

         * Turn off the alarm; they typed something. 

         */ 

        alarm(0); 

    } 

    else { 

        strcpy(buf, defstring); 

        putchar('\n'); 

    } 

 

    /* 

     * Display the string we're using. 

     */ 

    printf("Using string \"%s\"\n", buf); 

    exit(0); 

} 

 

/* 
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 * handler - catch alarm signal and longjmp. 

 */ 

void 

handler(int sig) 

{ 

    longjmp(env, 1); 

} 

% timeout2 

Enter a string: howdy 

Using string "howdy" 

% timeout2 

Enter a string: 

Using string "hello" 

The first time through the program, we call setjmp, which returns 0. This allows us to schedule our 
alarm and prompt for the string. If the user types something, we turn off the alarm and continue with 

the program. However, if the user doesn't type anything, we eventually receive a SIGALRM signal, 

and handler is called. In handler, we call longjmp with the val parameter equal to 1. This 

transfers control back to the if in main, and makes it appear to the program that setjmp has just 

returned 1. This causes us to take the else branch, and copy in the default string. 

This version of timeout will work on any type of UNIX system, regardless of whether or not it 

restarts system calls. However, there is still another problem. If the program is used on a system that 

provides reliable signals, then recall that when handler is called, SIGALRM will be added to the 

process' signal mask. Since we don't actually return from handler, SIGALRM will still be blocked 

after the call to longjmp. This means that the process will no longer receive SIGALRM signals. 

The 4.2BSD and 4.3BSD versions of setjmp and longjmp handle this case properly, by saving 
and restoring the signal mask. However, the SVR4 versions of these functions do not handle this 

case. One way to deal with it is to call sigrelse inside handler before doing the longjmp. 

Another way is to use the POSIX sigsetjmp and siglongjmp functions; these are described later 
in this chapter. 

NOTE 

Although the timeout mechanism shown here is viable, the select and poll functions 
described in Chapter 6, Special File Operations, are more efficient and more flexible for 

this type of work. 

Interval Timers 

4.2BSD introduced a substantially more intricate version of timers and timeouts than those provided 

by alarm and sleep, called interval timers. These timers provide millisecond accuracy (subject to 

the resolution of the system's on-board clock). Interval timers have been carried forward into SVR4 

as well. There are two basic functions for working with interval timers: 

#include <sys/time.h> 

 

int getitimer(int which, struct itimerval *value); 



Signals 

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 239 
 

 

int setitimer(int which, struct itimerval *value, 

        struct itimerval *ovalue); 

The getitimer function looks up the current settings for the interval timer identified by which, 

and returns them in the area pointed to by value. The setitimer function makes the settings for 

the interval timer identified by which equal to those in value; if ovalue is non-null, the previous 

settings are returned. 

There are four interval timers, identified by which: 

ITIMER_REAL Decrements in real time (“clock on the wall” time). A SIGALRM signal is 
delivered to the process when this timer expires. 

ITIMER_VIRTUAL Decrements in process virtual time. This timer runs only when the 

process is executing. A SIGVTALRM signal is delivered to the process 
when this timer expires. 

ITIMER_PROF Decrements in both process virtual time and when the system is 

executing on behalf of the process. This timer is designed to be used by 

interpreters when statistically profiling the execution of interpreted 

programs. A SIGPROF signal is delivered to the process when this timer 
expires. 

ITIMER_REALPROF Decrements in real time. This timer is designed to be used for real-time 

profiling of multithreaded programs. This timer is specific to Solaris 2.x. 

A timer is described by a structure of type struct itimerval: 

struct itimerval { 

    struct timeval    it_interval; 

    struct timeval    it_value; 

}; 

The it_value element of the structure specifies, in seconds and microseconds, the amount of time 

remaining until the timer expires. The it_interval element specifies a value to be used in 

reloading it_value when the timer expires. Thus, interval timers run over and over again, sending 

a signal each time they expire. Setting it_value to zero disables a timer, regardless of the value of 

it_interval. Setting it_interval to zero disables a timer after its next expiration (assuming 

it_value is non-zero). Example 10-6 shows another implementation of our timeout program using 
interval timers. 

Example 10-6: timeout3 

#include <sys/time.h> 

#include <signal.h> 

#include <unistd.h> 

#include <stdio.h> 

 

int     flag = 0; 
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void    handler(int); 

 

int 

main(void) 

{ 

    char buf[BUFSIZ]; 

    struct itimerval itv; 

    char *defstring = "hello"; 

 

    /* 

     * Set up a timeout of 10 seconds. 

     */ 

    signal(SIGALRM, handler); 

    itv.it_interval.tv_usec = 0; 

    itv.it_interval.tv_sec = 0; 

    itv.it_value.tv_usec = 0; 

    itv.it_value.tv_sec = 10; 

 

    setitimer(ITIMER_REAL, &itv, (struct itimerval *) 0); 

 

    /* 

     * Prompt for a string and strip the newline. 

     */ 

    printf("Enter a string: "); 

    fgets(buf, sizeof(buf), stdin); 

    buf[strlen(buf)-1] = '\0'; 

 

    /* 

     * Turn off the alarm, they typed something. 

     */ 

    itv.it_value.tv_usec = 0; 

    itv.it_value.tv_sec = 0; 

 

    setitimer(ITIMER_REAL, &itv, (struct itimerval *) 0); 

 

    /* 

     * If flag is 1, the alarm went off.  Assume default string. 

     */ 

    if (flag == 1) { 

        strcpy(buf, defstring); 

        putchar('\n'); 

    } 

 

    /* 

     * Display the string we're using. 

     */ 

    printf("Using string \"%s\"\n", buf); 

    exit(0); 

} 

 

/* 

 * handler - catch alarm signal and set flag. 

 */ 

void 

handler(int sig) 

{ 

    flag = 1; 
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} 

% timeout3 

Enter a string: howdy 

Using string "howdy" 

% timeout3 

Enter a string: 

Using string "hello" 

Advanced Signal Handling 

The POSIX standard specifies a substantially more complex mechanism for processing signals. 

However, in return for the added complexity, the programmer gains significant new functionality. 

The POSIX mechanism is based, in large part, on the signal handling functions introduced in 

4.2BSD. However, although the concepts and functionality are similar, the functions and their 
arguments are completely new. 

The signal processing functions introduced up to this point, while not POSIX-compliant, are quite 

adequate for the needs of most programmers. Unless POSIX-compliance is a requirement, in fact, 

the functions described to this point are in a sense more desirable, because they allow portability to 

older systems. However, because more and more operating systems are being made POSIX-

compliant, and because of the additional functionality offered by the POSIX interface, it is 

nevertheless important to be familiar with it. 

The POSIX signal interface implements reliable signals. 

Signal Sets 

Many of the functions in the POSIX signal interface work with signal sets, rather than individual 

signals. A signal set is simply a bit mask, with one bit for each signal. If the bit is on, the 

corresponding signal is in the set; if the bit is zero, the corresponding signal is not in the set. Signal 

sets are called masks in the 4.2BSD signal interface. 

Signal sets are described by the data type sigset_t, defined in the include file signal.h. There are 
five functions defined for manipulating signal sets: 

#include <signal.h> 

 

int sigemptyset(sigset_t *set); 

 

int sigfillset(sigset_t *set); 

 

int sigaddset(sigset_t *set, int sig); 

 

int sigdelset(sigset_t *set, int sig); 

 

int sigismember(sigset_t *set, int sig); 

The sigemptyset function initializes the set pointed to by set to exclude all signals defined by 

the system; that is, it initializes the set to the empty set. 
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The sigfillset function initializes the set pointed to by set to include all signals defined by the 

system; that is, it initializes the set to the value “all signals.” 

The sigaddset function adds the individual signal identified by sig to the set pointed to by set. 

The sigdelset function does the opposite; it removes the individual signal identified by sig from 

the set pointed to by set. 

The sigismember function returns 1 if the individual signal identified by sig is a member of the 

set pointed to by set, or 0 if it is not. 

A signal set must be initialized by calling either sigemptyset or sigfillset before it can be 
used with any of the other functions. Upon successful completion all of the above functions (except 

sigismember) return 0; otherwise –1 is returned and errno is set to identify the error. 

The sigaction Function 

The principal workhorse of the POSIX signal mechanism is the sigaction function: 

#include <signal.h> 

 

int sigaction(int sig, const struct sigaction *act, 

        struct sigaction *oact); 

The purpose of sigaction is to examine or specify the action to be taken on delivery of a specific 

signal, identified by the sig parameter. If the act argument is not null, it points to a structure 

specifying the new action to be taken when delivering sig. If the oact argument is not null, it 

points to a structure where the action previously associated with sig is to be stored on return from 

the call to sigaction. 

The struct sigaction structure is defined in signal.h and contains at least the following 
members: 

struct sigaction { 

    void        (*sa_handler)(int); 

    void        (*sa_sigaction)(int, siginfo_t *, void *); 

    sigset_t    sa_mask; 

    int         sa_flags; 

}; 

If the SA_SIGINFO flag in the sa_flags element of the structure is not set, the sa_handler 

element of the structure specifies the action to be associated with the signal specified in sig. It may 

take on any of the values SIG_DFL, SIG_IGN, or SIG_HOLD, or it may be the address of a signal 

handler function. In Solaris 2.x, if the SA_SIGINFO flag is set in sa_flags, then the 

sa_sigaction element of the structure specifies the signal handling function to be associated with 

sig. HP-UX 10.x and IRIX 5.x use the sa_handler field in this case, and do not define the 

sa_sigaction field. 

The sa_mask element of the structure specifies a set of signals to be blocked while the signal 
handler is active; on entry to the signal handler this set of signals is added to the set of signals already 
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being blocked when the signal is delivered. Additionally, the signal that caused the handler to be 

executed will be blocked, unless the SA_NODEFER flag has been set in sa_flags. 

The sa_flags element of the structure specifies a set of flags that can be used to modify the 

delivery of the signal identified by sig. The value of sa_flags is formed by a logical or of the 

following values: 

SA_ONSTACK If set and the signal is caught, and the process has defined an alternate signal 

stack with sigaltstack, then the signal will be processed on the alternate 
stack. Otherwise, the signal is processed on the process' main stack. 

SA_RESETHAND If set and the signal is caught, the disposition of the signal will be reset to 

SIG_DFL and the signal will not be blocked on entry to the signal handler. 
This allows the old behavior of unreliable signals to be obtained. 

SA_NODEFER If set and the signal is caught, the signal will not be automatically blocked by 

the kernel while the signal handler is executing. This flag is not available in 

HP-UX 10.x. 

SA_RESTART If set and the signal is caught, a system call that is interrupted by the execution 

of this signal's handler will be restarted by the system when the signal handler 

returns. Otherwise, the system call will return with errno set to EINTR. This 
flag is not available in HP-UX 10.x. 

SA_NOCLDWAIT If set and sig is SIGCHLD, the system will not create zombie processes when 

children of the calling process exit. If the calling process later issues a call to 

wait, it blocks until all of the calling process' child processes terminate, and 

then returns –1 with errno set to ECHILD. This flag, in conjunction with 

SA_NOCLDSTOP, allows the System V SIGCLD behavior to be obtained. This 
flag is not available in HP-UX 10.x. 

SA_NOCLDSTOP If set and sig is SIGCHLD, SIGCHLD will not be sent to the calling process 

when its child processes stop or continue. In conjunction with 

SA_NOCLDWAIT, this flag allows the System V SIGCLD behavior to be 

obtained. 

SA_WAITSIG If set and sig is SIGWAITING, then the system will send SIGWAITING to the 

process when all of its lightweight processes are blocked. This flag is not 

available in HP-UX 10.x. 

SA_SIGINFO If not set and the signal identified by sig is caught, the function identified in 

sa_handler will be called, with sig as its only argument. If set and the 

signal is caught, pending signals of type sig will be reliably queued to the 

calling process, and the function identified in sa_sigaction will be called 

with three arguments. The first argument is the signal number, sig. The 

second argument, if non-null, points to a siginfo_t structure containing the 
reason why the signal was generated. The third argument points to a 
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ucontext_t structure describing the receiving process' context when the 
signal was delivered. This flag is not available in HP-UX 10.x. 

(The only one of these values defined by the POSIX standard is SA_NOCLDSTOP.) 

On success, sigaction returns 0. On failure, it returns –1 and sets errno to indicate the error. If 

sigaction fails, no new signal handler will be installed. 

The siginfo_t Structure 

If a process is catching a signal, it can ask the system to provide information about why it generated 

that signal. If the process is monitoring its child processes, it can ask the system to tell it why a child 

process changed state. In either case, this information is provided by means of a siginfo_t 
structure: 

typedef struct { 

    int             si_signo; 

    int             si_errno; 

    int             si_code; 

    union sigval    si_value; 

    pid_t           si_pid; 

    uid_t           si_uid; 

    caddr_t         si_addr; 

    int             si_status; 

    long            si_band; 

} siginfo_t; 

The si_signo element of the structure contains the system-generated signal number; when used 

with waitid, si_signo is always SIGCHLD. 

If si_errno is non-zero, it contains an error number associated with the signal, as defined in the 
include file errno.h. 

The si_code element of the structure contains a code identifying the cause of the signal. If the 

value of si_code is SI_NOINFO, then only the si_signo element of the structure is meaningful, 
and the value of all other elements of the structure is undefined. 

If the value of si_code is less than or equal to zero, then the signal was generated by a user process 

(using one of the functions kill, _lwp_kill, sigsend, abort, or raise). If this is the case, then 

the si_pid element of the structure will contain the process-id of the process that sent the signal, 

and the si_uid element will contain the user-id of the process that sent the signal. When si_code 
is less than or equal to zero, it will contain one of the following values: 

SI_USER The signal was sent by one of the functions kill, sigsend, raise, or abort. 

SI_LWP The signal was sent by _lwp_kill, a function used with lightweight processes. 
This code is available only in Solaris 2.x. 

SI_QUEUE The signal was sent by the sigqueue function, used in real-time programming. 
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SI_TIMER The signal was generated by the expiration of a timer set with the 

timer_settime function, used in real-time programming. This code is 
available only in Solaris 2.x. 

SI_ASYNCIO The signal was generated by the completion of an asynchronous input/output 

request. This code is available only in Solaris 2.x. 

SI_MESGQ The signal was generated by the arrival of a message on an empty message 

queue (used in real-time programming). This code is available only in Solaris 

2.x. 

In the latter four cases, the si_value element of the structure will contain the application-specified 
value that was passed to the signal-catching function when the signal was delivered. 

If si_code contains a value greater than zero, it indicates the signal-specific reason why the system 
generated the signal, as shown in Table 10-1. 

Table 10-1: Values of si_code 

si_signo si_code Reason 

SIGILL ILL_ILLOPC illegal opcode 

ILL_ILLOPN illegal operand 

ILL_ILLADDR illegal addressing mode 

ILL_ILLTRP illegal trap 

ILL_PRVOPC privileged opcode 

ILL_PRVREG privileged register 

ILL_COPROC co-processor error 

ILL_BADSTK internal stack error 

SIGFPE FPE_INTDIV integer division by 0 

FPE_INTOVF integer overflow 

FPE_FLTDIV floating-point divide by 0 

FPE_FLTOVF floating-point overflow 

FPE_FLTUND floating-point underflow 

FPE_FLTRES floating-point inexact result 

FPE_FLTINV invalid floating-point operation 

FPE_FLTSUB subscript out of range 

SIGSEGV SEGV_MAPERR address not mapped to object 

SEGV_ACCERR invalid permissions for mapped object 

SIGBUS BUS_ADRALN invalid address alignment 

BUS_ADRERR non-existent physical address 

BUS_OBJERR object-specific hardware error 

SIGTRAP TRAP_BRKPT process breakpoint 
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si_signo si_code Reason 

TRAP_TRACE process trace trap 

SIGCHLD CLD_EXITED child has exited 

CLD_KILLED child was killed 

CLD_DUMPED child terminated abnormally 

CLD_TRAPPED traced child has trapped 

CLD_STOPPED child has stopped 

CLD_CONTINUED stopped child has continued 

SIGPOLL POLL_IN data input available 

POLL_OUT output buffers available 

POLL_MSG input message available 

POLL_ERR I/O error 

POLL_PRI high priority input available 

POLL_HUP device disconnected 

In addition, other information may be provided for certain signals. 

If the signal is SIGILL or SIGFPE, the si_addr element of the structure contains the address of the 

faulting instruction. If the signal is SIGSEGV or SIGBUS, si_addr contains the address of the 

fauling memory reference. (For some implementations the exact value of si_addr may not be 

available; in that case, si_addr is guaranteed to be on the same page as the faulting instruction or 
memory reference.) 

If the signal is SIGCHLD, then the si_pid element of the structure will contain the process-id of the 

described child, and si_status will contain either the child's exit status (if si_code is 

CLD_EXITED) or the signal that caused the child to change state. 

If the signal is SIGPOLL, the si_band element of the structure will contain the band event if 

si_code is equal to POLL_IN, POLL_OUT, or POLL_MSG. 

Other Functions 

Although the sigaction function is the most significant part of the POSIX signal mechanism, 

there are also a number of other functions defined as well. Some of these functions are simply 
souped-up versions of things we've already covered, while others are entirely new. 

Sending Signals 

Although the kill function can still be used for sending signals to processes, SVR4 also defines 
two new functions that give the programmer somewhat more control over the set of processes the 

signal is delivered to: 

#include <sys/types.h> 

#include <sys/signal.h> 

#include <sys/procset.h> 
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int sigsend(idtype_t idtype, id_t id, int sig); 

 

int sigsendset(procset_t *psp, int sig); 

The sigsend function sends the signal specified by sig to the process or set of processes identified 

by idtype and id. If sig is zero, error checking is performed but no signal is actually sent. The 

legal values for idtype and their meanings are: 

P_PID The signal will be sent to the process with process-id id. 

P_PGID The signal will be sent to any process with process group-id id (see Chapter 11, 

Processes). 

P_SID The signal will be sent to any process with session-id id (see Chapter 11, Processes). 

P_UID The signal will be sent to any process with effective user-id id. 

P_GID The signal will be sent to any process with effective group-id id. 

P_CID The signal will be sent to any process with scheduler class-id id. This value is not 

available in HP-UX 10.x. 

P_ALL The signal will be sent to all processes; id is ignored. 

If id is P_MYPID, the value of id is taken to be the calling process' process-id. 

The sigsendset function provides an interesting way to send a signal to a set of processes. The 

signal is specified by sig, and the set of processes is specified by psp. The psp argument is a 

pointer to a structure of type proceset_t: 

typedef struct { 

    idop_t      p_op; 

    idtype_t    p_lidtype; 

    id_t        p_lid; 

    idtype_t    p_ridtype; 

    id_t        p_rid; 

} procset_t; 

The p_lidtype and p_lid elements specify one set of processes (the “left” set), and the 

p_ridtype and p_rid elements specify another set (the “right” set). The idtypes and ids are 

specified in the same manner as for sigsend, described above. 

The p_op element of the structure identifies an operation to be performed on the two sets of 

processes; the results of this operation are then used as the set of processes to which sig is delivered. 

The values for p_op are: 

POP_DIFF Set difference. Processes in the left set that are not in the right set. 

POP_AND Set intersection. Processes in both the left and right sets. 

POP_OR Set union. Processes in either the left set, right set, or both. 
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POP_XOR Set exclusive-or. Processes in either the left or right set, but not both. 

On success, sigsend and sigsendset return 0. On failure, they return –1 and errno will contain 
the reason for failure. 

With both sigsend and sigsendset, the process with process-id 0 is always excluded, and the 

process with process-id 1 is excluded for all values of idtype except P_PID. 

Also in both cases, the real or effective user-id of the calling process must match the real or effective 

user-id of the receiving process, unless the effective user-id of the sending process is that of the 

super-user, or sig is SIGCONT and the sending process has the same session-id as the receiving 

process. 

Waiting for Signals to Occur 

The POSIX standard provides two new functions for stopping a process until a signal occurs. The 

pause and sigpause functions, described earlier, may also be used for this purpose (however, 

sigpause should not be used with the POSIX signal functions, since it is part of a different signal 
mechanism). 

#include <signal.h> 

 

int sigsuspend(const sigset_t *set); 

 

int sigwait(sigset_t *set); 

The sigsuspend function replaces the process' signal mask with the set of signals pointed to by 

set, and then suspends the process until delivery of a signal whose action is either to execute a 

signal-catching function or to terminate the process. On return, the process' signal mask is restored 

to the set that existed before the call to sigsuspend. 

The sigwait function selects a signal from the set pointed to by set that is pending for the process. 

If no signals in set are pending, then sigwait blocks until a signal in set becomes pending. The 

selected signal is cleared from the set of signals pending for the process, and the number of the 

signal is returned. The selection of a signal in set is independent of the process' signal mask. This 

means that a process can synchronously wait for signals that are being blocked by the signal mask. 

Both sigsuspend and sigwait return –1 and set errno if an error occurs. 

Printing Signal Information 

The psginal function, described earlier, can still be used with the POSIX signal functions to print 

information about signals. SVR4 also provides a second function, for use with the siginfo_t 
structure: 

#include <siginfo.h> 

 

void psiginfo(siginfo_t *pinfo, char *s); 
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Like psignal, psiginfo prints the string pointed to by s, followed by a colon, followed by a 

string describing the signal (pinfo->si_signo). It then prints a description of the reason the signal 

was delivered, as indicated by the siginfo_t structure pointed to by pinfo. 

The psiginfo function is not available in HP-UX 10.x. 

Example 10-7 shows another version of our signal program that demonstrates the use of psiginfo. 

Example 10-7: signal4 

#include <signal.h> 

#include <stdio.h> 

 

void handler(int, siginfo_t *, void *); 

 

int 

main(void) 

{ 

    struct sigaction sact; 

 

    /* 

     * Set up the sigaction structure.  We want to get the 

     * extra information about the signal, so set SA_SIGINFO. 

     */ 

    sact.sa_sigaction = handler; 

    sact.sa_flags = SA_SIGINFO; 

    sigemptyset(&sact.sa_mask); 

 

    /* 

     * Send SIGUSR1 and SIGUSR2 to the handler function. 

     */ 

    if (sigaction(SIGUSR1, &sact, (struct sigaction *) NULL) < 0) { 

        fprintf(stderr, "cannot set handler for SIGUSR1\n"); 

        exit(1); 

    } 

 

    if (sigaction(SIGUSR2, &sact, (struct sigaction *) NULL) < 0) { 

        fprintf(stderr, "cannot set handler for SIGUSR2\n"); 

        exit(1); 

    } 

 

    /* 

     * Now wait for signals to arrive. 

     */ 

    for (;;) 

        pause(); 

} 

 

/* 

 * handler - handle a signal. 

 */ 

void 

handler(int sig, siginfo_t *sinf, void *ucon) 

{ 

    /* 
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     * Print out what we received. 

     */ 

    psiginfo(sinf, "Received signal"); 

} 

% signal4 & 

 [1] 12345 

% kill -USR1 12345 

Received signal: Signal User 1 (from process 678) 

% kill -USR2 12345 

Received signal: Signal User 2 (from process 678) 

% kill -USR1 12345 

Received signal: Signal User 1 (from process 678) 

% kill -USR2 12345 

Received signal: Signal User 2 (from process 678) 

% kill 12345 

 [1] + Terminated     signal4 

Manipulating the Signal Mask 

The POSIX standard also specifies the way in which a process may examine and change its signal 

mask. This method is similar to, but less cumbersome than, the sighold/sigrelse method offered 

by SVR3. 

#include <signal.h> 

 

int sigprocmask(int how, const sigset_t *set, sigset_t *oset); 

The sigprocmask function is used both for examining and changing the signal mask. If set is 

non-null, then the signal set it points to modifies the signal mask according to the value of how: 

SIG_BLOCK The signal set pointed to by set is added to the current signal mask. 

SIG_UNBLOCK The signal set pointed to by set is removed from the current signal mask. 

SIG_SETMASK The signal set pointed to by set replaces the current signal mask. 

If oset is non-null, the previous value of the signal mask is stored in the area it points to. If set is 

null, the value of how is ignored and the signal mask is not changed; this enables the process to 

inquire about its current signal mask. 

If there are any pending unblocked signals after the call to sigprocmask, at least one of those 

signals will be delivered to the process before sigprocmask returns. 

On success, sigprocmask returns 0. On failure, it returns –1 and errno will contain the reason for 
failure. 

Examining the List of Pending Signals 

POSIX provides the sigpending function to obtain the list of signals a process has pending: 

#include <signal.h> 
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int sigpending(sigset_t *set); 

The function returns the list of signals that have been sent to the process but are being blocked from 

delivery by the signal mask, and stores them in the area pointed to by set. On success, sigpending 

returns 0; if it fails, it returns –1 and stores the reason for failure in errno. 

The setjmp and longjmp Functions, Revisited 

Recall that, when we discussed the setjmp and longjmp functions, we mentioned that they had 

one particularly annoying problem. Because the longjmp function is usually called from within a 
signal handler, and transfers control out of the signal handler without the handler ever returning, the 

signal that originally caused the handler to be invoked remains blocked in the process' signal mask. 

To get around this problem, POSIX defines two new functions: 

#include <setjmp.h> 

 

int sigsetjmp(sigjmp_buf env, int savemask); 

 

void siglongjmp(sigjmp_buf env, int val); 

These two functions are identical to setjmp and longjmp, except that they use a sigjmp_buf data 

type instead of a jmp_buf data type, and sigsetjmp takes an additional argument. If the value of 

savemask is non-zero, then sigsetjmp saves the process' signal mask and scheduling parameters, 

and they will be restored when siglongjmp is called. 

The POSIX signal mechanism is substantially more powerful than either the Version 7 or SVR3 

mechanisms, particularly for complex applications in which signals must be blocked or detailed 

information about why a signal was delivered is needed. However, as mentioned before, it's 

somewhat more than the average programmer usually needs. 

Porting Berkeley Signals to SVR4 

Berkeley signals are both a blessing and a curse. They are a blessing in the sense that they introduced 

several important concepts such as reliable signals and restartable system calls. They are a curse 

because they are different from every other version of UNIX. 

4.2BSD was the first version of UNIX to overhaul the signal mechanism; it is here that the concepts 

of reliable signals and restartable system calls were both introduced. In this section, we examine the 

4.2BSD and 4.3BSD signal mechanisms in detail, as they pertain to porting programs that use them 

to SVR4. 

It is important to understand that the way in which Berkeley implemented the new signal mechanism 

not only provided a number of new functions that will be described shortly, but it also changed the 

behavior of the standard signal function. Thus, any program being ported from 4.2BSD or 4.3BSD 
to SVR4 will need to have its signal handling code examined, not just those programs that use the 

new functions. 
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Fortunately however, most programmers avoided the new Berkeley signal functions, and continued 

to simply use signal. This means that they did not take advantage of any of the special features, 
and thus, the porting effort will (usually) be simple. The only thing to remember in this case is that 

in Berkeley UNIX, the signal function provides reliable signals, while in SVR4 it does not. 

However, in SVR4, the sigset function does provide reliable signals. So, most programs that use 

signal can be ported from Berkeley UNIX simply by placing the line 

#define signal sigset 

at the top of the program. The only exception to this rule occurs when the program handles SIGCHLD; 

recall that the sigset function implements the System V semantics for this signal. In this case, the 

program must be modified to use sigaction. 

For those programs that do make use of the Berkeley signal functions, the rest of this section 

provides a basic description of these functions and how they work. 

The sigvec Function 

The primary function for handling signals in Berkeley UNIX is called sigvec: 

#include <signal.h> 

 

int sigvec(int sig, struct sigvec *vec, struct sigvec *ovec); 

The function sets the disposition for the signal identified in sig to the information provided in vec 

if it is non-null; if ovec is non-null, the previous disposition information is returned. 

The struct sigvec structure is defined this way in 4.2BSD: 

struct sigvec { 

    int    (*sv_handler)(int, int, struct sigcontext *); 

    int    sv_mask; 

    int    sv_onstack; 

}; 

The sv_handler element of the structure is a pointer to the handler function; it may also take on 

the values SIG_DFL and SIG_IGN. The sv_mask element specifies a signal mask (see below) of 

signals that should be blocked for the duration of the signal handler. The sv_onstack element, if 

non-zero, indicates that the signal should be handled on an alternate signal stack instead of the 

process' main stack. 

In 4.3BSD, the structure was changed to: 

struct sigvec { 

    int    (*sv_handler)(int, int, struct sigcontext *); 

    int    sv_mask; 

    int    sv_flags; 

}; 
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The sv_flags element could take on the values SV_ONSTACK to indicate the alternate signal stack, 

and SV_INTERRUPT, to specify that the signal should interrupt system calls, rather than restart them. 

Generally speaking, if sv_mask and sv_flags (sv_onstack) are not used, calls to sigvec can 

be replaced with analagous calls to sigset. If the sv_mask element of the structure is used, 

sigaction should be used, with the sa_mask element of the sigaction structure. If the alternate 

signal stack is used (which it rarely, if ever, was), the sigaction function must be used, in 

conjunction with sigaltstack (not described in this book). 

Handler Calling Conventions 

Signal handlers in Berkeley UNIX use three arguments: 

int (*handler)(int sig, int code, struct sigcontext *context); 

The sig parameter is the signal number, just as in all other versions of UNIX. The code parameter 

related the signal to a hardware trap; this information is provided by SVR4 in the si_info element 

of the siginfo_t structure. The context parameter describes the program context to be restored 

on return from the signal handler; this information can be obtained by using the sa_sigaction 

handler with sigaction. 

Signal Masks 

Berkeley UNIX provides the concept of signal masks just as SVR4 does. A signal mask defines the 

set of signals currently blocked from devlivery. If the ith bit in the mask is 1, then signal number i 

is blocked. The ith bit is set by oring in a 1 shifted left i–1 places: 

1 << (i-1) 

4.3BSD defines a macro, sigmask, that performs this computation: 

#include <signal.h> 

 

int sigmask(int sig); 

Calls to sigmask should be replaced with calls to sigemptyset, sigfillset, sigaddset, and 

sigdelset. 

To install a new signal mask, the sigsetmask function is used: 

#include <signal.h> 

 

int sigsetmask(int mask); 

The previous signal mask is returned. This call can be replaced with a call to sigprocmask with 

SIG_SETMASK as the first argument. 

To add a set of signals to the current signal mask, the sigblock function is used: 
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#include <signal.h> 

 

int sigblock(int mask); 

The previous mask is returned. This call can be replaced with a call to sigprocmask with 

SIG_BLOCK as the first argument, or with a call to sighold. 

Waiting for Signals 

Berkeley UNIX also provides a sigpause function: 

#include <signal.h> 

 

int sigpause(int mask); 

The new mask is installed and the program blocked until a signal occurs. When sigpause returns, 

the old signal mask is restored. Note that this behavior is identical to the POSIX sigsuspend 

function, but that it is not the same as the SVR3 sigpause function. 

The setjmp and longjmp Functions 

In Berkeley UNIX, the setjmp and longjmp functions do save and restore the signal mask, unlike 

the SVR4 version. Calls to setjmp and longjmp should be replaced with calls to sigsetjmp and 

siglongjmp, respectively. 

Chapter Summary 

In this chapter, we learned how to process signals, and how to use signals to implement important 

functions such as timeouts. When writing systems-level programs, handling signals is almost always 

required to some extent, and knowledge of the material in this chapter is vital. In the next chapter 
we will learn how to handle processes, including how to implement job control. Job control 

demonstrates many of the complex interactions between processes and signals that the systems 

programmer sometimes has to deal with. 
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Chapter 11 
Processes 

The UNIX operating system, unlike the operating systems on most personal computers, is a 

multiuser, multitasking operating system. The first term, multiuser, means that more than one person 

can use the system at the same time to get work done. The second term, multitasking, means that 

the system as a whole, and each user individually, can do more than one thing at a time. Contrast 

this with a personal computer, in which generally there may be only one user at a time, and that 

person may only use one program at a time. 

But, this is all an illusion. On most computers, there is only one processor, and that processor can 

only do one thing at a time. (Some newer systems have more than one processor, but each processor 

can still only do one thing at a time.)  The UNIX system creates the illusion that the computer is 

doing several things at once by timesharing the processor(s). The processor spends a few 

microseconds doing one task, and then switches to another. It spends a few microseconds there, and 

then switches to still another task. Since microseconds are too short for most humans to deal with, 

it appears that all these tasks are taking place simultaneously. This scheme usually works well, 

because while some tasks are blocked (for example, waiting on the user to type something), other 

tasks can be processed. It only breaks down when there are so many tasks waiting to be serviced 

that the time between those little several-microsecond periods when the processor works on the task 

begins to grow. Then the system seems slow, and everyone starts to complain. 

Processes are what the UNIX system uses to split work up into tasks. Each task is placed into a 

separate process, and the operating system timeshares the processor among all currently active 

processes. When a new task is started, for example by a user executing a command, a new process 

is created. When the task is finished, the process associated with that task is destroyed. Many 

processes stand alone as individual tasks. Other processes however, may be interrelated by being 

subtasks of a larger task. In this chapter, we will examine processes in detail—how to create them, 

how to destroy them, and how to control them. We will also examine the interrelationships between 

processes, and how these can be used to provide some interesting features that would otherwise be 

impossible. 
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Process Concepts 

In order to discuss the functions used for manipulating processes, it is necessary to first explain a 

number of concepts. These concepts all relate to one another in important ways, and must be 

understood in order to write programs that handle processes correctly. 

Process Identifiers 

Each process in the system has a unique process identifier, or process-id. The process-id is a positive 

integer, usually in the range from 0 to about 32,000. Each time a new process is created, the 
operating system assigns it the next sequential, unused process-id. When the maximum process-id 

is reached, the numbers wrap around to zero again. The process-id is the only well-known (i.e., 

accessible outside the operating system itself) identifier of a process. A process can determine its 

process-id by using the getpid function: 

#include <sys/types.h> 

#include <unistd.h> 

 

pid_t getpid(void); 

The process-id is actually used as an index into an array of structures of type struct proc (see 

the include file sys/proc.h) called the process table. Each array element in the process table describes 

one process. Each struct proc structure contains all of the state information about a process, 

including its real and effective user- and group-ids, its signal mask, its list of pending signals, the 

command name, the amount of processor time used so far, pointers into the open file table, and all 
sorts of other information. 

New processes come into being when existing processes create them. When a process creates 

another process, the new process is said to be a child of the existing process. Similarly, the existing 

process is said to be the parent of the new process. The parent process-id of a process is the process-

id of the process that created it. A process can learn its parent's process-id (usually, see below) by 

using the getppid function: 

#include <sys/types.h> 

#include <unistd.h> 

 

pid_t getppid(void); 

System Processes 

Generally, there is no direct correspondence between process-ids and programs. When a program is 

executed, it just gets the next available process-id. Execute the program more than once, and it will 
have a different process-id each time. However, there are a few, usually less than five, special 

processes that always have the same process-id. These processes are called system processes. 

The process with process-id 0 is the system scheduler, usually called sched or swapper. It is 

responsible for allocating those few-millisecond time slices to all the other processes on the system. 

The scheduler is not a command in the usual sense; there is no corresponding program on the disk 

for it. It is instead a part of the operating system kernel itself. 
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The process with process-id 1 is the init process. This program is responsible for bringing the system 

up after a reboot. It executes the /etc/rc files, and brings the system to a specific state (usually 

multiuser operation). The init process is a regular user-level process (i.e., it's a command that can 

be executed). After starting up the system, it stays around to perform some process-related 

bookkeeping tasks, described below. If init is killed (or otherwise exits), the system will shut down. 

On modern versions of UNIX that support virtual memory, the process with process-id 2 is usually 
the page daemon, called pagedaemon or pageout. This is a kernel process like the scheduler, and is 

responsible for moving unused pages of memory out to disk so that other programs may use them. 

Termination Status 

Eventually, most processes finish whatever they're intended to do, and terminate. There are three 

ways for a process to terminate normally: 

1. Executing a return from the main function. 

2. Calling the exit function (described later in this chapter). This function is defined by ANSI C, 
and handles calling any exit handlers that have been defined, and closing all Standard I/O 

Library streams. 

3. Calling the _exit function. This function is not usually called directly, but is called by exit. 
It is responsible for cleaning up operating system-specific resources used by the process; since 

ANSI C is operating system-independent, it cannot specify these functions. 

There are also two ways in which a process can terminate abnormally: 

1. The program can call the abort function (see Chapter 16, Miscellaneous Routines). 

2. The program can receive a signal from itself, from another process, or from the operating 

system. The signal can cause the program to terminate, sometimes with an accompanying core 

dump. 

When a program terminates, the operating system provides a termination status to the process' 

parent. The termination status indicates whether the process terminated normally or abnormally. If 

the process terminated normally, the termination status provides the parent process with an exit 

status for the process; the exit status is used by some programs to indicate success, failure, and other 

events. If the process terminated abnormally, the termination status includes information about how 

the program terminated (what signal it received) and whether or not a core dump was produced. 

The termination status of a child process is returned to the parent process when the parent calls the 

wait function, or one of its derivatives. These functions are described later in the chapter. The 
important point to understand here is that it is up to the parent to ask for the termination status of a 

child—it can do this as soon as the child terminates, several minutes or hours later, or even not at 

all. 

Zombie Processes 

Since it is up to the parent process to request the termination status of a child process, what happens 

when the child process terminates?  The system can't keep the entire process around; resources such 

as memory, open files, process table slots (process-ids), and so forth would rapidly be exhausted. 
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On the other hand, it can't get rid of the process entirely, either, because then the termination status 

would not be available to return to the parent process. 

To resolve this dilemma, UNIX compromises. When a process terminates, the operating system 

frees up all of the resources used by the process except the process table entry. The termination 

status of the process is stored in the process table entry, where it can be retrieved later by the parent. 

When the parent process finally does issue a call to wait or a similar function, the termination status 
is returned and the process table slot can be freed for reuse. 

During the time between when a process terminates and the parent picks up its termination status, 

the process is called a zombie process. All of its resources have been freed except for the process 
table entry, and thus it is in some sense dead, but in another sense still walking around in the system. 

Zombie processes are usually labeled as “<defunct>,” in the output from the ps command and  have 

a process status of “Z.” 

Orphaned Processes 

When a process terminates before its parent, it becomes a zombie process until the parent picks up 

its termination status. But what happens when the parent terminates before the child process?  This 
is not an abnormal event; in fact, it happens all the time. Does the child process still have a parent?  

What happens if the child calls getppid? 

UNIX handles this situation by arranging for the init process to become the new parent process of 
any process whose real parent terminates. When a process terminates, the operating system goes 

through the list of all active processes, looking for any whose parent is the terminating process. If it 

finds any, it sets those processes' parent process-id to 1 (the init process). 

What happens when a process that has been inherited by init terminates?  Since its original parent 

is no longer around to pick up its termination status, does it become a zombie forever?  Fortunately, 

no. One of the functions of the init process is to call one of the wait functions each time one of its 
child processes terminates. In this way it picks up these orphaned processes' termination statuses (it 

simply discards them), and keeps the system from becoming clogged with zombie processes. 

Process Groups 

In addition to having a process-id, each process is also a member of a process group. A process 

group is a collection of one or more processes, and is identified by a unique positive integer called 

a process group-id. A process may obtain its process group-id by calling the getpgrp function: 

#include <sys/types.h> 

#include <unistd.h> 

 

pid_t getpgrp(void); 

The processes in a process group are usually related in some way. Process groups were introduced 

in Berkeley UNIX to implement job control. Shells that perform job control, such as the C shell or 

the Korn shell, usually place all of the commands in a pipeline into a single process group. For 

example, in the command 
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% eqn myreport | tbl | troff | psdit | lp 

each program (eqn, tbl, troff, psdit, and lp) would be running as a separate process with a separate 

process-id (e.g., 123, 124, 125, 126, and 127). However, all five processes would have the same 

process group-id, e.g., 127. This allows the shell to treat those five processes as a single entity (a 
“job”) for purposes of stopping them, continuing them, and moving them between the foreground 

and the background. 

The Process Group Leader 

Each process group starts out with a process group leader. This is the process whose process group-

id is equal to its process-id. It is, of course, possible for the process group leader to terminate at any 

time. The process group however, remains in existence until the last process in that process group 
terminates. When a process group is created as the result of a pipeline, the last process in the pipeline 

is usually the process group leader. There is no deep and meaningful reason for this; it is simply a 

side effect of the way pipelines are created. 

Sessions 

The POSIX standard introduced still another idea, called a session. A session is a collection of one 

or more process groups. The idea is that while each process group is a group of related processes 
(such as a pipeline), a session is a group of related process groups (such as all the jobs currently 

being run by the user logged in on a particular terminal). Sessions exist purely for the purposes of 

job control, and exist mainly to fix some deficiencies in the Berkeley job control implementation 

(which only used process groups). 

The Session Leader 

When a process creates a new session, it becomes the leader of that session. The session leader has 
certain privileges that other members of the session do not (see below). 

in the POSIX standard, there is no concept of a session-id like that of the process-id and process 

group-id. However, SVR4 defines such an identifier; it is equal to the process-id of the session 

leader. A process can be identified as a session leader if its process-id, process group-id, and session-

id are all equal. To make this identification process easier,  SVR4 provides the getsid function: 

#include <sys/types.h> 

 

pid_t getsid(void); 

This function is not part of the POSIX standard. 

The Controlling Terminal 

A controlling terminal can be associated with a session; in the case of interactive logins, the 

controlling terminal is usually the device on which the user is logged in. When a session is initially 

created, it has no controlling terminal. A controlling terminal is allocated for a session when the 

session leader opens a terminal device that is not already associated with a session, unless the session 

leader supplies the O_NOCTTY flag on the call to open (see Chapter 3, Low-Level I/O Routines). The 
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session leader that establishes the connection to the controlling terminal is called the controlling 

process. 

When a session has a controlling terminal associated with it, a number of interesting things can 

happen. At all times, the controlling terminal is associated with a process group. When one of the 

session's process groups has the same process group-id as that of the controlling terminal, that 

process group is said to be in the foreground. If the process group's process group-id is not the same 
as that of the controlling terminal, the process group is said to be in the background. The foreground 

or background status of a process group has a number of interesting effects. 

Whenever the interrupt key (usually CTRL-C) or quit key (usually CTRL-\) is pressed on the 

controlling terminal, a signal (either SIGINT or SIGQUIT) is delivered to all processes in the 
foreground process group. If job control is enabled, pressing the suspend key (usually CTRL-Z) on 

the controlling terminal sends a SIGTSTP signal to all processes in the foreground process group. 

Whenever a modem disconnect on the controlling terminal is detected by the system, the SIGHUP 

signal is sent to the controlling process (session leader). 

When job control is enabled, only a process in the foreground process group may read from the 

terminal. Processes in background process groups will be stopped with a SIGTTIN signal if they 

attempt to read from the controlling terminal. If the TOSTOP mode is set on the controlling terminal 
(see Chapter 12, Terminals), only processes in the foreground process group may write to the 

controlling terminal. If a process in a background process group attempts to write to the controlling 

terminal, it will be stopped with a SIGTTOU signal. 

Job control shells such as the C shell and Korn shell use the controlling terminal to implement job 

control. In order to move a job into the foreground, the shell changes the process group of the 

controlling terminal to the process group-id of that job, and, if necessary, starts the job running again 

by sending the processes in that process group a SIGCONT signal. Each time a different job is placed 

into the foreground, the controlling terminal's process group is changed to the process group of that 

job. 

Sometimes, a program wishes to talk to the controlling terminal, regardless of whether or not the 

standard input or standard output have been redirected. For example, the passwd program insists on 

reading a new password from the keyboard; it does not want to read it from a file (if the password 

is stored in a file, it is probably not secret any more). When this is necessary, the process can open 

the special file /dev/tty. This special file name is translated within the kernel to refer to the 

controlling terminal for the process. If the process does not have a controlling terminal, an open of 

/dev/tty will fail. 

Priorities 

The UNIX scheduler is responsible for allocating slices of the processor's time to each process in 

the system. In order to do this in an equitable manner, the scheduler computes a priority for each 

process in the system. These priorities are recalculated frequently based on a complex formula that 

takes into account such things as the amount of memory the process is using, the amount of input 

and output it is performing, how long it's been since the last time the process got any processor time, 

and so forth. The calculation varies between different versions of UNIX, but the end result is the 
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same—an ordered list of processes, sorted by priority. Generally speaking, processes with a high 

priority execute more often and/or for longer time slices. 

A process cannot set or change its priority; this calculation is performed by the operating system. 

However, the process is allowed to influence the priority calculation by a little bit. One of the 

parameters of the scheduler's priority calculation is a process' nice value. This is a number that 

ranges from 0 to 40, with the default value being 20. If a process wishes to lower its priority (allow 
other processes to take precedence), it increases its nice value to something between 20 and 40. 

(This is where the name “nice” comes from—large jobs are supposed to be nice to the system by 

increasing their nice value.) If a process wishes to raise its priority (take precedence over other 

processes), it decreases its nice value to something between 0 and 20. Usually, any process may 

increase its nice value (give itself a worse priority), but only processes with super-user privileges 

may lower their nice values. The nice value is changed with the nice function: 

#include <unistd.h> 

 

int nice(int incr); 

When called, nice adds incr, which may be positive or negative, to the process' current nice value. 

It should be noted here that in colloquial speech, the term “priority” is usually used when referring 

to the nice value, even though this is not technically correct. Increasing a process' “priority” refers 
to reducing its nice value, while lowering its “priority” refers to increasing its nice value. 

Program Termination 

As described above, when a process terminates the operating system saves the termination status of 

that process. The termination status can be retrieved later by the parent process (we will describe 

how to do this later in the chapter). As described so far, the termination status contains information 

about whether the process terminated normally or abnormally, and if it terminated abnormally, the 

reason for termination. 

When a process terminates normally, it may optionally return an exit status to the parent process. 

The exit status is a small integer value that can communicate  information about how things went. 

Convention dictates that a zero exit status be used to indicate that everything went fine, no errors 

occurred. A non-zero exit status usually indicates that something went wrong, although this is not 

always the case. It is up to the programmer to define the meanings for non-zero exit statuses. Many 

programs simply use exit status 1 to indicate something went wrong, without being more specific 

(error messages usually supplement this). But some programs have several different exit statuses, 

with special meaning assigned to each one. For example, the grep utility exits with status 0 if 

matches were found, status 1 if no matches were found, and status 2 if the pattern specification was 

erroneous. For an example of even more special meanings, look at the manual page for the fsck 

program. 

A program provides an exit status to the parent process by using the exit function: 

#include <stdlib.h> 
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void exit(int status); 

The status argument is the exit status. The function sets the exit status, and then causes the 

program to terminate. 

The exit function is actually a library routine defined by ANSI C that closes all the Standard I/O 

Library streams the process has open, and then calls another function, _exit. The _exit function 
is a system call, and it is the entity that is actually reponsible for causing the process to terminate. 

The _exit function does a number of things, including closing all the process' open files, sending 

a SIGCHLD signal to the parent process, setting the process' child processes' parent process-ids to 1, 
freeing up any interprocess communication resources used by the process, and so forth. The reason 

that these chores are not performed by exit itself is that ANSI C does not specify operating system-

dependent functionality, and thus cannot specify everything exit should do. 

The exit function exists in all versions of UNIX. However, for those versions that support ANSI 

C, some additional functionality is provided. The programmer is allowed to register up to 32 

functions to be called automatically at the time the program exits, either by calling exit or by 

returning from main. These functions are registered by using the atexit function: 

#include <stdlib.h> 

 

int atexit(void (*func)(void)); 

Each function registered will be called, with no arguments, when the program exits. The functions 

will be called in the reverse order of their registration. Again, this functionality is only available in 

ANSI C. 

Simple Program Execution 

The simplest way to execute a program from within your program is to use the system function: 

#include <stdlib.h> 

 

int system(const char *string); 

The system function uses the Bourne shell (/bin/sh) with its -c option to execute the shell command 

contained in string, waits for the command to complete, and then returns the termination status 

(which includes the exit status) of the command. Example 11-1 shows a small program that 

demonstrates the use of system. 

Example 11-1: system 

#include <stdlib.h> 

#include <stdio.h> 

 

struct { 
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    char    *abbrev; 

    char    *fullname; 

} days[] = { 

    "Sun",  "Sunday", 

    "Mon",  "Monday", 

    "Tue",  "Tuesday", 

    "Wed",  "Wednesday", 

    "Thu",  "Thursday", 

    "Fri",  "Friday", 

    "Sat",  "Saturday", 

    0,      0 

}; 

 

int 

main(void) 

{ 

    int i; 

    int status; 

    char command[BUFSIZ]; 

 

    /* 

     * For each day, construct a command. 

     */ 

    for (i=0; days[i].abbrev != NULL; i++) { 

        /* 

         * Run the date command, and use grep to search for 

         * the day's abbreviated name.  Redirect the output 

         * to /dev/null; we'll use the exit status to find 

         * what we want. 

         */ 

        sprintf(command, "date | grep %s > /dev/null", days[i].abbrev); 

 

        /* 

         * Run the command.  The termination status is returned 

         * in status. 

         */ 

        status = system(command); 

 

        /* 

         * The exit status is in the second byte of the 

         * termination status. 

         * 

         * Grep returns 0 if a match was found, 1 if no 

         * match was found, and 2 if an error occurred. 

         */ 

        switch ((status >> 8) & 0xff) { 

        case 0: 

            printf("Today is %s.\n", days[i].fullname); 

            break; 

        case 1: 

            printf("Today is not %s.\n", days[i].fullname); 

            break; 

        case 2: 

            printf("Error in pattern specification.\n"); 

            exit(1); 

        } 

    } 
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    /* 

     * Exit with a status of 0, indicating that 

     * everything went fine. 

     */ 

    exit(0); 

} 

% system 

Today is not Sunday. 

Today is not Monday. 

Today is not Tuesday. 

Today is Wednesday. 

Today is not Thursday. 

Today is not Friday. 

Today is not Saturday. 

Obviously, this is a horribly inefficient way to figure out what day of the week it is, but it 

demonstrates a number of the concepts we have been talking about. For each day of the week, the 
program constructs a command to execute date, sending the output from that into grep, searching 

for the abbreviated day name. Each time, we save the termination status of grep (in a pipeline, the 

termination status of the entire pipeline is defined by the termination status of the last command in 

the pipeline) in the variable status. Next, we extract the exit status from the termination status, 

figure out what grep was telling us, and print an appropriate message. 

The extraction of the exit status from the termination status is done in a non-portable fashion in this 

example. As it turns out, this example will work on all versions of UNIX; the exit status is always 

in the second byte of the termination status. However, there is a more portable way to examine the 

termination status and extract information from it; this is shown in the following section. 

Finally, note that the commands we build redirect their output to /dev/null (the “bit bucket”). We 

can do this, because we are only interested in whether or not grep found anything, not what it found, 

and grep tells us this with its exit status. If we did not redirect the output to /dev/null, then when we 

found a match, the output from date (as printed by grep) would appear in the middle of the output 

from our program. Try removing the redirection from the command to see the difference. 

There are three final points to make about system: 

1. Although terribly convenient, system is also terribly inefficient. Every time it is called, it not 
only starts the command you want to execute, but also starts up a copy of the shell. If your 

program will be executing many commands, you should execute them yourself directly, rather 

than by using system. The means to do this are described in the next section. 

2. System calls and library routines are always more efficient than using system to do the same 
thing. For example, instead of calling 

system("rm -f file"); 

system("mkdir foo"); 

system("mv oldfile newfile"); 

you could instead do this internally to your program by using functions we have discussed in 

previous chapters: 
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unlink("file"); 

mkdir("foo"); 

rename("oldfile", "newfile"); 

3. The system function should never, under any circumstances, be used in programs that will be 

run with super-user permissions, or with the set-user-id bit set. Because system uses the shell 

to execute commands, there may be ways in which an unethical person can fool your program 

into executing a command other than the one you intended. This may enable the person to 
circumvent the security of your computer system. 

Advanced Program Execution 

In this section, we will examine the procedures used to create new processes, execute other 

programs, and retrieve processes' termination statuses. All three of these procedures are used in the 

construction of the system function, described above, and at the end of this section, we will show 

how system can be written. 

Creating a New Process 

The first step in executing a program is to create a new process. The function to do this is called 

fork: 

#include <sys/types.h> 

#include <unistd.h> 

 

pid_t fork(void); 

The fork function creates an exact copy of the calling process. This means that the child process 
inherits a number of characteristics from the parent process: 

 The real user-id, real group-id, effective user-id, and effective group-id of the parent process. 

 The set-user-id and set-group-id mode bits of the parent process. 

 The supplementary group-id list of the parent process. 

 The saved user-id and saved group-id of the parent process. 

 All of the parent process' environment variables (see Chapter 16, Miscellaneous Routines). 

 All of the parent process' open file descriptors and file offsets. 

 Any file descriptor close-on-exec flags (see Chapter 6, Special-Purpose File Operations) set by 

the parent process. 

 The file mode creation mask (umask) of the parent process. 

 Any signal handling dispositions (SIG_DFL, SIG_IGN, SIG_HOLD, or a handler function 
address) set by the parent process. 
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 The session-id and process group-id of the parent process. 

 The parent process' controlling terminal. 

 The parent process' nice value (see above). 

 The current working directory of the parent process. 

 The parent process' resource limits. 

The child process will differ from the parent process in the following ways: 

 The child process will have a unique process-id. 

 The child process will have a different parent process-id. 

 The child process will have its own copy of the parent's open file descriptors. It may close these 

file descriptors without affecting the parent. However, the parent and child will share the file 

offset for each descriptor; this means that if they both write to the file at the same time, the 

output will be intermixed. Likewise, if they both read from the file, they will each receive only 

part of the data. 

 The child process will not have any of the file locks its parent may have created. 

 The set of pending signals for the child process is initialized to the empty set. 

The fork function is interesting in that it returns twice—once in the parent, and once in the child. 

In the parent process, fork returns the process-id of the child process (it returns –1 if a child process 

could not be created). In the child process however, fork returns 0. In this way, the parent and child 
can distinguish themselves from one another. 

As soon as fork returns, there are two nearly identical copies of the program running. There is no 
guarantee that the child will run before the parent or vice-versa; this must be taken into account to 

avoid a deadlock condition in which each process is waiting on the other to do something. Example 

11-2 shows a program that creates a child process. The child process writes out the lowercase letters 

in alphabetical order ten times; the parent process writes out the uppercase letters in alphabetical 

order ten times. Note that running the program multiple times may not produce the same output each 

time; this is because two processes are performing the task, and the order in which they execute is 

dependent on the system scheduler, how many other processes are running on the system, and other 

parameters outside of the program's control. 

Example 11-2: fork 

#include <sys/types.h> 

#include <unistd.h> 

 

int 

main(void) 

{ 

    int i; 

    char c; 

    pid_t pid; 
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    /* 

     * Create a child process. 

     */ 

    if ((pid = fork()) < 0) { 

        perror("fork"); 

        exit(1); 

    } 

 

    if (pid == 0) { 

        /* 

         * This code executes in the child process 

         * (fork returned zero). 

         */ 

        for (i=0; i < 10; i++) { 

            for (c = 'a'; c <= 'z'; c++) 

                write(1, &c, 1); 

        } 

    } 

    else { 

        /* 

         * This code executes in the parent process. 

         */ 

        for (i=0; i < 10; i++) { 

            for (c = 'A'; c <= 'Z'; c++) 

                write(1, &c, 1); 

        } 

    } 

 

    /* 

     * This code executes in both processes (i.e., 

     * it gets executed twice). 

     */ 

    write(1, "\n", 1); 

    exit(0); 

} 

% fork 

abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnABCDEFG 

HIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZAB 

CDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVW 

XYZABCDEFopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz 

abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstu 

vwxyzabcdefghijklmnopqGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDE 

FGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ 

% fork 

abcdefghijklmnopqrABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABC 

DEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWX 

YZABCDEFGHIJKLMNstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvw 

xyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqr 

stuvwxyzabcOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCdefghijklmnopqrstuvwx 

yzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijkDEFGHIJK 

LMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ 
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Executing a Program 

The second step in executing a program is to bring the program into memory and begin executing 

the instructions it contains. This can be accomplished using one of several routines, all generically 

referred to as the exec functions: 

#include <unistd.h> 

 

int execl(const char *path, const char *arg0, ..., const char *argn, 

        char * /*NULL*/); 

 

int execv(const char *path, const char *argv[]); 

 

int execle(const char *path, const char *arg0, ..., const char *argn, 

        char * /*NULL*/, const char *envp[]); 

 

int execve(const char *path, const char *argv[], const char *envp[]); 

 

int execlp(const char *file, const char *arg0, ..., const char *argn, 

        char * /*NULL*/); 

 

int execvp(const char *file, const char *argv[], const char *envp[]); 

In all its forms, exec overlays the image of the calling process with the image of a new program. 
The new process image is constructed from an ordinary executable file, either an object file as 

produced by a compiler, or a file of data for an interpreter, such as the shell. If exec succeeds, it 
never returns, because the calling process is overlaid by the new process image (and thus no longer 

exists). 

On most modern UNIX systems, shell scripts and other files of interpreted commands may begin 

with a line of the form 

#!pathname [argument] 

where pathname is the full path name to the interpreter, and argument is an optional argument. 

For example, “#!/bin/sh” is common in shell scripts. When one of these files is the target of an 

exec, the interpreter is invoked with its zeroth argument equal to pathname, and if present, its first 

argument equal to argument. The remaining arguments to the interpreter are the arguments 

specified in the call to exec. Most UNIX systems limit the length of this line to about 32 characters. 

When an object file is executed, it is called as follows: 

int main(int argc, char *argv[], char *envp[]); 

where argc is the argument count, argv is an array of character pointers to the arguments 

themselves, and envp is an array of character pointers to the environment strings (see Chapter 16, 

Miscellaneous Routines). The argc parameter is always at least 1, and the first element of argv 

points to the name of the executable file. 
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The execl and execle functions execute the file (command) named by the path name in path, 

with the strings pointed to by arg0 through argn as arguments. The argument following argn 

should be a null pointer, to indicate the end of the argument list. By convention, arg0 should always 

be present; it will become the name of the process as displayed by the ps command. Usually, arg0 

is given as the path name of the executable file, or the last component of the path name. A program 

executed by execl will inherit the calling process' environment strings; execle allows the calling 

process to provide a new set of environment strings in envp. 

The execv and execve functions execute the file (command) named by the path name in path, 

with the strings pointed to by the array of pointers in argv as arguments. By convention, argv 

should always contain at least one member, which will become the name of the process as displayed 

by the ps command. Usually, argv[0] is given as the path name of the executable file, or the last 

component of the path name. A program executed by execv will inherit the calling process' 

environment strings; execve allows the calling process to provide a new set of environment strings 

in envp. 

The execlp and execvp functions are identical to execl and execv, except that instead of 
specifying a path name to the executable file, only the file's name is supplied. These functions then 

search the directories in the calling process' search path (as defined by the PATH environment 
variable), looking for an executable file of the same name. The first such file encountered is then 

executed. If the target file is not an object file or executable interpreter script as described above, 

the contents of the file are used as input to the Bourne shell (/bin/sh). 

When an exec takes place, the new process inherits the open file descriptors of the calling process, 
except those with the close-on-exec flag set (see Chapter 6, Special-Purpose File Operations). For 

those file descriptors that remain open, the file offset is unchanged. Signals that are being caught by 

the calling process are reset to their default dispositions in the new process; all other signal 

dispositions remain the same. If a call to exec fails, it returns –1 and places the reason for failure in 

errno. 

Example 11-3 shows a program that creates a child process, and then both the child and parent 

processes execute other commands. 

Example 11-3: forkexec 

#include <sys/types.h> 

#include <unistd.h> 

 

int 

main(void) 

{ 

    pid_t pid; 

    char *args[4]; 

 

    /* 

     * Create a child process. 

     */ 

    if ((pid = fork()) < 0) { 

        perror("fork"); 
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        exit(1); 

    } 

 

    if (pid == 0) { 

        /* 

         * This code executes in the child process 

         * (fork returned zero). 

         */ 

        execl("/bin/echo", "echo", "Today's", "date", "is:", 0); 

 

        /* 

         * If the exec succeeds, we'll never get here. 

         */ 

        perror("exec"); 

        exit(1); 

    } 

 

 

    /* 

     * This code executes in the parent process. 

     */ 

    args[0] = "date"; 

    args[1] = "+%A, %B %d, %Y"; 

    args[2] = NULL; 

 

    execv("/bin/date", args); 

 

    /* 

     * If the exec succeeds, we'll never get here. 

     */ 

    perror("exec"); 

    exit(1); 

} 

% forkexec 

Today's date is: 

Wednesday, November 30, 1994 

% forkexec 

Wednesday, November 30, 1994 

Today's date is: 

Note that this program suffers from the same plight that our last example did—because there is no 

guarantee that the child process will execute before the parent process, the output can come out in 
the wrong order (you may have to run the program several times to see this behavior). One way we 

might try to get around this would be to place a call to sleep in the parent right before the call to 

exec. However, if we use a small sleep like one or two seconds, there is no guarantee, on a heavily 
loaded system, that the child will get to execute in that amount of time. But if we use anything much 

larger than one or two seconds, the program will have an uncomfortable delay between printing 

“Today's date is:” and actually printing the date. In the next section, we will see how to solve 
this problem. 



Processes 

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 271 
 

Collecting the Process Termination Status 

The last part of executing a program is to wait for it to complete, and collect the termination status 

of the process. As alluded to earlier, this is an optional step; if it is not performed, the child process 

will become a zombie while the parent process still exists, and if the parent process exits, the child 

process will be inherited by init. 

The basic function used to wait for a child process to complete, and retrieve its termination status, 

is called wait: 

#include <sys/types.h> 

#include <sys/wait.h> 

 

pid_t wait(int *status); 

The wait function suspends the calling process until one of its immediate child processes 
terminates. (It will also return if a child process that is being traced is stopped due to the receipt of 

a signal, but that is beyond the scope of this book.)  The termination status of the child process will 

be stored in the integer pointed to by status. If the calling process does not care about the 

termination status, and is only interested in waiting until the child process terminates, status may 

be given as the null pointer. If a child process has terminated prior to the call to wait, wait returns 

immediately with the status for that process. The process-id of the process that terminated is returned 

by wait; if there are no unwaited-for child processes, wait returns –1. 

A number of macros are defined in the include file sys/wait.h to assist in decoding the termination 

status returned by wait. All of them take a single argument, the integer containing the termination 
status. 

WIFEXITED Evaluates to a non-zero value if the process terminated normally. 

WEXITSTATUS If WIFEXITED evalutes to a non-zero value (indicating normal termination), 

this macro evalutes to the exit code the process passed to exit or returned 

from main. 

WIFSIGNALED Evaluates to a non-zero value if the process terminated due to the receipt of 

a signal. 

WTERMSIG If WIFSIGNALED evaluates to a non-zero value (indicating termination due to 
a signal), this macro evaluates to the number of the signal that caused the 

process to terminate. 

WIFSTOPPED Evaluates to a non-zero value if the process is currently stopped. 

WSTOPSIG If WIFSTOPPED evaluates to a non-zero value (indicating the process is 
stopped), this macro evalutes to the number of the signal that caused the 

process to stop. 

WIFCONTINUED Evaluates to a non-zero value if the process has been continued from a 

stopped state. This macro is not defined in HP-UX 10.x. 
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WCOREDUMP If WIFSIGNALED evaluates to a non-zero value (indicating termination due to 
a signal), this macro evaluates to a non-zero value if a core image of the 

process was created. 

Example 11-4 shows how we can modify the program from Example 11-3 to always print things in 

the right order. The only difference is the addition of the call to wait in the parent. 

Example 11-4: forkexecwait 

#include <sys/types.h> 

#include <unistd.h> 

 

int 

main(void) 

{ 

    pid_t pid; 

    char *args[4]; 

 

    /* 

     * Create a child process. 

     */ 

    if ((pid = fork()) < 0) { 

        perror("fork"); 

        exit(1); 

    } 

 

    if (pid == 0) { 

        /* 

         * This code executes in the child process 

         * (fork returned zero). 

         */ 

        execl("/bin/echo", "echo", "Today's", "date", "is:", 0); 

 

        /* 

         * If the exec succeeds, we'll never get here. 

         */ 

        perror("exec"); 

        exit(1); 

    } 

 

    /* 

     * Wait for the child process to complete.  We 

     * don't care about the termination status. 

     */ 

    while (wait((int *) 0) != pid) 

        continue; 

 

    /* 

     * This code executes in the parent process. 

     */ 

    args[0] = "date"; 

    args[1] = "+%A, %B %d, %Y"; 

    args[2] = NULL; 

 

    execv("/bin/date", args); 
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    /* 

     * If the exec succeeds, we'll never get here. 

     */ 

    perror("exec"); 

    exit(1); 

} 

% forkexecwait 

Today's date is: 

Wednesday, November 30, 1994 

% forkexecwait 

Today's date is: 

Wednesday, November 30, 1994 

There are two variants of the wait function that provide additional functionality: 

#include <sys/types.h> 

#include <sys/wait.h> 

 

pid_t waitpid(pid_t pid, int *status, int options); 

 

pid_t waitid(idtype_t idtype, id_t id, singinfo_t *info, 

        int options); 

The waitpid function is specified by the POSIX standard. It allows the programmer greater control 

over waiting for processes, by assigning several meanings to the values in the pid argument: 

 If pid is equal to –1, the status is requested for any child process (in this case, waitpid is 

equivalent to wait). 

 If pid is greater than zero, the status is requested for the process whose process-id is equal to 

pid. The process identified by pid must be a child of the calling process. 

 If pid is equal to zero, the status is requested for any process in the same process group as the 

calling process. 

 If pid is less than –1, the status is requested for any process whose process group-id is equal to 

the absolute value of pid. The processes in that process group must be children of the calling 

process. 

The waitid function, which is not specified by the POSIX standard, allows the list of processes to 

be waited for to be specified in much the same way as for the sigsend and sigsendset functions 

described in the last chapter. The idtype and id parameters specify which processes waitid 

should wait for: 

 If idtype is P_PID, waitid waits for the child with process-id id. 

 If idtype is P_PGID, waitid waits for any child process with process group-id id. 

 If idtype is P_ALL, waitid waits for any child process, and id is ignored. 
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The waitid function is not available in HP-UX 10.x. 

Both waitpid and waitid use the options parameter to allow the programmer to specify the 

state changes that are of interest. The value of the options parameter is constructed from the logical 

or of the following values: 

WCONTINUED The status of any specified process that has continued, and whose status has not 

been reported since it continued, is also reported (waitid only). 

WEXITED Wait for processes to exit (waitid only). 

WNOHANG Do not cause the calling process to block. If no status is immediately available, 

–1 is returned with errno set to ECHILD. This allows a process to poll for status 
information periodically while otherwise performing other tasks. 

WNOWAIT Keep the process whose status is returned in a waitable state. The process may 

be waited for again with identical results. This option is not available in IRIX 
5.x. 

WSTOPPED Wait for and return the status of any process that has been stopped due to a 

signal (waitid only). 

WTRAPPED Wait for traced processes to become trapped or reach a breakpoint (waitid 

only). 

WUNTRACED The status of any specified child processes that are stopped, and whose status 

has not yet been reported since they stopped, is also reported (waitpid only). 

If we put all three of these steps together, we can construct a function much like system. Example 

11-5 shows our function, called shellcmd, and also demonstrates the use of the macros described 
above. 

Example 11-5: shellcmd 

#include <sys/types.h> 

#include <sys/wait.h> 

#include <signal.h> 

#include <unistd.h> 

#include <string.h> 

#include <errno.h> 

#include <stdio.h> 

 

int     shellcmd(char *); 

void    prstat(int); 

 

int 

main(void) 

{ 

    int status; 

    char command[BUFSIZ]; 

 

    /* 

     * Forever... 
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     */ 

    for (;;) { 

        /* 

         * Prompt for a command. 

         */ 

        printf("Enter a command: "); 

 

        /* 

         * Read a command.  If NULL is returned, the 

         * user typed CTRL-D, so exit. 

         */ 

        if (fgets(command, sizeof(command), stdin) == NULL) { 

            putchar('\n'); 

            exit(0); 

        } 

 

        /* 

         * Strip off the trailing newline character 

         * left by fgets. 

         */ 

        command[strlen(command)-1] = '\0'; 

 

        /* 

         * Execute the command and print the termination 

         * status. 

         */ 

        status = shellcmd(command); 

        prstat(status); 

        putchar('\n'); 

    } 

} 

 

/* 

 * shellcmd - start a child process, and pass command to the shell. 

 */ 

int 

shellcmd(char *command) 

{ 

    int status; 

    pid_t p, pid; 

    extern int errno; 

    sigset_t mask, savemask; 

    struct sigaction ignore, saveint, savequit; 

 

    /* 

     * Set up a sigaction structure to ignore signals. 

     */ 

    sigemptyset(&ignore.sa_mask); 

    ignore.sa_handler = SIG_IGN; 

    ignore.sa_flags = 0; 

 

    /* 

     * Ignore keyboard signals; save old dispositions. 

     */ 

    sigaction(SIGINT, &ignore, &saveint); 

    sigaction(SIGQUIT, &ignore, &savequit); 

 

    /* 
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     * Block SIGCHLD. 

     */ 

    sigemptyset(&mask); 

    sigaddset(&mask, SIGCHLD); 

    sigprocmask(SIG_BLOCK, &mask, &savemask); 

 

    /* 

     * Start a child process. 

     */ 

    if ((pid = fork()) < 0) 

        status = -1; 

 

    /* 

     * This code executes in the child process. 

     */ 

    if (pid == 0) { 

        /* 

         * Restore signals to their original dispositions, 

         * and restore the signal mask. 

         */ 

        sigaction(SIGINT, &saveint, (struct sigaction *) 0); 

        sigaction(SIGQUIT, &savequit, (struct sigaction *) 0); 

        sigprocmask(SIG_SETMASK, &savemask, (sigset_t *) 0); 

 

        /* 

         * Execute a shell with the command as argument. 

         */ 

        execl("/bin/sh", "sh", "-c", command, 0); 

        _exit(127); 

    } 

 

    /* 

     * Wait for the child process to finish. 

     */ 

    while (waitpid(pid, &status, 0) < 0) { 

        /* 

         * EINTR (interrupted system call) is okay; otherwise, 

         * we got some error that we need to report back. 

         */ 

        if (errno != EINTR) { 

            status = -1; 

            break; 

        } 

    } 

 

    /* 

     * Restore signals to their original dispositions, 

     * and restore the signal mask. 

     */ 

    sigaction(SIGINT, &saveint, (struct sigaction *) 0); 

    sigaction(SIGQUIT, &savequit, (struct sigaction *) 0); 

    sigprocmask(SIG_SETMASK, &savemask, (sigset_t *) 0); 

 

    /* 

     * Return the child process' termination status. 

     */ 

    return(status); 

} 
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/* 

 * prstat - decode the termination status. 

 */ 

void 

prstat(int status) 

{ 

    if (WIFEXITED(status)) { 

        printf("Process terminated normally, exit status = %d.\n", 

               WEXITSTATUS(status)); 

    } 

    else if (WIFSIGNALED(status)) { 

        printf("Process terminated abnormally, signal = %d (%s)", 

               WTERMSIG(status), strsignal(WTERMSIG(status))); 

 

        if (WCOREDUMP(status)) 

            printf(" -- core file generated.\n"); 

        else 

            printf(".\n"); 

    } 

    else if (WIFSTOPPED(status)) { 

        printf("Process stopped, signal = %d (%s).\n", 

               WSTOPSIG(status), strsignal(WSTOPSIG(status))); 

    } 

    else if (WIFCONTINUED(status)) { 

        printf("Process continued.\n"); 

    } 

} 

% shellcmd 

Enter a command: date 

Wed Nov 30 17:15:24 EST 1994 

Process terminated normally, exit status = 0. 

Enter a command: date | grep Wed 

Wed Nov 30 17:15:42 EST 1994 

Process terminated normally, exit status = 0. 

Enter a command:  date | grep Thu 

Process terminated normally, exit status = 1. 

Enter a command:  sleep 5 

^CProcess terminated normally, exit status = 130. 

Enter a command:  sleep 5 

^\Quit - core dumped 

Process terminated normally, exit status = 131. 

Enter a command:  exec sleep 5 

^CProcess terminated abnormally, signal = 2 (Interrupt). 

Enter a command:  exec sleep 5 

^\Process terminated abnormally, signal = 3 (Quit) -- core file generated. 

Enter a command: ^D 

Before we look at our program, let's look at the example of its execution. 

In the first case, we execute the command date, which terminates normally with an exit status of 0. 

In the second case, we execute the date command and send the output into grep, searching for the 

string “Wed.”  The grep command finds the string, prints the line on which it occurs, and exits with 

status 0, indicating a match was found. In the third case, we repeat this experiment, but search for 

the string “Thu.” This time, grep exits with status 1, meaning no matches were found. 
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In the next two cases, we try to demonstrate what happens when we press the interrupt (CTRL-C) 

and quit (CTRL-\) keys on the keyboard. We would expect that the command should terminate 

abnormally, and we should learn what signal terminated it. But, this doesn't happen. Instead, we find 

out that the command terminated normally!  The problem here is that our shellcmd function is 
using the Bourne shell to execute our command, rather than executing it directly. The shell is waiting 

for our command to complete, catching the fact that it terminated abnormally (that's where the 

“Quit—core dumped” message comes from), and then the shell is exiting normally. But, the shell 
indicates in its exit status that the command terminated abnormally, and with what signal it 

terminated, by adding the signal's number to a base value of 128. 

In the last two cases, we accomplish what we wanted to do in the previous two. All UNIX shells 

have a built-in command called exec that tells them to execute the following command without 

starting a child process. This overlays the shell with the new command, and when the new command 
exits, the shell is just gone. By using the exec command here, we can eliminate the shell's checking 

of our command's termination status, allowing us to obtain it directly. 

Now let's look at the program itself, specifically, the shellcmd function. 

The first thing the function does is set the disposition of the two keyboard interrupt signals, SIGINT 

and SIGQUIT to be ignored. Recall from above that the keyboard-generated signals are delivered to 
all foreground processes—that means that both the child process (which we meant to interrupt) and 

the parent process (which we didn't mean to interrupt) will receive the signal. As an experiment, try 

commenting out the first two calls to sigaction and see what happens when you press CTRL-C 
or CTRL-\. 

The next thing shellcmd does is set up a signal mask to block SIGCHLD. This is not really 

necessary in our example here, but it is necessary in the real system function. If system did not 

block SIGCHLD from delivery, and the calling process was catching SIGCHLD for its own purposes, 

its signal handler would be called when the child process started by system terminates. But since 

the parent process is presumably catching SIGCHLD because it is interested in processes it started 

itself, it might get confused if it received the signal for a process that system started instead. 

After setting up the signal handling, shellcmd creates a child process with fork. The first thing 
the child process does is restore the two keyboard signals to their original dispositions (we want 

them to interrupt the child process), and reset the signal mask to its original value. We reset the 

signal mask so that if the command we execute needs SIGCHLD, it will be available. Then the child 

process executes the shell, passing the command string as an argument. The last thing we do in the 

child is call _exit; if the exec succeeds, this will never happen. But, if the exec fails, the child 
process still needs to exit, or the parent will block indefinitely waiting for it to terminate. We call 

_exit instead of exit so that we don't call any exit handlers that may have been registered with 

atexit. 

While the child process is doing all that, the parent is patiently sitting in the call to waitpid, waiting 

until the child process is done. The advantage to using waitpid here is that we are guaranteed that 

we will only receive the termination status of the process we started ourselves. If we used wait 
instead, we might receive the status of some process started by our caller; this would then make that 

status unavailable to the caller when it tries to get it later. If our call to waitpid is interrupted by a 
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signal, we continue to wait. Finally, we restore our signal dispositions to their original values, restore 

the signal mask, and then return the child process' termination status. 

The vfork Function 

Most versions of UNIX that implement virtual memory also provide a function called vfork. This 

function also creates a child process, but unlike fork, it does not copy the entire address space of 
the calling process. Rather, the child process executes using the parent's address space, and thus the 

parent's memory and thread of control. 

The purpose of vfork is to provide a more efficient method of creating a child process when the 

purpose is to execute another program via exec. Since the call to exec will overwrite the calling 
process' address space anyway, there is little point in copying everything first. Needless to say, great 

havoc can result if vfork is used to create a process that does not immediately call exec. 

The need for vfork has diminished in more recent versions of UNIX, because they usually 

implement copy-on-write in fork. That is, the address space of the parent is not copied for the child 

unless and until the child tries to modify that address space. The use of vfork in new programs is 
discouraged since it is non-standard, but it may crop up from time to time when porting older 

software. 

The vfork function is not available in IRIX 5.x. 

Redirecting Input and Output 

One of the most useful features of the UNIX shells, aside from their obvious ability to execute 

commands, is their ability to redirect input and output. For example, the command 

      ls > listing 

places the output from the ls command into the file listing instead of sending it to the screen. 

Likewise, the command 

      a.out < data 

tells the a.out command to read its input from the file data instead of from the keyboard. How does 

the shell arrange for this to work? 

Earlier in the chapter, we said that files remain open across a call to exec. Thus, if we can arrange 
for the standard input (file descriptor 0) and the standard output (file descriptor 1) to refer to the 

files we want to use for input and output before calling exec, the newly-executed program will read 
from and write to these files. 

In Chapter 3, Low-Level I/O Routines, we described the dup and dup2 functions: 

#include <unitstd.h> 

 

int dup(int fd); 
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int dup2(int fd, int fd2); 

As you may recall, dup returns a new file descriptor that references the same file as fd. The new 

descriptor has the same access mode (read, write, or read/write) and the same read/write offset as 

the original. The file descriptor returned will be the lowest numbered one available. dup2 causes 

the file descriptor fd2 to refer to the same file as fd. If fd2 refers to an already-open file, that file 

is closed first. 

Thus, all that is necessary to perform input and output redirection in the shell is to have the shell 

open the files in question, call dup or dup2 to attach those files to file descriptors 0 and 1, and then 
execute the command. Example 11-6 shows a very rudimentary shell-like program that does just 

this. 

NOTE 

The bufsplit function is broken in some versions of Solaris 2.4. If this example does not 

appear to work for you, edit the example program and remove the “#ifdef notdef” and 

“#endif” to enable the use of a locally-defined version of the function. 

Example 11-6: shell 

#include <sys/types.h> 

#include <sys/wait.h> 

#include <libgen.h> 

#include <signal.h> 

#include <unistd.h> 

#include <string.h> 

#include <fcntl.h> 

#include <errno.h> 

#include <stdio.h> 

 

#define NARGS   64 

 

int execute(char **, char *, char *); 

 

int 

main(void) 

{ 

    char **cp; 

    int n, status; 

    char *args[NARGS]; 

    char command[BUFSIZ]; 

    char *infile, *outfile; 

 

    /* 

     * Set up bufsplit to parse the command line. 

     */ 

    bufsplit(" \t\n", 0, NULL); 

 

    /* 

     * Forever... 

     */ 
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    for (;;) { 

        /* 

         * Prompt for a command. 

         */ 

again:  printf("--> "); 

 

        /* 

         * Read a command.  If NULL is returned, the 

         * user typed CTRL-D, so exit. 

         */ 

        if (fgets(command, sizeof(command), stdin) == NULL) { 

            putchar('\n'); 

            exit(0); 

        } 

 

        /* 

         * Split the command into words. 

         */ 

        n = bufsplit(command, NARGS, args); 

        args[n] = NULL; 

 

        /* 

         * Ignore blank lines. 

         */ 

        if (**args == '\0') 

            continue; 

 

        /* 

         * Find any input and output redirections. 

         */ 

        infile = NULL; 

        outfile = NULL; 

 

        for (cp = args; *cp != NULL; cp++) { 

            if (strcmp(*cp, "<") == 0) { 

                if (*(cp+1) == NULL) { 

                    fprintf(stderr, "You must specify "); 

                    fprintf(stderr, "an input file.\n"); 

                    goto again; 

                } 

 

                *cp++ = NULL; 

                infile = *cp; 

            } 

            else if (strcmp(*cp, ">") == 0) { 

                if (*(cp+1) == NULL) { 

                    fprintf(stderr, "You must specify "); 

                    fprintf(stderr, "an output file.\n"); 

                    goto again; 

                } 

 

                *cp++ = NULL; 

                outfile = *cp; 

            } 

        } 

 

        /* 

         * Execute the command. 
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         */ 

        status = execute(args, infile, outfile); 

    } 

} 

 

/* 

 * execute - execute a command, possibly with input/output redirection 

 */ 

int 

execute(char **args, char *infile, char *outfile) 

{ 

    int status; 

    pid_t p, pid; 

    int infd, outfd; 

    extern int errno; 

    sigset_t mask, savemask; 

    struct sigaction ignore, saveint, savequit; 

 

    infd = -1; 

    outfd = -1; 

 

    /* 

     * If an input file was given, open it. 

     */ 

    if (infile != NULL) { 

        if ((infd = open(infile, O_RDONLY)) < 0) { 

            perror(infile); 

            return(-1); 

        } 

    } 

 

    /* 

     * If an output file was given, create it. 

     */ 

    if (outfile != NULL) { 

        if ((outfd = creat(outfile, 0666)) < 0) { 

            perror(outfile); 

            close(infd); 

            return(-1); 

        } 

    } 

 

    /* 

     * Set up a sigaction structure to ignore signals. 

     */ 

    sigemptyset(&ignore.sa_mask); 

    ignore.sa_handler = SIG_IGN; 

    ignore.sa_flags = 0; 

 

    /* 

     * Ignore keyboard signals; save old dispositions. 

     */ 

    sigaction(SIGINT, &ignore, &saveint); 

    sigaction(SIGQUIT, &ignore, &savequit); 

 

    /* 

     * Block SIGCHLD. 

     */ 
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    sigemptyset(&mask); 

    sigaddset(&mask, SIGCHLD); 

    sigprocmask(SIG_BLOCK, &mask, &savemask); 

 

    /* 

     * Start a child process. 

     */ 

    if ((pid = fork()) < 0) 

        status = -1; 

 

    /* 

     * This code executes in the child process. 

     */ 

    if (pid == 0) { 

        /* 

         * Restore signals to their original dispositions, 

         * and restore the signal mask. 

         */ 

        sigaction(SIGINT, &saveint, (struct sigaction *) 0); 

        sigaction(SIGQUIT, &savequit, (struct sigaction *) 0); 

        sigprocmask(SIG_SETMASK, &savemask, (sigset_t *) 0); 

 

        /* 

         * Perform output redirection. 

         */ 

        if (infd > 0) 

            dup2(infd, 0); 

 

        if (outfd > 0) 

            dup2(outfd, 1); 

 

        /* 

         * Execute the command. 

         */ 

        execvp(*args, args); 

        perror("exec"); 

        _exit(127); 

    } 

 

    /* 

     * Wait for the child process to finish. 

     */ 

    while (waitpid(pid, &status, 0) < 0) { 

        /* 

         * EINTR (interrupted system call) is okay; otherwise, 

         * we got some error that we need to report back. 

         */ 

        if (errno != EINTR) { 

            status = -1; 

            break; 

        } 

    } 

 

    /* 

     * Restore signals to their original dispositions, 

     * and restore the signal mask. 

     */ 

    sigaction(SIGINT, &saveint, (struct sigaction *) 0); 
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    sigaction(SIGQUIT, &savequit, (struct sigaction *) 0); 

    sigprocmask(SIG_SETMASK, &savemask, (sigset_t *) 0); 

 

    /* 

     * Close file descriptors. 

     */ 

    close(outfd); 

    close(infd); 

 

    /* 

     * Return the child process' termination status. 

     */ 

    return(status); 

} 

 

/* 

 * The bufsplit() function on Solaris 2.4 is broken.  Remove the 

 * "#ifdef notdef" and "#endif" lines to enable this version. 

 */ 

#ifdef notdef 

size_t 

bufsplit(char *buf, size_t n, char **a) 

{ 

    int i, nsplit; 

    static char *splitch = "\t\n"; 

 

    if (buf != NULL && n == 0) { 

        splitch = buf; 

        return(1); 

    } 

 

    nsplit = 0; 

    while (nsplit < n) { 

        a[nsplit++] = buf; 

 

        if ((buf = strpbrk(buf, splitch)) == NULL) 

            break; 

 

        *(buf++) = '\0'; 

 

        if (*buf == '\0') 

            break; 

    } 

 

    buf = strrchr(a[nsplit-1], '\0'); 

 

    for (i=nsplit; i < n; i++) 

        a[i] = buf; 

 

    return(nsplit); 

} 

#endif 

% shell 

--> ls > listing 

--> cat listing 

Makefile 
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fork.c 

forkexec.c 

forkexecwait.c 

listing 

shell.c 

shellcmd.c 

system.c 

-->  sort -r < listing > listing2 

-->  cat listing2 

system.c 

shellcmd.c 

shell.c 

listing 

forkexecwait.c 

forkexec.c 

fork.c 

Makefile 

-->  ^D 

Technically, the files could be opened in the child process just as well as in the parent; this would 

save the parent having to close them later. However, the method used in the example is preferable, 

because it does not waste a call to fork if one of the files is inaccessible. 

Job Control 

As discussed at the beginning of the chapter, sessions and process groups exist for the purposes of 

performing job control. A process group  is a group of related processes, such as those in a pipeline. 

A session is a group of related process groups, such as all of the jobs currently being run by a user 

on a specific terminal. Usually, sessions are created by the system login process and process groups 

are managed by a job control shell; the average program doesn't have to worry about them. However, 

sometimes it is desirable to be able to manipulate them directly. 

A new session is created with the setsid function: 

#include <sys/types.h> 

#include <unistd.h> 

 

pid_t setsid(void); 

If the process is not already a process group leader, three things happen when setsid is called: 

1. The process becomes the session leader of a new session. The session-id of this new session 

will be the same as the process' process-id. 

2. The process becomes the process group leader of a new process group. The process group-id of 

this new process group will be the same as the process' process-id (and thus the session-id). 

3. If the calling process had a controlling terminal associated with it, that association is broken. If 

the process later opens a terminal device, the first device opened will become the process' 
controlling terminal. 
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A process that is already a process group leader may not call setsid. To insure that this is not the 

case, the usual procedure is to call fork and have the parent process terminate and the child process 

continue. If a new session is created, setsid returns the session-id of the session. Otherwise, –1 is 

returned and errno is set to the error condition. 

A process may create a new process group, or join an existing one, by calling setpgid: 

#include <sys/types.h> 

#include <unistd.h> 

 

int setpgid(pid_t pid, pid_t pgid); 

This function sets the process group-id of the process with process-id pid to pgid. If pgid is equal 

to pid, the process becomes a process group leader. A process may only change the process group 

of itself and its children. If setpgid succeeds, it returns 0. Otherwise, it returns –1 and stores the 

reason for failure in errno. 

Timing Process Execution 

It is often useful to be able to determine how much processor time a process has consumed. This 

can be used for accounting purposes, or to attempt to optimize a program. In UNIX, processor time 

is divided into two parts, user time and system time. User time is the amount of time the processor 

spends executing in user mode; that is, time spent executing the parts of the program written by the 

user such as loops and local functions. System time is the amount of time the processor spends 

executing operating system code on the user's behalf; that is, time spent in system calls such as read 

and write. 

The basic function for obtaining processor usage is called times: 

#include <sys/times.h> 

#include <limits.h> 

 

clock_t times(struct tms *buffer); 

The struct tms structure is defined as follows: 

struct tms { 

    clock_t    tms_utime; 

    clock_t    tms_stime; 

    clock_t    tms_cutime; 

    clock_t    tms_cstime; 

} 

The information reported by times pertains to the calling process and all of its terminated child 

processes for which it has called a wait function. (It is not possible to obtain information about 
processes that are still running.) 
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The tms_utime and tms_stime elements of the structure report the amount of user and system 

time, respectively, used by the calling process. The tms_cutime element represents the sum of the 

tms_utime and tms_cutime of the calling process' children (thus, a process inherits the times of 

its children.)  The tms_cstime element represents the sum of the tms_stime and tms_cstime of 

the calling process' children. 

All times are reported in clock ticks. The value of a clock tick is defined by the CLK_TCK constant 
in the include file limits.h. To obtain a value in seconds, the element of interest in the structure 

should be divided by CLK_TCK. 

On success, times returns the elapsed real time in clock ticks from some arbitrary point in the past 

(usually system boot time). This point does not change between calls to times, so by making two 

calls (say, before a call to fork and after a call to wait), it is possible to determine how long a 
process took to execute. 

Porting Notes 

In BSD-based versions of UNIX, the getpgrp function accepts a process-id as an argument, and 

returns the process group of that process. In SVR4, this can be accomplished by using the getpgid 
function: 

#include <sys/types.h> 

#include <unistd.h> 

 

pid_t getpgid(pid_t pid); 

BSD UNIX provides functions called getpriority and setpriority to get and set the priorities 
(nice values) of processes respectively. There is no direct replacement for these functions in SVR4, 

although the priocntl function supplies much of the same functionality. 

The wait3 function offered by BSD UNIX is not present in SVR4 (except in the compatibility 

library). Its functionality can mostly be provided by  waitpid, except that waitpid will not return 

resource usage statistics as wait3 does. 

The BSD killpg function, that sends a signal to a process group, can be replaced with a call to the 

kill function, specifying the process group-id as a negative number. 

Calls to the BSD setpgrp function should be replaced with calls to setsid. Note that other 
changes will probably be necessary, since all versions of Berkley UNIX prior to 4.4BSD do not 

offer POSIX sessions. 

In BSD UNIX, a process disassociated itself from the controlling terminal with the following code 

sequence: 

. 

. 

. 
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pid = fork(); 

 

if (pid == 0) { 

    if ((fd = open("/dev/tty", 0)) >= 0) { 

        ioctl(fd, TIOCNOTTY, 0); 

        close(fd); 

    } 

 

    . 

. 

. 

 

} 

 

. 

. 

. 

In the POSIX environment, this should be replaced with a call to setsid: 

. 

. 

. 

 

 

pid = fork(); 

 

if (pid == 0) { 

    setsid(); 

 

    . 

. 

. 

 

} 

 

. 

. 

. 

The BSD implementation of times returns times in units of 1/HZ seconds, where HZ is defined in 
the include file sys/param.h. 

Chapter Summary 

In this chapter, we examined how to execute other programs, which in some ways can be viewed as 

the primary purpose of the UNIX operating system. The most common tasks performed on a UNIX 

system require the ability to execute programs, although much of this is hidden from the user by the 

shell. Many of these same tasks require the ability to execute multiple programs and tie them 

together with pipelines or interprocess communications facilities; this is discussed in detail in 
Chapter 13, Interprocess Communication. 
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Chapter 12 
Terminals 

Terminal I/O is probably the messiest topic in UNIX systems programming; it is certainly the 

biggest stumbling block to portability. The problem is that serial lines are used for so many different 

things: connecting terminals to the system, communicating with printers, hooking up modems, 

talking to specialized devices, etc. Each of these uses has its own needs, and while they all overlap 

to some extent, the terminal interface has had to be extended each time a new use arose. The end 

result is that things have gotten very complex—the interface is pretty straight forward, but the 
number of options has grown to the point that it's difficult to know which ones to choose. This is 

true not just for UNIX, but for any operating system that allows the programmer to control serial 

port processing. 

The other problem with terminal I/O control is that in the UNIX community, there have historically 

been two different, and incompatible, interfaces to it. The original interface was developed for 

Version 7, and was based on the stty and ioctl functions. Berkeley later extended this interface 
to cover the additional functionality added by their versions of the operating system, and this 

interface is present in all versions of BSD UNIX save the last (which has adopted the POSIX 

interface). The other interface was first developed in System III, and has continued forward through 

all releases of System V, including SVR4 (although its presence there is primarily for backward 

compatibility; the POSIX interface is preferred). 

When the System III interface first became public, many programmers (including the author) viewed 

it as a gratuitous change made solely for the purposes of being different. However, in reality, the 

change was made with the best of intentions. The original Version 7 interface, especially as extended 
by Berkeley, was showing its age. It was made up of several different data structures, each used for 

different purposes, representing, in a way, its rather piecemeal development process. The designers 

of System III recognized this, and more importantly recognized that as other extensions became 

necessary in the future, they would probably have to be “grafted onto” the interface, rather than 

integrated with it. So, they designed a new interface that unified all of the parts from the old 

interface, as well as some new capabilities, into a single, coherent whole. Furthermore, they 

designed the interface in such a way that new functionality could be added within the existing 

framework, rather than by extending the interface in incompatible ways. Although the first versions 

of this new interface suffered from a few deficiencies, these have since been fixed, and the interface 

has indeed met the goals set for it by the designers, while the older interface has been all but 
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discarded. Indeed, when the POSIX committee specified a terminal I/O control interface, they chose 

one based on (in fact, nearly identical to) the System III/System V interface. 

In this chapter, we will examine the issue of terminal I/O control in detail. We begin by discussing 

the topic at a high level, in order to introduce many of the concepts necessary to understand the 

remainder of the chapter. We follow this with a discussion of the POSIX terminal control interface; 

this interface is perhaps the easiest to understand. After presenting the POSIX interface, we present 
the System V interface, on which it is based. And then, because there are so many programs that 

must be ported from the BSD environment to SVR4, we present the Berkeley interface in detail, 

rather than trying to deal with it briefly in a porting notes section. 

Overview of Terminal I/O 

Terminal input and output is processed in one of two modes: 

Canonical Mode In canonical mode, terminal input is processed in units of lines. A line 

is delimited by a newline (ASCII LF), an end-of-file character (ASCII 
EOT), or an end-of-line character (user defined). This means that a 

program attempting to read from the terminal will be suspended until 

an entire line has been typed. Furthermore, no matter how many 

characters are requested in the read call, at most one line will be 

returned. It is, of course, not necessary to read an entire line at once; 

one or a few characters may be read at a time, and the operating system 

will satisfy the reads from the buffered input line. But it is important 

to understand that the first read request, regardless of its size, will not 

be satisfied until an entire line has been typed. 

When in canonical mode, certain keyboard characters enable special 

processing. The erase character allows one character at a time to be 
deleted from the input, to correct typing mistakes. The kill character 

allows the entire input line typed to this point to be discarded. Other 

keyboard characters provide advanced editing features; these are 

discussed below. Because input is processed a line at a time, the erase 

and kill processing is done before a program reading from the terminal 

sees the input; therefore, the average program does not have to deal 

with these issues. 

Canonical mode input processing also allows certain keyboard 

sequences to generate signals that are sent to the processes in the 

terminal's process group. These keyboard sequences can cause a 

program to terminate, with or without a core dump, and, on systems 

that support job control, can cause a program to stop execution. 

Finally, canonical mode enables certain output processing features 

such as the generation of delays after the output of certain characters 

such as newlines, tabs, and form feeds, the expansion of tabs to spaces, 
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and the conversion of lowercase letters to uppercase (for very old, 

uppercase-only terminals). 

Non-canonical Mode In non-canonical mode, input characters are not assembled into lines, 

and erase and kill processing does not occur. Signal generation and 

output processing are still performed, although they may be disabled. 

When in non-canonical mode, input characters are returned to a 
reading process based on either a minimum input threshold (reads 

return after some minimum number of characters has been typed), a 

maximum time (reads return after a timer expires), or some 

combination of these. 

In Version 7 and BSD UNIX, there are different terms used for these two modes. Because these 

terms are still in general use today, even when describing systems on which they do not apply, they 

are presented below. 

Cooked Mode Cooked mode corresponds to canonical mode, above. Input is processed a line 

at a time, and input editing and signal generation is enabled. Output processing 

is also performed. 

Cbreak Mode Cbreak mode corresponds to basic non-canonical mode, above. It is a sort of 

“half-cooked” mode in which input editing is disabled, and reads are satisfied 
one character at a time (input is not buffered). When in cbreak mode, signal 

generation and output processing are still performed. 

Raw Mode In raw mode, all input and output processing is disabled, as is all signal 

generation. Read requests are satisfied one character at a time. Raw mode 

corresponds to non-canonical mode above, with the addition of disabling 

keyboard signals and output processing. 

Special Characters 

When in canonical mode, there are a number of characters that have special meaning. Version 7 

provided only a basic set of these characters; most of the ones in the list below were added by 

Berkeley, and then later adopted by POSIX and SVR4. Almost all of these characters can be changed 

under program control; the default values are shown in parentheses. 

CR (Carriage Return) This character cannot be changed. This character is recognized in 

canonical input mode. Usually, the CR character is translated to 

NL (newline) and has the same effect as an NL character. This 

character is returned to the reading process (perhaps after being 

translated to NL). 

DISCARD (CTRL-O) This character causes all subsequent output to be discarded, until 
another DISCARD character is entered or the discard condition is 

cleared. This character is discarded by the terminal driver when 

processed; it is not returned to the reading process. This character 
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is not specified in the POSIX standard, nor is it is not available in 

HP-UX 10.x. 

DSUSP (CTRL-Y) This is the delayed-suspend character; it is recoginized in 

canonical and basic non-canonical modes if job control is in 

effect. Like the SUSP character, this character sends the SIGTSTP 
signal to all processes in the foreground process group. However, 

the signal is not delivered until a process reads from the 

controlling terminal, rather than being delivered when the 

character is typed. This character is discarded by the terminal 
driver when processed; it is not returned to the reading process. 

This character is not specified in the POSIX standard. 

EOF (CTRL-D) This character is recognized on input in canonical mode. When 

this character is entered, all bytes remaining to be read are 

immediately passed to the reading process. If there are no bytes 

remaining, a count of zero is returned to the read. Entering an EOF 

character at the beginning of a line is the usual way to indicate an 

end-of-file to a program. This character is discarded by the 

terminal driver when processed; it is not returned to the reading 

process. 

Some operating systems, such as MS-DOS, use a character to 

mark the end of a file (MS-DOS uses CTRL-Z). This character, 
when encountered during reading, indicates the end of the file. 

UNIX, on the other hand, signifies the end-of-file condition by 

causing read to return zero. The presence of an EOF character in 
the input stream does not indicate the end of a file. Its only 

purpose is to tell the terminal driver to generate the end-of-file 

condition for the reading process. 

EOL (No default) In POSIX, this character functions as an additional end-of-line 

delimiter when in canonical mode. It is not normally used. This 

character is returned to the reading process. 

EOL2 (No default) In SVR4, this character functions as still another end-of-line 

delimiter when in canonical mode. It is not normally used. This 

character is returned to the reading process. 

ERASE (DEL or CTRL-H) This character is recognized in canonical mode, and causes the 

previous character in the line to be erased. It is not possible to 
erase beyond the beiginning of the line. This character is 

discarded by the terminal driver; it is not returned to the reading 

process. 

INTR (CTRL-C or DEL) This character is recognized in canonical and basic non-canonical 

mode. When received, it causes a SIGINT signal to be delivered 
to all processes in the foreground process group. This character is 
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discarded by the terminal driver; it is not returned to the reading 

process. 

KILL (CTRL-U) This character is recognized in canonical mode, and erases the 

entire input line. It is discarded by the terminal driver; it is not 

returned to the reading process. 

LNEXT (CTRL-V) This character is recognized in canonical mode and causes the 
special meaning of the next character to be typed to be ignored 

(“LNEXT” stands for “literal next”). This allows the user to type 

any of the characters in this section to a program. This character 

is discarded when processed by the terminal driver, but the next 

character typed is passed to the reading process. This character is 

not specified by the POSIX standard. 

NL (Newline) This character is recognized in canonical mode and serves as the 

end-of-line delimiter. This character cannot be changed. This 

character is returned to the reading process. 

QUIT (CTRL-\) This character is recognized in canonical and basic non-canonical 

mode. It causes the SIGQUIT signal to be delivered to all 
processes in the foreground process group. This character is 

discarded when processed by the terminal driver; it is not returned 

to the reading process. 

REPRINT (CTRL-R) This character is recognized in canonical mode. It causes all 
unread input (the line as typed so far) to be reprinted. This 

character is discarded when processed; it is not returned to the 

reading process. This character is not specified by the POSIX 

standard, nor is it available in HP-UX 10.x. 

START (CTRL-Q) This character is recognized in canonical and basic non-canonical 

mode if flow control is enabled. When received, it causes output 

that has been suspended with a STOP character to start again. This 

character is discarded when processed; it is not returned to the 

reading process. 

STOP (CTRL-S) This character is recognized in canonical and basic non-canonical 

mode if flow control is enabled. When received, it causes output 
to be suspended (but not discarded) until a START character is 

received. This character is not returned to the reading process. 

SUSP (CTRL-Z) This character is recognized in canonical and basic non-canonical 

mode when job control is enabled. It causes a SIGTSTP signal to 
be delivered to all processes in the foreground process group. This 

character is discarded by the terminal driver; it is not returned to 

the reading process. 
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WERASE (CTRL-W) This character is recognized in canonical mode. It causes the 

previous word to be erased. A “word” is delimited by whitespace. 

This character is not returned to the reading process. 

BREAK BREAK is not really a character, but rather a condition that can 

be generated by the terminal hardware. Usually, BREAK is 

interpreted as a synonym for the INTR character, although this is 
not required. 

Terminal Characteristics 

For reference purposes, and to serve as a brief (and probably mystifying) description of what the 

rest of this chapter is about, Table 12-1 shows all the terminal characteristics that can be controlled 

on POSIX, System V, and BSD systems. Several vendors have added additional characteristics to 

this list; those additions are not discussed in this book. 

The table briefly describes each characteristic, and then gives an indication of the flag and option 

that controls this characteristic in each of the three versions. The flags and options are described in 

detail in the remaining sections of the chapter. 

Table 12-1: Terminal Characteristics 

Characteristic POSIX System V BSD 

Generate SIGINT on BREAK BRKINT BRKINT (cooked, cbreak) 

Ignore BREAK condition IGNBRK IGNBRK (raw) 

Map NL to CR on input INLCR INLCR — 

Map CR to NL on input ICRNL ICRNL CRMOD 

Ignore CR IGNCR IGNCR — 

Enable input parity checking INPCK INPCK EVENP, ODDP 

Ignore characters with parity errors IGNPAR IGNPAR (cooked, cbreak) 

Mark characters with parity errors PARMRK PARMRK — 

Strip eighth bit off input characters ISTRIP ISTRIP LPASS8 

Enable start/stop input flow control IXOFF IXOFF TANDEM 

Enable start/stop output flow 

control 
IXON IXON (cooked, cbreak) 

Enable any character to restart 

output 
— IXANY LDECCTQ 

Map uppercase to lowercase on 

input 
— IUCLC LCASE 

Ring terminal bell on input queue 

full 
— IMAXBEL NTTYDISC 

Perform output processing OPOST OPOST LLITOUT 

Backspace delay mask — BSDLY BSDELAY 
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Characteristic POSIX System V BSD 

Carriage return delay mask — CRDLY CRDELAY 

Form feed delay mask — FFDLY VTDELAY 

Horizontal tab delay mask — TABDLY TBDELAY 

Newline delay mask — NLDLY NLDELAY 

Vertical tab delay mask — VTDLY VTDELAY 

Use fill character for delay — OFILL — 

Fill character is DEL, else NUL — OFDEL — 

Map CR to NL on output — OCRNL — 

Map NL to CR-NL on output — ONLCR CRMOD 

NL performs CR function — ONLRET — 

No CR output at column zero — ONOCR — 

Map lowercase to uppercase on 

output 
— OLCUC LCASE 

Expand tabs to spaces — XTABS XTABS 

Baud rate B0…B38400 B0…B38400 B0…B9600 

Character size mask CSIZE CSIZE — 

Send two stop bits, else one CSTOPB CSTOPB — 

Enable parity PARENB PARENB — 

Odd parity, else even PARODD PARODD ODDP, EVENP 

Extended parity (mark and space) — PAREXT — 

Ignore modem status lines CLOCAL CLOCAL — 

No hangup when carrier drops — — LNOHANG 

Hangup on last close HUPCL HUPCL TIOCHPCL 

Flow control via carrier drops — — LMDMBUF 

Enable receiver CREAD CREAD — 

Convert ~ to ` on output 

(Hazeltine) 
— — LTILDE 

Canonical input ICANON ICANON (cooked) 

Enable extended input processing IEXTEN IEXTEN NTTYDISC 

Enable tty-generated signals ISIG ISIG (cooked, cbreak) 

Enable character echo ECHO ECHO ECHO 

Backspace on erase — — LCRTBS 

Visually erase with backspace-

space-backspace 
ECHOE ECHOE LCRTERA 

Echo newline after kill ECHOK ECHOK default 

Visually kill with backspace-

space-backspace 
ECHOKE — LCRTKILL 
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Characteristic POSIX System V BSD 

Visual erase/kill for hardcopy 

terminals 
— ECHOPRT LPRTERA 

Echo control characters as ^X — ECHOCTL LCTLECH 

Echo NL even if ECHO is off ECHONL ECHONL — 

Output is being flushed — FLUSHO LFLUSHO 

Disable flush after interrupt/quit NOFLSH NLFLSH — 

Retype pending input on next 

character 
— PENDIN LPENDIN 

Send SIGTTOU on output from 

background 
TOSTOP — LTOSTOP 

Canonical uppercase/lowercase 

presentation 
— XCASE LCASE 

Terminal-Related Functions 

Before getting into the functions and methods for examining and changing terminal attributes, we 

discuss three functions that are often used in conjunction with these procedures. 

The ctermid function is defined by the POSIX standard to return the name of the calling process' 
controlling terminal: 

#include <stdio.h> 

 

char *ctermid(char *s); 

The single parameter s should point to a character array of at least L_ctermid bytes; this constant 

is defined in the include file. The name of the terminal will be stored in this array, and the address 

of the array returned. If s is null, ctermid stores the terminal name in an internal static array that 

is overwritten on each call, and returns a pointer to that array. If the process has no controlling 

terminal, ctermid returns a null pointer. 

In the previous chapter, we said that a program can always refer to the file /dev/tty when it wants to 

reference the controlling terminal; this makes ctermid seem somewhat superfluous. However, this 
statement is only true for UNIX systems. Other POSIX-compliant systems, such as Digital's VMS, 

may use a different name. The ctermid function allows the name to be determined in a portable 
manner. 

If a program wants to obtain the name of the terminal attached to a specific file descriptor, it can 

use the ttyname function: 

#include <stdlib.h> 

 

char *ttyname(int fd); 
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The fd parameter should be an open file descriptor referencing a terminal device. A pointer to a 

static array containing the name of the terminal device associated with that file descriptor is returned. 

The null pointer is returned if the file descriptor does not refer to a terminal device. Note that 

ttyname will always return the real name of the terminal referenced by fd; it will never return 

/dev/tty. 

To determine if a file descriptor does refer to a terminal device, the isatty function can be used: 

#include <stdlib.h> 

 

int isatty(int fd); 

The fd parameter should be a file descriptor referencing an open file. If the file is a terminal device, 

isatty returns 1; it returns 0 otherwise. 

POSIX Terminal Control 

On POSIX-based systems, all of the terminal input and output modes are controlled via a struct 

termios structure and the functions described in this section. The struct termios structure is 

defined in the include file termios.h: 

struct termios { 

    tcflag_t    c_iflag; 

    tcflag_t    c_oflag; 

    tcflag_t    c_cflag; 

    tcflag_t    c_lflag; 

    cc_t        c_cc[NCCS]; 

}; 

The c_iflag element of the structure contains flags controlling the input of characters by the 

terminal driver, the c_oflag element contains flags controlling the output of characters, the 

c_cflag element contains flags controlling the hardware interface, and the c_lflag element 

contains flags controlling the interface between the terminal driver and the user. The c_cc array 

contains the values of the various special characters described earlier. 

The c_cc array is indexed by constants whose names are identical to the special characters' names 

with a ‘V’ prepended. For example, to set the line-kill character to CTRL-X, we might use: 

#include <termios.h> 

. 

. 

. 

 

struct termios modes; 

 

modes.c_cc[VKILL] = '\030'; 
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Where the octal value 030 is CTRL-X. A special character can be disabled by setting it to a special 

value. The special value can be obtained by calling pathconf or fpathconf (see Chapter 9, System 

Configuration and Resource Limits) with the _PC_VDISABLE argument. For example, to disable the 
interrupt character, we might use: 

#include <termios.h> 

#include <unistd.h> 

. 

. 

. 

 

struct termios modes; 

long vdisable; 

 

vdisable = fpathconf(0, _PC_VDISABLE); 

modes.c_cc[VINTR] = vdisable; 

Each of the flag elements of the structure is constructed from the logical or of the attributes described 
in Table 12-1. To turn on a particular attribute, the flag value is ored into the flag element. For 

example, to turn the ECHO attribute on, we might use this: 

#include <termios.h> 

. 

. 

. 

 

struct termios modes; 

 

modes.c_lflag |= ECHO; 

To turn a feature off, the complement of the attribute is anded into the flag element. For example, 

to turn the ECHO attribute off, we would use this: 

#include <termios.h> 

. 

. 

. 

 

struct termios modes; 

 

modes.c_lflag &= ~ECHO; 

Table 12-1 lists all the attributes that are available, and provides a very brief description of what 

they do. Most of these attributes, however, are not used very often. Some of the more commonly 

used attributes are described in more detail below: 

ICRNL (c_iflag)  When set, this attribute tells the terminal driver to map the carriage 

return character to a newline character on input. Recall that UNIX uses the 

newline character as a line terminator; this attribute allows the user to use the 
carriage return key on the keyboard to signify the end of a line. 
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ISTRIP (c_iflag)  When set, this attribute tells the terminal driver to strip the eighth 
bit off of all input characters (by making it zero). Since ASCII is a 7-bit code, 

this has the general effect of forcing input into the ASCII character set. 

OPOST (c_oflag)  When set, this attribute enables the output post-processing features 
of the terminal driver. This includes inserting delays after certain characters 

such as newline and tab for slow devices, mapping newline to carriage return-

newline, and so forth. 

ONLCR (c_oflag)  When set, this attribute tells the terminal driver to output a carriage 
return and a newline each time a newline character occurs in the output. Most 

terminal devices (and printers) will move “down” when a newline is received, 

but they will not move back to the leftmost column unless a carriage return is 

also received. 

B0... B38400 (c_cflag)  The baud rate is set by turning on one of these attributes. For 

example, B9600 represents 9600 baud. The special rate B0 has the effect of 
turning off the Data Terminal Ready signal, effectively hanging up the phone 

line. 

CREAD (c_cflag)  This attribute enables the receiver. If it is not set, characters cannot 
be received from the device. 

ICANON (c_lflag)  When set, this attribute enables canonical input mode. This mode 
is described in detail below. 

IEXTEN (c_lflag)  This attribute enables the processing of certain implementation-

defined features. In SVR4, it enables the processing of the WERASE, REPRINT, 

DISCARD, and LNEXT special characters, and enables the processing of the 

TOSTOP, ECHOCTL, ECHOPRT, ECHOKE, FLUSHO, and PENDIN attributes. 

ISIG (c_lflag)  When set, this attribute enables the signal-generating properties of 
some of the the special characters (DSUSP, INTR, QUIT, and SUSP). 

ECHO (c_lflag)  When set, characters typed by the user are echoed (printed) back to 
the terminal. This attribute is normally turned off when prompting for 

passwords (and for other reasons). 

ECHOE (c_lflag)  When set, characters are erased on receipt of the ERASE character 
by printing a backspace, a space, and another backspace. If not set, the user has 

to mentally keep track of how many characters were erased. 

ECHOK (c_lflag)  When set, the terminal driver will echo a newline character when 
the KILL character is received; this makes things a little easier to read. 

ECHOKE (c_lflag)  When set, the line is erased on receipt of a KILL character by 
printing a sequence of backspace-space-backspace characters. 

TOSTOP (c_lflag)  When set, a process in the background that tries to perform output 

to the terminal will be stopped with a SIGTTOU signal until it is brought into 
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the foreground. If not set, background processes can write to the terminal 

unimpeded; this usually has the effect of “messing up” whatever the user is 

doing at the moment. 

Examining and Changing Terminal Attributes 

Terminal attributes can be examined and changed by using the tcgetattr and tcsetattr 
functions: 

#include <termios.h> 

 

int tcgetattr(int fd, struct termios *modes); 

 

int tcsetattr(int fd, int action, struct termios *modes); 

The tcgetattr function obtains the attributes for the terminal device referenced by the open file 

descriptor fd, and stores them in the area pointed to by modes. The tcsetattr function sets the 

attributes of the terminal device referenced by the open file descriptor fd to the attributes contained 

in the struct termios structure pointed to by modes. The value of action must be one of: 

TCSANOW The change occurs immediately. 

TCSADRAIN The change occurs after all pending output to the device has been transmitted. 
This function should be used when changing parameters that affect output. 

TCSAFLUSH The change occurs after all pending output to the device has been transmitted. All 

input that has been received but not read by a program is discarded before the 

change is made. 

Both tcgetattr and tcsetattr return 0 on success; if fd does not refer to a terminal device, or 

another error occurs, they return –1 and set errno to indicate the error. 

Note that because tcsetattr sets all terminal attributes, it is necessary to pass a completely filled-

in struct termios structure. Conventionally, this is done by first calling tcgetattr to get the 
current attributes, making changes to the structure it returns, and then passing the result to 

tcsetattr. 

Baud Rates 

The term “baud rate” is outdated and should really be referred to now as “bits per second.”  However, 

most UNIX documentation and functions still refer to baud rate, mostly due to when UNIX was 

originally developed. The baud rate of a device is stored in the struct termios structure, but the 
POSIX standard does not specify where. This means that it's implementation-dependent, and so 

there are functions provided to examine and change the baud rate in the structure: 

#include <termios.h> 

 

speed_t cfgetispeed(const struct termios *modes); 

 

speed_t cfgetospeed(const struct termios *modes); 
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int cfsetispeed(struct termios *modes, speed_t speed); 

 

int cfsetospeed(struct termios *modes, speed_t speed); 

The cfgetispeed and cfgetospeed functions extract the input and output baud rates for the 

device from the struct termios structure pointed to by modes. Note that tcgetattr must be 

called first, to place meaningful information into the structure. These functions return one of the 

constants B0... B38400. 

The cfsetispeed and cfsetospeed functions set the input and output baud rates (which may be 

different if the device supports it) in the struct termios structure pointed to by modes to the 

value passed in the speed parameter. This value should be one of the constants B0... B38400. Note 

that these functions only make the settings in the structure; the change does not take effect on the 

device until tcsetattr is called. 

Job Control Functions 

There are three functions defined for manipulating session-ids and process group-ids of the terminal: 

#include <sys/types.h> 

#include <termios.h> 

 

pid_t tcgetpgrp(int fd); 

 

int tcsetpgrp(int fd, pid_t pgid); 

 

pid_t tcgetsid(int fd); 

The tcgetpgrp function returns the process group-id of the terminal referenced by the open file 

descriptor fd. The tcgetsid function returns the session-id of the terminal referenced by fd. 

The tcsetpgrp function sets the process group-id of the terminal referenced by the open file 

descriptor fd to pgid. For this to succeed, the terminal must be the controlling terminal of the 

calling process, the controlling terminal must be associated with the session of the calling process, 

and pgid must be the process group-id of a process in the same session as the calling process. 

On success, tcsetpgrp returns 0. On failure, all three functions return –1 and set errno to indicate 
the error. 

Other Functions 

The POSIX standard specifies four additional functions for manipulating terminal devices: 

#include <termios.h> 

 

int tcsendbreak(int fd, int duration); 

 

int tcdrain(int fd); 

 

int tcflush(int fd, int queue); 
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int tcflow(int fd, int action); 

The tcsendbreak function transmits a continuous stream of zero-valued bits (called a break 

condition) for the specified duration. The POSIX standard specifies that if duration is 0, the 

transmission lasts for between 0.25 and 0.50 seconds. But, it also specifies that if duration is non-

zero, the result is implementation dependent. In SVR4, a non-zero value for duration means that 

no bits are transmitted at all—instead, the function behaves like tcdrain. In some other systems, 

a non-zero value may mean to transmit for duration×N, where N is between 0.25 and 0.50 seconds. 

Still other systems may provide other interpretations. Non-zero values for duration should 

probably be avoided for portability reasons. 

The tcdrain function waits until all output written to the device referred to by fd has been 

transmitted, and then returns. 

The tcflush function discards data written to the device referenced by fd but not transmitted, or 

data received but not read, depending on the value of queue: 

TCIFLUSH Flush data received but not read. 

TCOFLUSH Flush data written but not transmitted. 

TCIOFLUSH Flush both data received but not read and data written but not transmitted. 

The tcflow function suspends the transmission or reception of data on the device referred to by 

fd, depending on the value of action: 

TCOOFF Suspend output. 

TCOON Resume output. 

TCIOFF Cause the system to transmit a STOP character, telling the device to stop 

transmitting data to the system. 

TCION Cause the system to transmit a START character, telling the device to start 

transmitting data to the system. 

Canonical Mode 

Canonical mode is the usual mode that terminals operate in. All of our examples up to this point 

have used the terminal in canonical mode. In this mode, a program issues a read request, and the 

read returns when a line has been entered. It is not necessary for the program to read an entire line; 

if a partial line is read, the next read will start where the previous one left off. 

For the most part, programs that interact with the user will keep the terminal in canonical mode—

it's easier to deal with, since the operating system handles all the messy details of buffering the input, 

handling character erases and line kills, keeping track of typeahead (when the user types faster than 

the program is reading), and so forth. However, there are times when operating in canonical mode 
that a program might want to change some of a terminal's attributes. 

The most common situation in which this occurs is when reading a password. Passwords, because 

they are meant to be secret, should not be printed on the screen as they are typed. In order to 
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accomplish this, the program reading the password should disable the character echo attribute on 

the terminal. Example 12-1 shows a program that does this. 

Example 12-1: readpass 

#include <termios.h> 

#include <signal.h> 

#include <stdio.h> 

 

int 

main(void) 

{ 

    char line[BUFSIZ]; 

    sigset_t sig, savesig; 

    struct termios modes, savemodes; 

 

    /* 

     * Block keyboard signals. 

     */ 

    sigemptyset(&sig); 

    sigaddset(&sig, SIGINT); 

    sigaddset(&sig, SIGQUIT); 

    sigaddset(&sig, SIGTSTP); 

    sigprocmask(SIG_BLOCK, &sig, &savesig); 

 

    /* 

     * Get current terminal attributes. 

     */ 

    if (tcgetattr(0, &modes) < 0) { 

        perror("tcgetattr"); 

        exit(1); 

    } 

 

    /* 

     * Save a copy of them to restore later, and then 

     * change the attributes to remove echo. 

     */ 

    savemodes = modes; 

    modes.c_lflag &= ~(ECHO | ECHOE | ECHOK | ECHOKE); 

 

    /* 

     * Make our changes take effect. 

     */ 

    if (tcsetattr(0, TCSAFLUSH, &modes) < 0) { 

        perror("tcsetattr"); 

        exit(1); 

    } 

 

    /* 

     * Prompt for and read a line. 

     */ 

    printf("Enter a line (will not echo): "); 

    fgets(line, sizeof(line), stdin); 

    line[strlen(line)-1] = '\0'; 

    putchar('\n'); 
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    /* 

     * Restore original terminal attributes. 

     */ 

    if (tcsetattr(0, TCSAFLUSH, &savemodes) < 0) { 

        perror("tcsetattr"); 

        exit(1); 

    } 

 

    /* 

     * Restore original signal mask. 

     */ 

    sigprocmask(SIG_SETMASK, &savesig, (sigset_t *) 0); 

 

    /* 

     * Print out what the user typed. 

     */ 

    printf("You entered \"%s\"\n", line); 

    exit(0); 

} 

% readpass 

Enter a line (will not echo): 

You entered "test" 

The program begins by setting up a signal mask to block the receipt of signals that can be generated 

from the keyboard. The reason for doing this is that one of these signals can cause the program to 

terminate or stop, leaving the terminal in an undesirable state (character echo turned off). The 

tcgetattr function is then used to obtain the current terminal attributes. These are saved, and then 

modified to remove the character echo attribute. We also remove all the “visual” erase attributes. 

The new attributes are set with tcsetattr, and then the user is prompted to enter a line of text. 
Once the line is read, the original terminal attributes are restored, the original signal mask is restored, 

and the line is printed. Note that a newline character is output right after reading the input; because 

echo is turned off, the newline entered by the user will not be printed. 

This program can be used to verify that even with echo turned off, everything else in canonical mode 

still works. Try entering a line of text and using your character erase and line kill characters, and 

verify that the output is what you'd expect. 

Non-Canonical Mode 

Some programs cannot use canonical mode. For example, consider the vi editor (or emacs, if you 

prefer). The editor's commands are single characters, and they must be acted upon immediately, 
without waiting for the user to press return. Thus, we need a way to obtain input from the user in 

units of characters, rather than lines. Furthermore, some of the commands used by the editor are 

special to the terminal driver and are not normally passed to the reading program (e.g., CTRL-D, 

the default EOF character, tells vi to scroll down half a screen, and CTRL-R, the REPRINT 

character, tells emacs to search in the reverse direction). So, we need a way to turn off these special 

meanings, as well. 

This is what non-canonical mode is for. Non-canonical mode is entered by turning off the ICANON 
attribute. When in non-canonical mode, all of the special characters except those that generate 
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signals are disabled. If we also turn off the ISIG attribute, we can disable the signal-generating 
special characters as well. Non-canonical mode also stops the system from buffering the input into 

units of lines. 

But if non-canonical mode disables the line-by-line processing of input, how does the system know 

when to return to data to us?  Older systems, which use raw or cbreak mode for non-canonical input, 

return the data one character at a time. Unfortunately, this can be very inefficient, because it requires 

a lot of overhead. Thus, POSIX allows us to tell the system to return input when either a specified 

amount of data has been read, or after a certain amount of time has passed. The implementation of 

this uses two variables in the c_cc array, MIN and TIME, indexed by VMIN and VTIME, respectively. 

MIN specifies a minimum number of characters to be processed before a read returns. TIME specifies 
the time, in tenths of a second, to wait for input. There are four combinations of these two variables: 

Case A: MIN > 0, TIME > 0 In this case, TIME serves as an intercharacter timer that is 
activiated after the first character is received, and reset after each 

subsequent character is received. If MIN characters are received 
before the timer expires, the read returns the bytes received. If the 

timer expires before MIN bytes have been read, the characters read 
so far are received. At least one character is guaranteed to be 

returned, because the timer does not start until the first character 

is processed. 

Case B: MIN > 0, TIME = 0 Since TIME is zero, there is no timer involved in this case. A read 

will not be satisfied until MIN characters have been received. 

Case C: MIN = 0, TIME > 0 In this case, since MIN is zero, TIME does not serve as an 
intercharacter timer. Instead, it serves as a read timer that is started 

as soon as the read call is issued. A read is satisfied as soon as a 

single character is typed, or when the timer expires. Note that if 

the timer expires, no character is read, and read returns 0. 

Case D: MIN = 0, TIME = 0 In this case, return is immediate. If data is available, the read will 

return up to the number of characters requested. If no data is 

available, read returns 0. 

Example 12-2 shows a program that uses non-canonical mode to read one character at a time. 

Example 12-2: caseflip 

#include <termios.h> 

#include <signal.h> 

#include <stdlib.h> 

#include <ctype.h> 

 

int 

main(void) 

{ 

    char c, lastc; 

    sigset_t sig, savesig; 
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    struct termios modes, savemodes; 

 

    /* 

     * Block keyboard signals. 

     */ 

    sigemptyset(&sig); 

    sigaddset(&sig, SIGINT); 

    sigaddset(&sig, SIGQUIT); 

    sigaddset(&sig, SIGTSTP); 

    sigprocmask(SIG_BLOCK, &sig, &savesig); 

 

    /* 

     * Get current terminal attributes. 

     */ 

    if (tcgetattr(0, &modes) < 0) { 

        perror("tcgetattr"); 

        exit(1); 

    } 

 

    /* 

     * Save a copy of them to restore later, and then 

     * change the attributes to set character-at-a-time 

     * input, turn off canonical mode, and turn off echo. 

     */ 

    savemodes = modes; 

    modes.c_cc[VMIN] = 1; 

    modes.c_cc[VTIME] = 0; 

    modes.c_lflag &= ~ICANON; 

    modes.c_lflag &= ~(ECHO | ECHOE | ECHOK | ECHOKE); 

 

    /* 

     * Make our changes take effect. 

     */ 

    if (tcsetattr(0, TCSAFLUSH, &modes) < 0) { 

        perror("tcsetattr"); 

        exit(1); 

    } 

 

    /* 

     * Read characters. 

     */ 

    while (read(0, &c, 1) > 0) { 

        /* 

         * Turn uppercase to lowercase and lowercase 

         * to uppercase. 

         */ 

        if (isupper(c)) 

            c = tolower(c); 

        else if (islower(c)) 

            c = toupper(c); 

 

        /* 

         * Since non-canonical mode disables EOF, 

         * we need to handle it ourselves. 

         */ 

        if (c == savemodes.c_cc[VEOF] && lastc == '\n') 

            break; 
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        /* 

         * Output the new character and save 

         * it. 

         */ 

        write(1, &c, 1); 

        lastc = c; 

    } 

 

    /* 

     * Restore the original terminal attributes. 

     */ 

    if (tcsetattr(0, TCSAFLUSH, &savemodes) < 0) { 

        perror("tcsetattr"); 

        exit(1); 

    } 

 

    /* 

     * Restore the original signal mask. 

     */ 

    sigprocmask(SIG_SETMASK, &savesig, (sigset_t *) 0); 

    exit(0); 

} 

As in our previous example, this program sets a signal mask to block keyboard interrupts. It then 

sets MIN and TIME for character-at-a-time input, turns off canonical mode, and disables character 
echo. The program then reads one character at a time. For each lowercase letter it encounters, it 

echos the uppercase equivalent. For each uppercase letter, it echos the lowercase equivalent. 

Because non-canonical mode disables most of the special characters, there is no way to signal an 

end-of-file from the keyboard to terminate this loop. Thus, the program must check the characters 

it reads to see if one of them is the EOF character (and that it occurs at the beginning of a line) and 

break out of the loop itself. 

Emulating Cbreak and Raw Modes 

When porting software from BSD-based systems, it is common to encounter two modes not 

available in POSIX. These are cbreak mode, enabled by setting the CBREAK attribute, and raw mode, 

enabled by setting the RAW attribute. These modes are described in detail above. 

Cbreak mode can be reproduced on a POSIX system as follows: 

 Enable non-canonical mode (turn off ICANON). 

 Enable one character at a time input (set MIN to 1 and TIME to 0). 

Raw mode can reproduced with the following steps: 

 Enable non-canonical mode (turn off ICANON). 

 Disable CR-to-NL mapping on input (turn off ICRNL). 

 Disable input parity detection (turn off INPCK) and input parity checking (turn off PARENB). 

 Disable stripping of the eighth bit on input (turn off ISTRIP). 

 Disable output flow control (turn off IXON). 
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 Make sure characters are eight bits wide (turn on CS8). 

 Disable all output processing (turn off OPOST). 

 Enable one character at a time input (set MIN to 1 and TIME to 0). 

Pre-POSIX Terminal Control 

Depending on the program, porting code that manipulates terminal attributes from a pre-POSIX 

operating system to a POSIX platform may or may not be a simple task. In this section we examine 

the other two common interfaces to terminal input and output control, those of System V and BSD. 

System V Terminal Control 

POSIX terminal attribute control is based on the System V interface, and is almost identical from a 

data structure and flag name point of view. System V uses a struct termio instead of struct 

termios; this structure is defined as follows in the include file termio.h: 

struct termio { 

    unsigned short    c_iflag; 

    unsigned short    c_oflag; 

    unsigned short    c_cflag; 

    unsigned short    c_lflag; 

    char              c_line; 

    unsigned char     c_cc[NCC]; 

}; 

The elements of this structure bear a one-to-one correspondence to their struct termios 

counterparts (the c_line element was for future expansion and never used). There are some 
differences in the attributes that can be stored in the flags; these are summarized in Table 12-1. 

System V releases prior to SVR4 did not support job control or most of the other terminal driver 

features added by Berkeley. The list of special characters supported by these versions is much 
shorter: EOF, EOL, ERASE, INTR, KILL, QUIT, and SWTCH. (SWTCH was for System V's 

layers job control facility, which was abandoned by POSIX in favor of Berkeley-style job control.) 

The biggest difference between the System V interface and the POSIX interface is that instead of 

using tcgetattr, tcsetattr, and the other functions described in the last section, the System V 

interface uses the ioctl system call: 

#include <unistd.h> 

#include <termio.h> 

 

int ioctl(int fd, int request, /* arg */ ...); 

The ioctl function is the traditional UNIX system call for manipulating I/O devices. It performs 

some operation, defined by the value of request, on the device referenced by the open file 

descriptor fd. Each operation may have one argument, a pointer to which is provided by the third 

parameter to ioctl. The principal reason for POSIX's abandonment of this interface is that the third 
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argument may be a pointer to different data types, depending on the value of request, making type 

checking impossible. (POSIX actually does offer an ioctl-based interface to terminal control, but 
its use is discouraged.) 

In the case of the System V terminal interface, the third argument to ioctl is always the address of 

a struct termio structure. The legal values for request are: 

TCGETA The current terminal attributes are retrieved and stored in the struct 

termio structure pointed to by the third argument. This is like 

tcgetattr. 

TCSETA The current terminal attributes are set to those stored in the struct 

termio structure pointed to by the third argument. This is like tcsetattr 

with the TCSANOW action. 

TCSETAW The current terminal attributes are set to those stored in the struct 

termio structure pointed to by the third argument. The changes do not take 
effect until all characters written to the device have been transmitted. This 

is like tcsetattr with the TCSADRAIN action. 

TCSETAFTCSETAW The current terminal attributes are set to those stored in the struct termio 

structure pointed to by the third argument. The changes do not take effect 

until all characters written to the device have been transmitted, and all input 

that has been received but not read is discarded. This is like tcsetattr with 

the TCSAFLUSH action. 

BSD Terminal Control 

The BSD terminal control interface is substantially less organized than the System V and POSIX 

interfaces, with five different data structures, each of which manipulates part of the interface. 

However, the functionality of the BSD interface is comparable to that of the other two. 

The BSD interface, like the System V one, is based on the ioctl function. In all cases, the third 
argument is a pointer to one of the five data structures; which structure is obvious from the value of 

the request argument. There are also two older functions called gtty and stty; these functions 

work only with the struct sgttyb structure, and are left over from the early days when that was 
the only structure that described terminal attributes. These two functions can be emulated as follows: 

#include <sgtty.h> 

 

int gtty(int fd, struct sgttyb *arg) 

{ 

    return(ioctl(fd, TIOCGETP, arg)); 

} 

 

int stty(int fd, struct sgttyb *arg) 

{ 

    return(ioctl(fd, TIOCSETP, arg)); 

} 
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Line Disciplines 

Berkeley UNIX provides two line disciplines; essentially these are two different terminal drivers 

(although they are not implemented as such). The old line discipline resembles the original Version 

7 terminal driver, and also the one provided by pre-SVR4 versions of System V. The new line 

discipline supports all the features added by Berkeley; most significantly job control. The new line 

discipline provides essentially the same set of features as the POSIX terminal driver. 

To change between the two line disciplines, the following ioctl actions are used: 

TIOCGETD Get the current line discipline and store it in the integer pointed to by the third 

argument. 

TIOCSETD Set the current line discipline to the value stored in the integer pointed to by the 

third argument. 

The legal values for the line discipline are OTTYDISC for the old line discipline, and NTTYDISC for 
the new line discipline. 

The struct sgttyb Structure 

The basic terminal driver modes, in both the old and new line disciplines, are set with a structure of 

type struct sgttyb, defined in the include file sgtty.h: 

struct sgttyb { 

    char    sg_ispeed; 

    char    sg_ospeed; 

    char    sg_erase; 

    char    sg_kill; 

    char    sg_flags; 

}; 

The sg_ispeed and sg_ospeed elements describe the input and output baud rates, and contain 

values from the set B0... B9600. The sg_erase and sg_kill elements are the ERASE and KILL 

characters, respectively. The sg_flags element is a set of attribute flags that can be ored together. 

Some of the more interesting flags are: 

ECHO Enable character echo. This is identical to the POSIX ECHO. 

CRMOD Map carriage return to newline on input, and echo newline or carriage return as 

carriage return-newline on output. This is a mix of the POSIX ICRNL and ONLCR 
attributes. 

RAW Turn on raw mode, as described earlier. The POSIX equivalent of raw mode is 

described in the section on POSIX terminal control. 

CBREAK Turn on cbreak mode, as described earlier. The POSIX equivalent of cbreak mode is 

described in the section on POSIX terminal control. 

The values of the ioctl request argument that take a pointer to a struct sgttyb structure are: 
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TIOCGETP Get the current attributes and store them in the structure pointed to by the third 

argument. 

TIOCSETP Set the current attributes from the structure pointed to by the third argument. This 

does not take effect until queued output has drained, and it flushes pending input. 

TIOCSETN Set the current attributes from the structure pointed to by the third argument. Do 

not wait for output to drain, and do not flush input. (Input is always flushed when 
entering or leaving raw mode.) 

Some other ioctl request values of interest are: 

TIOCFLUSH Flush all pending input and output. The third argument is ignored. This can be 

replaced with the POSIX tcflush function. 

TIOCHPCL Enable or disable hangup-on-last-close mode, in which the last close of the device 

hangs up the terminal. If the integer pointed to by the third argument is non-zero 
this mode is enabled, it is disabled otherwise. This can be replaced by the POSIX 

HUPCL attribute. 

FIONREAD Return in the integer pointed to by the third argument the number of characters 
pending on the input queue that have been received but not read by the program. 

There is no replacement for this in POSIX, although the functionality can be 

obtained with the select or poll functions, described in Chapter 6, Special-
Purpose File Operations. 

The struct tchars Structure 

The struct tchars structure is used to set special characters in both the old and new line 
disciplines. It is defined as follows in the include file sys/ioctl.h: 

struct tchars { 

    char    t_intrc; 

    char    t_quitc; 

    char    t_startc; 

    char    t_stopc; 

    char    t_eofc; 

    char    t_brkc; 

}; 

These characters correspond to the POSIX INTR, QUIT, START, STOP, EOF, and EOL characters, 

respectively. 

The values of the ioctl request argument that take a pointer to a struct tchars structure are: 

TIOCGETC Get the current set of characters and store them in the structure pointed to by the 

third argument. 

TIOCSETC Set the current set of characters from the structure pointed to by the third 

argument. 
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The Local Mode Word 

The local mode word is an integer containing attribute flags used by the new line discipline only. 

These attributes are set by oring them into the mode word. Some of the more interesting attributes 

are: 

LPRTERA Printing terminal erase mode, like System V's ECHOPRT. 

LCRTERA Erase with backspace-space-backspace, like POSIX ECHOE. 

LLITOUT Suppress output translations, like turning off POSIX OPOST. 

LTOSTOP Send SIGTTOU to background programs attempting to write to the terminal, like 

POSIX TOSTOP. 

LCRTKIL Kill lines with backspace-space-backspace, like POSIX ECHOKE. 

LPASS8 Pass all eight bits of each character through, like turning off POSIX ISTRIP. 

LCTLECH Echo control characters on input as “^X”; SVR4 (but not POSIX) offers this feature 

as ECHOCTL. 

The values of the ioctl request argument that take a pointer to a local mode word integer are: 

TIOCLGET Get the current value of the local mode word and place it in the integer pointed to 

by the third argument. 

TIOCLSET Treat the third argument as a pointer to a mask of bits to replace the current 
contents of the local mode word. 

TIOCLBIS Treat the third argument as a pointer to a mask of bits to be set in the local mode 

word. 

TIOCLBIC Treat the third argument as a pointer to a mask of bits to be cleared in the local 

mode word. 

The struct ltchars Structure 

The last structure used by the Berkeley terminal interface is the struct ltchars structure; this 
structure sets the additional special characters used by the new line discipline. It is defined in the 

include file sys/ioctl.h: 

struct ltchars { 

    char    t_suspc; 

    char    t_dsuspc; 

    char    t_rprntc; 

    char    t_flushc; 

    char    t_werasc; 

    char    t_lnextc; 

}; 

These elements correspond to the POSIX special characters SUSP, DSUSP, REPRINT, DISCARD, 

WERASE, and LNEXT, respectively. 
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The values of the ioctl request argument that take a pointer to a struct ltchars structure 

are: 

TIOCGLTC Get the current special characters and store them in the structure pointed to by the 

third argument. 

TIOCSLTC Set the current special characters to those stored in the structure pointed to by the 

third argument. 

Terminal Window Size 

Both BSD and SVR4 provide a method to keep track of the current terminal size (or window size). 

The kernel will notify the foreground process group whenever this information is changed (e.g., 

when the user resizes his window) by sending a SIGWINCH signal. (Background processes should 
check the window size when they are moved into the foregound, to be sure it hasn't changed.) 

The window size is stored in a struct winsize structure, defined in the include file termio.h on 
SVR4 systems, and the include file sys/ioctl.h on BSD systems: 

struct winsize { 

    unsigned short    ws_row; 

    unsigned short    ws_col; 

    unsigned short    ws_xpixel; 

    unsigned short    ws_ypixel; 

}; 

The ws_row element contains the number of character rows (lines) on the terminal, while the 

ws_col element contains the number of character columns. The ws_xpixel and ws_ypixel 
elements contain the size of the window in pixels in the X (horizontal) and Y (vertical) directions, 

respectively. 

The struct winsize structure is manipulated with the ioctl function described earlier. The 

second argument (request) may be one of: 

TIOCGWINSZ Get the current window size and store it in the structure pointed to by the third 

argument. 

TIOCSWINSZ Set the current window size to the values contained in the structure pointed to 

by the third argument. If these values are different from the current values, 

generate a SIGWINCH signal. 

Chapter Summary 

In this chapter, we examined the functions provided to the programmer for controlling terminal input 
and output functions. Although these functions are not needed for basic terminal input and output, 

any program that requires special services such as input without echo or character-at-a-time input 
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must make use of them. Because of the evolution of the terminal interface over the years, the 

functions described in this chapter are also one of the stickiest points in porting software between 

different versions of UNIX, and between other operating systems as well. However, the POSIX 

interface has gone a long way toward simplifying this interface and alleviating the portability 

problems. 
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Chapter 13 
Interprocess Communication 

One of the most important features of the UNIX operating system is its ability to allow two processes 

to communicate with each other by exchanging data. This allows simple programs, each with a 

single purpose, to be joined together into complex tools. It is a major tenet of the “UNIX philosophy” 

that it is better to develop small tools that do one thing well and then combine them, rather than 

develop huge monolithic programs that attempt to do everything for everyone. The former idea 

makes it easy to add new functionality by adding another program; the latter makes this more 
difficult, because each program needs to be changed to add the same functionality. 

In this chapter, we examine the myriad ways in which two processes executing on the same 

computer can communicate with each other. In the next two chapters, we examine how processes 

running on different computers can communicate. We begin this chapter with a discussion of pipes, 

the most basic form of interprocess communication (IPC), that has been around since UNIX was 

created. We move on to first-in first-out devices, usually called FIFOs or named pipes, and then to 

UNIX-domain sockets, which in some sense are the same thing implemented differently. We finish 

with a discussion of message queues, semaphores, and shared memory; these three ideas are often 

collectively referred to as System V IPC. 

Pipes 

A pipe joins two processes together. It is a special pair of file descriptors that, rather than being 

connected to a file, are connected to another process. When process A writes to its pipe file 

descriptor, process B can read that data from its pipe file descriptor. Alternatively, when process B 

writes to its pipe file descriptor, process A can read the data from its pipe file descriptor. Thus, a 

pipe provides a unidirectional communications medium for two cooperating processes. 

Once a pipe has been created, there is very little difference between a pipe file descriptor and a 

regular file descriptor. In fact, unless a program takes special steps to find out, there is no way for it 

to know that it is reading or writing a pipe instead of a file. The UNIX shell makes use of this fact 
all the time, when it creates pipeline commands. For example, consider the following shell 

commands: 

% eqn report > out1 
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% tbl out1 > out2 

% troff out2 > out3 

% psdit out3 > out4 

% lp out4 

% rm out1 out2 out3 out4 

Although we can certainly execute these programs in this fashion, it's not terribly efficient. There's 

a lot of typing involved, there are four temporary files created which must then must be deleted, etc. 

However, with the knowledge that each of the above commands has been written as a filter, we can 

simplify things. A filter is a program that will read from its standard input (instead of from a disk 
file) and write to its standard output. Programs that have been written in this way can be joined 

together in pipelines by the shell. For example, we can combine the five commands above into a 

single command as follows: 

% eqn report | tbl | troff | psdit | lp 

The eqn program reads its input from the file report, just as in the previous example. But, instead of 

storing its output in the file out1, we have told the shell to connect the standard output from eqn to 

the standard input of the tbl command. The tbl command, instead of reading its input from the file 

out1, reads it from standard input. The standard output from tbl has been connected to the standard 

input of troff. The standard output from troff has been connected to the standard input of psdit. And 

finally, the standard output from psdit has been connected to the standard input of lp. Thus, data 
flows from one program to the next, with no need for temporary files in between. The tool used to 

connect these programs together is a pipe. The programs themselves, however, have no knowledge 

of being used in this manner—they just know that if there are no file name arguments given to them 

on the command line, they should read from their standard input and write to their standard output. 

For all they know, the standard input could be a file and the standard output could be the terminal 

screen. Because pipes work just like file descriptors, there is no need for special code in each of 

these programs to handle them. 

Simple Pipe Creation 

The simplest way to create a pipe to another process is to use the popen function: 

#include <stdio.h> 

 

FILE *popen(const char *command, const char *type); 

The popen function is similar to fopen, described in Chapter 4, The Standard I/O Library, except 
that instead of opening a file for reading or writing, it creates a pipe for reading from or writing to 

another command. The command, passed in the command string, may be any valid shell command; 

it is executed with the Bourne shell (/bin/sh) using the shell's -c option. The type argument contains 

one of the strings “r” (open the pipe for reading) or “w” (open the pipe for writing). 

When called, popen creates a new process, and executes the command. It also creates a pipe to that 
process, and connects it to the process' standard input or standard output, depending on the value in 

the type argument. It then returns a file pointer to the calling process. The calling process may read 

from this file pointer to obtain output from the child process, or may write to the file pointer to 
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provide input to the child process. If the command cannot be executed, or the pipe cannot be created, 

popen returns the constant NULL. 

With one exception, all of the usual Standard I/O Library functions described in Chapter 4 may be 

used with the file pointer returned by popen. The one exception is the fclose function. Instead, 

the pclose function should be used: 

#include <stdio.h> 

 

int pclose(FILE *stream); 

The pclose function closes the stream and frees up the buffers associated with it, just like fclose. 

However, it also issues a call to waitpid (see Chapter 11, Processes) to wait for the child process 
to terminate, and then returns the child's termination status to the caller. 

Example 13-1 shows a different version of the program from Example 11-1 that prints out the day 

of the week, this one using popen. 

Example 13-1: popen 

#include <stdio.h> 

 

struct { 

    char    *abbrev; 

    char    *fullname; 

} days[] = { 

    "Sun",  "Sunday", 

    "Mon",  "Monday", 

    "Tue",  "Tuesday", 

    "Wed",  "Wednesday", 

    "Thu",  "Thursday", 

    "Fri",  "Friday", 

    "Sat",  "Saturday", 

    0,      0 

}; 

 

int 

main(void) 

{ 

    int i; 

    FILE *pf; 

    char line[BUFSIZ]; 

 

    /* 

     * Open a pipe to the data command.  We will 

     * be reading from the pipe. 

     */ 

    if ((pf = popen("date", "r")) == NULL) { 

        perror("popen"); 

        exit(1); 

    } 

 

    /* 
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     * Read one line of output from the pipe. 

     */ 

    if (fgets(line, sizeof(line), pf) == NULL) { 

        fprintf(stderr, "No ouput from date command!\n"); 

        exit(1); 

    } 

 

    /* 

     * For each day, see if it matches the output 

     * from the date command. 

     */ 

    for (i=0; days[i].abbrev != NULL; i++) { 

        if (strncmp(line, days[i].abbrev, 3) == 0) 

            printf("Today is %s.\n", days[i].fullname); 

        else 

            printf("Today is not %s.\n", days[i].fullname); 

    } 

 

    /* 

     * Close the pipe and pick up the command's 

     * termination status (which we ignore). 

     */ 

    pclose(pf); 

 

    /* 

     * Exit with a status of 0, indicating that 

     * everything went fine. 

     */ 

   exit(0); 

} 

% popen 

Today is not Sunday. 

Today is not Monday. 

Today is not Tuesday. 

Today is not Wednesday. 

Today is Thursday. 

Today is not Friday. 

Today is not Saturday. 

This program creates a pipe from the date command, and reads its output. It then compares that 

output to its list of day name abbreviations, and prints out the appropriate information. This version 

of our program is much more efficient that the version from Chapter 11, because it only creates one 

child process, instead of seven. 

Because it works in a similar way, we can make the same points about popen that we did about 

system: 

 Although terribly convenient, popen is also terribly inefficient. Every time it is called, it not 
only starts up a copy of the command you want to execute, but it also starts up a copy of the 

shell. If your program will be executing many commands, you should execute them yourself 

directly and do your own “plumbing,” rather than using popen. The means to do this are 
described in the next section. 
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 System calls and library routines are always more efficient than using popen. In the example 

above, it would be much better to simply use the time and localtime functions described in 
Chapter 7, Time of Day Operations, and avoid the overhead of executing a child process to 

obtain the same information. 

 The popen function should never, under any circumstances, be used in programs that will be 

run with super-user permissions, or with the set-user-id bit set. Because popen uses the shell 
to execute commands, there may be ways in which an unethical person can fool your program 

into executing a command other than the one you intended. This may enable the person to 

circumvent the security of your computer system. 

Advanced Pipe Creation 

In this section, we will examine the procedures used to create pipes ourselves. Before reading this 

section, you should be familiar with the information in Chapter 11, Processes, on which it relies. 

A pipe is created with the pipe function: 

#include <unistd.h> 

 

int pipe(int fd[2]); 

This function creates two file descriptors; fd[0] is open for reading, and fd[1] is open for writing. 

The two file descriptors are joined like a pipe, such that data written to fd[1] can be read from 

fd[0]. If the pipe is successfully created, pipe returns 0. If it cannot be created, pipe returns –1, 

and places the reason for failure in errno. 

After creating a pipe, the calling process normally calls fork to create a child process, and the two 
processes can then communicate, in one direction, using the pipe. Note that because a pipe is a half-

duplex communications channel (it can only be used to communicate in one direction), either the 
parent may send data to the child, or the child may send data to the parent, but not both. If both 

processes must be able to send data to each other, two pipes must be created, one for the child to 

use to send data to the parent, and the other for the parent to use to send data to the child. 

In SVR4, pipes are full-duplex communications channels. This means that both file descriptors are 

opened for both reading and writing. A read from fd[0] accesses the data written to fd[1], and a 

read from fd[1] accesses the data written to fd[0]. However, this feature is peculiar to SVR4, and 

is not the way pipes work on other UNIX systems. The POSIX standard specifies the more common 

half-duplex pipe described in the previous paragraph, and that is what we describe in the rest of this 

section. 

As long as both ends of a pipe are open, communication can take place. When one end of a pipe is 

closed, the following rules apply: 

 If the write end of a pipe has been closed, any further reads from the pipe (after all the data 

remaining in the pipe has been read) will return 0, or end-of-file. 

 If the read end of a pipe has been closed, any attempt to write to the pipe will result in a SIGPIPE 
signal being delivered to the process attempting the write. 
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Each pipe has a buffer size; this size is described by the constant PIPE_BUF, described in the include 
file limits.h. A write of this many bytes or less is guaranteed not to be interleaved with the writes 

from other processes writing the same pipe. Writes of more than PIPE_BUF bytes however, can get 
jumbled up in the pipe if more than one process is writing to it at the same time. (It is possible to 

have more than one process writing to a pipe by using dup or dup2 on the file descriptor.) 

Example 13-2 shows a reimplementation of the program in Example 13-1; this time we create the 

pipe and execute date ourselves. 

Example 13-2: pipedate 

#include <sys/types.h> 

#include <unistd.h> 

 

struct { 

    char    *abbrev; 

    char    *fullname; 

} days[] = { 

    "Sun",  "Sunday", 

    "Mon",  "Monday", 

    "Tue",  "Tuesday", 

    "Wed",  "Wednesday", 

    "Thu",  "Thursday", 

    "Fri",  "Friday", 

    "Sat",  "Saturday", 

    0,      0 

}; 

 

int 

main(void) 

{ 

    pid_t pid; 

    int pfd[2]; 

    int i, status; 

    char line[64]; 

 

    /* 

     * Create a pipe. 

     */ 

    if (pipe(pfd) < 0) { 

        perror("pipe"); 

        exit(1); 

    } 

 

    /* 

     * Create a child process. 

     */ 

    if ((pid = fork()) < 0) { 

        perror("fork"); 

        exit(1); 

    } 

 

    /* 

     * The child process executes "date". 

     */ 
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    if (pid == 0) { 

        /* 

         * Attach standard output to the pipe. 

         */ 

        dup2(pfd[1], 1); 

        close(pfd[0]); 

 

        execl("/bin/date", "date", 0); 

        perror("exec"); 

        _exit(127); 

    } 

 

    /* 

     * We will not be writing to the pipe. 

     */ 

    close(pfd[1]); 

 

    /* 

     * Read the output of "date". 

     */ 

    if (read(pfd[0], line, 3) < 0) { 

        perror("read"); 

        exit(1); 

    } 

 

    /* 

     * For each day, see if it matches the output 

     * from the date command. 

     */ 

    for (i=0; days[i].abbrev != NULL; i++) { 

        if (strncmp(line, days[i].abbrev, 3) == 0) 

            printf("Today is %s.\n", days[i].fullname); 

        else 

            printf("Today is not %s.\n", days[i].fullname); 

    } 

 

    /* 

     * Close the pipe and wait for the child 

     * to exit. 

     */ 

    close(pfd[0]); 

    waitpid(pid, &status, 0); 

 

    /* 

     * Exit with a status of 0, indicating that 

     * everything went fine. 

     */ 

    exit(0); 

} 

% pipedate 

Today is not Sunday. 

Today is not Monday. 

Today is not Tuesday. 

Today is not Wednesday. 

Today is Thursday. 

Today is not Friday. 
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Today is not Saturday. 

The program begins by creating a pipe. It then calls fork to create a child process. The child process 
will be executing the date command, and we want the parent to be able to read the output from this 

command, so the child process calls dup2 to attach its standard output to pfd[1]. Because the child 

process will not be reading from the pipe, it closes pfd[0]. The child process then calls execl to 

execute the date command. Meanwhile, the parent closes pfd[1], since it will not be writing to the 

pipe. It then calls read to obtain the data it needs, and examines the data just as in the previous 

example. Finally, the parent closes the read side of the pipe since it's done with it, and calls waitpid 

to wait for the child process to terminate, and pick up its termination status. 

Example 13-3 shows another program; this one uses the pipe in the other direction, to allow the 
parent to send data to the child. 

Example 13-3: pipemail 

#include <sys/types.h> 

#include <unistd.h> 

#include <stdio.h> 

 

int 

main(void) 

{ 

    pid_t pid; 

    int pfd[2]; 

    int i, status; 

    char *username; 

 

    /* 

     * Obtain the user name of the person 

     * running this program. 

     */ 

    if ((username = cuserid(NULL)) == NULL) { 

        fprintf(stderr, "Who are you?\n"); 

        exit(1); 

    } 

 

    /* 

     * Create a pipe. 

     */ 

    if (pipe(pfd) < 0) { 

        perror("pipe"); 

        exit(1); 

    } 

 

    /* 

     * Create a child process. 

     */ 

    if ((pid = fork()) < 0) { 

        perror("fork"); 

        exit(1); 

    } 
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    /* 

     * The child process executes "mail". 

     */ 

    if (pid == 0) { 

        /* 

         * Attach standard input to the pipe. 

         */ 

        dup2(pfd[0], 0); 

        close(pfd[1]); 

 

        execl("/bin/mail", "mail", username, 0); 

        perror("exec"); 

        _exit(127); 

    } 

 

    /* 

     * We won't be reading from the pipe. 

     */ 

    close(pfd[0]); 

 

    /* 

     * Write our mail message to the pipe. 

     */ 

    write(pfd[1], "Greetings and salutations,\n\n", 28); 

    write(pfd[1], "This is your program saying hello.\n", 35); 

    write(pfd[1], "Have a nice day.\n\n", 18); 

    write(pfd[1], "Bye.\n", 5); 

 

    /* 

     * Close the pipe and wait for the child 

     * to exit. 

     */ 

    close(pfd[1]); 

    waitpid(pid, &status, 0); 

 

    /* 

     * Exit with a status of 0, indicating that 

     * everything went fine. 

     */ 

    exit(0); 

} 

% pipemail 

% mailx 

mailx version 5.0 Mon Sep 27 07:25:51 PDT 1993  Type ? for help. 

"/var/mail/davy": 1 message 1 new 

>N  1 David A. Curry     Thu Dec  8 11:43   19/383 

? 1 

Message  1: 

From davy Thu Dec  8 11:43 EST 1994 

Date: Thu, 8 Dec 1994 11:43:55 +0500 

From: davy (David A. Curry) 

 

Greetings and salutations, 

 

This is your program saying hello. 

Have a nice day. 
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Bye. 

 

 

? d 

? q 

In this case, the child process executes the mail command, and the parent will be sending a message. 

Since mail reads from its standard input, the child process uses dup2 to attach its standard input to 

the read side of the pipe. Since it won't be writing to the pipe, it closes pfd[1]. The parent closes 

pfd[0] since it won't be reading from the pipe, and then writes a few strings to the child process 

by using pfd[1]. It then closes the write side of the pipe (this provides the end-of-file indication to 

the mail command), and waits for the child process to terminate. 

NOTE 

When you execute this program, depending on the load on your system, it may take 

anywhere from a few seconds to several minutes for the mail message to be delivered to 

your mailbox. Be patient before assuming the program doesn't work. 

FIFOs 

Pipes are extraordinarily useful, but suffer from one major limitation: they can only be used between 

related processes. To get around this limitation, the FIFO (first-in, first-out) was invented. FIFOs 

are often called named pipes, because they are associated with an entry in the file system. This name 

allows them to be used by processes that are not related to each other. 

Just like pipes, FIFOs can have multiple processes writing to them. However, if this is the case, each 

writer must be careful to keep their writes no larger than PIPE_BUF bytes, or the data from multiple 
processes will become intermixed. In Solaris 2.x, FIFOs are full-duplex communications channels 

that allow bidirectional communication, but this behavior is not standard, and should not be relied 

upon if portability is an issue. 

FIFOs can be created on most System V systems with the mknod function, which is used for creating 
special device files of all types. However, the POSIX standard specifies a function just for creating 

FIFOs, called mkfifo: 

#include <sys/types.h> 

#include <sys/stat.h> 

 

int mkfifo(const char *path, mode_t mode); 

The path parameter provides a path name to the desired FIFO to be created, which must not already 

exist. The mode argument contains a set of permission bits to set on the FIFO; these are modified 

by the process' umask value. Upon successful completion, mkfifo returns 0. If it fails, it returns –

1 and sets errno to indicate the error. 
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A FIFO may also be created on most systems with the mkfifo command. This allows a FIFO to be 

created using a shell command, and then accessed using normal I/O redirection. 

Once a FIFO has been created, it must be opened for use with the open function (see Chapter 3, 

Low-Level I/O Routines). When a FIFO is opened, the O_NONBLOCK option affects what happens: 

 If O_NONBLOCK is not specified (the usual case), an open for reading only blocks until another 
process opens the FIFO for writing. Similarly, an open for writing only blocks until another 

process opens the FIFO for reading. 

 If O_NONBLOCK is specified, an open for reading only returns immediately. But an open for 
writing only will return an error if no process has yet opened the FIFO for reading. 

Like pipes, an attempt to write to a FIFO that has no process reading it will generate a SIGPIPE 
signal. When the last writer on a FIFO closes it, an end-of-file indication is generated for the reader. 

Examples 13-4 and 13-5 show two programs, a server and a client, that use a FIFO to communicate. 

The server simply prints any data it receives from the client. 

Example 13-4: fifo-srvr 

#include <sys/types.h> 

#include <sys/stat.h> 

#include <fcntl.h> 

 

#define FIFONAME    "myfifo" 

 

int 

main(void) 

{ 

    int n, fd; 

    char buf[1024]; 

 

    /* 

     * Remove any previous FIFO. 

     */ 

    unlink(FIFONAME); 

 

    /* 

     * Create the FIFO. 

     */ 

    if (mkfifo(FIFONAME, 0666) < 0) { 

        perror("mkfifo"); 

        exit(1); 

    } 

 

    /* 

     * Open the FIFO for reading. 

     */ 

    if ((fd = open(FIFONAME, O_RDONLY)) < 0) { 

        perror("open"); 

        exit(1); 

    } 
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    /* 

     * Read from the FIFO until end-of-file and 

     * print what we get on the standard output. 

     */ 

    while ((n = read(fd, buf, sizeof(buf))) > 0) 

        write(1, buf, n); 

 

    close(fd); 

    exit(0); 

} 

Example 13-5: fifo-clnt 

#include <sys/types.h> 

#include <sys/stat.h> 

#include <fcntl.h> 

 

#define FIFONAME    "myfifo" 

 

int 

main(void) 

{ 

    int n, fd; 

    char buf[1024]; 

 

    /* 

     * Open the FIFO for writing.  It was 

     * created by the server. 

     */ 

    if ((fd = open(FIFONAME, O_WRONLY)) < 0) { 

        perror("open"); 

        exit(1); 

    } 

 

    /* 

     * Read from standard input, and copy the 

     * data to the FIFO. 

     */ 

    while ((n = read(0, buf, sizeof(buf))) > 0) 

        write(fd, buf, n); 

 

    close(fd); 

    exit(0); 

} 

% fifo-srvr & 

% fifo-clnt < /etc/motd 

Sun Microsystems Inc.   SunOS 5.3       Generic September 1993 

The server process first uses unlink to delete any old FIFO, and then calls mkfifo to create a new 
one. This is not strictly necessary, but insures that the FIFO has the proper modes and ownership. 

The server then opens the FIFO for reading, and copies anything it receives to the standard output. 

The client opens the FIFO (which has been created by the server) for writing, and copies its standard 

input to the FIFO. 
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UNIX-Domain Sockets 

UNIX-domain sockets are similar to named pipes, in that they provide an address in the file system 

that unrelated processes may use to communicate. They differ from named pipes in the way that 

they are accessed. Named pipes (FIFOs) are accessed just like any other file; in fact, a command 

executed from the shell whose input or output is redirected to a FIFO never need know that it is 

using a named pipe. On the other hand, UNIX-domain sockets are implemented using the Berkeley 

networking paradigm, usually called the socket interface. This interface has a set of specialized 

functions used to create, destroy, and transfer data over communications channels. 

Interprocess communication with sockets is usually described in terms of the client-server model. 

In this model, one process is usually called the server; it is responsible for satisfying the requests 

made of it by other processes, called clients. A server usually has a well-known address; this address 

is always the same, so that client programs will know where to contact it. An analogy in the real 

world might be the telephone number 9-1-1, which, at least in the United States, contacts the 
police/fire/ambulance service wherever it is dialed. 

In order to use the functions described in this section, a program must be linked with the -lnsl and -

lsocket libraries on Solaris 2.x, and with the -lnsl library on IRIX 5.x. 

Creating a Socket 

The basic unit of communication in the Berkeley networking paradigm is the socket, created with 

the socket function: 

#include <sys/types.h> 

#include <sys/socket.h> 

 

int socket(int domain, int type, int protocol); 

The domain argument specifies the domain, or address family, in which addresses should be 

interpreted; it imposes certain restrictions on the length of addresses, and what they mean. In this 

section, we will be using the AF_UNIX domain, in which addresses are ordinary UNIX path names. 

In the next chapter, we will look at the AF_INET domain, which is used for Internet addresses. 

There are two types of communications channels supported by sockets, selected with the type 

argument: 

SOCK_STREAM This type of connection is usually called a virtual circuit. It is a bidirectional 

continuous byte stream that guarantees the reliable delivery of data in the 

order it was sent. No data can be sent until the circuit is established; the circuit 

then remains intact until the conversation is complete. A telephone call is a 

real-world example of a virtual circuit; a FIFO is another example. 

SOCK_DGRAM This type of connection is used to send distinct packets of information called 

datagrams. Datagrams are not guaranteed to be delivered to the remote side 

of the communications channel in the same order they were sent. In fact, they 
are not guaranteed to be delivered at all. (This is not as undesirable as it may 

sound; there are many applications for which it is perfectly suited.)  The U.S. 
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Mail system is a real-world example of datagrams: each letter is an individual 

message, letters may arrive in a different order than they were sent, and some 

may even get lost. 

The protocol parameter specifies the protocol number that should be used on the socket; it is 

usually the same as the address family. In this section we will be using the PF_UNIX protocol family; 

in the next chapter we will examine the PF_INET family. The protocol parameter can usually be 

given as 0, and the system will figure it out. 

When a socket is successfully created, a socket descriptor is returned. This is a small non-negative 

integer, similar to a file descriptor (but with slightly different semantics). If the socket cannot be 

created, –1 is returned and the error information is stored in errno. 

There is a second method for creating sockets that can be used by two related processes (parent and 

child) to establish a full-duplex communications channel: 

#include <sys/types.h> 

#include <sys/socket.h> 

 

int socketpair(int domain, int type, int protocol, int sv[2]); 

This creates an unnamed pair of sockets and places their descriptors in sv[0] and sv[1]. Each 

socket is a bidirectional communications channel. A read from sv[0] accesses the data written to 

sv[1], and a read from sv[1] accesses the data written to sv[0]. If the socket pair is successfully 

created, socketpair returns 0. Otherwise, it returns –1 and stores the error code in errno. 

Server-Side Functions 

The server process needs to call each of these functions, in order, if it is to exchange data with a 

client. 

Naming a Socket 

After creating a socket, a server process must provide that socket with a name, or client programs 

will not be able to access it. The function to assign a name to a socket is called bind: 

#include <sys/types.h> 

#include <sys/socket.h> 

 

int bind(int s, const struct sockaddr *name, int addrlen); 

After completion, the communications channel referenced by the socket descriptor s will have the 

address described by name. In order for bind to succeed, the address must not already be in use. 

Because name may be of different sizes depending on the address family being used, addrlen is 

used to indicate its length. If bind succeeds, it returns 0. If it fails (often because the address is 

already in use), it returns –1 and stores an error code in errno. 

In the UNIX domain, the name parameter is actually of type struct sockaddr_un, defined in the 

include file sys/un.h: 
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struct sockaddr_un { 

    short    sun_family; 

    char     sun_path[108]; 

}; 

The sun_family element is always set to AF_UNIX, identifying this address as being in the UNIX 

domain. The sun_path element contains the file system path name of the socket. As a side effect 
of the implementation of UNIX-domain sockets, this file is actually created when it is bound. Before 

a server calls bind, it should make sure that this file does not exist and delete it if it does, or the 
bind will fail because the address is already in use. 

Waiting for Connections 

If a server is providing a service via a stream-based socket, it must notify the operating system when 

it is ready to accept connections from clients on that socket. To do this, it uses the listen function: 

#include <sys/types.h> 

#include <sys/socket.h> 

 

int listen(int s, int backlog); 

This function tells the operating system that the server is ready to accept connections on the socket 

referenced by s. The backlog parameter specifies the number of connection requests that may be 

pending at any given time; most operating systems silently limit this to a maximum of five. If a 

connection request arrives when the queue of pending connections is full, the client will receive a 

connection refused error. 

Accepting Connections 

To actually accept a connection, the server uses the accept function: 

#include <sys/types.h> 

#include <sys/socket.h> 

 

int accept(int s, struct sockaddr *name, int *addrlen); 

When a connection request arrives on the socket referenced by s, accept will return a new socket 

descriptor. The server can use this new descriptor to communicate with the client; the old descriptor 

(the one bound to the well-known address) may continue to be used for accepting additional 

connections. When the connection is accepted, if name is not null, the operating system will store 

the address of the client there, and will store the length of the address in addrlen. If accept fails, 

it returns –1 and places the reason for failure in errno. 

Connecting to a Server 

In order to connect to a server using a stream-based socket, the client program calls the connect 
function: 

#include <sys/types.h> 

#include <sys/socket.h> 
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int connect(int s, struct sockaddr *name, int addrlen); 

This function connects the socket referenced by s to the server at the address described by name. 

The addrlen parameter specifies the length of the address in name. If the connection is completed, 

connect returns 0. Otherwise, it returns –1 and places the reason for failure in errno. 

A client may use connect to connect a datagram socket to the server as well. This is not strictly 
necessary, and does not actually establish a connection. However, it does enable the client to send 

datagrams on the socket without having to specify the destination address for each datagram. 

Transferring Data 

To transfer data on a stream-based connection, the client and server may simply use read and 

write. However, there are also two functions specifically used with stream-based sockets: 

#include <sys/types.h> 

#include <sys/socket.h> 

 

int recv(int s, char *buf, int len, int flags); 

 

int send(int s, const char *buf, int len, int flags); 

These functions are exactly identical to read and write, except that they have a fourth argument. 
This argument allows the program to specify flags that affect how the data is sent or received. Only 

one flag has any meaning in the UNIX domain: 

MSG_PEEK If specified in a call to recv, the data is copied into buf as usual, but it is not 

“consumed.”  Another call to recv will return the same data. This allows a 

program to “peek” at the data before reading it, to decide how it should be 

handled. 

When using datagram-based sockets, the server does not call listen or accept, and the client 

(generally) does not call connect. Thus, there is no way for the operating system to  figure out 
automatically where data on these sockets is to be sent. Instead, the sender must tell the operating 

system each time where the data is to be delivered, and the receiver must ask where it came from. 

To do this, two other functions are defined: 

#include <sys/types.h> 

#include <sys/socket.h> 

 

int recvfrom(int s, char *buf, int len, int flags, 

        struct sockaddr *from, int *fromlen); 

 

int sendto(int s, const char *buf, int len, int flags, 

        struct sockaddr *to, int tolen); 

The sendto function sends len bytes from buf via the socket referenced by s to the server located 

at the address given in to. The tolen parameter specifies the length of the address. The number of 

bytes actually transferred is returned, or –1 if an error occurred. There is no indication whether or 



Interprocess Communication 

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 333 
 

not the data actually reaches its destination. The recvfrom function receives up to len bytes of 

data from the socket referenced by s and stores them in buf. The address from which the data came 

is stored in from, and fromlen is modified to indicate the length of the address. The number of 

bytes received is returned, or –1 if an error occurs. 

Destroying the Communications Channel 

Sockets may be closed with the close function, with the side effect that if the socket refers to a 
stream-based socket, the close will block until all data has been transmitted. 

The shutdown function may also be used to shut down the communications channel: 

#include <sys/types.h> 

#include <sys/socket.h> 

 

int shutdown(int s, int how); 

This function shuts down either or both sides of the communications channel referenced by s, 

depending on the value of how. If how is 0, the socket is shut down for reading; all further reads 

from the socket return end-of-file. If how is 1, the socket is shut down for writing; all further writes 

to the socket will fail. This also informs the operating system that no effort need be made to deliver 

any outstanding data on the socket. If how is 2, then both sides of the socket are shut down and it 

essentially becomes useless. 

Putting it All Together 

Examples 13-6 and 13-7 show small server and client programs that transfer data between 

themselves using a virtual circuit. These two programs are identical in operation to the programs in 

Examples 13-4 and 13-5, except they are implemented using UNIX-domain sockets. 

Example 13-6: socket-srvr 

#include <sys/types.h> 

#include <sys/socket.h> 

#include <sys/un.h> 

#include <string.h> 

 

#define SOCKETNAME  "mysocket" 

 

int 

main(void) 

{ 

    char buf[1024]; 

    int n, s, ns, len; 

    struct sockaddr_un name; 

 

    /* 

     * Remove any previous socket. 

     */ 

    unlink(SOCKETNAME); 
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    /* 

     * Create the socket. 

     */ 

    if ((s = socket(AF_UNIX, SOCK_STREAM, 0)) < 0) { 

        perror("socket"); 

        exit(1); 

    } 

 

    /* 

     * Create the address of the server. 

     */ 

    memset(&name, 0, sizeof(struct sockaddr_un)); 

 

    name.sun_family = AF_UNIX; 

    strcpy(name.sun_path, SOCKETNAME); 

    len = sizeof(name.sun_family) + strlen(name.sun_path); 

 

    /* 

     * Bind the socket to the address. 

     */ 

    if (bind(s, (struct sockaddr *) &name, len) < 0) { 

        perror("bind"); 

        exit(1); 

    } 

 

    /* 

     * Listen for connections. 

     */ 

    if (listen(s, 5) < 0) { 

        perror("listen"); 

        exit(1); 

    } 

 

    /* 

     * Accept a connection. 

     */ 

    if ((ns = accept(s, (struct sockaddr *) &name, &len)) < 0) { 

        perror("accept"); 

        exit(1); 

    } 

 

    /* 

     * Read from the socket until end-of-file and 

     * print what we get on the standard output. 

     */ 

    while ((n = recv(ns, buf, sizeof(buf), 0)) > 0) 

        write(1, buf, n); 

 

    close(ns); 

    close(s); 

    exit(0); 

} 

Example 13-7: socket-clnt 

#include <sys/types.h> 
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#include <sys/socket.h> 

#include <string.h> 

#include <sys/un.h> 

 

#define SOCKETNAME  "mysocket" 

 

int 

main(void) 

{ 

    int n, s, len; 

    char buf[1024]; 

    struct sockaddr_un name; 

 

    /* 

     * Create a socket in the UNIX 

     * domain. 

     */ 

    if ((s = socket(AF_UNIX, SOCK_STREAM, 0)) < 0) { 

        perror("socket"); 

        exit(1); 

    } 

 

    /* 

     * Create the address of the server. 

     */ 

    memset(&name, 0, sizeof(struct sockaddr_un)); 

 

    name.sun_family = AF_UNIX; 

    strcpy(name.sun_path, SOCKETNAME); 

    len = sizeof(name.sun_family) + strlen(name.sun_path); 

 

    /* 

     * Connect to the server. 

     */ 

    if (connect(s, (struct sockaddr *) &name, len) < 0) { 

        perror("connect"); 

        exit(1); 

    } 

 

    /* 

     * Read from standard input, and copy the 

     * data to the socket. 

     */ 

    while ((n = read(0, buf, sizeof(buf))) > 0) { 

        if (send(s, buf, n, 0) < 0) { 

            perror("send"); 

            exit(1); 

        } 

    } 

 

    close(s); 

    exit(0); 

} 

% socket-srvr & 

% socket-clnt < /etc/motd 

Sun Microsystems Inc.   SunOS 5.3       Generic September 1993 
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System V IPC Functions 

Three types of interprocess communication, message queues, shared memory, and semaphores, are 

usually referred to collectively as System V IPC. They originated in SVR2, but have since been 

made available by most vendors, and they are also available in SVR4. 

Each type of IPC structure (message queue, shared memory segment, or semaphore) is referred to 

by a non-negative integer identifier. To make use of a message queue for example, all the processes 

using that message queue must know its identifier. When an IPC structure is being created, the 

program doing the creation provides a key of type key_t. The operating system will convert this 
key into an IPC identifier. Keys can be specified in one of three ways: 

1. The server can create a new structure by specifying a key of IPC_PRIVATE. The creation 
procedure will return an identifier for the newly created structure. The problem with this is that 

in order for client programs to make use of the structure, they must know the identifier. Thus, 

the server has to place the identifier in a file somewhere for the clients to read it. 

2. The server and clients can agree on a key value, by defining it in a common header file, for 

example. The server creates a new IPC structure with this key, and the clients use the key to 

access the structure. The problem with this is that the key may already be in use by some other 

group of programs, in which case the IPC structure cannot be created. 

3. The server and clients can agree on a path name to an existing file in the file system, and a 

project-id (a value between 0 and 255), and call the ftok function to convert these two values 
into a key: 

#include <sys/types.h> 

#include <sys/ipc.h> 

 

key_t ftok(const char *path, int projectid); 

This key is then used in step 2, above. 

To create a new IPC structure, the server (usually) calls the appropriate “get” function, either with 

the key argument equal to IPC_PRIVATE, or with the key argument equal to some key and the 

IPC_CREAT bit set in the flag argument. A client accesses an existing IPC structure (created by 

the server) by calling the approriate “get” function with the key argument equal to the appropriate 

key and with the IPC_CREAT bit cleared in the flag argument. To be sure that a new IPC structure 

is created, rather than referencing an existing one with the same identifier, the IPC_EXCL bit can be 

set in the flag argument to the “get” function. This causes the “get” function to return an error if 

the IPC structure already exists. 

Each IPC structure has a permissions structure associated with it, defined in the include file 

sys/ipc.h: 

struct ipc_perm { 

    uid_t     uid; 

    gid_t     gid; 

    uid_t     cuid; 

    gid_t     cgid; 
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    mode_t    mode; 

    ulong     seq; 

    key_t     key; 

    long      pad[4]; 

}; 

The cuid and cgid elements identify the user who created the object, the uid and gid elements 

identify the owner of the object. The mode element is a set of read/write permission bits identical to 

those for files, that specify owner, group, and world permissions to examine and change the object. 

The “control” function for each type of IPC can be used to examine and change this structure. 

The System V IPC mechanisms have one major problem. All of the IPC structures are global to the 

system, and do not have a reference count. This means that if a program creates one of these 

structures, and then exits without destroying it, the operating system has no way of knowing whether 

any other programs are using it. Thus, the operating system has no choice but to leave the structure 

there; it cannot delete it. These structures remain in the system until someone comes along and 

removes them, or until the system is rebooted. This can be a serious problem, because the system 
places a limit on how many of these structures may exist at any point in time. Aside from consuming 

space that could be used by other programs, the structures left around by improperly-behaving 

programs can eventually consume all available IPC resources. 

Message Queues 

A message queue is a linked list of messages, each of a fixed maximum size. Messages are added 
to the end of the queue such that the order in which they were sent is preserved. However, each 

message may have a type, allowing multiple message streams to be processed in the same queue. 

Before using a message queue, a process must obtain the queue identifier for it. This is done using 

the msgget function: 

#include <sys/types.h> 

#include <sys/ipc.h> 

#include <sys/msg.h> 

 

int msgget(key_t key, int msgflg); 

The key parameter specifies the key to use for this message queue; it may either be the value 

IPC_PRIVATE, in which case a new message queue will always be created, or a non-zero value. If 

key contains a non-zero value, msgget will either create a new message queue or return the 

identifier of an existing message queue, depending on whether or not the IPC_CREAT bit is set in 

the msgflg argument. The msgflg parameter is also used to specify the read/write permissions on 

the message queue, in the same manner as with open and creat. Upon successful completion, a 
message queue identifier is returned. If the queue does not exist or cannot be created, –1 is returned 

and errno will describe the error that occurred. 

The msgctl function allows several different control operations to be performed on a message 
queue: 

#include <sys/types.h> 
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#include <sys/ipc.h> 

#include <sys/msg.h> 

 

int msgctl(int msqid, int cmd, struct msqid_ds *buf); 

The msqid parameter contains the message queue identifier of interest. The buf parameter points 

to a structure of type struct msqid_ds, which describes the message queue: 

struct msqid_ds { 

    struct ipc_perm    msg_perm; 

    struct msg        *msg_first; 

    struct msg        *msg_last; 

    ulong              msg_cbytes; 

    ulong              msg_qnum; 

    ulong              msg_qbytes; 

    pid_t              msg_lspid; 

    pid_t              msg_lrpid; 

    time_t             msg_stime; 

    long               msg_pad1; 

    time_t             msg_rtime; 

    long               msg_pad2; 

    time_t             msg_ctime; 

    long               msg_pad3; 

    kcondvar_t         msg_cv; 

    kcondvar_t         msg_qnum_cv; 

    long               msg_pad4[3]; 

}; 

The msg_perm element of this structure describes the permission bits on the queue, as described in 

the introduction to this section. The msg_qnum, msg_cbytes, and msg_qbytes elements contain 
the number of messages on the queue, number of bytes on the queue, and maximum number of bytes 

on the queue, respectively. The msg_lspid and msg_lrpid elements contain the process-id of the 

last process to send and receive a message on the queue, respectively. Finally, the msg_stime, 

msg_rtime, and msg_ctime elements contain the time of the last send on the queue, time of the 

last receive on the queue, and time of the last permissions change on the queue, respectively. 

The cmd parameter to msgctl may be one of the following values: 

IPC_STAT Place the current contents of the struct msqid_ds structure into the area 

pointed to by buf. 

IPC_SET Change the msg_perm.uid, msg_perm.gid, msg_perm.mode, and 

msg_qbytes elements of the struct msqid_ds structure to the values found 

in the area pointed to by buf. This operation is restricted to processes with an 

effective user-id of the super-user, or that is equal to either msg_perm.cuid or 

msg_perm.uid. The msg_qbytes element may only be changed by the super-
user. 

IPC_RMID Remove the message queue identifier specified by msqid from the system, and 

destroy the message queue and data structure associated with it. This command 
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may only be executed by a process with an effective user-id of the super-user, or 

that is equal to either msg_perm.cuid or msg_perm.uid. 

On success, msgctl returns 0. If an error occurs, msgctl returns –1 and stores the reason for failure 

in errno. 

To send and receive messages on a message queue, the msgsnd and msgrcv functions are used: 

#include <sys/types.h> 

#include <sys/ipc.h> 

#include <sys/msg.h> 

 

int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg); 

 

int msgrcv(int msqid, void *msgp, size_t msgsz, long msgtype, int msgflg); 

The msgsnd function sends a message, pointed to by msgp and of size msgsz, on the message queue 

identified by msqid. A message has the following structure: 

struct msgbuf { 

    long    mtype; 

    char    mtext[]; 

}; 

The mtype element of this structure is a positive integer that can be used by the receiving process 

for message selection. The mtext element of the structure is a buffer of msgsz bytes; msgsz may 

be any value from 0 to some system-imposed maximum (usually 2048). On success, msgsnd returns 

0; otherwise it returns –1 and places an error code in errno. 

The msgrcv function retrieves a message from the message queue specified by msqid, and stores 

it in the area pointed to by msgp, which is large enough to hold a message of msgsz bytes. The 

message retrieved is controlled by the msgtype parameter: 

 If msgtype is zero, the next message on the queue is returned. 

 If msgtype is greater than zero, the next message on the queue with mtype equal to msgtype 

is returned. 

 If msgtype is less than zero, the next message on the queue with mtype less than or equal to 

the absolute value of msgtype is returned. 

If a message is successfully received, msgrcv returns the number of bytes stored in msgp. If an error 

occurs, –1 is returned and errno will indicate the error. 

For both msgsnd and msgrcv, the msgflg argument may contain the constant IPC_NOWAIT. This 

causes msgsnd to return an error immediately if the message queue is full, instead of blocking until 

space is available. It causes msgrcv to return an error immediately if no message of the specified 
type is available, instead of blocking until one arrives. 

Examples 13-8 and 13-9 show a small server and client program that transfer data using message 

queues. 
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Example 13-8: msq-srvr 

#include <sys/types.h> 

#include <sys/ipc.h> 

#include <sys/msg.h> 

 

#define MSQKEY      34856 

#define MSQSIZE     32 

 

struct mymsgbuf { 

    long    mtype; 

    char    mtext[MSQSIZE]; 

}; 

 

int 

main(void) 

{ 

    key_t key; 

    int n, msqid; 

    struct mymsgbuf mb; 

 

    /* 

     * Create a new message queue.  We use IPC_CREAT to create it, 

     * and IPC_EXCL to make sure it does not exist already.  If 

     * you get an error on this, something on your system is using 

     * the same key - change MSQKEY to something else. 

     */ 

    key = MSQKEY; 

    if ((msqid = msgget(key, IPC_CREAT | IPC_EXCL | 0666)) < 0) { 

        perror("msgget"); 

        exit(1); 

    } 

 

    /* 

     * Receive messages.  Messages of type 1 are to be printed 

     * on the standard output; a message of type 2 indicates that 

     * we're done. 

     */ 

    while ((n = msgrcv(msqid, &mb, MSQSIZE, 0, 0)) > 0) { 

        switch (mb.mtype) { 

        case 1: 

            write(1, mb.mtext, n); 

            break; 

        case 2: 

            goto out; 

        } 

    } 

 

out: 

    /* 

     * Remove the message queue from the system. 

     */ 

    if (msgctl(msqid, IPC_RMID, (struct msqid_ds *) 0) < 0) { 

        perror("msgctl"); 

        exit(1); 

    } 
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   exit(0); 

} 

Example 13-9: msq-clnt 

#include <sys/types.h> 

#include <sys/ipc.h> 

#include <sys/msg.h> 

 

#define MSQKEY      34856 

#define MSQSIZE     32 

 

struct mymsgbuf { 

    long    mtype; 

    char    mtext[MSQSIZE]; 

}; 

 

int 

main(void) 

{ 

    key_t key; 

    int n, msqid; 

    struct mymsgbuf mb; 

 

    /* 

     * Get a message queue.  The server must have created it 

     * already. 

     */ 

    key = MSQKEY; 

    if ((msqid = msgget(key, 0666)) < 0) { 

        perror("msgget"); 

        exit(1); 

    } 

 

    /* 

     * Read data from standard input and send it in 

     * messages of type 1. 

     */ 

    mb.mtype = 1; 

    while ((n = read(0, mb.mtext, MSQSIZE)) > 0) { 

        if (msgsnd(msqid, &mb, n, 0) < 0) { 

            perror("msgsnd"); 

            exit(1); 

        } 

    } 

 

    /* 

     * Send a message of type 2 to indicate we're done. 

     */ 

    mb.mtype = 2; 

    memset(mb.mtext, 0, MSQSIZE); 

    if (msgsnd(msqid, &mb, MSQSIZE, 0) < 0) { 

        perror("msgsnd"); 

        exit(1); 

    } 
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    exit(0); 

} 

% msq-srvr & 

% msq-clnt < /etc/motd 

Sun Microsystems Inc.   SunOS 5.3       Generic September 1993 

The server creates a new message queue that may be read and written by anyone. (We use IPC_EXCL 
here to insure that nothing else in the system is using this key value - if you get an error when you 

try to start the server, use a different key value.)  The server then receives messages from the queue. 

Messages of type 1 are data, and are printed on the standard output. Since there is no concept of 

end-of-file on a message queue, we use a message of type 2 to tell the server there is no more data. 

The client simply obtains the message queue identifier, and then reads from its standard input, 

sending the data in messages of type 1. It sends a final message of type 2 to tell the server there is 
no more data. 

Shared Memory 

Shared memory allows two or more processes to share a region of memory, such that they may all 

examine and change its contents. Obviously, some type of synchronization between the processes 

is required, such that one process is not changing the memory while another is accessing it. 

Before using a shared memory segment, a process must obtain the queue identifier for it. This is 

done using the shmget function: 

#include <sys/types.h> 

#include <sys/ipc.h> 

#include <sys/shm.h> 

 

int shmget(key_t key, int size, int shmflg); 

The size parameter specifies the size of the desired segment, in bytes. The key parameter specifies 

the key to use for this memory segment; it may either be the value IPC_PRIVATE, in which case a 

new segment will always be created, or a non-zero value. If key contains a non-zero value, msgget 

will either create a new memory segment or return the identifier of an existing segment, depending 

on whether or not the IPC_CREAT bit is set in the shmflg argument. The shmflg parameter is also 

used to specify the read/write permissions on the memory segment, in the same manner as with 

open and creat. Upon successful completion, a shared memory segment identifier is returned. If 

the segment does not exist or cannot be created, –1 is returned and errno will describe the error 
that occurred. 

The shmctl function allows several different control operations to be performed on a shared 
memory segment: 

#include <sys/types.h> 

#include <sys/ipc.h> 

#include <sys/shm.h> 

 

int shmctl(int shmid, int cmd, struct shmid_ds *buf); 
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The shmid parameter contains the shared memory segment identifier of interest. The buf parameter 

points to a structure of type struct shmid_ds, which describes the memory segment: 

struct shmid_ds { 

    struct ipc_perm     shm_perm; 

    int                 shm_segsz; 

    struct anon_map    *shm_amp; 

    ushort              shm_lkcnt; 

    pid_t               shm_lpid; 

    pid_t               shm_cpid; 

    ulong               shm_nattch; 

    ulong               shm_cnattch; 

    time_t              shm_atime; 

    long                shm_pad1; 

    time_t              shm_dtime; 

    long                shm_pad2; 

    time_t              shm_ctime; 

    long                shm_pad3; 

    kcondvar_t          shm_cv; 

    char                shm_pad4[2]; 

    struct as          *shm_sptas; 

    long                shm_pad5[2]; 

}; 

The shm_perm element of this structure describes the permission bits on the segment, as described 

in the introduction to this section. The shm_segsz element contains the size of the segment, in 

bytes. The shm_lpid and shm_cpid elements contain the process-id of the last process to modify 

the segment, and the process-id that created the segement, respectively. The shm_lkcnt element 

contains the number of locks on this segment. The shm_nattch element contains the number of 

processes that currently have this memory segment attached. Finally, the shm_atime, shm_dtime, 

and shm_ctime elements contain the time of the last attachment of the segment, time of the last 

detachment of the segment, and time of the last permissions change on the segment, respectively. 

The cmd parameter to shmctl may be one of the following values: 

IPC_STAT Place the current contents of the struct shmid_ds structure into the area 

pointed to by buf. 

IPC_SET Change the shm_perm.uid, shm_perm.gid, and shm_perm.mode elements 

of the struct shmid_ds structure to the values found in the area pointed to 

by buf. This operation is restricted to processes with an effective user-id of the 

super-user, or that is equal to either shm_perm.cuid or shm_perm.uid. 

IPC_RMID Remove the shared memory identifier specified by shmid from the system, and 

destroy the memory segment and data structure associated with it. This 

command may only be executed by a process with an effective user-id of the 

super-user, or that is equal to either shm_perm.cuid or shm_perm.uid. 

SHM_LOCK Lock the shared memory segment specified by shmid into memory. This may 

only be executed by the super-user. 
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SHM_UNLOCK Unlock the shared memory segment specified by shmid. This may only be 

executed by the super-user. 

On success, shmctl returns 0. If an error occurs, shmctl returns –1 and stores the reason for failure 

in errno. 

Before a process may use a shared memory segment, it must attach that segment; this maps the 

segment into the process' address space. The function to attach a shared memory segment is called 

shmat: 

#include <sys/types.h> 

#include <sys/ipc.h> 

#include <sys/shm.h> 

 

void *shmat(int shmid, void *shmaddr, int shmflg); 

The shmid parameter specifies the identifier of the segment to be attached. The shmaddr parameter 

specifies the address at which the memory should be attached; normally this is specified as 0 

(allowing the system to choose) unless special circumstances prevail. If shmflg contains the 

constant SHM_RDONLY the memory segment is attached read-only, otherwise it is attached read-

write. If the memory segment is successfully attached, shmat will return the address at which it 

starts. Otherwise, it returns (void *) –1 and the reason for failure is stored in errno. 

Once a program is done using a shared memory segment, it may call shmdt to detach it: 

#include <sys/types.h> 

#include <sys/ipc.h> 

#include <sys/shm.h> 

 

int shmdt(void *shmaddr); 

The shmaddr parameter should contain the value returned by shmat. 

Semaphores 

Semaphores are not used for exchanging data between processes. Instead, they are counters that are 

used to provide synchronized access to a shared data object among multiple processes. To obtain 

access to a shared resource, a process: 

1. Tests the value of the semaphore that controls access to the resource. 

2. If the value is greater than zero, the process can use the resource. It decrements the semaphore 

by 1, indicating that it is using one unit of the resource. 

3. If the value of the semaphore is zero, the process goes to sleep until the semaphore's value is 

greater than zero. When the process wakes up, it returns to step 1. 

When a process is done using a shared resource controlled by a semaphore, the semaphore's value 

is incremented by 1. If any processes are stuck in step 3 above, one of them is awakened. Most 

semaphores are binary, and their values are initialized to 1. However, any positive value can be 
used, with the value indicating how many units of the resource are available for sharing. 
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For semaphores to work properly, it must be possible to both test the value of a semaphore and 

decrement it in a single operation. For this reason, semaphores are usually implemented in the 

kernel. 

The System V IPC version of semaphores operates on semaphore sets, rather than individual 

semaphores. Before using a semaphore set, a process must obtain the identifier for it. This is done 

using the semget function: 

#include <sys/types.h> 

#include <sys/ipc.h> 

#include <sys/sem.h> 

 

int semget(key_t key, int nsems, int semflg); 

The nsems parameter specifies the number of semaphores in the set. The key parameter specifies 

the key to use for this semaphore set; it may either be the value IPC_PRIVATE, in which case a new 

set will always be created, or a non-zero value. If key contains a non-zero value, msgget will either 

create a new semaphore set or return the identifier of an existing set, depending on whether or not 

the IPC_CREAT bit is set in the semflg argument. The semflg parameter is also used to specify 

the read/write permissions on the semaphores in the set, in the same manner as with open and 

creat. Upon successful completion, a semaphore set identifier is returned. If the set does not exist 

or cannot be created, –1 is returned and errno will describe the error that occurred. 

The semctl function allows several different control operations to be performed on a semaphore 
set: 

#include <sys/types.h> 

#include <sys/ipc.h> 

#include <sys/sem.h> 

 

int semctl(int semid, int semnum, int cmd, union semun arg); 

 

union semun { 

    int                 val; 

    struct semid_ds    *buf; 

    ushort             *array; 

}; 

The semid parameter contains the semaphore set identifier of interest, while the semnum parameter 

contains the number of the specific semaphore of interest. The arg parameter is a union of type 

union semun; its use is described below. A structure of type struct semid_ds describes the 
semaphore set: 

struct semid_ds { 

    struct ipc_perm     sem_perm; 

    struct sem         *sem_base; 

    ushort              sem_nsems; 

    time_t              sem_otime; 

    long                sem_pad1; 

    time_t              sem_ctime; 

    long                sem_pad2; 
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    long                sem_pad3[4]; 

}; 

The sem_perm element of this structure describes the permission bits on the set, as described in the 

introduction to this section. The sem_nsems element contains the number of semaphores in the set. 

The sem_otime and shm_ctime elements contain the time of the last semaphore operation and the 
time of the last permissions change on the set, respectively. 

Each semaphore in the set is described by a structure of type struct sem: 

struct sem { 

    ushort        semval; 

    pid_t         sempid; 

    ushort        semncnt; 

    ushort        semzcnt; 

    kcondvar_t    semncnt_cv; 

    kcondvar_t    semzcnt_cv; 

}; 

The semval element contains the semaphore's current value. The sempid element contains the 

process-id of the last process to operate on this semaphore. The semncnt and semzcnt elements 
contain the number of processes waiting for the semaphore's value to become greater than its current 

value, and to become zero, respectively. 

The cmd parameter to semctl may be one of the following values: 

IPC_STAT Place the current contents of the struct semid_ds structure into the area 

pointed to by arg.buf. 

IPC_SET Change the sem_perm.uid, sem_perm.gid, and sem_perm.mode elements of 

the struct semid_ds structure to the values found in the area pointed to by 

arg.buf. This operation is restricted to processes with an effective user-id of the 

super-user, or that is equal to either sem_perm.cuid or sem_perm.uid. 

IPC_RMID Remove the semaphore set identifier specified by semid from the system, and 

destroy the set of semaphores and data structure associated with it. This command 

may only be executed by a process with an effective user-id of the super-user, or 

that is equal to either sem_perm.cuid or sem_perm.uid. 

GETVAL Return the value of semval for the specified semaphore. 

SETVAL Set the value of semval for the specified semaphore to arg.val. 

GETPID Return the value of sempid for the specified semaphore. 

GETNCNT Return the value of semncnt for the specified semaphore. 

GETZCNT Return the value of semzcnt for the specified semaphore. 

GETALL Store the value of semval for all semaphores in the set in the array pointed to by 

arg.array. 
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SETALL Set the value of semval for all semaphores in the set to the values in the array 

pointed to by arg.array. 

On success, semctl returns a positive value for the GETVAL, GETPID, GETNCNT, and GETZCNT 

commands, and 0 otherwise. If an error occurs, semctl returns –1 and stores the reason for failure 

in errno. 

Semaphores are operated on with the semop function: 

#include <sys/types.h> 

#include <sys/ipc.h> 

#include <sys/sem.h> 

 

int semop(int semid, struct sembuf *ops, size_t nops); 

 

struct sembuf { 

    ushort    sem_num; 

    short     sem_op; 

    short     sem_flg; 

}; 

The semid argument specifies the semaphore set of interest, and ops points to a list of nops 

structures of type struct sembuf. Within each structure, sem_num specifies the number of the 

semaphore to be manipulated, sem_op specifies the operation to be performed, and sem_flg 
specifies any flags for the operation: 

 If sem_op is positive, its value is added to the semaphore's value. This corresponds to releasing 
a shared resource the program was using. 

 If sem_op is negative, this corresponds to the program wanting to obtain resources controlled 
by the semaphore. 

If the semaphore's value is greater than or equal to the absolute value of sem_op (the resources 

are available), the absolute value of sem_op is subtracted from the semaphore's value. 

If the semaphore's value is less than the absolute value of sem_op (the resources are not 

available), semop either returns immediately with an error (if IPC_NOWAIT was specified in 

sem_flg), or puts the process to sleep until the semaphore's value becomes greater than or 

equal to the absolute value of sem_op. 

 If sem_op is zero, semop blocks until the semaphore's value becomes zero (unless 

IPC_NOWAIT is specificed in sem_flg). 

Chapter Summary 

In this chapter, we examined a number of methods provided to allow two processes on the same 
computer to communicate. For related processes (parent and child), pipes are the most common and 

widespread solution, although others may be used. For unrelated processes, FIFOs (in the System 

V world) and UNIX-domain sockets (in the Berkeley world) are the most common. The so-called 
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System V IPC functions, while sometimes convenient, have a number of drawbacks associated with 

them, and should probably be avoided unless absolutely necessary. 
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Chapter 14 
Networking with Sockets 

These days, nearly every UNIX system is connected to a network of some sort. Desktop systems are 

connected via a network to file servers, and they use the network to access system and user files. 

Most universities and government organizations, and more and more companies, are connected to 

the Internet, and use the network to communicate with users, access data, and distribute information 

world-wide. Even many home computers now connect to the Internet or a private network via dial-

up networking. 

The de facto standard network protocol suite in use today is called TCP/IP, for Transmission Control 

Protocol/Internet Protocol. This protocol suite was developed by the Internet Engineering Task 

Force, and is the protocol suite used world-wide by hosts connected to the Internet. It is also used 

for most UNIX-based local-area networking applications such as remote login, network file service, 

and so forth. There is another international standard protocol suite, usually called OSI (Open 

Systems Interconnect), that has been standardized by the International Standards Organization 

(ISO). Although fairly popular in Europe, this protocol suite has never caught on in the United 

States, for a wide variety of both technical and political reasons. Although there was much talk of 

TCP/IP becoming obsolete when the ISO/OSI standards were first released, it is now clear that 

TCP/IP is here to stay, and even organizations that use ISO/OSI internally must also support TCP/IP 

if they want to connect to the outside world and the Internet. 

Because TCP/IP development was funded by the U.S. Defense Advanced Research Projects Agency 

(DARPA), and DARPA also provided principal funding for the development of Berkeley UNIX, 

BSD UNIX was the first version of the operating system to support internetworking via TCP/IP. 

The Berkeley networking paradigm, usually called the socket interface, has since spread to nearly 

every other version of UNIX, SVR4 included. 

In Chapter 13, we introduced the Berkeley socket interface as it applied to UNIX-domain sockets, 

used for communicating between two or more processes on the same machine. In this chapter, we 

will again examine the socket interface, but this time as it applies to Internet-domain sockets, used 

for communicating between two or more processes on different machines. In the next chapter, we 

will examine the Transport Layer Interface (TLI), an alternate interface to the network first 

introduced in SVR3. 

All programs that make use of the socket library functions must be linked with the -lnsl and -lsocket 
libraries on Solaris 2.x, and with the -lnsl library on IRIX 5.x. 
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Networking Concepts 

Before discussing how network programs are written, a number of concepts must first be explained. 

Host Names and Addresses 

In order to communicate between hosts, it must be possible to specify the host to communicate with. 

This is done by humans using host names, and by programs using host addresses. 

Host Names 

Each host on the network has a host name that distinguishes it from every other host on the network. 

On a private network, host names can be simple, such as “fred” or “wilma.”  On the Internet 

however, a host name must actually be a fully-qualified domain name, such as 

“fred.some.college.edu” or “wilma.company.com.” 

The Internet Domain Name System allows the host name space to be subdivided into a number of 

logical areas, or domains. There are two principal reasons for wanting to do this. First, it allows the 

administration of the host name space to be spread out such that in general, each organization on the 
Internet can administer its own name space. In olden days, the entire host name space was controlled 

by the Network Information Center, and any time a new host was added to the network, it had to be 

registered with them. With over six million hosts on the Internet as of January 1996, this is obviously 

no longer workable. The other reason for subdividing the name space is that it allows host names to 

be re-used in different areas of the name space. Before the domain name system, there could be one 

and only one host named “fred” on the entire Internet. Again, with over six million hosts, this rapidly 

becomes unworkable unless we all use host names such as “aaaaaaa,” “aaaaaab,” and so forth. The 

domain name system allows the “fred” host name to be used in each logical area. There can still be 

one and only one “fred” within a logical area, but two different logical areas can each have a “fred.” 

At the top level of the system are the largest domains; each country has a two-letter domain. For 

example, “us” is the United States, “se” is Sweden, and “mx” is Mexico. In the United States, there 
are four other top-level domains: “edu” is educational institutions (mostly colleges and universities), 

“mil” is military organizations, “gov” is non-military government organizations, and “com” is 

commercial organizations. These domains should really be under the “us” domain, since they are 

specific to the United States, but historical reasons make it otherwise. 

Each top-level domain is subdivided into other domains. For example, the “edu” domain is divided 

into domains for each college or university: “mit.edu,” “purdue.edu,” “berkeley.edu,” and so on. 

These domains can then be subdivided even further, for example, “cs.purdue.edu” for the Computer 

Science department, “cc.purdue.edu” for the Computer Center, and “physics.purdue.edu” for the 

Physics department. There is, generally speaking, no practical limit to how many times a domain 

may be subdivided, although most are not broken up beyond three or four levels. 

The last subdivision of a domain is the host name. For example, “fred.cs.berkeley.edu” and 

“wilma.cs.berkeley.edu.”  On hosts within the “cs.berkeley.edu” domain, these hosts can be referred 
to as simply “fred” and “wilma.”  However, from a host not in the “cs.berkeley.edu” domain, the 

fully-qualified domain name (“fred.cs.berkeley.edu” or “wilma.cs.berkeley.edu”) must be used. 

Note that because the domain name is part of the host name, “fred.cc.purdue.edu,” “fred.mit.edu,” 

“fred.army.mil,” “fred.se,” and “fred.co.ac.uk” all refer to different hosts. 
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The local host's name may be obtained by using the uname function, described in Chapter 9. 
However, for portability reasons, when using the Berkeley socket interface, it is more common to 

obtain the host name using the gethostname function: 

int gethostname(char *name, int len); 

This function places the local host's name into the character array pointed to by name, which is len 

bytes in size. It returns 0 on success; on failure it returns –1 and stores the reason for failure in 

errno. Note that depending on the particular configuration of your host, gethostname may or 
may not return the fully-qualified domain name for the host. 

Host Addresses 

Host names are a useful way for identifying hosts to other human beings, but they do not provide 
enough information in and of themselves to allow the networking software to make much use of 

them. For this reason, each host also has a host address. A host address is a unique 32-bit number; 

each host on the network has a different address. 

Host addresses, also called network addresses or Internet addresses, are usually written in “dotted 

quad” notation, in which each byte of the address is converted to an unsigned decimal number and 

separated from the next by a period (dot). For example, the hexadecimal network address 

0x7b2d4359 would be written as 123.45.67.89. 

Each network address consists of two parts: a network number and a host number. There are 

different types of addresses: Class A network addresses use one byte for the network number and 

three bytes for the host number; Class B network addresses use two bytes for the network number 

and two bytes for the host number; Class C addresses use three bytes for the network number and 

one byte for the host number. It is also possible to divide the host number part of an address further; 
part of it can be used to represent a subnetwork number, and the rest of it can be used to represent 

the host number on that subnetwork. 

The network number part of an address is used by the network routing software to decide how to 

deliver data from one network (say, the one at Berkeley) to another (say, the one at Harvard). It 

corresponds in some ways to the area code part of a telephone number that tells the telephone 

switches how to route the call from one area of the country to another. The subnetwork number tells 

the network routing software within a given network what part of the network to deliver the data to. 

For example, within Berkeley. the subnetwork number would indicate whether the data should go 

to the Computer Science department or the English department. It corresponds in some ways to the 

exchange part of a telephone number in the United States, which tells the telephone system which 

central office should receive the data. Finally, the host number part of an address indicates the 
specific host that is to receive the data, just as the last part of a telephone number identifies the 

specific telephone to ring. 

To translate between host names and host addresses, several functions are provided: 

#include <sys/types.h> 

#include <sys/socket.h> 

#include <netdb.h> 

#include <netinet/in.h> 
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struct hostent *gethostent(void); 

 

struct hostent *gethostbyname(const char *name); 

 

struct hostent *gethostbyaddr(const char *addr, int len, int type); 

 

int sethostent(int stayopen); 

 

int endhostent(void); 

These functions look up host names and host addresses in one of several different databases, 

depending on how your system is configured. The /etc/hosts file lists host name and address pairs, 
and is usually used only for local area addresses. The Network Information Service (Yellow Pages) 

provides a different interface to the /etc/hosts file. Finally, the name server provides a distributed 

(by domain) database of host name and address information. On SVR4, the file /etc/nsswitch.conf 

controls which databases are used, and the order in which they are searched. 

The sethostent function opens the database and sets the “current entry” pointer to the beginning 

of the file. The stayopen parameter, if non-zero, indicates that the database should remain open 

across calls to the other functions; this cuts down on the number of system calls used to open the 

database. The endhostent function closes the database. 

The gethostent function reads the next host name and address from the database, and returns it. 

The gethostbyname function searches for the entry in the database for the host with name name, 

and returns its entry. The gethostbyaddr function searches for the entry in the database for the 

host with address addr, whose length is specified by len, and type is given by type and returns its 

entry. All three of these functions return NULL if the entry cannot be found or end of file is 

encountered. On success, they return a pointer to a structure of type struct hostent: 

struct hostent { 

    char     *h_name; 

    char    **h_aliases; 

    int       h_addrtype; 

    int       h_length; 

    char     *h_addr_list; 

}; 

The h_name field will contain the official host name of the host (usually this is the fully-qualified 

domain name). The h_aliases element will contain pointers to any other names the host is known 

by. The h_addrtype field indicates the type of addresses these are. The h_length element 

indicates how long (in bytes) an address is. And finally, h_addr_list will contain a list of the 
addresses for that host. 

NOTE 

Older systems use a h_addr field in the structure instead of h_addr_list; this was 
changed when it was realized that systems may have more than one address. On newer 
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systems, h_addr is usually defined to refer to h_addr_list[0], for backward 
compatibility. 

Services and Port Numbers 

On any given host on the network, a number of network services may be provided. For example, a 

single host may offer remote login, file transfer, electronic mail delivery, and so forth. To distinguish 

data sent to the file transfer service from data sent to, say, the electronic mail service, each service 

is assigned a port number. The port number is a small integer used to identify the service to which 

data is to be delivered. 

In order for two hosts to communicate using some service, they must agree on the port number to 

be used for that service. If two hosts used different port numbers for the same service, they would 

not be able to communicate. All standard Internet protocols use well-known ports for this purpose. 

For example, if host “fred” wants to transfer a file to host “wilma” using the File Transfer Protocol 

(FTP), it knows that it should use port number 21. If “fred” tries to use some other port number for 

this purpose, things won't work, because “wilma” is expecting FTP traffic on port 21. Likewise, if 

“fred” sends some other type of traffic (say, remote login) to port 21 on “wilma” things won't work, 
because “wilma” is expecting file transfer traffic on that port. 

Most versions of UNIX, SVR4 included, use the file /etc/services to store the list of well-known 

port numbers. This file lists the name of the service and the port number and protocol (TCP or UDP; 

see below) to be used for communicating with that service. The /etc/services file is read using the 

following functions: 

#include <netdb.h> 

 

struct servent *getservent(void); 

 

struct servent *getservbyname(const char *name, char *proto); 

 

struct servent *getservbyport(int port, char *proto); 

 

int setservent(int stayopen); 

 

int endservent(void); 

The setservent function opens the services file and sets the “current entry” pointer to the start of 

the file. The stayopen parameter, if non-zero, indicates that the file should remain open across 

calls to the other functions. The endservent function closes the services file. 

The getservent function reads the next entry in the file and returns it. The getservbyname 

function searches for the service with name name and returns the entry for it. The getservbyport 

function searches for the service with port number port and returns the entry for it. The proto 

argument to these two functions is either “tcp” or “udp.”  There are actually two sets of port 
numbers, one for TCP (streams-based) services and one for UDP (datagram-based) services; it is 

therefore necessary to indicate which port number is of interest. All three of these functions return 

NULL if the entry cannot be found or end-of-file is encountered. If they succeed, they return a pointer 

to a structure of type struct servent: 
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struct servent { 

    char     *s_name; 

    char    **s_aliases; 

    int       s_port; 

    char     *s_proto; 

}; 

The s_name field indicates the official name of the service; the s_aliases field indicates any 

alternate names for the service. The s_port field provides the port number, and the s_proto field 
indicates the protocol to use when communicating with the service. 

Network Byte Order 

When implementing integer storage on a computer, manufacturers have two choices. They can place 

the most significant byte in the lowest memory address, with less significant bytes stored in higher 

addresses; this is called “big endian” notation. Or they can place the most significant byte in the 

highest memory address, with less significant bytes stored in lower addresses; this is called “little 

endian” notation. Intel chips (80x86) and Digital Equipment Corp. VAX computers are well-known 

little-endian architectures; Motorola 680x0 chips and Sun SPARC systems are two well-known big-

endian architectures. Generally speaking, big-endian is the more common notation, but this is not 

to say that little-endian is by any means rare. 

A 32-bit integer value as stored on a big-endian machine looks different than one stored on a little-
endian machine. To copy data from one type of host to the other, it is necessary to transform the 

data into the proper format. However, without knowing the notation used by both machines, it is 

impossible to do this. Since there is no way to tell which format a remote machine on the network 

uses, a network byte order has been defined. The network byte order (which happens to be big-

endian) insures that all traffic arriving from the network at a host will be in the same format. The 

host can then convert from this standard format to whatever format it uses internally. Similarly, all 

traffic sent by the host is converted to network byte order before it leaves, insuring that whatever 

host receives it will know what format it is in. 

The Berkeley networking paradigm specifies that each network program must perform these byte 

order conversions itself. (It would be difficult to do it anywhere else, since only the program knows 

the structure of the data it is transferring, and what parts need to be converted.)  Four functions are 
provided to make these translations: 

#include <sys/types.h> 

#include <netinet/in.h> 

 

u_long htonl(u_long hostlong); 

 

u_short htonl(u_short hostshort); 

 

u_long ntohl(u_long netlong); 

 

u_long ntohs(u_short netshort); 

The htonl function converts the 32-bit hostlong value from host byte order to network byte order. 

The htons function converts the 16-bit hostshort value from host byte order to network byte 
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order. The ntohl function converts the 32-bit netlong value from network byte order to host byte 

order. And, the ntohs function converts the 16-bit netshort value from network byte order to 

host byte order. These functions are usually implemented as C preprocessor macros, and may be 

“no-ops,” depending on the host architecture. 

It is important to remember to use these functions whenever integer data is exchanged across the 

network. Character strings do not need to be converted, since they are arrays of one-byte values. 

There is no network floating point format; floating point numbers should generally be exchanged 

only by converting them to integers or by printing them as character strings and then sending the 

strings to the remote side, where they are converted back into floating point numbers. 

The gethostby* and getservby* functions return integer values in network byte order. 

Creating a Socket 

The basic unit of communication in the Berkeley networking paradigm is the socket, created with 

the socket function: 

#include <sys/types.h> 

#include <sys/socket.h> 

 

int socket(int domain, int type, int protocol); 

The domain argument specifies the domain, or address family, in which addresses should be 

interpreted; it imposes certain restrictions on the length of addresses, and what they mean. In the 

last chapter, we used the AF_UNIX domain, in which addresses are ordinary UNIX path names. In 

this chapter, we will look at the AF_INET domain, which is used for Internet addresses. 

There are two types of communications channels supported by sockets, selected with the type 

argument: 

SOCK_STREAM This type of connection is usually called a virtual circuit. It is a bidirectional 

continuous byte stream that guarantees the reliable delivery of data in the 

order it was sent. No data can be sent until the circuit is established; the circuit 

then remains intact until the conversation is complete. A telephone call is a 

real-world example of a virtual circuit; a FIFO is another example. Virtual 

circuits are implemented in the Internet domain using the Internet-standard 
Transmission Control Protocol (TCP). 

SOCK_DGRAM This type of connection is used to send distinct packets of information called 

datagrams. Datagrams are not guaranteed to be delivered to the remote side 

of the communications channel in the same order they were sent. In fact, they 

are not guaranteed to be delivered at all. (This is not as undesirable as it may 

sound; there are many applications for which it is perfectly suited.)  The U.S. 

Mail system is a real-world example of datagrams: each letter is an individual 

message, letters may arrive in a different order than they were sent, and some 
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may even get lost. Datagrams are implemented in the Internet domain using 

the Internet-standard User Datagram Protocol (UDP). 

The protocol parameter specifies the protocol number that should be used on the socket; it is 

usually the same as the address family. In the last chapter we used the PF_UNIX protocol family; in 

this chapter we will use the PF_INET family. The protocol parameter may usually be specified as 

0, and the system will figure it out. 

When a socket is successfully created, a socket descriptor is returned. This is a small non-negative 

integer, similar to a file descriptor (but with slightly different semantics). If the socket cannot be 

created, –1 is returned and the error information is stored in errno. 

Server-Side Functions 

The server process needs to call each of these functions, in order, if it is to exchange data with a 

client. 

Naming a Socket 

After creating a socket, a server process must provide that socket with a name, or client programs 

will not be able to access it. The function to assign a name to a socket is called bind: 

#include <sys/types.h> 

#include <sys/socket.h> 

 

int bind(int s, const struct sockaddr *name, int addrlen); 

After completion, the communications channel referenced by the socket descriptor s will have the 

address described by name. In order for bind to succeed, the address must not already be in use. 

Because name may be of different sizes depending on the address family being used, addrlen is 

used to indicate its length. If bind succeeds, it returns 0. If it fails (often because the address is 

already in use), it returns –1 and stores an error code in errno. 

In the Internet domain, the name parameter is actually of type struct sockaddr_in, defined in 

the include file netinet/in.h: 

struct sockaddr_in { 

    short             sin_family; 

    u_short           sin_port; 

    struct in_addr    sin_addr; 

}; 

The sin_family element is always set to AF_INET, identifying this address as being in the Internet 

domain. The sin_port is the port number associated with this socket. The sin_addr element 
contains the host address associated with the port. 

When writing server processes, it is important to realize that the host on which the process is running 

may have more than one network interface, and therefore, more than one network address. To handle 
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this case, it is possible to create more than one socket, and bind a name to each socket, using the 

same value for sin_port, and different values for sin_addr, for each socket. An easier way 

though is to use the wildcard address INADDR_ANY in the sin_addr element; this will allow a single 
socket to receive data from all network interfaces. 

Waiting for Connections 

If a server is providing a service via a stream-based socket, it must notify the operating system when 

it is ready to accept connections from clients on that socket. To do this, it uses the listen function: 

#include <sys/types.h> 

#include <sys/socket.h> 

 

int listen(int s, int backlog); 

This function tells the operating system that the server is ready to accept connections on the socket 

referenced by s. The backlog parameter specifies the number of connection requests that may be 

pending at any given time; most operating systems silently limit this to a maximum of five. If a 

connection request arrives when the queue of pending connections is full, the client will receive a 

connection refused error. 

Accepting Connections 

To accept a connection, the server uses the accept function: 

#include <sys/types.h> 

#include <sys/socket.h> 

 

int accept(int s, struct sockaddr *name, int *addrlen); 

When a connection request arrives on the socket referenced by s, accept will return a new socket 

descriptor. The server can use this new descriptor to communicate with the client; the old descriptor 

(the one bound to the well-known address) may continue to be used for accepting additional 

connections. When the connection is accepted, if name is not null, the operating system will store 

the address of the client there, and will store the length of the address in addrlen. If accept fails, 

it returns –1 and places the reason for failure in errno. 

Client-Side Functions 

In order to communicate with a server process, a client process needs to call the following functions, 

in order. 

Connecting to a Server 

In order to connect to a server using a stream-based socket, the client program calls the connect 
function: 

#include <sys/types.h> 
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#include <sys/socket.h> 

 

int connect(int s, struct sockaddr *name, int addrlen); 

This function connects the socket referenced by s to the server at the address described by name. 

The addrlen parameter specifies the length of the address in name. If the connection is completed, 

connect returns 0. Otherwise, it returns –1 and places the reason for failure in errno. 

A client may use connect to connect a datagram socket to the server as well. This is not strictly 
necessary, and does not actually establish a connection. However, it does enable the client to send 

datagrams on the socket without having to specify the destination address for each datagram. 

Transferring Data 

To transfer data on a stream-based connection, the client and server may simply use read and 

write. However, there are also two functions specifically used with stream-based sockets: 

#include <sys/types.h> 

#include <sys/socket.h> 

 

int recv(int s, char *buf, int len, int flags); 

 

int send(int s, const char *buf, int len, int flags); 

These functions are exactly identical to read and write, except that they have a fourth argument. 
This argument allows the program to specify flags that affect how the data is sent or received. The 

flags are: 

MSG_DONTROUTE If specified in a call to send, this flag disables network routing of the data. 
It is only used by diagnostic and routing programs. 

MSG_OOB If specified in a call to send, the data is send as out-of-band data. This data 
“jumps over” any other data that has been sent and not received. It is used, 

for example, to handle interrupt characters in a remote login session. If 

specified in a call to recv, any pending out-of-band data will be returned 
instead of “regular” data. 

MSG_PEEK If specified in a call to recv, the data is copied into buf as usual, but it is 

not “consumed.”  Another call to recv will return the same data. This 
allows a program to “peek” at the data before reading it, to decide how it 

should be handled. 

When using datagram-based sockets, the server does not call listen or accept, and the client 

(generally) does not call connect. Thus, there is no way for the operating system to automatically 

figure out where data on these sockets is to be sent. Instead, the sender must tell the operating system 

each time where the data is to be delivered, and the receiver must ask where it came from. To do 
this, two other functions are defined: 

#include <sys/types.h> 

#include <sys/socket.h> 



Networking with Sockets 

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 359 
 

 

int recvfrom(int s, char *buf, int len, int flags, 

        struct sockaddr *from, int *fromlen); 

 

int sendto(int s, const char *buf, int len, int flags, 

        struct sockaddr *to, int tolen); 

The sendto function sends len bytes from buf via the socket referenced by s to the server located 

at the address given in to. The tolen parameter specifies the length of the address. The number of 

bytes actually transferred is returned, or –1 if an error occurred. There is no indication whether or 

not the data actually reaches its destination. The recvfrom function receives up to len bytes of 

data from the socket referenced by s and stores them in buf. The address from which the data came 

is stored in from, and fromlen is modified to indicate the length of the address. The number of 

bytes received is returned, or –1 if an error occurs. 

Destroying the Communications Channel 

Sockets may be closed with the close function, with the side effect that if the socket refers to a 
stream-based socket, the close will block until all data has been transmitted. 

The shutdown function may also be used to shut down the commincations channel: 

#include <sys/types.h> 

#include <sys/socket.h> 

 

int shutdown(int s, int how); 

This function shuts down either or both sides of the communications channel referenced by s, 

depending on the value of how. If how is 0, the socket is shut down for reading; all further reads 

from the socket return end-of-file. If how is 1, the socket is shut down for writing; all further writes 

to the socket will fail. This also informs the operating system that no effort need be made to deliver 

any outstanding data on the socket. If how is 2, then both sides of the socket are shut down and it 

essentially becomes useless. 

Putting it All Together 

Examples 14-1 and 14-2 show small server and client programs that transfer data between 

themselves using a virtual circuit. These two programs are identical in operation to the programs in 

Examples 13-6 and 13-7, except they are implemented using Internet-domain sockets. 

Example 14-1: server 

#include <sys/types.h> 

#include <sys/socket.h> 

#include <netinet/in.h> 

#include <string.h> 

 

#define PORTNUMBER  12345 
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int 

main(void) 

{ 

    char buf[1024]; 

    int n, s, ns, len; 

    struct sockaddr_in name; 

 

    /* 

     * Create the socket. 

     */ 

    if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0) { 

        perror("socket"); 

        exit(1); 

    } 

 

    /* 

     * Create the address of the server. 

     */ 

    memset(&name, 0, sizeof(struct sockaddr_in)); 

 

    name.sin_family = AF_INET; 

    name.sin_port = htons(PORTNUMBER); 

    len = sizeof(struct sockaddr_in); 

 

    /* 

     * Use the wildcard address. 

     */ 

    n = INADDR_ANY; 

    memcpy(&name.sin_addr, &n, sizeof(long)); 

 

    /* 

     * Bind the socket to the address. 

     */ 

    if (bind(s, (struct sockaddr *) &name, len) < 0) { 

        perror("bind"); 

        exit(1); 

    } 

 

    /* 

     * Listen for connections. 

     */ 

    if (listen(s, 5) < 0) { 

        perror("listen"); 

        exit(1); 

    } 

 

    /* 

     * Accept a connection. 

     */ 

    if ((ns = accept(s, (struct sockaddr *) &name, &len)) < 0) { 

        perror("accept"); 

        exit(1); 

    } 

 

    /* 

     * Read from the socket until end-of-file and 

     * print what we get on the standard output. 
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     */ 

    while ((n = recv(ns, buf, sizeof(buf), 0)) > 0) 

        write(1, buf, n); 

 

    close(ns); 

    close(s); 

    exit(0); 

} 

Example 14-2: client 

#include <sys/types.h> 

#include <sys/socket.h> 

#include <netinet/in.h> 

#include <string.h> 

#include <netdb.h> 

#include <stdio.h> 

 

#define PORTNUMBER  12345 

 

int 

main(void) 

{ 

    int n, s, len; 

    char buf[1024]; 

    char hostname[64]; 

    struct hostent *hp; 

    struct sockaddr_in name; 

 

    /* 

     * Get our local host name. 

     */ 

    if (gethostname(hostname, sizeof(hostname)) < 0) { 

        perror("gethostname"); 

        exit(1); 

    } 

 

    /* 

     * Look up our host's network address. 

     */ 

    if ((hp = gethostbyname(hostname)) == NULL) { 

        fprintf(stderr, "unknown host: %s.\n", hostname); 

        exit(1); 

    } 

 

    /* 

     * Create a socket in the INET 

     * domain. 

     */ 

    if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0) { 

        perror("socket"); 

        exit(1); 

    } 

 

    /* 

     * Create the address of the server. 
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     */ 

    memset(&name, 0, sizeof(struct sockaddr_in)); 

 

    name.sin_family = AF_INET; 

    name.sin_port = htons(PORTNUMBER); 

    memcpy(&name.sin_addr, hp->h_addr_list[0], hp->h_length); 

    len = sizeof(struct sockaddr_in); 

 

    /* 

     * Connect to the server. 

     */ 

    if (connect(s, (struct sockaddr *) &name, len) < 0) { 

        perror("connect"); 

        exit(1); 

    } 

 

    /* 

     * Read from standard input, and copy the 

     * data to the socket. 

     */ 

    while ((n = read(0, buf, sizeof(buf))) > 0) { 

        if (send(s, buf, n, 0) < 0) { 

            perror("send"); 

            exit(1); 

        } 

    } 

 

    close(s); 

    exit(0); 

} 

% server & 

% client < /etc/motd 

Sun Microsystems Inc.   SunOS 5.3       Generic September 1993 

Example 14-3 shows a sample datagram client program that connects to the “daytime” service on 

every host named on the command line. The “daytime” service is an Internet standard service that 

returns the local time (to the server) in an ASCII string. It is defined for both TCP and UDP; try 

modifying the program to use TCP instead. 

Example 14-3: daytime 

#include <sys/types.h> 

#include <sys/socket.h> 

#include <netinet/in.h> 

#include <string.h> 

#include <netdb.h> 

#include <stdio.h> 

 

#define SERVICENAME "daytime" 

 

int 

main(int argc, char **argv) 

{ 

    int n, s, len; 
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    char buf[1024]; 

    char *hostname; 

    struct hostent *hp; 

    struct servent *sp; 

    struct sockaddr_in name, from; 

 

    if (argc < 2) { 

        fprintf(stderr, "Usage: %s hostname [hostname...]\n", *argv); 

        exit(1); 

    } 

 

    /* 

     * Look up our service.  We want the UDP version. 

     */ 

    if ((sp = getservbyname(SERVICENAME, "udp")) == NULL) { 

        fprintf(stderr, "%s/udp: unknown service.\n", SERVICENAME); 

        exit(1); 

    } 

 

    while (--argc) { 

        hostname = *++argv; 

 

        /* 

         * Look up the host's network address. 

         */ 

        if ((hp = gethostbyname(hostname)) == NULL) { 

            fprintf(stderr, "%s: unknown host.\n", hostname); 

            continue; 

        } 

 

        /* 

         * Create a socket in the INET 

         * domain. 

         */ 

        if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0) { 

            perror("socket"); 

            exit(1); 

        } 

 

        /* 

         * Create the address of the server. 

         */ 

        memset(&name, 0, sizeof(struct sockaddr_in)); 

 

        name.sin_family = AF_INET; 

        name.sin_port = sp->s_port; 

        memcpy(&name.sin_addr, hp->h_addr_list[0], hp->h_length); 

        len = sizeof(struct sockaddr_in); 

 

        /* 

         * Send a packet to the server. 

         */ 

        memset(buf, 0, sizeof(buf)); 

 

        n = sendto(s, buf, sizeof(buf), 0, (struct sockaddr *) &name, 

                   sizeof(struct sockaddr_in)); 

 

        if (n < 0) { 
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            perror("sendto"); 

            exit(1); 

        } 

 

        /* 

         * Receive a packet back. 

         */ 

        len = sizeof(struct sockaddr_in); 

        n = recvfrom(s, buf, sizeof(buf), 0, (struct sockaddr *) &from, &len); 

 

        if (n < 0) { 

            perror("recvfrom"); 

            exit(1); 

        } 

 

        /* 

         * Print the packet. 

         */ 

        buf[n] = '\0'; 

        printf("%s: %s", hostname, buf); 

 

        /* 

         * Close the socket. 

         */ 

        close(s); 

    } 

 

    exit(0); 

} 

% daytime localhost 

localhost: Mon Mar 20 15:50:54 1995 

Other Functions 

There are a number of other functions that can be used with sockets, although their use is less 

common that those routines described so far. 

Socket “Names” 

There are two functions provided for obtaining the name bound to a socket: 

#include <sys/types.h> 

#include <sys/socket.h> 

 

int getsockname(int s, struct sockaddr *name, int *namelen); 

 

int getpeername(int s, struct sockaddr *name, int *namelen); 

The getsockname function obtains the name bound to the socket s, and stores it in the area pointed 

to by name. Since name is of different sizes depending on the networking domain (i.e., it may point 

to a struct sockaddr_un or a struct sockaddr_in), the length of the name is stored in 
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namelen. Note that namelen should be initialized to the size of the area pointed to by name; on 

return it will be set to the actual length of name. 

The getpeername function obtains the name of the peer connected to the socket s. In other words, 

it obtains the address and port number of the remote host. A server can use this information to find 

out who has connected to it. The name and namelen parameters are as described above. 

Both getsockname and getpeername return 0 on success; on failure they return –1 and store an 

error code in errno. 

Socket Options 

A number of options may be set on a socket to control its behavior; there are two functions for 

manipulating these options: 

#include <sys/types.h> 

#include <sys/socket.h> 

 

int getsockopt(int s, int level, int optname, char *optval, int *optlen); 

 

int setsockopt(int s, int level, int optname, char *optval, int optlen); 

The getsockopt function returns information about the state of options currently set on the socket 

s; setsockopt changes the state of those options. 

Options may exist at multiple protocol levels. Therefore, it is necessary to specify the level at which 

the option in question resides. All of the options described in this section exist at the socket level; 

the level parameter should always be set to SOL_SOCKET. 

The optval parameter specifies a pointer to a buffer that either contains the value to be set for the 

option, or is used to store the value of the option. The optlen parameter specifies the size of the 

area pointed to by optval; on return from getsockopt, optlen will be modified to indicate the 

actual size of the value. 

The optname parameter specifies the option of interest: 

SO_DEBUG Enables or disables debugging in the underlying protocol module. 

SO_REUSEADDR Indicates that the rules used in validating addresses provided with 

calls to bind should be modified to allow re-use of local addresses. 

SO_KEEPALIVE Enables the periodic transmission of “are you there” messages on a 
connected socket. If the connected party fails to respond to these 

messages, the connection is considered broken and processes using 

the socket will receive a SIGPIPE signal the next time they try to 
use it. 

SO_DONTROUTE Indicates that outgoing messages should bypass the network routing 

facilities. This is used only for debugging and diagnostic purposes. 
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SO_LINGER If SO_LINGER is set on a socket that guarantees reliable data 

delivery, and a close is performed on the socket, the system will 

block the process on the close until any unsent data has been 
transmitted, or until the transmission times out. The timeout in 

seconds is specified in the optval parameter to setsockopt. If 

SO_LINGER is disabled and a close is issued, the system will 
process it in a manner that allows the calling process to continue as 

quickly as possible. 

SO_BROADCAST Requests permission to send broadcast datagrams (datagrams to be 
received by all hosts) on the socket. 

SO_OOBINLINE On sockets that support out-of-band data, requests that the out-of-

band data be placed in the normal input queue when it arrives; this 

allows the data to be processed by read or recv calls without the 

MSG_OOB flag. 

SO_SNDBUF, SO_RCVBUF Adjust the size of the normal send and receive buffers, respectively. 
Generally speaking, for large data transfers, these buffers should be 

made as large as possible to make the transfer as efficient as 

possible. The maximum limit on the buffer size in SVR4 is 64 

Kbytes. 

SO_TYPE Used with getsockopt only; returns the type of the socket (e.g., 

SOCK_STREAM). 

SO_ERROR Used with getsockopt only; returns any pending error on the 

socket and clears the error status. 

Address Conversion 

Routines are also provided to convert between the internal (binary) and external (character string) 

representations of Internet addresses: 

#include <sys/types.h> 

#include <sys/socket.h> 

#include <netinet/in.h> 

#include <arpa/inet.h> 

 

unsigned long inet_addr(const char *cp); 

 

char *inet_ntoa(const struct in_addr addr); 

The inet_addr function takes a character string containing an Internet address in “dotted-quad” 

notation and returns the integer representation of that address. The inet_ntoa function takes an 
integer representation of an Internet address, and returns a character string representation of the 

address in “dotted-quad” notation. 
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The Berkeley “R” Commands 

The functionality of the Berkeley rsh command, which contacts a remote host and passes a 

command to the shell, is accessible through the rcmd function: 

int rcmd(char **ahost, unsigned short inport, char *luser, 

        char *ruser, char *cmd, int *fd2p); 

 

int rresvport(int *port); 

The authentication scheme is based on reserved port numbers, defined to be port numbers less than 
1024. On BSD UNIX systems (and other systems, such as SVR4, that support the concept), a 

reserved port may only be obtained by the super-user. On the server side, when a client connects, 

the server checks to see that the client is using a reserved port between 513 and 1024; port numbers 

less than or equal to 512 are not permitted. If the port number used by the client is greater than 1024, 

it is not a reserved port, and the server will not allow it. Note that the whole concept of reserved 

ports is specific to UNIX; it is not an Internet standard. This means that the authentication provided 

by this mechanism is dubious at best (for example, a personal computer running MS-DOS can create 

any port it wants, since there is no concept of a super-user). 

A reserved port number is obtained using the rresvport function; it returns either a reserved port 

suitable for use as the inport parameter to rcmd, or –1 on error. 

The rcmd function connects to the host named in *aname, which is modified to contain the official 

host name, using the reserved port given by inport. It returns a stream socket on success, or –1 on 

failure. The luser parameter should contain the name of the local user; the ruser parameter should 

contain the name of the user on the remote host whose account is to be used to execute the command. 

On the remote host, the rshd daemon will search ruser's.rhosts file for a line specifying the 

connecting host and luser. If such a line is found, access is granted; otherwise, access is denied. 

If access is granted, the shell command in cmd will be executed. The standard input and output of 

the command will be connected to the socket returned by rcmd. If fd2p is non-null, an auxilliary 

channel to a control process will be set up, and a descriptor for it will be placed in *fd2p. The 

control process will return the command's standard error output on this channel; it will also accept 

bytes on this channel as signal numbers to be delivered to the process group of the command. If 

fd2p is null, the standard error output of the command will be made the same as its standard output, 

and no provision for delivering signals to the process will be made. 

As mentioned above, rcmd may only be used by the super-user, since it requires a reserved port. 

Generally, this means that the program using it must either be executed by “root,” or made set-user-

id to “root.”  Obviously, for the average user, this presents a problem. The rexec function avoids 
this problem, to some extent: 

int rexec(char **ahost, unsigned short inport, char *user, 

        char *password, char *cmd, int *fd2p); 

The usage and parameters of rexec are basically the same as those of rcmd. However, the inport 

parameter does not have to specify a reserved port, and instead of using.rhosts-based authentication, 
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a login name and password for the remote host must be specified. The advantage of rexec is that 
is does not require a privileged port. However, this advantage is lost because a password is now 

required rather than using.rhosts; it means that programs using rexec cannot safely be used in a 
non-interactive environment since compiling the password into the program would be unsafe. 

A server can implement.rhosts-based authentication by calling the ruserok function: 

int ruserok(char *rhost, int suser, char *ruser, char *luser); 

The rhost parameter should be the name of the remote host, as returned by gethostbyaddr. The 

ruser parameter is the name of the calling user on the remote host, and the luser parameter is the 

name of the user on the local host (the user whose.rhosts file should be checked). The suser flag 

should be 1 if the luser name is that of the super-user and 0 otherwise; this bypasses the check of 

the /etc/hosts.equiv file (which is not used if the local user is the super-user). 

The inetd Super-Server 

When Berkeley originally developed their networking support, each service was served by a 

separate daemon server process. As the number of services increased, so did the number of daemons. 

Unfortunately, many of these daemons executed only rarely, since their services were relatively 

unused. So, the daemon processes sat around all the time consuming system resources and cluttering 

up the process table, but only rarely did they do anything useful. 

To avoid this problem, the inetd program was created. Inetd is a super-server. It reads a configuration 

file (/etc/inetd.conf, usually) and then opens a socket for each service listed in the file, and binds to 
the appropriate port. When a connection or datagram comes in on one of these ports, inetd spawns 

a child process and executes the daemon responsible for handling that service. In this way, most of 

the time the only daemon running is inetd. All the other daemons only run when they have something 

to do, thus freeing up system resources. 

When a daemon server is invoked via inetd, its standard input and output are connected to the socket. 

When the server reads from standard input, it is actually reading from the network, and when it 

writes to standard output, it is actually writing to the network. All of the calls to socket, bind, 

accept, and listen described above are unnecessary. The daemon can use the getpeername 
function if it needs to know who (what host) is connecting to it. 

Generally speaking, servers should be written to operate out of inetd. This is usually more efficient, 

and it is always much simpler. The only exception to this rule is a server that receives a high volume 

of connections; the performance cost of having inetd fork and spawn a new copy of the server for 

each connection may outweigh the performance gained by not having another server out there all 

the time. 

Chapter Summary 

In this chapter, we examined the Berkeley networking paradigm, called sockets. This paradigm is 

used throughout the world when writing networking applications for UNIX systems. For the most 

part, is is portable to just about any version of UNIX, since most vendors simply adopted Berkeley's 
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implementation. The only significant difference between versions are the socket options available 

via the getsockopt and setsockopt functions. 

Network programming is actually fairly straightforward. The functions are relatively simple to 

understand, and there are no major “gotchas” to be wary of. For a more complete understanding of 

UNIX network programming though, it is helpful to examine some of the actual network programs 

used on the typical UNIX system, such as ping, tftp, and rlogin. Seeing how commands that you use 

every day are actually written will help you to better understand just how all these pieces are glued 

together. 

If you would like to conduct this examination on your own, the Berkeley 4.4BSD Lite operating 
system distribution is widely available on the Internet. It contains the full source code to a number 

of commonly used UNIX network programs, including ping, rlogin, rsh, telnet, ftp, tftp, routed, and 

named. Source code for the Linux, 386BSD, and FreeBSD operating systems is also available on 

the Internet; these operating systems are based at least in part on the Berkeley code, and also make 

good reference sources. 

If you would prefer to be guided through the examination, the definitive  reference on the topic is 

W. Richard Stevens' UNIX Network Programming, published by Prentice-Hall. Stevens covers the 

network programming functions in detail, and then reinforces the dicsussion by examining the actual 

source code for a number of common UNIX networking programs including ping, tftp, lpr, rlogin, 

and rmt. The discussion of these programs breaks them down almost line by line, explaining what 

they do. If you plan to be doing a substantial amount of network programming, you'll find this book 

indispensable. 
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Chapter 15 
Networking with TLI 

Although the socket interface described in Chapters 13 and 14 is both simple and popular, it suffers 

from a design flaw in that it is not protocol-independent. Although sockets can be used with a wide 

variety of protocols, including UNIX IPC, TCP/IP, ISO/OSI, and XNS, a socket program written to 

use one of these protocols cannot be used with another protocol without making changes to the 

source code. These changes, although usually minor, mean that it is not possible to have a single 

program that can simultaneously operate over any of the aforementioned protocols. 

The Transport Layer Interface (TLI) attempts to solve this problem. The TLI is a library of functions 

that allow two programs to communicate using a transport provider. The transport provider is a 

device driver or other operating system interface that provides communications support. For 

example, the TCP/IP protocol support would be one transport provider, while support for the Novell 

IPX protocol would be another. The key to the design of the TLI, though, is that provided the 

programmer is careful to avoid taking any protocol-dependent actions, a single program written to 

the TLI can operate over any number of different transport providers without any source code 

changes. In fact, the program doesn't even need to be recompiled when a new transport provider is 

added. 

The TLI library was introduced in System V Release 3. Unfortunately, although AT&T went to all 

the trouble of developing this interface, they neglected to include a transport provider with SVR3, 
meaning that without purchasing a third-party product, the TLI had nothing to talk to. Thus, until 

SVR4 was released, which included a TCP/IP transport provider, sockets continued to be the only 

viable interface for writing network programs, and TLI pretty much fell by the wayside. It is next 

to impossible to find any programs, outside of the System V source code, that make use of the TLI. 

Even though it is rarely used, the TLI is still worth learning about, especially for people who will 

be supporting or maintaining System V systems. In this chapter, we examine the TLI functions, and 

discuss some of the differences between them and the socket interface. We will reimplement the 

examples from Chapter 14 here with TLI; you may find it useful to compare the two 

implementations. 

Between SVR3 and SVR4, a number of improvements were made to the TLI library; most of these 

changes involved adding a network-independent method for handling host and service addresses. 

These changes were adopted by Sun and Silicon Graphics, and are included in Solaris 2.x and IRIX 
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5.x. Hewlett-Packard on the other hand, for reasons of backward compatibility with their earlier 

releases, did not adopt these new functions. The TLI library in HP-UX 10.x is much more like the 

TLI library originally provided with SVR3 (and included in earlier versions of HP-UX). In this 

chapter, we will describe the SVR4 TLI library. However, sections have been included that describe 

the differences between this and the library used on HP-UX 10.x. 

All programs that make use of the TLI must be linked with the -lnsl library on Solaris 2.x and IRIX 
5.x, and with the -lnsl_s library on HP-UX 10.x. 

The netbuf Structure 

Because it is protocol-independent, the data structures used by the various TLI functions are the 
same, regardless of the network protocol being used. However, at the transport provider interface, 

there is no standard for data formats, and indeed, different transport providers use different formats. 

For example, there is no standard for how a host address is to be represented—TCP/IP uses a 32-bit 

value, but ISO/OSI uses a 160-bit value. 

At some point, it is necessary for the TLI functions to deal with these different data formats. 

However, it must be done in such a manner that the functions are not troubled by the differences. In 

the socket interface described in the last two chapters, this was handled by using a generic struct 

sockaddr data type, and typecasting the protocol-dependent data structures (struct 

sockaddr_un, struct sockaddr_in, etc.) to this generic type. In the TLI, it is handled with a 

struct netbuf structure, defined in the include file tiuser.h: 

struct netbuf { 

    unsigned int     maxlen; 

    unsigned int     len; 

    char            *buf; 

} 

The buf element of the structure contains the data (network address, etc.), and the len element 

indicates the length, in bytes, of buf. For the cases in which a TLI function fills in a buf provided 

by the user, the maxlen element indicates the size of the buffer, so that the function will not 
overflow it. 

The struct netbuf structure is used throughout the SVR4 TLI library. It is not available in HP-
UX 10.x. 

Network Selection 

The advantage of the TLI revolves around its ability to work, without changes, over different 

transport providers (network protocols). For example, a program that requires a virtual circuit 

connection doesn't really care if this connection is made via TCP/IP or ISO/OSI, as long as it can 

get the job done. When a programmer writes a program with sockets, he must decide which protocol 

he wants to use, and write the program accordingly. When a programmer writes a program with TLI 

however, she only has to decide what type of service she wants—virtual circuit, datagram, etc. The 
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program will work on any system that provides a transport provider (any transport provider) that 

offers that type of service. (Obviously, for processes on two machines to communicate, both 

machines must speak the same networking protocol.) 

The network selection function in TLI is driven by the /etc/netconfig file: 

# 

# NetID    Semantics    Flags  Proto   Proto Network         Directory Lookup 

#                              Family  Name  Device          Libraries 

# 

udp        tpi_clts       v   inet     udp   /dev/udp        

switch.so,tcpip.so 

tcp        tpi_cots_ord   v   inet     tcp   /dev/tcp        

switch.so,tcpip.so 

rawip      tpi_raw        -   inet     -     /dev/rawip      

switch.so,tcpip.so 

ticlts     tpi_clts       v   loopback -     /dev/ticlts     straddr.so 

ticotsord  tpi_cots_ord   v   loopback -     /dev/ticotsord  straddr.so 

ticots     tpi_cots       v   loopback -     /dev/ticots     straddr.so 

This file contains one entry for every network protocol installed on the system. Each entry has seven 
fields: the first field is a unique name for the network. The second field, called the network 

“semantics,” describes the type of service provided by the network. There are currently four legal 

values for this field: 

tpi_clts Connectionless Transport Service (datagrams). 

tpi_cots Connection-Oriented Transport Service (virtual circuits). 

tpi_cots_ord Connection-Oriented Transport Service with Orderly Release. The difference 

between this and tpi_cots is in what happens when a connection is 
terminated. If the transport provider discards any outstanding data (data that 

has been sent by the local end but not yet delivered over the network to the 

remote end), it is said to have abortive release. If, on the other hand, the 

transport provider reliably delivers any outstanding data to the other side 

before tearing down the connection, it is said to have an orderly release. 

tpi_raw A “raw” (low-level) interface to the networking protocols. 

The next field in the entry is a flags word; the only flag currently defined is ‘v,’ which indicates that 
the entry is visible to the NETPATH routines, described below. A dash may be used to make a 

network temporarily (or permanently) invisible to these routines. 

The fourth field describes a name for the protocol family; all the Internet protocols for example are 

grouped under the name “inet.”  The fifth field specifies the name of the protocol itself; a dash 

may be used if the protocol has no name. 

The sixth field provides the path name of the device to use when accessing the network and the 
protocol. The last field is a comma-separated list of shared libraries that contain the network 

protocol's name-to-address translation functions. 
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There are two sets of functions for reading the /etc/netconfig file, described in the following sections. 

Both of them use a struct netconfig structure to describe an entry: 

#include <netconfig.h> 

 

struct netconfig { 

    char              *nc_netid; 

    unsigned long      nc_semantics; 

    unsigned long      nc_flag; 

    char              *nc_protofmly; 

    char              *nc_proto; 

    char              *nc_device; 

    unsigned long      nc_nlookups; 

    char             **nc_lookups; 

}; 

The nc_netid, nc_protofmly, nc_proto, and nc_device elements of the structure contain the 
network identifier, protocol family, protocol name, and network device name, as described above. 

The nc_lookups element contains the names of the name-to-address translation libraries; 

nc_nlookups indicates how many of these there are. The nc_semantics field of the structure 

contains one of NC_TPI_CLTS, NC_TPI_COTS, NC_TPI_COTS_ORD, or NC_TPI_RAW, as described 

above. The nc_flag element will contain either NC_NOFLAG or NC_VISIBLE. 

The network selection functions described in the following two sections are part of the SVR4 TLI 

implementation, and are not provided in HP-UX 10.x. 

The Network Configuration Library 

The simplest way to read the /etc/netconfig file is one entry at a time, or by looking for a specific 

entry by its network identifier. The functions to do this are contained in the network configuration 

library: 

#include <netconfig.h> 

 

void *setnetconfig(void); 

 

int endnetconfig(void *handlep); 

 

struct netconfig *getnetconfig(void *handlep); 

 

struct netconfig *getnetconfigent(const char *netid); 

 

void freenetconfigent(struct netconfig *netconfigp); 

 

void nc_perror(const char *msg); 

 

char *nc_sperror(void); 

The setnetconfig function opens or rewinds the /etc/netconfig file. It returns a pointer to a 

“handle” that must be used with some of the other functions. The setnetconfig function must be 

called before any calls to getnetconfig, but it does not have to be called before 
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getnetconfigent. The endnetconfig function closes the network configuration database; 

handlep should be the value returned by a call to setnetconfig. 

The getnetconfig function takes a single argument, handlep, which should be the value returned 

from a call to setnetconfig. It returns the next entry in the network configuration database, or 

NULL when there are no more entries to read. The getnetconfigent function returns the entry 

whose network identifier is equal to netid, or NULL if no entry is found. 

The memory returned by getnetconfig and getnetconfigent is dynamically allocated. The 

freenetconfigent function can be called to free this memory. Note that a call to endnetconfig 
will also free the memory allocated by any calls to these functions; care should be taken not to call 

it before the program is finished with this information. 

The nc_perror function can be called when an error is returned by one of the other functions in 

the library; it will print the string contained in msg on the standard error output, followed by an error 

message describing the error that occurred. The nc_sperror function will return the error message 

string rather than printing it. 

To make a TLI program portable, the idea is to call getnetconfig repeatedly looking for any 
network with the desired semantics. For example, a datagram application might call it as follows: 

void *handlep; 

struct netconfig *ncp; 

 

handlep = setnetconfig(); 

while ((ncp = getnetconfig(handlep)) != NULL) { 

    if (ncp->nc_semantics == NC_TPI_CLTS) 

        break; 

} 

 

if (ncp == NULL) { 

    fprintf(stderr, "cannot find acceptable transport provider.\n"); 

    exit(1); 

} 

 

/* use the network described by ncp */ 

A program that uses getnetconfigent, on the other hand, is by definition not portable across 
different transport providers, since it is requesting a specific transport provider. 

The NETPATH Library 

The NETPATH library provides an alternate way to read the /etc/netconfig file; this method allows 

the user to express some control (preferences) over the networks that are chosen. To do this, the user 

sets the NETPATH environment variable to a colon-separated list of network identifiers he is willing 
to use, in the order he prefers them. For example, if a user prefers TCP over ISO TP4, but prefers 

ISO TP0 over UDP, she would set her NETPATH environment variable as follows: 

NETPATH=tcp:iso_tp4:iso_tp0:udp 
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There are three functions in the NETPATH library: 

#include <netconfig.h> 

 

void *setnetpath(void); 

 

int endnetpath(void *handlep); 

 

struct netconfig *getnetpath(void *handlep); 

The setnetpath function opens or rewinds the /etc/netconfig file, and returns a pointer to a 

“handle” describing the file. It must be called before any calls to getnetpath. The endnetpath 

function closes the file and releases all allocated resources returned by the routines. 

The getnetpath function reads the network configuration file described by handlep, which 

should be the value returned by a call to setnetpath. However, rather than reading the file 

sequentially, getnetpath returns the entry for the next valid network identifier contained in the 

NETPATH environment variable. Thus, regardless of the order in which the networks are listed in the 

file, getnetpath will always return them in the order given by the environment variable. 

getnetpath silently ignores invalid or nonexistent network identifiers contained in NETPATH, and 

returns NULL when it runs out of NETPATH entries. 

If the NETPATH variable is not set, then getnetpath returns the list of “default” networks; these 
are the networks listed as “visible” in the network configuration file. The networks will be returned 

in the order listed. 

The use of the getnetpath function is essentially the same as that described above for 

getnetconfig: the program calls getnetpath repeatedly until it finds a network with the 

semantics it wants. However, by ordering the values in the NETPATH environment variable, the user 
can exert some control over which network is chosen when more than one network with the same 

semantics exists. 

Network Selection in HP-UX 10.x 

Network transport selection in HP-UX 10.x is performed at compile time, rather than at run time. 

There is no library of functions to let the programmer choose a network based on type of service 

requirements; the programmer has to know exactly what she wants and code the name of the network 

device directly into her program. Thus, a program that is written to use TCP as its connection-

oriented transport service would have to be modified to use ISO TP4 instead. 

From a technical standpoint, the solution offered by SVR4 is a better one—it is more portable, and 

can be moved between systems with different networking services with no modifications. From a 

practical standpoint however, it probably doesn't matter. Almost every system that is connected to 

a network at all is connected to a TCP/IP network, and thus the program is portable “by default.”  

For those programs that use some other network transport, it's doubtful that they are intended to be 
portable outside their own local environment anyway. 
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Name To Address Translation 

As explained in Chapter 14, host names are a useful way for people to refer to hosts, but network 

protocols prefer to use addresses. So, as in the case of the socket interface, TLI must provide a way 

to translate between hosts and addresses, and port names and port numbers: 

#include <netdir.h> 

 

int netdir_getbyname(const struct netconfig *config, 

        const struct nd_hostserv *service, 

        struct nd_addrlist **addrs); 

 

int netdir_getbyaddr(const struct netconfig *config, 

        struct nd_hostservlist **service, 

        const struct netbuf *netaddr); 

 

int netdir_options(const struct netconfig *netconfig, 

        const int opt, const int fd, char *argp); 

 

void netdir_free(void *ptr, const int struct_type); 

 

void netdir_perror(char *s); 

 

char *netdir_sperror(void); 

Rather than treating host addresses and services (port numbers) independently as the socket interface 

does, TLI views them as integrated. Thus, an address is a tuple of (host address, port number). 

The netdir_getbyname function looks up a host name and service name as given in the service 

argument, which is a pointer to type struct nd_hostserv: 

struct nd_hostserv { 

    char    *h_host; 

    char    *h_serv; 

}; 

The h_host field contains the name of the host, and the h_serv field contains the name of the 

service. For services that do not have names (e.g., some arbirtrarily selected port number), h_serv 

should point to a character string representation of the port number. The h_host element may 

contain some special values instead of a host name: 

HOST_SELF Represents the address by which local programs may refer to the local 
host. This address is not meaningful outside the local host. 

HOST_ANY Represents any host accessible by this transport provider. This is 

equivalent to the INADDR_ANY value in the socket interface. 

HOST_SELF_CONNECT Represents the host address that can be used to connect to the local 

host. 
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HOST_BROADCAST Represents the address for all hosts reachable by this transport 

provider. Network requests to this address will be sent to all machines 

on the network. 

The netdir_getbyname function returns a list of all valid addresses for the host and service in the 

addrs parameter, which is a pointer to an array of structures of type struct nd_addrlist: 

struct nd_addrlist { 

    int               n_cnt; 

    struct netbuf    *n_addrs; 

}; 

Each element of n_addrs contains one address; the n_cnt element indicates how many addresses 
there are. 

The netdir_getbyaddr function looks up a host address and port number, as given in netaddr, 

and returns a list of host and service names in service, which is a pointer to an array of type 
struct nd_hostservlist: 

struct nd_hostservlist { 

    int                    h_cnt; 

    struct nd_hostserv    *h_hostservs; 

}; 

Both netdir_getbyname and netdir_getbyaddr return zero on success, or non-zero on failure. 

If they fail, the netdir_perror and netdir_sperror functions can be used to learn why. 

The memory used by these functions can be freed by calling netdir_free. The first argument is 

a pointer to the memory, and the second is a constant indicating the type of structure to be freed: 

ND_ADDR Free a struct netbuf structure. 

ND_ADDRLIST Free a struct nd_addrlist structure. 

ND_HOSTSERV Free a struct hostserv structure. 

ND_HOSTSERVLIST Free a struct nd_hostservlist structure. 

The netdir_options function allows the programmer to set or check various options on the 

address he chooses. The fd parameter is the transport endpoint, defined later. The opt parameter 

specifies the option, which may be one of: 

ND_SET_BROADCAST If the transport provider supports broadcast, set the program up 

to send broadcast packets. The argp parameter is ignored. 

ND_SET_RESERVEDPORT If the concept of a reserved port exists for the transport provider, 

allow the caller to bind a reserved port. If argp is NULL, an 

arbitrary reserved port will be chosen. If argp points to a 

struct netbuf structure, an attempt will be made to bind to 
the reserved port it describes. 



Networking with TLI 

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 379 
 

ND_CHECK_RESERVEDPORT Used to check whether or not the address contained in the 

struct netbuf structure pointed to by argp is on a reserved 

port or not. 

ND_MERGEADDR Used to convert a “local” address to a “real” address that may 

be used by other clients. The argp parameter should point to a 

structure of type struct nd_mergearg: 

struct nd_mergearg { 

    char    *s_uaddr; 

    char    *c_uaddr; 

    char    *m_uaddr; 

}; 

The s_uaddr element should point to the server's (local 

machine) address, and the c_uaddr element should point to the 
client's (remote machine) address. After the call completes, 

m_uaddr will contain an address that the client can use to 
contact the server. (It's not really clear that this option is useful 

for anything, since this information is all available through 

other means.) 

The netdir_options function returns zero on success, non-zero on failure. 

The name to address translation functions are a part of the SVR4 TLI library, and are not available 

in HP-UX 10.x. 

Name To Address Translation in HP-UX 10.x 

As mentioned in the beginning of the chapter, SVR3, where TLI was first introduced, did not provide 
a network transport. Thus, vendors who adopted SVR3 as their base operating system had to “graft” 

their existing transport layers onto TLI. Most vendors did this in a similar way—they made use of 

the existing data structures and library routines provided by their socket interface (described in 

Chapter 14, Networking With Sockets), making only minor changes to support the differences 

between sockets and TLI. 

As with network selection, this method of implementing things is inherently less portable. The data 

structures needed to deal with 32-bit TCP/IP addresses are different from those needed to deal with 

160-bit ISO addresses. To make a program written for one transport provider work with another one 

would require some significant changes. From a practical standpoint though, it probably doesn't 

matter. Almost every system that is connected to a network at all is connected to a TCP/IP network, 

and thus the program is portable “by default.”  For those programs that use some other network 

transport, it's doubtful that they are intended to be portable outside their own local environment 
anyway. 
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TLI Utility Functions 

There are three utility functions that are used frequently in conjunction with the rest of the TLI 

library: 

#include <tiuser.h> 

 

void t_error(const char *errmsg); 

 

char *t_alloc(int fd, int struct_type, int fields); 

 

int t_free(char *ptr, int struct_type); 

The t_error function is used to print error messages when TLI functions fail. TLI functions set 

the external integer t_errno to an error code; t_error prints the string contained in errmsg, 

followed by an error message describing the error, to the standard error output. If the failure is due 

to a system error (as opposed to a library error), t_error also prints the system error message. 

The t_alloc function can be used to allocate structures for use with the rest of the TLI library. The 

fd parameter is the transport endpoint (see below). The struct_type parameter specifies the type 

of structure to be allocated: 

T_BIND Allocate a struct t_bind structure. 

T_CALL Allocate a struct t_call structure. 

T_DIS Allocate a struct t_discon structure. 

T_INFO Allocate a struct t_info structure. 

T_OPTMGMT Allocate a struct t_optmgmt structure. 

T_UDERROR Allocate a struct t_uderror structure. 

T_UNITDATA Allocate a struct t_unitdata structure. 

With the exception of the struct t_info structure, all of these structures contain one or more 

struct netbuf structures. The fields parameter is used to specify which, if any, of these buffers 

should be allocated as well. The fields parameter is the logical or of any of the following: 

T_ADDR Allocate the addr field of the t_bind, tcall, t_unitdata, or t_uderr 
structures. 

T_OPT Allocate the opt field of the t_optmgmt, t_call, t_unitdata, or t_uderr 
structures. 

T_UDATA Allocate the udata field of the t_call, t_discon, or t_unitdata structures. 

T_ALL Allocate all relevant fields of a given structure. 

The t_alloc function will allocate the buf portion of the struct netbuf structure, and set the 

maxlen field appropriately. This frees the application from having to know how big a buffer needs 
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to be for any particular purpose. If a structure cannot be allocated, t_alloc returns NULL. 
Otherwise, it returns a pointer to the allocated structure. 

The t_free function frees the structure pointed to by ptr, which should have been allocated with 

t_alloc. The struct_type parameter specifies the type of structure, as described above for 

t_alloc. If one of the fields of the structure is NULL, t_alloc will not attempt to free it; in this 

way, partially-allocated structures can be freed. 

Transport Endpoint Management 

In the socket interface, a socket was used to refer to one end of a communications channel. The 

socket was simply a file descriptor, and could be used with read and write, as well as the special-
purpose networking functions. 

In the TLI, the end of a communications channel is called a transport endpoint. A transport endpoint 

is a file descriptor and some associated state information. Without some special preparations 

described later in this chapter, transport endpoints cannot be be used with read and write; they 
must instead be accessed through TLI functions. 

Creating a Transport Endpoint 

To create a transport endpoint, the t_open function is used: 

#include <tiuser.h> 

#include <fcntl.h> 

 

int t_open(const char *path, int oflag, struct t_info *info); 

The path parameter should be the path to the communications device; this will usually be the 

nc_device field of a struct netconfig structure. The oflag parameter specifies how the 

endpoint should be opened; it is specified using the same flags that are used with the open system 

call (see Chapter 3, Low-Level I/O Routines) and should include at least O_RDWR. The info 

parameter, if non-null, points to a structure of type struct t_info into which the characteristics 

of the underlying transport protocol will be stored. On success, t_open returns a valid file 

descriptor. On failure, it returns –1 and stores the reason for failure in t_errno (and perhaps 

errno). 

Information about the characteristics of the underlying protocol may be obtained when the transport 

endpoint is created. It may also be obtained at any other time by using the t_getinfo function: 

#include <tiuser.h> 

 

int t_getinfo(int fd, struct t_info *info); 

The fd parameter should refer to a transport endpoint, and info should point to a structure of type 

struct t_info: 
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struct t_info { 

    long    addr; 

    long    options; 

    long    tsdu; 

    long    etsdu; 

    long    connect; 

    long    discon; 

    long    servtype; 

}; 

The fields of this structure have the following meanings: 

addr The maximum size of a transport protocol address; a value of –1 indicates that there 

is no maximum, and a value of –2 indicates that the user does not have access to 

transport protocol addresses. 

options The maximum number of bytes of protocol-specific options supported by the 

provider; a value of –1 indcates that there is no maximum, and a value of –2 indicates 

that the transport provider does not support user-settable options. 

tsdu The maximum size of a Transport Service Data Unit (TSDU). This is the maximum 

amount of data whose message boundaries are preserved from one transport 

endpoint to another. A value of zero indicates that the transport provider does not 

support the concept of a TSDU, although it does support transferring data across a 

stream with no logical boundaries. A value of –1 indicates that there is no limit on 

the size of a TSDU; a value of –2 indicates that the transport provider does not 

support the transfer of normal data. 

etsdu The maximum size of an Expedited Transport Service Data Unit (ETSDU), with the 

same meanings as for the TSDU. Expedited data is delivered immediately, without 
waiting for the delivery of previously-sent normal data. (The socket interface term 

for this is out-of-band data.) 

connect The maximum amount of data that can be sent along with a connection request; –1 

indicates there is no limit, and –2 indicates that data may not be sent with connection 

establishment functions. 

discon The maximum amount of data that can be associated with the t_snddis and 

t_rcvdis functions. A value of –1 indicates no limit; a value of –2 indicates that 
data may not be sent with these functions. 

srvtype The type of service supported by the transport provider: 

T_COTS Connection-oriented service, but without orderly release. 

T_COTS_ORD Connection-oriented service with orderly release. 

T_CLTS Connectionless service. For this type of service, etdsu, 

connect, and discon will contain –2. 
 

On success, t_getinfo returns 0. On failure, it returns –1, and t_errno (and possibly errno) will 
be set to indicate the error. 
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Binding an Address to a Transport Endpoint 

Before a transport endpoint can be used, it must be bound to an address. Unlike the socket interface, 

in which a client program only needs to bind its socket to an address if it wants to use a specific port 

number, TLI requires both the client and server processes to bind addresses to their transport 

endpoints. 

An address is described by a structure of type struct t_bind: 

struct t_bind { 

    struct netbuf    addr; 

    unsigned int     qlen; 

}; 

The addr field contains the address to be bound, and the qlen field specifies the maximum number 
of outstanding connection requests a server will allow on the endpoint. 

The t_bind function is used to bind an address to a transport endpoint: 

#include <tiuser.h> 

 

int t_bind(int fd, struct t_bind *reqp, struct t_bind *retp); 

The fd parameter is the transport endpoint. The reqp parameter specifies the requested address, 

and the retp parameter, if non-null, points to a location in which the actual address that is bound 

will be stored. 

Note that the actual address bound by t_bind may be different than the requested address; this will 
occur if an address is already in use. In the case of servers, which usually have to live at a specific 

address, the benefit of this behavior is not clear. It would probably make more sense to just refuse 

to bind the address, and return an “address in use” error, like the socket interface does. At any rate, 

after performing the t_bind, a process that cares about the address it is bound to should check to 

see that the address in retp is the same as that in reqp. 

If reqp is NULL, the system will assume that the user doesn't care what address is used, and the 

system will choose an appropriate one. This is usually the case with client programs (except for 

those that use reserved ports). 

On success, t_bind returns 0. On failure, it returns –1 and t_errno (and perhaps errno) will be 
set to indicate the error. 

Closing a Transport Endpoint 

The t_unbind function disables a transport endpoint: 

#include <tiuser.h> 

 

int t_unbind(int fd); 
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Upon return, the endpoint may no longer be used to transfer data. The endpoint may be bound to 

another address at this time. The t_unbind function returns 0 on success, or –1 on failure. If a 

failure occurs, the error indication will be stored in t_errno (and perhaps errno). 

The t_close function closes a transport endpoint: 

#include <tiuser.h> 

 

int t_close(int fd); 

This function should be called when the endpoint is in an unbound state (after a call to t_unbind), 
but can be called when the endpoint is in any state. It frees any local library resources used by the 

endpoint, and closes the file descriptor. On success, t_close returns 0; on failure it returns –1 and 

stores the reason for failure in t_errno (and perhaps errno). 

Transport Endpoint Options 

Some transport providers allow certain protocol options to be controlled by the user. To examine 

and change these options, TLI provides the t_optmgmt function: 

#include <tiuser.h> 

 

int t_optmgmt(int fd, const struct t_optmgmt *req, 

        struct t_optmgmt *ret); 

The fd parameter is a bound transport endpoint. The req and ret parameters point to structures of 

type struct t_optmgmt: 

struct t_optmgmt { 

    struct netbuf    opt; 

    long             flags; 

}; 

The opt field contains the options (in req, len contains the number of bytes in the options, and 

buf contains the options; in ret, maxlen contains the maximum size of buf). The flags field 

specifies the action to be taken with the options: 

T_NEGOTIATE Negotiate the values of the options specified in req with the transport 

provider. The provider will examine the options and negotiate the values, and 

return the negotiated values through ret. 

T_CHECK Check whether or not the options specified in req are supported by the 

transport provider. On return, the flags field of ret will contain either 

T_SUCCESS or T_FAILURE. 

T_DEFAULT Retrieve the default options supported by the transport provider into ret. 

When making this call, the len field in req must be zero. 

The actual structure and content of the options are imposed by the transport provider. 
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If t_optmgmt succeeds, it returns zero. If it fails, it returns –1, and places an error code in t_errno 

(and perhaps errno). 

Connectionless Service 

Connectionless (datagram) service is the simplest of the two types of communication that can be 

performed with the TLI. After the client and server have created their transport endpoints and bound 

them to addresses, they can exchange data using the t_sndudata and t_rcvudata functions: 

#include <tiuser.h> 

 

int t_sndudata(int fd, struct t_unitdata *data); 

 

int t_rcvudata(int fd, struct t_unitdata *data, int *flags); 

In both functions, fd is a transport endpoint, and data points to a structure of type struct 

t_unitdata: 

struct t_unitdata { 

    struct netbuf    addr; 

    struct netbuf    opt; 

    struct netbuf    udata; 

}; 

In this structure, addr is the address to which the data is to be sent or from which it was received, 

opt contains any protocol-specific options associated with the data, and udata contains the data 

that was transferred. Note that the maxlen field of all three of these structures must be set before 

calling t_rcvudata. 

The flags parameter to t_rcvudata should point at an area in which flags can be set. This area 

should be initialized to zero. The only flag currently defined is T_MORE, which will be set if the size 

of the udata buffer is not large enough to retrieve all the available data. Subsequent calls to 

t_rcvudata can be used to retrieve the remaining data. 

The t_sndudata and t_rcvudata functions return zero on success, and –1 on failure. If a failure 

occurs, an error code will be stored in t_errno (and perhaps errno). 

When receiving data, it is possible for an error to occur that will prevent the receipt of more data 

until it is dealt with. In connectionless mode, the only error that can occur in this way is the failure 

of a previous attempt to send data with t_sndudata. If t_rcvudata fails and sets t_errno to 

TLOOK, the application must call t_rcvuderr to clear the error: 

#include <tiuser.h> 

 

int t_rcvuderr(int fd, struct t_uderr *uderr); 

The struct t_uderr structure is defined as: 
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struct t_uderr { 

    struct netbuf    addr; 

    struct netbuf    opt; 

    long             error; 

}; 

The maxlen field of addr and opt must be set before the call. On return, addr will contain the 

address of the failed transmission, opt will contain any options associated with the transmission, 

and error will contain an implementation-dependent error code. 

One has to question why, when using an inherently unreliable service in which datagrams may be 

lost or discarded, TLI's designers decided it was necessary to inform the user of this particular error 

condition (but not of others). There is little that can be done about it (since no indication of which 

datagram failed is provided, no retransmission can be done), and it serves only to make the 

implementation of connectionless service that much more complicated. 

Example 15-1 shows a reimplementation of Example 14-3 using SVR4 TLI. This program connects 

to the “daytime” service, an Internet standard service that returns the local time as an ASCII string. 

Example 15-1: daytime 

#include <netconfig.h> 

#include <netdir.h> 

#include <tiuser.h> 

#include <string.h> 

#include <fcntl.h> 

#include <stdio.h> 

 

#define SERVICENAME "daytime" 

 

extern int t_errno; 

 

int 

main(int argc, char **argv) 

{ 

    int fd, flags; 

    struct netconfig *ncp; 

    struct nd_hostserv ndh; 

    struct t_unitdata *udp; 

    struct nd_addrlist *nal; 

 

    if (argc < 2) { 

        fprintf(stderr, "Usage: %s hostname [hostname...]\n", *argv); 

        exit(1); 

    } 

 

    /* 

     * Select the UDP transport provider. 

     */ 

    if ((ncp = getnetconfigent("udp")) == NULL) { 

        nc_perror("udp"); 

        exit(1); 

    } 
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    while (--argc) { 

        ndh.h_host = *++argv; 

        ndh.h_serv = SERVICENAME; 

 

        /* 

         * Get a host and service address for this host. 

         */ 

        if (netdir_getbyname(ncp, &ndh, &nal) != 0) { 

            netdir_perror(*argv); 

            exit(1); 

        } 

 

        /* 

         * Create a transport endpoint. 

         */ 

        if ((fd = t_open(ncp->nc_device, O_RDWR, NULL)) < 0) { 

            t_error("t_open"); 

            exit(1); 

        } 

 

        /* 

         * Bind an arbitrary address to the transport 

         * endpoint. 

         */ 

        if (t_bind(fd, NULL, NULL) < 0) { 

            t_error("t_bind"); 

            exit(1); 

        } 

 

        /* 

         * Allocate a datagram. 

         */ 

        udp = (struct t_unitdata *) t_alloc(fd, T_UNITDATA, T_ALL); 

 

        if (udp == NULL) { 

            t_error("t_alloc"); 

            exit(1); 

        } 

 

        /* 

         * Construct the datagram. 

         */ 

        memcpy(&udp->addr, &nal->n_addrs[0], sizeof(struct netbuf)); 

        udp->udata.len = 1; 

 

        /* 

         * Send a packet to the server. 

         */ 

        if (t_sndudata(fd, udp) < 0) { 

            t_error("t_sndudata"); 

            exit(1); 

        } 

 

        /* 

         * Receive a packet back. 

         */ 

        if (t_rcvudata(fd, udp, &flags) < 0) { 

            if (t_errno == TLOOK) { 
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                if (t_rcvuderr(fd, NULL) < 0) { 

                    t_error("t_rcvuderr"); 

                    exit(1); 

                } 

            } 

            else { 

                t_error("t_rcvudata"); 

                exit(1); 

            } 

        } 

 

        /* 

         * Print the packet. 

         */ 

        udp->udata.buf[udp->udata.len] = '\0'; 

        printf("%s: %s", *argv, udp->udata.buf); 

 

        /* 

         * Shut down the connection. 

         */ 

        t_unbind(fd); 

        t_close(fd); 

    } 

 

    exit(0); 

} 

% daytime localhost 

localhost: Mon Mar 20 15:50:54 1995 

Example 15-2 shows the same program as it is implemented in HP-UX 10.x. The primary differences 

are as follows: 

1. Rather than using netdir_getbyname to obtain a host/service address, getservbyname is 

used to get the service address (port number), and gethostbyname is used to get the host 
address. These functions are described in Chapter 14, Networking With Sockets. 

2. Rather than using getnetconfigent to obtain the name of a suitable network device for use 

with t_open, the device name is simply compiled in. In this case, /dev/inet_clts provides a 
connectionless transport service using the Internet protocol suite (TCP/IP). 

3. Instead of using a transport-independent struct nd_addrlist structure for handling 

network addresses, a struct sockaddr_in structure (specific to the Internet protocol 
domain) is used. Creating the host and service address for the host is much the same as what 

we did when using the socket interface. 

Example 15-2: daytime 

#include <sys/types.h> 

#include <sys/socket.h> 

#include <netinet/in.h> 

#include <tiuser.h> 

#include <string.h> 
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#include <netdb.h> 

#include <fcntl.h> 

#include <stdio.h> 

 

#define SERVICENAME "daytime" 

 

extern int t_errno; 

 

int 

main(int argc, char **argv) 

{ 

    int fd, flags; 

    struct hostent *hp; 

    struct servent *sp; 

    struct t_unitdata *udp; 

    struct nd_addrlist *nal; 

    struct sockaddr_in rem_addr; 

 

    if (argc < 2) { 

        fprintf(stderr, "Usage: %s hostname [hostname...]\n", *argv); 

        exit(1); 

    } 

 

    if ((sp = getservbyname(SERVICENAME, "udp")) == NULL) { 

        fprintf(stderr, "%s/udp: unknown service\n", SERVICENAME); 

        exit(1); 

    } 

 

    while (--argc) { 

        if ((hp = gethostbyname(*++argv)) == NULL) { 

            fprintf(stderr, "%s: unknown host\n", *argv); 

            continue; 

        } 

 

        /* 

         * Create a transport endpoint. 

         */ 

        if ((fd = t_open("/dev/inet_clts", O_RDWR, NULL)) < 0) { 

            t_error("t_open"); 

            exit(1); 

        } 

 

        /* 

         * Bind an arbitrary address to the transport 

         * endpoint. 

         */ 

        if (t_bind(fd, NULL, NULL) < 0) { 

            t_error("t_bind"); 

            exit(1); 

        } 

 

        /* 

         * Allocate a datagram. 

         */ 

        udp = (struct t_unitdata *) t_alloc(fd, T_UNITDATA, T_ALL); 

 

        if (udp == NULL) { 

            t_error("t_alloc"); 
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            exit(1); 

        } 

 

        /* 

         * Create a host and service address for our host. 

         */ 

        memset((char *) &rem_addr, 0, sizeof(struct sockaddr_in)); 

        memcpy((char *) &rem_addr.sin_addr.s_addr, (char *) hp->h_addr, 

               hp->h_length); 

        rem_addr.sin_port = sp->s_port; 

        rem_addr.sin_family = AF_INET; 

 

        /* 

         * Construct the datagram. 

         */ 

        udp->addr.maxlen = sizeof(struct sockaddr_in); 

        udp->addr.len = sizeof(struct sockaddr_in); 

        udp->addr.buf = (char *) &rem_addr; 

        udp->opt.buf = (char *) 0; 

        udp->opt.maxlen = 0; 

        udp->opt.len = 0; 

        udp->udata.len = 1; 

 

        /* 

         * Send a packet to the server. 

         */ 

        if (t_sndudata(fd, udp) < 0) { 

            t_error("t_sndudata"); 

            exit(1); 

        } 

 

        /* 

         * Receive a packet back. 

         */ 

        if (t_rcvudata(fd, udp, &flags) < 0) { 

            if (t_errno == TLOOK) { 

                if (t_rcvuderr(fd, NULL) < 0) { 

                    t_error("t_rcvuderr"); 

                    exit(1); 

                } 

            } 

            else { 

                t_error("t_rcvudata"); 

                exit(1); 

            } 

        } 

 

        /* 

         * Print the packet. 

         */ 

        udp->udata.buf[udp->udata.len] = '\0'; 

        printf("%s: %s", *argv, udp->udata.buf); 

 

        /* 

         * Shut down the connection. 

         */ 

        t_unbind(fd); 

        t_close(fd); 
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    } 

 

    exit(0); 

} 

Connection-Oriented Service 

Connection-oriented service is more involved than connectionless service, just as it was for the 

socket interface. However, it is not really much more complicated than the socket interface. 

Server-Side Functions 

In order to be a server, a process must inform the operating system that it wishes to receive 

connections, and then process those connection requests as they come in. 

Waiting for Connections 

Unlike the socket interface, in which the server calls listen once and then loops on calls to accept 

to be notified of incoming connections, in TLI the server loops on calls to t_listen: 

#include <tiuser.h> 

 

int t_listen(int fd, struct t_call *call); 

This function will block until a connection request arrives on the transport endpoint referenced by 

fd. When a connection request arrives, a description of the request will be placed in call, a pointer 

to a structure of type struct t_call: 

struct t_call { 

    struct netbuf    addr; 

    struct netbuf    opt; 

    struct netbuf    udata; 

    int              sequence; 

}; 

The maxlen field of addr, opt, and udata must be set before the call to t_listen. On return, 

addr will contain the address of the caller, opt will contain any protocol-specific options associated 

with the request, and udata will contain any data sent by the caller in the connection request (if the 

transport provider supports this). The sequence field will uniquely identify the connection request, 
to allow a server to listen for multiple connection requests before responding to any of them. 

On success, t_listen returns 0. If a failure occurs, it returns –1 and the error indication is stored 

in t_errno (and perhaps errno). 

Accepting and Rejecting Connections 

Once a connection request has been received via t_listen, the server can either accept or reject 

that request. To accept the request, the server calls the t_accept function: 
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#include <tiuser.h> 

 

int t_accept(int fd, int resfd, struct t_call *call); 

The fd parameter refers to the transport endpoint, and the call parameter should be a pointer to 

the struct t_call structure returned by t_listen. 

If resfd is equal to fd, the connection will be accepted on the same transport endpoint it arrived 

on. This is permissible only when there are no outstanding connection indications on the endpoint 

that have not been responded to. If resfd is not equal to fd, it should refer to another bound 

endpoint that will be used to accept the connection. This will allow the server to continue to receive 

connection requests on the original endpoint (which for servers using well-known ports is the 

desired behavior). 

To reject a connection request, the server uses the t_snddis function: 

#include <tiuser.h> 

 

int t_snddis(int fd, struct t_call *call); 

The fd parameter is the transport endpoint, and call should point to the struct t_call structure 

returned by t_listen. 

Both t_accept and t_snddis return 0 on success, and –1 on failure. If an error occurs, its 

indication will be placed in t_errno (and perhaps errno). 

Client-Side Functions 

Before it can transfer data, a client program must connect to the server. To do this, it uses the 

t_connect function: 

#include <tiuser.h> 

 

int t_connect(int fd, struct t_call *sndcall, 

        struct t_call *rcvcall); 

The fd parameter refers to a bound transport endpoint. The sndcall and rcvcall parameters 

point to structures of type t_call (see above). 

In sndcall, addr is the address of the server to connect to, opt contains any protocol-specific 

options, and udata may contain data to be transmitted along with the connection request if the 
transport provider supports this. 

In rcvcall, the maxlen field of the struct netbuf structures must be set before the call. On 

return, the addr field will contain the address of the remote end of the connection, opt will contain 

any protocol-specific options, and udata will contain any data returned with the connection 

establishment or rejection. If rcvcall is NULL, no information will be returned. 

If the connection request is rejected by the server, t_connect will fail with t_errno set to TLOOK. 

In this case, the client should then call t_rcvdis: 
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#include <tiuser.h> 

 

int t_rcvdis(int fd, struct t_discon *discon); 

The fd parameter specifies the transport endpoint, and the discon parameter points to a structure 

of type struct t_discon, which will contain the reason for rejection: 

struct t_discon { 

    struct netbuf    udata; 

    int              reason; 

    int              sequence; 

}; 

The udata field will contain any data sent by the server along with the rejection. The reason 

parameter specifies an implementation-specific reason for the rejection, and sequence is unused in 

this case. If the client is not interested in the reason for rejection it can specify discon as NULL, but 

it must still make the call to t_rcvdis. 

Both t_connect and t_rcvdis return 0 on success, and –1 on failure. If the operation fails, 

t_errno (and perhaps errno) will contain the error indication. 

Transferring Data 

Once a connection has been established, the client and server can exchange data using the t_snd 

and t_rcv functions: 

#include <tiuser.h> 

 

int t_snd(int fd, char *buf, unsigned nbytes, int flags); 

 

int t_rcv(int fd, char *buf, unsigned nbytes, int *flags); 

In both cases, fd is the transport endpoint. In t_snd, buf is the data to be transferred, and nbytes 

is the number of bytes to be transferred. In t_rcv, buf is the buffer in which to store received data, 

and nbytes specifies the size of the buffer. 

In t_snd, the flags parameter specifies options on the send: 

T_EXPEDITED  Send the data as expedited (out-of-band) data instead of as normal data. 

T_MORE Specifies that the current TSDU is being sent in multiple t_snd calls. Each 

call with T_MORE set will append to the current TSDU; when a send without 
this flag is executed, the TSDU will be sent. 

In t_rcv, flags points to a flags word that will be modified to contain any flags from the call to 

t_snd. 

On successful completion, t_snd and t_rcv return the number of bytes sent or received. On failure, 

they return –1 and store the error indication in t_errno (and perhaps errno). 
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Connection Release 

If the connection supports orderly release, the server and client must negotiate the orderly release 

of the connection. This is done with the t_sndrel and t_rcvrel functions: 

#include <tiuser.h> 

 

int t_sndrel(int fd); 

 

int t_rcvrel(int fd); 

When the client or server has nothing more to send, it should call t_sndrel. When the client or 

server receives the notification of this (see below), it should call t_rcvrel to acknowledge its 

receipt. To shut down the connection completely in both directions, both sides should eventually 

call both of these functions. 

Both of these functions return 0 on success, and –1 on failure. If they fail, an error indication will 

be stored in t_errno (and perhaps errno). 

Examples 15-3 and 15-4 show reimplementations of the client and server programs from Examples 
14-1 and 14-2 using TLI. These two programs exchange data using a virtual circuit. 

Example 15-3: server 

#include <sys/types.h> 

#include <sys/socket.h> 

#include <netinet/in.h> 

#include <netconfig.h> 

#include <tiuser.h> 

#include <netdir.h> 

#include <string.h> 

#include <fcntl.h> 

#include <stdio.h> 

 

#define PORTNUMBER  12345 

 

extern int t_errno; 

 

int 

main(void) 

{ 

    int n, fd, flags; 

    struct t_call *callp; 

    struct netconfig *ncp; 

    struct nd_hostserv ndh; 

    struct nd_addrlist *nal; 

    struct t_bind *reqp, *retp; 

    char buf[1024], hostname[64]; 

 

    /* 

     * Get our local host name. 

     */ 

    if (gethostname(hostname, sizeof(hostname)) < 0) { 

        perror("gethostname"); 
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        exit(1); 

    } 

 

    /* 

     * Select the TCP transport provider. 

     */ 

    if ((ncp = getnetconfigent("tcp")) == NULL) { 

        nc_perror("tcp"); 

        exit(1); 

    } 

 

    /* 

     * Get a host and service address for our host.  Since our 

     * port number is not registered in the services file, we 

     * send down the ASCII string representation of it. 

     */ 

    sprintf(buf, "%d", PORTNUMBER); 

    ndh.h_host = hostname; 

    ndh.h_serv = buf; 

 

    if (netdir_getbyname(ncp, &ndh, &nal) != 0) { 

        netdir_perror(hostname); 

        exit(1); 

    } 

 

    /* 

     * Create a transport endpoint. 

     */ 

     if ((fd = t_open(ncp->nc_device, O_RDWR, NULL)) < 0) { 

        t_error("t_open"); 

        exit(1); 

     } 

 

    /* 

     * Bind the address to the transport endpoint. 

     */ 

    retp = (struct t_bind *) t_alloc(fd, T_BIND, T_ADDR); 

    reqp = (struct t_bind *) t_alloc(fd, T_BIND, T_ADDR); 

 

    if (reqp == NULL || retp == NULL) { 

        t_error("t_alloc"); 

        exit(1); 

    } 

 

    memcpy(&reqp->addr, &nal->n_addrs[0], sizeof(struct netbuf)); 

    reqp->qlen = 5; 

 

    if (t_bind(fd, reqp, retp) < 0) { 

        t_error("t_bind"); 

        exit(1); 

    } 

 

    if (retp->addr.len != nal->n_addrs[0].len || 

        memcmp(retp->addr.buf, nal->n_addrs[0].buf, retp->addr.len) != 0) { 

        fprintf(stderr, "did not bind requested address.\n"); 

        exit(1); 

    } 
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    /* 

     * Allocate a call structure. 

     */ 

    callp = (struct t_call *) t_alloc(fd, T_CALL, T_ALL); 

 

    if (callp == NULL) { 

        t_error("t_alloc"); 

        exit(1); 

    } 

 

    /* 

     * Listen for a connection. 

     */ 

    if (t_listen(fd, callp) < 0) { 

        t_error("t_listen"); 

        exit(1); 

    } 

 

    /* 

     * Accept a connect on the same file descriptor used for listeing. 

     */ 

    if (t_accept(fd, fd, callp) < 0) { 

        t_error("t_accept"); 

        exit(1); 

    } 

 

    /* 

     * Read from the network until end-of-file and 

     * print what we get on the standard output. 

     */ 

    while ((n = t_rcv(fd, buf, sizeof(buf), &flags)) > 0) 

        write(1, buf, n); 

 

    /* 

     * Release the connection. 

     */ 

    t_rcvrel(fd); 

    t_sndrel(fd); 

 

    t_unbind(fd); 

    t_close(fd); 

    exit(0); 

} 

Example 15-4: client 

#include <sys/types.h> 

#include <sys/socket.h> 

#include <netinet/in.h> 

#include <netconfig.h> 

#include <tiuser.h> 

#include <netdir.h> 

#include <string.h> 

#include <fcntl.h> 

#include <stdio.h> 
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#define PORTNUMBER  12345 

 

extern int t_errno; 

 

int 

main(void) 

{ 

    int n, fd; 

    struct t_call *callp; 

    struct netconfig *ncp; 

    struct nd_hostserv ndh; 

    struct nd_addrlist *nal; 

    char buf[32], hostname[64]; 

 

    /* 

     * Get our local host name. 

     */ 

    if (gethostname(hostname, sizeof(hostname)) < 0) { 

        perror("gethostname"); 

        exit(1); 

    } 

 

    /* 

     * Select the TCP transport provider. 

     */ 

    if ((ncp = getnetconfigent("tcp")) == NULL) { 

        nc_perror("tcp"); 

        exit(1); 

    } 

 

    /* 

     * Get a host and service address for our host.  Since our 

     * port number is not registered in the services file, we 

     * send down the ASCII string representation of it. 

     */ 

    sprintf(buf, "%d", PORTNUMBER); 

    ndh.h_host = hostname; 

    ndh.h_serv = buf; 

 

    if (netdir_getbyname(ncp, &ndh, &nal) != 0) { 

        netdir_perror(hostname); 

        exit(1); 

    } 

 

    /* 

     * Create a transport endpoint. 

     */ 

     if ((fd = t_open(ncp->nc_device, O_RDWR, NULL)) < 0) { 

        t_error("t_open"); 

        exit(1); 

     } 

 

     /* 

      * Bind an arbitrary address to the transport 

      * endpoint. 

      */ 

     if (t_bind(fd, NULL, NULL) < 0) { 

        t_error("t_bind"); 
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        exit(1); 

     } 

 

    /* 

     * Allocate a connection structure. 

     */ 

    callp = (struct t_call *) t_alloc(fd, T_CALL, 0); 

 

    if (callp == NULL) { 

        t_error("t_alloc"); 

        exit(1); 

    } 

 

    /* 

     * Construct the connection request. 

     */ 

    memcpy(&callp->addr, &nal->n_addrs[0], sizeof(struct netbuf)); 

 

    /* 

     * Connect to the server. 

     */ 

    if (t_connect(fd, callp, NULL) < 0) { 

        if (t_errno == TLOOK) { 

            if (t_rcvdis(fd, NULL) < 0) { 

                t_error("t_rcvdis"); 

                exit(1); 

            } 

        } 

        else { 

            t_error("t_connect"); 

            exit(1); 

        } 

    } 

 

 

    /* 

     * Read from standard input, and copy the 

     * data to the network. 

     */ 

    while ((n = read(0, buf, sizeof(buf))) > 0) { 

        if (t_snd(fd, buf, n, 0) < 0) { 

            t_error("t_snd"); 

            exit(1); 

        } 

    } 

 

    /* 

     * Release the connection. 

     */ 

    t_sndrel(fd); 

    t_rcvrel(fd); 

 

    t_unbind(fd); 

    t_close(fd); 

    exit(0); 

} 
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% server & 

% client < /etc/motd 

Sun Microsystems Inc.   SunOS 5.3       Generic September 1993 

Examples 15-5 and 15-6 show the same programs as they are implemented in HP-UX 10.x. The 

primary differences are as follows: 

1. Rather than using netdir_getbyname to obtain a host/service address,  gethostbyname is 

used to get the host address, and the port number is already known. The gethostbyname 
function is described in Chapter 14, Networking With Sockets. 

2. Rather than using getnetconfigent to obtain the name of a suitable network device for use 

with t_open, the device name is simply compiled in. In this case, /dev/inet_cots provides a 
connection-oriented transport service using the Internet protocol suite (TCP/IP). 

3. Instead of using a transport-independent struct nd_addrlist structure for handling 

network addresses, a struct sockaddr_in structure (specific to the Internet protocol 
domain) is used. Creating the host and service address for the host is much the same as what 

we did when using the socket interface. 

Example 15-5: server 

#include <sys/types.h> 

#include <sys/socket.h> 

#include <netinet/in.h> 

#include <tiuser.h> 

#include <string.h> 

#include <fcntl.h> 

#include <stdio.h> 

 

#define PORTNUMBER  12345 

 

extern int t_errno; 

 

int 

main(void) 

{ 

    int n, fd, flags; 

    struct t_call *callp; 

    struct t_bind *reqp, *retp; 

    struct sockaddr_in loc_addr; 

    char buf[1024], hostname[64]; 

 

    /* 

     * Get our local host name. 

     */ 

    if (gethostname(hostname, sizeof(hostname)) < 0) { 

        perror("gethostname"); 

        exit(1); 

    } 

 

    /* 

     * Create a host and service address for our host. 
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     */ 

    memset((char *) &loc_addr, 0, sizeof(struct sockaddr_in)); 

    loc_addr.sin_addr.s_addr = htonl(INADDR_ANY); 

    loc_addr.sin_port = htons(PORTNUMBER); 

    loc_addr.sin_family = AF_INET; 

 

    /* 

     * Create a transport endpoint. 

     */ 

     if ((fd = t_open("/dev/inet_cots", O_RDWR, NULL)) < 0) { 

        t_error("t_open"); 

        exit(1); 

     } 

 

    /* 

     * Bind the address to the transport endpoint. 

     */ 

    retp = (struct t_bind *) t_alloc(fd, T_BIND, T_ADDR); 

    reqp = (struct t_bind *) t_alloc(fd, T_BIND, T_ADDR); 

 

    if (reqp == NULL || retp == NULL) { 

        t_error("t_alloc"); 

        exit(1); 

    } 

 

    reqp->addr.maxlen = sizeof(struct sockaddr_in); 

    reqp->addr.len = sizeof(struct sockaddr_in); 

    reqp->addr.buf = (char *) &loc_addr; 

    reqp->qlen = 5; 

 

    if (t_bind(fd, reqp, retp) < 0) { 

        t_error("t_bind"); 

        exit(1); 

    } 

 

    if (retp->addr.len != reqp->addr.len || 

        memcmp(retp->addr.buf, reqp->addr.buf, retp->addr.len) != 0) { 

        fprintf(stderr, "did not bind requested address.\n"); 

        exit(1); 

    } 

 

    /* 

     * Allocate a call structure. 

     */ 

    callp = (struct t_call *) t_alloc(fd, T_CALL, T_ALL); 

 

    if (callp == NULL) { 

        t_error("t_alloc"); 

        exit(1); 

    } 

 

    /* 

     * Listen for a connection. 

     */ 

    if (t_listen(fd, callp) < 0) { 

        t_error("t_listen"); 

        exit(1); 

    } 
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    /* 

     * Accept a connect on the same file descriptor used for listeing. 

     */ 

    if (t_accept(fd, fd, callp) < 0) { 

        t_error("t_accept"); 

        exit(1); 

    } 

 

    /* 

     * Read from the network until end-of-file and 

     * print what we get on the standard output. 

     */ 

    while ((n = t_rcv(fd, buf, sizeof(buf), &flags)) > 0) 

        write(1, buf, n); 

 

    /* 

     * Release the connection. 

     */ 

    t_rcvrel(fd); 

    t_sndrel(fd); 

 

    t_unbind(fd); 

    t_close(fd); 

    exit(0); 

} 

Example 15-6: client 

#include <sys/types.h> 

#include <sys/socket.h> 

#include <netinet/in.h> 

#include <tiuser.h> 

#include <string.h> 

#include <netdb.h> 

#include <fcntl.h> 

#include <stdio.h> 

 

#define PORTNUMBER  12345 

 

extern int t_errno; 

 

int 

main(void) 

{ 

    int n, fd; 

    struct hostent *hp; 

    struct t_call *callp; 

    char buf[32], hostname[64]; 

    struct sockaddr_in rem_addr; 

 

    /* 

     * Get our local host name. 

     */ 

    if (gethostname(hostname, sizeof(hostname)) < 0) { 

        perror("gethostname"); 
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        exit(1); 

    } 

 

    /* 

     * Get the address of our host. 

     */ 

    if ((hp = gethostbyname(hostname)) == NULL) { 

        fprintf(stderr, "Cannot find address for %s\n", hostname); 

        exit(1); 

    } 

 

    /* 

     * Create a host and service address for our host. 

     */ 

    memset((char *) &rem_addr, 0, sizeof(struct sockaddr_in)); 

    memcpy((char *) &rem_addr.sin_addr.s_addr, (char *) hp->h_addr, 

           hp->h_length); 

    rem_addr.sin_port = htons(PORTNUMBER); 

    rem_addr.sin_family = AF_INET; 

 

    /* 

     * Create a transport endpoint. 

     */ 

     if ((fd = t_open("/dev/inet_cots", O_RDWR, NULL)) < 0) { 

        t_error("t_open"); 

        exit(1); 

     } 

 

     /* 

      * Bind an arbitrary address to the transport 

      * endpoint. 

      */ 

     if (t_bind(fd, NULL, NULL) < 0) { 

        t_error("t_bind"); 

        exit(1); 

     } 

 

    /* 

     * Allocate a connection structure. 

     */ 

    callp = (struct t_call *) t_alloc(fd, T_CALL, T_ADDR); 

 

    if (callp == NULL) { 

        t_error("t_alloc"); 

        exit(1); 

    } 

 

    /* 

     * Construct the connection request. 

     */ 

    callp->addr.maxlen = sizeof(struct sockaddr_in); 

    callp->addr.len = sizeof(struct sockaddr_in); 

    callp->addr.buf = (char *) &rem_addr; 

    callp->udata.len = 0; 

    callp->opt.len = 0; 

 

    /* 

     * Connect to the server. 
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     */ 

    if (t_connect(fd, callp, NULL) < 0) { 

        if (t_errno == TLOOK) { 

            if (t_rcvdis(fd, NULL) < 0) { 

                t_error("t_rcvdis"); 

                exit(1); 

            } 

        } 

        else { 

            t_error("t_connect"); 

            exit(1); 

        } 

    } 

 

 

    /* 

     * Read from standard input, and copy the 

     * data to the network. 

     */ 

    while ((n = read(0, buf, sizeof(buf))) > 0) { 

        if (t_snd(fd, buf, n, 0) < 0) { 

            t_error("t_snd"); 

            exit(1); 

        } 

    } 

 

    /* 

     * Release the connection. 

     */ 

    t_sndrel(fd); 

    t_rcvrel(fd); 

 

    t_unbind(fd); 

    t_close(fd); 

    exit(0); 

} 

Other Functions 

There are several other functions provided in the TLI that may occasionally be of use. 

Transport Endpoint Names 

To obtain the address bound to the local or remote side of a connection, the t_getname function is 
used (through an oversight, this function is not documented in SVR4): 

#include <tiuser.h> 

 

int t_getname(int fd, struct netbuf *namep, int type); 

The fd parameter is the transport endpoint. In the struct netbuf structure pointed to by namep, 

the buf and maxlen fields should be set accordingly. The type parameter may take on one of two 

values: 
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LOCALNAME Return the address bound to the local transport endpoint. 

REMOTENAME Return the address bound to the remote transport endpoint. 

The t_getname function returns zero on success, and –1 on failure. If it fails, t_errno (and 

perhaps errno) will contain the error indication. 

Connection State 

To obtain the current state of a transport endpoint, the t_getstate function is used: 

#include <tiuser.h> 

 

int t_getstate(int fd); 

This function returns –1 if an error occurs and places the error indication in t_errno (and perhaps 

errno). On success, it returns one of the following constants, describing the state of the endpoint: 

T_UNBND The transport endpoint is not bound to an address. 

T_IDLE The transport endpoint is bound to an address, but is not connected to anything. 

T_OUTCON An outgoing connection request is pending on the endpoint. 

T_INCON An incoming connection request is pending on the endpoint. 

T_DATAXFER The endpoint is currently transferring data. 

T_OUTREL An orderly release has been sent on the endpoint. 

T_INREL An orderly release has been received on the endpoint. 

One interesting problem with the TLI is that after a call to exec, the library state is lost. This makes 

it impossible to use the t_getstate function. To fix this, the t_sync function can be called to 
restore the library state: 

#include <tiuser.h> 

 

int t_sync(int fd); 

On success, the current state as defined above is returned. On failure, –1 is returned and t_errno 

(and perhaps errno) will contain the error indication. 

Asynchronous Events 

A number of asynchronous events can occur on the communications channel that will cause TLI 

functions to return errors. Whenever they do return an error, t_errno should be examined. If its 

value is TLOOK, then the t_look function should be called: 

#include <tiuser.h> 

 

int t_look(int fd); 
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This function returns –1 on error and stores the error indication in t_errno (and perhaps errno). 
On success, it returns an indication of which asynchronous event has occurred: 

T_LISTEN A connection request has arrived on the endpoint. 

T_CONNECT A connection confirmation has arrived on the endpoint. 

T_DATA Normal data has arrived on the endpoint. 

T_EXDATA Expedited data has arrived on the endpoint. 

T_DISCONNECT A disconnect indication has arrived on the endpoint. 

T_UDERR A datagram error indication has arrived on the endpoint. 

T_ORDREL An orderly release indication has arrived on the endpoint. 

Address Conversion 

It is possible to convert between the internal representation of an address and a character string. The 

character string is a set of decimal byte values, separated by periods. Note that the string includes 

both the host address and the service port number. The functions to perform these conversions are: 

#include <netdir.h> 

 

char *taddr2uaddr(const struct netconfig *config, 

        const struct netbuf *addr); 

 

struct netbuf *uaddr2taddr(const struct netconfig *config, 

        const char *uaddr); 

The taddr2uaddr function converts the TLI address in the struct netbuf structure pointed to 

by addr to a “universal address” in a character string and returns the character string. The 

uaddr2taddr function converts the universal address in uaddr to a TLI address and returns a 

pointer to it in a struct netbuf. Both functions must have the current network selection passed 

to them in the config parameter. 

These functions are not available in HP-UX 10.x. 

Using read and write with TLI 

Earlier we said that read and write could not be used on transport endpoints without some special 
preparations. To make these preparations, it is necessary to understand that TLI is implemented on 

top of the STREAMS subsystem, which is not discussed in this book. The original Streams 

subsystem was invented by Dennis Ritchie and included in Research UNIX Version 8. AT&T 

productized Streams by adding some additional functionality and changing the name to STREAMS, 

and released it for the first time in System V Release 3.0. However, SVR4 is the first release to fully 

support all devices with STREAMS drivers. 
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The STREAMS subsystem provides, in essence, a raw data stream between the user and some 

device—a disk, a terminal, or a network interface. It removes the specialized drivers for each 

different type of device (there are still drivers, but they all have a common interface now). The user 

can add (“push”) and remove (“pop”) intermediate processing elements, called modules, to and from 

the data stream at will. The modules can be stacked so that more than one processes the data stream 

at the same time. This allows relatively simple, single-purpose modules to be combined in new and 
interesting ways to perform complex tasks, much like the UNIX shell allows complex tasks to be 

built out of simpler ones using pipelines. 

STREAMS works by passing messages between adjacent processing elements. These messages are 

why read and write can't be used—they expect a plain byte stream, and do not know what to do 

with the message headers. In order to use read and write on a trnasport endpoint, it is necessary 

to push a processing module that essentially removes these message headers from the stream for the 
read side, and converts writes to messages on the write side. To push this module, the following call 

is used: 

#include <sys/ioctl.h> 

#include <sys/stropts.h> 

 

. 

. 

. 

 

ioctl(fd, I_PUSH, "tirdwr"); 

. 

. 

. 

After the module has been pushed, read and write can be used to transfer data. However, while 
the module is on the stream, the TLI functions cannot be used (although some may work). To use a 

TLI function, the module must be popped back off the stream: 

#include <sys/ioctl.h> 

#include <sys/stropts.h> 

 

. 

. 

. 

 

ioctl(fd, I_POP, "tirdwr"); 

. 

. 

. 

For all the hassles involved with this, it's probably not worth doing in the general case. 
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Chapter Summary 

In this chapter, we examined the Transport Layer Interface, an alternative to the socket interface for 

UNIX networking. Although the TLI is arguably a better interface than the socket interface, since it 

is protocol-independent and sockets are not, the fact remains that for the most part, nobody uses it. 

If portability is a goal, the TLI should be avoided in favor of the socket interface. 

The information in this chapter covers only the basics of using the TLI. For a thorough discussion 

of the interface, as well as the STREAMS subsystem on which it is based, consult Stephen A. Rago's 

book UNIX System V Network Programming, published by Addison-Wesley. 
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Chapter 16 
Miscellaneous Routines 

In this last chapter of the book, we collect the miscellaneous utility routines that have not been 

discussed in the previous chapters. These functions are less frequently used than the ones described 

in Chapter 2, Utility Routines, but this is not to say that they are only rarely used, or that they are 

not useful in their own right. 

Exiting When Errors Occur 

Often times when debugging a program, having a core dump of the program's current state to 

examine with a debugger can be invaluable. As discussed in Chapter 10, Signals, there are a number 

of events that will cause the operating system to send a signal to a process that causes a core dump. 

But there are a wide variety of other circumstances in which the operating system doesn't know 

anything is wrong and yet it would be nice to have a core dump. 

The abort function can be used to generate a core dump at any time: 

#include <stdlib.h> 

 

void abort(void); 

When called, abort will attempt to close all open files, and then will send a SIGABRT signal to the 
calling process. If the process is not catching or ignoring this signal, a core dump will result. 

The assert function (actually, it's a preprocessor macro) provides an easy way to use abort in 
debugging: 

#include <assrt.h> 

 

void assert(int expression); 

The assert macro evaluates expression, and if it evaluates to false (zero), prints a line on the 

standard error output containing the expression, the source file name, and the line number, and then 

calls abort. 
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Example 16-1 shows a small program that accepts numbers as arguments. It adds these numbers 

together and prints the total. However, before printing the total, it uses assert to check that the 

total is greater than 100. If it isn't, assert will print an error message and call abort. 

Example 16-1: assert 

#include <assert.h> 

#include <stdio.h> 

 

int 

main(int argc, char **argv) 

{ 

    int total; 

 

    total = 0; 

 

    while (--argc) 

        total += atoi(*++argv); 

 

    assert(total > 100); 

 

    printf("%d\n", total); 

    exit(0); 

} 

% assert 10 20 30 40 50 

150 

% assert 1 2 3 4 5 

assert.c:14: failed assertion ‘total > 100’ 

Abort (core dumped) 

Error Logging 

When systems programs encounter errors, it's often difficult to figure out where to print the error 
message. For commands executed by users, the answer is simple; print the message on the terminal 

screen. But for daemons, programs run out of at or cron, and so forth, the answer is more difficult. 

One method is simply to open /dev/console (the machine's console terminal) and print the error 

there. Back in the days of console terminals such as Decwriters that had a printer instead of a screen, 

this made sense. But most machines now have a video screen for a console, if they have one at all. 

Once a message scrolls off the top of the screen, it is gone forever. If nobody sees it before it 

disappears, the error will never be noted and fixed. 

In 4.2BSD, Berkeley introduced the syslog daemon, an idea which has since been picked up by most 

vendors. The syslogd program is started when the system boots, and remains there permanently. 

Programs (and the operating system itself) that have errors or other information to report send these 

messages to the daemon. The daemon, based on the directions in its configuration file, usually stored 

in /etc/syslog.conf, can do a number of things with the message: 
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 It can print the message on the system console. The message will be preceded by the current 

date and time, the name of the program that sent it, and optionally, the program's process-id 

number. 

 It can print the message to a log file. Different types of messages may be sent to the same log 

file, but they may also be sent to different files. 

 It can send the message to a syslogd running on another host. The remote host will then process 
the message. It is common to configure client systems to send all their messages to the file 

server for logging, both because of the additional disk space on the server, and to reduce the 

number of places messages are logged. 

 It can ignore the message. It is common to ignore debugging messages; if they are needed, 

syslogd can always be told to process them for the small time period they are of interest. 

To log error messages via syslogd, a program must first call the openlog function: 

#include <syslog.h> 

 

void openlog(char *ident, int logopts, int facility); 

 

void closelog(void); 

The ident parameter is a name that identifies the program. Usually, it can just be the value of 

argv[0] with any leading pathname removed. The logopts parameter specifies several logging 

options that may be or'ed together: 

LOG_PID Log the process-id with each message. This is frequently used in daemon 
processes to identify the particular instance of the daemon. 

LOG_CONS Write messages to the system console if they cannot be sent to syslogd. This is 

safe to use in daemon processes that have no controlling terminal, as syslog 
will spawn a child process to open the console. 

LOG_NDELAY Open the connection to syslogd immediately, instead of waiting until the first 

message is logged. This can be used in programs that need to manage the order 

in which file descriptors are allocated. 

LOG_NOWAIT Do not wait for child processes that have been spawned to write on the system 

console. This should be used by processes that receive notification of child exits 

via SIGCHLD, since otherwise syslog may block waiting for a child whose exit 
status has already been collected. 

The facility parameter specifies a default facility (category) to be assigned to all messages that 

do not have a facility encoded in them. The facility is used in the syslogd configuration file to group 

messages of certain types together. The allowable facilities are: 

LOG_KERN Messages generated by the operating system kernel. These 

cannot be generated by user processes. 
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LOG_USER Messages generated by user processes. This is the default 

facility if none is specified. 

LOG_MAIL Messages generated by the mail subsystem. 

LOG_DAEMON Messages generated by system daemon processes. 

LOG_AUTH Messages generated by the authentication subsystem (login, su, 

etc.). 

LOG_LPR Messages generated by the print spooler subsystem. 

LOG_NEWS Messages generated by the USENET news subsystem. This 

facility is not available in HP-UX 10.x. 

LOG_UUCP Messages generated by the UUCP subsystem. This facility is 

not available in HP-UX 10.x. 

LOG_CRON Messages generated by cron and at. This facility is available 

only in Solaris 2.x. 

LOG_LOCAL0–LOG_LOCAL7 Reserved for local use. These can be assigned to any purpose 

the system administrator desires. 

The closelog function closes the log file. 

Messages are actually logged using the syslog function: 

#include <syslog.h> 

 

void syslog(int priority, char *mesg, /* args */ ...); 

 

#include <stdarg.h> 

 

int vsyslog(int priority, char *mesg, va_list ap); 

The mesg parameter is a character string identical to that used by printf, with the additional 

conversion specification “%m,” which is replaced with a system error message (as would be printed 

by perror). The args parameters correspond to the conversion specifications in mesg, just as they 

do in printf. 

The priority parameter is encoded as a facility and a level, or'ed together. The facility part is as 

described above; if ommitted, the facility declared in the call to openlog is used. The level part 
may be one of: 

LOG_EMERG A panic condition; messages at this level are usually broadcast to all logged-

in users. 

LOG_ALERT A condition that should be corrected immediately, such as a corrupt system 

database. 

LOG_CRIT Critical conditions, such as hard device errors. 
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LOG_ERR Errors such as non-existent files, etc. This is the most frequently used level. 

LOG_WARNING Warning messages. 

LOG_NOTICE Conditions that are not errors, but may require special attention. 

LOG_INFO Informational messages. 

LOG_DEBUG Debugging messages. Normally only used when debugging a program. 

The vsyslog function is to syslog as vprintf is to printf (see Chapter 4, The Standard I/O 

Library). It takes a variable-length argument list and breaks it apart with the stdarg functions. The 

vsyslog function is not available in HP-UX 10.x. 

Finally, the setlogmask function can be used to control which messages actually get delivered to 
syslogd: 

#include <syslog.h> 

 

int setlogmask(int maskpri); 

It sets the current mask priority to maskpri and returns the previous priority. Messages whose 

priority is not contained in maskpri are not delivered to syslogd. The mask for an individual priority 

pri is calculated with the macro 

LOG_MASK(pri) 

The mask for all priorities up to and including pri is calculated with the macro 

LOG_UPTO(pri) 

One use of priorities is to include debugging messages in a program, but print them only when 
debugging is enabled. This can be done with a code segment such as: 

#include <syslog.h> 

 

. 

. 

. 

 

openlog(ident, logopt, facility); 

 

if (debug) 

    setlogmask(LOG_UPTO(LOG_DEBUG)); 

else 

    setlogmask(LOG_UPTO(LOG_ERR)); 

Although it is a matter of local policy, it is usually appropriate for most system programs to log to 

the LOG_DAEMON or one of the LOG_LOCALn facilities. A program that generates a large amount of 

logging information should probably either have one of the LOG_LOCALn facilities reserved for its 
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use so that the syslogd configuration file can be used to separate those messages from others, or it 

should simply open its own log file and not use syslog at all. 

Searching 

SVR4 provides a number of useful routines for performing standard types of searches in memory, 
including linear search, binary search, and hash tables. These tasks are performed frequently, and a 

set of library routines that provide good algorithmic implementations of them is a valuable addition 

to the UNIX programming library. Unfortunately, most other implementations do not provide these 

functions. 

Linear Search 

A linear search is the most inefficient of searches, but it is useful for small lists. When searching for 
a specific item, the search begins at the front of the list, and compares each item in turn until the 

desired item is found. On average, n/2 comparisons are performed in each search, where n is the 

size of the list. 

The linear search algorithm is implemented by the lsearch and lfind functions: 

#include <search.h> 

 

void *lsearch(const void *key, void *base, size_t *nelp, 

        size_t width, int (*compar)(const void *, const void *)); 

 

void *lfind(const void *key, const void *base, size_t *nelp, 

        size_t width, int (*compar)(const void *, const void *)); 

These functions implement Algorithm S from Donald Knuth's The Art of Computer Programming, 

Volume 3, Section 6.1. 

In both cases, key is the datum to be found in the table, base points to the first element in the table, 

nelp points to an integer containing the number of elements currently in the table, and width is the 

size of a table element in bytes. The compar parameter is a pointer to a function (e.g., strcmp) used 

to compare two elements of the table. The function must return 0 if the elements are equal, and non-

zero otherwise. 

The lsearch function searches for the key in the table, and returns a pointer to it. If the key is not 

found, it is added to the end of the table, nelp is incremented, and a pointer to the new entry is 

returned. 

The lfind function searches for the key in the table, and returns a pointer to it. If the key is not 
found however, it is not added to the table, a null pointer is returned instead. 

Note that the pointers to the key and the element at the base of the table may be of any type. The 

comparison function does not need to compare every byte of its arguments; this allows arbitrary 

data types (strings, integers, structures) to be searched. A side effect of using lsearch to create the 
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table is to remove duplicates from a list, since it only adds an element to the list if it is not already 

present. 

Example 16-2 shows a small program that demonstrates the use of lsearch and lfind. The 

program prompts the user for several strings, and adds them to a table. Since it uses lsearch to add 
them to the table, duplicates won't be added. The program then prints the resulting table, and lets 

the user search for strings. The searches are done with lfind, so that strings not in the table do not 
get added. 

Example 16-2: lsearch 

#include <search.h> 

#include <string.h> 

#include <stdio.h> 

 

#define TABLESIZE   10      /* max. size of the table       */ 

#define ELEMENTSIZE 16      /* max. size of a table element */ 

 

int compare(const void *, const void *); 

 

int 

main(void) 

{ 

    int i; 

    char *p; 

    size_t nel; 

    char line[ELEMENTSIZE]; 

    char table[TABLESIZE][ELEMENTSIZE]; 

 

    /* 

     * Tell the user what to do. 

     */ 

    printf("Enter %d strings, not all unique.\n\n", TABLESIZE); 

 

    /* 

     * Read in some strings. 

     */ 

    nel = 0; 

    for (i = 0; i < TABLESIZE; i++) { 

        /* 

         * Prompt for each string. 

         */ 

        printf("%2d> ", i + 1); 

 

        /* 

         * Read the string. 

         */ 

        if (fgets(line, sizeof(line), stdin) == NULL) 

            exit(0); 

 

        /* 

         * Strip the newline. 

         */ 

        line[strlen(line) - 1] = '\0'; 
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        /* 

         * Search for the string.  If it's not in the table, 

         * lsearch will add it for us. 

         */ 

        (void) lsearch(line, table, &nel, ELEMENTSIZE, compare); 

    } 

 

    /* 

     * Print the contents of the table. 

     */ 

    printf("\nContents of the table:\n"); 

 

    for (i = 0; i < nel; i++) 

        printf("\t%s\n", table[i]); 

 

    /* 

     * Let the user search for things. 

     */ 

    for (;;) { 

        /* 

         * Prompt for a search string. 

         */ 

        printf("\nSearch for: "); 

 

        /* 

         * Read the search string. 

         */ 

        if (fgets(line, sizeof(line), stdin) == NULL) { 

            putchar('\n'); 

            exit(0); 

        } 

 

        /* 

         * Strip the newline. 

         */ 

        line[strlen(line) - 1] = '\0'; 

 

        /* 

         * Search for the string.  lfind will return null 

         * if it's not there. 

         */ 

        p = (char *) lfind(line, table, &nel, ELEMENTSIZE, compare); 

 

        /* 

         * Print the search results. 

         */ 

        if (p == NULL) { 

            printf("String not found.\n"); 

        } 

        else { 

            printf("Found at location %d.\n", 

                   ((int) p - (int) table) / ELEMENTSIZE + 1); 

        } 

    } 

} 

 

/* 

 * compare - compare two strings, return 0 if equal, non-zero if not. 
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 */ 

int 

compare(const void *a, const void *b) 

{ 

    return(strcmp((char *) a, (char *) b)); 

} 

% lsearch 

Enter 10 strings, not all unique. 

1> abcdef 

 2> ghijkl 

 3> mnopqr 

 4> stuvwx 

 5> yz 

 6> abcdef 

 7> ghijkl 

 8> mnopqr 

 9> stuvwx 

10> yz 

Contents of the table: 

        abcdef 

        ghijkl 

        mnopqr 

        stuvwx 

        yz 

Search for: abc 

String not found. 

Search for: abcdef 

Found at location 1. 

Search for: ghijkl 

Found at location 2. 

Search for: mn 

String not found. 

Search for: yz 

Found at location 5. 

Search for: ^D 

Binary Search 

The binary search is one of the most efficient methods for searching large tables. Given a table of n 

entries, a binary search compares the item to be found against item n/2 in the table. If the item to be 
found is “less” than the item in the middle of the table, it then looks at the item halfway between the 

start of the table and the middle of the table. If the item to be found is “more” than the item in the 

middle of the table, it then looks at the item halfway between the middle of the table and the end of 

the table. This process continues, dividing the search space in half each time, until the item is found 

or not. In order for a binary search to work though, the table must be sorted into increasing order. 

On average, log2 n comparisons are performed to find any item in the table. Even for large tables, 
this is very efficient—a table of one million entries only requires 20 comparisons to find any item 

in the table. 

The binary search algorithm is implemented by the bsearch function: 

#include <stdlib.h> 
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void *bsearch(const void *key, const void *base, size_t nel, 

        size_t size, int (*compar)(const void *, const void *)); 

This function implements Algorithm B from Donald Knuth's The Art of Computer Programming, 
Volume 3, Section 6.2.1. 

The key parameter is the item to be found; base points to the beginning of the table in which to 

look. The table must be sorted into increasing order. The nel parameter gives the number of 

elements in the table, each of which is size bytes in size. The compar parameter must point to a 

function that compares two table entries and returns less than, equal to, or greater than zero 

depending on whether the first item is to be considered less than, equal to, or greater than the second 

item. If the item is found, bsearch returns a pointer to it; if the item is not in the table, NULL is 
returned. 

Example 16-3 shows a program that reads in the system spelling dictionary, /usr/dict/words, and 

then performs searches on it. The file is already sorted, but the sort is case-independent. For this 

reason, we use strcasecmp in our comparison function. 

Example 16-3: bsearch 

#include <search.h> 

#include <string.h> 

#include <stdio.h> 

 

#define TABLESIZE   32768       /* max. size of the table       */ 

#define ELEMENTSIZE 32          /* max. size of a table element */ 

 

int compare(const void *, const void *); 

 

int 

main(void) 

{ 

    char *p; 

    FILE *fp; 

    size_t nel; 

    char line[ELEMENTSIZE]; 

    char table[TABLESIZE][ELEMENTSIZE]; 

 

    /* 

     * Open the file. 

     */ 

    if ((fp = fopen("/usr/dict/words", "r")) == NULL) { 

        perror("/usr/dict/words"); 

        exit(1); 

    } 

 

    printf("Reading the table... "); 

    fflush(stdout); 

 

    /* 

     * Read in the file. 

     */ 

    for (nel = 0; nel < TABLESIZE; nel++) { 
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        /* 

         * Read a line. 

         */ 

        if (fgets(table[nel], ELEMENTSIZE, fp) == NULL) 

            break; 

 

        /* 

         * Strip the newline. 

         */ 

        table[nel][strlen(table[nel]) - 1] = '\0'; 

    } 

 

    printf("done.\n"); 

    fclose(fp); 

 

    /* 

     * Let the user search for things. 

     */ 

    for (;;) { 

        /* 

         * Prompt for a search string. 

         */ 

        printf("\nSearch for: "); 

 

        /* 

         * Read the search string. 

         */ 

        if (fgets(line, sizeof(line), stdin) == NULL) { 

            putchar('\n'); 

            exit(0); 

        } 

 

        /* 

         * Strip the newline. 

         */ 

        line[strlen(line) - 1] = '\0'; 

 

        /* 

         * Do a binary search for the string. 

         */ 

        p = (char *) bsearch(line, table, nel, ELEMENTSIZE, compare); 

 

        /* 

         * Print the search results. 

         */ 

        if (p == NULL) { 

            printf("String not found.\n"); 

        } 

        else { 

            printf("Found at location %d.\n", 

                   ((int) p - (int) table) / ELEMENTSIZE); 

        } 

    } 

} 

 

/* 

 * compare - compare two strings, return 0 if equal, non-zero if not. 

 */ 
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int 

compare(const void *a, const void *b) 

{ 

    return(strcasecmp((char *) a, (char *) b)); 

} 

% bsearch 

Reading the table... done. 

Search for: mambo 

Found at location 14113. 

Search for: zip 

Found at location 25121. 

Search for: alpha 

Found at location 722. 

Search for: xyzzy 

String not found. 

Search for: ^D 

Hash Tables 

Hash tables are frequently used to manage symbol tables in compilers and other similar programs. 
They store items in a series of buckets (for example, one bucket for each letter of the alphabet) where 

they can be found with a minimum of searching. The advantage to using a hash table as opposed to 

a linear or binary search is that items can be inserted into the table in any order (unlike binary 

search), yet they can be found quickly (unlike linear search). The disadvantage is that without a 

good estimate of how large your table needs to be, hashing can be very inefficient. 

Hash tables are implemented with the hsearch, hcreate, and hdestroy functions: 

#include <search.h> 

 

typedef struct { 

    char    *key; 

    char    *data; 

} ENTRY; 

 

typedef enum { FIND, ENTER } ACTION; 

 

ENTRY *hsearch(ENTRY item, ACTION action); 

 

int hcreate(size_t nel); 

 

void hdestroy(void); 

These functions implement Algorithm D from Donald Knuth's The Art of Computer Programming, 

Volume 3, Section 6.4. 

A hash table is created with the hcreate function; the nel parameter is an estimate of the maximum 

number of entries the table will contain. A hash table is destroyed with the hdestroy function. 
Only one hash table may be in use at a time. 

The hsearch function searches for item in the hash table by using strcmp to compare the 

item.key fields. The item.data field points to arbitrary data associated with the key. If action 
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is FIND, hsearch will return a pointer to the item, or NULL if it is not in the table. If action is 

ENTER, hsearch will search for the item, and if it is found, return a pointer to the item already in 
the table. If it is not found, the item will be added to the table, and a pointer to its location returned. 

The hsearch function uses malloc to allocate space for the table entries. 

Example 16-4 shows a sample program that uses hsearch to manage a list of people and some 

personal data about them. It first prompts for some input data, stores that in the hash table, and then 
lets the user search the table. 

Example 16-4: hsearch 

#include <search.h> 

#include <string.h> 

#include <stdlib.h> 

#include <stdio.h> 

 

struct data { 

    int age; 

    int height; 

    int weight; 

}; 

 

int 

main(void) 

{ 

    char *p; 

    ENTRY item; 

    ENTRY *result; 

    struct data *d; 

    char buf[BUFSIZ]; 

 

    /* 

     * Create the hash table. 

     */ 

    hcreate(100); 

 

    printf("Enter Name/age/height/weight; terminate with blank line.\n\n"); 

 

    /* 

     * Read information until a blank line. 

     */ 

    while (fgets(buf, sizeof(buf), stdin) != NULL) { 

        /* 

         * Blank line, all done. 

         */ 

        if (*buf == '\n') 

            break; 

 

        /* 

         * Allocate a data structure (we should check for 

         * errors here). 

         */ 

        d = (struct data *) malloc(sizeof(struct data)); 

        item.data = (char *) d; 
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        /* 

         * Split up the data (we should check for errors 

         * here). 

         */ 

        p = strtok(buf, "/"); 

        item.key = strdup(p); 

 

        p = strtok(NULL, "/"); 

        d->age = atoi(p); 

 

        p = strtok(NULL, "/"); 

        d->height = atoi(p); 

 

        p = strtok(NULL, "/"); 

        d->weight = atoi(p); 

 

        /* 

         * Add the item to the table. 

         */ 

        (void) hsearch(item, ENTER); 

    } 

 

    /* 

     * Let the user search for things. 

     */ 

    for (;;) { 

        /* 

         * Prompt for a search string. 

         */ 

        printf("\nSearch for: "); 

 

        /* 

         * Read the search string. 

         */ 

        if (fgets(buf, sizeof(buf), stdin) == NULL) { 

            putchar('\n'); 

            hdestroy(); 

            exit(0); 

        } 

 

        /* 

         * Strip the newline. 

         */ 

        buf[strlen(buf) - 1] = '\0'; 

 

        /* 

         * Look in the table for the item. 

         */ 

        item.key = buf; 

        result = hsearch(item, FIND); 

 

        /* 

         * Print the search results. 

         */ 

        if (result == NULL) { 

            printf("Entry not found.\n"); 

        } 
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        else { 

            d = (struct data *) result->data; 

            printf("Name: %s\nAge: %d\nHeight: %d\nWeight: %d\n", 

                   result->key, d->age, d->height, d->weight); 

        } 

    } 

} 

% hsearch 

Enter Name/age/height/weight; terminate with blank line. 

Dave/32/73/220 

Cathy/34/64/120 

Trevor/8/48/85 

Sean/3/32/31 

 

Search for: Cathy 

Name: Cathy 

Age: 34 

Height: 64 

Weight: 120 

Search for: Trevor 

Name: Trevor 

Age: 8 

Height: 48 

Weight: 85 

Search for: Fred 

Entry not found. 

Search for: ^D 

Binary Trees 

Binary trees are an efficient way to maintain a list of items in sorted order. At any given node in the 

tree, all of the items below and to the left of that node are “less” than that node, and all of the items 

below and to the right of that node are “greater” than that node. For a tree with n nodes, searches of 

the tree can be performed in log2 n comparisons. 

The binary tree algorithms are implemented with the tsearch, tfind, tdelete, and twalk 
functions: 

#include <search.h> 

 

typedef enum { preorder, postorder, endorder, leaf } VISIT; 

 

void *tsearch(const void *key, void **rootp, 

        int (*compar)(const void *, const void *)); 

 

void *tfind(const void *key, const void **rootp, 

        int (*compar)(const void *, const void *)); 

 

void *tdelete(const void *key, void **rootp, 

        int (*compar)(const void *, const void *)); 

 

void twalk(void *rootp, void(*action)(void **, VISIT, int)); 
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These functions implement Algorithm D and Algorithm T from Donald Knuth's The Art of Computer 

Programming, Volume 3, Section 6.2.2. 

The compar parameter to the first three functions is a pointer to a function that compares two items 

and returns less than, equal to, or greater than zero depending on whether the first key should be 

considered less than, equal to, or greater than the second key. 

The tsearch function is used to build and search the tree. It searches the tree for key, and if found, 

returns a pointer to it. If not found, tsearch adds it to the tree and returns a pointer to it. Only 

pointers are copied into the tree; the calling program is responsible for saving the data. The rootp 

function is a pointer to a variable that points to the root of the tree; if rootp is NULL, a new tree will 

be created. 

The tfind function is almost identical to tsearch, except that instead of adding an item to the tree 

if it is not already there, tfind returns NULL in this case. Note that there is one level less redirection 

in rootp when used with tfind. 

The tdelete function removes an item from the tree. It returns a pointer to the item's parent node, 

or NULL if the item was not in the tree. 

The twalk function traverses the tree rooted at rootp (any node may be used as the root of the tree 

for a walk below that node). The action parameter is a pointer to a function that is called at each 

node. The function takes three arguments: a pointer to the node being visited, the number of times 

the node has been visited, and the level at which the node resides in the tree, with the root being 

level zero. The second argument is given as an enumerated type with the following values: 

preorder The node has been visited for the first time, before any of its children. 

postorder The node has been visited for the second time, after its left child but before its 

right child. 

endorder The node has been visited for the third time, after both of its children. 

leaf The node is a leaf; it has no children (and hence is only visited once). 

Note that there is an alternative notation for trees using the terms “preorder,” “inorder,” and 

“postorder” for the same three node visits; this may cause some confusion with the different 

meanings of “postorder.” 

Example 16-5 shows a program that reads a number of strings from the standard input, storing them 

in a binary tree. It then prints the tree in alphabetical order. 

Example 16-5: tsearch 

#include <search.h> 

#include <string.h> 

#include <stdlib.h> 

#include <stdio.h> 

 

struct node { 

    char    *string; 
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    int     length; 

}; 

 

int     compareNode(const void *, const void *); 

void    printNode(void **, VISIT, int); 

 

int 

main(void) 

{ 

    void *root; 

    struct node *n; 

    char buf[BUFSIZ]; 

 

    root = NULL; 

 

    /* 

     * Read strings until end of file. 

     */ 

    while (fgets(buf, sizeof(buf), stdin) != NULL) { 

        /* 

         * Strip the newline. 

         */ 

        buf[strlen(buf) - 1] = '\0'; 

 

        /* 

         * Allocate a node structure. 

         */ 

        n = (struct node *) malloc(sizeof(struct node)); 

 

        if (n == NULL) { 

            fprintf(stderr, "out of memory.\n"); 

            exit(1); 

        } 

 

        /* 

         * Save the information in the node. 

         */ 

        n->string = strdup(buf); 

        n->length = strlen(buf); 

 

        /* 

         * Add the item to the tree. 

         */ 

        (void) tsearch((void *) n, &root, compareNode); 

    } 

 

    /* 

     * Print out the tree in alphabetical order. 

     */ 

    twalk(root, printNode); 

 

    exit(0); 

} 

 

/* 

 * compareNode - compare the strings in two nodes. 

 */ 

int 
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compareNode(const void *a, const void *b) 

{ 

    struct node *aa, *bb; 

 

    aa = (struct node *) a; 

    bb = (struct node *) b; 

 

    return(strcmp(aa->string, bb->string)); 

} 

 

/* 

 * printNode - print a node - we only print if this is the postorder (inorder) 

 *             visit or a leaf; this results in alphabetical order. 

 */ 

void 

printNode(void **node, VISIT order, int level) 

{ 

    struct node *n; 

 

    n = *(struct node **) node; 

 

    if (order == postorder || order == leaf) 

        printf("level=%d, length=%d, string=%s\n", level, n->length, n-

>string); 

} 

% tsearch 

one 

two 

three 

four 

five 

six 

seven 

eight 

nine 

ten 

^D 

level=3, length=5, string=eight 

level=2, length=4, string=five 

level=1, length=4, string=four 

level=2, length=4, string=nine 

level=0, length=3, string=one 

level=4, length=5, string=seven 

level=3, length=3, string=six 

level=4, length=3, string=ten 

level=2, length=5, string=three 

level=1, length=3, string=two 

Queues 

Two functions are provided to manipulate queues built from doubly-linked lists: 

#include <search.h> 

 

void insque(struct qelem *elem, struct qelem *pred); 
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void remque(struct qelem *elem); 

Each element in the list must be of type struct qelem: 

struct qelem { 

    struct qelem    *q_forw; 

    struct qelem    *q_back; 

    char            *q_data; 

}; 

The insque function inserts the element pointed to by elem into the queue immediately after the 

element pointed to by pred. The remque function removes the element pointed to by elem from 

the queue. 

HP-UX 10.x does not provide the struct qelem data type; instead the arguments to insque and 

remque are of type void *. 

Sorting 

Every version of UNIX provides the same function to sort a table of data “in place:” 

#include <stdlib.h> 

 

void qsort(void *base, size_t nel, size_t width, 

        int (*compar)(const void *, const void *)); 

This function implements Quicksort, a reasonably efficient general-purpose sorting algorithm. The 

base parameter points to the first element of the table to be sorted; nel indicates the number of 

elements in the table, each of size width. The compar parameter is a pointer to a function that 

compares two elements of the table and returns less than, equal to, or greater than zero, depending 

on whether the first element is to be considered less than, equal to, or greater than the second 

element. 

Example 16-6 shows a small program that sorts an array of numbers. 

Example 16-6: qsort 

#include <stdlib.h> 

 

#define NELEM   10 

 

int compare(const void *, const void *); 

 

int 

main(void) 

{ 

    int i; 

    int array[NELEM]; 
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    /* 

     * Fill the array with numbers. 

     */ 

    for (i = 0; i < NELEM; i++) 

        array[NELEM - i - 1] = (i * i) & 0xf; 

 

    /* 

     * Print it. 

     */ 

    printf("Before sorting:\n\t"); 

 

    for (i = 0; i < NELEM; i++) 

        printf("%d ", array[i]); 

    putchar('\n'); 

 

    /* 

     * Sort it. 

     */ 

    qsort(array, NELEM, sizeof(int), compare); 

 

    /* 

     * Print it again. 

     */ 

    printf("After sorting:\n\t"); 

 

    for (i = 0; i < NELEM; i++) 

        printf("%d ", array[i]); 

    putchar('\n'); 

 

    exit(0); 

} 

 

/* 

 * compare - compare two integers. 

 */ 

int 

compare(const void *a, const void *b) 

{ 

    int *aa, *bb; 

 

    aa = (int *) a; 

    bb = (int *) b; 

 

    return(*aa - *bb); 

} 

% qsort 

Before sorting: 

        1 0 1 4 9 0 9 4 1 0 

After sorting: 

        0 0 0 1 1 1 4 4 9 9 
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Environment Variables 

Each process has a set of variables associated with it called its environment. The variables are called 

environment variables. These variables include the search path, the terminal type, the user's login 

name, and so forth. The UNIX shells provide a method for adding, changing, and removing 

environment variables. 

As discussed in Chapter 11, Processes, a program is actually invoked as: 

int 

main(int argv, char **argv, char **envp) 

The argc and argv parameters are the number of arguments passed to the program and the 

arguments themselves. The envp parameter is the array of environment variables. The execve and 

execle functions described in Chapter 11 can be used to execute a program with a new set of 

environment variables; the other exec functions allow the program to inherit its environment from 
the parent. Example 16-7 shows a small program that prints its environment variables. 

Example 16-7: printenv 

#include <stdio.h> 

 

int 

main(int argc, char **argv, char **envp) 

{ 

    while (*envp != NULL) 

        printf("%s\n", *envp++); 

 

    exit(0); 

} 

% printenv 

HOME=/home/foo 

HZ=100 

LOGNAME=foo 

MAIL=/var/mail/foo 

PATH=/usr/opt/bin:/usr/local/bin:/usr/bin 

SHELL=/bin/sh 

TERM=xterm 

TZ=US/East-Indiana 

To obtain the value of a specific environment variable, the getenv function is used: 

#include <stdlib.h> 

 

char *getenv(char *name); 

The name parameter should be the name of the desired variable (the part in front of the ‘=’ in the 

example above). If the variable exists, its value (the part after the ‘=’) is returned; otherwise, NULL 
is returned. 



UNIX Systems Programming for SVR4 

430 FOR PERSONAL, NON-COMMERCIAL USE ONLY  
 

Most newer versions of UNIX, SVR4 included, also offer the putenv function, which places a new 
variable into the environment: 

#include <stdlib.h> 

 

int putenv(char *string); 

The putenv function uses malloc to allocate a new environment large enough for the old 

environment plus the string contained in string. The string contained in string should be of the 

form “name=value;” by convention, environment variable names are usually all uppercase. Note 

that the string variable should remain in existence for the life of the program; that is, it should be 

declared static or dyanmically allocated. Changing the value of string will change the value of 

the variable in the environment. 

If the environment is successfully modified, putenv returns zero; otherwise it returns non-zero. 

Passwords 

UNIX password encryption is based on a modified version of the Data Encryption Standard (DES). 

Contrary to popular belief, the password itself is not encrypted. Rather, the password is used as the 

key to encrypt a block of zero-valued bytes. The result of this encryption is a 13-character string 
that is stored in either the password file or the shadow password file (see Chapter 8, Users and 

Groups). 

When a user selects a password, the passwd program chooses two characters at random; this value 

is called the salt. It then prompts the user for his password, and passes this value and the salt to the 

crypt function: 

#include <crypt.h> 

 

char *crypt(const char *key, const char *salt); 

The crypt function extracts seven bits from each character of the password, ignoring the parity bit, 
to form the 56-bit DES key. This implies that no more than eight characters are significant in the 

password. Next, one of the internal tables in the DES algorithm is permuted in one of 4,096 different 

ways depending on the value of the salt. The purpose of the salt is to make it more difficult to use 
DES chips or a precomputed list of encrypted passwords to attack the algorithm (although with 

current processor speeds and disk capacities, this deterrent is not as significant as it once was). The 

DES algorithm (with the modified table) is then invoked for 25 iterations on a block of zeros. The 

output of this encryption, which is 64 bits long, is then coerced into a 64-character alphabet (A-Z, 

a-z, 0-9, ‘.’, and ‘/’). Because this coercion involves translations in which several different values 

are represented by the same character, password encryption is essentially one way; the result cannot 

be decrypted. The resulting string returned by crypt contains the two-character salt followed by 

the eleven-character coerced result of the encryption. 

When a program prompts the user for a password, it usually uses the getpass function: 
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#include <stdlib.h> 

 

char *getpass(const char *prompt); 

This function prints the string contained in prompt, turns off character echo on the terminal, reads 

the password, and then restores the terminal modes. The typed password is returned. Note that 

getpass truncates the typed password to at most eight characters. 

After prompting for the password, the program looks up the user's password in the password file or 
shadow password file (if a shadow password file is used, the program must be running with super-

user permissions). It then passes the value typed by the user to the crypt function, along with the 

salt, and compares the reult with the value obtained from the password file. If they are the same the 
user's password was correct. This process is shown below: 

#include <stdlib.h> 

#include <crypt.h> 

 

char *typed, *encrypted; 

 

. 

. 

. 

 

encrypted = /* obtain the encrypted password */; 

typed = getpass("Password: "); 

 

if (strcmp(crypt(typed, encrypted), encrypted) == 0) 

    /* okay... */ 

else 

    /* not okay... */ 

Random Numbers 

A number of applications occasionally require one or more random numbers. All versions of UNIX 

provide a pseudo-random number generator: 

#include <stdlib.h> 

 

int rand(void); 

 

void srand(int seed); 

Before requesting any random numbers, the generator should be seeded by calling srand. The seed 

parameter should be an interger value; the output of getpid or time(0) is usually a good value. 

Each time srand is called with the same seed, the output of the random number generator will be 
the same. 

The rand function returns a random number in the range 0 to 215–1. 
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Some versions of UNIX, usually those based on BSD, also supply random and srandom, with 
similar semantics. 

System V versions of UNIX provide a number of other random number generators described in the 

drand48 manual page; because they are not portable to all versions of the operationg system, they 
are not frequently used. 

Directory Trees 

SVR4 provides three functions for traversing directory trees. Implementations of the ftw function 
are also available in the public domain. 

#include <ftw.h> 

 

int ftw(const char *path, int (*fn)(const char *, 

        const struct stat *, int), int depth); 

 

int nftw(const char *path, int (*fn)(const char *, 

        const struct stat *, int, struct FTW *), 

        int depth, int flags); 

 

#include <libgen.h> 

 

char *pathfind(const char *path, const char *name, 

        const char *mode); 

The ftw function recursively descends the directory hierarchy rooted at path. For each object in 

the directory, it calls the user-defined function fn. This function takes three arguments: the first 

argument is the name of the object, the second argument is a pointer to a struct stat structure 
(see Chapter 5, Files and Directories), and the third argument is a flag. Possible values of the flag 

are: 

FTW_F The object is a file. 

FTW_D The object is a directory. 

FTW_DNR The object is a directory that cannot be read. Descendants of the directory will not 

be processed. 

FTW_NS The call to stat on the object failed, either because of permissions problems or 

because it is a symbolic link pointing to a non-existent file. The contents of the 

struct stat structure are undefined. 

The last parameter to ftw is depth, a limit on the number of file descriptors ftw may use. It requires 

one file descriptor for each level in the tree. The traversal will visit a directory (call fn on it) before 

it visits subdirectories of that directory. 

The traversal continues until the fn function returns a non-zero value, or some error occurs. If the 

tree is exhausted, ftw will return 0. If fn returns a non-zero value, ftw stops the traversal and 

returns that value. 
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Example 16-8 shows an example of the use of ftw. 

Example 16-8: ftw 

#include <sys/types.h> 

#include <sys/stat.h> 

#include <unistd.h> 

#include <stdio.h> 

#include <ftw.h> 

 

int process(const char *, const struct stat *, int); 

 

int 

main(int argc, char **argv) 

{ 

    while (--argc) { 

        printf("Directory %s:\n", *++argv); 

 

        ftw(*argv, process, sysconf(_SC_OPEN_MAX) - 3); 

 

        putchar('\n'); 

    } 

 

    exit(0); 

} 

 

int 

process(const char *path, const struct stat *st, int flag) 

{ 

    printf("%-24s", path); 

 

    switch (flag) { 

    case FTW_F: 

        printf("file, mode %o\n", st->st_mode & 07777); 

        break; 

    case FTW_D: 

        printf("directory, mode %o\n", st->st_mode & 07777); 

        break; 

    case FTW_DNR: 

        printf("unreadable directory, mode %o\n", st->st_mode & 07777); 

        break; 

    case FTW_NS: 

        printf("unknown; stat() failed\n"); 

        break; 

    } 

 

    return(0); 

} 

% ftw /tmp 

Directory /tmp: 

/tmp                    directory, mode 777 

/tmp/.X11-unix          directory, mode 777 

/tmp/.X11-unix/X0       file, mode 0 

/tmp/ps_data            file, mode 664 

/tmp/sh304.1            file, mode 640 
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/tmp/sh309.1            file, mode 640 

/tmp/foo                file, mode 640 

/tmp/jreca002Ll         file, mode 640 

/tmp/zip                file, mode 640 

/tmp/foo.ps             file, mode 640 

/tmp/zip.ps             file, mode 640 

/tmp/jovea002Ll         file, mode 600 

/tmp/jreca002Ow         file, mode 640 

/tmp/jovea002Ow         file, mode 600 

The nftw function is similar to ftw, except that it takes an additional argument, flags, which may 

specify any of the following values, or'ed together: 

FTW_PHYS Perform a “physical” walk; do not follow symbolic links. By default, nftw 
follows symbolic links. 

FTW_MOUNT Do not cross file system mount points. 

FTW_DEPTH Perform a depth-first search; visit subdirectories of a directory before visiting 

the directory itself. 

FTW_CHDIR Change to each directory before reading it. 

The fn function also has an additional parameter, a structure of type struct FTW: 

struct FTW { 

    int    base; 

    int    level; 

}; 

The base field contains the offset of the file name in the path name parameter, and the level field 

contains the current level in the tree. 

The nftw function also allows two additional flags to be passed to fn: 

FTP_DP The object is a directory whose subdirectories have already been visited. 

FTW_SL The object is a symblic link to a non-existent file. 

Example 16-9 shows a slightly different version of Example 16-8; this one uses nftw and shows 
the structure of the directory tree with indentation. 

Example 16-9: nftw 

#include <sys/types.h> 

#include <sys/stat.h> 

#include <unistd.h> 

#include <stdio.h> 

#include <ftw.h> 

 

int process(const char *, const struct stat *, int, struct FTW *); 

 

int 

main(int argc, char **argv) 
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{ 

    while (--argc) { 

        printf("Directory %s:\n", *++argv); 

 

        nftw(*argv, process, sysconf(_SC_OPEN_MAX) - 3, 0); 

 

        putchar('\n'); 

    } 

 

    exit(0); 

} 

 

int 

process(const char *path, const struct stat *st, int flag, struct FTW *info) 

{ 

    int i; 

 

    for (i = 0; i < info->level; i++) 

        printf("  "); 

 

    printf("%-*s", 36 - 2 * info->level, &path[info->base]); 

 

    switch (flag) { 

    case FTW_F: 

        printf("file, mode %o\n", st->st_mode & 07777); 

        break; 

    case FTW_D: 

    case FTW_DP: 

        printf("directory, mode %o\n", st->st_mode & 07777); 

        break; 

    case FTW_SL: 

        printf("symbolic link to nowhere\n"); 

        break; 

    case FTW_DNR: 

        printf("unreadable directory, mode %o\n", st->st_mode & 07777); 

        break; 

    case FTW_NS: 

        printf("unknown; stat() failed\n"); 

        break; 

    } 

 

    return(0); 

} 

% nftp /tmp 

Directory /tmp: 

tmp                                 directory, mode 777 

  .X11-unix                         directory, mode 777 

    X0                              file, mode 0 

  ps_data                           file, mode 664 

  sh304.1                           file, mode 640 

  sh309.1                           file, mode 640 

  foo                               file, mode 640 

  jreca002Ll                        file, mode 640 

  zip                               file, mode 640 

  foo.ps                            file, mode 640 

  zip.ps                            file, mode 640 
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  jovea002Ll                        file, mode 600 

  jreca002Ow                        file, mode 640 

  jovea002Ow                        file, mode 600 

The pathfind function is sort of a library implementation of the find command. It could also be 

implemented fairly easily with ftw or nftw. To make use of the pathfind function, your program 

must be linked with the -lgen library. 

#include <libgen.h> 

 

char *pathfind(const char *path, const char *name, const char *mode); 

The pathfind function searches the directories in path, which should be separated by semicolons, 

for a file whose name is name, and whose mode matches mode. The mode parameter is a character 

string containing one or more of the following: 

r The object is readable by the user. 

w The object is writable by the user. 

x The object is executable by the user. 

f The object is a regular file. 

b The object is a block-special device file. 

c The object is a character-special device file. 

d The object is a directory. 

p The object is a FIFO (pipe). 

u The object has the set-user-id bit set. 

g The object has the set-group-id bit set. 

k The object has the “sticky” bit set. 

s The object has non-zero size. 

If an item matching the requirements is found, pathfind returns the concatenation of path and 

name. If no object is found, pathfind returns NULL. 

Example 16-10 shows a program that uses pathfind to tell the caller what version of a program he 
is using. The user's search path is used as the list of directories to search, and files with the execute 

bit set are of interest. This program is similar to the which command provided by most versions of 

UNIX. 

The pathfind function is not available in HP-UX 10.x. 

Example 16-10: pathfind 

#include <stdlib.h> 
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#include <libgen.h> 

 

int 

main(int argc, char **argv) 

{ 

    char *p, *path; 

 

    if ((path = getenv("PATH")) == NULL) { 

        fprintf(stderr, "cannot find path in environment.\n"); 

        exit(1); 

    } 

 

    while (--argc) { 

        if ((p = pathfind(path, *++argv, "x")) == NULL) 

            printf("%s: not found in search path.\n", *argv); 

        else 

            printf("%s: %s\n", *argv, p); 

    } 

 

    exit(0); 

} 

% pathfind ls 

ls: /usr/bin/ls 

Database Management 

Most versions of UNIX provide a library to maintain a rudimentary database. This database is 

basically an on-disk hash table (see above), designed for efficiency. The routines can handle very 

large databases (up to a billion blocks), and require only one or two file system accesses to retrieve 

an item. 

Although not necessary on most versions of SVR4, HP-UX 10.x reuires linking with the -lndbm 

library to use these functions. 

#include <ndbm.h> 

 

DBM *dbm_open(char *file, int flags, int mode); 

 

void dbm_close(DBM *db); 

 

int dbm_store(DBM *db, datum key, datum content, int flags); 

 

datum dbm_fetch(DBM *db, datum key); 

 

int dbm_delete (DBM *db, datum key); 

 

datum dbm_firstkey(DBM *db); 

 

datum dbm_nextkey(DBM *db); 

 

int dbm_clearerr(DBM *db); 

 

int dbm_error(DBM *db); 
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Before using the other functions, the database must be opened with dbm_open. The database is 
stored in two files, one with a “.dir” suffix and the other with a “.pag” suffix. The root name of the 

file (without the suffixes) should be passed to dbm_open in the file parameter. The flags and 

mode arguments are given as for the open function. On success, dbm_open returns a pointer to type 

DBM; otherwise it returns NULL. A database can be closed with dbm_close. 

Keys and contents are described with objects of type datum: 

typedef struct { 

    char    *dptr; 

    int      dsize; 

} datum; 

The dptr field points to the data, and dsize indicates the size of the data. Note that both keys and 

contents may be arbitrary data types. 

An item is stored in the database by calling dbm_store. The db argument is a pointer to an open 

database. The key parameter is the key under which the data in the content parameter is to be 

stored. The flags argument may be one of: 

DBM_INSERT Insert an item into the database. If an item with this key is already in the 

database, do not replace it with the new value. If an existing entry is found, 

dbm_store returns 1, otherwise it returns 0. 

DBM_REPLACE Insert an item into the database. If an item with this key is already in the 

database, replace it with the new value. 

To retrieve an item from the database, the dbm_fetch function is used. The db parameter specifies 

an open database, and the key for the item is given in key. The content for that key is returned as a 

datum type; note that the structure itself is returned, not a pointer to the structure. If no item was 

found for the key, then the dptr field of the datum structure will be null. 

To delete an item with key key from the database referred to by db, the dbm_delete function is 

used. 

The dbm_firstkey and dbm_nextkey functions can be used to make a linear pass through all 
keys in the database as follows: 

#include <ndbm.h> 

 

. 

. 

. 

 

for (key = dbm_firstkey(db); key.dptr != NULL; key = dbm_nextkey(db)) { 

    ... 

    content = dbm_fetch(db, key); 

    ... 

} 

. 

. 

. 
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The dbm_error function returns non-zero when an error has occurred in reading or writing the 

database referenced by db; the dbm_clearerr function clears the error condition. 

Portability Notes 

Some particularly old versions of UNIX may offer only the predecessor to the -lndbm library, called 

the -ldbm library. This version of the library uses functions with the same names, except without the 

leading “dbm_.”  They do not accept a db argument, and handle only one open database at a time. 

Replacing these functions with the newer ones is straightforward. 

Pattern Matching 

Most of the UNIX shells and text editors allow the user to supply a single string that matches a large 

set of items. For example, “a*” matches all file names that begin with ‘a’ in the shell, and 

“^whi[lnt]e.*sleeping$” matches all lines that begin with “while,” “whine,” or “white” and 

end in “sleeping” in a text editor. 

The code that performs this type of matching is fairly complex, and would be difficult to reproduce 
each time a program needed these facilities. For this reason, library routines that implement these 

functions are provided. 

Shell Pattern Matching 

Pattern matching in the shell, also called globbing, is used primarily to generate lists of file names. 

In a shell pattern, the following characters have special meaning: 

* Matches any string, including the null string. 

? Matches any single character. 

[] Matches any one of the enclosed characters. Two characters separated by ‘-’ match any 

one character lexically between the two characters (i.e., “[a-z]” matches any of the 

characters ‘a’ through ‘z’). If the first character after the ‘[’ is ‘!,’ then this matches any 
character except one of the enclosed characters. 

These special characters, also called metacharacters, may be escaped with a backslash; i.e., “\?” 
matches the actual question mark character. 

The gmatch function is used to perform shell pattern matching in a program. This function is 
contained in the -lgen library: 

#include <libgen.h> 

 

int gmatch(const char *str, const char *pattern); 

The gmatch function returns non-zero if the shell pattern in pattern matches the string contained 

in str; it returns 0 if they do not match. The additional pattern matching characters provided by the 

C-shell, most notably “{},” are not supported by gmatch. 
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The gmatch function is not available in HP-UX 10.x. However, a similar function, fnmatch, is 

available. You can use fnmatch to emulate gmatch as follows: 

int 

gmatch(const char *str, const char *pattern) 

{ 

    return(!fnmatch(patter, str, 0)); 

} 

Example 16-11 shows a program that uses gmatch to search a file given as its second argument for 
lines that match the pattern given as its first argument. Note that the pattern must be enclosed in 

quotes to prevent the shell from processing it. 

Example 16-11: gmatch 

#include <libgen.h> 

#include <stdio.h> 

 

int 

main(int argc, char **argv) 

{ 

    FILE *fp; 

    char line[BUFSIZ]; 

    char *pattern, *filename; 

 

    /* 

     * Check arguments. 

     */ 

    if (argc != 3) { 

        fprintf(stderr, "Usage: %s pattern file\n", *argv); 

        exit(1); 

    } 

 

    pattern = *++argv; 

    filename = *++argv; 

 

    /* 

     * Open the file. 

     */ 

    if ((fp = fopen(filename, "r")) == NULL) { 

        perror(filename); 

        exit(1); 

    } 

 

    /* 

     * Read lines from the file. 

     */ 

    while (fgets(line, sizeof(line), fp) != NULL) { 

        /* 

         * Strip the newline. 

         */ 

        line[strlen(line) - 1] = '\0'; 

 

        /* 
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         * If it matches, print it. 

         */ 

        if (gmatch(line, pattern) != 0) 

            puts(line); 

    } 

 

    fclose(fp); 

    exit(0); 

} 

% gmatch 'A????d' /usr/dict/words 

Aeneid 

Alfred 

Arnold 

Atwood 

% gmatch 'z*[ty]' /usr/dict/words 

zealot 

zest 

zesty 

zippy 

zloty 

zoology 

Regular Expressions 

A regular expression specifies a set of strings, through the use of special characters. Most text 

editors support regular expressions in some form or another; the grep familiy of commands also 

supports them. The canonical definition of a regular expression is provided by the ed text editor, 

which was the first UNIX text editor to implement them. 

In ed, a regular expression is defined as follows: 

 A single character (except a special character, see below) is a one-character regular expression 

that matches itself. 

 A backslash preceding a special character causes that character to lose its special meaning. 

 A period (‘.’) is a one-character regular expression that matches any single character. 

 A string of characters enclosed in square brackets (‘[’ and ‘]’) is a one-character regular 
expression that matches any single character in the string, unless the first character of the string 

is a circumflex (‘^’), in which case the string is a regular expression that matches any single 
character not in the string. The circumflex has special meaning only when it is the first character 

in the string. 

Within the string, a dash (‘-’) may be used to specify a range of characters; e.g., “[0-9]” 

matches the same thing as “[0123456789].”  If the dash is the first character (following the 
circumflex) or last character in the string, it loses its special meaning. 

The right square bracket (‘]’) may be included in the string only if it is the first character of the 
string. 

The other special characters have no special meaning within square brackets. 
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 Regular expressions may be concantenated together to form larger regular expressions. 

 A regular expression preceded by a circumflex (‘^’) is constrained to match at the beginning of 
a line. 

 A regular expression followed by a dollar sign (‘$’) is constrained to match at the end of a line. 

 A regular expression both preceded by a circumflex and followed by a dollar sign is constrained 

to match an entire line. 

 A regular expression followed by an asterisk (‘*’) matches zero or more occurrences of the 

regular expression. For example, “ab*c” matches “ac,” “abc,” “abbc,” and so forth. When a 
choice exists, the longest leftmost match will be chosen. 

 A regular expression contained between “\(” and “\)” matches the same string that the 
unenclosed regular expression matches. 

 The regular expression “\n” matches the same string that the nth regular expression enclosed 

in “\(” and “\)” in the same regular expression matches. For example, “\(abc\)\1” matches 

the string “abcabc.” 

 A regular expression followed by “\{m\}” matches exactly m occurrences of that regular 

expression. A regular expression followed by “\{m,\}” matches at least m occurrences of that 

regular expression. A regular expression followed by “\{m,n\}” matches at least m and no 

more than n occurrences of that regular expression. 

This notation was originally introduced in PWB UNIX, and from there made its way into 

System V. Versions of UNIX that do not have PWB UNIX as an ancestor (i.e., Berkeley-based 

versions) do not support this notation. 

 A regular expression preceded by “\<” is constrained to match at the beginning of a line or to 
follow a character that is not a digit, underscore, or letter. 

A regular expression followed by “\>” is constrained to match at the end of a line or to precede 
a character that is not a digit, underscore, or letter. 

This allows a regular expression to be constrained to match words. 

This notation was introduced in the ex and vi editors. Versions of ed prior to the one in SVR4 

do not support this notation. 

The basic functions provided for using regular expressions in programs are regcmp and regex: 

#include <libgen.h> 

 

char *regcmp(const char *str1, /* const char *str2 */, ... , NULL); 

 

char *regex(const char *re, const char *str, /* char *ret0 */, ...); 

 

extern char *__loc1; 
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The regcmp function compiles the regular expression consisting of its concatenated arguments and 
returns a pointer to the compiled form. The memory to hold the compiled form is allocated with 

malloc; it is the user's responsibility to free this memory when it is no longer needed. If one of the 

arguments contains an error, regcmp returns NULL. 

The regex function applies the compiled regular expression re to the string in str. Additional 

arguments may be given to receive values back (see below). If the pattern matches, a pointer to the 

next unmatched character in str is returned, and the external character pointer __loc1 will point 

to the place where the match begins. If the pattern does not match, regex returns NULL. 

HP-UX 10.x requires you to link with the -lPW library to use these functions. 

The regular expressions used by regcmp and regex are somewhat different from those described 
above: 

 The dollar sign (‘$’) matches the end of the string; “\n” matches a newline. 

 A regular expression followed by a plus sign (‘+’) matches one or more occurrences of the 
regular expression. 

 The curly-brace notation does not use backslashes to escape the curly braces. For example, 

while ed uses “\{m\},” regcmp and regex use “{m}.” 

 The parenthesis notation from ed (“\(...)\”) has been replaced with the following: 

(...)$n The part of the string that matches the regular expression will be returned. The 

value will be stored in the string pointed to by the (n+1)th argument following 

str in the call to regex. At most ten strings may be returned this way. 

(...) Parentheses are used for grouping. The operators ‘*,’ ‘+,’ and “{}” can operate 

on a single character or on a regular expression contained in parentheses. 

SVR4 also provides a second set of functions for implementing regular expressions, called 

compile, advance, and step. These functions implement regular expressions just as they exist in 

ed and grep, but their usage is complicated, and, because they are not available in other versions of 
the operating system, not portable. For more information on them, however, consult the regexpr (5) 

manual page. 

Example 16-12 shows a different version of the file-searching program from Example 16-11; this 

one uses regular expressions, much like the grep command. Note again that the pattern must be 

enclosed in quotes to prevent the shell from trying to interpret it. 

Example 16-12: regexp 

#include <libgen.h> 

#include <stdio.h> 

 

int 

main(int argc, char **argv) 

{ 

    FILE *fp; 
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    char line[BUFSIZ]; 

    char *re, *pattern, *filename; 

 

    /* 

     * Check arguments. 

     */ 

    if (argc != 3) { 

        fprintf(stderr, "Usage: %s pattern file\n", *argv); 

        exit(1); 

    } 

 

    pattern = *++argv; 

    filename = *++argv; 

 

    /* 

     * Compile the regular expression. 

     */ 

    if ((re = regcmp(pattern, NULL)) == NULL) { 

        fprintf(stderr, "bad regular expression.\n"); 

        exit(1); 

    } 

 

    /* 

     * Open the file. 

     */ 

    if ((fp = fopen(filename, "r")) == NULL) { 

        perror(filename); 

        exit(1); 

    } 

 

    /* 

     * Read lines from the file. 

     */ 

    while (fgets(line, sizeof(line), fp) != NULL) { 

        /* 

         * Strip the newline. 

         */ 

        line[strlen(line) - 1] = '\0'; 

 

        /* 

         * If it matches, print it. 

         */ 

        if (regex(re, line) != NULL) 

            puts(line); 

    } 

 

    fclose(fp); 

    exit(0); 

} 

% regexp 'A....d' /usr/dict/words 

Aeneid 

Alameda 

Alfred 

Alfredo 

Amerada 

Aphrodite 
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Arnold 

Atwood 

Avogadro 

% regexp '^A....d$' /usr/dict/words 

Aeneid 

Alfred 

Arnold 

Atwood 

% regexp 'b(an){2,}' /usr/dict/words 

banana 

Portability Notes 

The regcmp and regex functions are available on System V-based systems only. BSD-based 
systems provide a slightly different set of functions: 

char *re_comp(const char *re); 

 

int re_exec(const char *str); 

The re_comp function compiles the regular expression contained in re and stores the result 

internally. If the expression is compiled successfully, re_comp returns NULL; otherwise it returns a 

pointer to an error message describing the problem. The re_exec function compares the string str 

to the last compiled regular expression and returns 1 if they match, 0 if they don't, and –1 if an error 

occurs (such as calling re_exec before calling re_comp). 

The BSD functions are nicer than their System V counterparts in that they accept standard ed regular 

expressions. However, the System V functions are nicer in that they allow multiple regular 

expressions to be used simultaneously without having to constantly recompile them, and they allow 

the program to obtain the parts of the string that matched the regular expression. 

If portability is a concern, it is necessary to write code such that either set of regular expression 
functions can be used. The aforementioned lack of support for simultaneous use of multiple regular 

expressions in the BSD functions can make this difficult, however. Another approach is to obtain a 

free or public domain implementation of regular expression functions and simply include those with 

the program. 

Henry Spencer of the University of Toronto offers a wonderful public domain implementation of 

the regular expression functions included in Research UNIX Version 8; his package includes not 

only the compile and match functions, but also a function to perform substitutions in strings much 

like a text editor. The package is available from 

ftp://ftp.cs.toronto.edu/pub/regexp.shar.Z. The GNU Project also provides a fairly 
robust implementation of the regular expression functions; their implementation is covered by the 

GNU Public License, which may cause problems for some implementors. The package is available 

from ftp://prep.ai.mit.edu/pub/gnu/regex-0.12.tar.gz. 
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Internationalization 

For years, UNIX used the ASCII character set. ASCII, being the American Standard Code for 

Information Interchange, works great in the United States. But in England, where the monetary 

symbol is ‘£,’ a non-ASCII character, a problem arises. In countries that use diacritical marks with 
their letters, e.g., â, ç, ì, õ, and ü, the problem is even worse. And in countries like Japan, where the 

character set is not even remotely Latin in origin, ASCII is completely hopeless. 

In recent years, as UNIX has spread throughout the world, so has interest in internationalizing it. 

All programs should handle the local country's character set, whatever that is. Programs that print 

dates and times should print them in the commonly accepted format of the local country. Programs 

that print formatted numbers should use the proper character to mark the decimal point, and so forth. 

Internationalization is a complex topic. Complex enough that it would be impossible to cover the 

entire topic in this short section. Instead, we present here a few basic functions that can make a 

program at least a little more friendly on an international scale. There are a whole slew of functions, 

however, that we do not cover here. 

Programs using the functions described in this section must be linked with the -lintl library. 

Defining the Locale 

A locale defines the characteristics of the environment, from an internationalization standpoint, that 

a program is operating in. The “UNIX” locale is named “C.”  Other locales generally use a two-
character name, usually the ISO standard two-letter abbreviation for the country name. For example, 

“de” is the German locale, “fr” is the French locale, and “ja” is the Japanese locale. 

The setlocale function sets a program's locale for any of several different categories: 

#include <locale.h> 

 

char *setlocale(int category, const char *locale); 

The locale parameter contains the name of the locale; this will be used by the internationalization 

functions to look at various databases contained in the subdirectory of the same name in 

/usr/lib/locale. If locale contains the empty string, the value will be taken from environment 

variables. If locale is NULL, the current locale will be returned and no changes made. 

The category parameter must be one of the following: 

LC_CTYPE Affects the behavior of the character type functions such as isdigit and 

tolower. 

LC_NUMERIC Affects the decimal point character and the thousands digit separator 

character for formatted input/output functions (scanf, printf, etc.) and 

string conversion functions (strtol, etc.). 

LC_TIME Affects the date and time formats delivered by ascftime, cftime, 

getdate, and strftime. 
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LC_COLLATE Affects the sort order produced by strcoll and strxfrm (see below). 

LC_MONETARY Affects the monetary formatting information returns by localeconv (see 
below). 

LC_MESSAGES Affects the behavior of dgettext, gettext, and gettxt (not discussed in 
this book). 

LC_ALL A shorthand way to specify all of the above categories. 

If setlocale succeeds, it returns locale. If it fails, it returns NULL. 

Formatting Numbers 

There are a number of issues involved in formatting numbers in different countries. Aside from the 

obvious differences in monetary symbols, there are also differences in the character used for a 

decimal point (some countries use period, others use comma), the character used to separate 

thousands groups (some countries use comma, others use period), and so forth. 

The localeconv function returns information about how to format numbers in the program's 

current locale: 

#include <locale.h> 

 

struct lconv *localeconv(void); 

The function returns a pointer to a structure of type struct lconv: 

struct  lconv   { 

    char    *decimal_point; 

    char    *thousands_sep; 

    char    *grouping; 

    char    *int_curr_symbol; 

    char    *currency_symbol; 

    char    *mon_decimal_point; 

    char    *mon_thousands_sep; 

    char    *mon_grouping; 

    char    *positive_sign; 

    char    *negative_sign; 

    char     int_frac_digits; 

    char     frac_digits; 

    char     p_cs_precedes; 

    char     p_sep_by_space; 

    char     n_cs_precedes; 

    char     n_sep_by_space; 

    char     p_sign_posn; 

    char     n_sign_posn; 

}; 

The fields of this structure are: 

decimal_point The decimal point character used to format non-monetary quantities. 
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thousands_sep The character used to separate groups of digits to the left of the decimal 

point in non-monetary quantities. 

grouping A string in which each byte is taken as an integer that indicates the 

number of digits comprising the current group in a formatted non-

monetary quantity. Each integer is interpreted according to the 

following: 

CHAR_MAX No further grouping should be performed. 

0 The previous element is to be used repeatedly for the 

remainder of the digits. 

other The value is the number of digits that comprise the 

current group. The next element is examined to 

determine the size of the next group of digits to the 

left of the current group. 
 

int_curr_symbol The international currency symbol applicable to the current locale. 

currency_symbol The local currency symbol applicable to the current locale. 

mon_decimal_point The decimal point character to be used in formatting monetary 

quantities. 

mon_grouping A string in which each byte is taken as an integer that indicates the 
number of digits comprising the current group in a formatted monetary 

quantity. Each integer is interpreted according to the rules described 

above. 

positive_sign The string used to indicate a non-negative formatted monetary 

quantity. 

negative_sign The string used to indicate a negative formatted monetary quantity. 

int_frac_digits The number of decimal places to the right of the decimal to display in 

internationally formatted monetary quantities. 

frac_digits The number of decimal places to the right of the decimal to display in 

locally formatted monetary quantities. 

p_cs_precedes Set to 1 or 0 to indicate whether the currency symbol precedes (1) or 
succeeds (0) the value for non-negative formatted monetary quantities. 

p_sep_by_space Set to 1 or 0 to indicate whether the currency symbol is (1) or is not 

(0) separated by a space from the value for a non-negative formatted 

monetary quantity. 

n_cs_precedes Set to 1 or 0 to indicate whether the currency symbol precedes (1) or 

succeeds (0) the value for negative formatted monetary quantities. 
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n_sep_by_space Set to 1 or 0 to indicate whehter the currency symbol is (1) or is not 

(0) separated by a space from the value for a negative formatted 

monetary quantity. 

p_sign_posn Indicates how to position the positive sign for a non-negative 

formatted monetary quantity, as follows: 

0 Parentheses surround the quantity and currency symbol. 

1 The sign string precedes the quantity and currency symbol. 

2 The sign string follows the quantity and currency symbol. 

3 The sign string immediately precedes the currency symbol. 

4 The sign string immediately follows the currency symbol. 
 

n_sign_posn Indicates the positioning of the negative sign for a negative formatted 

monetary quantity. The possible values are as described above for 

p_sign_posn. 

Collating Sequences 

Functions such as strcmp compare strings based on the ASCII collating sequence, which in general 
is the same as alphabetical order. However, these functions do not work properly for character sets 

other than ASCII. Thus, when working in an international environment, qsort cannot be used with 

strcmp to sort strings into the proper order. 

The strcoll and strxfrm functions can be used instead to make these comparisons: 

#include <string.h> 

 

int strcoll(const char *s1, const char *s2); 

 

size_t strxfrm(char *dst, const char *src, size_t n); 

The strcoll function compares strings s1 and s2 and returns less than, equal to, or greater than 

zero depending on whether s1 should be considered less than, equal to, or greater than s2 when the 

strings are interpreted in the program's locale for the LC_COLLATE category. 

The strxfrm function transforms the string src, placing the result in dst. If strcmp is applied to 

two transformed strings, it will return the same result as if strcoll had been applied to the original 

strings. No more than n bytes will be placed into dst, including the terminating null character. If 

dst is null and n is 0, strxfrm will return the number of bytes required to store the transformed 

string. The length of the transformed string is returned by strxfrm; if this is greater than n, the 

contents of dst are undefined. 

The strcoll function simply calls strxfrm on s1 and s2 and then returns the result fo comparing 

them with strcmp. If a large number of strings are to be compared against a single string for a 

match, it is more efficient to call strxfrm and strcmp yourself. 
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As mentioned previously, these functions are just the tip of the iceberg. Functions and libraries are 

also available to help the programmer implement multilingual error messages, handle multi-byte 

characters (for languages such as Japanese), and so forth. For a complete discussion of the issues 

involved in internationalization and the functions provided to work around them, consult one of the 

several books devoted to the topic. 

Chapter Summary 

Just as we began this book with a discussion of the numerous little functions that you've probably 

used every day, we finish the book with a discussion of a number of functions that you may not use 

every day, but that are just as useful. The number of functions available to the systems programmer 

grows with every release of UNIX. Some of the new functions are useful, and others are less so. As 

new functions are added, some of them catch on and start to show up in lots of programs. These 

functions tend to start propagating to other versions of UNIX, as programmers demand them. Other 

functions are added and then later removed, as their use never catches on, or as better replacements 
are developed. 

Most of the functions described in this chapter are available in most newer versions of UNIX. The 

exception to this rule, unfortunately, are the search functions, which are only available in System 

V-based versions. Hopefully, as more vendors standardize on (or at least adopt parts of) SVR4, this 

will become less of a portability problem. 

 

Appendix A 
Significant Changes in ANSI C 

From its inception, the C programming language was defined by the book The C Programming 

Language by Brian Kernighan and Dennis Ritchie. Unfortunately, while the book was an excellent 

tool for learning the language, it was not an unambiguous specification of the language. This resulted 

in a variety of compilers which, while mostly compatible, would do different things with certain 

constructs, making for a portability nightmare. Furthermore, a few extensions were added to the 

langage at various points (enumerated types, the void type, and structures as function arguments 

and return values) but never sufficiently documented, resulting in different levels of support in 

different compilers. 
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In the late 1980s, the American National Standards Institute set out to remedy this situation. The 

X3J11 Technical Committee was charged with developing a standard for the C programming 

language that rectified the ambiguities in the language, and rectified the problems of divergent 

implementations. For the most part, the committee attempted to codify existing practice, rather than 

invent new language mechanisms. However, where it seemed valuable, the committee did define 

some new features that were thought to be generally useful. Overall, they did a pretty good job of 
this (although there are some surprising places where they didn't). 

In 1989, ANSI Standard X3.159 was released, and became the standard for the C programming 

language. Most modern C compilers implement the ANSI version of the language, including the 

compilers described in Chapter 1 of this book. In this appendix, we describe some of the more 

significant changes made in ANSI C. This is not an exhaustive list; if you need more information, 

you should consult the standard itself, or one of the numerous books on the topic (Kernighan and 

Ritchie, Second Edition, is the definitive reference). If you are already a proficient C programmer, 

you may wish to examine A C User's Guide to ANSI C, by Ken Arnold and John Peyton. This book 

presents all the changes in a concise manner for readers who already know the pre-ANSI version of 

the language. 

Tokens 

Tokens are the smallest recognizable units of the language. For example, operators, variable names, 

keywords, and constants are all tokens. 

String Concatenation 

The ANSI C standard says that adjacent string constants with no operators between them should 

simply be concatenated. This means that 

"foo" "bar" 

is equivalent to 

"foobar" 

This is useful in situations in which a long string needs to be defined. For example: 

char *usage = "Usage: thisprogram [-b] [-g] [-l] files...\n" 

              "       -b    babble incessantly about everything\n" 

              "       -g    babble in ancient greek\n" 

              "       -l    babble in latin\n"; 

Escape Sequences 

The ANSI C standard has defined some new backslash escape sequences: 

\a For “alert.”  When printed, this sequence should ring the terminal's bell. 

\v Vertical tab (this escape was already supported by many compilers). 
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\x Introduces a hexadecimal constant, much like a blackslash followed by a digit introduces 

an octal constant. 

The number of digits in an octal constant has been formally limited to three; some compilers 

previously allowed more. This means that “\0123” is now always a two-character string: the 

character with octal value 012 followed by the character ‘3.’ 

The digits 8 and 9 are no longer allowed in octal constants. This shouldn't be any great surprise. 

However, some compilers allowed “\128” and took it to mean “\130.” 

The Preprocessor 

The C preprocessor has always been a source of portability problems, mostly because numerous 

programmers took advantage of the way a particular processor handled something. A number of 
preprocessor constructs that are used frequently were never actually specified as part of the 

language; their use relies on knowledge of how the internals of the preprocessor work. 

String Substitution 

String substitution in preprocessor macros is one of these areas. Consider the following macro: 

#define PRINT(value)    printf("value = %d\n", value) 

Some preprocessors would expand PRINT(x) to: 

printf("x = %d\n", x) 

while others would expand it to: 

printf("value = %d\n", x) 

The difference here is how macro parameters are expanded inside character strings. The ANSI 

standard specifies that the latter behavior is correct, and introduces a new syntax for achieving the 

former behavior: 

#define PRINT(value)    printf(#value " = %d\n", value) 

The #value gets expanded to a quoted version of the parameter (e.g., “x”), and then the string 

concatenation rules take over to produce the desired result. 

Character Constants 

The same rule used above that says preprocessor tokens are not replaced inside character strings 

also applies to character constants. A frequent construct in pre-ANSI C is: 

#define CTRL(c)    (037 & 'c') 
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This macro produces the control character version of a regular character. Thus CTRL(L) would 
produce a CTRL-L. Unfortunately, in ANSI C, this will not work. The simplest way to avoid this 

problem is to define the macro slightly differently: 

#define CTRL(c)    (037 & c) 

This macro is then called as CTRL('L'). 

Token Pasting 

One of the features of some preprocessors is that they allow “token pasting.”  This has never been 

a documented behavior, but is used frequently. With a token pasting preprocessor, there are at least 

two ways to combine two tokens: 

#define self(a)      a 

#define glue(a,b)    a/**/b 

 

self(x)1 

glue(x,1) 

Both of these are intended to produce a single token, “x1.”  In ANSI C however, they both produce 

two separate tokens, “x” and “1.” 

The ANSI C standard defines a new syntax for token pasting: 

#define glue(a, b)    a ## b 

Since “##” is now a legitimate operator, programmers have much more freedom in the use of white 
space in both the definition and invocation of token pasting macros. 

The #elif Directive 

The ANSI C preprocessor now provides a #elif directive that may be used in conjunction with 

#ifdef and #endif. 

The #error Directive 

The ANSI C preprocessor provides a #error directive that prints the error message given as an 
argument and exits. This allows code of the form: 

#if defined(BSD) 

... BSD stuff ... 

#elif defined(SYSV) 

... System V stuff ... 

#else 

#error "One of BSD or SYSV must be defined." 

#endif 
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Predefined Symbols 

All preprocessors offer the predefined symbols __FILE__  (the current source file as a quoted 

string) and __LINE__  (the current line number as an integer). The ANSI C standard has added 

__DATE__  and __TIME__ , which give the current date and time (as of when the program was 
compiled) as quoted strings. 

The constant __STDC__  is defined as 1 in compilers that are compliant with ANSI C. This can be 
used to test whether or not ANSI C features may be used: 

#ifdef __STDC__ 

... ANSI stuff ... 

#else 

... Non-ANSI stuff ... 

#endif 

NOTE 

In the ANSI standard, the only defined value for __STDC__  is 1. If it is defined to any 
other value, the meaning is undefined. Unfortunately, the standard is somewhat ambiguous 

on this point. 

This is a problem on SVR4, where AT&T uses __STDC__  with a value of zero to enable 
certain ANSI C features outside of a strictly ANSI C-compliant environment. This means 

that the test above for an ANSI environment no longer works; it must be rewritten as 

#if __STDC__ == 1 

... ANSI stuff ... 

#else 

... Non-ANSI stuff ... 

#endif 

Text After #else and #endif 

Most preprocessors have always allowed constructs like: 

#ifdef FOO 

... 

#else FOO 

... 

#endif FOO 

However, this has never been strictly legal, since #else and #endif are not supposed to have 
arguments. In ANSI C this syntax is now expressly forbidden (although most compilers will just 

print a warning and accept it); it should be rewritten: 

#ifdef FOO 

... 

#else /* FOO */ 

... 

#endif /* FOO */ 
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Declarations 

The ANSI C standard has cleaned up variable declarations, both by formalizing the use of some 

non-standard types, and defining a few new ones. 

The void Type 

Most newer non-ANSI compilers accept some form of the void type, but support for all of its 

features is varied. The void type has three uses in ANSI C: 

1. Declaring a function with a return type of void means that the function returns no value. By 

declaring functions that do have a return value appropriately, and indicating functions that do 

not have a return value with a type of void, the compiler can perform type checking for the 
programmer. 

2. Declaring a function prototype (see below) with a parameter specification of void means that 
the function has no arguments. The compiler can use this for checking parameter lists in 

function calls. 

3. The type void * is now used as the universal pointer. Prior to the invention of void, the char 

* type was usually used; this did not work well on systems that used different sized pointers for 
different objects. 

The enum Type 

The ANSI C standard has officially codified the enum data type. Use of enum variables as array 
subscripts is explicitly allowed; some compilers previously disallowed this. 

The char Type 

Because there is no standard among hardware vendors as to whether a char is signed or unsigned, 

there is also no standard defined by ANSI. The signedness or unsignedness of a char in ANSI C is 
explicitly hardware-dependent. 

If a specific type (signed or unsigned) is needed, the familiar unsigned qualifier and the new-to-

ANSI signed qualifier may be used when declaring variables of type char. 

Type Qualifiers 

ANSI C has defined two new type qualifiers: 

const This qualifier says that the object will not be modified. This allows the compiler 

to refuse to modify the object; it also allows the compiler more freedom in making 

optimizations. Note that initializing an object is not the same as modifying the 

object. For example, the following is perfectly legal: 

const int True = 1; 

The use of the const qualifier is somewhat tricky, however. For example, the 
declaration 
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const char *s; 

means that s will only point at characters that will not be modified through s 

(although they might be modified through some other means). It does not mean 

that s will not be modified. To declare that, you would say 

char *const s; 

instead. 

volatile This is the opposite of const. It tells the compiler that this variable may change 
in ways the compiler cannot predict. Basically, it tells the compiler not to optimize 

references to this variable, since the optimizations may not be accurate in all 

circumstances. 

Functions 

ANSI C has also made two significant changes when it comes to declaring and calling functions. 

Function Prototypes 

Perhaps the most visible change in ANSI C is the introduction of function prototypes, borrowed 

from C++. With function prototypes, the number and type of a function's parameters are specified 

when the function is declared. This allows the compiler to perform type checking, and also to avoid 

unnecessary type promotions. 

We have used function prototypes throughout this book. For example: 

FILE *fopen(char *filename, char *mode); 

This is the most explicit of the prototype syntaxes. It is also possible to leave out the variable names 

in the prototype, e.g., 

FILE *fopen(char *, char *); 

However, the variable names help in remembering what parameter goes where; the second form 

provides no clue in this regard. And of course, the old pre-ANSI syntax is still valid: 

FILE *fopen(); 

However, in this case, the compiler is not able to perform type checking. 

Function definition may follow either the most explicit of the prototype syntaxes, 

FILE * 

fopen(char *filename, char *mode) 

{ 
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    . 

. 

. 

 

} 

or it may follow the old pre-ANSI syntax: 

FILE * 

fopen(filename, mode) 

char *filename, *mode; 

{ 

    . 

. 

. 

 

} 

Note however that the type of each parameter must be specified explicitly, even if two consecutive 
parameters have the same type. In other words, 

FILE *fopen(char *filename, char *mode); 

is correct, but 

FILE *fopen(char *filename, *mode); 

is not. 

Functions with a variable number of arguments are handled with a trailing “....”  This means that 

there may be zero or more parameters after this point. For example, the prototype for the fprintf 
function looks like: 

int fprintf(FILE *, const char *, ...); 

Note that this syntax requires that the “...” be last in the list. 

Finally, functions with no parameters are now declared using the void type: 

int getpid(void); 

This allows the compiler to make sure that no parameters are passed to the function when it is 

compiled. 

Handling Prototypes in Non-ANSI Environments 

Even though you may be using an ANSI C compiler, it is quite likely that the code you are writing 

may still have to be compiled on systems that do not have an ANSI compiler. Rather than avoiding 

the use of function prototypes altogether, there are a few approaches you can take. 

The simplest approach simply has two declarations for every function: 



UNIX Systems Programming for SVR4 

458 FOR PERSONAL, NON-COMMERCIAL USE ONLY  
 

#ifdef __STDC__ 

int fact(int); 

#else 

int fact(); 

#endif 

 

#ifdef __STDC__ 

int fact(int n) 

#else 

int fact(n) 

int n; 

#endif 

{ 

. 

. 

. 

 

} 

Unfortunately, this is rather ugly. Another possibility is to do the above for the declarations, but use 

old-style definitions: 

#ifdef __STDC__ 

int fact(int); 

#else 

int fact(); 

#endif 

 

int fact(n) 

int n; 

{ 

. 

. 

. 

 

} 

This is less ugly, but still requires declaring the function twice, leaving a potential for error. 

A more elegant solution, one that you will see used often, is to define a macro, usually called _P or 

_proto, that handles the prototypes, and then use old-style definitions: 

#ifdef __STDC__ 

#define _P(args)    args 

#else 

#define _P(args)    () 

#endif 

 

int fact _P((int)); 

 

int fact(n) 

int n; 

{ 

. 

. 
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. 

 

} 

When __STDC__  is defined, the prototype expands to 

int fact (int); 

while when __STDC__  is not defined, it expands to 

int fact (); 

Widened Types 

In K&R C, because the compiler had no way to type-check function parameters, it would promote 

all arguments of types smaller than int to int, and all arguments of type float to double. Since 

at the time most compilers performed all floating point arithmetic in double precision anyway, this 

wasn't usually a problem. 

ANSI C still promotes function parameters to their widened types when a function is called. 

However, inside the function, the widened types are converted back to their original, narrower sizes. 

This can cause some serious problems with carelessly-written pre-ANSI code. 

One of the most common errors is to assume that floats are really doubles. For example: 

foo(f) 

float f; 

{ 

    bar(&f); 

} 

 

bar(d) 

double *d; 

{ 

    . 

. 

. 

 

} 

The problem here is that in pre-ANSI C, f never really was a float. It was declared as one, but the 

compiler treated it as a double. So in bar, where we assumed a pointer to a double, you could get 
away with it, because that's how things really worked. 

And in ANSI C, you will not get a warning from the compiler about this, because, being pre-ANSI 

C, there are no function prototypes (which serves to prove that function prototypes are a good thing). 

But, when you try to execute your program, bar will fail in any one of a number of different ways 

trying to use *d as if it were actually a double. 
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To avoid this problem, when writing code to be used both with and without function prototypes, use 

only widened types—no char or short (use int), and no float (use double). Pointers to any of 
the types (widened or unwidened) are okay, though. 

Expressions 

Perhaps the most significant change to widely accepted practice was made in expression evaluation. 

In original K&R C, unsigned specified exactly one type. There were no unsigned chars, 

unsigned shorts, or unsigned longs. This is not to say that most compilers did not support 
these types, just that they were never “official.”  Naturally, since the rules for how these unofficial 

types behaved in expressions in which they were mixed with other types did not exist, different 

compiler implementors used different rules. 

In most C compilers, a “sign preserving” rule is used. If an unsigned type needs to be widened, it is 

widened to a larger unsigned type. And when an unsigned type mixes with a signed type, the result 

is an unsigned type. This makes a certain amount of sense, but can lead to unexpected results in 

certain situations. For example, subtracting unsigned short 5 from unsigned short 3 will 
produce a large unsigned number with the same bit pattern as –2. 

ANSI C on the other hand specifies that a “value preserving” rule should be used. When an unsigned 

type smaller than an int needs to be widened, it is widened to a signed int if that is large enough 

to hold the type, otherwise it is widened to an unsigned int. This produces more intuitive 

behavior in cases like the above (in which the result would be a signed int –2), and makes no 

difference in most other cases. However, programs that rely on the earlier behavior will need to be 

modified (usually by inserting appropriate typecasts) if they are to work correctly. 

Summary 

For the most part, the changes made in ANSI C are a good thing. ANSI C is rapidly becoming 

available on almost all UNIX platforms, and its growing use will result in code that is both more 

portable and less prone to error, provided that features such as function prototypes are used wherever 

possible. 
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Appendix B 
Accessing File System Data 

Structures 

A number of system admnistration tasks require the ability to obtain information about one or more 

mounted file systems. Although it is usually possible to obtain this information using existing 

commands, there are times when it's easier to “roll your own.”  This appendix describes the functions 

and procedures necessary for doing just that. 

NOTE 

The functions and procedures described in this appendix differ from one version of UNIX 
to another. They even differ among the various vendors' versions of SVR4. The text and 

examples in this appendix describe the situation as it exists in Solaris 2.x. However, the on-

line examples for the book also include working copies of these programs for HP-UX 10.x 

and IRIX 5.x; compare those files for information about how those operating systems differ 

from what is described here. 

The Mounted File System Table 

The file /etc/mnttab contains a list of the file systems that are currently mounted, and some 
information about them. This file is mostly maintained by the mount and umount commands, 

although other processes such as the automounter and the volume management daemon also make 

updates to it, if they are in use. 

In SVR4, the /etc/mnttab file is a text file, with each entry in the file consuming one line. In most 

other versions of UNIX, it is a binary file, with each entry consisting of a structure that contains 

more or less the same information. The functions provided for reading this file use a structure of 

type struct mnttab to describe each entry. This structure is declared in the include file 
sys/mnttab.h: 

struct mnttab { 

    char    *mnt_special; 

    char    *mnt_mountp; 
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    char    *mnt_fstype; 

    char    *mnt_mntopts; 

    char    *mnt_time; 

}; 

The fields of the structure are: 

mnt_special The name of the block-special device the file system resides on. 

mnt_mountp The name of the file system mount point, i.e., the directory that it is mounted 

on. 

mnt_fstype The type of the file system, e.g., “ufs,” “nfs,” “hsfs,” or “pcfs.” 

mnt_mntopts A comma-separated list of the options the file system was mounted with. The 

legal values vary with the file system type, but this includes things such as 

read-only, no set-user-id, and so forth. 

mnt_time The time the file system was mounted. This is a character string containing 

the time_t value in ASCII; it must be converted to an integer with atoi and 

then passed to ctime or whatever (see Chapter 7, Time of Day Operations). 

There are three functions used for reading the /etc/mnttab file: 

#include <stdio.h> 

#include <sys/mnttab.h> 

 

int getmntent(FILE *fp, struct mnttab *mnt); 

 

int getmntany(FILE *fp, struct mnttab *mnt, struct mnttab *mntref); 

 

char *hasmntopt(struct mnttab *mnt, char *option); 

The getmntent function reads the next entry from the file referenced by fp, and stores the broken-

out fields of the entry in the area pointed to by mnt. The getmntany function searches the file 

referenced by fp for an entry that matches the non-null fields of mntref, and stores the broken-out 

fields of the entry in the area pointed to by mnt. Note that neither of these functions opens, closes, 

or rewinds the /etc/mnttab file. 

Both getmntent and getmntany return 0 if an entry is successfully read, and –1 if end-of-file is 

encountered. If a formatting error occurs in the file, they return one of the following: 

MNT_TOOLONG A line in the file exceeded the maximum line length. 

MNT_TOOMANY A line in the file contains too many fields. 

MNT_TOOFEW A line in the file does not contain enough fields. 

The hasmntopt function scans the mnt_mntopts field of mnt for a substring that matches option. 

It returns a pointer to the substring if it is present, and NULL if is not. 
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The File System Defaults File 

The file /etc/vfstab contains “default” information about file systems. This information includes 

device names, mount points, mount options, and so forth. The table is used by the system bootstrap 

procedure to mount the file systems that should be mounted automatically. It may also be used to 

record the location of other file systems that are mounted only on command. A file system does not 

have to be listed in this file to be mounted; listing it here simply makes the mount command simpler. 

On most other versions of UNIX, including HP-UX 10.x and IRIX 5.x, this file is called /etc/fstab, 

and has a slightly different format. 

Each line in the file constitutes an entry, which is described by a structure of type struct vfstab, 
declared in the include file sys/vfstab.h: 

struct vfstab { 

    char    *vfs_special; 

    char    *vfs_fsckdev; 

    char    *vfs_mountp; 

    char    *vfs_fstype; 

    char    *vfs_fsckpass; 

    char    *vfs_automnt; 

    char    *vfs_mntopts; 

}; 

The fields of the structure are: 

vfs_special The name of the block-special device the file system resides on. 

vfs_fsckdev The name of the character-special device the file system resides on. This field 

is so named because the fsck program uses this device to check the file 
system's integrity at boot time. 

vfs_mountp The name of the file system mount point, that is, the directory it is to be 

mounted on. 

vfs_fstype The type of the file system, e.g., “ufs,” “nfs,” “hsfs,” or “pcfs.” 

vfs_fsckpass When fsck runs, certain file systems must be checked before others. This 

number indicates which pass of fsck should check this file system. 

vfs_automnt An indication of whether or not the file system should be mounted 

automatically when the system boots. 

vfs_mntopts The options that should be used when mounting this file system. These vary 

with the file system type. 

Any of these fields may be null if they do not apply to the file system in question. 

There are four functions provided for reading the /etc/vfstab file: 

#include <stdio.h> 

#include <sys/vfstab.h> 
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int getvfsent(FILE *fp, struct vfstab *vfs); 

 

int getvfsfile(FILE *fp, struct vfstab *vfs, char *file); 

 

int getvfsspec(FILE *fp, struct vfstab *vfs, char *spec); 

 

int getvfsany(FILE *fp, struct vfstab *vfs, struct vfstab *vfsref); 

The getvfsent function reads the next entry from the file referenced by fp, and stores the broken-

out fields of the entry in the area pointed to by vfs. The getvfsfile function searches the file for 

an entry whose vfs_mountp field is the same as file and stores the broken-out fields of the entry 

in the area pointed to by vfs. The getvfsspec function searches the file for an entry whose 

vfs_special field is the same as spec and stores the broken-out fields of the entry in the area 

pointed to by vfs. The getvfsany function searches the file referenced by fp for an entry that 

matches the non-null fields of vfsref, and stores the broken-out fields of the entry in the area 

pointed to by vfs. Note that none of these functions opens, closes, or rewinds the /etc/vfstab file. 

All four of these functions return 0 if an entry is successfully read, and –1 if end-of-file is 

encountered. If a formatting error occurs in the file, they return one of the following: 

VFS_TOOLONG A line in the file exceeded the maximum line length. 

VFS_TOOMANY A line in the file contains too many fields. 

VFS_TOOFEW A line in the file does not contain enough fields. 

Obtaining File System Statistics 

There are a number of file system statistics that are generally useful to system administration 

programs, including the amount of space used or available in the file system, the number of files in 

the file system, and so forth. The statvfs and fstatvfs functions can be used to obtain this 

information: 

#include <sys/types.h> 

#include <sys/statvfs.h> 

 

int statvfs(const char *path, struct statvfs *stats); 

 

int fstatvfs(int fd, struct statvfs *stats); 

The statvfs function obtains statistics about the file system in which the file named by path 

resides, and returns them in the area pointed to by stats. The fstatvfs function does the same 

thing, but uses a file descriptor instead of a path name to refer to the file. Both functions return 0 on 

success; if an error occurs, –1 is returned and errno is set to indicate the error. 

Both of these functions return statistics in a structure of type struct statvfs: 

typedef struct statvfs { 

    u_long    f_bsize; 
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    u_long    f_frsize; 

    u_long    f_blocks; 

    u_long    f_bfree; 

    u_long    f_bavail; 

    u_long    f_files; 

    u_long    f_ffree; 

    u_long    f_favail; 

    u_long    f_fsid; 

    char      f_basetype[FSTYPSZ]; 

    u_long    f_flag; 

    u_long    f_namemax; 

    char      f_fstr[32]; 

    u_long    f_filler[16]; 

} statvfs_t; 

The fields of this structure are: 

f_bsize The preferred file system block size. Reads and writes on the file system should 
use this block size for optimum performance. 

f_frsize The fundamental file system block size. This is also called the fragment size. 

This is the smallest unit of disk space that can be consumed by a file (i.e., even 

if a file is smaller than this value, it consumes a block of this size on the disk). 

f_blocks The total number of blocks that can be used in the file system, in units of 

f_frsize. 

f_bfree The total number of free blocks in the file system. 

f_bavail The number of free blocks in the file system available to non-privileged 

processes. The system reserves a small amount (usually ten percent) of the 

space for use only by the super-user. 

f_files The total number of files (i-nodes) that can be created in the file system. This 

value is not available for file systems mounted via NFS. 

f_ffree The total number of free files (i-nodes) in the file system. This value is not 

available for file systems mounted via NFS. 

f_avail The number of free files (i-nodes) in the file system available to non-privileged 

processes. It is possible for the system to reserve a small number of these for 

use only by the super-user, although this is rarely done. This value is not 

available for file systems mounted via NFS. 

f_fsid A unique identifier for the file system. 

f_basetype The file system type name. 

f_flag A bit mask of flags. Possible values are: 

ST_RDONLY The file system is read-only. 

ST_NOSUID The file system does not support set-user-id and set-group-

id bit semantics. 
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ST_NOTRUNC The file system does not truncate file names longer than the 

maximum length. 
 

f_namemax The maximum length of a file name on this file system. 

f_str A file system specific string used only by the kernel. 

Example B-1 shows a program that reads the mounted file system table, and for each file system, 

prints out the information stored for it in the table. It also looks the file system up in the file system 

defaults table and prints any information it finds there. And finally, it uses statvfs to obtain 

statistics about the file system, and prints them out. 

Example B-1: fsysinfo 

#include <sys/types.h> 

#include <sys/statvfs.h> 

#include <sys/time.h> 

#include <string.h> 

#include <stdio.h> 

#include <sys/mnttab.h> 

#include <sys/vfstab.h> 

 

char    *mnttabFile = "/etc/mnttab"; 

char    *vfstabFile = "/etc/vfstab"; 

 

struct statvfs  *getfsInfo(char *); 

struct mnttab   *getmnttabEntry(FILE *); 

struct vfstab   *getvfstabEntry(FILE *, struct mnttab *); 

 

int 

main(void) 

{ 

    time_t clock; 

    struct mnttab *mnt; 

    struct vfstab *vfs; 

    struct statvfs *stats; 

    FILE *mnttabFP, *vfstabFP; 

 

    /* 

     * Open the mounted file system table. 

     */ 

    if ((mnttabFP = fopen(mnttabFile, "r")) == NULL) { 

        perror(mnttabFile); 

        exit(1); 

    } 

 

    /* 

     * Open the file system defaults file. 

     */ 

    if ((vfstabFP = fopen(vfstabFile, "r")) == NULL) { 

        perror(vfstabFile); 

        exit(1); 

    } 

 

    /* 
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     * For each file system... 

     */ 

    while ((mnt = getmnttabEntry(mnttabFP)) != NULL) { 

        /* 

         * If it's not an "ignore" file system, look it 

         * up in the defaults file and get its current 

         * stats. 

         */ 

        if (hasmntopt(mnt, "ignore") == 0) { 

            vfs = getvfstabEntry(vfstabFP, mnt); 

            stats = getfsInfo(mnt->mnt_mountp); 

        } 

        else { 

            stats = NULL; 

            vfs = NULL; 

        } 

 

        clock = atoi(mnt->mnt_time); 

 

        /* 

         * Print the mnttab structure. 

         */ 

        printf("%s:\n", mnt->mnt_mountp); 

        printf("  %s information:\n", mnttabFile); 

        printf("    file system type:     %s\n", mnt->mnt_fstype); 

        printf("    mounted on device:    %s\n", mnt->mnt_special); 

        printf("    mounted with options: %s\n", mnt->mnt_mntopts); 

        printf("    mounted since:        %s", ctime(&clock)); 

 

        /* 

         * Print the vfstab structure. 

         */ 

        if (vfs != NULL) { 

            printf("  %s information:\n", vfstabFile); 

            printf("    file system type:     %s\n", 

                   vfs->vfs_fstype ? vfs->vfs_fstype : ""); 

            printf("    mount device:         %s\n", 

                   vfs->vfs_special ? vfs->vfs_special : ""); 

            printf("    fsck device:          %s\n", 

                   vfs->vfs_fsckdev ? vfs->vfs_fsckdev : ""); 

            printf("    fsck pass number:     %s\n", 

                   vfs->vfs_fsckpass ? vfs->vfs_fsckpass : ""); 

            printf("    mount at boot time:   %s\n", 

                   vfs->vfs_automnt ? vfs->vfs_automnt : ""); 

            printf("    mount with options:   %s\n", 

                   vfs->vfs_mntopts ? vfs->vfs_mntopts : ""); 

        } 

 

        /* 

         * Print the statvfs structure. 

         */ 

        if (stats != NULL) { 

            printf("  statvfs information:\n"); 

            printf("    maximum name length:  %u\n", stats->f_namemax); 

            printf("    preferred block size: %u\n", stats->f_bsize); 

            printf("    fundam. block size:   %u\n", stats->f_frsize); 

            printf("    total blocks:         %u\n", stats->f_blocks); 

            printf("    total blocks free:    %u\n", stats->f_bfree); 
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            printf("    total blocks avail:   %u\n", stats->f_bavail); 

            printf("    total files:          %u\n", stats->f_files); 

            printf("    total files free:     %u\n", stats->f_ffree); 

            printf("    total files avail:    %u\n", stats->f_favail); 

        } 

 

        putchar('\n'); 

    } 

 

    /* 

     * All done. 

     */ 

    fclose(mnttabFP); 

    fclose(vfstabFP); 

    exit(0); 

} 

 

/* 

 * getmnttabEntry - read an entry from the mount table. 

 */ 

struct mnttab * 

getmnttabEntry(FILE *fp) 

{ 

    int n; 

    static int line = 0; 

    static struct mnttab mnt; 

 

    /* 

     * Until we get a good entry... 

     */ 

    for (;;) { 

        /* 

         * Read the next entry. 

         */ 

        n = getmntent(fp, &mnt); 

        line++; 

 

        switch (n) { 

        case 0:             /* okay             */ 

            return(&mnt); 

        case -1:            /* end of file      */ 

            return(NULL); 

        case MNT_TOOLONG: 

            fprintf(stderr, "%s: %d: line too long.\n", mnttabFile, line); 

            break; 

        case MNT_TOOMANY: 

            fprintf(stderr, "%s: %d: too many fields.\n", mnttabFile, line); 

            break; 

        case MNT_TOOFEW: 

            fprintf(stderr, "%s: %d: not enough fields.\n", mnttabFile, line); 

            break; 

        } 

    } 

} 

 

/* 

 * getvfstabEntry - look up the file system defaults for the file system 

 *          described by mnt. 
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 */ 

struct vfstab * 

getvfstabEntry(FILE *fp, struct mnttab *mnt) 

{ 

    struct vfstab vfsref; 

    static struct vfstab vfs; 

 

    /* 

     * Have to rewind each time. 

     */ 

    rewind(fp); 

 

    /* 

     * Zero out the reference structure. 

     */ 

    memset((char *) &vfsref, 0, sizeof(struct vfstab)); 

 

    /* 

     * Look for an entry that has the same special device, 

     * mount point, and file system type. 

     */ 

    vfsref.vfs_special = mnt->mnt_special; 

    vfsref.vfs_mountp = mnt->mnt_mountp; 

    vfsref.vfs_fstype = mnt->mnt_fstype; 

 

    /* 

     * Look it up. 

     */ 

    if (getvfsany(fp, &vfs, &vfsref) == 0) 

        return(&vfs); 

 

    return(NULL); 

} 

 

/* 

 * getfsInfo - look up information about the file system. 

 */ 

struct statvfs * 

getfsInfo(char *filsys) 

{ 

    static struct statvfs stats; 

 

    if (statvfs(filsys, &stats) < 0) { 

        perror(filsys); 

        return(NULL); 

    } 

 

    return(&stats); 

} 

% fsysinfo 

/: 

  /etc/mnttab information: 

    file system type:     ufs 

    mounted on device:    /dev/dsk/c0t3d0s0 

    mounted with options: rw,suid 

    mounted since:        Mon Dec  5 09:05:28 1994 
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  /etc/vfstab information: 

    file system type:     ufs 

    mount device:         /dev/dsk/c0t3d0s0 

    fsck device:          /dev/rdsk/c0t3d0s0 

    fsck pass number:     1 

    mount at boot time:   no 

    mount with options: 

  statvfs information: 

    maximum name length:  255 

    preferred block size: 8192 

    fundam. block size:   1024 

    total blocks:         23063 

    total blocks free:    7696 

    total blocks avail:   5396 

    total files:          13440 

    total files free:     10936 

    total files avail:    10936 

/usr: 

  /etc/mnttab information: 

    file system type:     ufs 

    mounted on device:    /dev/dsk/c0t3d0s5 

    mounted with options: rw,suid 

    mounted since:        Mon Dec  5 09:05:28 1994 

  /etc/vfstab information: 

    file system type:     ufs 

    mount device:         /dev/dsk/c0t3d0s5 

    fsck device:          /dev/rdsk/c0t3d0s5 

    fsck pass number:     2 

    mount at boot time:   no 

    mount with options: 

  statvfs information: 

    maximum name length:  255 

    preferred block size: 8192 

    fundam. block size:   1024 

    total blocks:         129775 

    total blocks free:    15669 

    total blocks avail:   2699 

    total files:          64512 

    total files free:     53128 

    total files avail:    53128 

. 

. 

. 

 

/vol: 

  /etc/mnttab information: 

    file system type:     nfs 

    mounted on device:    msw:vold(pid174) 

    mounted with options: ignore 

    mounted since:        Mon Dec  5 09:06:33 1994 

Reading File System Data Structures 

There are certain operations for which it is preferable to access a file system by reading the disk 
directly, rather than going through the operating system kernel. The most common of these is file 
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system backups, although there are others. The principal reason for doing so is speed; it is much 

faster to read the disk directly. It is also the only way to read a file that contains “holes” and only 

obtain the actual disk blocks in use. 

Reading the disk directly however, is complex. The program must understand the layout of the file 

system data structures on the disk, and must be able to interpret a number of “private” bits of 

information correctly. Because it bypasses all security mechanisms (file ownership and permissions 
bits), this operation is usually restricted to the super-user (by setting the ownership and permissions 

of the block and character special devices for the file system). 

Two common on-disk file systems have been developed over the years; the original file system as 

invented by Ken Thompson and Dennis Ritchie, and the Berkeley Fast File System, developed by 

Kirk McKusick, Bill Joy, Sam Leffler, and Robert Fabry. In SVR4, both file systems are supported: 

the (slightly modified) original is called the “System V File System,” and the Fast File System is 

called the “UNIX File System.”  Solaris 2.x supports only the Fast File System (“UNIX File 

System”); support for the “System V File System” has been removed. In this section we will only 

discuss the Fast File System, since that is by far the more popular of the two. The discussion applies 

for the most part to the older file system as well, although the details are different (generally, the 

older file system is somewhat simpler to implement, but it is also substantially less efficient). 

NOTE 

Silicon Graphics uses their own file system format, the Extended File System (EFS). 

Although it is fairly similar to the UFS file system described in this seciton, there are some 

differences. 

Disk Terminology 

In order to understand how the file system is laid out on the disk, it is first necessary to understand 
a little bit about how a disk drive works. 

A disk drive contains one or more platters, on which data is stored. Each platter is a circular piece 

of metal with a hole in the middle, much like a phonograph record or compact disc. The platter is 

coated with a substance that responds to magnetic fields, similar to the coating on a video tape. The 

platter(s) are mounted on a spindle, with gaps between them. Each platter has two surfaces on which 

data can be recorded, but the outer surfaces of the top and bottom platters are usually not used. 

There is one read/write head for each platter surface in the disk drive. Usually, the heads are mounted 

to a common assembly so that they all move together, although this is not always the case. The 

heads move in and out from the edge to the center of the platters; there is no side-to-side motion. 

During a read/write operation, the heads are held stationary over a given section of the platters while 

the platters rotate at a high speed (several thousand revolutions per minute) underneath them. 

The area on one side of a single platter that can be read or written without moving the head is called 
a track. Tracks are thus concentric circles, and each time a platter completes a full revolution, an 

entire track has passed under the read/write head. There may be anywhere from a few hundred to a 

few thousand tracks on each side of each platter. If each track is extended up and down to include 

the same track on all the other platters, this is called a cylinder. Thus, there are the same number of 

cylinders on the disk drive as there are tracks on a single platter. For a six-platter disk drive, there 
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are ten tracks in each cylinder (remember, the outer surfaces of the top and bottom platters are not 

used). 

Tracks are further subdivided into sectors. Each sector is 512 bytes in size, and is the smallest 

addressable unit on a disk drive. Thus, when a file that is fifteen bytes long is stored on the disk, it 

actually consumes 512 bytes of space. The term disk block (or just block) is often used as a synonym 

for sector, but this term is often ambiguous and should be avoided if possible. 

Information is recorded on the tracks of a disk by writing data into one or more sectors. To perform 

this operation, the disk must be told the head number, track number, and sector number where the 

data is to be stored. When a write (or read) operation begins, the disk must first position the head 

assembly over the proper track. It then has to wait for the proper sector to arrive under the read/write 

head. Once this occurs, the data transfer can take place. There are thus three factors affecting the 

rate at which a disk can transfer data: 

1. seek time, the amount of time it takes to position the head assembly over the proper track, 

2. latency time, the amount of time it takes for the right sector to arrive under the heads, and 

3. transfer rate, the amount of time it takes to transfer the data to or from the disk. 

(There are actually other factors affecting the final transfer rate, including the speed of the disk 

controller, the speed of the system's input/output bus, and the speed of the system's memory, but 

these are outside the control of the disk manufacturer.) 

The Super Block 

The super block is the most important part of a file system. It contains all of the information 

necessary to locate the other file system data structures on the disk. Without the super block to 

indicate where these data structures are located, the file system would be a meaningless collection 

of bits. Because the super block is so critical to the operation of the file system, it is replicated in 
several places on the disk when the file system is first created. Since the critical information in the 

super block does not change, it is not necessary to update these copies. 

The super block structure is declared in the include file sys/fs/ufs_fs.h: 

struct  fs { 

    struct fs *fs_link;               /* linked list of file systems        */ 

    struct fs *fs_rlink;              /* used for incore super blocks       */ 

    daddr_t     fs_sblkno;            /* addr of super-block in filesys     */ 

    daddr_t     fs_cblkno;            /* offset of cyl-block in filesys     */ 

    daddr_t     fs_iblkno;            /* offset of inode-blocks in filesys  */ 

    daddr_t     fs_dblkno;            /* offset of first data after cg      */ 

    long        fs_cgoffset;          /* cylinder group offset in cylinder  */ 

    long        fs_cgmask;            /* used to calc mod fs_ntrak          */ 

    time_t      fs_time;              /* last time written                  */ 

    long        fs_size;              /* number of blocks in fs             */ 

    long        fs_dsize;             /* number of data blocks in fs        */ 

    long        fs_ncg;               /* number of cylinder groups          */ 

    long        fs_bsize;             /* size of basic blocks in fs         */ 

    long        fs_fsize;             /* size of frag blocks in fs          */ 

    long        fs_frag;              /* number of frags in a block in fs   */ 

/* these are configuration parameters */ 
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    long        fs_minfree;           /* minimum percentage of free blocks  */ 

    long        fs_rotdelay;          /* num of ms for optimal next block   */ 

    long        fs_rps;               /* disk revolutions per second        */ 

/* these fields can be computed from the others */ 

    long        fs_bmask;             /* "blkoff" calc of blk offsets     */ 

    long        fs_fmask;             /* "fragoff" calc of frag offsets   */ 

    long        fs_bshift;            /* "lblkno" calc of logical blkno   */ 

    long        fs_fshift;            /* "numfrags" calc number of frags  */ 

/* these are configuration parameters */ 

    long        fs_maxcontig;         /* max number of contiguous blks      */ 

    long        fs_maxbpg;            /* max number of blks per cyl group   */ 

/* these fields can be computed from the others */ 

    long        fs_fragshift;         /* block to frag shift                */ 

    long        fs_fsbtodb;           /* fsbtodb and dbtofsb shift constant */ 

    long        fs_sbsize;            /* actual size of super block         */ 

    long        fs_csmask;            /* csum block offset                  */ 

    long        fs_csshift;           /* csum block number                  */ 

    long        fs_nindir;            /* value of NINDIR                    */ 

    long        fs_inopb;             /* value of INOPB                     */ 

    long        fs_nspf;              /* value of NSPF                      */ 

/* yet another configuration parameter */ 

    long        fs_optim;             /* optimization preference, see below */ 

/* these fields are derived from the hardware */ 

    long        fs_npsect;            /* # sectors/track including spares   */ 

    long        fs_interleave;        /* hardware sector interleave         */ 

    long        fs_trackskew;         /* sector 0 skew, per track           */ 

/* a unique id for this filesystem (currently unused and unmaintained) */ 

/* In 4.3 Tahoe this space is used by fs_headswitch and fs_trkseek     */ 

/* Neither of those fields is used in the Tahoe code right now but     */ 

/* there could be problems if they are.                                */ 

    long        fs_id[2];             /* file system id                     */ 

/* sizes determined by number of cylinder groups and their sizes */ 

    daddr_t     fs_csaddr;            /* blk addr of cyl grp summary area   */ 

    long        fs_cssize;            /* size of cyl grp summary area       */ 

    long        fs_cgsize;            /* cylinder group size                */ 

/* these fields are derived from the hardware */ 

    long        fs_ntrak;             /* tracks per cylinder                */ 

    long        fs_nsect;             /* sectors per track                  */ 

    long        fs_spc;               /* sectors per cylinder               */ 

/* this comes from the disk driver partitioning */ 

    long        fs_ncyl;              /* cylinders in file system           */ 

/* these fields can be computed from the others */ 

    long        fs_cpg;               /* cylinders per group                */ 

    long        fs_ipg;               /* inodes per group                   */ 

    long        fs_fpg;               /* blocks per group * fs_frag         */ 

/* this data must be re-computed after crashes */ 

    struct      csum fs_cstotal;      /* cylinder summary information       */ 

/* these fields are cleared at mount time */ 

    char        fs_fmod;              /* super block modified flag          */ 

    char        fs_clean;             /* file system state flag             */ 

    char        fs_ronly;             /* mounted read-only flag             */ 

    char        fs_flags;             /* currently unused flag              */ 

    char        fs_fsmnt[MAXMNTLEN];  /* name mounted on                    */ 

/* these fields retain the current block allocation info */ 

    long        fs_cgrotor;           /* last cg searched                   */ 

    struct csum *fs_csp[MAXCSBUFS];   /* list of fs_cs info buffers         */ 

    long        fs_cpc;               /* cyl per cycle in postbl            */ 

    short       fs_opostbl[16][8];    /* old rotation block list head       */ 
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    long        fs_sparecon[55];      /* reserved for future constants      */ 

#define fs_ntime fs_sparecon[54]      /* INCORE only; time in nanoseconds   */ 

    long        fs_state;             /* file system state time stamp       */ 

    quad        fs_qbmask;            /* ~fs_bmask - for use with quad size */ 

    quad        fs_qfmask;            /* ~fs_fmask - for use with quad size */ 

    long        fs_postblformat;      /* format of positional layout tables */ 

    long        fs_nrpos;             /* number of rotaional positions      */ 

    long        fs_postbloff;         /* (short) rotation block list head   */ 

    long        fs_rotbloff;          /* (u_char) blocks for each rotation  */ 

    long        fs_magic;             /* magic number                       */ 

    u_char      fs_space[1];          /* list of blocks for each rotation   */ 

/* actually longer */ 

}; 

Most of these fields are not of interest here; they are used by the kernel for implementing the file 

system, but have little meaning outside of that context. Some of the fields that are of interest, 

however, are: 

fs_bsize The file system block size, in bytes. The file system block size is some multiple 

of the disk sector size; it is more efficient to access the file system in larger units. 
The usual block size for a Fast File System is 8192 bytes (the old file system uses 

512 or 1024 bytes). Since the maximum size of any individual file in the Fast File 

System is 231 bytes, this limits the minimum file system block size to 4096 bytes. 

fs_fsize The file system fragment block size. The larger block sizes introduced in the Fast 

File System, although they make input and output more efficient, also waste more 

of the disk. For example, if the smallest available block size were 4096 bytes, a 

1027-byte file would waste 3069 bytes on the disk. For this reason, the Fast File 

System allows a file system block to be divided into two, four, or eight fragments 

of equal size. A file will take up some number of full file system blocks, and then 

the last little bit of the file will be written into one or more fragments. The other 

fragments in the same block may be used by some other file. Thus, with a 4094-
byte file system block size and a 1024-byte fragment size, a 5120-byte file would 

consume one file system block (4096 bytes) and one fragment (1024 bytes). The 

other three fragments could be used by other files. 

fs_frag The number of fragments in a file system block. This is easily computed from the 

above two parameters, but is precomputed here for speed. 

fs_size The total number of blocks in the file system, in units of the fragment size. This 

includes the blocks used to store other bookkeeping information as well as the 

blocks actually used for data storage. 

fs_dsize The number of file system data blocks in the file system that may be used for data 

storage, in units of the fragment size. 

fs_ncg The number of cylinder groups in the file system. See the following sections for 

a discussion of cylinder groups. 
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fs_ipg The number of i-nodes per cylinder group. See the following sections for a 

discussion of cylinder groups. This number, when multiplied by fs_ncg (above), 
gives the maximum number of distinct files that may be stored in the file system. 

fs_fsmnt The name of the mount point this file system is currently mounted on. If the file 

system is not currently mounted, this will contain the name of the last mount point 

it was mounted on. 

I-Nodes 

As we explained in Chapter 5, Files and Directories, the i-node structure is used to store all of the 

important information about a file, such as its type, owner, group, mode, size, number of links, last 

access time, last modification time, and so forth. As we shall see below, the i-node also contains the 

addresses of all the disk blocks used to store the contents of the file. 

There is one i-node for each file in the file system. The i-nodes are allocated when the file system 

is created, which means that the number of files that can be created in the file system is static. If all 

the i-nodes are used up with very tiny files, it is possible to have a large quantity of free data blocks 

that simply cannot be used (because no more files can be created). However, it is much more 
common to run out of data blocks before running out of i-nodes. 

There are actually two i-node structures; the one stored on the disk, and the one used in memory by 

the kernel. The in-memory one has some extra fields used for bookkeeping purposes. The common 

part between the two structures is stored in a structure of type struct icommon; the on-disk i-node 

is called a struct dinode. These structures are defined in the include file sys/fs/ufs_inode.h: 

struct  icommon { 

    o_mode_t ic_smode;          /*  0: mode and type of file                */ 

    short       ic_nlink;       /*  2: number of links to file              */ 

    o_uid_t     ic_suid;        /*  4: owner's user id                      */ 

    o_gid_t     ic_sgid;        /*  6: owner's group id                     */ 

    quad        ic_size;        /*  8: number of bytes in file              */ 

#ifdef _KERNEL 

    struct timeval ic_atime;    /* 16: time last accessed                   */ 

    struct timeval ic_mtime;    /* 24: time last modified                   */ 

    struct timeval ic_ctime;    /* 32: last time inode changed              */ 

#else 

    time_t      ic_atime;       /* 16: time last accessed                   */ 

    long        ic_atspare; 

    time_t      ic_mtime;       /* 24: time last modified                   */ 

    long        ic_mtspare; 

    time_t      ic_ctime;       /* 32: last time inode changed              */ 

    long        ic_ctspare; 

#endif 

    daddr_t     ic_db[NDADDR];  /* 40: disk block addresses                 */ 

    daddr_t     ic_ib[NIADDR];  /* 88: indirect blocks                      */ 

    long        ic_flags;       /* 100: status, currently unused            */ 

    long        ic_blocks;      /* 104: blocks actually held                */ 

    long        ic_gen;         /* 108: generation number                   */ 

    long        ic_mode_reserv; /* 112: reserved                            */ 

    uid_t       ic_uid;         /* 116: long EFT version of uid             */ 

    gid_t       ic_gid;         /* 120: long EFT version of gid             */ 
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    ulong       ic_oeftflag;    /* 124: reserved                            */ 

}; 

 

struct dinode { 

    union { 

        struct  icommon di_icom; 

        char    di_size[128]; 

    } di_un; 

}; 

 

#define di_ic           di_un.di_icom 

#define di_mode         di_ic.ic_smode 

#define di_nlink        di_ic.ic_nlink 

#define di_uid          di_ic.ic_uid 

#define di_gid          di_ic.ic_gid 

#define di_smode        di_ic.ic_smode 

#define di_suid         di_ic.ic_suid 

#define di_sgid         di_ic.ic_sgid 

#if defined(vax) || defined(i386) 

#define di_size         di_ic.ic_size.val[0] 

#endif 

#if defined(mc68000) || defined(sparc) || defined(u3b2) || defined(u3b15) 

#define di_size         di_ic.ic_size.val[1] 

#endif 

#define di_db           di_ic.ic_db 

#define di_ib           di_ic.ic_ib 

#define di_atime        di_ic.ic_atime 

#define di_mtime        di_ic.ic_mtime 

#define di_ctime        di_ic.ic_ctime 

#define di_ordev        di_ic.ic_db[0] 

#define di_blocks       di_ic.ic_blocks 

#define di_gen          di_ic.ic_gen 

The di_mode, di_nlink, di_uid, di_gid, di_size, di_atime, di_mtime, and di_ctime 

elements of this structure have the obvious meanings. These are copied to the struct stat 

structure when the stat or fstat functions are called. 

The di_db array stores the addresses of the first NDADDR data blocks in the file. These are called 

direct blocks, because their addresses are stored directly in the i-node. The value of NDADDR can 

vary, but is usually 12. The di_ib array stores NIADDR levels of indirect blocks. As with NDADDR, 

the value of NIADDR can vary, but is almost always 3. 

The first element of the di_ib array contains the address of a singly-indirect block. This block is 

used to store the addresses of more direct blocks. Thus, for a file system block size of 8192, the first 

level of indirection allows another 2048 data blocks to be addressed. 

The second element of the di_ib array contains the address of a doubly-indirect block. This block 

is used to store the addresses of more singly-indirect blocks. Thus, for our 8192-byte block size, the 

second level of indirection allows another 2048 singly-indirect blocks to be addressed, which in turn 
means that over four million additional data blocks can be addressed. 
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The third element of the di_ib array, of course, contains the address of a triply indirect block. This 
block is used to store the addresses of more doubly-indirect blocks. A triply-indirect block allows 

over eight trillion more data blocks to be addressed. 

Cylinder Groups 

In the original UNIX file system, the i-node structures were stored on the disk immediately 

following the super block, and then the data blocks followed the i-nodes. This is a simple layout, 

but results in a lot of back-and-forth head motion when accessing files. The Fast File System solves 

this problem by dividing the disk into several groups of cylinders called, appropriately, cylinder 

groups. 

Each cylinder group contains a structure defining bookkeeping information for the group, a 

redundant copy of the super block, some i-node structures, and data blocks. The cylinder group 

bookkeeping information includes a list of which inodes in the group are in use, and which disk 

blocks are not in use. The cylinder group concept allows a file's data blocks to be laid out as much 

as possible in a contiguous fashion, minimizing the rotational latency from one block to the next. 

The cylinder group information is stored in a structure of type struct cg, defined in the include 
file sys/fs/ufs_fs.h: 

struct  cg { 

    struct      cg *cg_link;          /* linked list of cyl groups          */ 

    long        cg_magic;             /* magic number                       */ 

    time_t      cg_time;              /* time last written                  */ 

    long        cg_cgx;               /* we are the cgx'th cylinder group   */ 

    short       cg_ncyl;              /* number of cyl's this cg            */ 

    short       cg_niblk;             /* number of inode blocks this cg     */ 

    long        cg_ndblk;             /* number of data blocks this cg      */ 

    struct      csum cg_cs;           /* cylinder summary information       */ 

    long        cg_rotor;             /* position of last used block        */ 

    long        cg_frotor;            /* position of last used frag         */ 

    long        cg_irotor;            /* position of last used inode        */ 

    long        cg_frsum[MAXFRAG];    /* counts of available frags          */ 

    long        cg_btotoff;           /* (long) block totals per cylinder   */ 

    long        cg_boff;              /* (short) free block positions       */ 

    long        cg_iusedoff;          /* (char) used inode map              */ 

    long        cg_freeoff;           /* (u_char) free block map            */ 

    long        cg_nextfreeoff;       /* (u_char) next available space      */ 

    long        cg_sparecon[16];      /* reserved for future use            */ 

    u_char      cg_space[1];          /* space for cylinder group maps      */ 

/* actually longer */ 

}; 

Putting it All Together 

Example B-2 shows a program that reads file system data structures directly from the disk to 

calculate the disk usage for each user. Running this program requires the ability to read the 

character-special device for the file system, which usually means it must be run as the super-user. 

This example will not work on IRIX 5.x, which uses the EFS file system. 
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Example B-2: diskuse 

#include <sys/param.h> 

#include <sys/time.h> 

#include <sys/vnode.h> 

#include <sys/fs/ufs_inode.h> 

#include <sys/fs/ufs_fs.h> 

#include <unistd.h> 

#include <limits.h> 

#include <fcntl.h> 

#include <stdio.h> 

#include <sys/vfstab.h> 

#include <pwd.h> 

 

#define sblock  sb_un.u_sblock 

 

/* 

 * We need a union to hold the super block, because it takes up an 

 * entire disk block (the smallest unit in which you can read), but 

 * the structure is not actually that big. 

 */ 

union { 

    struct fs u_sblock; 

    char      u_dummy[SBSIZE]; 

} sb_un; 

 

/* 

 * Keep track of usage with this.  We need to save the uid so that 

 * we can sort the array by number of blocks used. 

 */ 

struct usage { 

    int     u_uid; 

    size_t  u_blocks; 

} usageByUid[UID_MAX]; 

 

/* 

 * Name of the file system defaults file. 

 */ 

char    *vfstabFile = "/etc/vfstab"; 

 

int diskuse(char *); 

int bread(int, daddr_t, char *, int); 

int compare(const void *, const void *); 

 

int 

main(int argc, char **argv) 

{ 

    int n; 

    FILE *fp; 

    char *fsname; 

    struct passwd *pwd; 

    struct vfstab vfstab; 

 

    /* 

     * Open vfstab. 

     */ 

    if ((fp = fopen(vfstabFile, "r")) == NULL) { 
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        perror(vfstabFile); 

        exit(1); 

    } 

 

    /* 

     * For each file system... 

     */ 

    while (--argc) { 

        fsname = *++argv; 

 

        /* 

         * Rewind vfstab. 

         */ 

        rewind(fp); 

 

        /* 

         * Look up the file system so we can get the 

         * character device it's on. 

         */ 

        if (getvfsfile(fp, &vfstab, fsname) != 0) { 

            fprintf(stderr, "%s: not found in %s.\n", fsname, vfstabFile); 

            continue; 

        } 

 

        /* 

         * Zero out our counters. 

         */ 

        memset(usageByUid, 0, UID_MAX * sizeof(struct usage)); 

 

        /* 

         * Put the uids in the counters.  The array is 

         * initially in uid order, but later we sort it 

         * by blocks. 

         */ 

        for (n = 0; n < UID_MAX; n++) 

            usageByUid[n].u_uid = n; 

 

        /* 

         * Calculate disk usage. 

         */ 

        if (diskuse(vfstab.vfs_fsckdev) < 0) 

            continue; 

 

        /* 

         * Sort the usage array by blocks. 

         */ 

        qsort(usageByUid, UID_MAX, sizeof(struct usage), compare); 

 

        /* 

         * Print a header. 

         */ 

        printf("%s (%s):\n", vfstab.vfs_mountp, vfstab.vfs_fsckdev); 

 

        /* 

         * Print the usage information. 

         */ 

        for (n = 0; n < UID_MAX; n++) { 

            /* 
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             * Skip users with no usage. 

             */ 

            if (usageByUid[n].u_blocks == 0) 

                continue; 

 

            /* 

             * Look up the login name.  If not found, 

             * use the user-id. 

             */ 

            if ((pwd = getpwuid(usageByUid[n].u_uid)) != NULL) 

                printf("\t%-10s", pwd->pw_name); 

            else 

                printf("\t#%-9d", usageByUid[n].u_uid); 

 

            /* 

             * Print the usage.  The number we have is in 

             * 512-byte (actually DEV_BSIZE) blocks; we 

             * convert this to kbytes. 

             */ 

            printf("\t%8d\n", usageByUid[n].u_blocks / 2); 

        } 

 

        putchar('\n'); 

    } 

 

    fclose(fp); 

    exit(0); 

} 

 

/* 

 * diskuse - tabulate disk usage for the named device. 

 */ 

int 

diskuse(char *device) 

{ 

    ino_t ino; 

    daddr_t iblk; 

    int i, fd, nfiles; 

    struct dinode itab[MAXBSIZE / sizeof(struct dinode)]; 

 

    /* 

     * Open the device for reading. 

     */ 

    if ((fd = open(device, O_RDONLY)) < 0) { 

        perror(device); 

        return(-1); 

    } 

 

    /* 

     * Sync everything out to disk. 

     */ 

    (void) sync(); 

 

    /* 

     * Read in the superblock. 

     */ 

    if (bread(fd, SBLOCK, (char *) &sblock, SBSIZE) < 0) { 

        (void) close(fd); 
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        return(-1); 

    } 

 

    /* 

     * The number of files (number of inodes) is equal to 

     * the number of inodes per cylinder group times the 

     * number of cylinder groups. 

     */ 

    nfiles = sblock.fs_ipg * sblock.fs_ncg; 

 

    for (ino = 0; ino < nfiles; ) { 

        /* 

         * Read in the inode table for this cylinder group.  The 

         * fsbtodb macro converts a file system block number to 

         * a disk block number.  The itod macro converts an inode 

         * number to its file system block number. 

         */ 

        iblk = fsbtodb(&sblock, itod(&sblock, ino)); 

 

        if (bread(fd, iblk, (char *) itab, sblock.fs_bsize) < 0) { 

            (void) close(fd); 

            return(-1); 

        } 

 

        /* 

         * For each inode... 

         */ 

        for (i = 0; i < INOPB(&sblock) && ino < nfiles; i++, ino++) { 

            /* 

             * Inodes 0 and 1 are not used. 

             */ 

            if (ino < UFSROOTINO) 

                continue; 

 

            /* 

             * Skip unallocated inodes. 

             */ 

            if ((itab[i].di_mode & IFMT) == 0) 

                continue; 

 

            /* 

             * Count the blocks as used. 

             */ 

            usageByUid[itab[i].di_uid].u_blocks += itab[i].di_blocks; 

        } 

    } 

 

    return(0); 

} 

 

/* 

 * bread - read count bytes into buf, starting at disk block blockno. 

 */ 

int 

bread(int fd, daddr_t blockno, char *buf, int count) 

{ 

    /* 

     * Seek to the right place. 
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     */ 

    if (lseek(fd, (long) blockno * DEV_BSIZE, SEEK_SET) < 0) { 

        perror("lseek"); 

        return(-1); 

    } 

 

    /* 

     * Read in the data. 

     */ 

    if ((count = read(fd, buf, count)) < 0) { 

        perror("read"); 

        return(-1); 

    } 

 

    return(count); 

} 

 

/* 

 * compare - compare two usage structures for qsort. 

 */ 

int 

compare(const void *a, const void *b) 

{ 

    struct usage *aa, *bb; 

 

    aa = (struct usage *) a; 

    bb = (struct usage *) b; 

 

    return(bb->u_blocks - aa->u_blocks); 

} 

# diskuse /usr 

/usr (/dev/rdsk/c0t3d0s5): 

        root               58148 

        bin                52888 

        lp                  2289 

        uucp                 779 

        sys                    1 

        adm                    1 

The program begins by using the getvfsfile function to determine the character-special device 
for the file system. It then opens this device for reading. The first thing read from the disk is the 

super block. This is used to determine the number of i-node structures in the file system, which is 

computed by multiplying the number of cylinder groups by the number of i-nodes per cylinder 

group. The program then enters a loop, reading through all the groups of i-nodes. On each pass 

through the outer loop, a block of i-nodes is read in from the disk. The inner loop iterates over the 

block of i-nodes, and for each allocated i-node, records the number of blocks used by that file. 

This program does not read the data blocks associated with each file, since the information it needs 
is recorded in the i-node itself. To read the data blocks, it is necessary to first read the direct blocks, 

and then the indirect blocks. This can be done in a recursive function, as shown by the code in 

Example B-3. 

This example will not work on IRIX 5.x, which uses the EFS file system. 
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Example B-3: readblocks.c 

#include <sys/param.h> 

#include <sys/time.h> 

#include <sys/vnode.h> 

#include <sys/fs/ufs_inode.h> 

#include <sys/fs/ufs_fs.h> 

#include <unistd.h> 

 

int bread(int, daddr_t, char *, int); 

int readDataBlocks(int, struct fs *, struct dinode *, int (*)(char *, int)); 

int readIndirect(int, struct fs *, daddr_t, int, int *, int (*)(char *, int)); 

 

int 

readDataBlocks(int fd, struct fs *sblock, struct dinode *dp, 

               int (*fn)(char *, int)) 

{ 

    int i, n, count; 

    char block[MAXBSIZE]; 

 

    /* 

     * Read the direct blocks.  There are NDADDR of them. 

     */ 

    count = dp->di_size; 

 

    for (i = 0; i < NDADDR && count > 0; i++) { 

        /* 

         * Read in the block from disk. 

         */ 

        n = min(count, sblock->fs_bsize); 

 

        if (bread(fd, fsbtodb(sblock, dp->di_db[i]), block, n) < 0) 

            return(-1); 

 

        count -= n; 

 

        /* 

         * Call the user's function on the block. 

         */ 

        (*fn)(block, n); 

    } 

 

    /* 

     * Now read the indirect blocks.  There are NIADDR of them. 

     * Recall that the first address is a singly indirect block, 

     * the second is a doubly indirect block, and so on. 

     */ 

    for (i = 0; i < NIADDR && count > 0; i++) { 

        if (readIndirect(fd, sblock, dp->di_ib[i], i, &count, fn) < 0) 

            return(-1); 

    } 

 

    return(0); 

} 

 

int 

readIndirect(int fd, struct fs *sblock, daddr_t blkno, int level, int *count, 
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             int (*fn)(char *, int)) 

{ 

    int i, n; 

    char block[MAXBSIZE]; 

    daddr_t idblk[MAXBSIZE / sizeof(daddr_t)]; 

 

    /* 

     * Read the block in from disk. 

     */ 

    if (blkno) 

        bread(fd, fsbtodb(sblock, blkno), (char *) idblk, sblock->fs_bsize); 

    else 

        memset(idblk, 0, sizeof(idblk)); 

 

    /* 

     * If level is zero, then this block contains disk block 

     * addresses (i.e., it's singly indirect).  If level is 

     * non-zero, then this block contains addresses of more 

     * indirect blocks. 

     */ 

    if (level == 0) { 

        /* 

         * Read the disk blocks.  There are NINDIR 

         * of them. 

         */ 

        for (i = 0; i < NINDIR(sblock) && *count > 0; i++) { 

            n = min(*count, sblock->fs_bsize); 

 

            if (bread(fd, fsbtodb(sblock, idblk[i]), block, n) < 0) 

                return(-1); 

 

            *count -= n; 

 

            /* 

             * Call the user's function. 

             */ 

            (*fn)(block, n); 

        } 

    } 

    else { 

        /* 

         * Decrement the level. 

         */ 

        level--; 

 

        /* 

         * Handle the next level of indirection by calling 

         * ourselves recursively with each address in this 

         * block. 

         */ 

        for (i = 0; i < NINDIR(sblock); i++) { 

            n = readIndirect(fd, sblock, idblk[i], level, count, fn); 

 

            if (n < 0) 

                return(-1); 

        } 

    } 
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    return(0); 

} 

 

/* 

 * bread - read count bytes into buf, starting at disk block blockno. 

 */ 

int 

bread(int fd, daddr_t blockno, char *buf, int count) 

{ 

    /* 

     * Seek to the right place. 

     */ 

    if (lseek(fd, (long) blockno * DEV_BSIZE, SEEK_SET) < 0) { 

        perror("lseek"); 

        return(-1); 

    } 

 

    /* 

     * Read in the data. 

     */ 

    if ((count = read(fd, buf, count)) < 0) { 

        perror("read"); 

        return(-1); 

    } 

 

    return(count); 

} 

Summary 

Reading a file system's data structures directly off the disk is not immensely difficult, but is hindered 

by the fact that there is very little documentation available on the structures used to implement the 

file system. A number of the fields in these structures are stored in various units (e.g., file system 

blocks), and must be converted to other units (e.g., disk blocks) to be used. The units used, as well 

as the formulas to convert them, are not generally documented. 

There is nothing inherently “wrong” with reading a file system in this way; indeed, sometimes it is 

necessary. However, it is relatively non-portable, and also requires privileged processes. Both of 

these concerns must be addressed when making any decision about going through the kernel or 

reading the file system directly. 

 





 

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 487 
 

Appendix C 
The /proc File System 

In older versions of UNIX, access to process data such as that obtained by the ps command is 

obtained by reading kernel memory directly. This process, aside from being very complex, requires 

super-user permissions and is inherently non-portable. To get around these problems, and to provide 

a general interface to process' memory images, SVR4 (as well as some other newer versions) offer 

the /proc file system. 

NOTE 

Because it does not provide the /proc file system, the information in this appendix does not 

apply to HP-UX 10.x. 

The /proc file system contains one file for each process currently running on the system; the name 

of the file is the same as the process-id for the process. The owner of the file is set to the process' 

real user-id, and the permission bits are set such that the file is readable and writable only by its 

owner. The super-user, of course, may open, read, and write any file (process). For security reasons, 

an open of a file in /proc fails unless both the user-id and group-id of the caller match those of the 

process and the process' object file is readable by the caller. Files corresponding to set-user-id and 

set-group-id processes may be opened only by the super-user. 

The interface to the /proc file system is through the normal file system system calls: open, close, 

read, write, and ioctl. An open for reading and writing enables control of the process; this is 
used by debuggers and the like. An open for reading only allows inspection but not control of the 

process; this is used by ps and so forth. The control of processes as performed by debuggers is 

beyond the scope of this book; we will discuss only the features for process inspection here. 

Information about a process is obtained via the ioctl function: 

#include <sys/types.h> 

#include <sys/signal.h> 

#include <sys/fault.h> 

#include <sys/syscall.h> 

#include <sys/procfs.h> 

 

int ioctl(int fd, int code, void *ptr); 
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The fd parameter is a file descriptor for the open process, code is a code describing the operation 

to be performed (see below), and ptr is a pointer to a structure in which to store results. The 

structure type varies depending on the value of code. The ioctl function returns 0 on success; if 

it fails it returns –1 and stores an error indication in errno. 

Obtaining Process Status 

The PIOCSTATUS code returns status information for the open process, and places it into a structure 

of type prstatus_t, which looks like this in Solaris 2.x (it's slightly different in IRIX 5.x): 

typedef struct prstatus { 

    long        pr_flags;       /* Flags (see below)                        */ 

    short       pr_why;         /* Reason for process stop (if stopped)     */ 

    short       pr_what;        /* More detailed reason                     */ 

    siginfo_t pr_info;          /* Info associated with signal or fault     */ 

    short       pr_cursig;      /* Current signal                           */ 

    u_short     pr_nlwp;        /* Number of lwps in the process            */ 

    sigset_t pr_sigpend;        /* Set of signals pending to the process    */ 

    sigset_t pr_sighold;        /* Set of signals held (blocked) by the lwp */ 

    struct      sigaltstack pr_altstack; /* Alternate signal stack info     */ 

    struct      sigaction pr_action; /* Signal action for current signal    */ 

    pid_t       pr_pid;         /* Process id                               */ 

    pid_t       pr_ppid;        /* Parent process id                        */ 

    pid_t       pr_pgrp;        /* Process group id                         */ 

    pid_t       pr_sid;         /* Session id                               */ 

    timestruc_t pr_utime;       /* Process user cpu time                    */ 

    timestruc_t pr_stime;       /* Process system cpu time                  */ 

    timestruc_t pr_cutime;      /* Sum of children's user times             */ 

    timestruc_t pr_cstime;      /* Sum of children's system times           */ 

    char        pr_clname[PRCLSZ]; /* Scheduling class name                 */ 

    short       pr_syscall;     /* System call number (if in syscall)       */ 

    short       pr_nsysarg;     /* Number of arguments to this syscall      */ 

    long        pr_sysarg[PRSYSARGS]; /* Arguments to this syscall          */ 

    id_t        pr_who;         /* Specific lwp identifier                  */ 

    sigset_t pr_lwppend;        /* Set of signals pending to the lwp        */ 

    struct ucontext *pr_oldcontext; /* Address of previous ucontext         */ 

    caddr_t     pr_brkbase;     /* Address of the process heap              */ 

    u_long      pr_brksize;     /* Size of the process heap, in bytes       */ 

    caddr_t     pr_stkbase;     /* Address of the process stack             */ 

    u_long      pr_stksize;     /* Size of the process stack, in bytes      */ 

    short       pr_processor;   /* processor which last ran this LWP        */ 

    short       pr_bind;        /* processor LWP bound to or PBIND_NONE     */ 

    long        pr_instr;       /* Current instruction                      */ 

    prgregset_t pr_reg;         /* General registers                        */ 

 prstatus_t; 

Some of the more interesting fields of this structure are: 

pr_pid The process' process-id. 

pr_ppid The process' parent process-id. 
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pr_pgrp The process' process-group-id. 

pr_sid The process' session-id. 

pr_utime The amount of user time the process has accumulated. User time is accumulated 

when the CPU is executing the process' program code. The timestruc_t 

structure is similar to a struct timeval, except that it contains elements for 
seconds and nanoseconds (as opposed to seconds and microseconds). The 

elements of the structure are tv_sec and tv_nsec, respectively. 

pr_stime The amount of system time the process has accumulated. System time is 

accumulated when the CPU is executing operating system kernel code on behalf 

of the process; in other words, this is the amount of time the process has spent 

doing system calls. 

pr_cutime The sum of the user time accumulated by all of the process' children. This 

number includes only those processes that have exited and been waited on. 

pr_cstime The sum of the system time accumulated by all of the process' children. This 

number includes only those processes that have exited and been waited on. 

pr_brksize The size in bytes of the process' break, the amount of memory that has been 

allocated via the brk and sbrk system calls. Generally, this number gives the 

amount of memory the process has dynamically allocated using malloc and its 
associated routines. 

pr_stksize The size in bytes of the process' stack. The stack grows automatically as more 
space is needed. 

Obtaining Process Information 

The PIOCPSINFO code returns miscellaneous information about the process such as that used by 

the ps command, and stores it in a structure of type prpsinfo_t, which looks like this in Solaris 
2.x (it's slightly different in IRIX 5.x): 

typedef struct prpsinfo { 

    char      pr_state;       /* numeric process state (see pr_sname)       */ 

    char      pr_sname;       /* printable character representing pr_state  */ 

    char      pr_zomb;        /* !=0: process terminated but not waited for */ 

    char      pr_nice;        /* nice for cpu usage                         */ 

    u_long    pr_flag;        /* process flags                              */ 

    uid_t     pr_uid;         /* real user id                               */ 

    gid_t     pr_gid;         /* real group id                              */ 

    pid_t     pr_pid;         /* unique process id                          */ 

    pid_t     pr_ppid;        /* process id of parent                       */ 

    pid_t     pr_pgrp;        /* pid of process group leader                */ 

    pid_t     pr_sid;         /* session id                                 */ 

    caddr_t   pr_addr;        /* physical address of process                */ 

    long      pr_size;        /* size of process image in pages             */ 

    long      pr_rssize;      /* resident set size in pages                 */ 
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    caddr_t   pr_wchan;       /* wait addr for sleeping process             */ 

    timestruc_t pr_start;     /* process start time, sec+nsec since epoch   */ 

    timestruc_t pr_time;      /* usr+sys cpu time for this process          */ 

    long      pr_pri;         /* priority, high value is high priority      */ 

    char      pr_oldpri;      /* pre-SVR4, low value is high priority       */ 

    char      pr_cpu;         /* pre-SVR4, cpu usage for scheduling         */ 

    o_dev_t   pr_ottydev;     /* short tty device number                    */ 

    dev_t     pr_lttydev;     /* controlling tty device (PRNODEV if none)   */ 

    char      pr_clname[PRCLSZ];      /* scheduling class name              */ 

    char      pr_fname[PRFNSZ];       /* last component of execed pathname  */ 

    char      pr_psargs[PRARGSZ];     /* initial characters of arg list     */ 

    short     pr_syscall;     /* system call number (if in syscall)         */ 

    short     pr_fill; 

    timestruc_t pr_ctime;     /* usr+sys cpu time for reaped children       */ 

    u_long    pr_bysize;      /* size of process image in bytes             */ 

    u_long    pr_byrssize;    /* resident set size in bytes                 */ 

    int       pr_argc;        /* initial argument count                     */ 

    char      **pr_argv;      /* initial argument vector                    */ 

    char      **pr_envp;      /* initial environment vector                 */ 

    int       pr_wstat;       /* if zombie, the wait() status               */ 

    long      pr_filler[11];  /* for future expansion                       */ 

} prpsinfo_t; 

Some of the more interesting fields of this structure are: 

pr_sname A character representation of the process' current state. The possible values 

are: 

I Idle; the process is being created. 

O The process is currently running on a processor. 

R Runnable; the process is on the run queue. 

S Sleeping; the process is waiting for an event to complete (such as 

device input/output). 

T Stopped (traced); the process has been stopped by a signal or 

because another process is tracing it. 

X SXBRK status; the process is waiting for more primary memory. 

Z Zombie; the process has exited, but its parent has not waited for it 

yet. 
 

pr_nice The process' nice value (see Chapter 11, Processes). 

pr_uid The process' user-id. 

pr_gid The process' group-id. 

pr_pid The process' process-id. 

pr_ppid The process' parent process-id. 

pr_pgrp The process' process-group-id. 
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pr_sid The process' session-id. 

pr_start The time the process started; this can be printed with the ctime function, 
among others. 

pr_time The sum of the process' user and system times. 

pr_ctime The sum of the process' child process' user and system times. This value only 

includes processes that have exited and been waited on. 

pr_pri The process' scheduling priority; higher values are better than lower ones. 

pr_lttydev The major/minor device numbers of the controlling terminal, or PRNODEV if 
there isn't one. 

pr_fname The last component of the exec'd path name, i.e., the name of the command. 

pr_psargs The first several bytes of the command and its argument list. 

pr_bysize The size of the process (text segment, data segment, and stack) in bytes. 

pr_byrssize The size of the process' resident set size, the amount of memory the process 

is actually taking up (which, because of demand paging, is usually much 

smaller than its total size). 

Obtaining Process Resource Usage 

The PIOCUSAGE code obtains the process' resource usage information and stores it in a structure of 

type prusage_t: 

typedef struct prusage { 

    id_t              pr_lwpid;       /* lwp id.  0: process or defunct     */ 

    u_long            pr_count;       /* number of contributing lwps        */ 

    timestruc_t         pr_tstamp;    /* current time stamp                 */ 

    timestruc_t         pr_create;    /* process/lwp creation time stamp    */ 

    timestruc_t         pr_term;      /* process/lwp termination time stamp */ 

    timestruc_t         pr_rtime;     /* total lwp real (elapsed) time      */ 

    timestruc_t         pr_utime;     /* user level CPU time                */ 

    timestruc_t         pr_stime;     /* system call CPU time               */ 

    timestruc_t         pr_ttime;     /* other system trap CPU time         */ 

    timestruc_t         pr_tftime;    /* text page fault sleep time         */ 

    timestruc_t         pr_dftime;    /* data page fault sleep time         */ 

    timestruc_t         pr_kftime;    /* kernel page fault sleep time       */ 

    timestruc_t         pr_ltime;     /* user lock wait sleep time          */ 

    timestruc_t         pr_slptime;   /* all other sleep time               */ 

    timestruc_t         pr_wtime;     /* wait-cpu (latency) time            */ 

    timestruc_t         pr_stoptime;  /* stopped time                       */ 

    timestruc_t         filltime[6];  /* filler for future expansion        */ 

    u_long            pr_minf;        /* minor page faults                  */ 

    u_long            pr_majf;        /* major page faults                  */ 

    u_long            pr_nswap;       /* swaps                              */ 

    u_long            pr_inblk;       /* input blocks                       */ 

    u_long            pr_oublk;       /* output blocks                      */ 
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    u_long            pr_msnd;        /* messages sent                      */ 

    u_long            pr_mrcv;        /* messages received                  */ 

    u_long            pr_sigs;        /* signals received                   */ 

    u_long            pr_vctx;        /* voluntary context switches         */ 

    u_long            pr_ictx;        /* involuntary context switches       */ 

    u_long            pr_sysc;        /* system calls                       */ 

    u_long            pr_ioch;        /* chars read and written             */ 

    u_long            filler[10];     /* filler for future expansion        */ 

 prusage_t; 

Some of the more interesting fields of this structure are: 

pr_rtime The elapsed time since the process was created. 

pr_utime The amount of user time used by the process. 

pr_stime The amount of time spent by the process in system calls. 

pr_slptime The amount of time the process has spent sleeping. 

pr_stoptime The amount of time the process has spent in the stopped state. 

pr_minf The number of minor page faults incurred by the process. A minor page fault 

is one that can be serviced without any I/O activity by reclaiming the page 

from the list of pages awaiting reallocation. 

pr_majf The number of major page faults incurred by the process. A major page fault 

is one that requires I/O activity to service. 

pr_nswap The number of times the process has been swapped out of main memory. 

pr_inblk The number of blocks input for the process by the file system. 

pr_oublk The number of blocks output for the process by the file system. 

pr_sigs The number of signals received by the process. 

pr_sysc The number of system calls made by the process. 

pr_ioch The number of characters input and output by the process to terminal-like 

devices. 

An Example 

Example C-1 shows a program that uses the PIOCPSINFO and PIOCUSAGE codes to obtain 
information about the processes named on the command line. For each process, it prints out several 

of the fields in these structures. 

Example C-1: procinfo 

#include <sys/param.h> 

#include <sys/signal.h> 
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#include <sys/fault.h> 

#include <sys/syscall.h> 

#include <sys/procfs.h> 

#include <sys/stat.h> 

#include <dirent.h> 

#include <fcntl.h> 

#include <stdio.h> 

 

char    *procFileSystem = "/proc"; 

 

void    printTime(char *, time_t); 

void    printProcInfo(prpsinfo_t *, prusage_t *); 

 

int 

main(int argc, char **argv) 

{ 

    int fd; 

    prusage_t prusage; 

    prpsinfo_t prpsinfo; 

    char procname[BUFSIZ], tmp[BUFSIZ]; 

 

    /* 

     * For each argument... 

     */ 

    while (--argc) { 

        /* 

         * Create the file name in the proc file system. 

         */ 

        sprintf(procname, "%s/%s", procFileSystem, *++argv); 

 

        /* 

         * Open the file. 

         */ 

        if ((fd = open(procname, O_RDONLY)) < 0) { 

            perror(procname); 

            continue; 

        } 

 

        /* 

         * Get the "ps" information. 

         */ 

        if (ioctl(fd, PIOCPSINFO, &prpsinfo) < 0) { 

            sprintf(tmp, "%s: PIOCPSINFO", procname); 

            perror(tmp); 

            close(fd); 

            continue; 

        } 

 

        /* 

         * Get the resource usage information. 

         */ 

        if (ioctl(fd, PIOCUSAGE, &prusage) < 0) { 

            sprintf(tmp, "%s: PIOCPRUSAGE", procname); 

            perror(tmp); 

            close(fd); 

            continue; 

        } 
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        /* 

         * Print the information. 

         */ 

        printProcInfo(&prpsinfo, &prusage); 

        close(fd); 

    } 

 

    exit(0); 

} 

 

/* 

 * printProcInfo - print "interesting" fields of the prpsinfo and prusage 

 *         structures. 

 */ 

void 

printProcInfo(prpsinfo_t *prpsinfo, prusage_t *prusage) 

{ 

    printf("Command: %s\n", prpsinfo->pr_psargs); 

    printf("Started at: %s", ctime(&prpsinfo->pr_start.tv_sec)); 

    printf("Process-ID: %d  Parent Process-ID: %d\n", prpsinfo->pr_pid, 

           prpsinfo->pr_ppid); 

    printf("Process Group Leader: %d  Session-ID: %d\n", prpsinfo->pr_pgrp, 

           prpsinfo->pr_sid); 

    printf("User-ID: %d  Group-ID: %d  ", prpsinfo->pr_uid, prpsinfo->pr_gid); 

    printf("Priority: %d  Nice: %d\n", prpsinfo->pr_pri, prpsinfo->pr_nice); 

    printf("Process Size: %d KB  Resident Set Size: %d KB\n", 

           prpsinfo->pr_bysize / 1024, prpsinfo->pr_byrssize / 1024); 

    printTime("Process Elapsed Time", prusage->pr_rtime.tv_sec); 

    printTime("  Process User CPU Time", prusage->pr_utime.tv_sec); 

    putchar('\n'); 

    printTime("Process System Call Time", prusage->pr_stime.tv_sec); 

    printTime("  Process System Trap Time", prusage->pr_ttime.tv_sec); 

    putchar('\n'); 

    printTime("Process Page Fault Time", prusage->pr_tftime.tv_sec + 

          prusage->pr_dftime.tv_sec + prusage->pr_kftime.tv_sec); 

    printTime("  Process Sleep Time", prusage->pr_ltime.tv_sec + 

          prusage->pr_slptime.tv_sec + prusage->pr_wtime.tv_sec); 

    putchar('\n'); 

    printTime("Process Stopped Time", prusage->pr_stoptime.tv_sec); 

    putchar('\n'); 

    printf("Major Page Faults: %d  Minor Page Faults: %d  Swaps: %d\n", 

           prusage->pr_majf, prusage->pr_minf, prusage->pr_nswap); 

    printf("Input Blocks: %d  Output Blocks: %d  Character I/O: %d\n", 

           prusage->pr_inblk, prusage->pr_oublk, prusage->pr_ioch); 

    printf("System Calls: %d  Signals Received: %d\n", prusage->pr_sysc, 

           prusage->pr_sigs); 

    putchar('\n'); 

} 

 

/* 

 * printTime - convert a number of seconds to days, hours, minutes, and 

 *         seconds, and print it out. 

 */ 

void 

printTime(char *str, time_t secs) 

{ 

    int d, h, m, s; 
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    s = secs; 

 

    /* 

     * Simple conversion to days, hours, minutes, seconds. 

     */ 

    d = s / 86400; 

    s = s % 86400; 

    h = s / 3600; 

    s = s % 3600; 

    m = s / 60; 

    s = s % 60; 

 

    /* 

     * Print the label. 

     */ 

    printf("%s: ", str); 

 

    /* 

     * Print the days. 

     */ 

    if (d) 

        printf("%dd", d); 

 

    /* 

     * Print the hours, minutes, and seconds. 

     */ 

    printf("%02d:%02d:%02d", h, m, s); 

} 

% procinfo 12567 

Command: /usr/local/bin/emacs appC.sgml 

Started at: Wed Mar 29 14:13:34 1995 

Process-ID: 12567  Parent Process-ID: 262 

Process Group Leader: 12567  Session-ID: 262 

User-ID: 40  Group-ID: 1  Priority: 59  Nice: 20 

Process Size: 4028 KB  Resident Set Size: 700 KB 

Process Elapsed Time: 01:17:16  Process User CPU Time: 00:01:35 

Process System Call Time: 00:00:25  Process System Trap Time: 00:00:00 

Process Page Fault Time: 00:00:02  Process Sleep Time: 01:15:11 

Process Stopped Time: 00:00:00 

Major Page Faults: 154  Minor Page Faults: 0  Swaps: 0 

Input Blocks: 17  Output Blocks: 107  Character I/O: 2004141 

System Calls: 150222  Signals Received: 4 

Without super-user privileges, this program can obtain information about any process owned by its 

caller that is not running with set-user-id or set-group-id permissions. 

Summary 

This appendix has only touched on the capabilities available with the /proc file system. Debuggers 

and similar programs can make use of a number of other features to control the execution of a 

process, examine its memory, and even change its memory. The complete set of available commands 

is described in the proc (4) manual page. 
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The /proc file system is a substantial improvement over the old method of obtaining process 

information, reading kernel memory and the swap area. Not only is it simpler for the programmer 

to implement, it is also portable between different versions of the operating system that support 

/proc. 

.
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Appendix D 
Pseudo-Terminals 

There are times when it's useful to be able to execute a program on a terminal, but to have the input 

and output of the program connected to a program, rather than to the keyboard and screen. For 

example, some programs, such as passwd, insist on reading from the terminal—it is impossible to 

talk to programs like this via a pipe. Programs like rlogin and telnet need to set up a “terminal” on 

the remote host so that things like text editors will work, but their input and output must be 

connected, via the network, to the user's keyboard and screen. There are also times when it is 
convenient to be able to record all the input and output of a session; this is what the script utility 

does. 

Most modern versions of UNIX provide a facility called pseudo-terminals that can be used for just 

these purposes. A pseudo-terminal is a software construct that acts as if it were a terminal. A 

program running on a pseudo-terminal has no way of knowing whether it is attached to a real 

terminal or a pseudo-terminal (other than looking at the name of the device, anyway). 

A pseudo-terminal is implemented as two devices, called the master and the slave. The master is 

opened by the controlling process (the one that wants to be the “keyboard” and ”screen”). The slave 

is opened by some process as its standard input and output; the process will see the slave as a 

terminal device. When the controlling process writes to the master device, the data will appear as 

input on the slave device, where the process there will see it as if it were typed on the keyboard. 
When the process running on the slave device writes to the “screen,” it will appear as input that the 

controlling process may read from the master device. 

BSD Pseudo-Terminals 

On BSD systems, where pseudo-terminals were first implemented, master pseudo-terminals have 

device names like /dev/ptyXX, and slave pseudo-terminals have names like /dev/ttyXX. The 

procedure for opening a pseudo-terminal is to cycle through all the possible masters, trying to open 

one. If the open fails, the device is already in use. Once the master side is open, the slave side can 
also be opened. The code looks something like this: 

char *s, *t; 

int master, slave; 
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char mastername[32], slavename[32]; 

. 

. 

. 

 

for (s = "pqrs"; *s != '\0'; s++) { 

    for (t = "0123456789abcdef"; *t != '\0'; t++) { 

        sprintf(mastername, "/dev/pty%c%c", *s, *t); 

        if ((master = open(mastername, O_RDWR)) >= 0) 

            goto out; 

    } 

} 

 

if (*s == '\0' && *t == '\0') 

    /* all pseudo-terminals in use */ 

 

sprintf(slavename, "/dev/tty%c%c", *s, *t); 

 

slave = open(slavename, O_RDWR); 

. 

. 

. 

The problem with this approach, aside from the fact that if the number of pseudo-terminals is ever 

increased the program will have to be modified to know about the new device names, is that there 

is a race condition between opening the master and opening the slave. This race condition presents 
certain security problems. 

SVR4 Pseudo-Terminals 

In SVR4, the race condition has been solved by creating a special “clone device” to use when 

allocating a master pseudo-terminal. The clone device, when opened, returns a file descriptor 

referring to an unused pseudo-terminal, and locks out the corresponding slave device so that it 

cannot be opened by another process. The process that has the master side open can then unlock the 

slave and open it itself. 

Example D-1 shows an implementation of the script command. This program executes a copy of 

the user's shell on a pseudo-terminal, and copies all the user's input and output to a file. In this way, 

a record is made of the entire session. 

Example D-1: script 

#include <sys/types.h> 

#include <sys/ioctl.h> 

#include <sys/time.h> 

#include <stropts.h> 

#include <termios.h> 

#include <stdlib.h> 

#include <signal.h> 

#include <unistd.h> 

#include <string.h> 
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#include <fcntl.h> 

#include <stdio.h> 

 

#define MAXARGS 32                          /* max. cmd. args     */ 

 

char        *shell = "/bin/sh";             /* default shell      */ 

char        *filename = "scriptfile";       /* default file       */ 

char        *mastername = "/dev/ptmx";      /* pty clone device   */ 

 

int     master;                             /* master side of pty */ 

FILE        *script;                        /* script file        */ 

struct termios  newtty, origtty;            /* tty modes          */ 

 

void    finish(int); 

int ptyopen(char *, struct termios *); 

 

int 

main(int argc, char **argv) 

{ 

    char *p; 

    int n, nfd; 

    time_t clock; 

    fd_set readmask; 

    char buf[BUFSIZ]; 

 

    /* 

     * If an argument is given, it's a new script file. 

     */ 

    if (argc > 1) 

        filename = *++argv; 

 

    /* 

     * 1. Use the user's shell, if known. 

     */ 

    if ((p = getenv("SHELL")) != NULL) 

        shell = p; 

 

    /* 

     * 2. Open the script file. 

     */ 

    if ((script = fopen(filename, "w")) == NULL) { 

        perror(filename); 

        exit(1); 

    } 

 

    /* 

     * 3. Get the tty modes.  We'll use these both to 

     *    set modes on the pseudo-tty, and to restore 

     *    modes on the user's tty. 

     */ 

    if (tcgetattr(0, &origtty) < 0) { 

        perror("tcgetattr: stdin"); 

        exit(1); 

    } 

 

    /* 

     * 4. Grab a pseudo-tty and start a shell on it. 

     */ 
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    if ((master = ptyopen(shell, &origtty)) < 0) 

        exit(1); 

 

    /* 

     * Print a little start message. 

     */ 

    time(&clock); 

    fprintf(script, "Script started on %s", ctime(&clock)); 

    printf("Script started, file is %s\n", filename); 

 

    /* 

     * 5. We need to catch signals, now that we're going 

     *    to change tty modes. 

     */ 

    sigset(SIGINT, finish); 

    sigset(SIGQUIT, finish); 

 

    /* 

     * 6. Change the user's tty modes such that pretty 

     *    much everything gets passed through to the 

     *    pseudo-tty.  Set "raw" mode so that we can pass 

     *    characters as they're typed, etc. 

     */ 

    newtty = origtty; 

    newtty.c_cc[VMIN] = 1; 

    newtty.c_cc[VTIME] = 0; 

    newtty.c_oflag &= ~OPOST; 

    newtty.c_lflag &= ~(ICANON|ISIG|ECHO); 

    newtty.c_iflag &= ~(INLCR|IGNCR|ICRNL|IUCLC|IXON); 

 

    /* 

     * 7. Set the new tty modes. 

     */ 

    if (tcsetattr(0, TCSANOW, &newtty) < 0) { 

        perror("tcsetattr: stdin"); 

        exit(1); 

    } 

 

    /* 

     * 8. Now just sit in a loop reading from the keyboard and 

     *    writing to the pseudo-tty, and reading from the 

     *    pseudo-tty and writing to the screen and the script file. 

     */ 

    for (;;) { 

        FD_ZERO(&readmask); 

        FD_SET(master, &readmask); 

        FD_SET(0, &readmask); 

        nfd = master + 1; 

 

        /* 

         * 8a. Wait for something to read. 

         */ 

        n = select(nfd, &readmask, (fd_set *) 0, (fd_set *) 0, 

                   (struct timeval *) 0); 

 

        if (n < 0) { 

            perror("select"); 

            exit(1); 
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        } 

 

        /* 

         * 8b. The user typed something... read it and pass 

         *      it on to the pseudo-tty. 

         */ 

        if (FD_ISSET(0, &readmask)) { 

            if ((n = read(0, buf, sizeof(buf))) < 0) { 

                perror("read: stdin"); 

                exit(1); 

            } 

 

            /* 

             * The user typed end-of-file; we're 

             * done. 

             */ 

            if (n == 0) 

                finish(0); 

 

            if (write(master, buf, n) != n) { 

                perror("write: pty"); 

                exit(1); 

            } 

        } 

 

        /* 

         * 8c. There's output on the pseudo-tty... read it and 

         *     pass it on to the screen and the script file. 

         */ 

        if (FD_ISSET(master, &readmask)) { 

            /* 

             * The process died. 

             */ 

            if ((n = read(master, buf, sizeof(buf))) <= 0) 

                finish(0); 

 

            fwrite(buf, sizeof(char), n, script); 

            write(1, buf, n); 

        } 

    } 

} 

 

/* 

 * ptyopen - start command on a pseudo-tty and return a file descriptor 

 *       with which to speak to it. 

 */ 

int 

ptyopen(char *command, struct termios *ttymodes) 

{ 

    char *p; 

    pid_t pid; 

    char *slavename; 

    char *args[MAXARGS]; 

    int nargs, master, slave; 

 

    /* 

     * 9. Break the command into arguments. 

     */ 
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    nargs = 0; 

    p = strtok(command, " \t\n"); 

 

    do { 

        if (nargs == MAXARGS) { 

            fprintf(stderr, "too many arguments.\n"); 

            return(-1); 

        } 

 

        args[nargs++] = p; 

        p = strtok(NULL, " \t\n"); 

    } while (p != NULL); 

 

    args[nargs] = NULL; 

 

    /* 

     * 10. Get a master pseudo-tty. 

     */ 

    if ((master = open(mastername, O_RDWR)) < 0) { 

        perror(mastername); 

        return(-1); 

    } 

 

    /* 

     * 11. Set the permissions on the slave. 

     */ 

    if (grantpt(master) < 0) { 

        perror("granpt"); 

        close(master); 

        return(-1); 

    } 

 

    /* 

     * 12. Unlock the slave. 

     */ 

    if (unlockpt(master) < 0) { 

        perror("unlockpt"); 

        close(master); 

        return(-1); 

    } 

 

    /* 

     * 13. Start a child process. 

     */ 

    if ((pid = fork()) < 0) { 

        perror("fork"); 

        close(master); 

        return(-1); 

    } 

 

    /* 

     * 14. The child process will open the slave, which will become 

     *     its controlling terminal. 

     */ 

    if (pid == 0) { 

        /* 

         * 14a. Get rid of our current controlling terminal. 

         */ 
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        setsid(); 

 

        /* 

         * 14b. Get the name of the slave pseudo-tty. 

         */ 

        if ((slavename = ptsname(master)) == NULL) { 

            perror("ptsname"); 

            close(master); 

            exit(1); 

        } 

 

        /* 

         * 14c. Open the slave pseudo-tty. 

         */ 

        if ((slave = open(slavename, O_RDWR)) < 0) { 

            perror(slavename); 

            close(master); 

            exit(1); 

        } 

 

        /* 

         * 14d. Push the hardware emulation module. 

         */ 

        if (ioctl(slave, I_PUSH, "ptem") < 0) { 

            perror("ioctl: ptem"); 

            close(master); 

            close(slave); 

            exit(1); 

        } 

 

        /* 

         * 14e. Push the line discipline module. 

         */ 

        if (ioctl(slave, I_PUSH, "ldterm") < 0) { 

            perror("ioctl: ldterm"); 

            close(master); 

            close(slave); 

            exit(1); 

        } 

 

        /* 

         * 14f. Copy the user's terminal modes to the slave 

         *      pseudo-tty. 

         */ 

        if (tcsetattr(slave, TCSANOW, ttymodes) < 0) { 

            perror("tcsetattr: pty"); 

            close(master); 

            close(slave); 

            exit(1); 

        } 

 

        /* 

         * 14g. Close the script file and the master; these 

         *      are not needed in the slave. 

         */ 

        fclose(script); 

        close(master); 
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        /* 

         * 14h. Set the slave to be our standard input, output, 

         *      and error output.  Then get rid of the original 

         *      file descriptor. 

         */ 

        dup2(slave, 0); 

        dup2(slave, 1); 

        dup2(slave, 2); 

        close(slave); 

 

        /* 

         * 14i. Execute the command. 

         */ 

        execv(args[0], args); 

        perror(args[0]); 

        exit(1); 

    } 

 

    /* 

     * 15. Return the file descriptor for communicating with 

     *     the process to our caller. 

     */ 

    return(master); 

} 

 

/* 

 * finish - called when we're done. 

 */ 

void 

finish(int sig) 

{ 

    time_t clock; 

 

    /* 

     * 16. Restore our original tty modes. 

     */ 

    if (tcsetattr(0, TCSANOW, &origtty) < 0) 

        perror("tcsetattr: stdin"); 

 

    /* 

     * Print a finishing message. 

     */ 

    time(&clock); 

    fprintf(script, "\nScript finished at %s", ctime(&clock)); 

    printf("\nScript done, file is %s\n", filename); 

 

    /* 

     * 17. All done. 

     */ 

    fclose(script); 

    close(master); 

    exit(0); 

} 

The steps executed in this program are as follows. 

1. Use the getenv function (Chapter 16) to obtain the name of the user's shell. If this cannot be 
determined, use /bin/sh as the default. 
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2. Create the script file, where all input and output will be recorded. 

3. Get the modes of the user's terminal (Chapter 12). These are needed both to copy them to the 

pseudo-terminal, and to change them on the user's terminal. 

4. Call the ptyopen function to allocate a pseudo-terminal and start the shell on it. This function 
is described beginning with Step 9, below. 

5. Catch the interrupt and quit signals (the ones that can be generated from the keyboard). We 

need to do this before we change the user's terminal modes; once they are changed, catching 

these signals will allow us to restore them if an interrupt is received. 

6. Change the user's terminal modes (Chapter 12). Because the keyboard and screen will now be 
tied to the pseudo-terminal through our program, most of the terminal input/output processing 

on the user's real terminal needs to be disabled. In particular, ECHO needs to be turned off (since 

the operating system will echo all characters “typed” on the pseudo-terminal, the controlling 
process will see them as “output” on the pseudo-terminal). The terminal is also placed in “raw” 

mode so that as each character is typed it will be read and delivered to the pseudo-terminal. 

7. Actually change the user's terminal modes. 

8. The controlling program now enters a loop: 

a. The select function (Chapter 6) is used to monitor both the standard input (the keyboard) 
and the “screen” of the pseudo-terminal. The function will block until something is 

available to be read. 

b. If the standard input (file descriptor 0) appears in the bitmask returned by select, this 
means the user has typed something on the keyboard. The program must read this, and then 

write it to the pseudo-terminal. The process attached to the pseudo-terminal will see this as 

“keyboard” input. Note that the user's input is not written to the script file here; if the 

pseudo-terminal has ECHO turned on, the operating system will echo the characters and 
they will be seen as output. 

c. If the pseudo-terminal file descriptor appears in the bitmask returned by select, this 
means the program attached to the pseudo-terminal has written some output to its “screen.”  

The controlling program must read this data and print it to the user's screen, and also copy 

it to the script file. 

The program continues in this loop until a read from either the user's terminal or the pseudo-

terminal returns 0, indicating either that the user has typed an end-of-file character, or the 

program on the pseudo-terminal has exited. 

9. The ptyopen function is where all the pseudo-terminal allocation code is executed. The 
function begins by breaking the command it is to execute into individual arguments. 

10. Pseudo-terminal allocation begins by opening the clone device, /dev/ptmx. If the open succeeds, 

it will return a file descriptor that may be used to read and write to the master side of an unused 

pseudo-terminal. 
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11. The grantpt function is used to change the modes and ownership of the slave pseudo-terminal 
device to those of the user calling the functon: 

#include <stdlib.h> 

 

int grantpt(int fd); 

The argument should be the file descriptor attached to the master pseudo-terminal. The granpt 

function works by executing a small set-user-id “root” program to do its work. 

12. The unlockpt function is used to clear the lock on the slave pseudo-terminal device, so that it 

can be opened: 

#include <stdlib.h> 

 

int unlockpt(int fd); 

Again, the argument should be the file descriptor attached to the master pseudo-terminal. 

13. Now a child process is started, to execute the command given as an argument to ptyopen 
(Chapter 11). 

The child process is responsible for opening the slave side of the pseudo-terminal and executing 

the command: 

a. The setsid function (Chapter 11) is called to begin a new session. This has the side effect 
of clearing the process' controlling terminal. 

b. The ptsname function returns the device name of the slave side of the pseudo-terminal: 

#include <stdlib.h> 

 

char *ptsname(int fd); 

The fd parameter should be the file descriptor attached to the master side of the pseudo-

terminal. 

c. The slave side of the pseudo-terminal is opened. As a side effect of this, because the process 

has no controlling terminal (it was cleared by setsid), the slave device will become the 
process' controlling terminal. This means that any signals generated from the slave side's 

“keyboard” will be sent to the slave process, since it is the session leader. 

d. The “ptem” module is pushed onto the stream from the pseudo-terminal. This is a module 
built into the kernel that allows the pseudo-terminal to emulate a real terminal. It intercepts 

all the terminal mode change requests and adjusts the pseudo-terminal driver to behave 

accordingly. 

e. The “ldterm” module is pushed onto the stream from the pseudo-terminal. This is a 
module built into the kernel that allows the pseudo-terminal to emulate the line discipline 

functions (Chapter 12) associated with real terminal devices. 
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f. The user's terminal modes are copied to the pseudo-terminal. 

g. The script file and master pseudo-terminal file descriptors, opened in the parent process, 

are closed. The child process has no use for these. 

h. The dup2 function (Chapter 3) is used to attach the child process' standard input, output, 
and error output to the slave pseudo-terminal. The original file descriptor is then closed, as 

it is no longer needed. 

i. The command is executed. When this succeeds, the command will be running on the slave 

pseudo-terminal (which it will see as a real terminal), and the command's input and output 

will be attached to the controlling process through the master side of the pseudo-terminal. 

14. The file descriptor attached to the master side of the pseudo-terminal is returned to the 

controlling process, which can now use it to communicate with the command. 

Once the command on the pseudo-terminal has exited or the user has typed end-of-file, the 

program restores the user's original terminal modes. 

It then closes the script file, and closes the master pseudo-terminal. If the process on the pseudo-

terminal has not yet exited, this close will generate an end-of-file on its input, causing it to exit 

now. 

The clone device method of allocating pseudo-terminals is generally easier to deal with than the old 

Berkeley method. It is not the only solution though; other vendors have developed other methods 

for opening pseudo-terminals. However, most of them are similar to one of the two methods 

described here, and differ only in some minor details. 

 

Appendix E 
Accessing the Network at the 

Link Level 

In Chapters 14 and 15, we described the operating system interfaces provided to allow programs to 

communicate via a network. There are some tasks, however, that cannot be provided via these 

interfaces. 
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Low-level Protocol Interfaces 

The socket and TLI functions provide the programmer with an interface to protocols designed for 

end-to-end communication. The underlying network, however, is hidden from the programmer by 

these interfaces. There is no way for the programmer to tell (and no need for her to know) whether 

the underlying network hardware is Ethernet, Fiber Distributed Data Interface (FDDI), 

Asynchronous Transfer Mode (ATM), or something else altogether. 

This has advantages, in that the programmer's life is made simpler by not having to worry about 

esoterica such as packet formats and other details that really have nothing to do with the task at 

hand, getting data from here to there. However, there are disadvantages too. Because the interfaces 

hide the underlying network from the programmer, there is no way to use those interfaces to send 

or receive data at the underlying network level. 

There are valid reasons for doing this, however. One of them is shown in the in.rarpd command. 

When a diskless workstation is first turned on, it has no notion of what its network address is. 
Because it has an Ethernet chip, it has an Ethernet address, but this is not the same as an Internet 

Protocol address. And it needs to know its Internet Protocol address to talk to its server and begin 

the boot process. So, it sends out a special Ethernet broadcast packet using the Reverse Address 

Resolution Protocol (RARP), asking “Hey, does anybody know what my Internet Protocol address 

is?''  The in.rarpd program, running on a server, receives this packet, looks up the workstation's 

address in a database (usually the /etc/ethers file), and sends a RARP reply packet back to the 

workstation saying, “Yes, your address is AAA.BBB.CCC.DDD.'' 

The RARP protocol is not an Internet protocol like TCP and UDP are. The RARP protocol has its 

very own packet format that is defined differently for each network medium on which it is used. 

Thus, in.rarpd cannot use the socket or TLI interfaces to send or receive RARP packets. Instead, it 

must monitor the Ethernet directly waiting for these packets to arrive, and it must then format its 
own Ethernet packets in which to send its responses. 

Network Monitoring 

The other task that cannot be performed through the socket and TLI interfaces is network 

monitoring. A network monitoring program, such as the snoop program included with  SVR4, must 

be able to receive all packets on a network, regardless of who they are addressed to. But the socket 

and TLI interfaces require a program to specify an address at which it wishes to receive data. There 

is no way to specify “give me everything on the network, including all the stuff addressed to other 
machines.” 

In order to monitor the network, a network monitoring program has to be able to place the system's 

network interface(s) into promiscuous mode. In this mode, the network interface copies all packets 

from the network rather than just those that are destined for the local host. The operating system 

must then arrange for the monitoring program to be given a copy of all of these packets. While it's 

doing that though, it also has to continue processing all the packets addressed to it in the normal 

fashion, or else turning on a network monitor would turn off everything else. 
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The Data Link Provider Interface 

SVR4 provides a means for solving both of the above problems, called the Data Link Provider 

Interface (DLPI). The DLPI is a STREAMS-based interface to the low-level network device drivers. 

It is similar in functionality to the Network Interface Tap (NIT) provided in SunOS 4.x, and the 

Berkeley Packet Filter (BPF) provided by recent versions of BSD UNIX. Most other vendors 

provide similar functionality. 

NOTE 

In order to preserve backward compatibility with their earlier releases, Silicon Graphics 

does not supply the DLPI interface. Instead, they provide the snoop interface with IRIX 

5.x. 

A program accesses the DLPI through a file descriptor. When the program reads from the file 

descriptor, it receives raw network packets with all of their headers still attached. The program is 

responsible for extracting necessary information from these headers, stripping them off to get at the 
data, and so forth. Depending on the type of packet and what is to be learned from it, this can be a 

complex task. When the program writes to the file descriptor, the data is transmitted on the network. 

The program is responsible for formatting its data into a legal packet format including headers, 

checksums, and so forth. If anything, this can be even more complex than reading packets. 

Example Program 

Because of the complexity involved in accessing the network at the link layer, it would require too 

much space to include an example in the text of this appendix. Aside from the code to set up the 
DLPI, which is straight-forward but non-trivial, it is necessary to show how to process the data once 

it is received, or how to format it in order to be sent. However, the topic is of sufficient interest to 

systems programmers that a sample program has been included in the electronic distribution of the 

example programs for this book. The preface to this book provides instructions on how to obtain 

this distribution. 

The example program is a complete packet monitoring tool. It monitors a network and captures all 

packets transiting it. These packets are broken down into numerous classifications (local or foreign 

traffic, network protocol, application protocol, etc.) and recorded in a series of counters. The 

counters are saved periodically to a file, from which they can later be added together and printed 

out. The tool can thus be used to perform long-term traffic analysis of a network. The program is 

well-commented, and should be sufficient for understanding not only the DLPI, but also how to 
process the various packet formats transmitted on an Ethernet network. 

NOTE 

This example program makes use of extensions to the DLPI interface that are only available 

in Solaris 2.x. 
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Additional Documentation 

In addition to the example program, the electronic distribution includes a copy of a white paper 

written by Neal Nuckolls of Sun Microsystems' Internet Engineering group. This paper, which 

comes complete with a set of working example programs, describes each feature of the DLPI in 

detail, and shows how to use it both to receive packets as well as send them. 
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