
 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 FOR PERSONAL, NON-COMMERCIAL USE ONLY

NOTE TO THE READER

When I wrote this book 18 years ago, I volunteered to be one of the first O’Reilly authors to use

DocBook semantic tagging to mark up the text, rather than the traditional troff formatting markup.

Norman Walsh, Leonard Muellner, and Lar Kaufman at O’Reilly developed customized tools and

gtroff macros to convert the SGML-tagged manuscript into something printable. It was an

interesting time, as DocBook and the tools were evolving as I was writing the book. Unfortunately,

in 2012, while the old O’Reilly tools and gtroff macro packages are still available, the tools they
depended on (DocBook and groff, primarily) have evolved in ways that are not backward-

compatible (at least not without a lot of work).

To produce this on-line version of the book, I had hoped to be able to use one of the several

DocBook-to-Microsoft® Word conversion tools. Unfortunately, these tools are ridiculously

complex, and at any rate, don’t appear to either (a) support older SGML DocBook versions

(DocBook is XML now) or (b) fully support WordML (XML for Word). So, I was stuck doing

things the hard way. This document is the result of preprocessing the original DocBook manuscript

files, importing them into Word, and then applying appropriate paragraph styles and fonts to make

the text look reasonably similar to the original book (and also make it similar to the electronic

version of my earlier programming book, Using C on the UNIX System). With regard to content, I

have corrected a couple of errors that were identified by readers after the book was published, but

otherwise the manuscript is unchanged. The index has been omitted; use the search function.

Please note that I have not made any attempt to update the text to match current UNIX (or Linux)

systems. While most of the material is still accurate, you should expect to encounter some (usually

minor) differences in include file locations, names of constants, and so forth. The compiler

information in the preface is out of date, and later versions of Solaris got rid of the BSD Source

Compatibility Package in favor of just including those routines in the standard libraries. The chapter

on the Transport Layer Interface is probably of historical interest only; although it still exists, it

never caught on, and nobody uses it. The material in the appendices is still generally accurate, but

some of the details, such as the names of kernel variables, etc. have probably changed.

This document is for your personal, non-commercial use only. You may also use it as a bibliographic

reference in any works that you are writing. Any commercial use of this document, including

printing and distribution to groups of people (such as a classroom) is prohibited without my prior
written permission.

I hope you find the information in this book useful.

David A. Curry

August 2014

 FOR PERSONAL, NON-COMMERCIAL USE ONLY

UNIX Systems Programming

for SVR4

David A. Curry

O’Reilly & Associates, Inc.
Bonn • Cambridge • Paris • Sebastopol • Tokyo

 FOR PERSONAL, NON-COMMERCIAL USE ONLY

UNIX Systems Programming for SVR4
by David A. Curry

Original printed edition Copyright © 1996 O’Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America

Published by O’Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Editor: Mike Loukides

Production Editor: Nancy Crumpton

Internet Download Edition Copyright © 2009, 2010, 2012, 2014 David A. Curry

Printing History:

July 1996: First Edition

June 2012: First Internet Download Edition

August 2014: Second Internet Download Edition

Nutshell Handbook and the Nutshell Handbook logo are registered trademarks of O’Reilly &

Associates, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are

classified as trademarks. Where those designations appear in this book, and O’Reilly &

Associates, Inc. was aware of a trademark claim, the designations have been printed in caps or

initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes no

responsibility for errors or omissions, or for damages resulting from the use of the information

contained herein.

This book is printed on acid-free paper with 85% recycled content, 15% post-consumer waste.

O’Reilly & Associates is committed to using paper with the highest recycled content available

consistent with high quality.

ISBN: 1-56592-163-1

 FOR PERSONAL, NON-COMMERCIAL USE ONLY iii

TABLE OF CONTENTS

Preface .. 1

About This Book .. 1

Scope of This Book .. 2

Audience .. 4

Assumptions .. 4

Font Conventions ... 5

Example Programs ... 6
FTP ... 6
Ftpmail .. 7
BITFTP ... 7
UUCP ... 8

Comments and Questions ... 9

Acknowledgements .. 9

Chapter 1 Introduction to SVR4 ... 11

Standards Compliance .. 12

Notes on Compilers .. 13
The HP-UX 10.x Compiler .. 14
The IRIX 5.x Compiler .. 14
The Solaris 2.x Compiler ... 14
The GNU C Compiler .. 15

The BSD Source Compatibility Package ... 16

Chapter 2 Utility Routines ... 19

Manipulating Character Strings... 19
Computing the Length of a String .. 20
Comparing Character Strings ... 22
Copying Character Strings ... 25
Searching Character Strings ... 27
Non-Standard Character String Functions .. 34

Searching Character Strings .. 34
Processing Character Escape Sequences .. 34
Breaking Up Delimited Strings ... 35
Translating Characters .. 36

Porting Notes... 37

Manipulating Byte Strings .. 38

iv FOR PERSONAL, NON-COMMERCIAL USE ONLY

Comparing Byte Strings ... 38
Copying Byte Strings ... 38
Searching Byte Strings... 39
Initializing Byte Strings ... 40
Porting Notes... 40

Manipulating Character Classes .. 41
Testing Character Class Membership ... 41
Changing Character Class Membership .. 42
Porting Notes... 44

Dynamic Memory Allocation ... 44
Porting Notes... 48

Manipulating Temporary Files .. 49
Porting Notes... 51

Parsing Command Line Arguments... 51
Porting Notes... 56

Miscellaneous .. 56
String to Number Conversion... 56
Printing Error Messages ... 57

Porting Notes .. 58
Pausing a Program ... 58
Exiting a Program .. 59

Chapter Summary ... 59

Chapter 3 Low-Level I/O Routines ... 61

File Descriptors .. 61

Opening and Closing Files .. 62
Porting Notes... 64

Input and Output .. 64

Repositioning the Read/Write Offset ... 68
Porting Notes... 70

Duplicating File Descriptors ... 71

Chapter Summary ... 71

Chapter 4 The Standard I/O Library ... 73

Data Types and Constants ... 74

Opening and Closing Files .. 75
Porting Notes... 76

Character-Based Input and Output .. 76

Line-Based Input and Output .. 79

 FOR PERSONAL, NON-COMMERCIAL USE ONLY v

Buffer-Based Input and Output ... 81

Formatted Input and Output .. 83
The printf Functions ... 83

Integers .. 84
Floating-Point Numbers .. 85
Characters and Character Strings ... 86
Field Width and Precision ... 86
Variable Argument Lists ... 89

The scanf Functions ... 89
Integers .. 90
Floating-Point Numbers .. 91
Characters and Character Strings ... 92
Field Widths ... 92

Porting Notes... 93

Repositioning the Read/Write Offset ... 93

Reassigning a File Pointer .. 96

Buffering.. 97
Porting Notes... 98

Stream Status ... 98

File Pointers and File Descriptors ... 99

Chapter Summary ... 99

Chapter 5 Files and Directories ... 101

File System Concepts ... 101

The UNIX File System ... 102
Basic File Types .. 102

Regular Files .. 102
Special Files ... 103
Directories .. 103

Removable File Systems .. 104
Device Numbers .. 105
I-Numbers, the I-List, and I-Nodes ... 105
Other File Types .. 106

Hard Links ... 106
Symbolic Links... 106
FIFOs ... 107
UNIX-Domain Sockets ... 107

Obtaining File Attributes .. 107
Getting Information From an I-Node .. 107
Getting Information From a Symbolic Link .. 115
Determining the Accessibility of a File .. 116

vi FOR PERSONAL, NON-COMMERCIAL USE ONLY

Changing File Attributes ... 117
Changing a File's Permission Bits .. 117
Changing a File's Ownership.. 119
Changing a File's Size .. 120
Changing a File's Access and Modification Times .. 120

Creating and Deleting Files and Directories .. 121
Deleting Files .. 121
Creating and Deleting Directories .. 122
Creating Links ... 122
Renaming Files and Directories ... 123

Working With Directories... 123
Determining the Current Working Directory .. 123

Porting Notes .. 124
Changing the Current Working Directory ... 124
Reading Directories ... 124

Porting Notes .. 129

Chapter Summary ... 129

Chapter 6 Special-Purpose File Operations .. 131

File Descriptor Attributes ... 131

Managing Multiple File Descriptors .. 134
The select Function... 134
The poll Function ... 139

File and Record Locking... 143
Locking Files With fcntl .. 144
Locking Files With lockf .. 146
Porting Notes... 147

Memory-Mapped Files ... 147
Mapping a File Into Memory ... 148
Removing a Mapping .. 150
Changing the Protection Mode of Mapped Segments .. 151
Providing Advice to the System ... 152
Synchronizing Memory With Physical Storage... 152

The /dev/fd File System .. 153

Miscellaneous Functions... 154
Controlling File Creation Modes .. 154
The Root Directory .. 155
Synchronizing a File With the Disk .. 156

Chapter Summary ... 156

 FOR PERSONAL, NON-COMMERCIAL USE ONLY vii

Chapter 7 Time of Day Operations ... 157

The Complexities of Time .. 157

Obtaining the Current Time .. 158
Porting Notes... 159

Obtaining the Local Timezone .. 159
Porting Notes... 160

Converting Between UNIX Time and Human Time .. 161
Porting Notes... 162

Formatting Date Strings .. 163
Porting Notes... 168

Chapter Summary ... 168

Chapter 8 Users and Groups ... 171

Login Names .. 171

The User-Id Number... 172
Porting Notes... 174

The Group-Id Number .. 174
Group Membership .. 175
Porting Notes... 175

The Password File .. 176

The Shadow Password File ... 178

The Group File ... 180

The Utmp and Wtmp Files .. 186
Porting Notes... 192

The Lastlog File ... 193

The Shells File ... 196

Writing Set-User-Id and Set-Group-Id Programs ... 196

Chapter Summary ... 200

Chapter 9 System Configuration and Resource Limits 201

General System Information ... 202
Porting Notes... 205

System Resource Limits ... 205
Porting Notes... 210

Process Resource Limits ... 210
Porting Notes... 212

Resource Utilization Information .. 212
Porting Notes... 213

viii FOR PERSONAL, NON-COMMERCIAL USE ONLY

Chapter Summary ... 214

Chapter 10 Signals ... 217

Signal Concepts.. 218

Basic Signal Handling .. 222
Sending Signals ... 222
Waiting for Signals .. 223
Printing Signal Information.. 224
Handling Signals ... 224

Unreliable Signals .. 226

Reliable signals .. 228
Terminology .. 228
The sigset Function... 229

Porting Note ... 229
Other Functions ... 230

Signals and System Calls .. 232

Using Signals for Timeouts... 233
The setjmp and longjmp Functions .. 236
Interval Timers .. 238

Advanced Signal Handling ... 241
Signal Sets... 241
The sigaction Function .. 242

The siginfo_t Structure... 244
Other Functions ... 246

Sending Signals .. 246
Waiting for Signals to Occur ... 248
Printing Signal Information ... 248
Manipulating the Signal Mask ... 250
Examining the List of Pending Signals .. 250
The setjmp and longjmp Functions, Revisited ... 251

Porting Berkeley Signals to SVR4 .. 251
The sigvec Function... 252
Handler Calling Conventions ... 253
Signal Masks ... 253
Waiting for Signals .. 254
The setjmp and longjmp Functions .. 254

Chapter Summary ... 254

Chapter 11 Processes ... 255

Process Concepts .. 256

 FOR PERSONAL, NON-COMMERCIAL USE ONLY ix

Process Identifiers ... 256
System Processes .. 256

Termination Status... 257
Zombie Processes ... 257
Orphaned Processes .. 258

Process Groups .. 258
The Process Group Leader .. 259

Sessions .. 259
The Session Leader ... 259

The Controlling Terminal .. 259
Priorities.. 260

Program Termination.. 261

Simple Program Execution ... 262

Advanced Program Execution ... 265
Creating a New Process ... 265
Executing a Program ... 268
Collecting the Process Termination Status .. 271
The vfork Function ... 279

Redirecting Input and Output .. 279

Job Control .. 285

Timing Process Execution .. 286

Porting Notes ... 287

Chapter Summary ... 288

Chapter 12 Terminals .. 291

Overview of Terminal I/O .. 292
Special Characters ... 293
Terminal Characteristics .. 296

Terminal-Related Functions .. 298

POSIX Terminal Control .. 299
Examining and Changing Terminal Attributes .. 302
Baud Rates .. 302
Job Control Functions .. 303
Other Functions ... 303
Canonical Mode .. 304
Non-Canonical Mode... 306

Emulating Cbreak and Raw Modes ... 309

Pre-POSIX Terminal Control .. 310
System V Terminal Control ... 310
BSD Terminal Control ... 311

x FOR PERSONAL, NON-COMMERCIAL USE ONLY

Line Disciplines .. 312
The struct sgttyb Structure ... 312
The struct tchars Structure ... 313
The Local Mode Word .. 314
The struct ltchars Structure ... 314

Terminal Window Size ... 315

Chapter Summary ... 315

Chapter 13 Interprocess Communication ... 317

Pipes .. 317
Simple Pipe Creation ... 318
Advanced Pipe Creation .. 321

FIFOs... 326

UNIX-Domain Sockets ... 329
Creating a Socket... 329
Server-Side Functions .. 330

Naming a Socket... 330
Waiting for Connections ... 331
Accepting Connections ... 331

Connecting to a Server ... 331
Transferring Data .. 332
Destroying the Communications Channel ... 333
Putting it All Together ... 333

System V IPC Functions ... 336
Message Queues .. 337
Shared Memory ... 342
Semaphores ... 344
Chapter Summary .. 347

Chapter 14 Networking with Sockets .. 349

Networking Concepts ... 350
Host Names and Addresses .. 350

Host Names .. 350
Host Addresses ... 351

Services and Port Numbers .. 353
Network Byte Order .. 354

Creating a Socket ... 355

Server-Side Functions... 356
Naming a Socket ... 356
Waiting for Connections .. 357
Accepting Connections .. 357

 FOR PERSONAL, NON-COMMERCIAL USE ONLY xi

Client-Side Functions ... 357
Connecting to a Server ... 357
Transferring Data .. 358
Destroying the Communications Channel ... 359

Putting it All Together .. 359

Other Functions .. 364
Socket “Names” .. 364
Socket Options .. 365
Address Conversion ... 366
The Berkeley “R” Commands .. 367
The inetd Super-Server .. 368

Chapter Summary ... 368

Chapter 15 Networking with TLI.. 371

The netbuf Structure ... 372

Network Selection .. 372
The Network Configuration Library ... 374
The NETPATH Library ... 375
Network Selection in HP-UX 10.x ... 376

Name To Address Translation... 377
Name To Address Translation in HP-UX 10.x .. 379

TLI Utility Functions .. 380

Transport Endpoint Management .. 381
Creating a Transport Endpoint ... 381
Binding an Address to a Transport Endpoint .. 383
Closing a Transport Endpoint... 383
Transport Endpoint Options ... 384

Connectionless Service ... 385

Connection-Oriented Service .. 391
Server-Side Functions .. 391

Waiting for Connections ... 391
Accepting and Rejecting Connections ... 391

Client-Side Functions .. 392
Transferring Data .. 393
Connection Release ... 394

Other Functions .. 403
Transport Endpoint Names .. 403
Connection State ... 404
Asynchronous Events .. 404
Address Conversion ... 405

xii FOR PERSONAL, NON-COMMERCIAL USE ONLY

Using read and write with TLI .. 405

Chapter Summary ... 407

Chapter 16 Miscellaneous Routines .. 409

Exiting When Errors Occur... 409

Error Logging... 410

Searching ... 414
Linear Search .. 414
Binary Search .. 417
Hash Tables ... 420
Binary Trees .. 423
Queues .. 426

Sorting ... 427

Environment Variables ... 429

Passwords .. 430

Random Numbers ... 431

Directory Trees .. 432

Database Management .. 437
Portability Notes .. 439

Pattern Matching .. 439
Shell Pattern Matching... 439
Regular Expressions .. 441
Portability Notes .. 445

Internationalization ... 446
Defining the Locale ... 446
Formatting Numbers .. 447
Collating Sequences .. 449

Chapter Summary ... 450

Appendix A Significant Changes in ANSI C ... 450

Tokens ... 451
String Concatenation ... 451
Escape Sequences .. 451

The Preprocessor .. 452
String Substitution ... 452
Character Constants ... 452
Token Pasting .. 453
The #elif Directive .. 453
The #error Directive .. 453

 FOR PERSONAL, NON-COMMERCIAL USE ONLY xiii

Predefined Symbols ... 454
Text After #else and #endif .. 454

Declarations ... 455
The void Type ... 455
The enum Type ... 455
The char Type ... 455
Type Qualifiers.. 455

Functions ... 456
Function Prototypes ... 456

Handling Prototypes in Non-ANSI Environments .. 457
Widened Types.. 459

Expressions .. 460

Summary.. 460

Appendix B Accessing File System Data Structures 461

The Mounted File System Table ... 461

The File System Defaults File ... 463

Obtaining File System Statistics.. 464

Reading File System Data Structures .. 470
Disk Terminology.. 471
The Super Block .. 472
I-Nodes ... 475
Cylinder Groups .. 477
Putting it All Together ... 477

Summary.. 485

Appendix C The /proc File System .. 487

Obtaining Process Status .. 488

Obtaining Process Information.. 489

Obtaining Process Resource Usage ... 491

An Example ... 492

Summary.. 495

Appendix D Pseudo-Terminals .. 497

BSD Pseudo-Terminals .. 497

SVR4 Pseudo-Terminals... 498

Appendix E Accessing the Network at the Link Level 507

Low-level Protocol Interfaces ... 508

xiv FOR PERSONAL, NON-COMMERCIAL USE ONLY

Network Monitoring ... 508

The Data Link Provider Interface .. 509

Example Program ... 509

Additional Documentation .. 510

About the Author ... 511

Colophon .. 513

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 1

Preface

About This Book

When I wrote Using C on the UNIX System in 1988, UNIX was used primarily on large timesharing

systems. It was administered and programmed by centralized staffs, and the everyday users of the

system had little if any need to perform systems programming tasks. However, because there was

not a great deal of third-party software available for UNIX, it was often necessary to “roll your

own.” This meant that you needed to know all about the system calls and library routines provided

by the UNIX operating system. That's what Using C taught you.

Today, things are different. The large UNIX timesharing system is a dinosaur of the past, replaced

by desktop workstations. Centralized staffs of administrators and programmers have diminished or

vanished altogether, leaving the users of these workstations to fend for themselves. But because

UNIX has become so widespread, so has the amount of software available for it—it's quite likely

that as a user of a UNIX workstation you may never need to write a program yourself. Someone has

already written just what you need, and you can either purchase it or obtain it for free via the Internet
or USENET. However, you still need to know all about the system calls and library routines

provided by the UNIX operating system, because many of these packages must be ported from one

version of UNIX to another.

Back in 1988, describing the UNIX programming environment required making allowances for

three principal versions of UNIX: Version 7 (Seventh Edition), System V, and the Berkeley

Software Distribution (BSD). There were no UNIX standards at the time, and each system did things

in a slightly different way. Even within each major version things were different—4.2 BSD did

things differently from 4.1 BSD, System V Release 3 did things differently from System V Release

2, and so forth. This made for a rather messy and confusing book.

Again, things are different today. Although there are more versions of UNIX than ever, they all

share, thanks to standards such as POSIX, ANSI C, and X/Open, a fairly common programming
interface. Unfortunately, as someone once said, “the nice thing about standards is that there are so

many to choose from.” Although most modern versions of UNIX are very similar, each vendor has

added its own little twists, reintroducing the difficulties the standards were supposed to eliminate.

The trick now, rather than describing how to do something on each version of UNIX, is to describe

how to do it on a “standard” version of UNIX and then describe how to port code written on other

versions to this standard version. That's what this book does.

The principal focus of this book, our “standard” version of UNIX, is System V Release 4, henceforth

abbreviated as SVR4. Released in late 1989, SVR4 was intended to merge the best features from

UNIX Systems Programming for SVR4

2 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Berkeley-based systems such as SunOS with the best of System V, provide compatibility with

Microsoft's XENIX system, and conform to the IEEE POSIX standards. Although practically

nobody uses “pure” SVR4 as it was originally released by UNIX System Laboratories, three of the

four largest UNIX workstation vendors (Sun, Hewlett-Packard, and Silicon Graphics) have chosen

it as the base for their most recent operating system releases. Together, these three companies'

products account for over 60% of the UNIX workstation market.

In the following chapters, nearly every SVR4 system call and library routine related to systems

programming is described (libraries for other purposes, such as the math library, are not discussed).

Examples are provided via small code fragments, numerous short demonstration programs, and

several “real world” applications that demonstrate a large number of functions working together.

One of the major features of the book though, is the advice it offers on porting code between other

versions of UNIX and SVR4-based systems. SVR4 is a completely new operating system. The

amount of software currently running under these vendors' earlier, BSD-based systems that needs

to be ported to SVR4 is simply staggering. There are millions of lines of code in the freely available

software packages most people take for granted, such as GNU Emacs, the X Window System, and so

forth. There are probably millions more lines of code in the locally-developed applications in use at

each site. To help with the porting process, most of the chapters in this book contain special sections

targeted specifically at porting code. These sections describe how a task is performed on different
versions of UNIX, and then explain how to change the code for these versions to perform the same

task under SVR4. The porting sections also discuss differences in function names and parameters

between other versions of UNIX and SVR4.

Scope of This Book

The book has been organized in a “bottom up” fashion, first presenting the simple functions and

concepts that form the building blocks for the more complex material at the end of the book.

Chapter 1, Introduction to SVR4, provides a brief history of the development of the UNIX operating

system, culminating in the release of SVR4. The standards with which SVR4 complies are then

presented, followed by some short notes on compiler usage and the BSD Source Compatibility

Package.

Chapter 2, Utility Routines, introduces most of the utility routines provided for manipulating

character strings, byte strings, and character classes, dynamically allocating memory, manipulating

temporary files, and parsing command line arguments. Much of the material in this chapter will be

familiar to many readers, but it provides a common base from which to start.

Chapter 3, Low-Level I/O Routines, describes the low-level UNIX input/output paradigm, in which

buffering and other mundane tasks must be performed by the programmer.

Chapter 4, The Standard I/O Library, describes the high-level UNIX input/output paradigm, in

which buffering and other mundane tasks are performed by a library of functions.

Chapter 5, Files and Directories, introduces the UNIX file system. This includes an overview of

how the file system works, how to examine and change file attributes, how to create and delete files

and directories, and how to traverse directory trees.

Preface

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 3

Chapter 6, Special-Purpose File Operations, describes special-purpose operations on files such as

processing multiple input streams, file and record locking, and memory-mapped files.

Chapter 7, Time of Day Operations, describes how to examine the system's time of day clock, and

the wide variety of functions for reading and printing time and date strings.

Chapter 8, Users and Groups, explains the formats of the password, shadow password, and group

files, and how to obtain information from them. It also describes how to determine who is logged
in, when a user last logged in or out, and how to change a program's effective user-id or group-id.

A special section is included on writing set-user-id programs.

Chapter 9, System Configuration and Resource Limits, describes how to examine and change various

system and user limits such as the host name, maximum number of characters in a file name,

maximum size of a file in bytes, maximum number of open files per process, or the maximum

amount of CPU time a process may consume.

Chapter 10, Signals, explains the concept of signals, including how to send them, ignore them, and

catch them.

Chapter 11, Processes, describes how to create new processes, how to execute other programs, how

to redirect input and output from one process to another, how to use the job control facilities, and

how to time process execution.

Chapter 12, Terminals, explains how to examine and change serial line characteristics such as baud
rate, character echo, input buffering, and special characters.

Chapter 13, Interprocess Communication, describes the mechanisms that allow processes on the

same host to communicate: pipes, FIFOs, UNIX-domain sockets, message queues, semaphores, and

shared memory.

Chapter 14, Networking With Sockets, describes the most common UNIX network programming

interface, Berkeley sockets.

Chapter 15, Networking With TLI, describes the Transport Layer Interface, which is a less popular,

but more flexible interface to network programming.

Chapter 16, Miscellaneous Routines, describes all the “leftover” functions that are generally useful

but don't fit into any of the preceding chapters. This includes routines for exiting, printing and

logging error messages, searching, table lookup, pattern matching, passwords, database
management, modem management, environment variables, random numbers, and regular

expressions.

The appendices provide information on topics that are of less general use than those in the main part

of the book, but are nevertheless important.

Appendix A, Significant Changes in ANSI C, provides a brief summary of the significant differences

between ANSI C and the version of the language described by Kernighan and Ritchie.

Appendix B, Accessing File System Data Structures, describes how to read raw file system data

directly from the disk, as is done by programs such as df, fsck, and ufsdump.

UNIX Systems Programming for SVR4

4 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Appendix C, The /proc File System, explains how to read information directly from process memory,

as is done by programs such as ps.

Appendix D, Pseudo-Terminals, describes how to allocate and use pseudo terminal devices for a

variety of purposes. Both the SVR4 interface and the more common BSD interface are described.

Appendix E, Accessing the Network at the Link Level, describes the Data Link Provider Interface

(DLPI), used for sending and receiving raw network packets. This is used by programs such as
snoop and in.rarpd. Conversion of programs using the SunOS 4.x Network Interface Tap (NIT) to

DLPI is also described.

Audience

This book is intended to serve the following three groups of people:

 UNIX systems programmers who are familiar with some version of UNIX other than SVR4,

particularly SunOS 4.x or BSD, and who are now faced with the daunting task of porting every

program they ever wrote to the new system.

 People who aren’t systems programmers and don’t want to be, but nevertheless must port some

piece of software from some other version of UNIX to SVR4.

 C programmers who wish to move into the area of UNIX systems programming, either for fun

or profit.

Assumptions

This book does not teach the C programming language—although fluency in the language is not
required, it is assumed that you can at least read a C program and figure out what it does.

All of the examples in this book are written in ANSI C. While there are some differences between

ANSI C and K&R C, you shouldn't have any trouble following along even if you've never seen

ANSI C before. However, if you are new to ANSI C, you may wish to skip ahead and read Appendix

A, Significant Changes in ANSI C, first.

It has also been assumed that you are a reasonably savvy UNIX user. You should be familiar with

terms such as “file,” “directory,” “user-id,” “environment variable,” “process-id,” and so forth. You

should also be familiar with your system's C compiler, debugger, and the make utility. If you haven't

learned these things yet, or would like to refresh your memory, you may find the following books,

also published by O'Reilly and Associates, helpful:

 Learning the UNIX Operating System by Grace Todino, John Strang, and Jerry Peek

 UNIX In a Nutshell: For System V and Solaris 2.0 by Daniel Gilly and the staff of O'Reilly and
Associates

 Managing Projects With Make by Andrew Oram and Steve Talbott

Preface

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 5

 Practical C Programming by Steve Oualline.

See the pages at the end of this book for information on how to order these, as well as other O'Reilly

and Associates titles.

Font Conventions

The following conventions are used in this book:

Italic is used for directories and to emphasize new terms and concepts when

they are introduced. Italic is also used to highlight comments in

examples.

Bold is used for C keywords.

Constant Width is used for programs and the elements of a program and in examples to

show the contents of files or the output from commands. A reference in

text to a word or item used in an example of code fragment is also shown

in constant width font.

Constant Bold is used in examples to show commands or other text that should be typed

literally by the user. (For example, rm foo means to type “rm foo”

exactly as it appears in the text or the example.)

Constant Italic is used in examples to show variables for which a context-specifc

substitution should be made. (The variable filename, for example,

would be replaced by some actual filename.)

Quotation marks are used to identify system messages or code fragments in explanatory

text.

% is the UNIX C shell prompt.

$ is the UNIX Bourne shell or Korn shell prompt.

is the UNIX superuser prompt (either Bourne or C shell). We usually use

this for examples that should be executed only by root.

[] surround optional values in a description of program syntax. (The

bracked themselves should never be typed.)

… stands for text (usually computer output) that’s been omitted for clarity

or to save space.

The notation CTRL-X or ^X indicates use of control characters. It means hold down the “control”
key while typing the character “x”. We denote other keys similarly (e.g., RETURN indicates a

carriage return).

All examples of command lines are followed by a RETURN unless otherwise indicated.

UNIX Systems Programming for SVR4

6 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Example Programs

You can obtain the source code for the programs presented in this book from O’Reilly & Associates

through their Internet server.*

The example programs in this book are available electronically in a number of ways: by FTP,

Ftpmail, BITFTP, and UUCP. The cheapest, fastest, and easiest ways are listed first. If you read

from the top down, the first one that works for you is probably the best. Use FTP if you are directly

on the Internet. Use Ftpmail if you are not on the Internet, but can send and receive electronic mail

to Internet sites (this includes Compuserve users). Use BITFTP if you send electronic mail via

BITNET. Use UUCP if none of the above works.

FTP

To use FTP, you need a machine with direct access to the Internet. A sample session is shown, with

what you should type in boldface.

% ftp ftp.uu.net

Connected to ftp.uu.net

220 FTP server (Version 6.21 Tue Mar 10 22:09:55 EST 1992) ready.

Name (ftp.uu.net:joe): anonymous

331 Gues login ok, send domain style e-mail address as password.

Password: yourname@domain.name (use your user name and host here)
230 Guest login ok, access restrictions apply.

ftp> cd /published/oreilly/nutshell/sys.prog

250 CWD command successful.

ftp> binary (Very important! You must specify binary transfer for compressed files.)

200 Type set to I.

ftp> get examples.tar.gz

200 PORT command successful.

150 Opening BINARY mode data connection for examples.tar.gz.

226 Transfer complete.

ftp> quit

221 Goodbye.

%

The file is a compressed tar archive; extract the files from the archive by typing:

% gzcat examples.tar.gz | tar xvf –

System V systems require the following tar command instead:

% gzcat examples.tar.gz | tar xof –

If gzcat is not available on your system, use separate gunzip and tar or shar commands.

% gunzip examples.tar.gz

% tar xvf examples.tar

* [June 2012 update] The examples are available from the author’s web site, http://www.bitsinthewind.com.

Preface

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 7

Ftpmail

Ftpmail is a mail server available to anyone who can send electronic mail to and receive it from

Internet sites. This includes any company or service provider that allows email connections to the

Internet. Here’s how you do it.

You send mail to ftpmail@online.ora.com. In the message body, give the FTP commands you want

to run. The server will run anonymous FTP for you and mail the files back to you. To get a complete

help file, send a message with no subject and the single word “help” in the body.

The following is a sample mail session that should get you the examples. This command send you

a listing of the files in the selected directory and the requested example files. The listing is useful if

there’s a later version of the examples you’re interested in.

% mail ftpmail@oonline.ora.com

Subject:

reply-to username@domain.name (where you want files mailed)
open

cd /published/oreilly/nutshell/sys.prog

mode binary

uuencode

get examples.tar.gz

quit

.

A signature at the end of the message is acceptable as long as it appears after “quit.”

BITFTP

BITFTP is a mail server for BITNET users. You send it electronic mail messages requesting files,

and it sends you back the files by electronic mail. BITFTP currently serves only users who send it

mail from nodes that are directly on BITNET, EARN, or NetNorth. BITFTP is a public service of

Princeton University. Here’s how it works.

To use BITFTP, send mail containing your FTP commands to BITFTP@PUCC. For a complete
help file, send HELP as the message body.

The following is the message body you send to BITFTP:

FTP ftp.uu.net NETDATA

USER anonymous

PASS myname@podunk.edu Put your Internet email address here (not your BITNET address)
CD /published/oreilly/nutshell/sys.prog

DIR

BINARY

GET examples.tar.gz

QUIT

Once you’ve got the desired file, follow the directions under FTP to extract the files from the

archive. Since you are probably not on a UNIX system, you may need to get versions of uudecode,

uncompress, atob, and tar for your system. VMS, DOS, and Mac versions are available.

UNIX Systems Programming for SVR4

8 FOR PERSONAL, NON-COMMERCIAL USE ONLY

UUCP

UUCP is standard on virtually all UNIX systems and is available for IBM-compatible PCs and

Apple Macintoshes. The examples are available by UUCP via modem from UUNET; UUNET’s

connect-time charges apply.

You can get the examples from UUNET whether you have an account there or not. If you or your

company has an account with UUNET, you have a system somewhere with a direct UUCP

connection to UUNET. Find that system, and type:

uucp uunet\!~/published/oreilly/nutshell/sys,prog/examples.tar.gz

youhost\!~/yourname/

The backslashes can be omitted if you use the Bourne shell (sh) instead of csh. The file should

appear some time later (up to a day or more) in the directory /usr/spool/uucppublic/yourname. If

you don’t have an account, but would like one so that you can get electronic mail, contact UUNET

at 703-204-8000.

It’s a good idea to get the file /published/oreilly/ls-lR.Z as a short test file containing the filenames

and sizes of all the files available.

Once you’ve got the desired file, follow the directions under FTP to extract the files from the

archive.

Once you've obtained, uncompressed, and extracted the examples distribution, you will have a

directory called examples which contains subdirectories for each chapter of the book. Within each

chapter's subdirectory, there are four directories: the common directory contains example programs

that work identically across all versions of the operating system discussed in this book, while the

hpux, irix, and solaris directories contain the example programs that differ slightly between the

various operating system versions.

To compile the examples, first change to the examples directory. Then examine and/or edit one of

the Makedefs files, as appropriate for your operating system. These files define the name of the

compiler to use, and the flags to be given to it when compiling the examples. After you've done that,

simply issue the command./build-examples.

The examples in this book have been compiled and tested on the following platforms:

Hardware Operating System Compiler

Sun SPARCstation LX Solaris 2.3 GNU C 2.6.3
Sun SPARCstation 5/70 Solaris 2.3 SPARCompiler C 3.0.1

Sun SPARCstation 20/HS12 Solaris 2.4 SPARCompiler C 3.0.1

Sun SPARCstation 5/85 Solaris 2.5 GNU C 2.7.2

Sun SPARCstation 5/85 Solaris 2.5 SPARCompiler C 4.0

HP 9000/819 HP-UX B.10.0 cc

Silicon Graphics IRIS IRIX 5.3 cc

Preface

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 9

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O’Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

1-800-998-9938 (in the U.S. or Canada)

1-707-829-0515 (international or local)

1-707-829-0104 (FAX)

Acknowledgements

First and foremost, I am grateful to my wife Cathy, without whose love and support this book would

not have been possible. I am also grateful to our sons, Trevor and Sean, who tried their best not to

bother Daddy while he was writing. Thanks, guys.

At O'Reilly and Associates, I would like to thank my editor, Mike Loukides, who provided good

advice and useful comments, as well as patience and understanding, throughout the writing process.

I would also like to thank Tim O'Reilly, who, as before, was a pleasure to work for.

The formatting markup for this book, rather than being done in troff or TeX as most UNIX books

are, was done in the Standard Generalized Markup Language (SGML), specified by the International

Standards Organization as International Standard ISO 8879, with the DocBook Document Type

Definition (DTD) developed by the Davenport Group. As I was one of the first O'Reilly authors to

attempt this, several people at O'Reilly and Associates provided special assistance. I would like to
thank Lenny Muellner, Norm Walsh, and Lar Kaufman for all their work on the new formatting

tools, which they developed as I was writing the book. They worked awfully hard to keep their tools

current with what I was doing at the time, and almost always succeeded. I would also like to thank

Terry Allen, who put up with my questions, complaints, and frustrations as I discovered problems

and needed clarifications with the DocBook DTD.

I would like to thank James Clark, the author of the sgmls validating SGML parser, and Lennart

Staflin, the author of the psgml SGML major mode for GNU Emacs. Both of these tools were

invaluable in the preparation of the manuscript, and both of them were freely available because of

their authors' generosity.

At Hewlett-Packard, I would like to thank Larry Dunkel, who arranged for me to get access to a HP-

UX 10.0 system and answered numerous questions.

At Purdue University, I would like to thank Debi Foster, who worked out all the bureaucratic

mumbo-jumbo to let me use parts of Using C on the UNIX System in this book.

Finally, I would like to thank my reviewers, Casper Dik, Gerry Singleton, and Dave Pfennighaus,

for their patience and attention to detail. The book is better because of their efforts.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 11

Chapter 1
Introduction to SVR4

Between 1969 and 1970, Ken Thompson, Dennis Ritchie, and other members of the Computer

Research Group at Bell Laboratories designed and built the original UNIX operating system on the

by now famous “little-used PDP-7 sitting in the corner.” In 1970, UNIX was ported from the PDP-

7 to a PDP-11/20, along with a text editor and a program called roff, a predecessor to troff. This

UNIX system, running with no memory protection and 500 Kbytes of disk, supported three

concurrent users editing and formatting, and also the original group of people doing further UNIX
development. The documentation for this system, dated November 1971, was labeled “First

Edition.”

Between 1971 and 1979, a number of UNIX variants were created inside Bell Laboratories. The

main version, developed by Thompson and his coworkers, evolved through Version 4 (the first

version written in C), Version 6 (the first version to be licensed outside Bell Labs), and finally

Version 7. Most people would not recognize any of these versions, except perhaps Version 7, as

looking much like the UNIX of today. During this same time, a number of other lesser-known

versions were developed by various groups inside Bell Labs, including PWB/UNIX, MERT, RT,

and CB UNIX. UNIX by this time had been ported to several varieties of PDP-11, the Interdata

8/32, the IBM VM/370 environment, and even the IBM Series 1. Shortly after its release, Version

7 was ported to the VAX and called UNIX 32V.

Outside the Labs, UNIX development took place at several universities, one of the most notable

being the University of California at Berkeley. The first Berkeley Software Distribution (BSD),

based on UNIX Version 6 for the PDP-11, was released in 1977. Other notable releases from

Berkeley included 4.0BSD for the VAX in 1980, 4.1BSD in 1981, 4.2BSD in 1983, and 4.3BSD in

1984. Development continued on the PDP-11 as well, with 2.8BSD in 1982, 2.9BSD in 1983, and

2.10BSD in 1987. These releases essentially ported most of the new software from the 4BSD

releases to the aging PDP-11. In 1993, the Computer Science Research Group at Berkeley made its

last release of UNIX, 4.4BSD, and disbanded.

Meanwhile, back at Bell Laboratories, the UNIX System Development Laboratory had been created.

Between 1977 and 1982, they took several internal variants of UNIX, predominantly PWB/UNIX,

CB UNIX, and UNIX 32V, and merged them into a single commercial system known as System III.

This was the last version of UNIX licensed by AT&T through Western Electric before divestiture
caused by an antitrust suit brought by the U.S. Government broke AT&T into several pieces. As

UNIX Systems Programming for SVR4

12 FOR PERSONAL, NON-COMMERCIAL USE ONLY

part of divestiture, UNIX was given over to AT&T Information Systems, which in early 1983

announced UNIX System V. System V Release 2 (SVR2) was released in 1984, and System V

Release 3 (SVR3) in 1986. Both of these releases became very popular.

In the late 1980s, AT&T and Sun Microsystems entered into a cooperative venture to develop a new

version of UNIX. This version would merge the “best of the best” features from AT&T's SVR3,

Berkeley's 4.3BSD, Sun's SunOS, and Microsoft's XENIX. In November 1989, UNIX System V
Release 4 (SVR4), the result of this venture, was released. However, it would take two more years

for a major computer vendor to release an SVR4-based operating system. Sun released Solaris 2.0

in 1991, followed by Silicon Graphics' IRIX 5.0 in 1994, and Hewlett-Packard's HP-UX 10.0 in

1995.

Standards Compliance

One of the principal features of SVR4 is standards compliance. Solaris 2.x, HP-UX 10.x, and IRIX

5.x comply with the following standards:

 ANSI X3.159-1989 (ANSI C). The ANSI C standard defines the syntax and semantics of the C

programming language. It also specifies many of the library routines and header files used in C

programs. Lastly, it specifies the interaction of a C program with the execution environment.

The ANSI C standard was developed by the X3J11 Technical Committee on the C

Programming Language under project 381-D of the American National Standards Committee

on Computers and Information Processing (X3).

 IEEE Std 1003.1-1990 Portable Operating System Interface Part 1 (POSIX.1). An outgrowth

of the 1984 /usr/group Standard, POSIX.1 defines application interfaces to basic system

services such as input/output, the file system, and process management using the C

programming language. It is a set of library routines, system calls, and header files. POSIX.1

has been adopted as International Standard ISO/IEC 9945-1:1990 by the International
Organization for Standardization (ISO) and the International Electrotechnical Commission

(IEC).

 IEEE Std 1003.2 Portable Operating System Interface Part 2 (POSIX.2). Another part of the

series of POSIX standards, POSIX.2 defines a set of standard shells and utility programs, and

their interfaces (command-line arguments, exit codes, etc.).

 X/Open Portability Guide, Issue 3 (XPG3). X/Open is an international consortium of system

vendors, ISVs, and users. Its purpose is to adopt existing standards and adapt them into a single,

consistent Common Applications Environment (CAE). By awarding the X/Open brand

trademark to products that comply with the CAE, X/Open hopes to ensure portability and

connectivity of applications. The XPG3 includes IEEE Std 1003.1-1988, and has seven volumes

covering: system interface commands, utilities, system interfaces and headers, supplementary
definitions, programming languages, data management, window management, and networking

services. The current versions of Solaris 2.x, HP-UX 10.x, and IRIX 5.x also comply with

XPG4, an updated version of the standard.

Introduction to SVR4

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 13

 System V Interface Definition, Third Edition (SVID3). First published by AT&T in 1985, the

SVID specifies an operating system environment that allows users to create software that is

independent of any particular computer hardware. It defines the components of the operating

system and their functionality, but not their implementation. It specifies both the source-code

interface and the run-time behavior of each component. An application using only SVID

components will be compatible with and portable to any other computer that supports the SVID.
SVR4 is compliant with the Base System component of SVID3 and all its extensions.

 System V Release 4 Application Binary Interface (ABI). An ABI defines a standard format for

application programs that are compiled and packaged for different hardware architectures. It

includes a generic part that specifies the machine-independent parts of the format, and a

processor-specific part that specifies the machine-dependent parts. A binary program produced

in compliance with the ABI will run on any ABI-conformant operating system that supports the

same ABI. For example, a program compiled on a SPARC system running Solaris 2.x should

work without modification on a SPARC system running plain System V Release 4 from AT&T.

 ANSI/IEEE 754-1985 Standard for Binary Floating-Point Arithmetic. This standard defines the

format of floating-point data types, the arithmetic that can be performed on them (and how it is

performed), and the exception handling used when performing the arithmetic.

 Federal Information Processing Standard Publication 158: The User Interface Components of

the Applications Portability Profile (FIPS PUBS 158). A U.S. Government standard, FIPS 158

defines a standard set of tools for developing user interfaces for the Federal government. The

standard is based on the X Window System, Version 11 Release 3.

 International Standard: Information Processing—8-bit single-byte coded graphic character

sets—Part 1: Latin alphabet No. 1 (ISO 8859-1). This standard specifies a set of 191 graphic

characters, identified as Latin alphabet No. 1. The standard specifies the coding of each of these

characters as a single 8-bit byte. The ASCII character set is a subset of ISO 8859-1.

 International Standard: Information Processing—Volume and File Structure of CD-ROM for

Information Interchange (ISO 9660-88). This standard specifies the file system structures for

CD-ROM drives. The Rock Ridge Interchange Protocol, which defines support for the UNIX
file system format on CD-ROMs, is also supported.

Notes on Compilers

Depending on what you're used to, compiling programs in an SVR4 may require you to go back and

read the compiler documentation again. Because SVR4 provides ANSI C compliance in its include

files, it is generally desirable to use the C compiler in an ANSI C mode. Furthermore, since the main

goal of SVR4 is to promote interoperability through standards compliance, it is desirable to enable

standards-compliance whenever you're developing a new program.

This section briefly discusses the compilers available for each of the operating systems described in

this book. The examples in the book have been compiled and tested using all of these compilers.

UNIX Systems Programming for SVR4

14 FOR PERSONAL, NON-COMMERCIAL USE ONLY

The HP-UX 10.x Compiler

HP-UX 10.x uses an unbundled ANSI C compliant compiler called cc. The compiler accepts a

plethora of options, most of which are not of interest to us here. However, there is one option that

will be of importance to us. The compiler allows the user to select the degree of conformance to the

ANSI C standard by using the -Ac option, where c is one of:

a Pure ANSI C.

c K&R C.

e ANSI C with POSIX and UNIX extensions.

The examples in this book have been compiled and tested using the -Ae option to the compiler.

The IRIX 5.x Compiler

IRIX 5.x ships with an ANSI C compliant compiler called cc. The compiler accepts a profuse

number of options, most of which are not of interest in this book. However, the option that controls

the language features supported by the compiler are of interest:

-ansi Pure ANSI C.

-ansiposix ANSI C plus the definition of the _POSIX_SOURCE constant; this enables the
inclusion of function prototypes for POSIX-defined functions.

-cckr K&R C, with some ANSI C extensions such as function prototypes and the

void type.

-xansi ANSI C with POSIX and UNIX extensions. This is the default mode of the

compiler.

The examples in this book have been compiled and tested using the -xansi mode of the compiler.

The Solaris 2.x Compiler

Solaris 2.x does not ship with a compiler; it must be purchased as a separate, unbundled product

called SPARCompiler C, a commercial C compiler offered by SunSoft, a subsidiary of Sun

Microsystems. SPARCompiler C is available either by itself, or as part of a package called

SPARCworks, that includes a source-code debugger and other software. SPARCompiler C is fully

compliant with the ANSI C standard; it will also accept programs written in the older dialect of the

language described by Kernighan and Ritchie.

SPARCompiler C offers a plethora of command-line options, almost all of which are beyond the
scope of this book. However, there is one option that will be of importance to us. SPARCompiler C

allows the user to select the degree of conformance to the ANSI C standard by using the -Xc option,

where c is one of:

a ANSI C with “Sun C” compatibility extensions and semantic changes required by ANSI

C. In this mode, the compiler will accept both K&R C and ANSI C constructs. When it

encounters a construct that has different semantics under K&R and ANSI C, it will issue a

warning and then interpret the construct in accordance with the ANSI C definition.

Introduction to SVR4

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 15

c Fully conformant ANSI C, without “Sun C” compatibility extensions. In this mode, the

compiler will reject constructs that are not ANSI C. In this mode, header files will not

declare certain functions, or define certain macros, that are not required by the ANSI C

standard.

s “Sun C.” In this mode, the compiler functions essentially as a K&R C compiler. However,

it will issue warnings about all constructs it encounters that have differing behavior
between ANSI C and K&R C.

t ANSI C with “Sun C” compatibility extensions, but not semantic changes required by

ANSI C. In this mode, the compiler will accept both K&R C and ANSI C constructs. When

it encounters a construct that has different semantics under K&R and ANSI C, it will issue

a warning and then interpret the construct in accordance with the K&R C definition.

The examples in this book have been compiled and tested using the -Xa mode of SPARCompiler C.

The GNU C Compiler

The GNU C Compiler is distributed by the Free Software Foundation, and is available without

charge, in source or binary form, to anyone who wants it. It may be obtained via anonymous FTP

from numerous hosts on the Internet; it may also be obtained on tape from the Free Software

Foundation, or from companies such as Cygnus Support. GNU C is available for all three of the

operating systems described in this book; it is particularly popular on Solaris 2.x, since that system

does not ship with a C compiler of its own.

GNU C is fully compliant with the ANSI C standard, and will also accept programs written in the

older K&R dialect of the language.

GNU C accepts a profuse number of options, most of which are beyond the scope of this book.

However, the options that allow the user to select the degree of ANSI C conformance are of interest
to us, and are described below:

-ansi Enables support for all ANSI C programs. This turns off features of GNU C

that are incompatible with ANSI C, and turns off predefined symbols such as

sun and unix that allow you to identify the type of system you are using.

The -ansi option also predefines the macro __STRICT_ANSI__ ; some

header files may notice this and will not declare certain functions or define
certain macros that are not part of the ANSI C standard. This option does not

cause valid non-ANSI programs to be rejected however; for that the -pedantic

option is also required.

-ansi

-pedantic
Enables support for all ANSI C programs, and disables support for anything

not specified in the ANSI C standard. Under this option, all warnings

demanded by the ANSI C standard are issued, and any program that uses a

forbidden extension will be rejected. Valid ANSI C programs will compile

with or without this option, however. Note that this option is not intended to

“verify” a program as ANSI-compliant. It will find some non-ANSI

constructs, but only those for which the ANSI standard requires a diagnostic.

UNIX Systems Programming for SVR4

16 FOR PERSONAL, NON-COMMERCIAL USE ONLY

-traditional Attempt to support most of the apects of K&R C. This isn't really a “K&R

mode” of the compiler, but by specifying this option, most K&R C programs

can be compiled without changes. The option enables several old,

undocumented preprocessor features that were never an official part of the

language, but nevertheless came to be relied upon by many people. It also

enables some features of K&R C that are not part of the ANSI C standard.

The examples in this book have been compiled and tested using the GNU C compiler with none of

the above options specified.

NOTE

Because the authors of the GNU C Compiler do not agree with the authors of SVR4 in the

interpretation of the ANSI C standard's definition of the __STDC__ macro, attempting to
use the GNU C Compiler with the normal SVR4 include files does not work properly.

GNU C protects itself from this problem by generating its own version of the system

include files with the fixincludes command. This command is run automatically by the

GNU C installation procedure. However, when upgrading to a new version of the operating

system, you must be sure to re-run fixincludes on the new system's include files, or

compilation problems will result.

The BSD Source Compatibility Package

One of the transition tools provided by Solaris 2.x is the BSD Source Compatibility Package (SCP).

The SCP provides many of the SunOS 4.x and BSD interfaces otherwise not included, or that differ

in functionality between SunOS 4.x and Solaris 2.x. It is a collection of commands, libraries, and

header files that, while they may also be present in the default Solaris 2.xenvironment, have different

behavior between the two versions. Generally speaking, you should be able to take a program that

compiles on SunOS 4.x and compile it under the SCP with no changes to obtain a working program.

The SCP is installed in several directories:

 The /usr/ucb directory contains source compatibility package commands that existed in the

/usr/ucb, /usr/bin, and /usr/etc directories under SunOS 4.x.

 The /usr/ucblib directory contains the source compatibility package libraries and SunOS

4.x/BSD system calls that are implemented as library routines in the SCP. These interfaces

existed in /usr/lib under SunOS 4.x.

 The /usr/ucbinclude directory contains the source compatibility package header files, which

existed in /usr/include under SunOS 4.x.

By setting your search path to include the /usr/ucb directory, or by using the /usr/ucb/cc command,

you will be using the SCP C compiler when you compile C programs. (The /usr/ucb/cc command is

not a compiler in itself; you must still install an unbundled compiler. Rather, it is a wrapper around

the C compiler that causes the SCP header files and libraries to be used.) The SCP C compiler sets

its default paths to pick up the following directories, in order:

Introduction to SVR4

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 17

 User-specified include directories and libraries.

 The compatibility include directories and libraries.

 The base Solaris 2.x include directories and libraries, if unresolved symbols remain.

Use of the BSD Source Compatibility Package, while it can help you get a program up and running

in a short amount of time, is not recommended, for the following reasons:

 Programs running under the SCP suffer a performance penalty. SunOS 4.x/BSD system calls
and library routines that are unavailable or have different functionality in Solaris 2.x are

emulated in library routines. Although in many cases the cost of emulation is minimal, for some

often-used functions the cost may be significant.

 The SCP is intended as a transition tool only. It is intended to help you port your programs from

SunOS 4.x to Solaris 2.x. As Solaris 2.x matures and SunOS 4.x becomes less wide-spread in

the UNIX community, it is likely that the SCP will be removed from future versions of Solaris

2.x.

 Many of the programming interfaces offered by Solaris 2.x are more standard than their SunOS

4.x/BSD counterparts. By changing your program to make use of these standard interfaces, the

program will be more portable between different versions of UNIX.

 Programs compilers with the SCP can encounter incompatibilities between the SCP and non-
SCP versions of some libraries, resulting in combinations that do not produce a working

program.

HP-UX 10.x and IRIX 5.x do not provide the SCP.

None of the examples in this book depend on the SCP to compile. Because the focus of this book is

to help you develop new programs in the SVR4 environment and to help you port your existing

programs to SVR4, nothing more will be said about the SCP.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 19

Chapter 2
Utility Routines

In this chapter, we will examine most of the commonly used utility routines offered by the SVR4 C

library, and we will give brief examples of their use. The UNIX C library provides a large number

of routines for performing common programming tasks such as comparing and copying strings,

allocating memory, manipulating temporary files, and so forth. You are probably already familiar

with many of these routines, but if you've been doing most of your programming in a BSD

environment, several of them may be new to you. Many of these routines were first added to the C
library in early versions of System V, and were later mandated by the ANSI C and POSIX standards.

Since most commonly used versions of BSD UNIX predate these standards, these routines are often

missing from those versions' C libraries.

Manipulating Character Strings

Probably the most often used utility routines are those that manipulate character strings. Because

the C language does not provide any character string primitive operators, all operations must be

performed with library routines.

All of the routines described in this section operate on character strings, which are arrays of one or

more non-zero bytes terminated by a null (zero) byte. Passing so-called “binary” data to these

routines, in which null bytes are legal values rather than terminators, will not produce the desired

results.

In all of the examples in this chapter, we assume the existence of two functions that are not part of

the standard C library:

void outputLine(char *line);

char *inputLine(void);

outputLine prints the contents of the character array line on the standard output (the screen).

inputLine reads one line of characters from the standard input (the keyboard) and returns a pointer

to a character array containing the line. These two functions exist so that we can do input and output

UNIX Systems Programming for SVR4

20 FOR PERSONAL, NON-COMMERCIAL USE ONLY

without explaining the use of the UNIX I/O functions, which are described in the following two

chapters.

Computing the Length of a String

The simplest function for computing the length of a string is strlen:

#include <string.h>

size_t strlen(const char *s);

The single argument s is the null-terminated string whose length is to be computed; the length of

the string in bytes, not including the null character, is returned.

Two other functions, strspn and strcspn, are provided to compute the length of substrings:

#include <string.h>

size_t strspn(const char *s1, const char *s2);

size_t strcspn(const char *s1, const char *s2);

strspn returns the length of the initial segment of s1 that consists entirely of characters from the

set contained in s2. strcspn does in some sense the opposite, returning the length of the initial

segment of s1 that consists entirely of characters not in the set contained in s2.

To demonstrate the use of strlen, Example 2-1 shows a program that implements a bubble sort.
Bubble sort is a simple (but not very efficient) sorting algorithm that works by making several passes

through the objects to be sorted, comparing items in adjacent locations and interchanging them if

they are out of order. If on any pass through the data no items are interchanged, the data is

completely sorted and the algorithm can stop.

Example 2-1: bsort-length

#include <string.h>

#define NSTRINGS 16 /* max. number of strings */

#define MAXLENGTH 1024 /* max. length of one string */

void bubbleSort(char **, int);

void outputLine(char *);

char *inputLine(void);

int

main(int argc, char **argv)

{

 int n, nstrings;

 char *p, *q, *line;

 char *strptrs[NSTRINGS];

 char strings[NSTRINGS][MAXLENGTH];

 /*

Utility Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 21

 * Read in NSTRINGS strings from the standard input.

 */

 for (nstrings = 0; nstrings < NSTRINGS; nstrings++) {

 /*

 * Get a line from the input.

 */

 if ((line = inputLine()) == NULL)

 break;

 /*

 * Copy the line.

 */

 for (p = line, q = strings[nstrings]; *p != '\0'; p++, q++)

 *q = *p;

 *q = '\0';

 /*

 * Save a pointer to the line.

 */

 strptrs[nstrings] = strings[nstrings];

 }

 /*

 * Sort the strings.

 */

 bubbleSort(strptrs, nstrings);

 /*

 * Print the strings.

 */

 for (n = 0; n < nstrings; n++)

 outputLine(strptrs[n]);

 exit(0);

}

/*

 * bubbleSort - implementation of the basic bubble sort algorithm.

 */

void

bubbleSort(char **strings, int nstrings)

{

 int i, j;

 char *tmp;

 int notdone;

 j = nstrings;

 notdone = 1;

 while (notdone) {

 notdone = 0;

 j = j - 1;

 for (i = 0; i < j; i++) {

 /*

 * Use strlen() to compare the strings

 * by length.

 */

UNIX Systems Programming for SVR4

22 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 if (strlen(strings[i]) > strlen(strings[i+1])) {

 tmp = strings[i+1];

 strings[i+1] = strings[i];

 strings[i] = tmp;

 notdone = 1;

 }

 }

 }

}

% cat input

xxxxxx

xxxxx

xxxxxxx

xx

x

xxxxxxxxx

xxxx

xxxxxxxx

xxx

xxxxxxxxxx

% bsort-length < input

x

xx

xxx

xxxx

xxxxx

xxxxxx

xxxxxxx

xxxxxxxx

xxxxxxxxx

xxxxxxxxxx

bsort-length begins by using inputLine to read in up to NSTRINGS lines of data and storing them

in the strings array. The strptrs array points to the strings, so that by rearranging the pointers,

we can achieve the sort. After reading in the strings, the bubbleSort function is called.

bubbleSort makes several passes through the strings, comparing the lengths of adjacent strings

with strlen. When the first string is longer than the second, the pointers to those two strings are

exchanged. Finally, when the sort has finished, the strings are printed with outputLine.

Comparing Character Strings

To compare two character strings, the strcmp and strncmp functions are used:

#include <string.h>

int strcmp(const char *s1, const char *s2);

int strncmp(const char *s1, const char *s2, size_t n);

strcmp compares s1 and s2 and returns an integer less than, equal to, or greater than zero, based

upon whether s1 is lexicographically less than, equal to, or greater than s2. strncmp makes the

Utility Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 23

same comparison, but looks at only the first n characters of each string. Characters following the

null terminator of either string are not compared.

On systems that use the ASCII character set, “lexicographically less than” and “lexicographically

greater than” correspond to “alphabetically before” and ”alphabetically after.” However, on systems

that use character sets that do not preserve alphabetical order (such as EBCDIC), this relationship

does not hold.

Example 2-2 shows another version of our bubble sort program; this one sorts the strings into

alphabetical order.

Example 2-2: bsort-alpha

#include <string.h>

#define NSTRINGS 16 /* max. number of strings */

#define MAXLENGTH 1024 /* max. length of one string */

void bubbleSort(char **, int);

void outputLine(char *);

char *inputLine(void);

int

main(int argc, char **argv)

{

 int n, nstrings;

 char *p, *q, *line;

 char *strptrs[NSTRINGS];

 char strings[NSTRINGS][MAXLENGTH];

 /*

 * Read in NSTRINGS strings from the standard input.

 */

 for (nstrings = 0; nstrings < NSTRINGS; nstrings++) {

 /*

 * Get a line from the input.

 */

 if ((line = inputLine()) == NULL)

 break;

 /*

 * Copy the line.

 */

 for (p = line, q = strings[nstrings]; *p != '\0'; p++, q++)

 *q = *p;

 *q = '\0';

 /*

 * Save a pointer to the line.

 */

 strptrs[nstrings] = strings[nstrings];

 }

 /*

 * Sort the strings.

UNIX Systems Programming for SVR4

24 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 */

 bubbleSort(strptrs, nstrings);

 /*

 * Print the strings.

 */

 for (n = 0; n < nstrings; n++)

 outputLine(strptrs[n]);

 exit(0);

}

/*

 * bubbleSort - implementation of the basic bubble sort algorithm.

 */

void

bubbleSort(char **strings, int nstrings)

{

 int i, j;

 char *tmp;

 int notdone;

 j = nstrings;

 notdone = 1;

 while (notdone) {

 notdone = 0;

 j = j - 1;

 for (i = 0; i < j; i++) {

 /*

 * Use strcmp() to compare the strings

 * alphabetically.

 */

 if (strcmp(strings[i], strings[i+1]) > 0) {

 tmp = strings[i+1];

 strings[i+1] = strings[i];

 strings[i] = tmp;

 notdone = 1;

 }

 }

 }

}

% cat input

one

two

three

four

five

six

seven

eight

nine

ten

% bsort-alpha < input

eight

Utility Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 25

five

four

nine

one

seven

six

ten

three

two

This program is identical to bsort-length, except that the strlen comparison has been replaced

with a call to strcmp.

Solaris 2.x, HP-UX 10.x, and IRIX 5.x provide two additional functions for comparing strings,

strcasecmp and strncasecmp:

#include <string.h>

int strcasecmp(const char *s1, const char *s2);

int strncasecmp(const char *s1, const char *s2, int n);

These functions are similar to strcmp and strncmp, except that they ignore the case of letters in
the strings. Unfortunately, these two functions are not very portable—systems that use the Domain

Name System will probably have them, since they are used for comparing host names (in which

case is not significant), but systems which do not use the DNS will probably not.

Copying Character Strings

To copy one character string to another, the strcpy and strncpy functions are used:

#include <string.h>

char *strcpy(char *dst, const char *src);

char *strncpy(char *dst, const char *src, size_t n);

In both cases, the string pointed to by src is copied into the array pointed to by dst, and dst is

returned. The first function, strcpy, copies characters until it encounters the null byte terminating

src. The second function, strncpy, copies characters until it either encounters the null byte in src

or until n characters have been copied, whichever comes first.

The string returned by strcpy will always be null terminated. However, the string returned by

strncpy will not. If the number of characters in src is less than n, a null byte will be appended to

dst. However, if there are n or more than n characters in src, then dst will not be null terminated.

For this reason, it is customary to always explicitly place a null byte at the end of dst immediately

following a call to strncpy, as shown below:

char dst[SIZE];

strncpy(dst, src, SIZE-1);

UNIX Systems Programming for SVR4

26 FOR PERSONAL, NON-COMMERCIAL USE ONLY

dst[SIZE-1] = '\0';

To append one string to another, the strcat and strncat functions are used:

#include <string.h>

char *strcat(char *dst, const char *src);

char *strncat(char *dst, const char *src, size_t n);

Both of these functions traverse dst until a null byte is found, copy src onto the end, and then

return dst. strcat copies characters until it encounters a null byte in src, while strncpy copies

characters until it either encounters a null byte in src or until n characters have been copied,

whichever comes first. Both strcat and strncat always null-terminate dst.

Example 2-3 shows a program that uses strcpy and strcat to make lists of strings.

Example 2-3: make-a-list

#include <string.h>

void outputLine(char *);

char *inputLine(void);

int

main(int argc, char **argv)

{

 int len;

 char *line;

 char list[1024];

 len = sizeof(list) - 2;

 list[0] = '\0';

 /*

 * For each line in the input...

 */

 while ((line = inputLine()) != NULL) {

 /*

 * Compute its length, plus room for a comma and a space.

 */

 len += strlen(line) + 2;

 /*

 * If we don't have room in the buffer, output

 * the buffer and start a new one. Otherwise,

 * add a comma and this line.

 */

 if (len >= sizeof(list)) {

 if (list[0] != '\0')

 outputLine(list);

 strcpy(list, line);

 len = strlen(line);

Utility Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 27

 }

 else {

 strcat(list, ", ");

 strcat(list, line);

 }

 }

 /*

 * Output the last part of the list.

 */

 if (list[0] != '\0')

 outputLine(list);

 exit(0);

}

% cat input

one

two

three

four

five

six

seven

eight

nine

ten

% make-a-list < input

one, two, three, four, five, six, seven, eight, nine, ten

The program reads lines until it encounters the end-of-file marker. It computes the length of each

line using strlen, and then determines whether the current input will fit into the array holding the

current list or not. If not, it outputs the current list, and then uses strcpy to begin a new list. If the

line will fit in the current list, strcat is used to append a comma and a space to the list, and then
to append the current line as well.

All four of the functions described in this section assume that dst is large enough to hold the results

of their work; no bounds checking is performed. If dst is not large enough, a memory access

violation is likely to occur, resulting in abnormal program termination and a core dump.

Searching Character Strings

A number of routines are provided to search a character string for either a single character or a

substring. The two simplest functions are strchr and strrchr:

#include <string.h>

char *strchr(const char *s, int c);

char *strrchr(const char *s, int c);

Both functions traverse the string s and return a pointer to the first occurrence of the character c, or

the predefined constant NULL if the character is not found. strchr starts at the beginning of the

UNIX Systems Programming for SVR4

28 FOR PERSONAL, NON-COMMERCIAL USE ONLY

string and searches toward the end, while strrchr starts at the end of the string and searches toward
the beginning. Example 2-4 shows a program that reads lines from its standard input and searches

each line for the character given as the program's first argument.

Example 2-4: search-char

#include <string.h>

void markLine(char *, char *, char *);

void outputLine(char *);

char *inputLine(void);

int

main(int argc, char **argv)

{

 char c;

 char *p, *line;

 if (argc != 2) {

 outputLine("Usage: search-char character");

 exit(1);

 }

 c = argv[1][0];

 while ((line = inputLine()) != NULL) {

 if ((p = strchr(line, c)) != NULL) {

 outputLine(line);

 markLine(line, p, p);

 outputLine(line);

 }

 }

 exit(0);

}

% cat input

one

two

three

four

five

six

seven

eight

nine

ten

% search-char e < input

one

 ^

three

 ^

five

 ^

seven

Utility Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 29

 ^

eight

^

nine

 ^

ten

 ^

In the example shown, we ask the program to search for the letter ‘e’ on each line. When it finds

one, the program prints the line, and then uses the markLine function to mark the position in which

the letter was found. The markLine function is defined as:

#include <stdio.h>

void

markLine(char *line, char *start, char *stop)

{

 char *p;

 for (p = line; p < start; p++)

 *p = ' ';

 for (p = start; p <= stop; p++)

 *p = '^';

 for (p = stop+1; *p != '\0'; p++)

 *p = ' ';

}

If instead of a single character you need to search a string for the first occurrence of any of several

characters, you can use strpbrk:

#include <string.h>

char *strpbrk(const char *s1, const char *s2);

strpbrk searches the string s1, starting at the beginning, for the first occurrence of any character

in the string s2. It returns a pointer to the character, or the predefined constant NULL if none of the

characters are found. Example 2-5 shows another version of our searching program; this one uses

strpbrk.

Example 2-5: search-charset

#include <string.h>

void markLine(char *, char *, char *);

void outputLine(char *);

char *inputLine(void);

int

main(int argc, char **argv)

{

UNIX Systems Programming for SVR4

30 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 char *p, *line, *charset;

 if (argc != 2) {

 outputLine("Usage: search-charset character-set");

 exit(1);

 }

 charset = argv[1];

 while ((line = inputLine()) != NULL) {

 if ((p = strpbrk(line, charset)) != NULL) {

 outputLine(line);

 markLine(line, p, p);

 outputLine(line);

 }

 }

 exit(0);

}

% cat input

one

two

three

four

five

six

seven

eight

nine

ten

% search-charset onx < input

one

^

two

 ^

four

 ^

six

 ^

seven

 ^

nine

^

ten

 ^

To locate the first occurrence of a substring instead of a single character, the strstr function is
used:

#include <string.h>

char *strstr(const char *s1, const char *s2);

Utility Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 31

strstr traverses the string s1 from the beginning, and returns a pointer to the start of the first

occurrence of the substring s2, or the predefined constant NULL if no substring is found. Example

2-6 shows a third version of our searching program; this one uses strstr to find the substring given
as the program's first argument.

Example 2-6: search-string

#include <string.h>

void markLine(char *, char *, char *);

void outputLine(char *);

char *inputLine(void);

int

main(int argc, char **argv)

{

 char *p, *line, *string;

 if (argc != 2) {

 outputLine("Usage: search-string string");

 exit(1);

 }

 string = argv[1];

 while ((line = inputLine()) != NULL) {

 if ((p = strstr(line, string)) != NULL) {

 outputLine(line);

 markLine(line, p, p + strlen(string) - 1);

 outputLine(line);

 }

 }

 exit(0);

}

% cat input

john smith

sally jones

bob johnson

bill davis

mary upjohn

% search-string john < input

john smith

^^^^

bob johnson

 ^^^^

mary upjohn

 ^^^^

This example also shows another use of the strlen function, to compute the end of the matched

sequence as an argument to the markLine function.

UNIX Systems Programming for SVR4

32 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Our last string-searching function is really intended for breaking a string up into tokens, each

separated from the others by some set of field-separator tokens such as spaces, tabs, colons, or

periods. The function is called strtok:

#include <string.h>

char *strtok(char *s1, const char *s2);

The string s1 is considered to be a sequence of zero or more text tokens separated by spans of one

or more characters from the set contained in s2. The first call to strtok will place a null character

into s1 immediately following the first token, and return a pointer to the token.

strtok keeps track of its position in s1, and subsequent calls, made with the predefined constant

NULL as the first argument (to tell strtok to continue using the same input string), will work

through s1, extracting each token in turn. When no more tokens remain, strtok returns NULL. A

sample usage of strtok is given in Example 2-7.

Example 2-7: search-token

#include <string.h>

void markLine(char *, char *, char *);

void outputLine(char *);

char *inputLine(void);

int

main(int argc, char **argv)

{

 char copyline[1024];

 char *p, *line, *token, *fieldsep;

 if (argc != 3) {

 outputLine("Usage: search-token token fieldsep");

 exit(1);

 }

 token = argv[1];

 fieldsep = argv[2];

 /*

 * For each line in the input...

 */

 while ((line = inputLine()) != NULL) {

 /*

 * Save a copy of the line.

 */

 strcpy(copyline, line);

 /*

 * Find the first token.

 */

 if ((p = strtok(line, fieldsep)) == NULL)

 continue;

Utility Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 33

 /*

 * Search through all the tokens.

 */

 do {

 if (strcmp(p, token) == 0) {

 outputLine(copyline);

 markLine(copyline, copyline + (p - line),

 copyline + (p - line) + strlen(token) - 1);

 outputLine(copyline);

 p = NULL;

 }

 else {

 p = strtok(NULL, fieldsep);

 }

 } while (p != NULL);

 }

 exit(0);

}

% cat input

one,two:three,four:five,six

ten:eight:six:four:two

two,four:six,eight,ten

one,two,three,four:five

% search-token two , < input

two,four:six,eight,ten

^^^

one,two,three,four:five

 ^^^

% search-token two : < input

ten:eight:six:four:two

 ^^^

% search-token two ,: < input

one,two:three,four:five,six

 ^^^

ten:eight:six:four:two

 ^^^

two,four:six,eight,ten

^^^

one,two,three,four:five

 ^^^

This example shows the different results obtained on the same input file when different field

separator characters are used. Note that when both characters are used together, another match is

made that was not possible when using each character individually. Although not shown in this

example, it is permissible to change the contents of the s2 string in between calls to strtok; for

example, this might be necessary to extract a specific field from a line, and then extract a subfield

from the field. This example also shows the use of the strcpy function discussed earlier. Because

strtok destroys the string contained in s1 (by placing nulls into it), we make a copy of the string

before searching it, so that we can print it out later. We also make use of the strcmp function to

match our tokens with, and the strlen function to tell markLine how to highlight the match.

UNIX Systems Programming for SVR4

34 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Non-Standard Character String Functions

All of the functions described up until this point (except strcasecmp and strncasecmp) are

specified in the ANSI C standard, and should be present on most modern UNIX systems. However,
SVR4 provides a number of additional functions for manipulating character strings that are not part

of the ANSI C or POSIX standards. These functions should not be used if portability is an issue, but

they may be useful to you.

All of the functions described in this section can be included in your program by linking with the -

lgen library on Solaris 2.x and IRIX 5.x; Hewlett-Packard elected not to include most of these

functions in their version of the system.

Searching Character Strings

The strfind function is similar to strstr, described earlier:

#include <libgen.h>

int strfind(const char *s1, const char *s2);

As with strstr, strfind searches the string s1 for the first occurrence of the string s2. However,

instead of returning a pointer to the substring, strfind returns the integer offset of the beginning

of the substring from the beginning of s1. If the substring cannot be found, strfind returns –1.

The strfind function is only available in Solaris 2.x.

The strrspn function is sort of the opposite of strpbrk:

#include <libgen.h>

char *strrspn(const char *s1, const char *s2);

strrspn traverses the string s1, and returns a pointer to the first character not in the set contained

in s2. If s1 contains only characters from s2, strrspn returns the predefined constant NULL. This

function can be useful for trimming unwanted “junk” characters (such as whitespace) from the end

of a string.

The strrspn function is only available in Solaris 2.x.

Processing Character Escape Sequences

There are four functions provided to assist with expanding and compressing C-language escape

codes such as ‘\n,’ ‘\t,’ ‘\001,’ and so forth:

#include <libgen.h>

char *strccpy(char *dst, const char *src);

char *strcadd(char *dst, const char *src);

char *strecpy(char *dst, const char *src, const char *except);

Utility Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 35

char *streadd(char *dst, const char *src, const char *except);

The first two functions, strccpy and strcadd, copy the source string, src, to the destination

string, dst. As they encounter multi-character C-language escapes, the functions compress the

escapes to the single character they represent. Thus, the two characters ‘\’ and ‘n’ are replaced with

a newline character, the four characters ‘\,’ ‘0,’ ‘1,’ and ‘0’ are replaced with a backspace character

(‘\010’ is the octal representation for the ASCII CTRL-H), and so on.

The second two functions, strecpy and streadd, do the reverse. They also copy the source string

src to the destination string dst, but as they encounter special characters, they replace them with

their multi-character C-language escapes. For example, a tab character will be replaced by the two-

character sequence ‘\t,’ and a CTRL-G will be replaced by the four-character sequence ‘\007.’

The third argument to these functions, except, specifies characters that should not be expanded

into their escape sequences. For example, if you did not want to have tabs expanded, you would

place a tab character into except.

strccpy and strecpy both return a pointer to the destination string, dst. strcadd and streadd

on the other hand, return a pointer to the null byte terminating dst. This allows repeated calls to

strcadd or streadd to be used to append to dst. Because these functions generate outputs of

different sizes than their inputs, it is important that the dst string be sized appropriately. For

strccpy and strcadd, dst should be at least as large as src, since if no translations are

performed, the output will be the same size (otherwise it will be smaller). For strecpy and

streadd, dst should be four times as large as src, since potentially each input character could be

expanded to a four-character escape sequence (a backslash and three octal digits) on output.

The strccpy, strcadd, strecpy, and streadd functions are not available in HP-UX 10.x.

Breaking Up Delimited Strings

To break up a string into individual words delimited by tabs or newlines, as is often necessary when

parsing lines from configuration files, the bufsplit function can be used:

#include <libgen.h>

size_t bufsplit(char *buf, size_t n, char **a);

bufsplit moves through the string contained in buf and replaces the delimiter characters (tab and

newline) with null bytes. a is an array of n pointers that will be set to point at the start of each word

in buf. bufsplit returns the number of words broken out (if there are more than n words in buf,

then the last “word” will be the rest of the string).

To change the delimiter characters used by bufsplit to something other than tab and newline, you

can pass the new set of characters in as buf, with n and a set to zero. For example, to change the

delimiters to period, comma, and colon, you would use a call like:

bufsplit(".,:", 0, (char **) 0);

The bufsplit function is not available in HP-UX 10.x.

UNIX Systems Programming for SVR4

36 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Two other functions, useful when working with file and directory names, are basename and

dirname:

#include <libgen.h>

char *basename(char *path);

char *dirname(char *path);

Given that path contains a file system path name, basename will return a pointer to the last element

of path (the part after the last ‘/’), with any trailing slashes removed. dirname, on the other hand,

will return all but the last element of path. Thus, dirname returns the name of the parent directory,

and basename returns the name of the file in that directory. Unfortunately, dirname works by

placing a null byte into path at the slash that separates the directory and file names, so if the full

path name is needed later in the program, a copy should be made before calling this function.

Translating Characters

Our last function, strtrns, is used to replace one set of characters in a string with another set:

#include <libgen.h>

char *strtrns(const char *s1, const char *old, const char *new, char *s2);

strtrns copies characters from s1 to s2, replacing any character contained in old with the

character in the corresponding position in new. A pointer to s2 is returned. Example 2-8 shows a

sample usage of strtrns.

Example 2-8: translate

#include <string.h>

#include <libgen.h>

void outputLine(char *);

char *inputLine(void);

int

main(int argc, char **argv)

{

 char newline[1024];

 char *p, *old, *new, *line;

 if (argc != 3) {

 outputLine("Usage: translate old new");

 exit(1);

 }

 old = argv[1];

 new = argv[2];

 if (strlen(old) != strlen(new)) {

Utility Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 37

 outputLine("old and new strings must be same length.");

 exit(1);

 }

 while ((line = inputLine()) != NULL) {

 p = strtrns(line, old, new, newline);

 outputLine(p);

 }

 exit(0);

}

% cat input

one

two

three

four

five

six

seven

eight

nine

ten

% translate onetwhrfuivsxg ONETWHRFUIVSXG < input

ONE

TWO

THREE

FOUR

FIVE

SIX

SEVEN

EIGHT

NINE

TEN

The strtrns function is not available in HP-UX 10.x.

Porting Notes

The functions described in this section, except those in the -lgen library, strcasecmp, and

strncasecmp, exist on most modern UNIX systems. However, when porting code from one system
to another, bear the following notes in mind:

 On “pure” BSD systems, do not expect to find any of the routines described in this section

except strlen, strcpy, strncpy, strcat, strncat, strcmp, and strncmp. Most BSD-
based vendor systems should have the other functions, though.

 On BSD-based systems, the include file for these functions is called strings.h, rather than

string.h. In fact, you can usually use the presence or absence of the string.h file to determine

whether or not all of the functions described in this section are present. Some systems, such as

SunOS 4.x, provide both files but their contents are not the same.

UNIX Systems Programming for SVR4

38 FOR PERSONAL, NON-COMMERCIAL USE ONLY

On BSD-based systems, the strchr and strrchr functions are called index and rindex,
respectively. The arguments and return values are the same however, and it usually sufficient

to add the lines to your program when porting it from a BSD environment to SVR4:

#define index(s,c) strchr(s,c)

#define rindex(s,c) strrchr(s,c)

Manipulating Byte Strings

The functions described in the previous section all operate on character strings, which are arrays of

non-zero bytes terminated by a zero (null) byte. However, there are also times when similar

operations need to be performed on strings in which the null byte is not a terminator, but a legal

value. Because every byte value is legal, these strings, called byte strings, do not have a terminator

character. Instead, they are always paired with an integer value indicating how many bytes are in

the string.

The routines described in this section, for manipulating byte strings, closely resemble the character

string routines described in the previous section. However, these functions can be used not only with

strings of characters (which are a subset of byte strings), but also with any other arbitrary “chunk”

of memory such as a two-dimensional array, an array of pointers, an integer, an array of floating-

point numbers, a structure, or an array of structures (although some of the routines don't really make

sense on all these data types).

Comparing Byte Strings

To compare two byte strings (areas of memory), the memcmp function is used:

#include <string.h>

int memcmp(const void *s1, const void *s2, size_t n);

memcmp compares the first n bytes of the areas of memory pointed to by s1 and s2, and, just like

strcmp, returns an integer less than, equal to, or greater than zero depending upon whether s1 is

lexicographically less than, equal to, or greater than s2. Usually however, this distinction is not

terribly meaningful for arbitrary “binary” data (what is the meaning of an array of floating point

numbers being lexicographically greater than another array of floating point numbers?), and thus

memcmp is usually just used to test for equivalence.

Copying Byte Strings

To copy one array of bytes to another, the memcpy function is used:

#include <string.h>

void *memcpy(void *dst, const void *src, size_t n);

memcpy copies exactly n bytes from src into dst, and returns a pointer to dst.

Utility Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 39

memcpy is the preferred function for copying byte strings, but there is one case in which it will not

work properly. If the areas pointed to by src and dst overlap, the internal algorithm used by

memcpy will fail. For this purpose, the memmove function is provided:

#include <string.h>

void *memmove(void *dst, const void *src, size_t n);

This function performs the same task as memcpy, but correctly handles the case where src and dst

overlap. (There are two separate functions because the implementation of memcpy is more efficient

than the implementation of memmove on some architectures, and so the faster implementation can
be used when overlap is not a concern.)

A third function for copying one byte string to another is called memccpy:

#include <string.h>

void *memccpy(void *dst, const void *src, int c, size_t n);

memccpy copies bytes from src to dst, stopping after the first occurrence of a byte with the value

in c has been copied, or after n bytes have been copied, whichever comes first. It returns a pointer

to the next byte in src to be copied (the one after the byte with value c), or a null pointer if no bytes

with value c were found. Unlike the rest of the functions described in this section, memccpy is not

specified by the ANSI C standard.

Searching Byte Strings

To search an array of bytes for the first occurrence of a specific value, the memchr function is used:

#include <string.h>

void *memchr(const void *s, int c, size_t n);

memchr searches the first n bytes of s, starting from the beginning, until a byte with value c

(interpreted as an unsigned char) is found. It returns a pointer to the byte, or the predefined

constant NULL if the byte cannot be found.

When using integers as bit fields, where each bit is interpreted as a boolean true/false value, it is

convenient to be able to find the first bit in the integer that is “set” (non-zero). To do this, the ffs

function can be used:

#include <string.h>

int ffs(int i);

ffs finds the first bit set in the argument it is passed, and returns the index of that bit. Bits are
numbered starting with 1 (one) from the low order bit. A return value of zero indicates that no bits

UNIX Systems Programming for SVR4

40 FOR PERSONAL, NON-COMMERCIAL USE ONLY

are set (i.e., the value passed was equal to zero). This function is not specified by the ANSI C

standard.

Initializing Byte Strings

When working with arrays of data, it is frequently necessary to initialize the entire array to a known

value (often zero or null). To do this, the memset function is used:

#include <string.h>

void *memset(void *s, int c, size_t n);

memset fills the area pointed to by s with n bytes of value c and returns a pointer to s. The value

in c is interpreted as an unsigned character, so only values between 0 and 255 can be used.

Porting Notes

The functions described in this section were first introduced in System V UNIX, and therefore will

exist on any System V-based system. Because they are a part of the ANSI C standard, they will exist

on most modern versions of UNIX as well, regardless of whether or not it is System V-based.

However, when porting code from BSD-based systems, there are a number of things you need to

consider:

 On BSD-based systems, the include file for these functions is called strings.h, rather than

string.h. In fact, you can usually use the presence or absence of the string.h file to determine

whether or not all of the functions described in this section are present. Some systems, such as

SunOS 4.x, provide both files but their contents are not the same.

 The BSD equivalent of the memcmp function is called bcmp:

#include <strings.h>

int bcmp(const char *s1, const char *s2, int n);

bcmp returns 0 (zero) if the two strings are equal, and 1 (one) if they are not.

 The BSD version of the memcpy and memmove functions is called bcopy:

#include <strings.h>

void bcopy(const char *src, char *dst, int n);

Note that the src and dst arguments are in the opposite order from that used by memcpy and

memmove. bcopy is more properly replaced by memmove, because it does properly handle the
case in which the source and destination strings overlap.

 The BSD version of the memset function is called bzero:

#include <strings.h>

Utility Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 41

void bzero(char *s, int n);

bzero initializes the array pointed to by s to zero; there is no choice of value as there is with

memset.

 There are no BSD equivalents for memchr or memccpy.

 When porting from a BSD environment to SVR4, it is usually sufficient to add the following

lines to your program.

#define bcmp(b1, b2, n) memcmp(b1, b2, n)

#define bcopy(src, dst, n) memmove(dst, src, n)

#define bzero(b, n) memset(b, '0', n)

Manipulating Character Classes

Particularly when parsing strings, it is often necessary to test characters for membership in particular

sets, or character classes. The functions described in this section are provided for this purpose.

Testing Character Class Membership

The three functions isalpha, isupper, and islower test for three classes of letters:

#include <ctype.h>

int isalpha(int c);

int isupper(int c);

int islower(int c);

isupper tests for any character that is an uppercase letter and returns non-zero if it is, or zero if it

is not. islower tests for any character that is a lowercase letter, and returns non-zero if it is, or zero

if it is not. isalpha returns non-zero for any character for which either isupper or islower is
true, and zero otherwise.

The two functions isdigit and isxdigit test for two classes of numbers:

#include <ctype.h>

int isdigit(int c);

int isxdigit(int c);

isdigit returns non-zero for any character that is a decimal digit, i.e., ‘0’ through ‘9.’ isxdigit

returns non-zero for any character that is a hexadecimal digit, i.e., ‘0’ through ‘9,’ ‘A’ through ‘F,’

and ‘a’ through ‘f.’

The isalnum function tests for letters or digits:

UNIX Systems Programming for SVR4

42 FOR PERSONAL, NON-COMMERCIAL USE ONLY

#include <ctype.h>

int isalnum(int c);

It returns non-zero for any character that satisfies either isalpha or isdigit.

The functions isspace, ispunct, and iscntrl test for non-alphanumeric characters:

#include <ctype.h>

int isspace(int c);

int ispunct(int c);

int iscntrl(int c);

isspace returns non-zero for any space, tab, carriage return, newline vertical tab, or form feed and

zero for anything else. ispunct returns non-zero for any printable character for which neither

isspace or isalnum are true. This generally equates to the set of punctuation and other special

symbols. iscntrl tests for any “control character,” as defined by the character set. For ASCII,

these are the characters with decimal values 0 through 31 inclusive.

The last three functions test for membership in broader character classes:

#include <ctype.h>

int isprint(int c);

int isgraph(int c);

int isascii(int c);

isprint returns non-zero for any printable character (generally, this means any non-control

character) including space. isgraph returns non-zero for any printable character not including

space. isascii returns non-zero for any ASCII character; these are the characters with decimal
values 0 through 127 inclusive.

Changing Character Class Membership

Three functions are available to move characters from one character class to another:

#include <ctype.h>

int toupper(int c);

int tolower(int c);

int toascii(int c);

toupper, when given a lowercase letter as an argument, returns the corresponding uppercase letter.

If the argument is not a lowercase letter, it is returned unchanged. tolower, when given an

Utility Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 43

uppercase letter as an argument, returns the corresponding lowercase letter. If the argument is not a

lowercase letter, it is returned unchanged. toascii strips the eighth bit off any character it is passed,
thus coercing the character into the ASCII character set. Example 2-9 shows a program that uses

toupper and tolower to invert the case of all the letters in its input.

Example 2-9: caseconv

#include <ctype.h>

void outputChar(char);

int inputChar(void);

int

main(int argc, char **argv)

{

 int c;

 while ((c = inputChar()) >= 0) {

 if (isupper(c))

 outputChar(tolower(c));

 else if (islower(c))

 outputChar(toupper(c));

 else

 outputChar(c);

 }

 exit(0);

}

% cat input

One

Two

Three

Four

Five

Six

Seven

Eight

Nine

Ten

% caseconv < input

oNE

tWO

tHREE

fOUR

fIVE

sIX

sEVEN

eIGHT

nINE

tEN

UNIX Systems Programming for SVR4

44 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Porting Notes

All of the functions described in this section, except for isascii and toascii, are specified by

the ANSI C standard. They exist in all versions of UNIX, even those that predate ANSI C.

On newer systems such as SVR4 that understand international character sets, isalpha, isupper,

and islower will return the proper values even for non-ASCII values such as letters with umlauts

and other diacritical marks. isspace and ispunct will also work properly for non-ASCII values
such as the British “pound” symbol. On older UNIX systems however, these functions only work

properly on the ASCII character set.

On older versions of UNIX, toupper and tolower do not check their inputs before attempting to
convert them to upper- or lowercase; this is the responsibility of the programmer. The ANSI C

standard rectified this by prescribing that toupper and tolower should simply return their inputs
if the conversion makes no sense. However, for portability, it is a good idea to always check the

input yourself, as shown below:

if (isupper(c))

 c = tolower(c);

if (islower(c))

 c = toupper(c);

On some older versions of UNIX, the isprint function returns false for the “space” character.

Dynamic Memory Allocation

Dynamic memory allocation allows a program to allocate memory for data storage on an as-needed

basis. By using dynamic memory allocation instead of pre-allocated arrays, programs can be more

flexible in the amount of data they can handle, as well as more efficient by using only the memory

they need.

The basic dynamic memory functions provided by all versions of UNIX are malloc and free:

#include <stdlib.h>

void *malloc(size_t size);

void free(void *ptr);

malloc attempts to allocate size bytes of memory, and returns a pointer to the allocated block, or

a null pointer if the request could not be satisfied. The memory will be aligned for any use, meaning

that any data type can be stored in it (many hardware architectures are “picky” about certain data

types, especially floating point numbers, beginning at addresses that are multiples of some power

of two, usually four).

free releases memory that was previously allocated by malloc or one of the other memory
allocation functions described below. The memory is not actually released by the process (removed

Utility Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 45

from its address space), but it is marked as available for re-use by future calls to the allocation

functions.

After calling free, the memory pointed to by ptr is no longer guaranteed to be valid, and the results

of accessing this memory are undefined. Nevertheless, you will often see code fragments such as

this used to free dynamically allocated linked lists:

while (ptr != NULL) {

 free(ptr);

 ptr = ptr->next;

}

In most implementations of malloc and free, this will work acceptably, since free just performs
bookkeeping tasks and doesn't actually do anything to the freed memory. However, the above is

technically incorrect, and will not work in certain implementations. A more portable (and correct)

way to do the same thing is shown below:

while (ptr != NULL) {

 nextptr = ptr->next;

 free(ptr);

 ptr = nextptr;

}

When allocating an array of items, the calloc function can be used instead of malloc:

#include <stdlib.h>

void *calloc(size_t nelem, size_t elsize);

calloc allocates nelem contiguous elements of memory, each of size elsize, and returns a

pointer to the first element, or a null pointer if the request could not be satisfied. This is exactly

identical to calling malloc as follows:

ptr = malloc(nelem * elsize);

and would be rather pointless, except that calloc initializes the memory it allocates to zero, a

service not performed by malloc. (By initialize to zero, we mean that all the bits are set to zero;
this is not necessarily the same thing as “0” or “0.0” as far as the variable's data type is concerned.)

To increase the size of a previously allocated memory segment, the realloc function is used:

#include <stdlib.h>

void *realloc(void *ptr, size_t size);

ptr is a pointer to a segment of memory returned by a previous call to malloc, calloc, or

realloc, and size is the desired new size, in bytes. realloc returns a pointer to the new memory

segment, or a null pointer if the request cannot be satisfied. Note that in order to satisfy a request,

UNIX Systems Programming for SVR4

46 FOR PERSONAL, NON-COMMERCIAL USE ONLY

realloc may have to copy the existing block pointed to by ptr to a new (larger) area in memory.

This means that after a call to realloc, any variables pointing into the old block may not be valid.

For the specific purpose of saving a string in dynamically allocated memory, most modern UNIX

systems provide a function called strdup:

#include <string.h>

char *strdup(const char *s);

strdup allocates a block of memory large enough to hold s, copies s into it, and returns a pointer

to the saved string, or a null pointer if no memory could be allocated. This is particularly useful for

saving strings of arbitrary length (such as those entered in response to prompts from the program)

without having to preallocate many arrays of the largest possible size. If you are writing a program

that has to be portable to older UNIX systems, the following implementation of strdup can be
included for portability:

#include <string.h>

char *

strdup(char *s)

{

 char *p;

 if ((p = (char *) malloc(strlen(s) + 1)) != NULL)

 strcpy(p, s);

 return(p);

}

Look back at Examples 2-1 and 2-2 for a moment, and notice that they both work on only a pre-

defined number of lines (the NSTRINGS constant). This is fine for our examples, in which we used
fairly small files. But, if we were to use these programs on larger files, they would only sort the first

NSTRINGS lines of the file, and not even read the rest of the file in. Up to a point, we can simply

increase the value of NSTRINGS to handle larger files, but after a while, things begin to get out of
hand. It would be extremely inefficient to allocate enough memory to handle a 1,000,000-line file

every time, even when we're normally sorting files that are much smaller.

Example 2-10 shows a reworked version of Example 2-2 that uses dynamic memory allocation to

allow the program to work on files of any arbitrary size (up to the maximum amount of memory

available to a single program on your machine).

Example 2-10: bsort-malloc

#include <stdlib.h>

#include <string.h>

void bubbleSort(char **, int);

void outputLine(char *);

char *inputLine(void);

Utility Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 47

int

main(int argc, char **argv)

{

 char *line;

 char **strptrs = NULL;

 int n, nstrings, nstrptrs;

 nstrings = 0;

 nstrptrs = 0;

 /*

 * For each line in the input...

 */

 while ((line = inputLine()) != NULL) {

 /*

 * If we're full up, allocate some more pointers.

 */

 if (nstrings == nstrptrs) {

 if (nstrptrs == 0) {

 nstrptrs = 8;

 strptrs = malloc(nstrptrs * sizeof(char *));

 }

 else {

 nstrptrs += 8;

 strptrs = realloc(strptrs, nstrptrs * sizeof(char *));

 }

 if (strptrs == NULL) {

 outputLine("out of memory.");

 exit(1);

 }

 }

 /*

 * Save a pointer to the line, stored in dynamically

 * allocated memory.

 */

 strptrs[nstrings++] = strdup(line);

 }

 /*

 * Sort the strings.

 */

 bubbleSort(strptrs, nstrings);

 /*

 * Print the strings and free the memory.

 */

 for (n = 0; n < nstrings; n++) {

 outputLine(strptrs[n]);

 free(strptrs[n]);

 }

 free(strptrs);

 exit(0);

}

UNIX Systems Programming for SVR4

48 FOR PERSONAL, NON-COMMERCIAL USE ONLY

/*

 * bubbleSort - implementation of the standard bubble sort algorithm.

 */

void

bubbleSort(char **strings, int nstrings)

{

 int i, j;

 char *tmp;

 int notdone;

 j = nstrings;

 notdone = 1;

 while (notdone) {

 notdone = 0;

 j = j - 1;

 for (i = 0; i < j; i++) {

 /*

 * Use strcmp() to compare the strings

 * alphabetically.

 */

 if (strcmp(strings[i], strings[i+1]) > 0) {

 tmp = strings[i+1];

 strings[i+1] = strings[i];

 strings[i] = tmp;

 notdone = 1;

 }

 }

 }

}

As each line is read in, it is saved in dynamically allocated memory with a call to strdup. The

return values from strdup are saved in dynamically allocated memory too; initially an array of

eight pointers is allocated with malloc, and then as more pointers are needed, they are allocated

eight more at a time with realloc. After sorting the lines, the strings allocated by strdup are freed

as they are printed out, and then lastly, the array of pointers is freed. (It is not necessary to free

memory before exiting, since the operating system will do it automatically, but it is “aesthetically
pleasing” from a programming style viewpoint to do so.)

Porting Notes

Before ANSI C, most versions of malloc, calloc, and realloc were declared to return pointers

of type char * instead of type void *. This can cause portability problems if you declare the
functions yourself; it is always better to use the appropriate include file instead and then typecast as

appropriate. Unfortunately, before the ANSI C standard specified that these functions would be

declared in stdlib.h, various vendors used different include files to declare them. Often there will be

a malloc.h, but if there isn't, you may have to search around for the proper file.

Another memory allocation function, alloca, deserves special mention here:

void *alloca(size_t size);

Utility Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 49

Like malloc, alloca returns a pointer to size bytes of memory, or a null pointer if the memory

is unavailable. However, unlike malloc, which allocates the memory from the program's data

segment, alloca allocates it from the program's stack segment. Thus, when the current function
returns, the memory is automatically freed by being popped off the stack. This simplifies

bookkeeping for programs that allocate large amounts of memory in numerous places.

Unfortunately, it is also a portability nightmare. The implementation of alloca is very machine-,
compiler-, and most of all, system-dependent. Some hardware architectures cannot implement it all.

For this reason, alloca should never be used by a program that must be portable to many different

systems.

Manipulating Temporary Files

When a program needs to create a temporary file, it is usually desirable to use a file name that is not

likely to be used by another program, or by another invocation of the current program. For example,

if the C compiler always used the temporary file /tmp/c-compile, then only one program could be

compiled on the system at a time. If two people tried to compile programs simultaneously, they

would both be writing to the same temporary file, and neither would get anything useful out of the

experience. For this reason, UNIX offers several functions for creating temporary files with unique
names.

The most often-used function is mktemp. Although it is not specified by the ANSI C standard, it is
nevertheless available on almost all modern UNIX platforms:

#include <stdlib.h>

char *mktemp(char *template);

(In HP-UX 10.x, mktemp is declared in unistd.h instead of stdlib.h.)

The template parameter points to a character string that contains a prototype temporary file name;

this prototype must include six trailing ‘X’ characters, which will be replaced with a unique identifier

(usually based on the process id number). Note that because mktemp modifies the string pointed to

by template in place, constant strings as defined in ANSI C cannot be used. In other words, rather

than using code like this:

#include <stdlib.h>

.

.

.

 char *tempf;

 tempf = mktemp("/tmp/mytempXXXXXX");

.

.

.

UNIX Systems Programming for SVR4

50 FOR PERSONAL, NON-COMMERCIAL USE ONLY

you should instead use code like this:

#include <stdlib.h>

.

.

.

 char *tempf;

 char *template[32];

 strcpy(template, "/tmp/mytempXXXXXX");

 tempf = mktemp(template);

.

.

.

If mktemp cannot construct a unique file name, it will assign the empty string to template.

The ANSI C standard specifies two different functions for creating temporary files, called tmpnam

and tempnam:

#include <stdio.h>

char *tmpnam(char *s);

char *tempnam(const char *dir, constr char *pfx);

These functions also exist in most versions of System V UNIX, but are not usually present in BSD

versions. tmpnam places its result in the character array pointed to by s; if s is null then the result

is left in an internal area that is overwritten with each call. If s is not null, then it must point to an

array of at least L_tmpnam (defined in stdio.h) bytes. The temporary file name generated by tmpnam

will always have the path prefix defined as P_tmpdir in stdio.h; on SVR4 systems it is defined as

“/tmp/.”

tempnam allows the programmer to control the directory in which the temporary file is created by

passing it in as dir. If dir is null, the path defined as P_tmpdir in stdio.h will be used. The pfx

string allows the programmer to choose a prefix for the file names generated by tempnam; if it is

null, no prefix will be used. If the environment variable TMPDIR is set, its value overrides any value

specified by dir.

A fourth function for creating a temporary file, also specified by the ANSI C standard, is called

tmpfile:

#include <stdio.h>

FILE *tmpfile(void);

Utility Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 51

This function uses tmpnam to create a temporary file name, and then opens the file for reading and
writing. It returns a Standard I/O Library file pointer (see Chapter 4, The Standard I/O Library) for

the file.

Porting Notes

The most portable of these functions is probably mktemp. Although it is not specified by the ANSI

C standard, it has existed in UNIX for the longest time, and is therefore likely to be present on
almost any system.

BSD UNIX provides one other function, called mkstemp:

int mkstemp(char *template);

The template parameter is used as described for mktemp, above. After the temporary file name is

obtained, mkstemp opens the file for reading and writing, and returns a low-level I/O file descriptor

(see Chapter 3, Low-Level I/O Routines) for the file. When porting programs that use this function

to SVR4 systems, the following compatibility routine can be used:

#include <sys/types.h>

#include <stdlib.h>

#include <fcntl.h>

int

mkstemp(char *template)

{

 char *tempf;

 tempf = mktemp(template);

 if (strlen(template) == 0)

 return(-1);

 return(open(tempf, O_RDWR | O_CREAT | O_TRUNC, 0666));

}

Parsing Command Line Arguments

Almost every UNIX command has arguments, and most commands follow a generally accepted set

of rules for how these arguments are formatted:

1. Command names must be between two and nine characters long.

2. Command names must include only lowercase letters and digits.

3. Option names must be one character long.

4. All options must be preceded by “–”.

5. Options with no arguments may be grouped after a single ‘–’. This means that either “-a -b

-c” or “-abc” may be used.

UNIX Systems Programming for SVR4

52 FOR PERSONAL, NON-COMMERCIAL USE ONLY

6. The first option argument following an option must be preceded by a tab or space character.

This means that “-a arg” must be used; “-aarg” is not legal.

7. Option arguments cannot be optional. This means that you cannot allow both “-a” and “-a

arg.”

8. Groups of option arguments following an option must either be separated by commas or

separated by space or tab characters and quoted. This means that you must use either “-a

xxx,yyy,zzz” or “-a "xxx yyy zzz".”

9. All options must precede operands on the command line. This means that “command -a -b -

c filename” is legal, while “command -a filename -b -c” is not.

10. A double dash (“––”) may be used to indicate the end of the options. This allows operands that
begin with a dash.

11. The order of the options relative to one another should not matter.

12. The relative order of the operands may affect their significance in ways determined by the

command with which they are used. This means that a command is allowed to assign meaning

to the order of its operands; for example, the cp command takes its first operand as the input

file, and its second operand as its output file. Reversing the order of these operands will produce

different results.

13. A dash (‘–’) preceded and followed by a space character should only be used to mean standard

input. This is used to tell a program that generally reads from files, such as troff, to read from

the standard input. It allows files to be read before processing the standard input.

Depending on how long you've been using UNIX and how many versions you've used, most of these

rules, except perhaps number 8, should look familiar. Early versions of System V provided a library

routine, getopt, that enforced most of these rules, and allowed a program to easily parse command
lines that followed the rules. Later versions provided a shell command, getopt, which enabled shell

scripts to use these rules as well.

In SVR4, the getopt command is available, as well as a newer command that is built in to the shell,

called getopts. Two library routines are provided as well: getopt, which enforces the rules

described above and parses command lines that follow these rules, and getsubopt, which enforces

rule number 8, and parses option arguments that follow that rule. These functions are called as
follows:

#include <stdlib.h>

int getopt(int argc, char * const *argv, const char *optstring);

extern char *optarg;

extern int optind, opterr, optopt;

int getsubopt(char **optionp, const char * const *tokens, char **valuep);

Utility Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 53

optstring contains a list of characters that are legal options for the command. If the option letter

is to be followed by an option argument, then the letter should be followed by a colon (‘:’) in

optstring.

When getopt is called, it returns the next option letter in argv that matches one of the letters in

optstring. If the option letter has an argument associated with it (as indicated by a colon character

in optstring), getopt will set the external variable optarg to point to the option argument.

The external variable optind contains the index into argv of the next argument to be processed; it

is initialized to 1 before the first call to getopt. When all options have been processed, getopt

returns –1. The special option “––” (two dashes) may be used to delimit the end of the options; when

it is encountered, getopt will skip over it and return –1. This is used to stop option processing

before encountering non-option arguments that begin with a dash.

When getopt encounters an option letter not included in optstring or cannot find an argument

after an option that should have one, it prints an error message and returns a question mark (‘?’).

The character that caused the error is placed in the external variable optopt. To disable getopt's

printing of the error message, the external variable opterr should be set to zero.

getsubopt is used to parse the suboptions in an option argument initially parsed by getopt. These

suboptions are separated by commas (unlike rule 8 above, getsubopt does not allow them to be
separated by spaces), and consist either of a single token or a token-value pair, separated by an equal

sign (‘=’). Since commas delimit suboptions in the option string, they are not allowed to be part of

the suboption or the value of a suboption.

When calling getsubopt, optionp is the address of a pointer to the suboption string, tokens is a

pointer to an array of strings representing the possible token values the option string can contain,

and valuep is the address of a character pointer that can be used to return any value following an

equal sign.

getsubopt returns the index of the token (in the tokens array) that matched the suboption in the

option string, or –1 if there was no match. If the suboption has a value associated with it, getsubopt

updates valuep to point at the first character of the value; otherwise it sets valuep to null. If

optionp contains only one suboption, optionp will be updated to point to the null character at the

end of the string. Otherwise, the suboption will be isolated by replacing the comma character with

a null character, and optionp will be updated to point to the next suboption.

All of this sounds relatively complicated, but is easily made clear with an example. Example 2-11

shows a program that uses getopt and getsubopt to parse its command line.

Example 2-11: parse-cmdline

#include <stdlib.h>

#include <string.h>

/*

 * Sub-options.

 */

char *subopts[] = {

UNIX Systems Programming for SVR4

54 FOR PERSONAL, NON-COMMERCIAL USE ONLY

#define COLOR 0

 "color",

#define SOLID 1

 "solid",

 NULL

};

int

main(int argc, char **argv)

{

 int c;

 char buf[1024];

 extern int optind;

 extern char *optarg;

 char *options, *value;

 /*

 * Process the arguments.

 */

 while ((c = getopt(argc, argv, "cf:o:st")) != -1) {

 switch (c) {

 case 'c':

 outputLine("circle");

 break;

 case 'f':

 strcpy(buf, "filename: ");

 strcat(buf, optarg);

 outputLine(buf);

 break;

 case 's':

 outputLine("square");

 break;

 case 't':

 outputLine("triangle");

 break;

 case '?':

 outputLine("command line error");

 break;

 case 'o':

 options = optarg;

 /*

 * Process the sub-options.

 */

 while (*options != '\0') {

 switch (getsubopt(&options, subopts, &value)) {

 case COLOR:

 if (value != NULL) {

 strcpy(buf, "color: ");

 strcat(buf, value);

 }

 else {

 strcpy(buf, "missing color");

 }

 outputLine(buf);

 break;

 case SOLID:

Utility Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 55

 outputLine("solid");

 break;

 default:

 strcpy(buf, "unknown option: ");

 strcat(buf, value);

 outputLine(buf);

 break;

 }

 }

 break;

 }

 }

 /*

 * Process extra arguments.

 */

 for (; optind < argc; optind++) {

 strcpy(buf, "extra argument: ");

 strcat(buf, argv[optind]);

 outputLine(buf);

 }

 exit(0);

}

% parse-cmdline -c -f picture.out -o solid

circle

filename: picture.out

solid

% parse-cmdline -o color=red,solid -t

color: red

solid

triangle

% parse-cmdline -s -z

square

parse-cmdline: illegal option -- z

command line error

This program represents the argument-parsing section for a hypothetical graphics program that will

draw a circle, square, or triangle, as specified by the -c, -s, or -t arguments. The -f argument allows

an output file to be specified, otherwise the program will write to the standard output. The -o

argument allows two options to be specified: solid, which indicates that the figure should be filled

in instead of hollow, and color, which allows a color to be specified for the figure.

As shown in the third command invocation in the example, an illegal option (-z) produces an error

message. As mentioned earlier, this message can be disabled by setting the external variable opterr
to zero. Note that the program will also parse additional operands on the command line (for example,

the command might require two additional arguments, the height and width of the figure); this is

done by the last few lines of code.

UNIX Systems Programming for SVR4

56 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Porting Notes

The use of getopt has never really caught on. Some people use it, other people don't. One of the

primary arguments against it is that the arguments to many commands simply don't fit into the set

of rules that it enforces. Indeed, in SVR4, the modification of a number of commands to use getopt

resulted in noticeable changes to the command lines most users are familiar with.

Most versions of System V will have some version of getopt, but getsubopt is new to SVR4,
and is thus not very portable. Older BSD systems usually do not have either function, although a

number of vendors have added one or both of them to their System V compatibility libraries.

However, there are several public domain implementations of getopt floating around; if you really
want to use it, you may wish to consider obtaining one of these and distributing it with your program.

Miscellaneous

There are many more functions provided by the C library on most UNIX systems, especially on

SVR4. This section describes a few of the more generally useful ones. For a complete list of all the

functions provided by your system, you should read Chapter 3 of the UNIX Programmer's Manual,

which describes the C library.

String to Number Conversion

There are several functions provided to convert character strings to numbers:

#include <stdlib.h>

int atoi(const char *str);

long atol(const char *str);

double atof(const char *str);

long strtol(const char *str, char **ptr, int base);

unsigned long strtoul(const char *str, char **ptr, int base);

double strtod(const char *str, char **ptr);

Both strtol and strtoul scan str up to the first character inconsistent with a number in the

given base. Leading white space is ignored; a leading minus sign will produce a negative number.

If ptr is non-null, then a pointer to the character in str that terminated the scan will be placed into

it. Legal inputs to strtol and strtoul are determined by the value of base. If base is 10, decimal

numbers are assumed; if base is 16, hexadecimal numbers are assumed, and so forth. Following an

optional minus sign, leading zeros are ignored and, if base is 16, a leading “0X” or “0x” will be

ignored too. If base is zero, the string itself determines the base: following an optional sign, a

leading zero indicates octal (base 8), a leading “0X” or “0x” indicates hexadecimal, and anything
else indicates decimal.

Utility Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 57

strtod scans str up to the first character inconsistent with a floating point number. If ptr is non-

null, then a pointer to the character in str that terminated the scan will be placed into it. After

ignoring leading white space, strtod will accept an optional sign, a string of digits optionally

containing a decimal point, and then an optional exponent part including an ‘E’ or ‘e,’ followed by

an optional sign, followed by an integer. Thus, the string “123.456” represents the number 123.456,

while the string “987.654e-2” represents the number 9.87654. The decimal point character

defaults to period (‘.’), but may vary with international custom (for example, many European
countries use a comma).

The other three functions have been around much longer, and are generally provided only for

backward compatibility. All three of them can be written in terms of the newer functions:

#include <stdlib.h>

int

atoi(char *str)

{

 return((int) strtol(str, (char **) 0, 10));

}

long

atol(char *str)

{

 return(strtol(str, (char **) 0, 10));

}

double

atof(char *str)

{

 return(strtod(str, (char **) 0));

}

Printing Error Messages

Every UNIX system call, and many of the library routines, returns an error code when something

goes wrong. This error code is stored as a small integer in the external variable errno. The values

that can be placed in errno are defined in the include file errno.h, and the manual page for each
system call describes the errors that it can return.

The errors defined in errno.h can vary between different versions of UNIX, although most versions

have at least a subset of them in common. However, because the errors do vary, it is unwise for a

program to interpret the numerical values of errno directly. Instead, only the constant names
defined in errno.h should be used. Additionally, to provide some consistency between applications,

programs should use a standard set of error messages to describe these errors. This is done by using

the perror function:

#include <stdio.h>

void perror(const char *s);

UNIX Systems Programming for SVR4

58 FOR PERSONAL, NON-COMMERCIAL USE ONLY

perror prints the contents of the string s, followed by a colon, followed by a string describing the

error in errno, followed by a newline character to the standard error output. For example,

if (systemcall(...arguments...) < 0) {

 perror("myprogram: systemcall");

 exit(1);

}

would print out the string “myprogram: systemcall:,” followed by a specific error message

describing the way in which systemcall failed.

ANSI C defines another function, strerror:

#include <string.h>

char *strerror(int errnum);

This function takes the error number as an argument (simply pass in the value of errno) and returns

a pointer to a character string that describes the error. This is often more flexible than perror, since
the program has more control over what happens to the error message.

Porting Notes

perror is available on all UNIX systems, and should be used whenever appropriate. strerror,
unfortunately, is not as widely available. On many older systems, an external character array called

sys_errlist is defined; you can use errno as an index into this array to achieve the same result:

char *

strerror(int errnum)

{

 extern int sys_nerr;

 extern char *sys_errlist[];

 if (errnum < 0 || errnum >= sys_nerr)

 return(NULL);

 return(sys_errlist[errnum]);

}

Pausing a Program

Sometimes a program needs to wait for something to happen, simply by “sitting there” for a few

seconds. To do this, the sleep routine is used:

#include <unistd.h>

unsigned int sleep(unsigned int seconds);

When called, sleep causes the program to pause for seconds seconds; when the time has expired,

sleep returns.

Utility Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 59

Exiting a Program

To exit a program, the exit function is used:

#include <stdlib.h>

void exit(int status);

The lower eight bits of the status argument are passed to the parent process when the program

terminates; the parent can use this value to determine whether the program terminated normally or

abnormally.

UNIX convention dictates that a zero exit status represents normal termination, while a non-zero

status indicates abnormal termination. Some programs assign special meanings to their exit status

values; for example, grep exits with status 0 if matches were found, status 1 if no matches were

found, and status 2 if the command line contained syntax errors or one of the files it was told to
search could not be opened. Most programs however, simply exit with status 0 if everything went

fine, and status 1 if there was a problem.

Chapter Summary

In this chapter, we have discussed a number of utility routines offered by the C library on most

UNIX systems. The routines described in this chapter will be used in the examples throughout the

rest of this book, so you should try to familiarize yourself with most of them. However, the primary

purpose of this chapter is to serve as a reference, so if you encounter a function in a later example
that is not described in the surrounding text, check back here if you don't remember what it does.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 61

Chapter 3
Low-Level I/O Routines

The C language, unlike PASCAL or FORTRAN, does not provide any built-in operators for

performing input and output (I/O). Rather, all I/O services are offered to the programmer directly

by the operating system, in the form of system calls and library routines.

In this chapter, we will examine the I/O interface provided by all versions of UNIX, including SVR4.

All of the functions described in this chapter, except for readv and writev, are specified by the
POSIX 1003.1 standard.

The routines described in this chapter are usually referred to as the low-level I/O interface, because

they are a direct interface to the operating system and, to some extent, the hardware itself. In the

next chapter we will discuss a high-level interface, the Standard I/O Library.

File Descriptors

All of the functions described in this chapter use a file descriptor to reference an open file. A file

descriptor is simply a small integer that identifies the open file to the operating system. There are

three file descriptors that are “predefined” when each program is invoked. The standard input,

usually the keyboard, is identified by file descriptor 0. The standard output, usually the screen, is

identified by file descriptor 1. And the standard error output, also usually the screen, is identified by

file descriptor 2.

File descriptors are allocated from a table maintained for each process by the operating system, and

each file descriptor is simply an index into that table. Most older versions of UNIX limit the

maximum number of files a process may have open at once to approximately 20. Newer versions

have larger limits such as 32 or 64, and SVR4 allows up to 256. One of the features of this table-

based implementation is that opening a file always returns the lowest-numbered available file

descriptor. Thus, since a process starts out with three open files (0, 1, and 2), the first file it opens

will be attached to file descriptor 3. If the program later closes its standard input (file descriptor 0),

then the next file it opens will be attached to file descriptor 0, not file descriptor 4. This behavior is

found in all versions of UNIX, and is also specified by the POSIX standard.

UNIX Systems Programming for SVR4

62 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Opening and Closing Files

Before any data can be read from or written to a file, that file must be opened for reading or writing

(or both). Opening a file causes the operating system to locate (or create) the file on the disk, allocate

an entry in the process' open file table, and set up assorted internal structures for moving data

between the file and your program. The function used to open a file is called open:

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open(const char *path, int oflag, /* mode_t mode */);

The path argument is a character string containing the path name of the file to be opened, and

oflag is a set of flags that control how the file is to be opened. oflag is constructed by or-ing

together flags from the following list (the first three flags are mutually exclusive):

O_RDONLY Open the file for reading only.

O_WRONLY Open the file for writing only.

O_RDWR Open the file for both reading and writing.

O_APPEND If set, the read/write offset for the file (the point at which the next read or write

will be performed) will be set to the end of the file prior to each write, thus

causing all data written to be appended to the file.

O_CREAT If the file exists, this option does nothing (except when O_EXCL is set; see
below). If the file does not exist, this option tells the operating system to create

it. The file will be created with the permission bits provided in the third

argument, mode, as modified by the process' umask value (see Chapter 6,

Special-Purpose File Operations).

O_EXCL If O_CREAT is also set, check to see if the file already exists. If the file does not

exist, it will be created. However, if the file does exist, the call to open will fail.
This allows cooperating processes to make use of the same file, since only one

process will be able to create the file at any given instant.

If O_EXCL and O_CREAT are both set, and the last path component of the file

name to be opened is a symbolic link, open will not follow the link.

O_NDELAY or
O_NONBLOCK

These constants affect the behavior of future reads and writes to a file. If the

file is a regular disk file, a read or write will return –1 immediately if no data

can be read or written, and errno will be set to EAGAIN. This is true regardless

of which flag (O_NDELAY or O_NONBLOCK) is used.

If the file is a terminal device or a FIFO (see Chapter 13, Interprocess
Communication), a read or write will still return immediately if no data can be

read or written. If the O_NONBLOCK flag is used, the read or write will return –

Low-level I/O Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 63

1 and set errno to EAGAIN. If the O_NDELAY flag is used however, the read or
write will return 0 (which is not considered an error).

O_NOCTTY If the file being opened is a terminal device, do not allocate that terminal as this

process' controlling terminal. The controlling terminal is discussed in Chapter

11, Processes, and Chapter 12, Terminals.

O_DSYNC Normally, write operations complete once the data to be transferred has been

successfully copied to an operating system buffer; the transfer from the buffer

to the physical storage media takes place without the process' knowledge. If this

option is set however, write operations on the descriptor will not complete until
the data has been successfully transferred to the physical storage medium. This

makes the process run much more slowly, but allows it to be absolutely sure

that the data has been stored on the disk.

This flag is not available in IRIX 5.x.

O_RSYNC Normally, a read request is satisifed with whatever data is stored on the disk at

the time the request is processed. If another process is writing to the file at the

same time, it is indeterminate whether the read will retrieve the old data or the

new data (this is subject to the order in which the operating system processes

the requests). If this option is set however, the read request will not complete

until any pending write operations affecting the data to be read have been

processed.

This flag is not available in IRIX 5.x.

O_SYNC This option is similar to O_DSYNC, except that while O_DSYNC will allow a write

to complete once only the data has been successfully updated, O_SYNC forces
the write to wait until both the data and the file's attributes (modification time,

etc.) have been updated.

This flag is not available in IRIX 5.x.

O_TRUNC If the file exists and is being opened for writing, truncate its length to zero, thus

deleting any existing data in the file.

If the file is opened successfully, open returns a file descriptor for the file. If the file cannot be
opened, –1 is returned and an error code describing the reason for failure is placed into the external

variable errno, where it can be examined or printed out with the perror function (see Chapter 2,

Utility Routines).

On older UNIX systems such as Version 7 and pre-4.2 versions of BSD UNIX, open only accepted

three values for oflag: 0 to open the file for reading, 1 to open it for writing, and 2 to open it for

reading and writing. (For backward compatibility, the constants O_RDONLY, O_WRONLY, and

O_RDWR are defined as 0, 1, and 2 respectively.) All of the other options described above were not

available, and furthermore, open only opened existing files—to create a file, a separate system call,

creat, was provided:

#include <sys/types.h>

UNIX Systems Programming for SVR4

64 FOR PERSONAL, NON-COMMERCIAL USE ONLY

#include <sys/stat.h>

#include <fcntl.h>

int creat(const char *path, mode_t mode);

If the file named in path does not exist, creat will create it, with the permission bits set to those

in mode, as modified by the process' umask value (see Chapter 6, Special-Purpose File Operations).

If the file named in path already exists, and is writable, it will be truncated to zero length. If the

file can be created successfully, creat returns a file descriptor (open for writing only) for the file.

If the file cannot be created, creat returns –1, and places an error code describing the reason for

failure into the external variable errno.

Once a program has finished using a file, the file should be closed. This causes any data written to

the file but not yet placed on the disk by the operating system to be flushed, and frees up the

resources (buffers, file table entry, etc.) used by that file. The function to close a file is called close:

#include <unistd.h>

int close(int fd);

If the file was closed successfully, close returns 0. If an error occurred during the closing process,

–1 is returned and an error code is stored in the external variable errno.

Porting Notes

As mentioned previously, older versions of UNIX do not support all the various flags to the open

system call. The O_NOCTTY and O_NONBLOCK options are new to POSIX implementations; the

O_DSYNC, O_RSYNC, and O_SYNC options are new to SVR4 implementations. Thus they are not
supported by BSD or pre-SVR4 systems.

On BSD systems, the meaning of O_NDELAY applies only to the open call, and does not affect future

reads and writes.

The POSIX standard says that if O_EXCL is set when O_CREAT is not set, the result is

implementation-defined. On some systems, it means the file is opened for exclusive use; only one

process may open the file at a time. On SVR4 systems however, it simply has no effect.

Finally, on BSD systems, the O_ constants are defined in the include file sys/file.h instead of fcntl.h.

Input and Output

To move data between a file and your program, the read and write functions are used:

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t nbytes);

ssize_t write(int fd, const void *buf, size_t nbytes);

Low-level I/O Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 65

The read function transfers up to nbytes bytes from the file referenced by fd and stores them in

the area of memory pointed to by buf. The number of bytes actually read is returned. If 0 is returned,

this indicates that end-of-file has been encountered and there is no data left to read. The write

function transfers up to nbytes bytes of data from the area of memory pointed to by buf to the file

referenced by fd. The number of bytes actually written is returned. Both routines return –1 if an

error occurs, and store an error code in the external variable errno.

Unlike languages in which the I/O instructions are built into the language, read and write do not
perform any formatting or data conversion. Although you can pass a pointer to any C data type to

both functions, you will be working with the actual contents of memory, not the human-readable

form of those contents. For example, the program:

main()

{

 int n;

 for (n = 1; n <= 3; n++)

 write(1, &n, sizeof(int));

}

will write twelve bytes (four bytes for each integer) to the standard output:

00000000 00000000 00000000 00000001

00000000 00000000 00000000 00000010

00000000 00000000 00000000 00000011

Contrast this with the PASCAL program:

program x;

 var n : integer;

begin

 for n := 1 to 3 do begin

 writeln(n);

 end

end.

or the FORTRAN program:

 integer n

 do 10 n = 1,3

 print *, n

10 continue

 stop

 end

both of which print out the ASCII representations of the number n:

1

2

3

UNIX Systems Programming for SVR4

66 FOR PERSONAL, NON-COMMERCIAL USE ONLY

To accomplish the same thing with write, you need to convert the integer n to a character string,

and then write it out:

int n;

char buf[32];

intToString(n, buf);

write(1, buf, strlen(buf));

Similarly, if you use the read function to read in a number:

int n;

read(0, &n, sizeof(int));

you will have to enter four bytes containing the appropriate binary bits to give you a number of the

appropriate value. If instead what you want is for the user to enter a number (say, “123”) and have

that value stored in n, you'll need code like this:

int i, n;

char buf[32];

i = read(0, buf, sizeof(buf));

buf[i] = '\0';

n = atoi(buf);

Note that because read does not automatically null-terminate the data it reads in, the program must
do this explicitly.

Example 3-1 shows a program that takes two file names as arguments. It opens the first file for

reading and the second file for writing, and then appends the contents of the first file to the second

file.

Example 3-1: append

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

#include <fcntl.h>

int

main(int argc, char **argv)

{

 int n, in, out;

 char buf[1024];

 if (argc != 3) {

 write(2, "Usage: append file1 file2\n", 26);

 exit(1);

 }

Low-level I/O Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 67

 /*

 * Open the first file for reading.

 */

 if ((in = open(argv[1], O_RDONLY)) < 0) {

 perror(argv[1]);

 exit(1);

 }

 /*

 * Open the second file for writing.

 */

 if ((out = open(argv[2], O_WRONLY | O_APPEND)) < 0) {

 perror(argv[2]);

 exit(1);

 }

 /*

 * Copy data from the first file to the second.

 */

 while ((n = read(in, buf, sizeof(buf))) > 0)

 write(out, buf, n);

 close(out);

 close(in);

 exit(0);

}

% cat a

file a line one

file a line two

file a line three

% cat b

file b line one

file b line two

file b line three

% append a b

% cat b

file b line one

file b line two

file b line three

file a line one

file a line two

file a line three

Note the calls to read and write: when calling read, we pass the size of the buffer buf, but when

calling write, we pass the number of bytes read, n. If we were to pass the size of the buffer instead,

then we would end up writing out some number of correct bytes (the ones we read), and then a large

number of “garbage” bytes.

Two other functions for reading and writing, readv and writev, were introduced in BSD UNIX,
and are also present in SVR4. These functions allow a program to perform “scatter-gather” I/O, by

passing in the addresses of several buffers in one call. Because these functions are rarely used, and

are not very portable anyway, they will not be discussed further.

UNIX Systems Programming for SVR4

68 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Repositioning the Read/Write Offset

One of the values the operating system associates with each file is the read/write offset, also called

the file offset. The read/write offset specifies the “distance,” measured in bytes from the beginning

of the file, at which the next read or write will take place. When a file is first opened or created, the

file offset is zero; the first read or write will start at the beginning of the file. As reads and writes

are performed, the offset is incremented by the number of bytes read or written each time. There is

only one read/write offset for each file, so a read of ten bytes followed by a write of twenty bytes

will leave the read/write offset at 30.

To examine and change the value of the read/write offset, the lseek function is used:

#include <sys/types.h>

#include <unistd.h>

off_t lseek(int fd, off_t offset, int whence);

lseek sets the read/write offset to offset bytes from the position in the file specified by whence,

which may have one of the following values:

SEEK_SET Set the read/write offset to offset bytes from the beginning of the file.

SEEK_CUR Set the read/write offset to offset bytes from the current offset.

SEEK_END Set the read/write offset to offset bytes from the end of the file.

On success, lseek returns the new read/write offset. On failure, it returns –1 and stores an error

code in the external variable errno. Note that the offset parameter is a signed value, so negative

seeks are permitted.

To move to the beginning of a file, the call

lseek(fd, 0, SEEK_SET);

is used. To move to the end of a file, the call

lseek(fd, 0, SEEK_END);

is used. And to obtain the value of the current offset without changing it, the call

off_t offset;

offset = lseek(fd, 0, SEEK_CUR);

is used. The concept of the “end” of a file is somewhat fluid—it is perfectly legal to seek past the

end of the file and then write data. This creates a “hole” in the file which does not take up any

storage space on the disk. When reading a file with holes in it however, the holes are read as zero-

valued bytes. This means that once a file with holes has been created, it is impossible to copy it

precisely, since all the holes will be filled in when the copy takes place. (There are ways around

Low-level I/O Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 69

this, but they involve reading the raw disk blocks rather than simply opening the file and reading it

directly.)

Example 3-2 shows a program that writes five strings to a file, and then prompts for a number

between 1 and 5. It seeks to the proper location for the string of that number, reads it from the file,

and prints it out. Note the use of the mktemp function to create a temporary file name; mktemp was
described in Chapter 2, Utility Routines.

Example 3-2: seeker

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

#include <stdlib.h>

#include <fcntl.h>

#define NSTRINGS 5

#define STRSIZE 3

char *strings[] = {

 "aaa", "bbb", "ccc", "ddd", "eee"

};

int

main(int argc, char **argv)

{

 int n, fd;

 char *fname;

 char buf[STRSIZE], answer[8], template[32];

 /*

 * Create a temporary file name.

 */

 strcpy(template, "/tmp/seekerXXXXXX");

 fname = mktemp(template);

 /*

 * Create the file.

 */

 if ((fd = open(fname, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0) {

 perror(fname);

 exit(1);

 }

 /*

 * Write strings to the file.

 */

 for (n = 0; n < NSTRINGS; n++)

 write(fd, strings[n], STRSIZE);

 /*

 * Until the user quits, prompt for a string and retrieve

 * it from the file.

 */

 for (;;) {

UNIX Systems Programming for SVR4

70 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 /*

 * Prompt for the string number.

 */

 write(1, "Which string (0 to quit)? ", 26);

 n = read(0, answer, sizeof(answer));

 answer[n-1] = '\0';

 n = atoi(answer);

 if (n == 0) {

 close(fd);

 exit(0);

 }

 if (n < 0 || n > NSTRINGS) {

 write(2, "Out of range.\n", 14);

 continue;

 }

 /*

 * Find the string and read it.

 */

 lseek(fd, (n-1) * STRSIZE, SEEK_SET);

 read(fd, buf, STRSIZE);

 /*

 * Print it out.

 */

 write(1, "String ", 7);

 write(1, answer, strlen(answer));

 write(1, " = ", 3);

 write(1, buf, STRSIZE);

 write(1, "\n\n", 2);

 }

}

% seeker

Which string (0 to quit)? 1

String 1 = aaa

Which string (0 to quit)? 5

String 5 = eee

Which string (0 to quit)? 3

String 3 = ccc

Which string (0 to quit)? 4

String 4 = ddd

Which string (0 to quit)? 2

String 2 = bbb

Which string (0 to quit)? 0

Note the number of steps involved in printing the prompts in this program. This is one of the

principal drawbacks to using low-level I/O; complex input and output formatting involves a lot of

work. Contrast this example with the redesigned version shown in the following chapter.

Porting Notes

On most pre-POSIX systems, the constants used with lseek are called L_SET, L_INCR, and

L_XTND. On even older UNIX systems; there are no constants defined at all, and the integers 0, 1,

Low-level I/O Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 71

and 2 are used instead. In either case, these can be replaced with the POSIX constants SEEK_SET,

SEEK_CUR, and SEEK_END respectively.

Duplicating File Descriptors

Sometimes it is desirable to have more than one file descriptor referring to the same file, or to have

a specific file descriptor refer to a file. This is most commonly needed when reassigning the standard

input, standard output, and standard error output. There are two functions provided to duplicate file

descriptors:

#include <unistd.h>

int dup(int fd);

int dup2(int fd, int fd2);

dup returns a new file descriptor that references the same file as fd. The new descriptor has the

same access mode (read, write, or read/write) and the same read/write offset as the original. The file

descriptor returned will be the lowest numbered one available. dup2 causes the file descriptor fd2

to refer to the same file as fd. If fd2 refers to an already-open file, that file is closed first.

The use of these functions is difficult to demonstrate without getting way ahead of ourselves, so we

will defer their demonstration until Chapter 11, Processes.

Chapter Summary

In this chapter we examined the I/O interface offered by all versions of the UNIX operating system.

This interface is frequently called a low-level interface because it does not provide any formatting

or data conversion facilities (refer again to the seeker program in Example 3-2). In the next chapter,

we will discuss the Standard I/O Library, which is a high-level interface comparable to the built-in

I/O operators in languages such as PASCAL and FORTRAN.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 73

Chapter 4
The Standard I/O Library

In the last chapter, we examined the low-level input and output interface provided by the UNIX

operating system. Although as we'll see later in the book this interface is useful for a number of

applications, it isn't very convenient to use for everyday programming.

To understand why, think about writing a program that computes your monthly budget. This

program will prompt you for budget items (strings) and monthly costs (numbers). It then performs

some calculations, and displays a nice table of values. The table contains the names of the budget
items (strings), and several columns of numbers, nicely lined up at the decimal point. Sounds pretty

simple, until you realize that you will have to write not only the functions to compute your budget,

but also a function to read in a string up to a newline character, a function to convert strings of

characters like “123.456” to numbers, a function to line up all the numbers in columns and print
them out, and so forth. These functions aren't terribly difficult, but imagine having to write them for

every program you develop—you'd be spending more time writing input and output formatting

routines than you would actually writing your program!

Fortunately, the original developers of UNIX realized this too, and they developed a powerful set

of functions called the Standard I/O Library. The primary purpose of the library is to separate out

the mechanics of doing input and output, so that you can spend your time writing “real” code instead

of writing mundane things like string-to-integer conversion functions. Specifically, the library

performs three major tasks for you:

 Input and output are automatically buffered. When reading or writing data, it is much more

efficient to do so in large chunks, rather than one byte (or a few bytes) at a time. This is because
each read or write request results in a call to the operating system, and then usually initiates

action on the part of some piece of hardware, such as a disk. Reading or writing one byte at a

time to a disk drive is horrendously inefficient—for each byte, the operating system has to tell

the disk to seek to some address, wait for the disk to do so, request the disk to transfer a byte to

or from memory, wait for the disk to do so, and then return the result to your program. Imagine

hundreds of programs doing this at the same time, each with thousands of bytes of data.

By buffering reads and writes, the Standard I/O Library makes programs more efficient. When

a program reads a single character, the library routine will actually read a large bufferful of

characters (using read) and then return the first character in the buffer to the program. The next

UNIX Systems Programming for SVR4

74 FOR PERSONAL, NON-COMMERCIAL USE ONLY

several one-character “reads” are filled from the same buffer, without making any request to

the operating system (or to a device such as a disk drive). When the entire buffer has been used

by the program, the next one-character read will cause the library to read another buffer full of

characters, and so forth. Thus, assuming a buffer size of one kilobyte (1,024 characters), a

program can read a ten kilobyte file a character at a time with only ten calls to the operating

system's read function, instead of 10,240 calls. Writes are handled in a similar fashion—each
time the program “writes” some data, the library routines transfer that data to a buffer. When

the buffer fills up, it is written out using write and a new buffer is started. All of this happens
invisibly to you, the programmer.

 Input and output conversions can be performed. As you know, inside a computer data is stored

in binary form. For example, the decimal integer 1234 is stored internally (on a 32-bit system)

as

00000000 00000000 00000100 11010010

Floating point numbers are even more unwieldy—the decimal number 1234.5678 is stored

internally (on a system using the IEEE 754 floating point format) as

01000100 10011010 01010010 00101011

Because human beings don't think very well in binary, it is necessary to convert between the

binary system used by the computer and the decimal system used by people. The Standard I/O

Library provides a number of convenient ways to do this.

 Input and output may be formatted. Most programs that produce output intended to be read by
humans make an effort to print their data in a format that is easy to read. For example, programs

that produce large amounts of numerical data try to line that data up into columns; programs

that produce lists try to make each line of the list line up somehow, and so forth. The Standard

I/O Library makes it easy to perform these tasks.

The Standard I/O Library exists in pretty much the same form on all versions of UNIX, although

some of the more obscure options vary from release to release. The version of the library discussed

in this chapter is the one specified by the ANSI C standard.

Data Types and Constants

When using the Standard I/O Library functions, an open file with its associated buffers is called a

stream, and is referenced by a file pointer. A file pointer is a variable of type FILE *, as defined in
the include file stdio.h. There are three predefined file pointers, associated with the three open files

given to each process when it is invoked: stdin refers to the standard input file (usually the

keyboard), stdout refers to the standard output file (usually the screen), and stderr refers to the

standard error file (also usually the screen).

The Standard I/O Library functions also make use of three constants defined in the include file
stdio.h:

The Standard I/O Library

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 75

EOF Returned by most of the integer-valued functions upon encountering an end-of-file

condition.

NULL Returned by most of the pointer-valued functions, signifying a null pointer.

BUFSIZ The size of buffers that should be used with most of the routines. Other buffer sizes

may be used with some functions, but this constant serves as a useful value for

declaring character arrays and other variables.

Opening and Closing Files

Before any data can be read from or written to a file, that file must be opened for reading or writing

(or both). Opening a file causes the operating system to locate (or create) the file on the disk, allocate

an entry in the process' open file table, and set up assorted internal structures for moving data

between the file and your program. In the case of the Standard I/O Library, opening a file also

allocates buffers internal to the library that will be used to move data between your program and the

file in an efficient manner. The Standard I/O Library function for opening a file is called fopen:

#include <stdio.h>

FILE *fopen(const char *filename, const char *type);

The character string filename contains the path name of the file to be opened, and the type

character string describes the type of stream that is to be created. type may have any of the

following values:

r Open the file for reading only. The file must already exist.

w Open the file for writing only. If the file does not exist, it will be created. If the file does

exist, it will be truncated to zero length (any data already in the file will be lost).

a Open the file for writing (appending). If the file does not exist, it will be created. If the file

does exist, all writes to the file will be appended to the end (any data already in the file will

not be lost).

r+ Open the file for both reading and writing. The file must already exist.

w+ Open the file for both reading and writing. If the file does not exist, it will be created. If

the file does exist, it will be truncated to zero length.

a+ Open the file for both reading and writing (appending). If the file does not exist, it will be

created. If the file does exist, all writes to the file will be appended to the end.

All type strings may also have a ‘b’ contained in them, as in “rb,” “w+b,” or “ab+.” The ‘b’

informs the library routines that the file is a “binary” file (as opposed to a text file), which is

necessary on some operating systems. Because UNIX does not distinguish between binary and text

files, the ‘b’ is simply ignored.

UNIX Systems Programming for SVR4

76 FOR PERSONAL, NON-COMMERCIAL USE ONLY

If the file can be opened successfully, a file pointer to the open stream is returned. If the file cannot

be opened, the constant NULL is returned, and an error code is placed in the external variable errno.

Once a program is finished with a file, the file should be closed. This causes any buffered writes to

be flushed to the disk, frees up memory in the library associated with the file's buffering, and frees

up the operating system resources (buffers, file table entry, etc.) used by that file. The Standard I/O

Library function to close a file is called fclose:

#include <stdio.h>

int fclose(FILE *stream);

If the file referenced by stream is closed successfully, fclose returns zero. If the close fails, the

constant EOF is returned, and an error code is placed in the external variable errno.

Porting Notes

As mentioned earlier, the Standard I/O Library has been around for a long time, and there aren't too

many significant differences between versions. The ‘b’ character in the type argument was first

introduced in XENIX, and may not be understood by older versions of the library. However, it is a

part of the ANSI C standard, and so most newer versions should support it. To be safe though,

always place the ‘+’ after the first type character, followed by the ‘b’.

Some very old versions of the library may not understand the ‘+’ notation, but this should not be of
concern on any modern system (i.e., don't worry about portability when using it).

Character-Based Input and Output

The simplest way to perform input and output is to treat a file as an unformatted stream of bytes.

And the simplest way to process a stream of bytes is one byte at a time. The Standard I/O Library
provides several functions to do this:

#include <stdio.h>

int fgetc(FILE *stream);

int getc(FILE *stream);

int getchar(void);

int fputc(int c, FILE *stream);

int putc(int c, FILE *stream);

int putchar(int c);

The getc function returns the next character (byte) from the file referenced by stream. If there are

no more characters to read (end-of-file has been reached), or if an error occurs, getc returns the

constant EOF.

The Standard I/O Library

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 77

The putc function converts c to an unsigned char and places it on stream. If it succeeds, putc

returns c, otherwise it returns the constant EOF.

The getchar and putchar functions are actually just macros, defined as:

#define getchar() getc(stdin)

#define putchar(c) putc(c, stdout)

These are often used as short-hand in programs that read from the standard input and/or write to the

standard output.

The fgetc and fputc functions behave exactly like getc and putc. The difference is that getc

and putc are usually implemented as preprocessor macros, while fgetc and fputc are

implemented as genuine C-language functions. This means that fgetc and fputc run more slowly

than getc and putc (because of the overhead incurred when making a function call), but they take
up less space in the executable code because they are not expanded in-line as macros are. Their other

advantage is that because they are functions, they can be passed as arguments to other functions.

All of these functions use variables of type int to hold byte values, rather than type char. This is

necessary to allow the functions to return the constant EOF, which is usually defined as –1. If the

char type were used instead of int, then reading a character with decimal value 255 could

erroneously cause a program to think end-of-file had been reached, because the char value –1 can

get sign-extended to the int value –1 during comparisons. For this reason, it is important to always

use variables of type int when working with these functions.

Example 4-1 shows another version of our append program introduced in Chapter 3. The program

takes two file names as arguments. It opens the first file for reading, and the second file for writing,

and then appends the contents of the first file to the second file.

Example 4-1: append-char

#include <stdio.h>

int

main(int argc, char **argv)

{

 int c;

 FILE *in, *out;

 if (argc != 3) {

 fprintf(stderr, "Usage: append-char file1 file2\n");

 exit(1);

 }

 /*

 * Open the first file for reading.

 */

 if ((in = fopen(argv[1], "r")) == NULL) {

 perror(argv[1]);

 exit(1);

 }

UNIX Systems Programming for SVR4

78 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 /*

 * Open the second file for writing.

 */

 if ((out = fopen(argv[2], "a")) == NULL) {

 perror(argv[2]);

 exit(1);

 }

 /*

 * Copy data from the first file to the second, a character

 * at a time.

 */

 while ((c = getc(in)) != EOF)

 putc(c, out);

 fclose(out);

 fclose(in);

 exit(0);

}

% cat a

file a line one

file a line two

file a line three

% cat b

file b line one

file b line two

file b line three

% append-char a b

% cat b

file b line one

file b line two

file b line three

file a line one

file a line two

file a line three

The internal buffering providing by the Standard I/O Library means that, even though this example

“reads” and “writes” one character at a time, the data is actually being transferred to disk in large

chunks. This is very important—it allows a program to process files one byte at a time while

preserving the efficiency of reading and writing large buffers fulll of data. If the program in the

example above were converted to use the low-level I/O routines described in the previous chapter,

it would become too inefficient to use on all but the smallest input files.

The buffering features provided by the Standard I/O Library allow the library to provide another

interesting function, ungetc:

#include <stdio.h>

int ungetc(int c, FILE *stream);

The Standard I/O Library

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 79

This function is quite literally the reverse of getc, causing the character c to be placed back onto

the input stream referenced by stream. The next call to getc will return the character contained in

c.

This function is often used in programs that read from a file until a special character is encountered.

When the special character is read, the collection of input is stopped for the current token, and the

character is placed back onto the input with ungetc, so that another part of the program can deal

with it later. For example, consider a program that reads lists of words separated by colon (‘:’)

characters:

while ((c = getc(fp)) != EOF) {

 if (c == ':') {

 word[nchars] = '\0';

 ungetc(c, fp);

 return;

 }

 word[nchars++] = c;

}

As each character is read, it is checked to see if it is the colon character, and if not, is appended to

the current word. If the colon character is read, the word is terminated, the colon is placed back on

the input stream, and the subroutine returns. The next character read from the input stream will be

the colon character again.

There is actually no requirement that the character passed to ungetc be the same character that was
just read from the stream; in reality, any character can be placed onto the input. However, the library

only guarantees that up to four characters may be pushed back on the input stream; it is not possible,

for example, to “unread” an entire file.

Line-Based Input and Output

The Standard I/O Library also provides functions that can be used to process files a line at a time,

where a line is defined as some sequence of bytes terminated by a newline character:

#include <stdio.h>

char *gets(char *s);

char *fgets(char *s, int n, FILE *stream);

int puts(const char *s);

int fputs(const char *s, FILE *stream);

The gets function reads characters from stdin and places them into s until either a newline

character is read or end-of-file is encountered. The fgets function reads characters from stream

and places them into s until a newline character is encountered, n–1 characters have been read, or

end-of-file is encountered. Both functions terminate s with a null character and return s, or return

UNIX Systems Programming for SVR4

80 FOR PERSONAL, NON-COMMERCIAL USE ONLY

the constant NULL if end-of-file is encountered before any characters have been read. For historical

reasons, gets discards the newline character, while fgets copies it into s.

Note that there is a significant problem with gets: it has no way of knowing the size of the array

pointed to by its argument, s. It will happily continue reading characters and copying them to

memory, even after s has been filled, until it encounters a newline character or end-of-file. This has

the unfortunate side effect of destroying the contents of whatever variables follow s in memory,

resulting in unexpected program behavior. This “feature” of gets was used with great success by

the 1988 Internet worm to gain unauthorized access to systems. Because of this problem, the gets
function should be considered “evil” and its use should be avoided at all costs.

The puts function writes the string pointed to by s, followed by a newline character, to the standard

output. The fputs function writes the string pointed to by s to stream, but does not append a

newline character. On success, both functions return the number of characters written; if an error

occurs, they return the constant EOF.

Example 4-2 shows another version of our file-appending program; this one uses fgets and fputs
to process the file a line at a time.

Example 4-2: append-line

#include <stdio.h>

int

main(int argc, char **argv)

{

 FILE *in, *out;

 char line[BUFSIZ];

 if (argc != 3) {

 fprintf(stderr, "Usage: append-line file1 file2\n");

 exit(1);

 }

 /*

 * Open the first file for reading.

 */

 if ((in = fopen(argv[1], "r")) == NULL) {

 perror(argv[1]);

 exit(1);

 }

 /*

 * Open the second file for writing.

 */

 if ((out = fopen(argv[2], "a")) == NULL) {

 perror(argv[2]);

 exit(1);

 }

 /*

 * Copy data from the first file to the second, one line

 * at a time.

The Standard I/O Library

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 81

 */

 while (fgets(line, sizeof(line), in) != NULL)

 fputs(line, out);

 fclose(out);

 fclose(in);

 exit(0);

}

% cat a

file a line one

file a line two

file a line three

% cat b

file b line one

file b line two

file b line three

% append-line a b

% cat b

file b line one

file b line two

file b line three

file a line one

file a line two

file a line three

Buffer-Based Input and Output

A third input and output paradigm offered by the Standard I/O Library is that of buffer-based input

and output, in which buffers full of characters are read and written in large chunks. This method is

almost identical to the paradigm offered by the low-level interface described in Chapter 3, except
that the library still provides internal buffering services, regardless of the size of the buffers used by

the program.

There are two functions for performing buffer-based I/O, fread and fwrite:

#include <stdio.h>

size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);

size_t fwrite(const void *ptr, size_t size, size_t nitems, FILE *stream);

The fread function reads nitems of data, each of size size, from stream and places them into

the array pointed to by ptr. It returns the number of items (not the number of bytes) read, zero if

no items were read, or the constant EOF if end-of-file was encountered before any data was read.

The fwrite function copies nitems of data, each of size size, from the array pointed to by ptr

to the output stream stream. It returns the number of items (not the number of bytes) written, or

EOF if an error occurs.

Example 4-3 shows one last version of our file-appending program; this one uses fread and

fwrite.

UNIX Systems Programming for SVR4

82 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Example 4-3: append-buf

#include <stdio.h>

int

main(int argc, char **argv)

{

 int n;

 FILE *in, *out;

 char buf[BUFSIZ];

 if (argc != 3) {

 fprintf(stderr, "Usage: append-line file1 file2\n");

 exit(1);

 }

 /*

 * Open the first file for reading.

 */

 if ((in = fopen(argv[1], "r")) == NULL) {

 perror(argv[1]);

 exit(1);

 }

 /*

 * Open the second file for writing.

 */

 if ((out = fopen(argv[2], "a")) == NULL) {

 perror(argv[2]);

 exit(1);

 }

 /*

 * Copy data from the first file to the second, a buffer

 * full at a time.

 */

 while ((n = fread(buf, sizeof(char), BUFSIZ, in)) > 0)

 fwrite(buf, sizeof(char), n, out);

 fclose(out);

 fclose(in);

 exit(0);

}

% cat a

file a line one

file a line two

file a line three

% cat b

file b line one

file b line two

file b line three

% append-buf a b

% cat b

file b line one

file b line two

file b line three

The Standard I/O Library

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 83

file a line one

file a line two

file a line three

Formatted Input and Output

Up to this point, we have been discussing methods of performing unformatted input and output. The

programs in Examples 4-1 through 4-3 simply read and write bytes, without assigning any particular

meaning to them. Although this type of input and output is performed all the time, it is also necessary

to be able to read or write data that is formatted in a particular way, usually to make it easier for
human beings to understand and work with. The Standard I/O Library provides two sets of functions

to do this: the printf functions handle writing formatted output, and the scanf functions handle

reading formatted input.

The printf Functions

The printf functions allow data in a wide variety of formats to be printed in almost any format
imaginable:

#include <stdio.h>

int printf(const char *format, ...);

int fprintf(FILE *stream, const char *format, ...);

int sprintf(char *s, const char *format, ...);

All three functions convert, format, and print their arguments according to the instructions contained

in the format string. The printf function writes to the standard output, the fprintf function

writes to the referenced stream, and the sprintf function copies its output to the array of

characters pointed to by s. The number of arguments passed to each of these functions may vary;

the contents of the format string specify unambiguously how many arguments there are. Each

function returns the number of characters written, or the constant EOF if an error occurs.

The format string may contain three types of characters:

1. Plain characters that are simply copied to the output;

2. C-language escape sequences that represent non-graphic characters (‘\n,’ ‘\t,’ etc.);

3. Conversion specifications.

A conversion specification, in its simplest form, is a percent sign (‘%’) followed by a single character
that indicates the type of conversion to be performed. For each conversion specification, another

argument is passed to the printf function following format; the arguments are passed in the same

order that their conversion specifications appear.

There are three basic data types that can be specified in a conversion specification: integers, floating

point numbers, and characters and character strings.

UNIX Systems Programming for SVR4

84 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Integers

The conversion specifications for integers are as follows:

%d or %i The argument, of type int, is converted to a signed decimal number. The %i
specification is specific to ANSI C.

%o The argument, of type int, is converted to an unsigned octal number.

%u The argument, of type int, is converted to an unsigned decimal number.

%X or %x The argument, of type int, is converted to an unsigned hexadecimal number. The

‘X’ conversion uses the letters “ABCDEF;” the ‘x’ conversion uses “abcdef.”

Example 4-4 shows some examples of how these conversion specifications are used.

Example 4-4: printf-int

#include <stdio.h>

#define N 4

int numbers[N] = { 0, -1, 3, 169 };

int

main(int argc, char **argv)

{

 int i;

 for (i = 0; i < N; i++) {

 printf("Signed decimal: %d\n", numbers[i]);

 printf("Unsigned octal: %o\n", numbers[i]);

 printf("Unsigned decimal: %u\n", numbers[i]);

 printf("Unsigned hexadecimal: %x\n\n", numbers[i]);

 }

 exit(0);

}

% printf-int

Signed decimal: 0

Unsigned octal: 0

Unsigned decimal: 0

Unsigned hexadecimal: 0

Signed decimal: -1

Unsigned octal: 37777777777

Unsigned decimal: 4294967295

Unsigned hexadecimal: ffffffff

Signed decimal: 3

Unsigned octal: 3

Unsigned decimal: 3

Unsigned hexadecimal: 3

Signed decimal: 169

The Standard I/O Library

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 85

Unsigned octal: 251

Unsigned decimal: 169

Unsigned hexadecimal: a9

An optional ‘h’ character may be used to indicate that the argument corresponding to one of the

above conversions is a short int (e.g., “%hd”) or unsigned short int (e.g., “%hu”). Likewise,

an optional ‘l’ character may be used to indicate a long int or unsigned long int.

Floating-Point Numbers

The conversion specifications for floating point numbers are as follows:

%f The argument, of type double, is converted to decimal notation in the style

[-]ddd.ddd. By default, six decimal digits are output.

%E or %e The argument, of type double, is converted to decimal notation in the style

[-]d.dddE±dd, where there is always one digit before the decimal point. By

default, there will be six digits after the decimal point. The ‘E’ conversion causes an

‘E’ to be used in the output; the ‘e’ conversion causes an ‘e’ to be used.

%G or %g The argument, of type double, is converted to decimal notation in either of the
above two styles, depending on the number of significant digits in the result.

Example 4-5 shows some examples of how these conversion specifications are used.

Example 4-5: printf-float

#include <stdio.h>

#define N 4

double numbers[N] = { 0, -1.234, 67.890, 1234567.98765 };

int

main(int argc, char **argv)

{

 int i;

 for (i = 0; i < N; i++) {

 printf("f notation: %f\n", numbers[i]);

 printf("e notation: %e\n", numbers[i]);

 printf("g notation: %g\n\n", numbers[i]);

 }

 exit(0);

}

% printf-float

f notation: 0.000000

e notation: 0.000000e+00

g notation: 0

f notation: -1.234000

UNIX Systems Programming for SVR4

86 FOR PERSONAL, NON-COMMERCIAL USE ONLY

e notation: -1.234000e+00

g notation: -1.234

f notation: 67.890000

e notation: 6.789000e+01

g notation: 67.89

f notation: 1234567.987650

e notation: 1.234568e+06

g notation: 1.23457e+06

An optional ‘L’ character may be used to indicate that the argument corresponding to one of the

above conversions is a long double (e.g., “%Lf”).

Characters and Character Strings

The conversion specifications for characters and character strings are as follows:

%c The argument, of type int, is converted to an unsigned char and printed.

%s The argument, a pointer to a character string, is copied to the output character-by-character

up to (but not including) a terminating null character.

%% This specification allows a percent sign to be printed; no argument is converted.

Field Width and Precision

Example 4-6 shows a small program that prints out the cost of purchasing some number of items.

Example 4-6: cost

#include <stdio.h>

#define COST_PER_ITEM 1.25

void printCost(int);

int

main(int argc, char **argv)

{

 int i;

 for (i = 1; i < 1000; i *= 10)

 printCost(i);

 exit(0);

}

void

printCost(int n)

{

 printf("Cost of %d items at $%f each = $%f\n", n, COST_PER_ITEM,

 n * COST_PER_ITEM);

}

The Standard I/O Library

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 87

% cost

Cost of 1 items at $1.250000 each = $1.250000

Cost of 10 items at $1.250000 each = $12.500000

Cost of 100 items at $1.250000 each = $125.000000

There are a couple of problems with this example. First, because the numbers representing the

quantity of items we want to purchase are of different sizes, the equal signs don't line up, making

the total prices difficult to compare easily. Second, since we're dealing with dollars and cents, we

really only want two decimal places on each of the dollar amounts.

The first of these problems can be solved by using a field width. A field width specifies how many

character positions should be used by a specific output conversion. If we change the “%d” in our

format string to “%3d, then we are telling printf to print each integer in a field three characters
wide:

Cost of 1 items at $1.250000 each = $1.250000

Cost of 10 items at $1.250000 each = $12.500000

Cost of 100 items at $1.250000 each = $125.000000

Specifying a positive number as a field width causes the output to be right-justified in the field. If

we use a negative number, as in “%-3d”, the output will be left justified:

Cost of 1 items at $1.250000 each = $1.250000

Cost of 10 items at $1.250000 each = $12.500000

Cost of 100 items at $1.250000 each = $125.000000

And, if we specify a leading zero in the field width, as in “%03d” the output will be padded with

zeros instead of spaces:

Cost of 001 items at $1.250000 each = $1.250000

Cost of 010 items at $1.250000 each = $12.500000

Cost of 100 items at $1.250000 each = $125.000000

To fix our second problem, the number of decimal places, we can use a precision specification. The

precision is specified with a decimal point and then a number, and indicates;

 For the ‘d,’ ‘i,’ ‘o,’ ‘u,’ ‘x,’ and ‘X’ conversions, the minimum number of digits to appear (the
field is padded with leading zeros),

 For the ‘e,’ ‘E,’ and ‘f’ conversions, the number of digits to appear after the decimal point,

 For the ‘g’ and ‘G’ conversions, the number of significant digits, and

 For the ‘s’ conversion, the maximum number of characters to be copied from the string.

So, we can fix the printing of the cost per item by changing the “%f” to “%.2f:”

Cost of 1 items at $1.25 each = $1.250000

Cost of 10 items at $1.25 each = $12.500000

Cost of 100 items at $1.25 each = $125.000000

UNIX Systems Programming for SVR4

88 FOR PERSONAL, NON-COMMERCIAL USE ONLY

To fix the total cost, we need not only to print just two decimal digits, but we also need to get the

decimal points to line up. To do this, we can use a field width and a precision. Since our largest

number occupies six character positions, we can change the “%f” to “%6.2f.” Example 4-7 shows
the final result of all of these changes.

Example 4-7: cost-fmt

#include <stdio.h>

#define COST_PER_ITEM 1.25

void printCost(int);

int

main(int argc, char **argv)

{

 int i;

 for (i = 1; i < 1000; i *= 10)

 printCost(i);

 exit(0);

}

void

printCost(int n)

{

 printf("Cost of %3d items at $%.2f each = $%6.2f\n", n, COST_PER_ITEM,

 n * COST_PER_ITEM);

}

% cost-fmt

Cost of 1 items at $1.25 each = $ 1.25

Cost of 10 items at $1.25 each = $ 12.50

Cost of 100 items at $1.25 each = $125.00

Both field widths and precisions may also be specified with an asterisk character (‘*’) instead of a
number. In this case, the field width or precision is read from the next argument in the argument list.

For example:

double n;

int fieldwidth, precision;

fieldwidth = 10;

precision = 4;

printf("%*.*f\n", fieldwidth, precision, n);

Note that the field width and precision precede the value to be printed in the argument list.

The Standard I/O Library

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 89

Variable Argument Lists

Most newer versions of the Standard I/O Library offer a set of printf functions that accept

varargs-style argument lists instead of explicit lists of arguments:

#include <stdarg.h>

#include <stdio.h>

int vprintf(const char *format, va_list ap);

int vfprintf(FILE *stream, const char *format, va_list ap);

int vsprintf(char *s, const char *format, va_list ap);

These functions make calling the functions from routines that accept a variable number of arguments

much easier. For example, to create a function error that works just like printf except that it
always prepends the name of the program to its output, the following code might be used:

#include <stdarg.h>

#include <stdio.h>

void

error(const char *format, ...)

{

 va_list ap;

 extern char *programName;

 va_start(ap, format);

 fprintf(stderr, "%s: ", programName);

 vfprintf(stderr, format, ap);

 va_end(ap);

}

The scanf Functions

The scanf functions allow data in almost any format to be read:

#include <stdio.h>

int scanf(const char *format, ...);

int fscanf(FILE *stream, const char *format, ...);

int sscanf(const char *s, const char *format, ...);

All three functions read characters, interpret them according to the instructions contained in the

format string, and store the results in their arguments. The scanf function reads from the standard

input, the fscanf function reads from the referenced stream, and the sscanf function copies its

input from the array of characters pointed to by s. The number of arguments passed to each of these

functions may vary; the contents of the format string specify unambiguously how many arguments

there are. Each function returns the number of input items successfully matched and assigned; this

UNIX Systems Programming for SVR4

90 FOR PERSONAL, NON-COMMERCIAL USE ONLY

number may be zero if the input does not match the format string or if end-of-file is encountered

prematurely. If end-of-file is encountered before the first matching failure or conversion is

performed, the constant EOF is returned.

The format string may contain three types of characters:

1. Whitespace characters (spaces, tabs, newlines, and form feeds) that, except in two cases

described below, cause input to be read up to the next non-whitespace character;

2. An ordinary character (not ‘%’) that must match the next input character;

3. Conversion specifications.

A conversion specification, in its simplest form, is a percent sign (‘%’) followed by a single character
that indicates the type of conversion to be performed. For each conversion specification, another

argument is passed to the scanf function following format; the arguments are passed in the same

order that their conversion specifications appear.

There are three basic data types that can be specified in a conversion specification: integers, floating

point numbers, and characters and character strings.

Integers

The conversion specifications for integers are as follows:

%d Matches an optionally signed decimal integer. The corresponding argument should be a

pointer to a variable of type int.

%i Matches an optionally signed integer, whose format is interpreted in the same fashion as

strtol with a base argument of 0 (strtol was described in Chapter 2, Utility Routines).

That is, numbers starting with ‘0’ are taken to be octal, numbers starting with “0x” or “0X”
are taken to be hexadecimal, and all others are taken to be decimal. The corresponding

argument should be a pointer to a variable of type int. The %i specification is specific to
ANSI C.

%o Matches an optionally signed octal integer. The corresponding argument should be a

pointer to a variable of type unsigned int.

%u Matches an optionally signed decimal integer. The corresponding argument should be a

pointer to a variable of type unsigned int.

%x Matches an optionally signed hexadecimal integer. The corresponding argument should be

a pointer to a variable of type unsigned int.

Example 4-8 shows some an example of how the “%d” specification is used. It reads in lines telling
how many quarters, dimes, and nickels we have, and prints out the total amount of money.

Example 4-8: scanf-int

#include <stdio.h>

The Standard I/O Library

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 91

int

main(int argc, char **argv)

{

 double total;

 int n, quarters, dimes, nickels;

 for (;;) {

 printf("Enter a line like:\n");

 printf("%%d quarters, %%d dimes, %%d nickels\n");

 printf("--> ");

 n = scanf("%d quarters, %d dimes, %d nickels", &quarters, &dimes,

 &nickels);

 if (n != 3)

 exit(0);

 total = quarters * 0.25 + dimes * 0.10 + nickels * 0.05;

 printf("You have: $ %.2f\n\n", total);

 }

}

% scanf-int

Enter a line like:

%d quarters, %d dimes, %d nickels

--> 3 quarters, 2 dimes, 1 nickels

You have: $ 1.00

Enter a line like:

%d quarters, %d dimes, %d nickels

--> 6 quarters, 0 dimes, 2 nickels

You have: $ 1.60

Enter a line like:

%d quarters, %d dimes, %d nickels

--> 0 quarters, 2 dimes, 9 nickels

You have: $ 0.65

Enter a line like:

%d quarters, %d dimes, %d nickels

--> ^D

An optional ‘h’ may be used to indicate that the argument corresponding to one of the above

conversions is a pointer to a short int (e.g., “%hd”) or unsigned short int (e.g., “%hu”).

Likewise, an optional ‘l’ character may be used to indicate a long int or unsigned long int.

Floating-Point Numbers

The conversion specifications for floating-point numbers are as follows:

%e or %f or %g Matches an optionally signed floating point number, in any of the formats

produced by the corresponding printf output conversions. The

corresponding argument should be a pointer to a variable of type float.

UNIX Systems Programming for SVR4

92 FOR PERSONAL, NON-COMMERCIAL USE ONLY

An optional ‘l’ character may be used to indicate that the argument corresponding to the above

conversions is a pointer to type double (e.g., “%lf”). Likewise, an optional ‘L’ maye be used to

indicate apointer to type long double.

This brings up an important difference between printf and scanf. Since all floating-point

arguments to printf are passed by value, it doesn't matter whether they are of type float or type

double—either way, C's argument type promotion rules will make them all doubles inside

printf. However, because scanf's arguments are all passed by reference (i.e., pointers are used),

the type promotion rules do not apply, and you must specifically tell scanf whether you're giving

it a pointer to an argument of type float or an argument of type double. This is a common source
of problems that you should be careful to avoid.

Characters and Character Strings

The conversion specifications for characters and character strings are as follows:

%c Matches a sequence of characters of the number specified by the field width

(see below). If no field width is specified, matches one character. The

corresponding argument should be a pointer of type char * that points to an
array large enough to accept the sequence. No terminating null character is

added. The normal skip over whitespace is suppressed during this conversion.

%s A character string is expected; the corresponding argument should be a

pointer of type char * and should point to an array of characters large

enough to hold the string and a terminating null character. The input field is
terminated by a whitespace character.

%[scanlist] Matches a nonempty sequence of characters from a set of expected characters

called the scanset. The corresponding argument should be a pointer of type

char * and should point to an array of characters large enough to accept the
sequence and a terminating null character. The characters between the

brackets, called the scanlist, comprise the scanset unless the first character

after the left bracket is a circumflex (‘^’), in which case the scanset comprises
all the characters that do not appear in the scanlist. To place a right bracket

in the scanlist, it must immediately follow the left bracket or the circumflex.

A range of characters may be specified by separating the first and last

characters in the range with a hyphen; for example, “%[0-9]” would match
a string of digits. To place the hyphen character in the scanlist, it should be

either the first or last character in the list.

%% This specification allows a percent sign to be matched in the input; no

argument assignment is performed.

Field Widths

As with printf, a field width can be used to tell scanf how wide an expected field should be. This

is particularly useful with the “%c” conversion, which can be told how many characters to read in.

The Standard I/O Library

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 93

Note, however, that field widths used with the “%s” conversion do not work quite as you might

expect. Many programmers expect “%12s” to read in the first 12 characters of a string, regardless

of the string's length. However, this is not the case, since “%s” does not consider anything but

whitespace as a field terminator. To obtain the desired behavior, “%12c” should be used instead.

Don't forget that the “%c” does not add a terminating null character.

Instead of a field width, an asterisk character (‘*’) can also be used. However, unlike the asterisk in

printf, which indicates that the field width should be obtained from a parameter, this asterisk
indicates that the field it is attached to should be skipped over in the input, rather than assigned to a

variable.

Porting Notes

The printf and scanf functions are generally pretty standard across all platforms, provided that

you stick to the conversions described in this chapter. The only exception to this is the “%i”
conversion, which is specific to ANSI C. There are a number of other conversion specifications and

modifiers that are much less widespread; indeed, the ANSI C standard introduced a number of them

itself. These are described in the manual pages for your specific version of UNIX, and will not be
used in this book. Although they are fine for local programs, those other conversions and modifiers

should not be used if portability is an issue.

Repositioning the Read/Write Offset

One of the values the operating system associates with each file is the read/write offset, also called

the file offset. The read/write offset specifies the “distance,” measured in bytes from the beginning

of the file, at which the next read or write will take place. When a file is first opened or created, the
file offset is zero (unless it was opened for appending); the first read or write will start at the

beginning of the file. As reads and writes are performed, the offset is incremented by the number of

bytes read or written each time. There is only one read/write offset for each file, so a read of ten

bytes followed by a write of twenty bytes will leave the read/write offset at 30.

The Standard I/O Library provides three primary functions for manipulating the read/write offset:

#include <stdio.h>

int fseek(FILE *stream, long offset, int whence);

void rewind(FILE *stream);

long ftell(FILE *stream);

The fseek function sets the read/write offset to offset bytes from the position in the file specified

by whence, which may have one of the following values:

SEEK_SET Set the read/write offset to offset bytes from the beginning of the file.

SEEK_CUR Set the read/write offset to offset bytes from the current offset.

UNIX Systems Programming for SVR4

94 FOR PERSONAL, NON-COMMERCIAL USE ONLY

SEEK_END Set the read/write offset to offset bytes from the end of the file.

On success, fseek returns zero (this is different from lseek, described in Chapter 3, which returns

the new read/write offset). On failure, the constant EOF is returned. Note that the offset is a signed

value, so negative seeks are permitted.

To move to the beginning of a file, the call

fseek(stream, 0, SEEK_SET);

can be used. The call

rewind(stream);

may also be used; this has the side effect of clearing any error condition (described later) on the

stream. To move to the end of a file, the call

fseek(stream, 0, SEEK_END);

To obtain the value of the current offset without changing it, the call

long offset;

offset = ftell(stream);

is used. Note that unlike lseek, the call

offset = fseek(stream, 0, SEEK_CUR);

cannot be used for this purpose, since fseek does not return the current offset.

The concept of the “end” of a file is somewhat fluid—it is perfectly legal to seek past the end of the

file and then write data. This creates a “hole” in the file which does not take up any storage space
on the disk. When reading a file with holes in it however, the holes are read as zero-valued bytes.

This means that once a file with holes has been created, it is impossible to copy it precisely, since

all the holes will be filled in when the copy takes place. (There are ways around this, but they involve

reading the raw disk blocks rather than simply opening the file and reading it directly.)

Example 4-9 shows the Standard I/O Library version of the seeker program introduced in Chapter

3. The program writes five strings to a file, and then prompts for a number between 1 and 5. It seeks

to the proper location for the string of that number, reads it from the file, and prints it out.

Example 4-9: seeker

#include <stdlib.h>

#include <stdio.h>

#define NSTRINGS 5

#define STRSIZE 3

The Standard I/O Library

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 95

char *strings[] = {

 "aaa", "bbb", "ccc", "ddd", "eee"

};

int

main(int argc, char **argv)

{

 int n;

 FILE *fp;

 char *fname;

 char buf[STRSIZE], template[32];

 /*

 * Create a temporary file name.

 */

 strcpy(template, "/tmp/seekerXXXXXX");

 fname = mktemp(template);

 /*

 * Open the file.

 */

 if ((fp = fopen(fname, "w+")) == NULL) {

 perror(fname);

 exit(1);

 }

 /*

 * Write strings to the file.

 */

 for (n = 0; n < NSTRINGS; n++)

 fwrite(strings[n], sizeof(char), STRSIZE, fp);

 /*

 * Until the user quits, prompt for a string and retrieve

 * it from the file.

 */

 for (;;) {

 /*

 * Prompt for a string number.

 */

 printf("Which string (0 to quit)? ");

 scanf("%d", &n);

 if (n == 0) {

 fclose(fp);

 exit(0);

 }

 if (n < 0 || n > NSTRINGS) {

 fprintf(stderr, "Out of range.\n");

 continue;

 }

 /*

 * Find the string and read it.

 */

 fseek(fp, (n-1) * STRSIZE, SEEK_SET);

UNIX Systems Programming for SVR4

96 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 fread(buf, sizeof(char), STRSIZE, fp);

 /*

 * Print it out.

 */

 printf("String %d = %.*s\n\n", n, STRSIZE, buf);

 }

% seeker

Which string (0 to quit)? 1

String 1 = aaa

Which string (0 to quit)? 5

String 5 = eee

Which string (0 to quit)? 3

String 3 = ccc

Which string (0 to quit)? 4

String 4 = ddd

Which string (0 to quit)? 2

String 2 = bbb

Which string (0 to quit)? 0

Compare this version of seeker with the one in Chapter 3, and note how much less work this version

has to do to print the prompts and results. This demonstrates one of the principal benefits of using

the Standard I/O Library.

The ANSI C standard specifies two additional functions for manipulating the read/write offset:

#include <stdio.h>

int fsetpos(FILE *stream, const fpos_t *pos);

int fgetpos(FILE *stream, fpos_t *pos);

The fgetpos function stores the current read/write offset for stream into the object pointed to by

pos. The fsetpos function sets the current read/write offset to the value of the object pointed to

by pos, which should be a value returned by a call to fgetpos on the same stream. If successful,

both functions return zero; otherwise they return non-zero.

These two functions allow a program to “save its place” in a file, to return to it later. However, they

are new to ANSI C, and are therefore not portable to non-ANSI C environments. Fortunately, their

behavior is easily duplicated using ftell and fseek.

Reassigning a File Pointer

Sometimes it is necessary to change the file that is associated with a specific file pointer. This is

most often done with the pre-defined file pointers, stdin, stdout, and stderr. The function that

does it is called freopen:

#include <stdio.h>

FILE *freopen(const char *filename, const char *type, FILE *stream);

The Standard I/O Library

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 97

The filename argument contains the path to the new file, and type indicates how the new file

should be opened, as described earlier for fopen. The original file that stream referred to will be

closed. If freopen succeeds it returns stream; if it fails, it returns the constant NULL.

Buffering

As mentioned previously, the Standard I/O Library buffers input and output internally. There are a

number of quirks to the way things get buffered, which make things somewhat inconsistent. The

quirks exist in an attempt to make the library “do the right thing” under all circumstances:

 Disk files, both for reading and writing, are buffered in large chunks, usually 1,024 bytes or

more.

 The stdout stream is line-buffered if it refers to a terminal device, otherwise it is buffered like

a disk file. This means that when stdout refers to a terminal, the buffer is flushed each time a

newline character is printed.

 The stderr stream is completely unbuffered (except on some BSD-based systems, where it is

line-buffered). This means that writes to stderr appear immediately. This is necessary to allow

errors to show up even when a program fails and dumps core; if the writes were buffered, they

would not be flushed before the program was terminated.

 If the stdin stream refers to a terminal device, the stdout stream is flushed automatically

whenever a read from stdin is performed. This allows prompts (which typically do not contain

newline characters) to appear.

 A call to fseek or rewind flushes any write buffers that contain outstanding data.

Usually, the library does what is expected (the “principle of least surprise”). However, there are

situations in which the library's default behavior is not good enough. Thus, a number of routines are

provided for overriding the library's buffering decisions:

#include <stdio.h>

int fflush(FILE *stream);

void setbuf(FILE *stream, char *buf);

void setvbuf(FILE *stream, char *buf, int type, size_t size);

If stream is open for writing, fflush causes any buffered data waiting to be written to be written

to the file. If stream is open for reading, fflush causes any unread data in the buffer to be

discarded. If stream is NULL, fflush flushes data to disk for all streams that are open for writing.

The setbuf function may be used after a stream has been opened but before it has been read or

written. It causes the array pointed to by buf (which should be of size BUFSIZ) to be used instead

of an automatically allocated buffer. If buf is NULL, the stream will be completely unbuffered.

UNIX Systems Programming for SVR4

98 FOR PERSONAL, NON-COMMERCIAL USE ONLY

The setvbuf function may also be used after a stream has been opened but before it has been read

or written. The type argument indicates how stream will be buffered, using the following values:

_IOFBF Causes input and output to be fully buffered.

_IOLBF Causes output to be line buffered; the output will be flushed when a newline is

written, the buffer is full, or input is requested.

_IONBF Causes input and output to be completely unbuffered.

If buf is not NULL, the array it points to will be used for buffering instead of an automatically

allocated buffer. In this case, size specifies the size of buf in bytes.

Porting Notes

BSD UNIX provides two other buffering functions, setbuffer and setlinebuf. The setbuffer

function is like setbuf, except that it also allows the size of the buffer to be specfied; it can be
replaced with the call

setvbuf(stream, buf, _IOFBF, sizeof(buf));

The setlinebuf function changes a stream to be line-buffered; it may be used any time the stream
is active. It can be replaced with the call

setvbuf(stream, NULL, _IOLBF, 0);

which must be made before the stream is read or written.

Stream Status

The Standard I/O Library also provides functions for inquiring about and changing the status of a

stream:

#include <stdio.h>

int ferror(FILE *stream);

int feof(FILE *stream);

void clearerr(FILE *stream);

The ferror function returns non-zero when an error has previously occurred while reading from

or writing to stream; otherwise it returns zero. The feof function returns non-zero when the end-

of-file condition has previously been detected while reading from stream; otherwise it returns zero.

The clearerr function resets the error and end-of-file indicators on stream.

One of the most common errors made with the Standard I/O Library is to read from a terminal

device (usually stdin), allowing the user to indicate an end-of-file with CTRL-D (programs such

as mail do this), and then attempt to read from the terminal again. The second read will immediately

The Standard I/O Library

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 99

fail, since the end-of-file condition has already been detected on the stream. The proper way to

implement this is to call clearerr on the stream immediately after detecting end-of-file.

This error is especially common in older programs being ported to newer systems, because the

library used to automatically clear the end-of-file condition on stdin if it referred to a terminal

device. This behavior was changed several years ago to make things more consistent. Fortunately,

it's easy to detect the problem—if the program goes into an infinite loop of reprinting the prompt

after you type CTRL-D, you need to add a call to clearerr.

File Pointers and File Descriptors

There are two functions provided for “translating” between file pointers and file descriptors:

#include <stdio.h>

int fileno(FILE *stream);

FILE *fdopen(int fd, const char *type);

The fileno function returns the file descriptor associated with stream. This is useful for

performing specialized I/O operations on files with which the Standard I/O Library is being used
(these operations are described in later chapters).

The fdopen function allows a low-level file descriptor to be “converted” to a file pointer so that the

library's buffering and formatting features may be used. The file descriptor is given in fd; type

indicates how the stream should be opened. Note that type must match how the file descriptor was

originally opened; for example, it won't work to specify a type of “w” if the file descriptor is only

open for reading.

Chapter Summary

In this chapter we have examined how to open, close, and create files using the Standard I/O Library.

We have also discussed how to perform both unformatted and formatted input and output on those

files. We have seen how the library handles the tasks of input and output buffering, input and output

conversion, and input and output formatting for us, saving us the trouble of doing these things

ourselves. Input and output are the two most important things a program can do—without them,

computers wouldn't be good for much more than heating up the room.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 101

Chapter 5
Files and Directories

In Chapters 3 and 4, we learned how to open and create files, and how to transfer data between a

program and a file. For many types of application programs, this is all there is to it. But for systems

programming, there are a number of other tasks that may be necessary, such as discovering the

contents of directories, changing the ownership and permission bits of files, determining the last

modification time of a file, figuring out whether a user has the permissions necessary to access a

file, and so forth. These topics are the subject of this chapter.

File System Concepts

A file system is the set of data types, data structures, and system calls used by an operating system

to store data onto one or more disk drives. The simplest form of a file system, called a flat file system,

is analogous to the “cardboard box” filing system used by some people to keep track of their bills

for tax purposes. In the cardboard box method, each bill is simply tossed into a box, with more

recent additions being placed on top of earlier ones. There is no sense of order within the box;

mortgage bills, credit card bills, and utility bills are all intermixed in a random fashion. The only
way to impose any type of order is to use multiple boxes: one for mortgage bills, one for credit card

bills, and one for utility bills. A flat file system treats the disk like a cardboard box. Each file created

in the file system is like a bill—it is simply created in an empty place on the disk, with no particular

organization. Listing all the files is like dumping the cardboard box on the floor: system files,

homework files, correspondence files, program files, and so forth are all mixed together. The only

way to impose any type of order on a flat file system is to use multiple disks: one for system files,

one for homework files, one for correspondence files, and so on.

A flat file system is easy to implement. It doesn't require very much computation to figure out where

a file is located, or where the next file should be stored. And it doesn't require very much memory

to keep track of the file system bookkeeping. In the early days of computers, both of these

characteristics were very important: most systems were capable of processing tens of thousands of
instructions per second, and usually had memory sizes measured in the tens or perhaps hundreds of

kilobytes. Hard disks, which were very expensive, usually held a few megabytes. Because the disks

were not that large, it was not much of a problem to keep separate disks for each group of files,

much like keeping separate cardboard boxes for each group of receipts.

UNIX Systems Programming for SVR4

102 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Depending on your age, you will recognize the previous paragraph as a description of either the first

personal computers of the early 1980s, or the first minicomputers of the early 1970s. In either case

though, later systems had increased processing power, larger memories, and larger disks. This not

only made more complex file systems possible, but also necessary. As disks became larger, the

number of files they could store also increased. A flat file system was fine for storing a few dozen

(or even a hundred or so) files. But now that disks were capable of storing many thousands of files,
flat file systems became too difficult for humans to use.

The operating system designers of the day recognized this, and in response, developed a new tool

called a hierarchical file sytem. A hierarchical file system is analogous to the “file cabinet” method

of filing. In this method, each drawer of the file cabinet is used to hold a different category of files.

For example, one drawer is used to store bills, another to store correspondence, and so on. Within

each drawer are a number of hanging folders, to futher subdivide the files: one for credit card bills,

one for bank statements, one for utility bills, and so forth. Within each hanging folder, manila folders

are used to further subdivide the bills; there is a folder for the gas company, a folder for the water

company, and a folder for the telephone company. The hierarchical file system duplicates this

structure by using directories to represent the file cabinet drawers, and subdirectories to represent

the hanging folders and manila folders. Each directory or subdirectory contains other files and

subdirectories, allowing a user to organize his data to his heart's content.

The UNIX File System

UNIX was not the first operating system to use a hierarchical file system, nor is it the last. Almost

every modern operating system in use today has some type of hierarchical file system.

When it was first developed, the UNIX file system was different from other file systems of the day,

however. Unlike most systems, in which hardware devices were accessed via their own special

abstractions, UNIX folded everything into the file system. Instead of using a special set of system
calls to print a file on a printer or write data on a tape drive, the UNIX programmer could access

these devices simply by opening a file in the file system and then writing data to it. This simplicity

of the file system is one of the things that has made UNIX one of the most popular operating systems

in the world.

In the remainder of this section, we will discuss the different types of objects provided by the UNIX

file system.

Basic File Types

There are three basic file types in the UNIX file system: regular files, special files, and directories.

Regular Files

The simplest object in the file system is a regular file. This object can contain whatever data the user

chooses to place there; the operating system does not interpret it in any way. Unlike some other

operating systems, which have several different types of files such as sequential, random access,
fixed-length records, etc., UNIX does not impose any format on a regular file at all. Instead, the file

is simply interpreted as a string of bytes, and these bytes may be read and written in any way the

Files and Directories

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 103

user chooses. Certain programs, of course, expect this string of bytes to have a specific format. For

example, the assembler generates an object file that must be in a particular format (header, followed

by executable code, followed by initialized data) to be understood by the linker. But these formats

are imposed by user-level programs, not the operating system. As far as UNIX is concerned, there

is no difference whatsoever between a program's source code, its object code, its input, and its

output. They're all just regular files, each of which contains a string of bytes.

Special Files

Special files, also called device files, are one of the most unusual aspects of the UNIX file system.

Each input/output device connected to the computer system (disk drive, tape drive, serial port,

printer, etc.) is associated with at least one such file. To access a device, a program simply opens

the special file associated with the device, and then reads data from or writes data to the device as

if it were a regular file. The difference between special files and regular files is that when reads and
writes are performed on special files, the devices connected to the computer system do things. For

example, reading from the special file associated with a tape drive causes the tape to spin, the drive

to transfer data from the tape and into the computer's memory, and so forth. Writing to the special

file associated with a printer causes the print head to move, the hammers to strike the ribbon, and

letters to appear on the page.

There are two types of special files: character-special files, also called “raw” devices, and block-

special files. The character-special file is the most like a regular file, because it simply transfers data

between a program and a device in whatever units the program cares to use. For example, if a

program reads one character at a time from the character-special file associated with a tape drive,

the tape drive literally transfers a character at a time to the computer. If the program writes in blocks

of several sizes to the tape drive, then the tape will contain an assortment of different block sizes. A
block-special file on the other hand, is buffered by the operating system. If a program reads one

character at a time from the block-special file associated with a tape drive, the operating system will

tell the tape drive to transfer a block of data (usually some multiple of 512 bytes) to memory, and

will then satisfy the program's read request from this buffer. After the program has read enough data

to exhaust the buffer, another buffer will be requested from the tape drive. Similarly, if a program

writes in several different quantities to the tape drive, the operating system will buffer that data,

resulting in a tape with a uniform block size.

Directories

Directories provide the mapping between the names of files and the files themselves, thus imposing

a structure on the file system as a whole. A directory contains some number of files; it may also

contain other directories. A directory may be opened and read just like any other file; it is simply a

stream of bytes with a meaningful format. But a directory may not be opened for writing by a

program; all writes to a directory are handled by the operating system itself.

The operating system maintains one special directory for each file system, called the root directory.

This directory serves as the root of the file system hierarchy; every other file or directory in the file

system is subordinate to the root directory. Any file in the file system can be located by specifying

a path through a chain of directories starting at the root.

UNIX Systems Programming for SVR4

104 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Each file in the file system is identified by a path name, a sequence of file names separated by slash

(‘/’) characters, for example, “/dir/subdir/file.” All names in a path name, except for the one
following the last slash character, must be directories. If the path name begins with a slash character

it is called an absolute path name, and specifies the path to the file beginning from the root directory.

If the path name does not begin with a slash character, it is called a relative path name, and specifies

the path to the file from the program's current working directory (see below). As limiting cases, the

path name “/” refers to the root directory, and a null file name (e.g., “/a/b/”) refers to the directory

whose name precedes the last slash. Multiple slashes (“///”) are interpreted as a single slash.

A directory always has two entries, named “.” (“dot”) and “..” (“dotdot”). The special name “.” in a
directory refers to the directory itself; this enables a program to open its current working directory

for reading, without knowing its path name, by opening the file “.”. The special name “..” refers to

the parent directory of the directory in which it appears, that is, the directory one level up in the

hierarchy. A program may move from its current directory, regardless of where it is located in the

hierarchy, to the root directory by repeatedly changing to the directory “..” until the root directory

is reached. As a limiting case, in the root directory the “..” name is a circular link.

Removable File Systems

In its simplest case, the file system is a single directory hierarchy, contained on a single storage

device. There is a single root directory, and under that directory are files and directories; these

directories in turn contain more files and directories, and so on. But what happens when the storage

device runs out of room, and more storage space must be added to the system? Since a file system

is a single directory hierarchy on a single device, does this mean that the existing disk must be

replaced with a larger one, and that no file system may be larger than the largest capacity disk

currently manufactured?

Fortunately, no. But to explain this requires that we use the term file system to describe two different

things. Our first definition is that a file system is the directory hierarchy that exists on a single

storage device, composed of a root directory, files, and subdirectories, as described in the previous
paragraph. Our second definition is a recursive one; a file system is a directory hierarchy composed

of a root directory, files, subdirectories, and other file systems. This second definition is achieved

by telling the operating system that whenever a reference is made to a specific directory, the system

should move its frame of reference from the directory hierarchy stored on the first disk to the

hierarchy stored on some other disk.

This is best explained by an example. Suppose that we have a single disk on our system, and it

contains the entirety of the UNIX file system: /, /etc, /usr, and so forth. Let us further assume that

users' home directories, in which they keep all their personal files, are stored in the directory /home,

with names such as /home/joe, /home/mary, and so on. Now suppose that our disk is running out of

space, and we have just purchased a second disk. We would like to leave the system files on the first

disk, but move all the user files to our new disk. There are four steps to this process:

1. We use the newfs command to create a file system on the new disk. This process involves

initializing a number of new data structures on the disk and creating a root directory to serve as

the base of the directory hierarchy. For a discussion of the data structures that are actually placed

on the disk in this step, see Appendix B, Accessing File System Data Structures.

Files and Directories

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 105

2. We use the mount command to mount the new directory hierarchy into the file system, using

the /mnt directory as a mount point. The mounting process tells the operating system that

whenever a reference is made to a file whose path name from the root includes the directory

/mnt, the system should look in the directory hierarchy stored on our second disk. The process

of mounting a file system hierarchy on /mnt will cause any previous contents of /mnt to be

hidden until the file system is again unmounted.

3. Using any of a variety of tools, we copy the contents of the /home directory (on the old disk) to

the /mnt directory (on the new disk). Then we delete the contents of the /home directory,

removing the data from the old disk.

4. Finally, we unmount the new disk's file system from /mnt, and mount it on /home instead. Now,

whenever a file whose absolute path name contains the /home directory is referenced, the

operating system will know to look for the file on the new disk, instead of the old one.

The file system hierarchy created on the second disk is called a removable file system. It can be

mounted or unmounted, and the system will still operate correctly. However, the files in /home will

only be accessible when the hierarchy is mounted. Otherwise, /home will just be an empty directory.

It doesn't have to be empty, but it makes little sense to store things there, since they will be

inaccessible whenever the /home file system is mounted.

File systems may be mounted on directories at any level in the file system hierarchy. For example,
we could have mounted our new disk on /home/mary; this would mean that Joe's home directory

(/home/joe) would be stored on the old disk, but Mary's home directory (/home/mary) would be

stored on the new disk. Mounts may also be nested; for example, we could have one file system

mounted on /home, and another file system mounted on /home/mary. But to do this, we are required

to mount the file systems in a particular order: mounting the /home/mary disk before the /home disk

would not produce the desired result.

Device Numbers

Each special file in the file system has two device numbers associated with it. The major device

number is used to tell the operating system which device driver is to be used when the device is

referenced. For example, a disk drive might have major device number 23, and a tape drive might

have major device number 47. Whenever a reference is made to a file on the disk, the operating

system looks up number 23 in a table, and then uses the disk device driver to access the data that

has been requested. The minor device number is passed to the device driver. This number tells the

device driver which physical device is to be used in the case of a driver that handles multiple devices,

or how a device is to be accessed, in the case of devices like tape drives that support multiple

densities. Several devices (e.g., all of the disks connected to the system) may have the same major

device number, since they are all accessed with the same device driver, but they will each have a
different minor device number.

I-Numbers, the I-List, and I-Nodes

As mentioned earlier, directories provide the mapping between the names of files and the files

themselves. Each directory file contains a series of structures that perform this mapping. Each

structure contains the name of a file, and a pointer to the file itself. The pointer is in the form of an

integer called an i-number (for index number). When a file is accessed, the i-number is used as an

UNIX Systems Programming for SVR4

106 FOR PERSONAL, NON-COMMERCIAL USE ONLY

index into a system table (the i-list) where the entry for the file (the i-node) is stored. The i-node

contains all the information about a file:

 The user-id and group-id of the file's owner.

 The protection bits for the file, specifying who may access it and in what modes.

 The physical disk addresses of the data blocks that contain the file's contents.

 The size of the file, in bytes.

 The last time the file was modified (written), and the last time the file was accessed (read).

 The last time the file's i-node was changed (for example, the last time the permission bits were

changed).

 A tag indicating the file's type (regular file, directory, character special file, etc.).

One piece of information about a file is not stored in the i-node: the file's name. This information is

stored in the directory file for the directory that contains the file, and nowhere else.

The operating system maintains a separate i-list for each mounted file system. I-numbers are unique

within each removable file system, but when several file systems are mounted, the i-number alone

is not enough to distinguish a file uniquely.

Recall however that each special file has two device numbers associated with it, a major device

number and a minor device number. Since a file system is associated with a disk drive, it is therefore
also associated with a special file. And, since each disk drive is unique, it must have a unique major

and minor device number pair. Therefore, we can use a triple of (major device number, minor device

number, i-number) to uniquely specify each file in the overall file system.

Other File Types

There are several other file types available in the UNIX file system besides the three basic types

already presented.

Hard Links

It is possible to have more than one name refer to the same file by making a hard link to that file.

The link is created by making a new entry in a directory file with the new name, and the i-number

for the file. There may be any number of links to the same file; every link will have a different name,

but the same i-number. Note however that because a hard link only uses the i-number of the file, it
is impossible to make a hard link across two file systems; hard links must all reside on the same file

system. It is possible, though, for the links to reside in different directories on that file system.

Symbolic Links

In 4.2BSD, a new type of file called a symbolic link was introduced to solve the problem of linking

across file system boundaries. A symbolic link is a special file type that contains the path name of

the file the link points to. The path name may either be an absolute path name, in which case the
link's target is located from the root of the file system, or a relative path name, in which case the

Files and Directories

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 107

link's target is located relative to the directory that contains the link's source. Because i-numbers are

not involved in symbolic links, they may be used to make links across file system boundaries.

FIFOs

A FIFO (first-in, first-out), also called a named pipe, is a special type of file used for interprocess

communication. A program creates a FIFO in the file system using a special library routine. After

the FIFO has been created, other processes may open it, read from it, and write to it just as if it were

a regular file. However, whenever a read is performed, the data will be transferred from the process

owning the FIFO, not from the disk. And whenever a write is performed, the data will be transferred

to the process owning the FIFO, not to the disk. When the process that created the FIFO exits, the

FIFO may no longer be opened or used. However, it remains as an entry in the file system until it is

explicitly removed. FIFOs were introduced in System V UNIX, and are often not available in BSD-

derived systems.

UNIX-Domain Sockets

A UNIX-domain socket serves more or less the same function as a FIFO, in that it is created by a

process and results in an entry in the file system. After the socket has been created, other programs

may communicate with the process that created the socket. However, unlike a FIFO, which

preserves the open/read/write conventions of regular files, UNIX-domain sockets require a special

set of system calls (the same set of system calls used for intermachine communication over Internet-
domain sockets). UNIX-domain sockets were introduced in BSD UNIX, and are often not available

in System V-derived systems.

Obtaining File Attributes

One of the things systems-level programs need to do quite often is obtain information about files.

For example, it's important to make sure that files are owned by the right user, that they have the

right permission bits, and so forth. More will be said about this in the section on writing set-user-id
programs in Chapter 8, Users and Groups.

Getting Information From an I-Node

As mentioned earlier, all of the information about a file, except its name, is contained in an on-disk

structure called an i-node. There are three system calls used to obtain this information:

#include <sys/types.h>

#include <sys/stat.h>

int stat(const char *path, struct stat *st);

int lstat(const char *path, struct stat *st);

int fstat(int fd, struct stat *st);

The stat function is the most commonly used of the three; it obtains the information about the file

whose name is given by path, and places the data into the variable pointed to by st, which should

UNIX Systems Programming for SVR4

108 FOR PERSONAL, NON-COMMERCIAL USE ONLY

be of type struct stat. The lstat function is identical to stat, except when the last component

of the path name is a symbolic link. In that case, stat returns information about the file the link

points to, while lstat returns information about the link itself. The fstat variant, rather than
taking the name of a file, takes a file descriptor to an open file, and returns information about that

file.

In all cases, the file being asked about does not have to have any special permissions; i.e., it is

possible to obtain information about an unreadable file, or an unwritable file. However, the file must

be accessible to the calling program; this means that all directories along the path name contained

in path must have the appropriate search permissions set. This is discussed in more detail later in

this chapter. If stat, lstat, or fstat succeeds, a value of zero is returned. If an error occurs, –1
is returned and an error code describing the reason for failure will be placed in the external variable

errno.

The struct stat data type is declared in the include file sys/stat.h; the file sys/types.h must also

be included, to get the definitions of a number of basic operating system data types. The structure

includes at least the following members:

struct stat {

 dev_t st_dev;

 ino_t st_ino;

 mode_t st_mode;

 nlink_t st_nlink;

 uid_t st_uid;

 gid_t st_gid;

 dev_t st_rdev;

 off_t st_size;

 time_t st_atime;

 time_t st_mtime;

 time_t st_ctime;

 long st_blksize;

 long st_blocks;

};

The elements of the structure are interpreted as:

st_dev The major and minor device numbers of the device on which the i-node

associated with this file (and therefore the file itself) is stored. The major and

minor device numbers can be extracted from this field by using the major and

minor macros, which are defined in sys/mkdev.h in Solaris 2.x and IRIX 5.x,
and in sys/sysmacros.h in HP-UX 10.x.

st_ino The i-node number of the file. The root directory of a file system will always

have i-node number 2, and the special directory lost+found in each file system

will always have i-node number 3. For historical reasons, i-node number 1 is

never used. All other files in the file system will have i-node numbers greater
than 3; they are usually allocated in a lowest-available-number fashion.

st_mode A set of bits encoding the file's type and access permissions; see below for how

to interpret this data.

Files and Directories

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 109

st_nlink The number of links (file names) associated with the file; a just-created file will

have the value 1 in this field; the field is incremented by one for every hard link

made to it. Symbolic links to the file are not counted here (nor anywhere else).

st_uid The user-id of the user owning the file.

st_gid The group-id of the group owning the file.

st_rdev If the file is a character-special or block-special device file, this field contains

the major and minor device numbers of the file (as opposed to st_dev, which

contains the major and minor device numbers of the device the file is stored

on). If the file is not a character-special or block-special device file, the contents
of this field are meaningless.

st_size The size of the file, in bytes.

st_atime The last time the file was accessed for reading, or in the case of an executable

program, the last time the file was executed, stored in UNIX time format (see

Chapter 7, Time of Day Operations).

st_mtime The last time the file was modified (written).

st_ctime The last time the i-node was changed. This time is updated whenever the file's

owner, group, or permission bits are changed. It is also updated whenever the

file's modification time is changed, but not when the file's access time is

changed. Note that, contrary to popular belief (and contrary to many UNIX

programming books), this field does not represent the time the file was created;

file creation time is not recorded anywhere in the file system.

st_blksize A “hint” to programs about the best buffer size to be used for I/O operations on

this file. Generally speaking, it is most efficient to perform I/O with the same

block size that is used by the file system itself (that way, the file system does

not have to copy data between multiple buffers); this field allows programs that

care to obtain this information. This field is undefined for character- and block-

special device files.

st_blocks The total number of physical blocks, each of size 512 bytes, actually allocated

on the disk for this file. Note that this number may be much smaller than

(st_size / 512) if there are “holes” in the file.

The st_mode field mentioned above is important, because it encodes both the file's type and its
permission bits. These can be extracted using a number of constants defined in sys/stat.h:

S_IFMT This constant extracts the file type bits from the st_mode word; st_mode
should be anded with this and then compared against the following constants:

S_IFREG Regular file.

S_IFDIR Directory.

S_IFCHR Character-special device file.

UNIX Systems Programming for SVR4

110 FOR PERSONAL, NON-COMMERCIAL USE ONLY

S_IFBLK Block-special device file.

S_IFLNK Symbolic link.

S_IFIFO FIFO file.

S_IFSOCK UNIX-domain socket.

Newer, POSIX-compliant systems also define a set of macros that can be used

to determine file type:

S_ISREG(st_mode) If true, the file is a regular file.

S_ISDIR(st_mode) If true, the file is a directory.

S_ISCHR(st_mode) If true, the file is a character-special device file.

S_ISBLK(st_mode) If true, the file is a block-special device file.

S_ISLNK(st_mode) If true, the file is a symbolic link.

S_ISFIFO(st_mode) If true, the file is a FIFO file.

S_ISSOCK(st_mode) If true, the file is a UNIX-domain socket.

S_ISUID If the result of anding this constant with st_mode is non-zero, the file has the
set-user-id-on-execution bit set (see below).

S_ISGID If the result of anding this constant with st_mode is non-zero, the file has the
set-group-id-on-execution bit set (see below).

S_ISVTX If the result of anding this constant with st_mode is non-zero, the file has the
“sticky bit” set (see below).

S_IREAD By anding this constant with st_mode, it may be determined if the owner of
the file has read permission. By right-shifting the constant three places (or left-

shifting st_mode three places) and anding the two, it may be determined if the
group owner of the file has read permission. And by right-shifting the constant

six places (or left-shifting st_mode six places) and anding, it may be
determined if the rest of the world has read permission. Newer, POSIX-

compliant systems define three constants that may be used in place of shifting:

S_IRUSR If the result of anding this contant with st_mode is non-zero, the

owner has read permission for the file.

S_IRGRP If the result of anding this constant with st_mode is non-zero, the

group owner has read permission for the file.

S_IROTH If the result of anding this constant with st_mode is non-zero, the

world (everyone except the owner and group owner) has read

permission for the file.

S_IWRITE By anding this constant with st_mode, it may be determined if the owner of
the file has write permission. By right-shifting the constant three places (or left-

Files and Directories

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 111

shifting st_mode three places) and anding the two, it may be determined if the
group owner of the file has write permission. And by right-shifting the constant

six places (or left-shifting st_mode six places) and anding, it may be
determined if the rest of the world has write permission. Newer, POSIX-

compliant systems define three constants that may be used in place of shifting:

S_IWUSR If the result of anding this contant with st_mode is non-zero, the

owner has write permission for the file.

S_IWGRP If the result of anding this constant with st_mode is non-zero, the

group owner has write permission for the file.

S_IWOTH If the result of anding this constant with st_mode is non-zero, the

world (everyone except the owner and group owner) has write

permission for the file.

S_IEXEC By anding this constant with st_mode, it may be determined if the owner of

the file has execute permission. By right-shifting the constant three places (or

left-shifting st_mode three places) and anding the two, it may be determined
if the group owner of the file has execute permission. And by right-shifting the

constant six places (or left-shifting st_mode six places) and anding, it may be
determined if the rest of the world has execute permission. Newer, POSIX-

compliant systems define three constants that may be used in place of shifting:

S_IXUSR If the result of anding this contant with st_mode is non-zero, the
owner has execute permission for the file.

S_IXGRP If the result of anding this constant with st_mode is non-zero, the

group owner has execute permission for the file.

S_IXOTH If the result of anding this constant with st_mode is non-zero, the

world (everyone except the owner and group owner) has execute

permission for the file.

 Note that the concept of “execute” permission only makes sense for files. For

directories, this bit implies permission to search the directory. A file cannot be

accessed unless the search (execute) bit is set on the directory that contains it.

Note also that read permission on a directory only enables the ability to obtain

the contents of the directory; it does not enable the ability to access them. A file

may be accessible even though its parent directory is not readable; likewise, a
file may be visible but inaccessible if its parent directory is not searchable.

All of these constants can seem pretty overwhelming, and by now you're probably a little confused

about just what it is you're supposed to do with them. Example 5-1 shows a program that uses lstat
to obtain information about each file named on the command line, and print that information out.

This will clarify the material presented in this section. In this example, we are doing things the “old-

fashioned way,” rather than using the POSIX-defined constants described above. The POSIX

constants, while more convenient, are not portable to older systems, and any code that you will be

porting to SVR4 is not likely to use them.

UNIX Systems Programming for SVR4

112 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Example 5-1: lstat

#include <sys/types.h>

#include <sys/stat.h>

#include <sys/mkdev.h>

#include <stdio.h>

char *typeOfFile(mode_t);

char *permOfFile(mode_t);

void outputStatInfo(char *, struct stat *);

int

main(int argc, char **argv)

{

 char *filename;

 struct stat st;

 /*

 * For each file on the command line...

 */

 while (--argc) {

 filename = *++argv;

 /*

 * Find out about it.

 */

 if (lstat(filename, &st) < 0) {

 perror(filename);

 putchar('\n');

 continue;

 }

 /*

 * Print out the information.

 */

 outputStatInfo(filename, &st);

 putchar('\n');

 }

 exit(0);

}

/*

 * outputStatInfo - print out the contents of the stat structure.

 */

void

outputStatInfo(char *filename, struct stat *st)

{

 printf("File Name: %s\n", filename);

 printf("File Type: %s\n", typeOfFile(st->st_mode));

 /*

 * If the file is not a device, print its size and optimal

 * i/o unit; otherwise print its major and minor device

 * numbers.

 */

 if (((st->st_mode & S_IFMT) != S_IFCHR) &&

Files and Directories

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 113

 ((st->st_mode & S_IFMT) != S_IFBLK)) {

 printf("File Size: %d bytes, %d blocks\n", st->st_size,

 st->st_blocks);

 printf("Optimum I/O Unit: %d bytes\n", st->st_blksize);

 }

 else {

 printf("Device Numbers: Major: %u Minor: %u\n",

 major(st->st_rdev), minor(st->st_rdev));

 }

 /*

 * Print the permission bits in both "ls" format and

 * octal.

 */

 printf("Permission Bits: %s (%04o)\n", permOfFile(st->st_mode),

 st->st_mode & 07777);

 printf("Inode Number: %u\n", st->st_ino);

 printf("Owner User-Id: %d\n", st->st_uid);

 printf("Owner Group-Id: %d\n", st->st_gid);

 printf("Link Count: %d\n", st->st_nlink);

 /*

 * Print the major and minor device numbers of the

 * file system that contains the file.

 */

 printf("File System Device: Major: %u Minor: %u\n",

 major(st->st_dev), minor(st->st_dev));

 /*

 * Print the access, modification, and change times.

 * The ctime() function converts the time to a human-

 * readable format; it is described in Chapter 7,

 * "Time of Day Operations."

 */

 printf("Last Access: %s", ctime(&st->st_atime));

 printf("Last Modification: %s", ctime(&st->st_mtime));

 printf("Last I-Node Change: %s", ctime(&st->st_ctime));

}

/*

 * typeOfFile - return the english description of the file type.

 */

char *

typeOfFile(mode_t mode)

{

 switch (mode & S_IFMT) {

 case S_IFREG:

 return("regular file");

 case S_IFDIR:

 return("directory");

 case S_IFCHR:

 return("character-special device");

 case S_IFBLK:

 return("block-special device");

 case S_IFLNK:

 return("symbolic link");

 case S_IFIFO:

UNIX Systems Programming for SVR4

114 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 return("FIFO");

 case S_IFSOCK:

 return("UNIX-domain socket");

 }

 return("???");

}

/*

 * permOfFile - return the file permissions in an "ls"-like string.

 */

char *

permOfFile(mode_t mode)

{

 int i;

 char *p;

 static char perms[10];

 p = perms;

 strcpy(perms, "---------");

 /*

 * The permission bits are three sets of three

 * bits: user read/write/exec, group read/write/exec,

 * other read/write/exec. We deal with each set

 * of three bits in one pass through the loop.

 */

 for (i=0; i < 3; i++) {

 if (mode & (S_IREAD >> i*3))

 *p = 'r';

 p++;

 if (mode & (S_IWRITE >> i*3))

 *p = 'w';

 p++;

 if (mode & (S_IEXEC >> i*3))

 *p = 'x';

 p++;

 }

 /*

 * Put special codes in for set-user-id, set-group-id,

 * and the sticky bit. (This part is incomplete; "ls"

 * uses some other letters as well for cases such as

 * set-user-id bit without execute bit, and so forth.)

 */

 if ((mode & S_ISUID) != 0)

 perms[2] = 's';

 if ((mode & S_ISGID) != 0)

 perms[5] = 's';

 if ((mode & S_ISVTX) != 0)

 perms[8] = 't';

 return(perms);

}

Files and Directories

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 115

% lstat lstat.c

File Name: lstat.c

File Type: regular file

File Size: 3571 bytes, 8 blocks

Optimum I/O Unit: 8192 bytes

Permission Bits: rw-r----- (0640)

Inode Number: 21558

Owner User-Id: 40

Owner Group-Id: 1

Link Count: 1

File System Device: Major: 32 Minor: 31

Last Access: Sun Feb 13 13:54:18 1994

Last Modification: Sun Feb 13 13:54:15 1994

Last I-Node Change: Sun Feb 13 13:54:15 1994

The results you get from running lstat on your version of lstat.c may vary a little from the example;

the inode number, owner and group, file system device numbers, and of course the times may be
different. You should experiment with running lstat on a number of different files on your system,

to be sure you understand what it does.

Getting Information From a Symbolic Link

To find out what a symbolic link points to, the readlink function is used:

#include <unistd.h>

int readlink(const char *path, void *buf, size_t bufsiz);

The contents of the symbolic link named by path are placed into the buffer buf, whose size is given

by bufsiz. The contents are not null-terminated when they are returned. If readlink succeeds,

the number of bytes placed in buf are returned; otherwise –1 is returned and an error code is placed

in the external variable errno.

Sometimes, it is desirable to convert a path name that may contain symbolic links into one that is

known not to contain any symbolic links. One good reason for wanting to do this is that because

symbolic links may cross file systems, the concept of the parent directory is a bit confusing. For

example, on Solaris 2.x systems, /bin is a symbolic link to /usr/bin. Try executing the following
commands:

% cd /bin

% cd ..

% pwd

Since the parent directory of /bin is /, you would expect the output from pwd to be /. But since /bin

is actually a symbolic link to /usr/bin, the parent directory is actually /usr, which is what pwd tells
you.

To obtain a path that contains no symbolic links from one that may or may not contain symbolic

links, SVR4 provides a function called realpath:

#include <stdlib.h>

UNIX Systems Programming for SVR4

116 FOR PERSONAL, NON-COMMERCIAL USE ONLY

char *realpath(const char *filename, char *resolvedname);

If no error occurs while processing the path name in filename, the “real” path will be placed in

resolvedname and a pointer to it will be returned. If an error occurs, the constant NULL will be

returned, and resolvedname will contain the name of the path name component that produced the

error.

The realpath function is not available in HP-UX 10.x.

Determining the Accessibility of a File

Determining the accessibilty of a file can be a tricky proposition. Certainly, the stat function can

tell you the permission bits on a file. But that is not the same thing as telling you whether a file can

actually be read (or written, or executed) by a user. For example, consider a world-readable file

(mode 0444, or r--r--r--) that is in a directory that is searchable only by its owner (mode 0700,

or rwx------). Certainly the owner can read the file. But another user cannot read the file, because
even though the file has read permission for her, the directory that contains the file does not have

access permission for her, so she cannot reach the file to open it. Thus, to properly test whether or

not a file is accessible requires that the complete path to the file from the root of the file system be

checked, one directory at a time. This requires some non-trivial programming to handle all the
special cases.

Fortunately, the designers of UNIX foresaw this problem, and they created a function called

access:

#include <unistd.h>

int access(const char *path, int amode);

The path parameter contains the path name of the file whose access is to be checked, and amode

contains some combination of the following constants, ored together:

R_OK Test for read permission.

W_OK Test for write permission.

X_OK Test for execute (search) permission.

F_OK Test for existence of file.

If the user running the program has the access permissions in question, access returns zero. If the

user does not have the proper access permissions, –1 is returned and errno is set to indicate the

reason why. Note that access works properly even when called from a set-user-id or set-group-id
program (see Chapter 8, Users and Groups), because it uses the real user-id and group-id to make

its checks, not the effective user-id and group-id.

Files and Directories

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 117

Changing File Attributes

Most of a file's attributes can be changed, and this is something that systems programs do quite

often. This section describes how to change each of the following attributes: permissions, owner,

group, size, access time, and modification time. In the next section, we will learn how to change one

other attribute, the number of links.

Changing a File's Permission Bits

Each file or directory has three sets of permissions associated with it; one set for the user who owns
the file, one set for the users in the group with which the file is associated (the “group owner” of the

file), and one set for all other users (the “world” permissions). Each set of permissions contains three

identical permission bits that control the following:

read If set, the file or directory may be read. In the case of a directory, read permission

allows a user to see the contents of the directory (the names of the files it contains),

but not to access them.

write If set, the file or directory may be written (modified). In the case of a directory, write

permission implies the ability to create, delete, and rename files. Note that the ability

to delete a file is not controlled by the file's permission bits, but rather by the

permission bits on the directory containing the file.

execute If set, the file or directory may be executed (searched). In the case of a file, execute

permission implies the ability to run the program contained in that file. Executing
compiled (binary) programs requires only execute permission on the file, while

executing shell scripts requires both read and execute permission, since the shell

must be able to read commands from the file. In the case of a directory, execute

permission implies permission to search the directory, that is, permission to access

the files contained therein. Note that access to files is not controlled by read

permission on the directory (read permission controls whether the files are “visible,”

not “accessible”).

In addition, there is a fourth set of three bits that indicate special features associated with the file:

set-user-id If set, this bit controls the “set-user-id” status of a file. Set-user-id status means

that when a program is executed, it executes with the permissions of the user

who owns the program, in addition to the permissions of the user running the
program. For example, the sendmail command is usually set-user-id “root,”

because it has to be able to write in the mail spool directory, which ordinary

users are not allowed to do. This bit is meaningless on non-executable files, and

on directories.

set-group-id If set on an executable file, this bit controls the “set-group-id” status of a file.

This behaves in exactly the same way as the set-user-id bit, except that the

program operates with the permissions of the group associated with the file. On

directories, it controls how the group associated with a file is determined. If set,

the group associated with a newly-created file will be the same as the group

associated with the directory. If not set, the group associated with a newly-

UNIX Systems Programming for SVR4

118 FOR PERSONAL, NON-COMMERCIAL USE ONLY

created file will be the user's primary group id. If this bit is set on a file and the

group execute bit is not set on that file, then manadatory file and record locks

are enabled on that file (see Chapter 6, Special File Operations).

sticky If set, the sticky bit originally told the operating system to keep the text segment

of an executable file on the swap disk, so that the program would start more

quickly. This use has been mostly discarded now that UNIX is a paging system
instead of a swapping system. Now, the sticky bit is used on directories. If a

directory is writable and has the sticky bit set, files in that directory can be

removed or renamed only if one or more of the following conditions are true:

 The user owns the file he is trying to rename or remove.

 The user owns the directory itself.

 The file is writable by the user (this condition is not checked by all versions

of UNIX).

 The user is the super-user.

SunOS 4.x and Solaris 2.x also use the sticky bit on files that are used for

swapping, to disable some file system cache operations.

When specifying file permissions, octal numbers are usually used, since each octal digit corresponds
to three bits. Table 5-1 shows the numbers that correspond to the various permissions.

Table 5-1: File Permission Bits

Permission Owner Group Others Permission Value

read 0400 040 04 set-user-id 04000

write 0200 020 02 set-group-id 02000

execute 0100 010 01 sticky 01000

none 0000 000 00 none 00000

To determine the value to use for a specific set of permissions, we can just add these values together.

For example, to create the value that grants the owner read, write, and execute permission, the group

read and execute permission, and no permissions for all others, we would use:

mode = 0400 + 0200 + 0100 + 040 + 010 + 0

mode = 0700 + 050 + 0

mode = 0750

There are two functions provided for changing the mode of a file:

#include <sys/types.h>

#include <sys/stat.h>

int chmod(const char *path, mode_t mode);

int fchmod(int fd, mode_t mode);

Files and Directories

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 119

The chmod function changes the permission bits on the file named in path to the bits contained in

mode; the fchmod function changes the permission bits on the file referred to by the open file

descriptor fd. The values for mode are chosen as described above. Note that although the chmod

command will accept a number without a leading zero and interpret it as octal, the leading zero must

always be used in C programs to tell the compiler that the number is octal and not decimal. Only the

owner of a file or the super-user may change its permissions. Upon success, chmod and fchmod

return 0. If an error occurs, they return –1 and place an error code in the external variable errno.

Changing a File's Ownership

Sometimes, it is necessary for a system program to change the ownership of a file. This is often the

case when a program running as the super-user creates files; it must change the ownership of those

files so that regular users can access them. There are three functions provided for changing the

ownership of a file:

#include <sys/types.h>

#include <unistd.h>

int chown(const char *path, uid_t owner, gid_t group);

int lchown(const char *path, uid_t owner, gid_t group);

int fchown(int fd, uid_t owner, gid_t group);

The chown function changes the user-id of the file specified by path to the one contained in owner,

and the group-id of the file to the one contained in group; the fchown function performs the same

changes, but on the file referred to by the open file descriptor fd. The lchown function is exactly

like chown, except when path refers to a symbolic link. In this case, lchown changes the user-id

and group-id of the link itself, while chown changes the user-id and group-id of the file the link

points to. If either owner or group are given as –1, then the corresponding user-id or group-id is

not changed. All three functions return 0 if the changes succeed; if the changes fail, –1 is returned

and the reason for failure is stored in the external integer errno.

If chown, lchown, or fchown are invoked by a process that is not operating with super-user
permissions, then the set-user-id and set-group-id bits on the file are cleared.

On POSIX systems such as SVR4, there are two different ways in which these functions can be

used, based on a system configuration option called _POSIX_CHOWN_RESTRICTED. If this option is
not in effect, then the process calling these functions must either have the same effective user-id as

the owner of the file, or be operating with super-user permissions, to be allowed to change the

ownership of the file. It may change the owner and group of the file to any value. In effect, this

allows a user to “give away” her files to any other user. Most System V systems behave in this way.

If the _POSIX_CHOWN_RESTRICTED option is in effect, then only the super-user may change the
owner of a file, and a process that is not running with super-user permissions may only change the

group of a file to one of the groups of which that process is a member. This is the way most BSD

systems behave; the original reason for this restriction was to make disk quotas possible.

UNIX Systems Programming for SVR4

120 FOR PERSONAL, NON-COMMERCIAL USE ONLY

The methods used to obtain the values for owner and group are discussed in Chapter 8, Users and

Groups.

Changing a File's Size

Sometimes it is desirable to set a file's length to a specified size. There are two functions available

to do this:

#include <unistd.h>

int truncate(const char *path, off_t length);

int ftruncate(int fd, off_t length);

The truncate function sets the size of the file named in path to length bytes, while ftruncate

sets the size of the file referred to by the open file descriptor fd. If the file is longer than length

bytes, the excess data is discarded. If the file is shorter than length bytes, it is padded on the end

with zero bytes. The process must have write permission on the file (and fd must be open for

writing) for these functions to succeed. If they succeed, 0 is returned; if an error occurs, –1 is

returned and the reason for failure is stored in the external integer errno.

Changing a File's Access and Modification Times

It is also sometimes necessary to be able to change the access and modification times for a file; for

example, the tar program does this to preserve the original access and modification times on files

extracted from the archive. There are two functions available to do this:

#include <sys/types.h>

#include <utime.h>

int utime(const char *path, const struct utimbuf *times);

#include <sys/types.h>

#include <sys/time.h>

int utimes(const char *path, const struct timeval *tvp);

The two functions are identical, except in the format of their second argument. The utime function

is derived from System V versions of UNIX, while utimes is derived from BSD UNIX. SVR4

provides both of them, but Hewlett-Packard has removed utimes from HP-UX 10.x.

Both functions change the access and modification times on the file named by path to the times

contained in their second argument. The second argument to utime is a pointer to type struct

utimbuf:

struct utimbuf {

 time_t actime;

 time_t modtime;

};

Files and Directories

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 121

The actime element of the structure contains the desired new access time in UNIX time format,

and modtime contains the desired new modification time. The second argument to utimes is a

pointer to an array of two objects of type struct timeval:

struct timeval {

 long tv_sec;

 long tv_usec;

};

The tv_sec element of the structure contains the desired new time in UNIX time format (the

tv_usec element is ignored); the first structure contains the access time, the second contains the
modification time. UNIX time format is described in Chapter 7, Time of Day Operations.

In order to change the times on a file, the process must either own the file or be executing with

super-user permissions. If the change succeeds, 0 is returned. If it fails, –1 is returned and the reason

for failure is stored in the external integer errno. Whenever the access and modification times of a
file are changed, the file's inode change time is updated.

Creating and Deleting Files and Directories

In Chapters 3 and 4, we learned how to create files using the functions creat, open, and fopen.
But it is also important to be able to delete files, create links, create and delete directories, and

change the names of files and directories.

Deleting Files

The function provided to delete a file is called unlink:

#include <unistd.h>

int unlink(const char *path);

This function removes the directory entry named by path and decrements the link count (st_nlink

in the struct stat structure). When the link count reaches zero, and no processes have the file
open, the space occupied by the file is deallocated and the file ceases to exist. If one or more

processes has the file open when the last link is removed, the link is removed from its directory

(making the file inaccessible), but the space is not freed until all references to the file have been

closed. The process must have write permission in the directory that contains the file in order for

unlink to succeed. If it does succeed, unlink returns 0; if it fails, it returns –1 and the reason for

failure will be stored in the external integer errno. The unlink function is not used for deleting

directories; the rmdir function (see below) is used for that purpose.

The ANSI C standard specifies another function, called remove:

#include <stdio.h>

int remove(const char *path);

UNIX Systems Programming for SVR4

122 FOR PERSONAL, NON-COMMERCIAL USE ONLY

The remove function is identical to unlink for files; for directories, it is identical to rmdir (see

below). On success, remove returns 0, on failure it returns –1 and sets the external integer errno
to the reason for failure.

Creating and Deleting Directories

To create a directory, the mkdir function is used:

#include <sys/types.h>

#include <sys/stat.h>

int mkdir(const char *path, mode_t mode);

The mkdir function creates a new directory with the name given in path. The directory will be

empty except for entries for itself (“.”) and its parent (“..”). The permission bits on the directory are

set from mode, which is specified as described earlier in this chapter and modified by the process'

umask value (see Chapter 6, Special-Purpose File Operations). Upon successful completion, mkdir

returns 0; on failure it returns –1 and sets errno to the reason for failure.

To remove a directory, the rmdir function is used:

#include <unistd.h>

int rmdir(const char *path);

The rmdir function removes the directory named by path. The directory must be empty except for

“.” and “..”. When the directory's link count becomes zero and no process has the directory open,

the space used by the directory is freed, and the directory ceases to exist. If one or more processes

has the directory open when the last link is removed, “.” and “..” are removed and no new entries

may be created in the directory, but the directory is not removed until all references to it have been

closed. The process must have write permission in the directory's parent directory in order for rmdir

to succeed. On success, rmdir returns 0; on failure it returns –1 and the reason for failure is placed

into the external integer errno.

Creating Links

To create a hard link, the link function is provided:

#include <unistd.h>

int link(const char *existing, const char *new);

The link function creates a new link (directory entry) with the name specified in new to an existing

file whose name is given in existing. To create hard links, both files must be on the same

removable file system. Only the super-user may create hard links to directories. Upon successful

completion, link returns 0; it returns –1 on failure and stores the error indication in the external

integer errno.

To create a symbolic link, the symlink function is used:

Files and Directories

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 123

#include <unistd.h>

int symlink(const char *name1, const char *name2);

The symlink function creates a symbolic link with the name specified in name2 that points to the

file named in name1. Either name may be an arbitrary path name, they do not have to reside on the

same file system, and the file named by name1 does not have to exist. If symlink is successful, it

returns 0. If it fails, it returns –1 and stores the reason for failure in the external integer variable

errno.

Renaming Files and Directories

To change the name of a file or directory, the rename function is provided:

#include <stdio.h>

int rename(const char *old, const char *new);

The rename function changes the name of the file or directory whose name is contained in old to

the name contained in new. If the file named in new already exists, it is deleted first. Files and

directories may only be renamed within the same file system using this call; to move a file or

directory between two different file systems, a copy operation must be performed. The rename
function is implemented such that even if the system crashes in the middle of executing the function,

at least one copy of the file or directory will always exist. If it succeeds, rename returns 0. If it fails,

it returns –1 and stores the failure code in the external integer errno.

Working With Directories

Up to this point, we have been discussing how to manipulate files and directories from one place in

the file system, the current working directory. However, it is often necessary for systems programs

to be able to work with the entire file system hierarchy, traversing up and down directory trees. This

section describes the tools needed to do this.

Determining the Current Working Directory

Each running program has an attribute associated with it called the current working directory. This

is the path name of the directory in which the program can be said to “be;” when the program

specifies a relative path name for a file, the name is taken relative to the current working directory.

For example, if a program's current working directory was /one/two/three and it created a file called

foo, the full path name to the file would be /one/two/three/foo.

To allow a program to determine its current working directory, the getcwd function is used:

#include <unistd.h>

char *getcwd(char *buf, size_t size);

UNIX Systems Programming for SVR4

124 FOR PERSONAL, NON-COMMERCIAL USE ONLY

When called, getcwd will determine the absolute path name of the current working directory and

place it into the character string pointed to by buf, whose size is given by size. If buf is the null

pointer, getcwd will allocate a string with malloc (see Chapter 2, Utility Routines), copy the path

name to it, and return a pointer to the allocated string. If buf is not large enough or some other error

occurs, getcwd returns the predefined constant NULL.

Porting Notes

BSD variants provide a slightly different function called getwd instead of getcwd:

#include <sys/param.h>

char *getwd(char *path);

The path name of the current directory is placed into path, which should be of length MAXPATHLEN.

If an error occurs, an error message is placed in path and getwd returns a null pointer, otherwise

path is returned.

Changing the Current Working Directory

Two functions are provided for changing the current working directory:

#include <unistd.h>

int chdir(const char *path);

int fchdir(int fd);

The chdir function changes the current working directory to the directory named by path, which

may be either an absolute or a relative path name. The fchdir function changes the current working

directory to the directory referred to by the open file descriptor fd. Both functions return 0 on

success, and –1 on failure, storing the reason for failure in the external integer errno.

Reading Directories

Many programs, even simple ones like ls, need to read directories to learn their contents. Very old

UNIX systems required the programmer to read the directory “manually” a record at a time, but

most newer versions provide a library of functions to do this:

#include <dirent.h>

DIR *opendir(const char *path);

struct dirent *readdir(DIR *dp);

long telldir(DIR *dp);

void seekdir(DIR *dp, long pos);

void rewinddir(DIR *dp);

Files and Directories

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 125

int closedir(DIR *dp);

The opendir function opens the directory named in path for reading, and returns a directory

stream pointer of type DIR *. If the directory cannot be opened, NULL is returned. The closedir

function closes the directory stream referred to by dp.

The readdir function returns the next directory entry from the stream dp. The information is

returned as a pointer to type struct dirent:

struct dirent {

 ino_t d_ino;

 off_t d_off;

 unsigned short d_reclen;

 char *d_name;

};

The d_ino field of the structure contains the inode number of the entry, d_off contains the offset

of the record in the directory file, d_reclen contains the length of the directory entry record, and

d_name contains the name of the entry. When readdir encounters the end of the directory file, it

returns the constant NULL.

The telldir function returns the current file offset in the directory file; the seekdir function sets

the current offset to the value specified by pos. Both telldir and seekdir express the offset in

bytes from the beginning of the directory file. The rewinddir function sets the current offset to
zero.

Example 5-2 shows a program that behaves much like the ls -l command; it reads each directory

named on the command line and displays one line for each file in the directory.

Example 5-2: listfiles

#include <sys/types.h>

#include <sys/stat.h>

#include <sys/mkdev.h>

#include <dirent.h>

#include <stdio.h>

char typeOfFile(mode_t);

char *permOfFile(mode_t);

void outputStatInfo(char *, char *, struct stat *);

int

main(int argc, char **argv)

{

 DIR *dp;

 char *dirname;

 struct stat st;

 struct dirent *d;

 char filename[BUFSIZ+1];

 /*

 * For each directory on the command line...

UNIX Systems Programming for SVR4

126 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 */

 while (--argc) {

 dirname = *++argv;

 /*

 * Open the directory.

 */

 if ((dp = opendir(dirname)) == NULL) {

 perror(dirname);

 continue;

 }

 printf("%s:\n", dirname);

 /*

 * For each file in the directory...

 */

 while ((d = readdir(dp)) != NULL) {

 /*

 * Create the full file name.

 */

 sprintf(filename, "%s/%s", dirname, d->d_name);

 /*

 * Find out about it.

 */

 if (lstat(filename, &st) < 0) {

 perror(filename);

 putchar('\n');

 continue;

 }

 /*

 * Print out the information.

 */

 outputStatInfo(filename, d->d_name, &st);

 putchar('\n');

 }

 putchar('\n');

 closedir(dp);

 }

 exit(0);

}

/*

 * outputStatInfo - print out the contents of the stat structure.

 */

void

outputStatInfo(char *pathname, char *filename, struct stat *st)

{

 int n;

 char slink[BUFSIZ+1];

 /*

 * Print the number of file system blocks, permission bits,

 * number of links, user-id, and group-id.

Files and Directories

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 127

 */

 printf("%5d ", st->st_blocks);

 printf("%c%s ", typeOfFile(st->st_mode), permOfFile(st->st_mode));

 printf("%3d ", st->st_nlink);

 printf("%5d/%-5d ", st->st_uid, st->st_gid);

 /*

 * If the file is not a device, print its size; otherwise

 * print its major and minor device numbers.

 */

 if (((st->st_mode & S_IFMT) != S_IFCHR) &&

 ((st->st_mode & S_IFMT) != S_IFBLK))

 printf("%9d ", st->st_size);

 else

 printf("%4d,%4d ", major(st->st_rdev), minor(st->st_rdev));

 /*

 * Print the access time. The ctime() function is

 * described in Chapter 7, "Time of Day Operations."

 */

 printf("%.12s ", ctime(&st->st_mtime) + 4);

 /*

 * Print the file name. If it's a symblic link, also print

 * what it points to.

 */

 printf("%s", filename);

 if ((st->st_mode & S_IFMT) == S_IFLNK) {

 if ((n = readlink(pathname, slink, sizeof(slink))) < 0)

 printf(" -> ???");

 else

 printf(" -> %.*s", n, slink);

 }

}

/*

 * typeOfFile - return the english description of the file type.

 */

char

typeOfFile(mode_t mode)

{

 switch (mode & S_IFMT) {

 case S_IFREG:

 return('-');

 case S_IFDIR:

 return('d');

 case S_IFCHR:

 return('c');

 case S_IFBLK:

 return('b');

 case S_IFLNK:

 return('l');

 case S_IFIFO:

 return('p');

 case S_IFSOCK:

 return('s');

 }

UNIX Systems Programming for SVR4

128 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 return('?');

}

/*

 * permOfFile - return the file permissions in an "ls"-like string.

 */

char *

permOfFile(mode_t mode)

{

 int i;

 char *p;

 static char perms[10];

 p = perms;

 strcpy(perms, "---------");

 /*

 * The permission bits are three sets of three

 * bits: user read/write/exec, group read/write/exec,

 * other read/write/exec. We deal with each set

 * of three bits in one pass through the loop.

 */

 for (i=0; i < 3; i++) {

 if (mode & (S_IREAD >> i*3))

 *p = 'r';

 p++;

 if (mode & (S_IWRITE >> i*3))

 *p = 'w';

 p++;

 if (mode & (S_IEXEC >> i*3))

 *p = 'x';

 p++;

 }

 /*

 * Put special codes in for set-user-id, set-group-id,

 * and the sticky bit. (This part is incomplete; "ls"

 * uses some other letters as well for cases such as

 * set-user-id bit without execute bit, and so forth.)

 */

 if ((mode & S_ISUID) != 0)

 perms[2] = 's';

 if ((mode & S_ISGID) != 0)

 perms[5] = 's';

 if ((mode & S_ISVTX) != 0)

 perms[8] = 't';

 return(perms);

}

% lsfiles /home/msw/a

/home/msw/a:

Files and Directories

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 129

 2 drwxr-sr-x 7 0/1 512 Dec 21 22:20 .

 2 drwxr-xr-x 3 0/0 512 Dec 21 20:45 ..

 16 drwx------ 2 0/0 8192 Apr 19 16:04 lost+found

 2 drwxr-sr-x 12 40/1 1024 Mar 12 10:16 davy

 2 drwxr-sr-x 2 43/1 512 Apr 19 17:57 sean

 2 drwxr-sr-x 3 42/1 512 Jan 12 19:59 trevor

 2 drwxr-sr-x 6 41/1 512 Feb 22 13:34 cathy

Porting Notes

On BSD systems, the include file for the directory routines is called sys/dir.h instead of dirent.h,

and the directory structure is of type struct direct instead of type struct dirent.

BSD systems provide two other functions as part of the directory library that didn't make it into the

POSIX standard:

#include <sys/types.h>

#include <sys/dir.h>

int scandir(char *dirname, struct direct *(*namelist[]),

 int (*select)(), int (*compare)());

int alphasort(struct direct *d1, struct direct *d2);

The scandir function reads the entire contents of the directory dirname into a dynamically

allocated array of structures pointed to by namelist. For each entry, it calls the user-defined

select function with the name of the entry; select should return non-zero if the entry is of

interest, and zero if it is not. The entire namelist will be sorted according to the comparison routine

compare, which is passed pointers to two directory entries. It should return less than, equal to, or
greater than zero depending on whether the first argument should be considered less than, equal to,

or greater than the second argument in the sort. The alphasort function can be used for this
purpose if alphabetical order is desired.

There are public domain implementations of the directory library routines for use on very old UNIX

systems that do not provide them; for portability reasons, these implementations are preferred over

doing things “the hard way.”

Chapter Summary

In this chapter, we learned about how the UNIX file system is structured, the types of objects in the

file system, and how file permission bits work. We also examined most of the general-purpose

functions used for working in the file system. With just the tools described in this and the two

preceding chapters, you can perform a dazzling number of tasks that you may never have thought

about before. In the next chapter, we will learn about even more things that you can do with files.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 131

Chapter 6
Special-Purpose File Operations

In previous chapters, we discussed the “regular” file operations: creating, opening, and closing files,

reading and writing data, removing files, renaming files, setting file permissions, and so forth. We

also discussed some common operations on file descriptors, such as setting the read/write offset,

and duplicating a file descriptor. However, there are also a number of less common, yet nevertheless

important, operations that we can perform when circumstances warrant. These special-purpose file

operations are the subject of this chapter.

File Descriptor Attributes

Each open file descriptor has associated with it several attributes that can be examined and changed.

We have already discussed one of these attributes, the read/write offset, which is examined and

changed with the lseek function (or the fseek function, in the case of the Standard I/O Library).
To examine and change the other file descriptor attributes, two other functions are used:

#include <unistd.h>

#include <sys/ioctl.h>

int ioctl(int fd, int cmd, /* arg */ ...);

#include <sys/types.h>

#include <fcntl.h>

int fcntl(int fd, int cmd, /* arg */ ...);

The ioctl function was originally intended primarily for performing device control operations
(e.g., telling a tape drive to rewind the tape). However, as the need for other similar control functions

arose, more and more duties were added to ioctl until it became used not only for performing
device control operations, but also for regular file operations, operations on file descriptors, and

operations on network communications modules. Unfortunately, because it was only designed for

device control, ioctl was not very well suited for some of the tasks it was being asked to perform.

Fortunately, the designers of System V UNIX recognized this, and began working to reverse the

trend of piling everything onto ioctl. They created the fcntl function, and moved all of the

UNIX Systems Programming for SVR4

132 FOR PERSONAL, NON-COMMERCIAL USE ONLY

operations on regular files and file descriptors out of ioctl's area of responsibility and into the new
function. However, even the best laid plans don't go as well as they ought to. Because many vendors'

operating systems were based on Berkeley UNIX, even though most of the vendors adopted fcntl
(especially once it became a part of the POSIX standard), they still left some functionality under the

control of ioctl. Thus, most versions of UNIX, and SVR4 is no exception, use both ioctl and

fcntl to perform operations on files and file descriptors, with some overlap in functionality for
reasons of backward compatibility.

The ioctl function performs the request identified by cmd on the open file descriptor referenced

by fd. The arg parameter is of varying type depending on the value of cmd, but will usually be

either an integer or a pointer. In SVR4, the legal values for cmd are:

FIOCLEX Set the close-on-exec flag for the file descriptor. This means that if the calling

program executes another program with one of the exec system calls (see Chapter
11, Processes), the file descriptor will automatically be closed before the new

program is executed. The arg parameter is ignored by this command.

FIONCLEX Clear the close-on-exec flag (see above) for the file descriptor. The arg parameter

is ignored by this command.

FIONBIO Set or clear non-blocking I/O on the file. The arg parameter is given as a pointer

to an integer; if the integer's value is 1 then non-blocking I/O is enabled, if the

integer's value is 0 then it is disabled. Non-blocking I/O means that reads and

writes to the file will return immediately if no data is available to be read, or no

space (in the operating system buffers or on the disk) is available to store the data.

If non-blocking I/O is not set, then reads and writes will block, waiting for more

data or space to become available. This attribute can also be set when the file is

opened by using the O_NDELAY or O_NONBLOCK options.

FIOASYNC Set or clear asynchronous I/O on the file. The arg parameter is given as a pointer

to an integer; if the integer's value is 1 then asynchronous I/O is enabled, if the

integer's value is 0, then it is disabled. Asynchronous I/O in this context means

that when data becomes available for reading on the file descriptor, or when data

can be written, the process will be sent a SIGIO signal (see Chapter 10, Signals)
notifying it of the change in the descriptor's status.

FIONREAD Determine the number of characters available to be read. The arg parameter is

given as a pointer to an integer in which the value is returned. While this is a valid

way of determining whether there is input to be read, the select and poll
functions described later in this chapter are more efficient.

FIOSETOWN Set the process-group identifier (see Chapter 11, Processes) that will subsequently

receive SIGIO or SIGURG signals for the file descriptor. The arg parameter is a

pointer to an integer containing the process-group identifier.

This command is not available in HP-UX 10.x.

Special-Purpose File Operations

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 133

FIOGETOWN Get the process-group identifier that is receiving SIGIO or SIGURG signals for the

file descriptor. The arg parameter is a pointer to an integer; after this call the

integer will contain the process-group identifier.

This command is not available in HP-UX 10.x.

There are numerous other commands as well, but their use is less common, and beyond the scope

of this chapter.

The ioctl function returns a value greater than or equal to zero, depending on the value of cmd, on

success. On failure, it returns –1 and stores the reason for failure in the external integer errno.

The fcntl function performs the request identified by cmd on the open file descriptor referenced

by fd. The arg parameter is of varying type depending on the value of cmd, but will usually be

either an integer or a pointer. In SVR4, the legal values for cmd are:

F_DUPFD Return a new file descriptor with the following characteristics:

 Lowest numbered available file descriptor greater than or equal to the integer

value given in arg.

 Same open file (or pipe) as the original file.

 Same read/write offset as the original file (that is, both file descriptors share the

same read/write offset).

 Same access mode (read, write, read/write) as the original file.

 Shares any locks associated with the original file descriptor (see below).

 Same file status flags (see below) as the original file (that is, both file

descriptors share the same file status flags).

 The close-on-exec flag associated with the new descriptor is cleared.

F_GETFD Get the close-on-exec flag associated with the file descriptor fd. If the low-order bit

of the return value is 0, the file will remain open across an exec, if the low-order

bit is 1, the file will be closed on exec.

F_SETFD Set the close-on-exec flag associated with the file descriptor fd to the low-order bit

of the integer value given in arg, as described above.

F_GETFL Get the current status flags (see below) for the file descriptor fd.

F_SETFL Set the current status flags for the file descriptor fd to those contained in arg. Most

of these flags can also be set when the file is opened with the open function
described in Chapter 3, Low-Level I/O Routines; see the description there for more

information on the meaning of each of these flags. The valid status flags are:

FD_CLOEXEC Set the file descriptor's close-on-exec flag; this can also be set

with F_SETFD, described above.

UNIX Systems Programming for SVR4

134 FOR PERSONAL, NON-COMMERCIAL USE ONLY

O_RDONLY Open for reading only (this can only be set by the open

function, but can be returned by the F_GETFL command).

O_WRONLY Open for writing only (this can only be set by the open

function, but can be returned by the F_GETFL command).

O_RDWR Open for reading and writing (this can only be set by the open

function, but can be returned by the F_GETFL command).

O_APPEND Append mode.

O_NDELAY Non-blocking mode.

O_NONBLOCK Non-blocking mode.

O_DSYNC Synchronous write operations (data only).

O_RSYNC Synchronous read operations.

O_SYNC Synchronous write operations (data and file attributes).

Both ioctl and fcntl have other uses besides those described in this section; we will encounter

these functions in several chapters throught the rest of the book.

Managing Multiple File Descriptors

Sometimes a single program must be able to manage several file descriptors, acting immediately on

any input received from them, and yet also performing other computations when no input is

received. For example, consider a multi-player “Star Trek” game. While none of the players is

typing, the program must draw the ships, planets, and so forth, and move them about on each player's

screen. But when a player types a command (e.g., “turn left”), the program must immediately receive

that input and act on it.

Doing something like this is difficult with the functions we have learned about so far, primarily

because the read function blocks until input is available. This means that when the program issues

a read call, it becomes “stuck” until the player types something—it cannot perform its other duties,
such as updating the screen. Fortunately, most modern versions of the UNIX operating system

provide a way to handle this task.

The select and poll functions provide a mechanism for a program to check on a group of file
descriptors, and learn when any of those descriptors are ready to provide input, ready to receive

output, or have an exceptional condition pending on them. The select function is usually provided

on BSD-based systems; poll is usually provided on System V-based systems. SVR4 provides

both—select is provided as a library emulation routine, and poll is provided as a system call.

The select Function

Although emulated with a library routine in SVR4, select is more frequently used than poll, so

we will discuss it first. The select function is called as follows:

Special-Purpose File Operations

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 135

#include <sys/types.h>

#include <sys/time.h>

int select(int maxfd, fd_set *readfds, fd_set *writefds,

 fd_set *exceptfds, struct timeval *timeout);

void FD_SET(int fd, fd_set *fdset);

void FD_CLR(int fd, fd_set *fdset);

int FD_ISSET(int fd, fd_set *fdset);

void FD_ZERO(fd_set *fdset);

NOTE

In HP-UX 10.0, the ANSI C function prototype is misdeclared as taking parameters of type

int * instead of type fd_set *. This is a typographical error only; select still uses the

fd_set type.

When called, select examines the file descriptor sets pointed to by readfds, writefds, and

exceptfds to see if any of their file descriptors are ready for reading, ready for writing, or have an

exceptional condition pending on them. Out-of-band data (see Chapter 14, Networking With

Sockets) is the only exceptional condition. When select returns, it will replace the file descriptor
sets with subsets containing those file descriptors that are ready for the requested operation.

Each file descriptor set is a bit field in which a non-zero bit indicates that the file descriptor of that

number should be checked. The maxfd parameter indicates the highest-numbered bit that should be

checked; the file descriptors from 0 to maxfd–1 will be examined in each file descriptor set. (Much

of the documentation on select calls this parameter nfds, implying that it is the number of file

descriptors to check. Although this is in some sense accurate, it is also confusing.) If a particular

condition is not of interest, any of readfds, writefds, and exceptfds may be given as null

pointers.

The FD_ZERO macro is used to clear all the bits in a file descriptor set; this should always be called

before setting any bits. The FD_SET and FD_CLR macros are used to set and clear individual bits

corresponding to file descriptors in a file descriptor set. The FD_ISSET macro returns non-zero if

the bit corresponding to the file descriptor fd is set in the given file descriptor set, and zero

otherwise.

If timeout is not a null pointer, it specifies a maximum interval to wait for the requested operations

to become ready. If timeout is given as a null pointer, then select will block indefinitely (this

can be used to “just sit there” until something happens). To effect a poll, in which the select call

just checks all the file descriptors and returns their status, timeout should be a non-null pointer to

a zero-valued struct timeval structure. (The struct timeval structure is discussed in Chapter
7, Time of Day Operations.)

When select returns, it usually returns a number greater than zero, indicating the number of ready
file descriptors contained in the file descriptor sets. If the timeout expires with none of the file

UNIX Systems Programming for SVR4

136 FOR PERSONAL, NON-COMMERCIAL USE ONLY

descriptors becoming ready, select returns 0. If an error occurs, select returns –1 and places an

error code in the external integer errno.

Example 6-1 shows a program that reads from three terminal devices. Each time something is typed

on one of the terminals, the program reads it and prints it. If nothing is typed on any of the devices

within ten seconds, the program prints a reminder to the user. When the string “S-T-O-P” is read
from one of the terminals, the program exits.

Example 6-1: select

#include <sys/types.h>

#include <sys/time.h>

#include <fcntl.h>

#include <stdio.h>

#define NTTYS 3 /* number of ttys to use */

#define TIMEOUT 10 /* number of seconds to wait */

int fds[NTTYS]; /* file descriptors */

char *fileNames[NTTYS]; /* file names */

int openFiles(char **);

void readFiles(fd_set *);

int

main(int argc, char **argv)

{

 fd_set readfds;

 int i, n, maxfd;

 struct timeval tv;

 /*

 * Check that we have the right number of arguments.

 */

 if (argc != (NTTYS+1)) {

 fprintf(stderr, "You must supply %d tty names.\n", NTTYS);

 exit(1);

 }

 /*

 * Open the files. The highest numbered file descriptor

 * (plus one) is returned in maxfd.

 */

 maxfd = openFiles(++argv);

 /*

 * Forever...

 */

 for (;;) {

 /*

 * Zero the bitmask.

 */

 FD_ZERO(&readfds);

 /*

Special-Purpose File Operations

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 137

 * Set bits in the bitmask.

 */

 for (i=0; i < NTTYS; i++)

 FD_SET(fds[i], &readfds);

 /*

 * Set up the timeout.

 */

 tv.tv_sec = TIMEOUT;

 tv.tv_usec = 0;

 /*

 * Wait for some input.

 */

 n = select(maxfd, &readfds, (fd_set *) 0, (fd_set *) 0, &tv);

 /*

 * See what happened.

 */

 switch (n) {

 case -1: /* error */

 perror("select");

 exit(1);

 case 0: /* timeout */

 printf("\nTimeout expired. Type something!\n");

 break;

 default: /* input available */

 readFiles(&readfds);

 break;

 }

 }

}

/*

 * openFiles - open all the files, return the highest file descriptor.

 */

int

openFiles(char **files)

{

 int i, maxfd;

 maxfd = 0;

 /*

 * For each file...

 */

 for (i=0; i < NTTYS; i++) {

 /*

 * Open it.

 */

 if ((fds[i] = open(*files, O_RDONLY)) < 0) {

 perror(*files);

 exit(1);

 }

 /*

 * Make sure it's a tty.

 */

UNIX Systems Programming for SVR4

138 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 if (!isatty(fds[i])) {

 fprintf(stderr, "All files must be tty devices.\n");

 exit(1);

 }

 /*

 * Save the name.

 */

 fileNames[i] = *files++;

 /*

 * Save the highest numbered fd.

 */

 if (fds[i] > maxfd)

 maxfd = fds[i];

 }

 return(maxfd + 1);

}

/*

 * readFiles - read input from any files that have some.

 */

void

readFiles(fd_set *readfds)

{

 int i, n;

 char buf[BUFSIZ];

 /*

 * For each file...

 */

 for (i=0; i < NTTYS; i++) {

 /*

 * If it has some input available...

 */

 if (FD_ISSET(fds[i], readfds)) {

 /*

 * Read the data.

 */

 n = read(fds[i], buf, sizeof(buf));

 buf[n] = '\0';

 /*

 * Print it out.

 */

 printf("\nRead %d bytes from %s:\n", n, fileNames[i]);

 printf("\t%s\n", buf);

 /*

 * Is it telling us to stop?

 */

 if (strcmp(buf, "S-T-O-P\n") == 0)

 exit(0);

 }

 }

}

Special-Purpose File Operations

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 139

% select /dev/pts/3 /dev/pts/4 /dev/pts/5

Running this program for yourself requires a bit of work to see how it works. It's best if you start up

a window system such as X11 or OpenWindows, although you can also do it if you have access to

several hard-wired terminals. To run the example, perform the following steps:

1. Start up four terminal windows, or log in on four separate terminals.

2. On each of the first three terminals, type tty. This command will tell you the name of the

terminal divce file you are using.

3. Again on each of the first three terminals, type sleep 1000000. This will allow our program to

read from these terminals without competing for input with the shell process running on each

terminal. When you are done with the demonstration, you can just interrupt out of this

command.

4. On the fourth terminal, type the select command followed by the device names of the other

three terminals. Note that if you use the Korn shell, select is a special command to the shell, so

you should use the command./select to invoke the example program.

5. Now type something on each of the first three terminals, and watch what the program prints on

the fourth terminal. Then don't type anything on the terminals for ten seconds, and watch the

program print its timeout message. Finally, type the string “S-T-O-P” on any one of the

terminals to make the program exit.

The poll Function

The poll function is similar to select, except that it uses a structure of type struct pollfd for

each file descriptor, instead of file descriptor sets.

#include <stropts.h>

#include <poll.h>

int poll(struct pollfd *fds, unsigned long nfds, int timeout);

The fds parameter points to an array of nfds structures of type struct pollfd, one for each file

descriptor of interest. The structure contains three elements:

struct pollfd {

 int fd;

 short events;

 short revents;

};

The fd element contains the file descriptor of interest. If fd is equal to –1, the structure is ignored;

this allows particular descriptors to be turned “on” and “off” without rearranging the array. The

events element contains a set of flags describing the events of interest for that file descriptor. The

revents element will contain a subset of these flags, indicating the events that are actually set on

that file descriptor. The flags in the events and revents elements are constructed by oring
together the following values:

UNIX Systems Programming for SVR4

140 FOR PERSONAL, NON-COMMERCIAL USE ONLY

POLLIN Data other than high priority data may be read without blocking.

POLLRDNORM Normal data (priority band 0) may be read without blocking.

POLLRDBAND Data from a non-zero priority band may be read without blocking.

POLLPRI High priority data may be read without blocking.

POLLOUT Normal data may be written without blocking.

POLLWRNORM The same as POLLOUT.

POLLWRBAND Priority data (non-zero priority band) may be written. This event only examines

bands that have been written to at least once.

POLLERR An error has occurred on the device or stream. This flag is only valid in the

revents element of the structure.

POLLHUP A hangup has occurred on the stream. This event and POLLOUT are mutally
exclusive; a stream is never writable once a hangup has occurred. This flag is

only valid in the revents element of the strcture.

POLLNVAL The specified fd value is not a valid file descriptor. This flag is only valid in

the revents element of the structure.

If none of the defined events have occurred on any of the selected file descriptors when poll is

called, it waits for at least timeout milliseconds before returning. If the value of timeout is

INFTIM, then poll will block until one of the selected events occurs. To effect a poll, timeout

should be specified as zero.

When poll returns, it normally returns a number greater than zero, indicating the number of file

descriptors for which the revents element of their struct pollfd structure is non-zero. If the

timeout expires before any selected events have occurred, poll returns 0. If an error occurs, poll

returns –1 and places an error code in the external integer errno. When poll returns, the fd and

events elements of the descriptor array are not modified; this allows the array to be immediately
re-used without having to reinitialize it.

Example 6-2 shows another program that reads from three terminal devices. Each time something

is typed on one of the terminals, the program reads it and prints it. If nothing is typed on any of the

devices within ten seconds, the program prints a reminder to the user. When the string “S-T-O-P”
is read from one of the terminals, the program exits.

Example 6-2: poll

#include <stropts.h>

#include <fcntl.h>

#include <stdio.h>

#include <poll.h>

#define NTTYS 3 /* number of ttys to use */

#define TIMEOUT 10 /* number of seconds to wait */

Special-Purpose File Operations

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 141

int fds[NTTYS]; /* file descriptors */

char *fileNames[NTTYS]; /* file names */

int openFiles(char **);

void readFiles(struct pollfd *);

int

main(int argc, char **argv)

{

 int i, n, maxfd;

 struct pollfd pfds[NTTYS];

 /*

 * Check that we have the right number of arguments.

 */

 if (argc != (NTTYS+1)) {

 fprintf(stderr, "You must supply %d tty names.\n", NTTYS);

 exit(1);

 }

 /*

 * Open the files. The highest numbered file descriptor

 * (plus one) is returned in maxfd.

 */

 maxfd = openFiles(++argv);

 /*

 * We only need to initialize these once.

 */

 for (i=0; i < NTTYS; i++) {

 pfds[i].fd = fds[i];

 pfds[i].events = POLLIN;

 }

 /*

 * Forever...

 */

 for (;;) {

 /*

 * Wait for some input.

 */

 n = poll(pfds, NTTYS, TIMEOUT * 1000);

 /*

 * See what happened.

 */

 switch (n) {

 case -1: /* error */

 perror("poll");

 exit(1);

 case 0: /* timeout */

 printf("\nTimeout expired. Type something!\n");

 break;

 default: /* input available */

 readFiles(pfds);

 break;

 }

 }

UNIX Systems Programming for SVR4

142 FOR PERSONAL, NON-COMMERCIAL USE ONLY

}

/*

 * openFiles - open all the files, return the highest file descriptor.

 */

int

openFiles(char **files)

{

 int i, maxfd;

 maxfd = 0;

 /*

 * For each file...

 */

 for (i=0; i < NTTYS; i++) {

 /*

 * Open it.

 */

 if ((fds[i] = open(*files, O_RDONLY)) < 0) {

 perror(*files);

 exit(1);

 }

 /*

 * Make sure it's a tty.

 */

 if (!isatty(fds[i])) {

 fprintf(stderr, "All files must be tty devices.\n");

 exit(1);

 }

 /*

 * Save the name.

 */

 fileNames[i] = *files++;

 /*

 * Save the highest numbered fd.

 */

 if (fds[i] > maxfd)

 maxfd = fds[i];

 }

 return(maxfd + 1);

}

/*

 * readFiles - read input from any files that have some.

 */

void

readFiles(struct pollfd *pfds)

{

 int i, n;

 char buf[BUFSIZ];

 /*

 * For each file...

Special-Purpose File Operations

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 143

 */

 for (i=0; i < NTTYS; i++) {

 /*

 * If it has some input available...

 */

 if (pfds[i].revents & POLLIN) {

 /*

 * Read the data.

 */

 n = read(fds[i], buf, sizeof(buf));

 buf[n] = '\0';

 /*

 * Print it out.

 */

 printf("\nRead %d bytes from %s:\n", n, fileNames[i]);

 printf("\t%s\n", buf);

 /*

 * Is it telling us to stop?

 */

 if (strcmp(buf, "S-T-O-P\n") == 0)

 exit(0);

 }

 }

}

% poll /dev/pts/3 /dev/pts/4 /dev/pts/5

Running this program requires a bit of work; follow the instructions given above for running
Example 6-1.

File and Record Locking

When more than one process is writing the same file, or when one process is writing the file while

another is reading it, it is usually necessary for the processes to coordinate their actions, or havoc

may result. Consider, for example, what happens when two processes start at about the same time,

and both open the same log file for writing. Each process will seek to the end of the file in order to

append new log messages to the existing file. When the first process writes a log message, its
read/write offset is advanced. However, the read/write offset of the second process is not advanced,

and when this process writes a log message, it will overwrite the message written by the first process.

One way to avoid this particular case is to open the file with the O_APPEND option (see Chapter 3,
Low-Level I/O Routines), which guarantees that all writes to the file will be appended to the end of

the file. The kernel takes care of advancing the read/write offset before writing the data if the file

has grown since the last write. However, this option will not solve other problems that can occur.

For example, if two processes were to attempt to update a database at the same time, they would

probably destroy each others' work, and they would certainly leave the database in an unknown

state. In order to prevent these situations, most modern UNIX systems provide some form of file

locking.

UNIX Systems Programming for SVR4

144 FOR PERSONAL, NON-COMMERCIAL USE ONLY

There are two types of file locking: advisory and mandatory. Advisory file locks, which are provided

by most versions of UNIX, allow cooperating processes to block each other out during critical

periods (such as when one of the processes is writing the file). In advisory file locking, each process

is required to check for the existence of a lock on the file before going ahead with its work. If a lock

is present, the process should wait until the lock is removed, and then set a lock of its own and

proceed. However, advisory file locking is only useful between processes that agree to follow the
locking convention. Processes that do not care about file locks can still read or write the file, even

if another process has a lock set.

Manadatory file locks are provided by some versions of UNIX, including SVR4. When a mandatory

lock is present on a file, the kernel will cause any calls to creat, open, read, and write issued by

processes other than the one with the lock to fail, returning the EAGAIN error. This is more “secure,”

in the sense that even processes that are not aware that the file must be accessed with a lock cannot
access the file out of turn. However, manadatory file locks are also dangerous. If a process that holds

a lock on some critical system file goes into an infinite loop or otherwise fails to remove the lock, it

can cause the entire system to hang or even crash. For this reason, it is usually advisable to use

advisory locks whenever possible. Manadatory locks are enabled on a per-file basis by setting the

set-group-id bit and clearing the group execute bit in the file's permission modes (see Chapter 5,

Files and Directories). This implies that it is not possible to set a manadatory file lock on a directory

or an executable program.

There are two functions used for setting and removing file locks in SVR4. The fcntl function,

introduced earlier in this chapter, provides the POSIX interface, and the lockf function provides
the System V interface. The two interfaces are very similar; the principal reason for continuing to

supply the lockf interface is to provide backward compatibility with earlier operating system
versions.

Locking Files With fcntl

As discussed earlier, the fcntl function is called as follows:

#include <sys/types.h>

#include <fcntl.h>

int fcntl(int fd, int cmd, /* arg */ ...);

The fd argument is a file descriptor referring to the file to be locked, the cmd argument indicates

the operation to be performed, and the arg parameter is a pointer to a structure of type flock_t

that describes the type of lock to be created.

Legal values for the cmd argument that apply to file locking are:

F_SETLK Set or clear a lock, according to the contents of the flock_t structure pointed to

by arg (see below). If the lock cannot be created, fcntl immediately returns –1

and stores the reason for failure in the external integer errno.

F_SETLKW This command is identical to F_SETLK, except that if the lock cannot be created,
the process will be blocked until it can be created. This allows a process to request

Special-Purpose File Operations

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 145

a lock and wait until it can be made, without having to repeatedly test to see if the

file is unlocked.

F_GETLK If the type of lock requested by the flock_t structure pointed to by arg can be

created, then the structure is passed back unchanged, except that the lock type is

set to F_UNLCK, and the l_whence field is set to SEEK_SET.

If the lock cannot be created, then the structure is overwritten with a description

of the first lock that is preventing its creation. The structure will also contain the

process-id and system-id of the process holding the lock.

This command never creates a lock; it only tests whether or not a particular lock

could be created.

Two different types of locks can be created with fcntl. A read lock prevents any process from
write locking the protected area. More than one read lock may exist for a given segment of a file at

any given time. The file descriptor on which the read lock is being placed must have been opened

with read access. A write lock prevents any process from read locking or write locking the protected

area. Only one write lock and no read locks may exist for a given segment of a file at any given
time. The file descriptor on which the write lock is being placed must have been opened with write

access.

The lock itself is described by a structure of type flock_t, which is declared in the include file
fcntl.h, and which contains at least the following members:

typedef struct flock {

 short l_type;

 short l_whence;

 off_t l_start;

 off_t l_len;

 long l_sysid;

 pid_t l_pid;

} flock_t;

The l_type field of the structure specifies the type of lock, and may be equal to one of the

following:

F_RDLCK Establish a read lock.

F_WRLCK Establish a write lock.

F_UNLCK Remove a previously established lock.

The l_start field specifies the offset of the beginning of the region to be locked, and the l_len

field specifies the length of the region to be locked. The l_whence field specifies the point in the

file from which the starting offset is referenced, and may take on the same values as the third

argument to the lseek function:

SEEK_SET The starting offset is relative to the beginning of the file.

SEEK_CUR The starting offset is relative to the current position in the file.

UNIX Systems Programming for SVR4

146 FOR PERSONAL, NON-COMMERCIAL USE ONLY

SEEK_END The starting offset is relative to the end of the file.

Locks may start and extend beyond the end of a file, but they may not be negative relative to the

beginning of the file. A lock may be set to extend to the end of the file by setting l_len to zero; if

such a lock also has l_whence and l_start set to zero, the whole file will be locked.

Unlocking a segment in the middle of a larger locked segment leaves two locked segments, one at

each end. Locking a segment that is already locked by the same process results in removing the old

lock and installing the new one.

Locks are removed from a file when the process removes them using F_UNLCK, when the process
closes the file descriptor, or when the process terminates. Locks are not inherited by child processes.

Locking Files With lockf

The lockf function provides similar functionality to the file locking portion of fcntl, but is called
differently:

#include <unistd.h>

int lockf(int fd, int function, long size);

The fd argument is a file descriptor referencing the file to be locked; it must have been opened with

either O_WRONLY or O_RDWR access permissions.

The function argument indicates the function to be performed:

F_ULOCK Unlock a previously locked section.

F_LOCK Establish a lock on a section. If the section is already locked, the process will block
until the lock can be established.

F_TLOCK Test a section to see if it can be locked. If it can, establish the lock. If the section is

already locked, this command will cause lockf to return –1 and store the reason for

failure in errno.

F_TEST Test a section to see if it can be locked. If it can, lockf returns 0; otherwise it returns

–1 and stores the reason for the error in errno.

The size argument indicates the number of contiguous bytes to be locked or unlocked. The region

extends forward from the current read/write offset for a positive value of size, and backward from

the current read/write offset for a negative value of size. If size is zero, the region from the current

read/write offset through the current or any future end of the file is indicated. An area does need to

exist in the file to be locked; locks may extend past the end of the file.

It is possible for a lock to be established on a section that overlaps with a previously locked section,

although this results in the sections being combined so that a single, larger section is now locked

(locks are a finite resource; this practice conserves them). If a section to be unlocked is part of a

larger locked section, this will result in two locked sections, one on either end of the unlocked area.

Special-Purpose File Operations

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 147

All locks held on a file by a process will be released when the process closes the file, or when the

process terminates. Locks created by lockf are not inherited by children of the process creating the
lock.

Porting Notes

BSD UNIX and vendor versions based on it offer another interface, called flock:

#include <sys/file.h>

int flock(int fd, int operation);

This function allows advisory locks to be created on the file referenced by the file descriptor fd.

Only entire files may be locked; there is no facility to lock only a portion of a file. The operation

argument indicates the function to be performed:

LOCK_SH Establish a shared lock on the file; more than one process may have a shared lock

on the same file at the same time. This is analogous to a read lock as used with

fcntl and lockf.

LOCK_EX Establish an exclusive lock on the file; only one exclusive lock may be placed on

the file at a time, and no shared locks on the file may exist while the exclusive lock

is in place. This is analogous to a write lock as used with fcntl and lockf.

LOCK_UN Remove a previously-established lock from the file.

LOCK_NB This can be ored with LOCK_SH or LOCK_EX to make the operation non-blocking;

otherwise these operations will block until the lock can be created.

The flock function returns 0 on success; on failure it returns –1 and places the reason for failure in

the external integer errno.

Memory-Mapped Files

The concept of memory-mapped files was first introduced in UNIX by Berkeley in 4.2BSD

(although Berkeley did not actually implement the concept until 4.4BSD). It has since been adopted

by most vendor versions of the operating system, including SVR4. A memory-mapped file is

basically what its name implies: a file (or portion of a file) that has been mapped into a process'
address space.

Once a file has been mapped into memory, a process may access the contents of that file using

address space manipulations (i.e. variables, pointers, array subscripts, etc.) instead of the read/write

interface. The operating system takes care of transferring the file into memory (and, if the memory

is modified, transferring it back to the file) through the virtual memory subsystem. In other words,

as the process accesses the file, the operating system pages the file into and out of memory. This is

usually (but not always) more efficient than reading the entire file into memory directly, especially

when only small portions of the file's contents will actually be used.

UNIX Systems Programming for SVR4

148 FOR PERSONAL, NON-COMMERCIAL USE ONLY

One of the most important uses for memory-mapped files is in the implementation of dynamically-

loadable shared libraries. In the old days, when a program was linked, all the executable code for

the library routines it called (the code for the routines described in this book) was copied into the

executable file. This consumed a lot of disk space, and also took up a lot of memory, since there

might be multiple copies of a routine (e.g., printf) in memory at any given time. The introduction
of dynamically-loaded, shared libraries has solved both of these problems. Because the library is

dynamically loaded, it does not have to be compiled into each program. Rather, when the program

is executed, the system loads the library into memory and allows the program to transfer control to

this area of memory. This conserves disk space by having only one copy of each library routine on
the disk. Because the library is shared, each program that uses the library is using the same copy.

Thus, there is only one copy of printf in memory at a time, and all programs that need it use the

same copy.

Dynamically-loadable shared libraries are implemented with memory-mapped files. When a

program is linked, a “jump table” is created that contains an entry for each library routine. When

the program is executed, the operating system maps the library into memory, and then edits the jump

table to fill in the address of each function. As the program calls library functions, the operating

system pages those parts of the library into memory and lets the program use them. If part of the

library is never used (e.g., the part taken up by some obscure function), it is never loaded into

memory.

Memory-mapped files are useful for other purposes, too. For example, a program that retrieves data

from a very large database might use some type of index into the database. It searches for an item

in the index, and when it finds the item, uses information stored in the index entry to retrieve the

data. Indexes for large databases are usually very large themselves. If the program must retrieve
only one or two items from the database, it is unlikely that it will need to examine each and every

entry in the index (depending on its search algorithm). Thus, it would be a waste of both time and

memory to read the entire index into memory. Instead, the program can map the index into memory,

access it as if it were an array (or whatever), and the operating system will only bring in those parts

of the index the program actually needs. This both makes the program run faster and places less load

on the system.

Mapping a File Into Memory

A file is mapped into memory with the mmap function:

#include <sys/types.h>

#include <sys/mman.h>

caddr_t mmap(caddr_t addr, size_t len, int prot, int flags,

 int fd, off_t offset);

This function maps len bytes of the file referenced by fd, beginning at offset, into the process'

address space. It returns a memory address that points to the start of the mapped segment on success,

or (caddr_t) –1 on failure. If the call fails, errno will contain the reason for failure.

Special-Purpose File Operations

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 149

The mapped segment may extend past the end of the file, but any reference to addresses beyond the

current end of the file will result in the delivery of a SIGBUS signal (see Chapter 10, Signals). This

means that mmap cannot be used to implicitly extend the length of a file.

NOTE

Mappings established for fd are not removed when the file descriptor is closed. The

munmap function (see below) must be called to remove a mapping.

The prot parameter specifies the ways in which the mapped pages may be accessed. These values

are ored together to produce the desired result:

PROT_READ The page may be read (i.e., the contents of the page may be examined).

PROT_WRITE The page may be written (i.e., the contents of the page may be changed).

PROT_EXEC The page may be executed (i.e., the contents of the page may be executed as

program code).

PROT_NONE The page may not be accessed.

Most implementations of mmap do not actually support all combinations of the above values; they

usually map some of the simpler modes into more complex ones (e.g, PROT_WRITE is usually

implemented as PROT_READ|PROT_WRITE). However, no implementation will allow a page to be

written unless PROT_WRITE was specified.

The flags parameter provides additional information about how the mapped pages should be

treated:

MAP_SHARED When changes are made to the mapped object, these changes will be shared

among other processes that also have the object mapped.

MAP_PRIVATE When changes are made to the mapped object, these changes will cause the

system to create a private copy of the affected pages, making the changes
in the copy. Other processes that have the object mapped will not be able

to see the changes.

MAP_FIXED Informs the system that the file is to be mapped into memory exactly at

address addr (see below); the use of this flag is discouraged because it

may prevent the system from making the most efficient use of system

resources.

MAP_NORESERVE Normally, when MAP_PRIVATE mappings are created, the system reserves
swap space equivalent to the size of the mapping. This space is used to

store the private copies of any modified pages. When this flag is specified,

the system will not preallocate space for the modified pages. This means

that if swap space for a newly modified page is unavailable, the process

will receive a SIGBUS signal when it tries to modify that page.

This flag is not available in HP-UX 10.x.

UNIX Systems Programming for SVR4

150 FOR PERSONAL, NON-COMMERCIAL USE ONLY

The addr parameter specifies the suggested address at which the object is to be mapped. If addr is

given as zero, the system is granted complete freedom to map the object wherever it wants for best

efficiency. If addr is non-zero but MAP_FIXED is not specified, it is taken as a suggestion of an

address near where the memory should be mapped. And, if addr is non-zero and MAP_FIXED is

specified, it is taken as the exact address at which to map the object.

Removing a Mapping

A memory mapping is removed with the munmap function:

#include <sys/types.h>

#include <sys/mman.h>

int munmap(caddr_t addr, size_t len);

The mapping for the pages in the range addr to addr+len are removed. Further references to these

pages will result in the delivery of a SIGSEGV signal to the process (see Chapter 10, Signals). If the

unmapping is successful, munmap returns 0; otherwise it returns –1 and places the reason for failure

in the external integer errno.

Example 6-3 shows a program that uses mmap to read files and print them on the standard output
(much like the cat command).

Example 6-3: catmap

#include <sys/types.h>

#include <sys/stat.h>

#include <sys/mman.h>

#include <stdlib.h>

#include <fcntl.h>

#include <stdio.h>

int

main(int argc, char **argv)

{

 int fd;

 struct stat st;

 caddr_t base, ptr;

 /*

 * For each file specified...

 */

 while (--argc) {

 /*

 * Open the file.

 */

 if ((fd = open(*++argv, O_RDONLY, 0)) < 0) {

 perror(*argv);

 continue;

 }

 /*

Special-Purpose File Operations

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 151

 * Find out how big the file is.

 */

 fstat(fd, &st);

 /*

 * Map the entire file into memory.

 */

 base = mmap(0, st.st_size, PROT_READ, MAP_SHARED, fd, 0);

 if (base == MAP_FAILED) {

 perror(*argv);

 close(fd);

 continue;

 }

 /*

 * We can close the file now; we can access it

 * through memory.

 */

 close(fd);

 /*

 * Now print the file.

 */

 for (ptr = base; ptr < &base[st.st_size]; ptr++)

 putchar(*ptr);

 /*

 * Now unmap the file.

 */

 munmap(base, st.st_size);

 }

 exit(0);

}

% catmap /etc/motd

Sun Microsystems Inc. SunOS 5.3 Generic September 1993

Changing the Protection Mode of Mapped Segments

The mprotect function allows a process to change the protection modes of a previously mapped
segment:

#include <sys/types.h>

#include <sys/mman.h>

int mprotect(caddr_t addr, size_t len, int prot);

The addr and len parameters specify the starting address and length of the segment whose

permissions are to be changed. The prot parameter specifies the new protection mode to be set on

the segment using the PROT_READ, PROT_WRITE, PROT_EXEC, and PROT_NONE flags as described

earlier. Upon successful completion, mprotect returns 0; otherwise it returns –1 and stores the

reason for failure in errno.

UNIX Systems Programming for SVR4

152 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Providing Advice to the System

Once a file is mapped into memory, the operating system's virtual memory subsystem is responsible

for paging that file into memory. In order to make the mapping more efficient and consume fewer

system resources, the madvise function allows a process to give “hints” to the system about how
best to page the object into memory:

#include <sys/types.h>

#include <sys/mman.h>

int madvise(caddr_t addr, size_t len, int advice);

The addr and len parameters specify the starting address and length of the segment to which the

advice applies. The advice parameter may contain one of the following:

MADV_NORMAL The default mode. The kernel reads all the data from the object (or at

least reads a “reasonable” amount) into pages which are used as a cache.
System pages are a limited resource, and the kernel will steal pages from

other mappings if necessary. This can adversely affect system

performance when large amounts of memory are accessed, but in general

is not a problem.

MADV_RANDOM The process will be “jumping around” in the object, and may access a

tiny bit here and then a tiny bit there. This tells the kernel to read in a

minimum amount of data from the mapped object on any particular

access, rather than reading larger amounts in anticipation of other

accesses within the same locality.

MADV_SEQUENTIAL The program is planning to access the object in order from lowest address

to highest, and each address is likely to be only accessed once. The kernel

will free the resources from the mapping as quickly as possible. This
option could be used in the catmap program to increase performance.

MADV_WILLNEED Tells the system that a specific address range will definitely be needed,

so that it can start reading the specified range into memory. This can

benefit programs that need to minimize the time needed to access

memory the first time.

MADV_DONTNEED Tells the kernel that a specific address range is no longer needed, so that

it can begin freeing the resources associated with that part of the

mapping.

With the exception of MADV_DONTNEED, the above constants are not supported in IRIX 5.x.

Synchronizing Memory With Physical Storage

When an object is mapped, the system maintains both an image of the object in memory, and a copy

of the image in backing storage. The backing storage copy is maintained so that the system can

allow other processes to use the physical memory when it is their turn to run. The backing storage

for a MAP_SHARED mapping is the file the mapping is attached to; the backing storage for a

Special-Purpose File Operations

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 153

MAP_PRIVATE mapping is its swap area. The msync function is used to tell the system to
synchronize the in-memory copy of the mapping with its backing storage (the system does this

periodically on its own, but some programs may need to have the object in a known state):

#include <sys/types.h>

#include <sys/mman.h>

int msync(caddr_t addr, size_t len, int flags);

The addr and len parameters specify the starting address and length of the segment to be

synchronized. The flags parameter consists of one or more of the following values ored together:

MS_ASYNC This causes all writes to be scheduled, after which msync will return. The

writes will be completed a “short time” afterward.

MS_SYNC All write operations will be performed before msync returns. This

guarantees that the data is on disk before the process proceeds, but it also
causes the process to wait for a longer period of time.

MS_INVALIDATE Invalidates any cached copies of the segment in memory, so that any

subsequent references to the pages will cause the system to bring them in

from their backing storage locations.

If msync succeeds, it returns 0. Otherwise, it returns –1 and places the error indication in errno.

The /dev/fd File System

The /dev/fd file system allows each process to access its open file descriptors as names in the file

system. If file descriptor n is open, the following two calls have the same effect:

fd = open("/dev/fd/n", mode);

fd = dup(n);

One of the most common uses for the /dev/fd file system is to “trick” programs that insist on reading

from or writing to a file to read from the standard input or write to the standard output. For example,

consider the following program:

#include <stdio.h>

#include <ctype.h>

int

main(int argc, char **argv)

{

 int c;

 FILE *fp;

 if ((fp = fopen(*++argv, "r")) == NULL) {

 perror(*argv);

 exit(1);

UNIX Systems Programming for SVR4

154 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 }

 while ((c = getc(fp)) != EOF) {

 if (islower(c))

 c = toupper(c);

 putc(c, stdout);

 }

 fclose(fp);

 exit(0);

}

This program opens the file named on its command line, reads the file, and prints it out in uppercase.

Unfortunately, since this program insists on reading from a file, it cannot be used as part of a pipeline

to convert the output from another command to uppercase.

The /dev/fd file system remedies this by allowing the program's standard input to be specified as a

file name. To use the above program in a pipeline then, we can do this:

% somecommand | toupper /dev/fd/0

The /dev/fd file system was originally developed in Research UNIX. Shortly thereafter, public-

domain implementations for BSD UNIX appeared, and it eventually appeared in SVR3. From there,

it also became a part of SVR4. It is gradually appearing in other vendors' releases as well.

The /dev/fd file system is not available in HP-UX 10.x.

Miscellaneous Functions

There are several other special-purpose functions that are occasionally useful as well. Some of these

are described in this section.

Controlling File Creation Modes

When a file is created, its permission bits are specified in the call to creat or open. As indicated
in Chapter 3, Low-Level I/O Routines, these bits are modified by the process' umask value. Quite

simply, the umask value is a set of permission bits to turn back off in any file creation mode. When

a file is created, the permission bits specified in the call to creat or open are anded with the

complement of the umask value to determine the actual bits that will be set:

actual_mode = create_mode & ~umask;

Convention dictates that whenever a file is created with creat or open, the permission bits should

be specified as 0666 (read/write for owner, group, and world). Each user can then use the umask
value to control the actual permissions the file will be created with. For example, if a file is created

with mode 0666 and the user's umask is 022, we get:

actual_mode = create_mode & ~umask;

actual_mode = 0666 & ~022;

Special-Purpose File Operations

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 155

actual_mode = 0666 & 0755;

actual_mode = 0644;

Thus, the file will be created readable and writable by the user, and readable by everyone else. If

the user's umask is 077 instead, we get:

actual_mode = create_mode & ~umask;

actual_mode = 0666 & ~077;

actual_mode = 0666 & 0700;

actual_mode = 0600;

The file will be created readable and writable by the user, and nobody else will be able to access it.

A process' umask value is set with the umask function:

#include <sys/types.h>

#include <sys/stat.h>

mode_t umask(mode_t cmask);

The new value is specified by the cmask parameter; the old value is returned. The umask is inherited

by child processes, so all of the shells provide a built-in umask command to set the umask value of
the shell (and therefore of all processes started by the shell).

The Root Directory

UNIX allows a process to change its notion of where the root of the file system is, i.e., from where

in the file system absolute pathnames begin. By default, each process uses / (the real root of the file

system) as its root. However, in some instances, it is desirable to restrict a process to a specific area

in the file system.

To take one example, many sites allow users from all over the world to connect to their hosts via

the File Transfer Protocol (FTP) and log in as “anonymous” for the purpose of downloading files.

However, these sites obviously don't want to give the entire world access to every file on the system;

rather, these users should only be allowed to access files in a specific area. Even when one of these

users specifies an absolute path name (one that begins with a ‘/’), that path name should be taken
relative to this specific area.

To implement this, the chroot function is used:

#include <unistd.h>

int chroot(const char *path);

int fchroot(int fd);

The chroot function changes the calling process' root directory to the directory named in path.

The fchroot function changes the calling process' root directory to the directory referenced by the

file descriptor fd. Once this call has succeeded, all absolute path names will be taken relative to this

directory. Note that on systems that do not offer fchroot (most of them), there is no way to undo

UNIX Systems Programming for SVR4

156 FOR PERSONAL, NON-COMMERCIAL USE ONLY

this call—since there is no way to reference a directory outside of the one named in path, there is

no way to go back up. With fchroot however, the higher-level directory can be opened prior to

calling chroot, and then can be used later to reset the root directory. Use of these two functions is
restricted to the super-user.

Synchronizing a File With the Disk

When a process issues a write, the operating system transfers that data to a disk buffer and returns

control to the process. At some later time (withing a few milliseconds), the data is actually written

to disk. This makes the system run much more efficiently, by allowing processes to run without

having to stop and wait on (relatively) slow devices, and also by allowing the system to optimize
device accesses. However, there are times when a program needs to know that the data on the disk

is an accurate representation of what has been written; it can't wait those extra few milliseconds.

To do this, the program uses the fsync function:

#include <unistd.h>

int fsync(int fd);

This function moves all modified data and attributes of the file referenced by the file descriptor fd

to a storage device. When fsync returns, the calling process can be certain that all disk buffers
associated with the file have been written to the physical storage medium.

NOTE

The fsync function is not simply an alternative form of the sync function. A call to sync
causes all modified disk buffers (for all files, not just those belonging to the calling process)

to be scheduled for writing to disk. However, the call returns as soon as scheduling is

complete; it does not wait for all the writes to be performed. The fsync function, on the

other hand, will cause the calling process to block until the disk buffers associated with fd

have actually been written to the disk (or other device).

Chapter Summary

Although the title of this chapter might indicate that the functions just discussed are not used very

often, this is only partially true. In particular, the select and poll functions are used frequently

in programs that must manage multiple data streams; many network-based programs fall into this

category. The fcntl function is also used fairly often, although only some of its options are used
routinely. And finally, file and record locking is used with some regularity.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 157

Chapter 7
Time of Day Operations

The UNIX operating system keeps track of the current date and time by maintaining the number of

seconds that have elapsed since Thursday, January 1, 1970 00:00:00 UTC (Coordinated Universal

Time, also called Greenwich Mean Time or Zulu Time). This number is stored in a signed long

integer, which means that, assuming a 32-bit system, UNIX timekeeping will break on Tuesday,

January 19, 2038 at 03:14:08 UTC when the value overflows and becomes negative.

There are a number of systems programming applications that need to know how to convert the
UNIX time format to something that can be understood by humans. We encountered one of these

applications in Chapter 5, when we wanted to print out file access and modification times. In this

chapter, we will examine the functions that are provided to convert between UNIX time format and

human-readable date and time strings.

The Complexities of Time

Converting a quantity such as the number of seconds since some epoch time into a date and time

string usable by humans is an extraordinarily difficult problem. If everyone used Coordinated
Universal Time, it would be fairly simple. Divide the number of seconds since the epoch by 86,400

(the number of seconds in a day), and you have the number of days since the epoch, and a remainder.

Divide the remainder by 3,600 (the number of seconds in an hour) and you have the current hour.

Divide the remainder of that by 60 and you have the current minute, and the remainder gives the

current second. Divide the number of days by 365 and you have the current year (but don't forget

leap years), and the remainder gives the current month and day, which can be separated just as

easily.

Unfortunately, everyone doesn't use Coordinated Universal Time. Coordinated Universal Time is

the time of day at the Prime Meridian, which passes through Greenwich, England (hence the name

Greenwich Mean Time). Local time in other parts of the world is determined by taking an offset,

either positive or negative, from Greenwich Mean Time. If the location is east of Greenwich, the
offset is negative (meaning local time is earlier than UTC); if the location is west of Greenwich, the

offset is positive (meaning local time is later than UTC). For example, local time in New York City

is five hours earlier than UTC. So when it's 8:00am in New York, it's already 1:00pm in Greenwich.

UNIX Systems Programming for SVR4

158 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Each of these offsets is called a timezone. The purpose of timezones is to allow human beings to

shift the clock such that it agrees with local day and night. For example, local noon should be the

time at which the sun is at its highest point in the sky. But when it's local noon at Greenwich,

England, it's still dark in Los Angeles, California. So Los Angeles shifts its local time by eight hours

from UTC. In most parts of the world, the local timezone is offset by a whole number of hours from

UTC. However, in some parts of the world, the local timezone is offset by some number of half
hours from UTC; for example, in Adelaide, Australia, local time is 10.5 hours ahead of UTC.

To complicate things even further, humans have invented another artificial time adjustment called

Daylight Savings Time (DST). This adjustment shifts clocks forward by (usually) one hour in the

spring, and shifts them back again in the fall. The purpose of this shift is to seemingly make daylight

last longer each day during the summer, so that farmers and other people who have to work outdoors

can get more done. (Of course, the number of daylight hours doesn't actually change, DST just

makes it seem like the days are longer by moving “bedtime” ahead one hour.)

In order to write a function that converts UNIX time format to a date and time string representing

local time then, we have to keep track of a number of different things. First, we have to know what

timezone we are in, and how that timezone is offset from UTC. This means that the conversion is

different depending on whether we're in New York City, Los Angeles, or Moscow. Furthermore,

we have to know the rules for Daylight Savings Time in this time zone; this is even more
complicated. DST is determined differently in different parts of the world; some areas observe it,

and some don't. Consider the United States' rules for DST observance. Prior to 1967, observance of

DST was by local option except during World War I and II, when it was mandatory. Since 1967,

DST has been observed by nearly the entire country. But even this has exceptions; the state of

Indiana, with the exception of the northwest and southeast corners, does not observe DST. To further

complicate matters, prior to 1987, DST began on the last Sunday in April; since 1987 it has begun

on the first Sunday in April. DST ends on the last Sunday in October. This seems fairly straight

forward. But in 1974 and 1975, because of the energy crisis, DST began on January 6 and February

23, respectively. And in 1989, the U.S. House of Representatives passed a bill that would make DST

in the Pacific timezone end on the first Sunday after November 7th in presidential election years,

and on the last Sunday in October otherwise (this bill was never signed into law).

Fortunately, this whole mess is taken care of for you by the UNIX library routines that manipulate

time and date strings. However, we wanted to provide you with some idea of the complexity

involved in making these conversions. Many older versions of UNIX had numerous problems with

timezones. Some would only handle timezones that were whole hour offsets from UTC, some could

not reliably convert between an offset and a timezone name, and so forth. More will be said about

this below in the section on porting notes, but it's important to be aware that the routines described

in the following sections, while they handle all time zone conversions known at the time they were

released, may not handle conversions properly in the future. This is particularly true of the Daylight

Savings Time corrections, which are subject to the whims of our lawmakers.

Obtaining the Current Time

To obtain the current time of day in UNIX time format, all versions of UNIX provide the same

function:

Time of Day Operations

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 159

#include <sys/types.h>

#include <time.h>

time_t time(time_t *tloc);

The time function returns the number of seconds since January 1, 1970 00:00:00 UTC. If tloc is

non-null, time also stores this value in the memory location pointed to by tloc.

Porting Notes

In 4.2 BSD, another function was introduced to obtain the current time:

#include <sys/time.h>

int gettimeofday(struct timeval *tp, struct timezone *tz);

The gettimeofday function places the current time into the structure pointed to by tp, and the

local timezone information into the structure pointed to by tz. The structures are defined in the

include file sys/time.h:

struct timeval {

 long tv_sec;

 long tv_usec;

};

struct timezone {

 int tz_minuteswest;

 int tz_dsttime;

};

The tv_sec and tv_usec elements store the time in seconds and microseconds since January 1,

1970. The tz_minuteswest element stores the offset (positive or negative) from UTC in minutes,

and the tz_dsttime element contains a flag indicating the type of DST correction (if any) to be

applied.

IRIX 5.x and versions of Solaris prior to Solaris 2.5 provide a single-argument version of

gettimeofday for backward compatibility; the struct timezone argument is ignored. HP-UX

10.x and versions of Solaris beginning with Solaris 2.5 provide a two-argument version.

Obtaining the Local Timezone

Timezone determination has varied with almost every version of UNIX, owing mostly to the

continual need to handle more and more special cases. In SVR4, the local time zone is stored in the

TZ environment variable, which contains a string such as “US/Eastern” or “Australia/West.” In C

programs, the program should first call the function tzset:

#include <time.h>

void tzset(void);

UNIX Systems Programming for SVR4

160 FOR PERSONAL, NON-COMMERCIAL USE ONLY

After calling tzset, four external variables are available for use:

extern time_t timezone, altzone;

extern char *tzname[2];

extern int daylight;

The timezone variable contains the difference, in seconds, between UTC and local standard time;

the altzone variable contains the difference, in seconds, between UTC and the alternate timezone

(DST). The daylight variable is non-zero if Daylight Savings Time is in effect, zero otherwise.

The tzname array contains the names (abbreviations) of the timezones for local standard time and

Daylight Savings Time; for example, in New York City tzname[0] would contain “EST” and

tzname[1] would contain “EDT.” Prior to calling tzset, these four variables contain values that
describe Coordinated Universal Time.

HP-UX 10.x does not provide the altzone variable.

Porting Notes

In SVR2, the TZ environment variable had to contain a three letter timezone name, followed by a
number indicating the difference between local time and UTC in hours, followed by an optional

three letter name for a daylight time zone. When DST was in effect, the standard United States rules

were applied. This means that SVR2 could not handle time zones that were half-hour offsets from

UTC, or daylight time rules that differed from the United States'. Otherwise however, the interface

is the same as that described above.

SunOS 4.x provides the same interface as that described above, except that it also allows the

timezone name to be obtained from the struct tm structure (described below). SunOS 4.x is the
only operating system that allows the timezone name to be obtained in this manner.

BSD UNIX and Version 7 offered two other functions for working with timezones:

#include <sys/types.h>

#include <sys/timeb.h>

int ftime(struct timeb *tp);

char *timezone(int zone, int dst);

The ftime function placed the current time and timezone information into the structure of type

struct timeb pointed to by tp and defined in sys/timeb.h:

struct timeb {

 time_t time;

 unsigned short millitim;

 short timezone;

 short dstflag;

};

The time element contains the time in UNIX time format, the millitim element contains up to

1,000 milliseconds of more precise information, the timezone element contains the local timezone

Time of Day Operations

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 161

measured in minutes west of Greenwich, and the dstflag element is non-zero when Daylight
Savings Time is in effect.

The timezone function returns the name associated with the timezone that is zone minutes west

of Greenwich; if dst is zero the standard timezone name is used, otherwise the daylight timezone

name is used. This function has serious problems with returning the correct timezone name

anywhere in the world, because there are multiple names for each zone depending on location.

Converting Between UNIX Time and Human Time

There are four functions provided to convert between UNIX time and human time:

#include <time.h>

struct tm *gmtime(const time_t *clock);

struct tm *localtime(const time_t *clock);

time_t mktime(struct tm *tp);

double difftime(time_t t1, time_t t0);

The gmtime function returns a structure of type struct tm that contains the broken out

components of the date and time represented by the value of the variable pointed to by clock, which

should contain a value such as that returned by the time function. The time represented in the

struct tm function will be in Coordinated Universal Time. The localtime function makes the

same conversion, but if the program has called the tzset function first, the resulting time will be

corrected for the local timezone and daylight time. The struct tm structure is defined in the
include file time.h:

struct tm {

 int tm_sec;

 int tm_min;

 int tm_hour;

 int tm_mday;

 int tm_mon;

 int tm_year;

 int tm_wday;

 int tm_yday;

 int tm_isdst;

};

The tm_sec element contains the seconds after the minute (0-61; the 61 is for leap seconds), the

tm_min element contains the minutes after the hour (0-59), the tm_hour element contains the hours

since midnight (0-23), the tm_mday element contains the day of the month (1-31), the tm_mon

element contains the month (0-11, 0=January), the tm_year contains the year since 1900, the

tm_wday element contains the day of the week (0-6, 0=Sunday), the tm_yday element contains the

UNIX Systems Programming for SVR4

162 FOR PERSONAL, NON-COMMERCIAL USE ONLY

day of the year (0-365, 0=January 1st), and the tm_isdst element is non-zero if daylight time is in
effect.

The mktime function performs the opposite conversion; taking a struct tm structure as input and

returning the number of seconds since January 1, 1970 00:00:00 UTC. The mktime function also
normalizes the time in the structure, so that the values do not have to be within the limits described

above. For example, a tm_hour value of –1 indicates one hour before midnight. The conversions

performed by mktime are corrected for the local time zone and daylight time; in general you'll want

to set the tm_isdst field to –1 to avoid surprises.

The difftime function computes the difference between two time values, t1 and t0, and returns

the result as a double precision value. This function is required by the ANSI C standard, since there

are no arithmetic operations defined on the time_t data type (not all systems use a long for

time_t).

One useful thing that gmtime (which should really be called utctime, but history prevails) can be
used for is printing out the difference between two times in human-readable format. For example,

if we have two times, a login time and a logout time, we can compute the duration of the login

session as follows:

#include <time.h>

.

.

.

struct tm *tp;

time_t login, logout, session;

.

.

.

session = (time_t) difftime(logout, login);

tp = gmtime(&session);

printf("Session length: %d days, %d hours, %d minutes\n",

 tp->tm_yday, tp->tm_hour, tp->tm_min);

Porting Notes

The difftime function is specific to ANSI C environments, although it's easy to define for other
environments.

The mktime function is a generalization of two other functions, timelocal and timegm, which
have been introduced in a number of UNIX versions.

There is disagreement between various versions of UNIX as to whether the include file for these

functions belongs in time.h or sys/time.h. Some versions have it in one place, others have it in the

other. Newer versions have sidestepped the issue by making it available in both places.

Time of Day Operations

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 163

Formatting Date Strings

Now that we can convert UNIX time to a struct tm structure and vice-versa, the next thing we

need to do is convert the elements of this structure into something readable by human beings. There

are five functions provided to do this:

#include <time.h>

char *ctime(const time_t *clock);

char *asctime(const struct tm *tm);

size_t *strftime(const char *s, size_t maxsize, const char *format,

 const struct tm *tm);

int cftime(char *s, const char *format, const time_t *clock);

int ascftime(char *s, const char *format, const struct tm *tm);

The asctime function converts the time contained in tm as returned by localtime or gmtime to

a 26-character string and returns a pointer to that string. The string has the format

DDD MMM dd hh:mm:ss yyyy\n\0

for example,

Thu Jan 1 00:00:00 1970\n\0

The ctime function is equivalent to calling

asctime(localtime(&clock));

The cftime, ascftime, and strftime functions all do essentially the same thing, with cftime

being to ascftime as ctime is to asctime. The cftime and ascftime functions are obsolete,

and strftime should be used instead. HP-UX 10.x does not provide cftime or ascftime.

The strftime function copies characters into the array pointed to by s, which is of maxsize bytes

in length. The contents of the string are controlled by the string contained in format. The format

string is similar to a printf format string; all ordinary characters in the string (including the

terminating null character) are copied into s, and characters in format that are preceded by a

percent sign (‘%’) represent formatting directives. The strftime function has been
internationalized, and will use values in formatting directives that are appropriate for the current

locale.

The valid formatting directives are as follows. If the format string is null, the locale's default format

is used.

%% A literal percent sign.

UNIX Systems Programming for SVR4

164 FOR PERSONAL, NON-COMMERCIAL USE ONLY

%a The locale's abbreviated weekday name.

%A The locale's full weekday name.

%b The locale's abbreviated month name.

%B The locale's full month name.

%c The locale's appropriate date and time representation.

%C The locale's date and time representation as produced by the date command.

%d The day of the month (01-31).

%D The date as “%m/%d/%y.”

%e The day of the month (1-31, single digits are preceded by a space).

%h The locale's abbreviated month name.

%H The hour (00-23).

%I The hour (01-12).

%j The day of the year (001-366).

%k The hour (0-23, single digits are preceded by a space) (Solaris 2.x only).

%l The hour (1-12, single digits are preceded by a space) (Solaris 2.x only).

%m The month number (01-12).

%M The minute (00-59).

%n Same as ‘\n’.

%p The locale's equivalent of “AM” or “PM.”

%r The time as “%I:%M:%S [AM|PM].”

%R The time as “%H:%M.”

%S The second (00-61); allows for leap seconds.

%t Same as ‘\t.’

%T The time as “%H:%M:%S.”

%U The week number of the year (00-53); Sunday is the first day of week 01, days prior to the

first Sunday in January are in week 00.

%w The weekday number (0-6); Sunday is day 0.

%W The week number of the year (00-53); Monday is the first day of week 01, days prior to

the first Monday in January are in week 00.

%x The locale's appropriate date representation.

Time of Day Operations

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 165

%X The locale's appropriate time representation.

%y The year within the century (00-99).

%Y The year with the century (e.g., 1962).

%Z The time zone name, or no characters if no time zone exists.

Example 7-1 shows a small program that demonstrates the use of strftime and its output in several
different locales (if your system does not have the internationalization options installed; all the

output will be in English). The setlocale function is used to set the locale; it is described in more
detail in Chapter 16, Miscellaneous Routines.

Example 7-1: date

#include <locale.h>

#include <stdio.h>

#include <time.h>

/*

 * Sample formats.

 */

char *formats[] = {

 "%A, %B %e, %Y, %H:%M:%S",

 "%I:%M %p, %d-%b-%y",

 "%x %X",

 "%C",

 "%c",

 NULL

};

char *locales[] = {

 "C", "de", "fr", "it", "sv", NULL

};

char *localeNames[] = {

 "UNIX", "German", "French", "Italian", "Swedish", NULL

};

int

main(int argc, char **argv)

{

 int i, j;

 time_t clock;

 struct tm *tm;

 char buf[BUFSIZ];

 /*

 * Get current time.

 */

 time(&clock);

 tm = gmtime(&clock);

 /*

 * For each locale...

UNIX Systems Programming for SVR4

166 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 */

 for (i=0; locales[i] != NULL; i++) {

 /*

 * Print the locale name and set it.

 */

 printf("%s:\n", localeNames[i]);

 setlocale(LC_TIME, locales[i]);

 /*

 * For each format string...

 */

 for (j=0; formats[j] != NULL; j++) {

 strftime(buf, sizeof(buf), formats[j], tm);

 printf("\t%-25s %s\n", formats[j], buf);

 }

 printf("\n");

 }

 exit(0);

}

% date

UNIX:

 %A, %B %e, %Y, %H:%M:%S Sunday, March 20, 1994, 22:38:19

 %I:%M %p, %d-%b-%y 10:38 PM, 20-Mar-94

 %x %X 03/20/94 22:38:19

 %C Sun Mar 20 22:38:19 GMT 1994

 %c Sun Mar 20 22:38:19 1994

German:

 %A, %B %e, %Y, %H:%M:%S Sonntag, März 20, 1994, 22:38:19

 %I:%M %p, %d-%b-%y 10:38 PM, 20-Mär-94

 %x %X 20.03.94 22:38:19

 %C Sonntag, 20. März 1994, 22:38:19 Uhr GMT

 %c So 20 Mär 94, 22:38:19 GMT

French:

 %A, %B %e, %Y, %H:%M:%S dimanche, mars 20, 1994, 22:38:19

 %I:%M %p, %d-%b-%y 10:38 PM, 20-mar-94

 %x %X 20.03.94 22:38:19

 %C dimanche, 20 mars 1994, 22:38:19 GMT

 %c dim 20 mar 94, 22:38:19 GMT

Italian:

 %A, %B %e, %Y, %H:%M:%S domenica, marzo 20, 1994, 22:38:19

 %I:%M %p, %d-%b-%y 10:38 PM, 20-mar-94

 %x %X 20/03/94 22:38:19

 %C domenica, 20 marzo 1994, 22:38:19 GMT

 %c Dom 20 mar 94, 22:38:19 GMT

Swedish:

 %A, %B %e, %Y, %H:%M:%S söndag, mars 20, 1994, 22:38:19

 %I:%M %p, %d-%b-%y 10:38 EM, 20-mar-94

 %x %X 94-03-20 22:38:19

 %C söndag, 20 mars 1994 kl 22:38:19 GMT

 %c sön 20 mar 94 kl 22:38:19 GMT

Time of Day Operations

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 167

To perform conversions in the other direction, from a string to an internal time representation, the

getdate function can be used:

#include <time.h>

struct tm *getdate(const char *string);

The getdate function converts user-defined date and time specifications pointed to by string

into a struct tm structure. User-defined templates are used to parse and interpret the input string;

the templates are text files created by the user and identified via the environment variable DATEMSK.
Each line in the template file represents an acceptable date and/or time specification, using the same

descriptors as described above for strftime. The first template that matches the input specification

is used. If successful, getdate returns a pointer to a struct tm structure; if it fails, it returns NULL

and sets the external variable getdate_err to indicate the error.

The month and weekday names can contain any combination of uppercase and lowercase letters. If

only the weekday is given, today is assumed if the given day is equal to the current day, otherwise

next week is assumed. If only the month is given, the current month is assumed if the given month

is equal to the current month, otherwise next year is assumed (unless a year is given). If no hour,

minute, and second are given, the current hour, minute, and second are assumed. If no date is given,

today is assumed if the given hour is later than the current hour, and tomorrow is assumed otherwise.

Example 7-2 shows an example use of the getdate function.

Example 7-2: getdate

#include <stdio.h>

#include <time.h>

extern int getdate_err;

int

main(int argc, char **argv)

{

 struct tm *tm;

 char buf[BUFSIZ];

 for (;;) {

 /*

 * Prompt for a string.

 */

 printf("? ");

 /*

 * Read the string.

 */

 if (fgets(buf, sizeof(buf), stdin) == NULL) {

 putchar('\n');

 exit(0);

 }

UNIX Systems Programming for SVR4

168 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 /*

 * Convert it.

 */

 if ((tm = getdate(buf)) != NULL)

 printf("%s\n", asctime(tm));

 else

 printf("Error (%d).\n", getdate_err);

 }

}

% cat getdate.template

%m

%A %B %d %Y, %H:%M:%S

%A

%B

%m/%d/%y %I %p

%d,%m,%Y %H:%M

at %A the %dst of %B in %Y

run job at %I %p,%B %dnd

%A den %d. %B %Y %H.%M Uhr

% setenv DATEMSK getdate.template

% getdate

? 10/1/87 4 PM

Thu Oct 1 16:00:00 1987

? Friday

Fri Mar 25 18:13:17 1994

? Friday September 18 1987, 10:30:30

Fri Sep 18 10:30:30 1987

? 24,9,1986 10:30

Wed Sep 24 10:30:00 1986

? at monday the 1st of december in 1986

Mon Dec 1 18:13:23 1986

? run job at 3 PM, december 2nd

Fri Dec 2 15:00:00 1994

? ^D

Porting Notes

The ctime and asctime functions are common to all versions of UNIX; the other functions are
less wide-spread.

The getdate function conflicts with a public domain function of the same name that is used in

many programs. The public domain function attempts to produce a time_t given an arbitrary date
string; it performs all the magic necessary to determine what format the string is in. The purpose of

this function is to allow users to input dates and times in whatever format they're used to, without
having to predetermine what format that is. Generally speaking, the public domain function is

significantly more useful than the function provided by SVR4.

Chapter Summary

A number of systems programming applications need to be able to convert between the internal date

and time format used by UNIX and the date and time strings that are used by humans. The library

routines provided by the operating system encompass all the knowledge about complexities such as

Time of Day Operations

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 169

timezones and daylight savings time, so the programmer does not have to worry about them. We

will be making use of these functions in several of the examples in the remainder of this book.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 171

Chapter 8
Users and Groups

Each user of a UNIX system has several pieces of information associated with him, including a

login name, user-id, and one or more group-ids. The operating system uses this data to keep track

of the privileges associated with each process (what files it may open, how many resources it may

consume, etc.), who is currently logged in, when each user last logged in, and so on. In this chapter,

we will examine the information maintained by the operating system about users, and what it may

be used for.

Login Names

Each user of the system, when his or her account is created, is assigned a unique login name. The

login name consists of from one to eight characters (some systems require a minimum of two; a few

systems have been modified to allow more than eight). Usually, only lowercase letters and numbers

are allowed in login names, although some systems will also allow some special characters such as

a hyphen or underscore.

The login name is used by user-level and system-level programs to identify individuals. Most
importantly, the login name is used when logging in to identify yourself to the system. When

presented with a “login:” prompt, you enter your login name, followed by your password to gain

access. Another important use for the login name is in addressing electronic mail. At some point, all
electronic mail is identified by the login name of the person who sent it, and by the login name(s)

of the intended recipient(s). Although it has recently become popular to allow mail to be addressed

as “Firstname.Lastname@host.domain” (or something similar), this is almost universally

handled by mapping the “Firstname.Lastname” strings (e.g., “Robert M. Smith,” “Robert

Smith,” “Bob Smith”) to the login name (e.g., “bmsmith”) internally. Other uses for the login
name include identifying output on the printer, granting or removing privileges in permissions files,

and so forth.

There is one important part of the UNIX system that does not use the login name, however: the
operating system kernel. The kernel instead uses your user-id number (described in the next section)

to keep track of who you are and what you may do. The reason for this is quite simply that the

underlying hardware makes it easier to deal with numbers than character strings. Numbers may be

tested for equality, copied from memory location to memory location, and so forth with individual

UNIX Systems Programming for SVR4

172 FOR PERSONAL, NON-COMMERCIAL USE ONLY

machine instructions. Character strings (login names) on the other hand, must be handled in

subroutines. Since the kernel checks every request you make for permission to make such a request

(e.g., if this file is readable only by the owner, you cannot open it for reading unless you own it), it

is vital that these checks be as efficient as possible.

To obtain the login name of the user executing a program, all versions of UNIX provide the

getlogin function:

#include <unistd.h>

char *getlogin(void);

This function examines the /var/adm/utmp file (described later in this chapter), searching for the

entry for the terminal line the program is attached to, and returns the login name contained in that

entry. This method is prone to error: if the user has logged off, or is running the program without a

terminal (for example, with the rsh command), getlogin will return a null pointer, indicating that
it could not find the information.

The creators of System V UNIX recognized this problem, and created another routine, cuserid,
which is less prone to this problem:

#include <stdio.h>

char *cuserid(char *buf);

This function also examines the /var/adm/utmp file, just like getlogin. However, if nothing is

found, cuserid obtains the user-id number of the executing process, looks it up in the password

file (how to do this is described later in this chapter), and returns the login name that way. If buf is

a non-null pointer, the login name is copied into the array it points to. Otherwise, a pointer is returned

to a static area that is overwritten with each call. If the login name cannot be found, a null pointer is
returned.

It should be noted that neither getlogin or cuserid should be trusted by programs that must know

the name of the user executing a program. This includes any program that uses this information to
perform permissions or authorization checking. The problem with both of these functions is that

they rely on the contents of the utmp file first: whatever is written there is assumed to be correct.

Unfortunately, the utmp file is world-writable on many systems. This means that an unscrupulous

user could change his entry in the file to the name of an authorized user, and then run your program,

and you would be none the wiser. Programs that must know the true identity of the executing user

should only use the user-id number to identify that user. If they also need to know the user's login

name, this information can be obtained from the password file. The method for doing this is

described later in this chapter.

The User-Id Number

Each process executing on the system has associated with it two small integers called the real user-

id number and the effective user-id number. These numbers are used by the UNIX kernel to

Users and Groups

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 173

determine the process' access permissions, record accounting information, and so on. The real user-

id always identifies the user executing the program, and is used for accounting purposes. Only the

super-user may change his real user-id, thus becoming another user. The effective user-id is used to

determine a process' access permissions. Normally, the effective user-id is equal to the real user-id.

However, by changing its effective user-id, a process can gain the additional access permissions

associated with the new user-id. It is possible for more than one login name to be associated with
the same user-id, but as far as the operating system kernel is concerned, each user-id is unique and

identifies one and only one person. Thus, the only purpose of multiple login names with the same

user-id is to allow different people to access the same set of privileges with different passwords.

A program uses the getuid and geteuid functions to obtain its real and effective user-ids,
respectively:

#include <sys/types.h>

#include <unistd.h>

uid_t getuid(void);

uid_t geteuid(void);

Both functions simply return the associated id.

There are two ways in which a process may change its real and/or effective user-id. The first, which

changes only the effective user-id, is to execute a program that has the set-user-id permission bit set

(see Chapter 5, Files and Directories). The other way is to use the setuid and seteuid functions:

#include <sys/types.h>

#include <unistd.h>

int setuid(uid_t uid);

int seteuid(uid_t euid);

The setuid function sets the real and effective user-ids of the calling process, plus a third value

called the saved user-id (see below) to the value contained in uid. The seteuid function sets the

effective user-id only of the calling process to the value contained in euid. Upon successful

completion, both functions return 0. If an error occurs (usually the error is “permission denied”), –

1 is returned and the reason for failure is stored in the external integer errno.

The seteuid function is not available in HP-UX 10.x.

At login time, the real, effective, and saved user-ids are set to the user-id of the user responsible for

the creation of the login process. When a process executes a program however, the user-id associated

with that new process can change. If the file containing the program has the set-user-id bit set in its

permission bits, then the effective user-id and saved user-id of the process are set to the user-id of

the owner of the program file (the real user-id is not changed). With that in mind, the following four

rules govern the behavior of the setuid and seteuid functions:

1. If the effective user-id of the process calling setuid is that of the super-user, the real, effective,

and saved user-ids are set to the value of uid.

UNIX Systems Programming for SVR4

174 FOR PERSONAL, NON-COMMERCIAL USE ONLY

2. If the effective user-id of the process calling setuid is not that of the super-user, but uid is

equal to either the real user-id or the saved user-id of the calling process, the effective user-id

is set to the value of uid.

3. If the effective user-id of the process calling seteuid is that of the super-user, the effective

user-id is set to the value of euid (this allows the super-user to change only the effective user-

id).

4. If the effective user-id of the process calling seteuid is not that of the super-user, but euid is

equal to either the real user-id or the saved user-id of the calling process, the effective user-id

is set to the value of euid (setuid and seteuid behave identically for non-privileged

processes).

Thus, the saved user-id value is simply used to allow a process to alternate its effective user-id

between the value obtained by executing a set-user-id program and the value of the executing user's
real user-id.

Porting Notes

Berkeley-based versions of UNIX do not use the saved user-id idea. Instead, they provide a different

function for changing the real and effective user-ids:

int setreuid(int uid, int euid);

This function is different, in that it allows a process to exchange its real and effective user-ids.

Although this provides the same functionality as the saved user-id feature (allowing a process to

alternate between its real and effective user-ids), it is also prone to error. If a process calls setreuid
to exchange its real and effective user-ids (so that its effective user-id is now its real user-id and

vice-versa) and then executes a subprocess (for example, a shell), that process will run with its real

user-id set to the original effective user-id. This can present a serious security problem if the

programmer is not careful.

The Group-Id Number

In addition to the real, effective, and saved user-ids, the operating system also associates with each

process a real group-id number, an effective group-id number, and a saved group-id number. These

values are also used to determine a process' access permissions, although they only affect the ability

to access files (the user-id is also used to determine permissions to execute certain system calls, and

for accounting purposes). There are an analogous set of functions provided for manipulating the

group-id:

#include <sys/types.h>

#include <unistd.h>

gid_t getgid(void);

gid_t getegid(void);

Users and Groups

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 175

int setgid(gid_t gid);

int setegid(gid_t egid);

All of these functions behave exactly like their user-id counterparts, including the rules for changing

the real and effective group-id.

The setegid function is not available in HP-UX 10.x.

Group Membership

In older versions of UNIX such as Version 7 and pre-SVR4 versions of System V, a user could only

be a member of one group at a time. In order to change groups, a command called newgrp was

provided that used setgid to change the process' real and effective group-ids.

In 4.2BSD, Berkeley introduced the concept of a group set. This idea allows a user to be in all her

groups at once, and processes execute with the combined permissions of all the groups, instead of
just a single group. This is much more convenient, and has been adopted by a number of vendors.

SVR4 allows the system administrator to configure either behavior into the system; the default “out

of the box” configuration uses the group set.

There are two system calls for manipulating the group set:

#include <unistd.h>

int getgroups(int gidsetsize, gid_t *grouplist);

int setgroups(int ngroups, const gid_t *grouplist);

The getgroups function gets the current group set and stores it in the array pointed to by

grouplist, which has gidsetsize entries, and must be large enough to contain the entire list.

The list can have a maximum of NGROUPS_MAX entries; this constant is defined in the include file.

If gidsetsize is given as zero, getgroups will return the number of groups to which the calling

process belongs without modifying the grouplist array. Upon successful completion, getgroups

returns the number of groups placed into grouplist; –1 is returned if an error occurs and the reason

for failure will be stored in errno.

The setgroups function sets the group set to the list of group-ids contained in the array pointed to

by grouplist, which contains ngroups elements (ngroups may not exceed NGROUPS_MAX). This

function may only be invoked by the super-user. If setgroups succeeds, it returns 0. Otherwise, it

returns –1 and places an error code in the external integer errno.

Porting Notes

Just as they do not use the saved user-id, Berkeley-based versions of UNIX do not use the saved

group-id idea. Instead, they provide a different function for changing the real and effective group-

ids:

int setregid(int gid, int egid);

UNIX Systems Programming for SVR4

176 FOR PERSONAL, NON-COMMERCIAL USE ONLY

This function has the same semantics, and the same problems, as the setreuid function described
earlier.

The Password File

The password file, /etc/passwd, stores most of the commonly maintained information about each
user of the system such as login name, user-id number, full name, home directory, and preferred

login shell. On older versions of UNIX, this file also stored each user's encrypted password.

However, most newer versions of UNIX have taken the encrypted password out of this file, storing

it in another file called a shadow password file that is readable only by the super-user. This is

described in the following section.

Each line in the password file describes a single user, and is divided into several colon-separated

fields. The include file pwd.h describes this format for programs with the struct passwd structure,
which contains at least the following members:

struct passwd {

 char *pw_name;

 char *pw_passwd;

 uid_t pw_uid;

 gid_t pw_gid;

 char *pw_age;

 char *pw_comment;

 char *pw_gecos;

 char *pw_dir;

 char *pw_shell;

};

The meanings of the fields are:

pw_name The user's login name.

pw_passwd If the system does not use a shadow password file, this is the user's encrypted

password. If the system does use a shadow password file, this field is

meaningless.

pw_uid The user's user-id number.

pw_gid The user's login group-id number.

pw_age On many BSD-based systems, this field is an integer called pw_quota. The
field is not used for anything, and does not appear in the password file line.

(Some System V-based systems do make use of this field for password aging,

but this has been superceded in SVR4 by the aging information stored in the

shadow password file.)

pw_comment This field is also unused, and does not appear in the password file line. This

field has been around since Version 7, has never been used, and yet nobody has
ever removed it from the structure.

Users and Groups

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 177

pw_gecos This field contains the user's full name. It derives its name (pronounced “JEE-

kohs”) from its original use at Bell Laboratories to define an accounting

identifier that was used to submit remote jobs to a General Electric mainframe

computer. The operating system on the mainframe was called GECOS (General

Electric Comprehensive Operating System). (When General Electric's

computer division was bought out by Honeywell, GECOS was renamed GCOS,
but the password file field retained its original name.)

On many systems, the pw_gecos field is used to store more than just the user's

full name. This is done in a variety of ways, most of which are not defined
outside of the local environment in which they are used. One method which is

in widespread use however, is that used by most versions of BSD UNIX

(although many vendors' BSD-based systems do not support it). On BSD

systems, the pw_gecos field is further subdivided into four comma-separated
fields. The first field is the user's full name, the second is the user's office

telephone number, the third is the user's office room number, and the last is the

user's home telephone number. Any of the fields may be left blank, but commas

must appear between fields. Trailing commas may be dropped.

pw_dir The absolute path name to the user's home directory.

pw_shell The absolute path name to the user's login shell, the program that will be started

when he logs in. If this field is left blank, the Bourne shell (/bin/sh) is assumed.

The following functions are provided for reading the password file:

#include <pwd.h>

struct passwd *getpwnam(const char *name);

struct passwd *getpwuid(uid_t uid);

struct passwd *getpwent(void);

void setpwent(void);

void endpwent(void);

The getpwnam function searches the password file for a line whose login name field is equal to

name, and returns a pointer to a structure of type struct passwd containing the broken-out fields

of the entry. The getpwuid function searches for a line whose user-id field is equal to uid. The

getpwent function is used for reading the password file sequentially; each successive call returns
the next entry in the file. All three functions return pointers to static data that is overwritten on each

call; if the calling program needs to retain the data across successive calls, it must copy it to other
storage. If an entry cannot be found, or if the end of the file is reached, the routines return the

constant NULL.

UNIX Systems Programming for SVR4

178 FOR PERSONAL, NON-COMMERCIAL USE ONLY

The setpwent function opens the password file if it is not already open, and resets the read/write

offset to the beginning of the file. All three of the functions described above call setpwent

internally. The endpwent function closes the password file.

System V-based versions of UNIX, including SVR4, provide another function, fgetpwent:

#include <stdio.h>

#include <pwd.h>

struct passwd *fgetpwent(FILE *fp);

This function reads a line from the file referenced by fp instead of the system password file, and

returns a pointer to a structure of type struct passwd containing the broken-out fields. It returns

the constant NULL when the end of the file is encountered.

BSD-based systems, on the other hand, provide a somewhat more useful method for reading

alternate password files:

#include <pwd.h>

void setpwfile(const char *filename);

This changes the routines' notion of the name of the password file to the file name contained in

filename. This has an advantage over the System V method, since it allows the program to

continue to make use of the getpwnam and getpwuid functions.

Example 8-1, shown later in this chapter, demonstrates the use of these functions.

The Shadow Password File

As mentioned previously, each user's encrypted password used to be stored in the password file,

/etc/passwd. However, in recent years it has been recognized that this can be a security problem.

Because the password file must be readable by everyone (programs such as ls and finger make use

of it), it is possible for an unscrupulous user to write a program that attempts to guess each user's

password by trying all possible combinations. Because the encrypted password is there in the file
for all to see, the bad guy's program can simply encrypt each guess until it finds a matching string.

The solution to this problem is to recognize that the encrypted password is only needed by programs

run with super-user permissions for the purposes of performing user authentication. The encrypted

password string can be taken out of the password file, and stored in another file that is readable only

by the super-user. This file is usually called a shadow password file. Most newer UNIX systems

offer shadow password files, and a public domain set of functions is available for those systems that

do not. Because the format of the shadow password file varies from vendor to vendor, it is

impossible to describe them all. The discussion in this section describes the format and functions

provided by SVR4.

In SVR4, as in some other vendor's versions, the shadow password file also stores information for

implementing password aging. The idea is to force each user to change his or her password

Users and Groups

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 179

periodically (say, every three months) so that even if an attacker gains access to the shadow

password file, the knowledge will not be useful forever. Password aging has its pros and cons, and

it is not our purpose to debate them here. Suffice it to say that, at least in SVR4, the use of password

aging is optional.

Like the password file, the shadow password file, /etc/shadow, contains lines of colon-separated

fields, one line per user. The include file shadow.h describes these fields for programs with the

struct spwd structure, which contains at least the following members:

struct spwd {

 char *sp_namp;

 char *sp_pwdp;

 long sp_lstchg;

 long sp_min;

 long sp_max;

 long sp_warn;

 long sp_inact;

 long sp_expire;

 unsigned long sp_flag;

};

The meanings of the fields are:

sp_namp The user's login name.

sp_pwdp A 13-character encrypted password for the user, a lock string (“*LK*”)
indicating that the login is not accessible, or the empty string, indicating that

the login may be accessed without providing a password.

sp_lstchg The number of days between January 1, 1970 and the date that the password

was last changed. This field is part of the password aging implementation, and

may be blank if password aging is not in use.

sp_min The minimum number of days required between password changes. This is
provided to prevent a user from defeating the password aging system by

changing her password to something new (the passwd program will not allow

“changing” your password to the current password) and then immediately

changing it back.

sp_max The maximum number of days that the current password is valid.

sp_warn The number of days before the current password expires that the user is warned

of its expiration. This is an important part of password aging, because people

typically cannot think up a good password without prior notice. Some password

aging systems that do not warn users ahead of time that they will need to change

their passwords have been plagued with easily-guessed passwords.

sp_inact The number of days of inactivity allowed for this user. The idea here is to

disable (lock) accounts that have been inactive for more than this number of
days, so that an attacker cannot make use of the account (which nobody would

notice, since the owner is not using it).

UNIX Systems Programming for SVR4

180 FOR PERSONAL, NON-COMMERCIAL USE ONLY

sp_expire An absolute date (in UNIX time format) after which the login may no longer be

used.

sp_flag This field is not currently used.

The functions used to read the shadow password file are similar to those used for reading the regular

password file, described above:

#include <shadow.h>

struct spwd *getspnam(const char *name);

struct spwd *fgetspent(FILE *fp);

struct spwd *getspent(void);

void setspent(void);

void endspent(void);

The getspnam function searches the shadow password file for an entry with a login name field that

matches name. The getspent function returns the next shadow password file entry on each call;

fgetspent can be used to read an alternate shadow password file. All three of these functions

return a pointer to a struct spwd structure with the fields of the entry broken out, or the constant

NULL if the entry cannot be found or the end of the file is encountered.

The fgetspent function is not available in HP-UX 10.x.

The setspent and endspent functions are used to open and rewind the shadow password file, or
close the shadow password file, respectively.

Because the shadow password file is readable only by the super-user, all of these functions will fail

if the calling program is not running with super-user permissions.

On other systems, the shadow password file is handled in different ways. One popular method is for

the getpwent function and its counterparts to check the effective user-id of the calling program—

if it is the super-user, the pw_passwd field in the struct passwd structure is filled in from the
shadow file; otherwise it is left empty.

The Group File

The group file, /etc/group, contains one entry for each group on the system. Each entry is contained

on a single line, and consists of several colon-separated fields. The last field is a comma-separated

list of login names; these users are members of the group. The format of an entry is described for

programs by the include file grp.h:

struct group {

 char *gr_name;

 char *gr_passwd;

 gid_t gr_gid;

Users and Groups

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 181

 char **gr_mem;

};

The meanings of the fields are:

gr_name The name of the group.

gr_passwd This field is usually blank. If it is not blank, it contains a 13-character encrypted

password (just like the password file). When the newgrp command is executed,

if a password is present, the user must enter that password to gain access to the

new group. With the advent of group membership lists, in which a user is in all

of his groups at once, this field has become mostly obsolete.

gr_gid The group-id number of the group.

gr_mem An array of pointers to character strings; each string contains the login name of

one of the members of the group. The list is terminated by a null pointer.

If you've been reading the previous sections, the functions for reading the group file should look

very familiar:

#include <grp.h>

struct group *getgrnam(const char *name);

struct group *getgrgid(gid_t gid);

struct group *fgetgrent(FILE *fp);

struct group *getgrent(void);

void setgrent(void);

void endgrent(void);

The getgrnam function searches the group file for an entry with the group name contained in name.

The getgrgid function searches for an entry with the group-id number equal to gid. To read the

group file one entry at a time, getgrent is used; fgetgrent allows an alternate file to be read. All

of these functions return a pointer to a structure of type struct group, or the constant NULL if an
entry cannot be found or end-of-file is encountered.

The setgrent function opens the group file and sets the read/write offset to the beginning of the

file, while endgrent closes the file.

In order to initialize a user's group membership list, the initgroups function is provided:

#include <sys/types.h>

#include <grp.h>

int initgroups(const char *name, gid_t basegid);

UNIX Systems Programming for SVR4

182 FOR PERSONAL, NON-COMMERCIAL USE ONLY

NOTE

The initgroups function prototype is declared in unistd.h on HP-UX 10.x systems.

The name parameter contains a login name, and basegid contains the login's primary group-id

number from the password file. The initgroups function reads the group file, and for each group

that lists name in its membership list, adds that group-id number to an array of group-id numbers. It

then calls setgroups to initialize the group membership list. If the function is successful, 0 is

returned. Otherwise, –1 is returned and the external integer errno is set to indicate the error.

Example 8-1 shows a modified version of the listfiles program from Chapter 5. This program, you'll

recall, reads each directory named on its command line and displays a line for each file in the

directory, much like the ls -l command. In the original program, we printed out the numeric user-id

and group-id for each file; in Example 8-1, we have modified the program to print out the login

name and group name.

Example 8-1: newlistfiles

#include <sys/types.h>

#include <sys/stat.h>

#include <sys/mkdev.h>

#include <dirent.h>

#include <stdio.h>

#include <pwd.h>

#include <grp.h>

char typeOfFile(mode_t);

char *permOfFile(mode_t);

void outputStatInfo(char *, char *, struct stat *);

int

main(int argc, char **argv)

{

 DIR *dp;

 char *dirname;

 struct stat st;

 struct dirent *d;

 char filename[BUFSIZ+1];

 /*

 * For each directory on the command line...

 */

 while (--argc) {

 dirname = *++argv;

 /*

 * Open the directory.

 */

 if ((dp = opendir(dirname)) == NULL) {

 perror(dirname);

 continue;

 }

 printf("%s:\n", dirname);

Users and Groups

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 183

 /*

 * For each file in the directory...

 */

 while ((d = readdir(dp)) != NULL) {

 /*

 * Create the full file name.

 */

 sprintf(filename, "%s/%s", dirname, d->d_name);

 /*

 * Find out about it.

 */

 if (lstat(filename, &st) < 0) {

 perror(filename);

 putchar('\n');

 continue;

 }

 /*

 * Print out the information.

 */

 outputStatInfo(filename, d->d_name, &st);

 putchar('\n');

 }

 putchar('\n');

 closedir(dp);

 }

 exit(0);

}

/*

 * outputStatInfo - print out the contents of the stat structure.

 */

void

outputStatInfo(char *pathname, char *filename, struct stat *st)

{

 int n;

 struct group *gr;

 struct passwd *pw;

 char login[16], group[16], slink[BUFSIZ+1];

 /*

 * Print the number of file system blocks, permission bits,

 * and number of links.

 */

 printf("%5d ", st->st_blocks);

 printf("%c%s ", typeOfFile(st->st_mode), permOfFile(st->st_mode));

 printf("%3d ", st->st_nlink);

 /*

 * Look up the owner's login name. Use the user-id if we

 * can't find it.

 */

 if ((pw = getpwuid(st->st_uid)) != NULL)

 strcpy(login, pw->pw_name);

UNIX Systems Programming for SVR4

184 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 else

 sprintf(login, "%d", st->st_uid);

 /*

 * Look up the group's name. Use the group-id if we

 * can't find it.

 */

 if ((gr = getgrgid(st->st_gid)) != NULL)

 strcpy(group, gr->gr_name);

 else

 sprintf(group, "%d", st->st_gid);

 /*

 * Print the owner and group.

 */

 printf("%-8s %-8s ", login, group);

 /*

 * If the file is not a device, print its size; otherwise

 * print its major and minor device numbers.

 */

 if (((st->st_mode & S_IFMT) != S_IFCHR) &&

 ((st->st_mode & S_IFMT) != S_IFBLK))

 printf("%9d ", st->st_size);

 else

 printf("%4d,%4d ", major(st->st_rdev), minor(st->st_rdev));

 /*

 * Print the access time. The ctime() function is

 * described in Chapter 7, "Time and Timers".

 */

 printf("%.12s ", ctime(&st->st_mtime) + 4);

 /*

 * Print the file name. If it's a symblic link, also print

 * what it points to.

 */

 printf("%s", filename);

 if ((st->st_mode & S_IFMT) == S_IFLNK) {

 if ((n = readlink(pathname, slink, sizeof(slink))) < 0)

 printf(" -> ???");

 else

 printf(" -> %.*s", n, slink);

 }

}

/*

 * typeOfFile - return the english description of the file type.

 */

char

typeOfFile(mode_t mode)

{

 switch (mode & S_IFMT) {

 case S_IFREG:

 return('-');

 case S_IFDIR:

 return('d');

Users and Groups

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 185

 case S_IFCHR:

 return('c');

 case S_IFBLK:

 return('b');

 case S_IFLNK:

 return('l');

 case S_IFIFO:

 return('p');

 case S_IFSOCK:

 return('s');

 }

 return('?');

}

/*

 * permOfFile - return the file permissions in an "ls"-like string.

 */

char *

permOfFile(mode_t mode)

{

 int i;

 char *p;

 static char perms[10];

 p = perms;

 strcpy(perms, "---------");

 /*

 * The permission bits are three sets of three

 * bits: user read/write/exec, group read/write/exec,

 * other read/write/exec. We deal with each set

 * of three bits in one pass through the loop.

 */

 for (i=0; i < 3; i++) {

 if (mode & (S_IREAD >> i*3))

 *p = 'r';

 p++;

 if (mode & (S_IWRITE >> i*3))

 *p = 'w';

 p++;

 if (mode & (S_IEXEC >> i*3))

 *p = 'x';

 p++;

 }

 /*

 * Put special codes in for set-user-id, set-group-id,

 * and the sticky bit. (This part is incomplete; "ls"

 * uses some other letters as well for cases such as

 * set-user-id bit without execute bit, and so forth.)

 */

 if ((mode & S_ISUID) != 0)

 perms[2] = 's';

 if ((mode & S_ISGID) != 0)

UNIX Systems Programming for SVR4

186 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 perms[5] = 's';

 if ((mode & S_ISVTX) != 0)

 perms[8] = 't';

 return(perms);

}

% newlistfiles /home/msw/a

/home/msw/a:

 2 drwxr-sr-x 7 root other 512 Dec 21 22:20 .

 2 drwxr-xr-x 3 root root 512 Dec 21 20:45 ..

 16 drwx------ 2 root root 8192 Apr 19 16:04 lost+found

 2 drwxr-sr-x 12 davy other 1024 May 29 10:19 davy

 2 drwxr-sr-x 2 sean other 512 Apr 19 17:57 sean

 2 drwxr-sr-x 3 trevor other 512 Jan 12 19:59 trevor

 2 drwxr-sr-x 6 cathy other 512 Mar 19 11:33 cathy

Note that the method used in the example is awfully ineffecient. In a directory with a hundred files

in it, all owned by the same user, the getpwnam function is called 100 times. A similar problem
exists with group names. A more efficient method would be to store the information returned from

these functions each time they are called, and to search the stored information first, calling the

functions only when a user-id or group-id is encountered for the first time.

The Utmp and Wtmp Files

The files /var/adm/utmp (/etc/utmp on older systems) and /var/adm/wtmp (/usr/adm/wtmp or

/etc/wtmp on older systems) record user and accounting information for commands such as who,

finger, and login. The format of these files is substantially different between System V-based

systems and all other versions of UNIX; the System V format is described here, and the more

“traditional” format is described in the porting notes.

The utmp file contains records that describe the current state of the system. This includes one record

for each logged in user, and some additional records that will be described later. The login command

writes a record to the utmp file each time a user logs in; the record is removed when the user logs

out. The wtmp file contains historical data in the same format. Each time a user logs in a record is

written to the file. Each time a user logs out, the same record is written to the file again, except that

the login name field (ut_user or ut_name) is empty, and the ut_time field contains the logout

time instead of the login time. Programs such as last can read this file, match up the entries with

login names and those without, and produce a summary of when each user logged in and out.

In System V versions of UNIX, the utmp file also records the execution of certain system processes
such as a change in the system's run level or the programs that allow users to log in. This information

is not transferred to the wtmp file. Two additional files, /var/adm/utmpx and /var/adm/wtmpx, are

used to record additional information. These files have a slightly larger record than their

counterparts; the primary difference is that the “x” files also contain the name of the remote host for

users who log in via the network. (It probably would have made more sense to just add this

information to the utmp and wtmp files, but this would have broken older programs that read these

files.)

Users and Groups

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 187

The record format for the utmp and wtmp files is described in the include file utmp.h:

struct utmp {

 char ut_user[8];

 char ut_id[4];

 char ut_line[12];

 short ut_pid;

 short ut_type;

 struct exit_status ut_exit;

 time_t ut_time;

};

struct exit_status {

 short e_termination;

 short e_exit;

};

The fields of the structure have the following meanings:

ut_user The user's login name. Note that this field is not always null-terminated; an eight-

character login name has no room in the string for a terminating null byte.

ut_id The id field from /etc/inittab for a process spawned by the init program.

ut_line The name of the device on which the user is logged in; this string can be

concatenated with “/dev/” to obtain the path name for the device.

ut_pid The process-id of the described process.

ut_type An indication of the type of data contained in this record. Legal values for this field

are:

EMPTY The record is empty.

RUN_LVL This record indicates a change in the system run-level. The

new level can be determined from the ut_id field.

BOOT_TIME A system boot. The time is recorded in the ut_time field.

OLD_TIME A change in the system time with the date command. This

record stores the time prior to the change.

NEW_TIME A change in the system time with the date command. The

record stores the time after the change.

INIT_PROCESS A process spawned by init. The process' name is stored in

ut_name, its process-id number is stored in ut_pid.

LOGIN_PROCESS A process waiting for a user to log in; there is usually one

of these for each terminal connected to the system.

USER_PROCESS A user login session.

UNIX Systems Programming for SVR4

188 FOR PERSONAL, NON-COMMERCIAL USE ONLY

DEAD_PROCESS A process that has exited. The exit status and return code

are stored in ut_exit.

ACCOUNTING An acocunting record (not implemented).

ut_exit The termination and exit status of a process recorded in a DEAD_PROCESS record.

ut_time The time at which this record was last modified.

The record format for the utmpx file is described in the utmpx.h include file:

struct utmpx {

 char ut_user[32];

 char ut_id[4];

 char ut_line[32];

 pid_t ut_pid;

 short ut_type;

 struct exit_status ut_exit;

 struct timeval ut_tv;

 long ut_session;

 long pad[5];

 short ut_syslen;

 char ut_host[257];

};

All of the common fields have the same meaning as those in the struct utmp structure. The new
fields are:

ut_tv The time this record was last modified (this is the same as ut_time, except a
different format).

ut_session The session-id number (see Chapter 11, Processes).

pad Reserved for future use.

ut_syslen The significant length, including the terminating null byte, of the ut_host
field.

ut_host The name of the remote host, if a user is logged in via the network (e.g., with

rlogin or telnet).

There are two essentially identical sets of functions provided for manipulating the utmp and utmpx

files:

#include <utmp.h>

struct utmp *getutent(void);

struct utmp *getutid(const struct utmp *id);

struct utmp *getutline(const struct utmp *line);

struct utmp *pututline(const struct utmp *utmp);

void setutent(void);

Users and Groups

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 189

void endutent(void);

int utmpname(const char *filename);

#include <utmpx.h>

struct utmpx *getutxent(void);

struct utmpx *getutxid(const struct utmpx *id);

struct utmpx *getutxline(const struct utmpx *line);

struct utmpx *pututxline(const struct utmpx *utmpx);

void setutxent(void);

void endutxent(void);

int utmpxname(const char *filename);

The getutent and getutxent functions read the next entry from a utmp-like or utmpx-like file.

The getutid and getutxid functions search forward from the current location in the file for an

entry whose ut_type field matches id->ut_type if the type is RUN_LVL, BOOT_TIME,

OLD_TIME, or NEW_TIME. If the type is one of INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS,

or DEAD_PROCESS, then they search for an entry whose type is one of those four and whose ut_id

field matches id->ut_id. The functions return the first entry found. The getutline and

getutxline functions search forward from the current location in the file for an entry of type

LOGIN_PROCESS or USER_PROCESS whose ut_line field matches line->ut_line and return

the first entry found. All of these functions return the constant NULL if no entry is found or end-of-

file is encountered.

The pututline and pututxline functions write out the supplied entry to the file. They first use

getutid or getutxid to find the correct location in the file; if no slot for the entry exists, it is
added to the end of the file.

The setutent and setutxent functions open the file and reset the read/write offset to the

beginning of the file. The endutent and endutxent functions close the file. The utmpname and

utmpxname functions allow the name of the file to be changed.

There are also functions provided for converting between the two record types:

#include <utmpx.h>

void getutmp(struct utmpx *utmpx, struct utmp *utmp);

void getutmpx(struct utmp *utmp, struct utmpx *utmpx);

void updwtmp(char *wfile, struct utmp *utmp);

void updwtmpx(char *wfilex, struct utmpx *utmpx);

UNIX Systems Programming for SVR4

190 FOR PERSONAL, NON-COMMERCIAL USE ONLY

The getutmp function copies the fields of the utmpx structure to the corresponding utmp structure.

The getutmpx function does the reverse. The updwtmp and updwtmpx functions check the
existence of the named file and its parallel file (named by adding or removing an “x”) in the file

name. If only one of them exists, the other file is created and the contents of the existing file are

copied to it. Then the utmp or utmpx structure is written to the file, and the corresponding structure

written to the parallel file.

Because the utmpx functions update the utmp file too, it is generally better to use them over their

utmp counterparts.

Example 8-2 shows a program that reads the utmpx file and prints a list of currently logged in users.

For each user, the getpwnam function is used to obtain the user's real name. This program could
just as easily use the utmp file, but then the remote host could not be printed.

Example 8-2: whom

#include <sys/types.h>

#include <sys/time.h>

#include <utmpx.h>

#include <pwd.h>

int

main(void)

{

 char name[64];

 struct passwd *pwd;

 struct utmpx *utmpx;

 printf("Login Name Line Time Host\n");

 printf("--\n");

 /*

 * Read each entry from the file.

 */

 while ((utmpx = getutxent()) != NULL) {

 /*

 * Skip records that aren't logins.

 */

 if (utmpx->ut_type != USER_PROCESS)

 continue;

 /*

 * Get the real name.

 */

 if ((pwd = getpwnam(utmpx->ut_user)) != NULL)

 strcpy(name, pwd->pw_gecos);

 else

 strcpy(name, "?");

 /*

 * Print stuff out.

 */

 printf("%-8s %-16.16s %-8.8s %.12s", utmpx->ut_user, name,

 utmpx->ut_line, ctime(&utmpx->ut_tv.tv_sec)+4);

Users and Groups

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 191

 if (utmpx->ut_syslen > 0)

 printf(" %s", utmpx->ut_host);

 putchar('\n');

 }

 exit(0);

}

% whom

Login Name Line Time Host

--

davy David A. Curry console May 29 10:19

davy David A. Curry pts/1 May 29 10:19

davy David A. Curry pts/0 May 29 10:19

cathy Cathy L. Curry pts/2 May 29 15:30 big.school.edu

This example only shows the use of USER_PROCESS records. To see what the other types of records
contain, the easiest thing to do is execute the who -a command.

NOTE

The utmpx functions are not provided in HP-UX 10.x, nor are the utmpx and wtmpx files.

Instead, HP-UX 10.x provides an unsigned long ut_addr field in the struct utmp
structure; this field contains the IP address of the remote host that a user has logged in

from.

Example 8-3 shows a modified version of the whom program from the previous example; this one

has been rewritten for HP-UX 10.x to use the utmp file and functions.

Example 8-3: whom

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/time.h>

#include <netdb.h>

#include <utmp.h>

#include <pwd.h>

int

main(void)

{

 char name[64];

 struct utmp *utmp;

 struct passwd *pwd;

 struct hostent *hp;

 printf("Login Name Line Time Host\n");

 printf("--\n");

 /*

 * Read each entry from the file.

UNIX Systems Programming for SVR4

192 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 */

 while ((utmp = getutent()) != NULL) {

 /*

 * Skip records that aren't logins.

 */

 if (utmp->ut_type != USER_PROCESS)

 continue;

 /*

 * Get the real name.

 */

 if ((pwd = getpwnam(utmp->ut_user)) != NULL)

 strcpy(name, pwd->pw_gecos);

 else

 strcpy(name, "?");

 /*

 * Print stuff out.

 */

 printf("%-8s %-16.16s %-8.8s %.12s", utmp->ut_user, name,

 utmp->ut_line,

 ctime(&utmp->ut_time)+4);

 /*

 * If there's a remote host, get its name and print it. The

 * gethostbyaddr() function is described in Chapter 14,

 * Networking With Sockets.

 */

 if (utmp->ut_addr != 0) {

 hp = gethostbyaddr((char *) &utmp->ut_addr, sizeof(long),

 AF_INET);

 if (hp != NULL)

 printf(" %s", hp->h_name);

 }

 putchar('\n');

 }

 exit(0);

}

Porting Notes

As mentioned earlier, non-System V versions of UNIX do not use the rather elaborate utmp file

described above. Instead, they use a simple record format, described in the include file utmp.h:

struct utmp {

 char ut_line[8];

 char ut_name[8];

 char ut_host[16];

 long ut_time;

};

The fields are:

Users and Groups

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 193

ut_line The name of the device the user is logged in on, with the leading “/dev/” stripped

off.

ut_name The user's login name. If this field is empty, the port is not in use.

ut_host The name of the remote host, if the user is logged in via the network. This field does

not exist in all versions.

ut_time The time the user logged in.

There are no fancy functions provided for reading the utmp and wtmp files; instead, since each record

is of fixed size, they can just be read with read or fread.

In order to insert a record into the utmp file, the ttyslot function is used:

#include <stdlib.h>

int ttyslot(void);

This function returns the index of the current user's entry in the utmp file. This is done by scanning

the files in /dev for the device associated with the standard input, standard output, or standard error

output, and then returning the index of the struct utmp that contains that device's name in its

ut_line field. –1 is returned if an error is encountered.

The Lastlog File

On Solaris 2.x systems, the /var/adm/lastlog file is used to record the last login time of each user.

This file is maintained by the login command. (Note that users who log in by using rsh to start a
window system terminal emulator such as xterm do not pass through the login command, and hence

do not appear in this file.) The file is indexed by user-id number, and contains one structure for each

user.

On IRIX 5.x systems, there is an individual file for each user called /var/adm/lastlog/username

which contains a single structure for that user.

This functionality is not provided in HP-UX 10.x.

The struct lastlog structure is defined in the include file lastlog.h:

struct lastlog {

 time_t ll_time;

 char ll_line[8];

 char ll_host[16];

};

The fields are:

ll_time The time the user last logged in.

ll_line The name of the terminal device the user last logged in on.

UNIX Systems Programming for SVR4

194 FOR PERSONAL, NON-COMMERCIAL USE ONLY

ll_host The name of the host the user logged in from, if she logged in via the network. This

field is 257 bytes long in IRIX 5.x.

Example 8-4 shows a program that prints the last login time for each user named on its command

line. This version is for Solaris 2.x.

Example 8-4: lastlog

#include <sys/types.h>

#include <sys/time.h>

#include <lastlog.h>

#include <stdio.h>

#include <pwd.h>

int

main(int argc, char **argv)

{

 FILE *fp;

 struct lastlog ll;

 struct passwd *pwd;

 /*

 * Open the lastlog file.

 */

 if ((fp = fopen("/var/adm/lastlog", "r")) == NULL) {

 perror("/var/adm/lastlog");

 exit(1);

 }

 /*

 * For each user named on the command line...

 */

 while (--argc) {

 /*

 * Look up the user's user-id number.

 */

 if ((pwd = getpwnam(*++argv)) == NULL) {

 fprintf(stderr, "unknown user: %s\n", *argv);

 continue;

 }

 /*

 * Read the right structure.

 */

 fseek(fp, pwd->pw_uid * sizeof(struct lastlog), 0);

 fread(&ll, sizeof(struct lastlog), 1, fp);

 /*

 * Print it out.

 */

 printf("%-8.8s %-8.8s %-16.16s %s", *argv, ll.ll_line, ll.ll_host,

 ctime(&ll.ll_time));

 }

 fclose(fp);

 exit(0);

Users and Groups

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 195

}

% lastlog davy root cathy

davy pts/3 Sun May 29 15:28:18 1994

root console Sun May 22 17:11:38 1994

cathy pts/2 big.school.edu Thu May 5 12:16:32 1994

Example 8-5 shows the same program as it would be written on an IRIX 5.x system.

Example 8-5: lastlog

#include <sys/types.h>

#include <sys/time.h>

#include <lastlog.h>

#include <stdio.h>

int

main(int argc, char **argv)

{

 FILE *fp;

 struct lastlog ll;

 char lastlogfile[1024];

 /*

 * For each user named on the command line...

 */

 while (--argc) {

 /*

 * Open the lastlog file.

 */

 sprintf(lastlogfile, "/var/adm/lastlog/%s", *++argv);

 if ((fp = fopen(lastlogfile, "r")) == NULL) {

 perror(lastlogfile);

 continue;

 }

 /*

 * Read the structure.

 */

 fread(&ll, sizeof(struct lastlog), 1, fp);

 /*

 * Print it out.

 */

 printf("%-8.8s %-8.8s %-16.16s %s", *argv, ll.ll_line, ll.ll_host,

 ctime(&ll.ll_time));

 fclose(fp);

 }

 exit(0);

}

% lastlog davy root cathy

UNIX Systems Programming for SVR4

196 FOR PERSONAL, NON-COMMERCIAL USE ONLY

davy pts/3 Sun May 29 15:28:18 1994

root console Sun May 22 17:11:38 1994

cathy pts/2 big.school.edu Thu May 5 12:16:32 1994

The Shells File

The /etc/shells file exists so that a system administrator can list the valid shells on his system. This

allows commands such as ftp to refuse access to users whose shells are not listed here. On systems

that support the chsh command for changing a user's login shell, this file gives the legal values they

may choose from.

The /etc/shells file is simply a list, one per line, of the path names of the legal shells. However, if it

is not present, then the legal values are the normal system shells, usually /bin/sh, /bin/csh, /bin/ksh,

and sometimes /bin/rsh. In order to allow programs to deal with this in a portable fashion, three

functions are provided:

char *getusershell(void);

void setusershell(void);

void endusershell(void);

The getusershell function returns a pointer to a character string containing the next shell listed
in the file. If the file does not exist, it returns the next shell listed in the list of standard shells. The

setusershell and endusershell functions open and rewind, and close the file, respectively.

These functions are not available in IRIX 5.x.

Writing Set-User-Id and Set-Group-Id Programs

Set-user-id and set-group-id programs are extraordinarily useful tools (in fact, the set-user-id bit is
the only part of the original UNIX operating system that was patented). They can make your system

more secure by granting unprivileged users the ability to perform certain privileged tasks without

“giving away the store” and letting everyone have the root password.

Before undertaking the writing of a set-user-id or set-group-id program however, it is important to

realize that there are several ways in which an unscrupulous user can attempt to trick these programs

into granting him privileges that he should not have. This includes fooling the program into reading

or writing files that the attacker does not have access to (e.g., the password file), getting the program

to start an interactive shell with the wrong real or effective user-id, tricking the program into

changing the permission bits on a file other than the one it thinks it's changing, making the program

execute a command different from the one it thinks it's executing, and so forth.

The simplest rule to follow in writing set-user-id and set-group-id programs is, “if there's another
way, don't.” These programs should not be used indiscriminately. If there is a secure method in

which you can accomplish what you want without using a set-user-id or set-group-id program, use

Users and Groups

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 197

that method instead. Don't create a set-user-id or set-group-id program just to save yourself the

trouble of doing things right the first time.

And while we're speaking of doing things right, if you do decide to write a set-user-id program,

always begin the program as follows:

int euid;

int

main(int argc, char **argv)

{

 /* variable declarations */

 euid = geteuid();

 seteuid(getuid());

.

.

.

This code causes the program to save its special privileges, but revert back to the calling user's

“normal” privileges at once. In this way, if the program should encounter an error, it can only cause

the damage that the user's privileges allow it to, it cannot cause extra damage because of its extra

privileges. Then, when the program needs to do a privileged operation, the code for that can be
bracketed as follows:

/* non-privileged code */

seteuid(euid);

/* privileged code */

seteuid(getuid());

/* non-privileged code */

In this way, the program only uses its special privileges when it absolutely has to, and the amount

of code that has to be carefully examined for defects is much smaller. The same idea applies for set-

group-id programs.

If you've read all the above and still think you need to write a program, follow the list of rules below.

This list has been adapted and expanded from a paper by Matt Bishop entitled, How to Write a

Setuid Program, which appeared in the January/February 1987 issue of ;login:, the newsletter of the

USENIX Association. Some of these rules describe topics discussed later in the book; if you don't

understand them now, don't worry. But be sure to come back and read this list if you ever should
need to write a set-user-id or set-group-id program.

1. The overall rule, upon which all the rest of these rules is based is, even paranoids have enemies.

You cannot be too paranoid when writing these programs; one slip-up and the security of your

system will be defeated. Don't trust anyone or anything, not even the operating system. Don't

ever think, “this can't happen.” Sooner or later it will, and your program had better be prepared

for it.

UNIX Systems Programming for SVR4

198 FOR PERSONAL, NON-COMMERCIAL USE ONLY

2. Never, ever, write set-user-id or set-group-id interpreted scripts. Some versions of UNIX allow

command scripts, such as shell scripts, to be made set-user-id or set-group-id. Unfortunately,

the power and complexity of the interpreters makes them easy to trick into performing functions

that were not intended. This rule applies to Bourne shell scripts, C shell scripts, Korn shell

scripts, Perl scripts, Awk scripts, Tcl scripts, and indeed any other script that is processed by a

command interpreter.

3. Be as restrictive as possible in choosing the user-id and group-id. Don't give a program more

privilege than it needs. For example, if a game program is made set-user-id root so that it can

write its score file, and an attacker can figure out how to get the game to start a subshell (as

many can), the set-user-id bit will give the attacker a super-user shell. On the other hand, if the

game programs were all made set-user-id to the “games” account, then the attacker would be

able to do much less with his set-user-id subshell (he could change the game's high score, but

not much else).

4. Reset the effective user-id and group-id before calling exec. This seems obvious, but is often
overlooked. When it is, a user may find herself running a program with unexpected privileges.

This is often a problem with programs that use the setreuid or setregid functions. It is

important to remember that even if you don't call exec directly, some library routines such as

popen and system call it for you. Whenever calling any function whose purpose is to execute
another command as though that command were typed at the keyboard, the effective user-id

and group-id should be reset as follows, unless there is a compelling reason not to:

setuid(getuid());

setgid(getgid());

5. Close all unnecessary files before calling exec. If your set-user-id or set-group-id program uses
its privileges to open a file that would otherwise be inaccessible to the user, and then executes

another process (such as a shell) without closing that file, the new process will also be able to

read and/or write that file, because files stay open by default across calls to exec. The easiest
way to prevent this is to set the file's close-on-exec flag, as described in Chapter 6, Special-

Purpose File Operations, immediately after opening the file.

6. Check ownership and access permissions on file descriptors, not file names. A favorite

technique of attackers is to execute a set-user-id or set-group-id program that accesses one of

their own files (programs that copy users' files into trusted areas such as spool directories are a

prime example). The program uses stat or access to check the ownership or permissions on

the file, and then opens the file and processes it. This creates a window between the time the

program has checked things and the time it opens the file. The attacker can stop the program,
replace the real file with a symbolic link to some other file, and then continue the program. The

program, already satisfied that it has made its checks, continues on as if nothing is wrong. To

avoid this, always open the file first. Then use fstat on the file descriptor to check ownership
and permissions. This technique insures that even if the attacker is trying to fool you with a

symbolic link, you will be checking the information about the file you will actually be using,

and not the file he substituted.

Users and Groups

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 199

7. Catch or ignore all signals. As mentioned in the previous rule, an attacker can use some signals

(stop and continue, in that case) to confuse your program. She can let your program check that

everything is “right” before doing something, stop the program, change things around so they

are no longer “right,” and then let the program continue. Set-user-id and set-group-id programs

should catch or ignore all signals possible. At the very minimum, the following signals should

be caught or ignored: SIGHUP, SIGINT, SIGQUIT, SIGILL, SIGTRAP, SIGABRT (SIGIOT),

SIGEMT, SIGFPE, SIGBUS, SIGSEGV, SIGSYS, SIGPIPE, SIGALRM, SIGTERM, SIGUSR1,

SIGUSR2, SIGPOLL, SIGTSTP, SIGTTIN, SIGTTOU, SIGVTALRM, SIGPROF, SIGXCPU,

SIGXFSZ.

8. Never trust your inherited environment. Do not rely on the value of a users' environment

variables, such as PATH, USER, LOGNAME, etc. When executing programs, always specify an
absolute path name to the program to be executed. If you rely on the user's search path, he can

use this to trick you into executing something you don't expect. When checking identity, use

only the real user-id and the password file. If you rely on the environment variables or the

results of getlogin or cuserid, the user can lie to you. Always set your umask explicitly. If

you don't, the user can trick you into creating world-writable files. (Don't create the file and

then rely on using chmod to fix its mode; the user can stop your program and change the files
contents before you get to complete both steps.)

9. Never pass on your inherited environment. This relates to the item above, but is more insidious.

Especially with shared libraries, it is possible for an attacker to put things in the environment

that do not affect your program, but do affect programs executed by your program. Always

provide programs you execute from a set-user-id or set-group-id program with a “clean”

environment. If you must copy values from the inherited environment into the new one, check

their contents for validity before passing them on.

10. Never trust your input. Never rely on the fact that your program's input is in the format you

expect, or that it was created by whoever or whatever was supposed to have created it. If your
program is given garbage as input, it should recognize this and discard it, rather than try to make

sense of the garbage. If your program reads input from somewhere, make sure that it is not

possible to overflow your program's buffers. Never assume an array is big enough to hold the

input; if you read data into an array, refuse to read more data than the array will hold. Never,

ever, use the gets function.

11. Never trust system calls or library routines. Check the return values of everything, even those

things that “can't happen.” For example, it is often assumed that the close function cannot
fail. But on an NFS file system, the only indication a process receives that a file system it tried

to write to is full is delivered as a return code from close.

12. Make only safe assumptions about error recovery. If your program detects an error over which

it has no control (such as no more file descriptors), the proper thing to do is exit. Do not, under

any circumstances, attempt to handle unexpected or unknown situations; you may be operating

under incorrect assumptions. For example, a long time ago, the passwd program assumed that

if the password file could not be opened, something was seriously wrong with the system, and

the user should be given a super-user shell to fix the problem. Not a good assumption.

UNIX Systems Programming for SVR4

200 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Following these rules will help you keep your set-user-id or set-group-id program safe from attack.

But no list of rules is perfect. Always approach the writing of these programs with the utmost care,

and always verify that they do only what you want them to do. And as mentioned before, if you

don't really, really need one, don't write one.

Chapter Summary

In this chapter, we examined the user-id and the group-id. The methods for “converting” between

these numbers to their text-based counterparts in the password and group files are used regularly by

systems programs ranging from the ls command to the electronic mail system to the printer system.

The methods for exchanging one user-id or group-id for another are frequently used by programs

that must allow users to perform a privileged task; the last section of this chapter describes many of

the pitfalls the programmer must watch out for when doing this. It is important to understand that

almost everything the UNIX system does is tied, at some level, to the user-id and/or group-id. The

importance of being able to handle these quantities properly is paramount.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 201

Chapter 9
System Configuration and

Resource Limits

Because of its wide variety of uses, from a single-user workstation system, to a network file server,

to a multi-user timesharing system, the UNIX operating system has always offered the system

administrator a number of parameters that can be “tuned” to make the system perform better under

specific types of load. Some of these parameters are intended to control the behavior of the operating

system kernel proper: how many file table entries to allocate, how much memory to allocate for

interprocess communication, how many process table slots to use, and so forth. Other parameters
are meant to control individual processes, to prevent a single process from consuming the entire

system's resources: how many open files a process may have, how much memory it may use, how

large a file it may create, etc.

In early versions of the UNIX system, almost all of these parameters were defined using constants

in system include files. This made it difficult to change one of the parameters, because after doing

so, every program that used the parameter had to be recompiled. Gradually, particularly as third-

party vendors began selling software for the UNIX system, the values of more and more of these

parameters could be determined, and sometimes changed, via system calls and library routines. This

enabled software to be more portable: if a program could determine at runtime what its limits were,

it did not have to be recompiled on each system where those limits were different. POSIX and other

UNIX standardization efforts have improved this situation even more, by defining standard
interfaces and standard resource names, enabling programs to portably determine almost any limit

they may need to be aware of.

In this chapter, we will examine the routines provided for obtaining and changing the values of

system configuration parameters, and also the parameters themselves and what they are used for.

We will also examine the calls available for getting and setting per-process resource limits, and will

look at the routines available for determining how many system resources a process has used.

UNIX Systems Programming for SVR4

202 FOR PERSONAL, NON-COMMERCIAL USE ONLY

General System Information

Each system maintains a number of general information parameters, including the host name,

operating system name, operating system release number, hardware serial number, machine

architecture, and so forth. The basic system call to obtain this information is called uname:

#include <sys/utsname.h>

int uname(struct utsname *name);

This function places system configuration information in the structure pointed to by name and

returns a non-negative value on success. If a failure occurs, –1 is returned and the external integer

errno is set to indicate the error that occurred.

The struct utsname structure has the following members:

struct utsname {

 char sysname[SYS_NMLN];

 char nodename[SYS_NMLN];

 char release[SYS_NMLN];

 char version[SYS_NMLN];

 char machine[SYS_NMLN];

};

sysname A null-terminated string naming the current operating system.

nodename A null-terminated string containing the name the system is known by on a

communications network (its host name).

release A null-terminated string identifying the operating system release.

version A null-terminated string identifying the operating system version.

machine A null-terminated string identifying the type of hardware the operating system is

running on (the machine architecture).

The uname call is specified by the POSIX standard, which adopted it from versions of System V

UNIX. SVR4 also provides another call, sysinfo, that performs a similar function, but can provide
some additional information:

#include <sys/systeminfo.h>

long sysinfo(int command, char *buf, long count);

The sysinfo function copies information about the operating system, as requested by command,

into buf. The count parameter specifies the length of buf; it should be at least 257 bytes in size.

Upon successful completion, sysinfo returns the number of bytes in buf required to hold the return

value and the terminating null character. If this value is less than or equal to count the whole value

was copied, otherwise, count–1 bytes plus a terminating null character were copied. If an error

occurs, –1 is returned and the reason for failure is stored in errno.

System Configuration and Resource Limits

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 203

The legal values for command, defined in sys/systeminfo.h, are:

SI_SYSNAME Return the operating system name. This is the same value returned by

uname in the sysname field.

SI_HOSTNAME Return the name of the current host, as it is known on a communications

network. This is the same value returned by uname in the nodename
field.

SI_SET_HOSTNAME Set the system host name to the value contained in buf. This command

is restricted to the super-user.

SI_RELEASE Return the operating system release. This is the same value returned by

uname in the release field.

SI_VERSION Return the operating system version. This is the same value returned by

uname in the version field.

SI_MACHINE Return the machine type. This is the same value returned by uname in

the machine field.

SI_ARCHITECTURE Return the hardware instruction set architecture.

SI_HW_PROVIDER Return the name of the hardware manufacturer.

SI_HW_SERIAL Return the ASCII representation of the hardware-specific serial number
of the physical machine. In common usage, this number is usually called

the hostid, and does not necessarily represent the true serial number of

the machine. However, it is assumed that when the two strings returned

by SI_HW_PROVIDER and SI_HW_SERIAL are combined, the result will
be unique. This value may contain non-numeric characters. Note that on

Sun systems, this value is usually represented as a hexadecimal number,

but sysinfo returns it as a decimal number.

SI_SRPC_DOMAIN Return the Secure Remote Procedure Call domain name.

SI_SET_SRPC_DOMAIN Set the Secure Remote Procedure Call domain name to the value

contained in buf.

The sysinfo function is not available in HP-UX 10.x.

Example 9-1 shows a program that prints out the information obtained by uname and sysinfo.

Example 9-1: systeminfo

#include <sys/systeminfo.h>

#include <sys/utsname.h>

#include <stdio.h>

typedef struct {

 int command;

 char *string;

UNIX Systems Programming for SVR4

204 FOR PERSONAL, NON-COMMERCIAL USE ONLY

} Info;

Info info[] = {

 SI_SYSNAME, "SI_SYSNAME",

 SI_HOSTNAME, "SI_HOSTNAME",

 SI_RELEASE, "SI_RELEASE",

 SI_VERSION, "SI_VERSION",

 SI_MACHINE, "SI_MACHINE",

 SI_ARCHITECTURE, "SI_ARCHITECTURE",

 SI_HW_PROVIDER, "SI_HW_PROVIDER",

 SI_HW_SERIAL, "SI_HW_SERIAL",

 SI_SRPC_DOMAIN, "SI_SRPC_DOMAIN",

 0, NULL

};

int

main(void)

{

 Info *ip;

 char buf[BUFSIZ];

 struct utsname name;

 /*

 * Request uname information.

 */

 if (uname(&name) < 0) {

 perror("uname");

 exit(1);

 }

 /*

 * Print it out.

 */

 printf("Uname information:\n");

 printf("\t sysname: %s\n", name.sysname);

 printf("\tnodename: %s\n", name.nodename);

 printf("\t release: %s\n", name.release);

 printf("\t version: %s\n", name.version);

 printf("\t machine: %s\n", name.machine);

 /*

 * Request and print system information.

 */

 printf("\nSysinfo information:\n");

 for (ip = info; ip->string != NULL; ip++) {

 if (sysinfo(ip->command, buf, sizeof(buf)) < 0) {

 perror("sysinfo");

 exit(1);

 }

 printf("%16s: %s\n", ip->string, buf);

 }

 exit(0);

}

System Configuration and Resource Limits

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 205

% systeminfo

Uname information:

 sysname: SunOS

 nodename: msw

 release: 5.3

 version: Generic

 machine: sun4m

Sysinfo information:

 SI_SYSNAME: SunOS

 SI_HOSTNAME: msw

 SI_RELEASE: 5.3

 SI_VERSION: Generic

 SI_MACHINE: sun4m

 SI_ARCHITECTURE: sparc

 SI_HW_PROVIDER: Sun_Microsystems

 SI_HW_SERIAL: 2147630684

 SI_SRPC_DOMAIN:

Porting Notes

Most systems based on some version of System V will offer the uname system call, although they

will not offer sysinfo. Versions based on BSD however, will offer two different calls that may be
used to obtain only some parts of the information described above:

int gethostname(char *name, int len);

int sethostname(char *name, int len);

long gethostid(void);

The gethostname function copies the current name of the host as it is known on a communications

network into the character array pointed to by name, which is len characters long. The

sethostname function sets the current host name to the value contained in name. This call is

restricted to the super-user. The gethostid function returns a 32-bit identifier for the system,
which should be unique across all hosts. This value is equivalent to the one returned by the

SI_HW_SERIAL command to the sysinfo function. (On early BSD systems such as the VAX,
where the serial number was not available through software, this value was equal to the system's IP

address.)

System Resource Limits

There are numerous limits imposed by both the operating system and by the native hardware

architecture; these include such things as the maximum positive integer, the minimum decimal value

of a floating-point number, the maximum number of characters in a terminal input buffer, the

maximum length of a file name, and so forth. Prior to the POSIX standard, these limits were defined

in various include files with various names, and the programmer just sort of had to know which

things were defined where.

UNIX Systems Programming for SVR4

206 FOR PERSONAL, NON-COMMERCIAL USE ONLY

The POSIX standard specifies that most of these limits should be described, using standard constant

names, in the include file limits.h. The standard also specifies three functions that can be used to

determine the values of the more “interesting” of these values at runtime:

#include <unistd.h>

long sysconf(int name);

long fpathconf(int fd, int name);

long pathconf(const char *path, int name);

The sysconf function returns the current value of a configurable system limit or option. If the call

fails due to an error, it returns –1 and sets errno to indicate the error. If it fails due to an unknown

value of name, it returns –1 but does not change the value of errno.

The legal values for name and their meanings are:

_SC_VERSION The version of the POSIX.1 standard supported by this

system.

_SC_XOPEN_VERSION The version of the X/Open standard supported by this
system.

_SC_JOB_CONTROL A Boolean value indicating whether or not job control is

supported.

_SC_SAVED_IDS A Boolean value indicating whether or not saved ids (used

by setuid and setgid) are supported.

_SC_ASYNCHRONOUS_IO A Boolean value indicating whether or not the system

supports asynchronous input and output.

_SC_FSYNC A Boolean value indicating whether or not the system

supports file synchronization (the fsync system call).

_SC_MAPPED_FILES A Boolean value indicating whether or not the system

supports memory-mapped files.

_SC_MEMLOCK A Boolean value indicating whether or not the system

supports process memory locking.

_SC_MEMLOCK_RANGE A Boolean value indicating whether or not the system

supports process memory range locking.

_SC_MEMORY_PROTECTION A Boolean value indicating whether or not the system

supports memory protection.

_SC_MESSAGE_PASSING A Boolean value indicating whether or not the system

supports message passing.

System Configuration and Resource Limits

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 207

_SC_PRIORITIZED_IO A Boolean value indicating whether or not the system

supports prioritized input and output.

_SC_PRIORITY_SCHEDULING A Boolean value indicating whether or not the system

supports process scheduling.

_SC_REALTIME_SIGNALS A Boolean value indicating whether or not the system

supports the POSIX realtime signals extension.

_SC_SEMAPHORES A Boolean value indicating whether or not the system

supports semaphores.

_SC_SHARED_MEMORY_OBJECTS A Boolean value indicating whether or not the system

supports shared memory objects.

_SC_SYNCHRONIZED_IO A Boolean value indicating whether or not the system

supports synchronized input and output.

_SC_TIMERS A Boolean value indicating whether or not the system

supports timers.

_SC_ARG_MAX The maximum combined size, in bytes, of argv and envp.

_SC_CHILD_MAX The maxmimum number of processes allowed to an

individual user-id. This is often called NPROC on older
systems.

_SC_CLK_TCK The number of clicks per second of the system clock. This

is often called HZ on older systems.

_SC_NGROUPS_MAX The maximum number of simultaneous groups a process

may belong to. This is often called NGROUPS_MAX on older
systems.

_SC_OPEN_MAX The maximum number of open files per process. This is

often called NOFILE on older systems.

_SC_STREAM_MAX The maximum number of open streams per process.

_SC_TIMER_MAX The maximum number of timers per process.

_SC_MQ_OPEN_MAX The maximum number of open message queue descriptors

per process.

_SC_SEM_NSEMS_MAX The maximum number of semaphores per process.

_SC_SIGQUEUE_MAX The maximum number of queued signals that a process

may send and have pending at the receiver(s) at any time.

_SC_LOGNAME_MAX The maximum number of characters in a login name.

_SC_PASS_MAX The maximum number of significant characters in a

password.

UNIX Systems Programming for SVR4

208 FOR PERSONAL, NON-COMMERCIAL USE ONLY

_SC_TZNAME_MAX The maximum length of a timezone name.

_SC_NPROCESSORS_CONF The number of processors configured into the system.

_SC_NPROCESSORS_ONLN The number of processors on line.

_SC_PAGESIZE The system memory page size. This is not necessarily the

same as the hardware memory page size.

_SC_PHYS_PAGES The total number of pages of physical memory in the
system.

_SC_AVPHYS_PAGES The number of pages of physical memory not currently in

use by the system.

_SC_AIO_LISTIO_MAX The maximum number of I/O operations in a single list I/O

call supported by the system.

_SC_AIO_MAX The maximum number of outstanding asynchronous I/O

operations supported by the system.

_SC_AIO_PRIO_DELTA_MAX The maximum amount by which a process can decrease its

asynchronous I/O priority level from its own scheduling

priority.

_SC_DELAYTIMER_MAX The maximum number of timer expiration overruns.

_SC_MQ_PRIO_MAX The maximum number of message priorities supported by
the system.

_SC_RTSIG_MAX The maximum number of realtime signals reserved for

application use in this implementation.

_SC_SIGRT_MIN The lowest-numbered realtime signal available for

application use.

_SC_SIGRT_MAX The highest-numbered realtime signal available for

application use.

_SC_SEM_VALUE_MAX The maximum value a sempahore may have.

The pathconf function returns the current value of a configurable limit or option associated with

the file or directory named in path. The fpathconf function returns the same information, but

about the file referenced by the open file descriptor fd. Both functions return –1 if an error occurs.

The legal values for name and their meanings are:

_PC_LINK_MAX The maximum number of links to a single file or directory. If

path or fd refers to a directory, the value returned applies to the

directory itself.

System Configuration and Resource Limits

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 209

_PC_MAX_CANON The maximum number of bytes in a line of input from a terminal.

If path or fd do not refer to a terminal device, the return value is

meaningless.

_PC_MAX_INPUT The maximum number of bytes in a terminal input queue. If path

or fd do not refer to a terminal device, the return value is

meaningless.

_PC_NAME_MAX The maxmimum number of bytes in a file name. If path or fd do

not refer to a directory, the return value is meaningless.

Otherwise, the return value applies to the file names within the

directory.

_PC_PATH_MAX The maximum number of characters in a path name. If path or

fd do not refer to a directory, the return value is meaningless.

Otherwise, the value returned is the maximum length of a relative

path name when the specified directory is the working directory.

_PC_PIPE_BUF The maximum number of bytes that are atomic in a write to a pipe

or FIFO. If path or fd refer to a pipe or FIFO, the return value

applies to the pipe or FIFO. If path or fd refer to a directory, the

return value applies to any FIFOs that exist or can be created in

that directory. If path or fd refer to any other type of file, the

value returned is meaningless.

_PC_CHOWN_RESTRICTED A Boolean value indicating whether or not unprivileged users may

use the chown system call to change the ownership of their files.

If path or fd refer to a directory, the returned value applies to

any files, other than directories, that exist or can be created within

that directory.

_PC_NO_TRUNC A Boolean value indicating whether or not path names whose

components are longer than _PC_NAME_MAX will generate an

error. If path or fd do not refer to a directory, the return value is

meaningless. Otherwise, the return value applies to the file names

within the directory.

_PC_VDISABLE This value can be used to disable special terminal characters (see

Chapter 12, Terminals) such as the interrupt character or the erase

character. If path or fd do not refer to a terminal device, the

return value is meaningless.

_PC_ASYNC_IO A Boolean value indicating whether or not ansynchronous input

and output may be performed on this file. If path or fd do not

refer to a terminal device, the return value is meaningless.

UNIX Systems Programming for SVR4

210 FOR PERSONAL, NON-COMMERCIAL USE ONLY

_PC_PRIO_IO A Boolean value indicating whether or not prioritized input and

output may be performed on this file. If path or fd do not refer

to a terminal device, the return value is meaningless.

_PC_SYNC_IO Indicate whether or not synchronous input and output may be

performed on this file. If path or fd refer to a directory, the return

value applies to the directory itself.

Porting Notes

BSD systems, because they predate POSIX, do not offer the functions described in this section.

Instead, most of their configuration parameters are stored in include files. However, two functions

are available:

int getdtablesize(void);

int getpagesize(void);

The getdtablesize function returns the number of file descriptors available to the process; this

is like the _SC_OPEN_MAX option to sysconf. The getpagesize function returns the system page

size (not necessarily the same as the hardware page size); this is like the _SC_PAGESIZE option to

sysconf.

Process Resource Limits

There are also several limits that are applied on a per-process basis. Many of these limits can be
changed by the process, and are meant to aid in stopping “runaway” behavior.

All versions of UNIX provide the ulimit system call, although its behavior is slightly different in

SVR4:

#include <ulimit.h>

long ulimit(int cmd, long newlimit);

The values of cmd are:

UL_GETFSIZE Return the maximum file size, in 512-byte block units, that the process may

create. Any size file may be read, irregardless of the value of this limit.

UL_SETFSIZE Set the maximum file size limit to the value in newlimit. Any process may

decrease this value, but only a process with super-user permissions may

increase it.

UL_GETMEMLIM Return the maximum amount of memory the process may use. This command

is not available in HP-UX 10.x.

System Configuration and Resource Limits

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 211

UL_GETMAXBRK Return the maximum amount of memory the process may use. This command

is only available in HP-UX 10.x.

UL_GETDESLIM Return the maximum number of files the process may have open. This

command is not available in HP-UX 10.x.

Upon successful completion, ulimit returns a non-negative value. If an error occurs, it returns –1

and sets the external integer errno to describe the error.

A more general interface to limits was first introduced by BSD UNIX, and later adopted by SVR4:

#include <sys/time.h>

#include <sys/resource.h>

int getrlimit(int resource, struct rlimit *rlp);

int setrlimit(int resource, const struct rlimit *rlp);

Each call to either getrlimit or setrlimit applies to a single resource, identified by resource.

There are two limits to each resource, a current (soft) limit, and a maximum (hard) limit. Soft limits

may be changed by any process to any value less than or equal to the hard limit. Only a process with
super-user permissions may raise the hard limit, but any process may (irreversibly) lower the hard

limit. Limits may be specified as “infinity” by setting them to the constant RLIM_INFINITY; in this

case, the operating system will set the maximum value.

The rlp parameter is a pointer to a structure of type struct rlimit:

struct rlimit {

 rlim_t rlim_cur;

 rlim_t rlim_max;

};

The possible resources are:

RLIMIT_CORE The maximum size of a core file, in bytes, that may be created by the
process. A limit of 0 will prevent the creation of a core file. The writing of

a core file will terminate when this size is reached, even if the file is

incomplete.

RLIMIT_CPU The maximum amount of processor time, in seconds, that may be used by

the process. This is a soft limit only; there is no hard limit. When the limit

is exceeded, the system will send the process a SIGXCPU signal (see
Chapter 10, Signals).

RLIMIT_DATA The maximum size of the process' data segment, in bytes. When this limit

is reached, calls to malloc and other memory allocation routines will fail.
This resource limit is not available in HP-UX 10.x.

UNIX Systems Programming for SVR4

212 FOR PERSONAL, NON-COMMERCIAL USE ONLY

RLIMIT_FSIZE The maximum size of a file, in bytes, that may be created by a process. A

limit of 0 will prevent file creation. When this limit is exceeded, the process

will receive a SIGXFSZ signal.

RLIMIT_NOFILE The maximum number of file descriptors (and hence open files) that the

process may create. When this limit is exceeded, further attempts to open

files will fail.

RLIMIT_STACK The maximum size, in bytes, of the process' stack. The system will not

automatically grow the stack beyond this limit. When this limit is reached,

the process will receive a SIGSEGV signal. This resource limit is not
available in HP-UX 10.x.

RLIMIT_VMEM The maximum size of the process' mapped address space, in bytes. When

this limit is exceeded, further calls to malloc and other memory allocation

functions will fail. Calls to mmap will also fail. And finally, the system will
no longer automatically grow the process' stack. This resource limit is not

available in HP-UX 10.x.

Upon successful completion, both calls return 0. Otherwise, –1 is returned and errno is set to
indicate the error.

Porting Notes

On older versions of UNIX, the ulimit function can only be used to change the maximum file size.
It takes a single parameter, the new value of the limit.

Resource Utilization Information

Most versions of UNIX provide the times system call, which can be used to find out how much
processor time the current process and its children have used:

#include <sys/times.h>

#include <limits.h>

clock_t times(struct tms *buf);

The struct tms structure is defined as:

struct tms {

 clock_t tms_utime;

 clock_t tms_stime;

 clock_t tms_cutime;

 clock_t tms_cstime;

};

The information returned describes the calling process and all of its terminated child processes (see
Chapter 11, Processes) for which it has executed a wait routine. The specific fields are:

System Configuration and Resource Limits

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 213

tms_utime The amount of processor time used while executing instructions in the user

space of the calling process.

tms_stime The amount of processor time used by the system on behalf of the calling

process (i.e., the amount of time performing system calls).

tms_cutime The sum of the tms_utime and tms_cutime values for the child process.

tms_cstime The sum of the tms_stime and tms_cstime values for the child process.

All times are reported in clock ticks; the number of clock ticks per second is defined as CLK_TCK in

the limits.h include file, or may be obtained with sysconf.

Upon successful completion, times returns the elapsed real time, in clock ticks, from some time in
the past (usually system boot time). This point does not change between calls, so two successive

calls to times will allow the elapsed time between calls to be computed. If the call fails, –1 is

returned and an error code is placed in errno.

Porting Notes

On older systems, times reported times in seconds, rather than clock ticks.

BSD-based systems offer a much more comprehensive facility for obtaining process resource

consumption information:

#include <sys/time.h>

#include <sys/resource.h>

int getrusage(int who, struct rusage *rusage);

The who parameter may be given as either RUSAGE_SELF or RUSAGE_CHILDREN; the struct

rusage structure is defined as follows:

struct rusage {

 struct timeval ru_utime;

 struct timeval ru_stime;

 long ru_maxrss;

 long ru_ixrss;

 long ru_idrss;

 long ru_isrss;

 long ru_minflt;

 long ru_majflt;

 long ru_nswap;

 long ru_inblock;

 long ru_oublock;

 long ru_msgsnd;

 long ru_msgrcv;

 long ru_nsignals;

 long ru_nvcsw;

 long ru_nivcsw;

};

The fields contain:

UNIX Systems Programming for SVR4

214 FOR PERSONAL, NON-COMMERCIAL USE ONLY

ru_utime The total amount of time spent executing in user mode, in seconds and

microseconds.

ru_stime The total amount of time spent executing in system mode, in seconds and

microseconds.

ru_maxrss The maximum resident set size (amount of memory used), in pages.

ru_idrss An “integral” value indicating the amount of memory in use by a process
while the process is running. This is the sum of the resident set sizes of the

process running when a clock tick occurs. The value is reported in pages

times clock ticks.

ru_minflt The number of minor page faults (faults that do not require physical I/O

activity) serviced.

ru_majflt The number of major page faults (faults the require physical I/O activity)

serviced.

ru_nswap The number of times the process was swapped out of main memory.

ru_inblock The number of times the file system had to perform input when servicing a

read request.

ru_outblock The number of times the file system had to perform output when servicing a

write request.

ru_msgsnd The number of messages sent over sockets.

ru_msgrcv The number of messages received over sockets.

ru_nsignals The number of signals delivered to the process.

ru_nvcsw The number of times a context switch resulted due to the process voluntarily

giving up the processor before its time slice was completed (usually to wait
on the availability of a resource).

ru_nivcsw The number of times a context switch resulted due to a higher priority process

becoming runnable or because the current process used up its time slice.

Although some of these values are of dubious use, others are sometimes handy to know. This

information can be obtained in SVR4 through the /proc file system, described in Appendix C.

Beginning with Solaris 2.5, getrusage has been restored as a system call in Solaris 2.x.

Chapter Summary

Prior to the standardization of POSIX, most of the configuration limits and other values discussed

in this chapter were defined as constants in various system include files. This required that programs

be recompiled on each system they were moved to (in order to obtain the proper values for that
system), and it also required that they be recompiled any time one of these values changed. Now

System Configuration and Resource Limits

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 215

that these parameters are for the most part obtainable at run-time, it is possible to write programs

that are not only more portable, but also more efficient.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 217

Chapter 10
Signals

Signals are software interrupts. They provide asynchronous notification to a process that something

has happened—either an unexpected problem has arisen, or a user (or another process) has requested

that the process do something outside of its normal operational functions. Some signals, such as

“illegal instruction” or “arithmetic exception,” have a direct relationship to the computer hardware.

Other signals, such as “window size change” or “CPU time limit exceeded,” are purely software-

oriented. Most of the signals provided by the UNIX operating system cause a process to exit when
they are received, unless the process takes steps to handle that signal. Some of the signals also cause

the process' memory image to be placed on disk in the file core, allowing debuggers to examine the

image in order to determine what caused the problem.

UNIX signal handling used to be both simple to do and simple to explain—there was only one way

to do things, and everyone followed it. However, as the need for more sophisticated signal handling

increased, other ways of doing things evolved. As each new way was implemented, explaining

things got harder—not only was there more to explain about how things worked, but it also became

necessary to explain which methods were used for which situations. This problem has reached a

peak in SVR4, which provides four different methods for handling signals: the original basic

mechanism introduced in Version 7, the somewhat more robust mechanism introduced in SVR3, a

compatibility library implementation of the Berkeley mechanism used by many vendors' operating
systems, and, new to SVR4, the POSIX mechanism.

In this chapter, we will discuss all four of these signal handling mechanisms. Fortunately, the uses

of the four mechanisms fairly closely parallels their complexity. That is, basic signal handling is

easily performed using the easy-to-understand mechanisms; the more complicated mechanisms are

only needed for more advanced functionality. Thus, we begin by introducing the basic concepts of

signal handling that are common to all four mechanisms. We then examine basic signal handling as

it was originally implemented in Version 7. Following this we consider reliable signals, one of the

most important changes in signal handling procedures. We next examine one of the more common

uses for signals, implementing timeouts. After this, we move into the area of advanced signal

handling, by looking at the sophisticated POSIX signal mechanism. We conclude with a detailed

look at the Berkeley signal mechanism, upon which the POSIX mechanism is based. It is in this

section that information on porting between the Berkeley mechanism and the others is discussed.

UNIX Systems Programming for SVR4

218 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Signal Concepts

As mentioned earlier, a signal is a software interrupt—an asynchronous notification that something

has happened. Signals are delivered to a process by the operating system. They may result because

of something the program did (e.g., an attempt to divide by zero), something a user did (e.g., press

the interrupt key on the keyboard), or something another program did (processes may send signals

to one another).

For each signal defined by the operating system, a process may indicate the disposition of that signal.

That is, the process can inform the operating system about how it wants to deal with that signal if

and when it is received. There are four possible dispositions for a signal:

 The signal may be ignored. This tells the operating system to immediately discard the signal,

without delivering it to the process. The process is never told that a signal was even generated.

Ignoring signals is useful when a process simply doesn't want to be bothered with them, or

when it wants to continue performing its task regardless of what happens.

 The signal may be blocked, or held. When a signal is blocked, it will not be delivered to the

process, much as if it were being ignored. However, rather than simply discarding the signal,

the operating system will place it on a queue of pending signals to be delivered to the process.

If the process ever unblocks or releases the signal, it will be delivered at that time. Blocking

signals is useful in programs that contain “critical sections” that must not be interrupted, but

that otherwise wish to process the signals.

 The signal may be caught, or trapped. The process may tell the operating system that whenever

the signal is delivered, a user-defined function called a signal handler is to be called. When the

signal is delivered, the operating system suspends the process' normal execution, and calls the

signal handler function. When the handler function returns, the process' execution picks up

where it left off. Catching signals is useful any time the programmer wants to deal with
unexpected events in a special way. For example, text editors make sure to catch keyboard

interrupt signals, so that an inadvertent keystroke doesn't terminate the editor without saving

the file.

 Each signal has a default disposition. As mentioned earlier, most signals' default dispositions

are to terminate the process, sometimes with an accompanying core dump. Default dispositions

are useful when there's nothing special the process needs to do with that signal; they are also

useful for resetting the disposition of a signal that was previously being caught or ignored.

Version 7 UNIX provided 15 different signals. As features such as job control, interprocess

communication, and networking were added however, the list grew. In SVR4, 35 different “regular”

signals are provided, along with several special-purpose signals used for realtime programming. The

signals are described below.

SIGHUP Hangup. This signal is sent to a process when its controlling terminal

disconnects from the system (see Chapter 11, Processes). It is also commonly

used to notify daemon processes to reread their configuration files; since

daemon processes do not have controlling terminals, they would not normally

receive this signal. The default disposition for this signal terminates the process.

Signals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 219

SIGINT Interrupt. This signal is delivered to a process when the user presses the

interrupt key (usually CTRL-C) on the keyboard. The default disposition for

this signal terminates the process.

SIGQUIT Quit. This signal is delivered to a process when the user presses the quit key

(usually CTRL-\) on the keyboard. The default disposition for this signal

terminates the process and produces a core file.

SIGILL Illegal instruction. This signal is delivered to a process when it attempts to

execute an illegal hardware instruction. The default disposition for this signal

terminates the process and produces a core file.

SIGTRAP Trace/breakpoint trap. The name for this signal is derived from the PDP-11

“trap” instruction. This signal is delivered to a process when it is being traced

by a debugger and encounters a breakpoint; this causes the process to stop and

the parent process (the debugger) to be notified. If the process is not being

traced, the default disposition for this signal terminates the process and

produces a core file.

SIGABRT Abort. This signal is generated by the abort function (see Chapter 16,
Miscellaneous Functions). The default disposition for this signal terminates the

process and produces a core file.

SIGEMT Emulator trap. The name for this signal is derived from the PDP-11 “emulator

trap” instruction. It is delivered to a process when an implementation-defined

hardware fault is detected. The default disposition for this signal terminates the
process and produces a core file.

SIGFPE Arithmetic exception. (FPE stands for Floating Point Exception, but this signal

is used for non-floating point arithmetic exceptions as well.) This signal is

delivered to a process when it attempts an illegal arithmetic operation, such as

division by zero, floating point overflow, and so on. The default disposition for

this signal terminates the process and produces a core file.

SIGKILL Kill. This signal is used to terminate a process “with extreme prejudice.” It

cannot be caught, blocked, or ignored. The default (only) disposition for this

signal terminates the process.

SIGBUS Bus error. This signal is delivered to a process when an implementation-defined

hardware fault is detected. It usually indicates an attempt to use an improperly
aligned address or to reference a non-existent physical memory address. The

default disposition for this signal terminates the process and produces a core

file.

SIGSEGV Segmentation violation (or segmentation fault). This signal is delivered to a

process when it attempts to access an invalid virtual memory address, or

attempts to access memory that it does not have permission to use. The default

disposition for this signal terminates the process and produces a core file.

UNIX Systems Programming for SVR4

220 FOR PERSONAL, NON-COMMERCIAL USE ONLY

SIGSYS Bad system call. This signal is delivered to a process when it somehow executes

an instruction that the kernel thought was a system call, but the parameter with

the instruction does not indicate a valid system call. The default disposition for

this signal terminates the process and produces a core file.

SIGPIPE Broken pipe. This signal is delivered to a process when it attempts to write on

a pipe (see Chapter 13, Interprocess Communication) when there is no process
on the other end to receive the data. The default disposition for this signal

terminates the process.

SIGALRM Alarm clock. This signal is delivered to a process when an alarm it has

scheduled with the alarm or setitimer system calls (see below) goes off.
The default disposition for this signal terminates the process.

SIGTERM Software termination. This signal is used to tell a process to clean up whatever

it's doing (close open files, etc.) and exit. It is the default signal sent by the kill

command, and is also sent to all processes by the system shutdown procedure.

The default disposition for this signal terminates the process.

SIGUSR1 User-defined signal one. This signal may be used for any programmer-defined

purpose. The default disposition for this signal terminates the process.

SIGUSR2 User-defined signal two. This signal may be used for any programmer-defined

purpose. The default disposition for this signal terminates the process.

SIGCHLD Child status change. This signal indicates a change in a child process' status

(see Chapter 11, Processes). It was introduced in Berkeley UNIX, and is
delivered to a process whenever one of its children exits or is stopped or

continued due to job control. The parent process can then use one of the wait
system calls to determine what happened. The default disposition for this signal

is to discard it; it is only delivered to a process if the process is catching it.

Versions of System V prior to SVR3 have a similar signal, SIGCLD.
Unfortunately, this signal has very strange semantics, unlike those of any other

signal:

 The default disposition of this signal is to discard it; it is only delivered to

a process if the process is catching it.

 If the process specifically sets the signal's disposition to ignore, then

children of the calling process will not generate zombie processes (see

Chapter 11, Processes). Instead, on termination, the exit status of these

processes is just discarded. If the parent process issues a call to one of the

wait functions, it will block until all its children have terminated, and then

wait will return –1 and errno will be set to ECHILD.

 If the process requests that the signal be caught, the operating system

immediately checks if there are any child processes to be waited for, and

if so, calls the SIGCLD handler. Thus, the signal is in a sense retroactive—

Signals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 221

processes that exited before its disposition was changed to a signal handler

can result in the calling of the signal handler!

In SVR4, SIGCLD and SIGCHLD refer to the same signal. In order to provide
backward compatibility with previous versions of System V, if the signal's

disposition is set with either signal or sigset, the SIGCLD behavior is used.

If its disposition is set with sigaction, the SIGCHLD behavior is used. This is
of particular importance when porting programs from Berkeley-based versions

of UNIX to SVR4.

SIGPWR Power fail/restart. On systems connected to uninterruptible power supplies or

that have battery backup, this signal can be sent to the init process to start an

orderly system shutdown when power is lost or the batteries are about to fail.

The default disposition for this signal is to discard it; it is only delivered to a

process if the process is catching it.

SIGWINCH Window size change. This signal is delivered to a process when the number of

rows or columns of its controlling terminal are changed, as when a user resizes
a window on a workstation. The default disposition for this signal is to discard

it; it is only delivered to a process if the process is catching it.

SIGURG Urgent socket condition. This signal is used to tell a process that an urgent

condition (out of band data) exists on a network communications channel (see

Chapter 14, Networking With Sockets). The default disposition for this signal is

to discard it; it is only delivered to a process if the process is catching it.

SIGPOLL Pollable event. This signal is delivered to a process when an event occurs on a

pollable device. It is used in conjunction with the poll system call. The default
disposition for this signal terminates the process.

SIGSTOP Stop. This signal cannot be caught, blocked, or ignored. The default (only)

disposition for this signal stops the process until a continue signal (SIGCONT)
is received.

SIGTSTP Stop. This signal is delivered to a process when the user presses the suspend

key (usually CTRL-Z) on the keyboard. The default disposition for this signal

stops the process until a continue signal (SIGCONT) is received.

SIGCONT Continue. This signal can be caught, but it cannot be blocked or ignored. The

default disposition for this signal starts the process if it was stopped, but it is

otherwise discarded unless the process is catching it.

SIGTTIN Stop for tty input. This signal is delivered to a process if it tries to read from the

terminal while it is in the background. The default disposition for this signal

stops the process until a continue signal (SIGCONT) is received.

SIGTTOU Stop for tty output. This signal is delivered to a process if it tries to write to the

terminal while it is in the background, and the terminal has the TOSTOP mode

UNIX Systems Programming for SVR4

222 FOR PERSONAL, NON-COMMERCIAL USE ONLY

set (see Chapter 12, Terminals). The default disposition for this signal stops the

process until a continue signal (SIGCONT) is received.

SIGVTALRM Virtual timer expiration. This signal is delivered to a process when a virtual

timer alarm it has scheduled with the setitimer system call expires. The
default disposition for this signal terminates the process.

SIGPROF Profiling timer expiration. This signal is delivered to a process when a profiling

timer alarm it has scheduled with the setitimer system call expires. The
default disposition for this signal terminates the process.

SIGXCPU CPU time limit exceeded. This signal is delivered to a process when it exceeds

its CPU time limit (see Chapter 9, System Configuration and Resource Limits).

The default disposition for this signal terminates the process and produces a

core file.

SIGXFSZ File size limit exceeded. This signal is delivered to a process when it exceeds

its maximum file size limit (see Chapter 9, System Configuration and Resource

Limits). The default disposition for this signal terminates the process and
produces a core file.

All versions of UNIX provide the first 15 signals in the list above. Most modern versions of UNIX

provide the job control signals, and many provide the timer-related signals as well. The other signals

are less common, and may or may not be present in other versions. In addition, other versions may

offer signals that do not appear in the list above.

Basic Signal Handling

In this section, we describe the basics of signal handling in terms of the oldest and simplest signal

interface. The functions described in this section are available in all versions of UNIX, and are

adequate for most uses.

Sending Signals

To send a signal to a process, the kill function is used:

#include <sys/types.h>

#include <signal.h>

int kill(pid_t pid, int sig);

The pid parameter specifies the process or group of processes to send the signal to, and the sig

parameter identifies the signal to be sent. If sig is zero, then error checking is performed, but no

signal is delivered. This can be used to check the validity of pid.

Unless the sending process has an effective user-id of super-user, the real or effective user-id of the

sending process must match the real or saved user-id of the receiving process(es). The only

Signals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 223

exception to this rule is SIGCONT, which may be sent to any process with the same session-id as the
sending process (see Chapter 11, Processes).

The pid parameter has a number of interpretations:

 If pid is greater than zero, sig will be sent to the process whose process-id is equal to pid.

 If pid is negative but not equal to –1, sig will be sent to all processes whose process group-id

(see Chapter 11, Proceses) is equal to the absolute value of pid and for which the process has

permission to send a signal.

 If pid is equal to zero, sig will be sent to all processes whose process group-id is equal to that

of the sender, except for special system processes (the scheduler, page daemon, file system

flusher, and initialization process).

 If pid is equal to –1 and the effective user-id of the sending process is not super-user, sig will

be sent to all processes (except special system processes) whose real user-id is equal to the

effective user-id of the sender.

 If pid is equal to –1 and the effective user-id of the sending process is super-user, sig will be

sent to all processes in the system except special system processes.

Upon successful delivery of the signal, kill returns 0. If an error occurs, –1 is returned and the

reason for failure is placed in the external integer errno.

ANSI C defines another, not very useful, function for sending signals:

#include <signal.h>

int raise(int sig);

Because the ANSI C standard does not recognize multiple processes, raise does not accept a pid

argument. When called, raise sends the signal specified in sig to the calling process.

Waiting for Signals

Sometimes, a process wants to stop processing until a signal is received. For example, it might want

to wait until a specified amount of time has passed, or until data becomes available on a file

descriptor. To do this, the pause function is used:

#include <unistd.h>

int pause(void);

The pause function simply suspends the calling process until it receives a signal. The signal must
be one that is not currently blocked or ignored by the calling process. If the signal causes termination

of the calling process, pause does not return (because the process exits). If the signal is caught by

the calling process and control is returned from the signal handling function, pause returns –1 and

errno is set to EINTR (interrupted system call). Execution of the process then continues from the
point of suspension.

UNIX Systems Programming for SVR4

224 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Printing Signal Information

There are two functions for printing signal information, similar to perror and strerror:

#include <siginfo.h>

void psignal(int sig, const char *s);

#include <string.h>

char *strsignal(int sig);

The psignal function prints the message contained in s, followed by a colon, followed by a string

identifying the signal whose number is contained in sig, on the standard error output. The

strsignal function returns a character string describing the signal contained in sig; this string is

the same one printed by psignal.

The psignal function is not available in HP-UX 10.x. An example of how to implement it is shown

in the on-line example programs. The strsignal function is not available in HP-UX 10.x or IRIX
5.x.

Handling Signals

The basic function for changing a signal's disposition is called signal, and is declared as follows:

#include <signal.h>

void (*signal(int sig, void (*disp)(int)))(int);

This rather confusing prototype says that signal accepts two arguments, and returns a pointer to a

function that returns nothing (void). The first argument, sig, is an integer, and represents the signal

whose disposition is to be changed. The second argument, disp, is a pointer to a function that takes

a single integer argument and returns nothing (void). This function is the signal handler for sig;

whenever sig is received, the disp function will be called with sig as its argument (this allows a

single handler function to handle multiple signals). The return value from signal is a pointer to the

previous signal handler function.

In addition to the address of a function, the disp parameter can be given one of the following values:

SIG_IGN Sets the signal's disposition to ignore; all future occurences of sig will be ignored.

SIG_DFL Sets the signal's disposition to the default disposition; any signal handler that was in

place for this signal is discarded.

Example 10-1 shows a small program that catches the SIGUSR1 and SIGUSR2 signals, waits for
them to arrive, and prints a message when they are received.

Example 10-1: signal1

#include <signal.h>

Signals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 225

#include <stdio.h>

void handler(int);

int

main(void)

{

 /*

 * Send SIGUSR1 and SIGUSR2 to the handler function.

 */

 if (signal(SIGUSR1, handler) == SIG_ERR) {

 fprintf(stderr, "cannot set handler for SIGUSR1\n");

 exit(1);

 }

 if (signal(SIGUSR2, handler) == SIG_ERR) {

 fprintf(stderr, "cannot set handler for SIGUSR2\n");

 exit(1);

 }

 /*

 * Now wait for signals to arrive.

 */

 for (;;)

 pause();

}

/*

 * handler - handle a signal.

 */

void

handler(int sig)

{

 /*

 * Print out what we received.

 */

 psignal(sig, "Received signal");

}

% signal1 &

 [1] 12345

% kill -USR1 12345

Received signal: Signal User 1

% kill -USR2 12345

Received signal: Signal User 2

% kill 12345

 [1] + Terminated signal1

The last kill command sends SIGTERM to the process; since it does not catch this signal and the
default disposition is to terminate the process, it exits.

UNIX Systems Programming for SVR4

226 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Unreliable Signals

Signal handling in older versions of UNIX (Version 7, pre-SVR3 versions of System V, and pre-

4.2BSD versions of Berkeley UNIX) was unreliable. Signals could get lost—a signal could occur

and the process would never find out about it.

One of the most significant problems with these early implementations though, is that they reset a

caught signal's disposition to its default each time the signal was delivered. If the signal arrived a

second time, the default disposition would be taken, instead of calling the signal handler. To see the

problems that this can cause, start signal1 again and send it two SIGUSR1 signals. The first one is
caught as intended, but the second one causes the program to terminate! This is because the default

disposition for SIGUSR1 terminates the process.

The usual method to avoid this situation is to modify the handler function to reset the signal's

disposition each time it is called, as shown in Example 10-2.

Example 10-2: signal2

#include <signal.h>

#include <stdio.h>

void handler(int);

int

main(void)

{

 /*

 * Send SIGUSR1 and SIGUSR2 to the handler function.

 */

 if (signal(SIGUSR1, handler) == SIG_ERR) {

 fprintf(stderr, "cannot set handler for SIGUSR1\n");

 exit(1);

 }

 if (signal(SIGUSR2, handler) == SIG_ERR) {

 fprintf(stderr, "cannot set handler for SIGUSR2\n");

 exit(1);

 }

 /*

 * Now wait for signals to arrive.

 */

 for (;;)

 pause();

}

/*

 * handler - handle a signal.

 */

void

handler(int sig)

{

 /*

 * Reset the signal's disposition.

Signals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 227

 */

 signal(sig, handler);

 /*

 * Print out what we received.

 */

 psignal(sig, "Received signal");

}

% signal2 &

 [1] 12345

% kill -USR1 12345

Received signal: Signal User 1

% kill -USR2 12345

Received signal: Signal User 2

% kill -USR1 12345

Received signal: Signal User 1

% kill -USR2 12345

Received signal: Signal User 2

% kill 12345

 [1] + Terminated signal2

Unfortunately, this solution is imperfect. There is a window of vulnerability between the time that

the signal handler is called and the time it resets the signal's disposition during which the default

disposition is still in effect. On very busy systems, or when signals are being sent rapid-fire to the

process, it is possible for the signal to be missed by the signal handler, resulting in unintended

behavior.

NOTE

As mentioned previously, the SIGCHLD signal is different from all the others. Because

SIGCHLDs “reappear” as soon as the signal handler is reset, using the above approach of
resetting the handler as soon as it is entered will not work. Instead, the following model

should be used:

void

handler(int sig)

{

 /* code */

.

.

.

 signal(SIGCHLD, handler);

}

A second problem with the early implementations is that there was no way to turn a signal off when

a process didn't want it to occur. The process could ignore the signal, but there was no way to say

“don't deliver this signal right now, but save it for later when I'm ready.” To see the problems this

can cause, consider the following code fragment:

int flag = 0;

UNIX Systems Programming for SVR4

228 FOR PERSONAL, NON-COMMERCIAL USE ONLY

void handler(int);

int

main(void)

{

 ...

 signal(SIGALRM, handler);

 while (flag == 0)

 pause();

}

void

handler(sig)

{

 signal(SIGALRM, handler);

 flag = 1;

}

This program continually sits in pause until an alarm signal occurs, at which point flag will

become 1 and it will exit the while loop. But, consider the case where the alarm signal arrives after

the test of flag, but before the call to pause. The program will enter pause and never return (unless

the signal is generated a second time). The signal has been lost.

Reliable signals

Because of the problems alluded to in the previous section, 4.2BSD, and later SVR3, introduced

reliable signals. The reliable signal mechanism makes two major changes: first, signal dispositions

are no longer reset when a signal handler is called. The disposition remains the same until the

program explicitly changes it. The second change is the introduction of the ability to block a signal

for later delivery. The signal is not delivered to the process immediately, but it is not ignored. The

system remembers that the signal occurred, and if the process ever unblocks the signal, delivers it

then.

Both Berkeley and System V implemented reliable signals by inventing (different) new system calls.

Berkeley also reimplemented the signal call in terms of reliable signals (the examples in the

previous section will work correctly on a 4.2BSD or 4.3BSD system). In System V, signal
provides the old, unreliable mechanism (which nevertheless is adequate for most needs) for

backward compatibility. This is true in SVR4 as well.

In this section, we will examine the reliable signal implementation offered by SVR3 and SVR4. The
Berkeley reliable signal implementation is discussed at the end of the chapter.

Terminology

Before discussing reliable signals, it is necessary to introduce some terminology. This terminology

will be used throughout the remainder of this chapter.

A signal is generated for a process when the event that causes the signal occurs. When the signal is
generated, the operating system usually sets a flag of some sort in the process' state information.

Signals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 229

A signal is delivered to a process when the action for that signal is actually taken. During the time

between the generation of a signal and the time it is delivered, the signal is said to be pending.

In addition to the default disposition, ignoring a signal, and catching it, a process now also has the

option of blocking a signal. If a blocked signal is generated for the process and that signal's

disposition is either the default or to catch the signal, then the signal remains pending until the

process either unblocks the signal or changes the disposition to ignore the signal. The action for a
signal is determined when it is delivered, not when it is generated. This allows the process to change

the signal's disposition before accepting its delivery.

If a blocked signal is generated more than once for a process before it is unblocked, the operating

system has the option of either queueing the signals, or just delivering a single signal. Most UNIX

systems choose the simpler of these, and deliver the signal only once. If more than one signal is

pending for a process, there is no specified order in which the signals should be delivered. However,

POSIX does suggest that signals relating to the current state of the process (e.g., SIGSEGV) should
be delivered first.

Each process has a signal mask that defines the set of signals currently being blocked. The signal

mask is simply a set of bits, one for each signal. If the bit is on, the signal is blocked, if it is off, the

signal may be delivered.

The sigset Function

The sigset function is the reliable signal mechanism's counterpart to the unreliable signal
function:

#include <signal.h>

void (*sigset(int sig, void (*disp)(int)))(int);

NOTE

In order to make use of sigset in HP-UX 10.x, the _SVR2 constant must be defined at
compile time, and the program must be linked with -lV3.

As with signal, sig specifies the signal whose disposition is to be changed, and disp specifies a

pointer to the signal handler function. As with signal, the disp parameter may be given one of

the values SIG_DFL or SIG_IGN. It may also be given the value SIG_HOLD, in which case the signal
is added to the process' signal mask and its disposition remains unchanged.

When a signal that is being caught is delivered, the operating system adds the signal to the process'

signal mask, and then calls the signal handler function. When (if) the handler function returns, the

signal mask is restored to its state prior to the delivery of the signal. The signal's disposition is no

longer changed by the operating system, as it was with signal. This behavior solves the first
problem mentioned in the previous section; the window of vulnerability has been eliminated.

Porting Note

Recall from above that Berkeley, when implementing reliable signals, redefined their signal

function in terms of the new mechanism. But signal does not provide reliable signals in SVR4; it

UNIX Systems Programming for SVR4

230 FOR PERSONAL, NON-COMMERCIAL USE ONLY

provides the old, unreliable mechanism. This means that signal-handling code in programs that were

written for Berkeley-based systems will not work properly on SVR4.

Fortunately, the sigset function accepts exactly the same arguments that signal does, and has
the same return value. This means that, when porting code from Berkeley-based systems to SVR4,

it is usually sufficient to add the line

#define signal sigset

to the top of the program. The only case in which this is not sufficient is when the program is

working with SIGCHLD; properly handling that case requires use of the sigaction function,

described later in this chapter.

Other Functions

The SVR3 reliable signal mechanism provides several other functions as well:

#include <signal.h>

int sighold(int sig);

int sigrelse(int sig);

int sigignore(int sig);

int sigpause(int sig);

The sighold function adds sig to the process' signal mask. The sigrelse function removes sig

from the process' signal mask. The sigignore function sets the disposition of sig to SIG_IGN.

The sigpause function removes sig from the calling process' signal mask and then suspends the

calling process until a signal is received. This is not the same as calling sigrelse followed by

pause; sigpause is an atomic operation that cannot be interrupted in between the change in the

signal mask and the suspension of the process.

We can use these functions to fix the second problem described in the previous section:

void handler(int);

int flag = 0;

int

main(void)

{

 ...

 sighold(SIGALRM);

 sigset(SIGALRM, handler);

 while (flag == 0)

 sigpause(SIGALRM);

}

void

handler(sig)

{

Signals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 231

 flag = 1;

}

The initial call to sighold adds the alarm signal to the process' signal mask; this means the signal

can only be delivered when the process is ready for it. The call to sigpause removes the alarm
signal from the signal mask and suspends the program. Because the signal is normally blocked, it is

not possible for it to arrive after the test of flag and before the call to sigpause.

Example 10-3 shows a reimplementation of our signal program using reliable signals.

Example 10-3: signal3

#include <signal.h>

#include <stdio.h>

void handler(int);

int

main(void)

{

 /*

 * Send SIGUSR1 and SIGUSR2 to the handler function.

 */

 if (sigset(SIGUSR1, handler) == SIG_ERR) {

 fprintf(stderr, "cannot set handler for SIGUSR1\n");

 exit(1);

 }

 if (sigset(SIGUSR2, handler) == SIG_ERR) {

 fprintf(stderr, "cannot set handler for SIGUSR2\n");

 exit(1);

 }

 /*

 * Now wait for signals to arrive.

 */

 for (;;)

 pause();

}

/*

 * handler - handle a signal.

 */

void

handler(int sig)

{

 /*

 * Print out what we received.

 */

 psignal(sig, "Received signal");

}

% signal3 &

 [1] 12345

UNIX Systems Programming for SVR4

232 FOR PERSONAL, NON-COMMERCIAL USE ONLY

% kill -USR1 12345

Received signal: Signal User 1

% kill -USR2 12345

Received signal: Signal User 2

% kill -USR1 12345

Received signal: Signal User 1

% kill -USR2 12345

Received signal: Signal User 2

% kill 12345

 [1] + Terminated signal3

Signals and System Calls

System calls (functions that call the operating system to perform some task on behalf of the program,

such as transferring data to or from a disk) can be divided into two categories: those that are “slow”

and those that aren't. A slow system call is one that can block forever. This category includes:

 opens of files that block until some condition occurs (e.g., an open of a terminal device that

waits until a modem answers the phone),

 reads from certain types of files, such as pipes, terminal devices, and network connections, that

can block forever if no data is present,

 writes to these same types of files, that can block if the data cannot be immediately accepted,

 the pause system call, which by definition blocks until a signal arrives,

 the wait system call, which blocks until a child process completes,

 certain ioctl operations (see Chapter 12, Terminals),

 selected interprocess communications functions.

Note that operations pertaining to disk input and output are not considered slow system calls.

Although these operations do block the caller temporarily while the data is moved to or from disk,

unless a hardware failure occurs, the operation always returns and unblocks the caller quickly.

In earlier versions of UNIX, if a process caught a signal while it was blocked in one of these slow

system calls, the system call was interrupted. It would return an error, and errno would contain

EINTR. The thinking behind this is that if a signal arrives and the process is catching it, this is
probably significant enough to justify breaking out of the system call.

The problem with interruptible system calls is that programs now have to handle this case explicitly.

If every time a signal arrives a system call can get interrupted, then anywhere the application doesn't
want to be interrupted, it needs code like this:

again:

 if ((n = read(fd, buf, sizeof(buf))) < 0) {

 if (errno == EINTR)

 goto again;

 ...

 }

Signals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 233

In an effort to ease the burden on programmers, 4.2BSD introduced the automatic restarting of

certain system calls. The system calls that are automatically restarted are: ioctl, read, readv,

write, writev, wait, and waitpid. If any of these calls is interrupted by a signal, it is
automatically restarted when the signal handler function returns. Unfortunately, while this alleviated

the need for writing code like that shown above, it broke just about every program that relied on the

system call being interrupted! To solve this new problem, 4.3BSD allowed the programmer to

disable this feature on a per-signal basis.

System V has historically never restarted system calls. However, in SVR4, it is possible to enable

the automatic restart of system calls on a per-signal basis. This preserves backward compatibility

with previous versions, yet allows the programmer access to the sometimes more desirable

automatic restart behavior.

Using Signals for Timeouts

One of the more common uses for signals is the implementation of timeouts. For example, suppose

that a process wants to stop for a short period of time, and then continue. This might be necessary

in a program that prints a large amount of output—if an error occurs, the error message should be

printed and then the program should pause for a moment to give the user time to read the error

message before it disappears from the screen.

To do this, we can use the alarm function:

#include <unistd.h>

unsigned int alarm(unsigned int seconds);

The alarm function tells the operating system to deliver a SIGALRM signal to the process after

seconds seconds have elapsed. There is only one alarm clock for each process; if a second call to

alarm is made before the first one has expired, the clock is reset to the second value of seconds.

If seconds is 0, any previously made alarm request is cancelled. The alarm function returns the

amount of time remaining in the alarm clock from the previous request. Using alarm, we can
implement our pause-after-an-error-message function:

#include <signal.h>

#include <unistd.h>

static void handler(int);

void

stop(int seconds)

{

 signal(SIGALRM, handler);

 alarm(seconds);

 pause();

}

void

handler(int sig)

UNIX Systems Programming for SVR4

234 FOR PERSONAL, NON-COMMERCIAL USE ONLY

{

 return;

}

By calling stop with the number of seconds we wish to pause for, we can allow the user to read an

error message. The function sets up a signal handler for SIGALRM, and then requests, using alarm,

that the operating system send a SIGALRM after seconds seconds have elapsed. It then simply calls

pause to suspend execution until the signal arrives. The signal handler doesn't actually have to do

anything, it just exists so that we can get out of pause.

The stop function, while it certainly works, is terribly naive. It would not be suitable for inclusion
in a system programming library, for example. Some of the problems with this function include:

 The disposition of the SIGALRM signal is altered. If the programmer had already set up his own

disposition for this signal, it is lost once he calls stop. A more polite function would save the

old disposition of the signal (returned by the call to signal), and restore it when the function

returns.

 If the caller has already scheduled an alarm with alarm, that alarm is erased by the call to

alarm within stop. This can be corrected by saving the return value from alarm. If it is less

than seconds, then we should wait only until the previously set alarm expires. If it is greater

than seconds, then before returning, we should reset the alarm to occur at its designated time.

 Finally, there is the problem of what happens when the alarm goes off and the signal handler is

called before we call pause. If this happens, then stop will be aptly named; the program will
stop “forever.”

Because these problems tend to make implementing stop more difficult, especially in a portable
fashion, all versions of UNIX provide a library routine that handles them for you. This routine is

called sleep:

#include <unistd.h>

unsigned int sleep(unsigned int seconds);

This function causes the program to suspend itself for seconds seconds, and then returns. The

number of unslept seconds is returned. This value may be non-zero if another signal arrives while

the process is suspended (since pause returns after the receipt of any signal, not just SIGALRM), or
if the calling program had another alarm scheduled to go off before the end of the requested sleep.

Timeouts are also useful for breaking out of operations that would otherwise block indefinitely. For

example, consider the following code fragment:

printf("Enter a string: ");

fgets(buf, sizeof(buf), stdin);

If the user walks away from the terminal, the program using this code will sit there forever, waiting

for him to come back. But let's suppose that the program can assume a reasonable default value for

the string, and if the user doesn't enter one of his own, the program can use that default. Now all

Signals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 235

that's necessary is to give the user a chance to enter his string, and if he doesn't do so in a certain

amount of time, just continue about our business using the default value. Example 10-4 shows a

program that does just that.

Example 10-4: timeout1

#include <signal.h>

#include <unistd.h>

#include <stdio.h>

int flag = 0;

void handler(int);

int

main(void)

{

 char buf[BUFSIZ];

 char *defstring = "hello";

 /*

 * Set up a timeout of 10 seconds.

 */

 signal(SIGALRM, handler);

 alarm(10);

 /*

 * Prompt for a string and remove the newline.

 */

 printf("Enter a string: ");

 fgets(buf, sizeof(buf), stdin);

 buf[strlen(buf)-1] = '\0';

 /*

 * Turn off the alarm, they typed something.

 */

 alarm(0);

 /*

 * If flag is 1, the alarm went off. Assume default string.

 */

 if (flag == 1) {

 strcpy(buf, defstring);

 putchar('\n');

 }

 /*

 * Display the string we're using.

 */

 printf("Using string \"%s\"\n", buf);

 exit(0);

}

/*

 * handler - catch alarm signal and set flag.

UNIX Systems Programming for SVR4

236 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 */

void

handler(int sig)

{

 flag = 1;

}

% timeout1

Enter a string: howdy

Using string "howdy"

% timeout1

Enter a string:

Using string "hello"

This program uses alarm to set a ten-second timeout, and then prompts for the string. If the user

enters a string, the read (fgets) returns, the alarm is turned off, the flag variable is still 0, and the

program uses the string the user entered. However, if the user doesn't type anything, the alarm goes

off, resulting in a call to handler, which sets flag to 1. The signal handler returns, the test of flag

results in copying the default string value into buf, and the program continues.

Unfortunately, this program doesn't always work. If we try to use it on a system that offers automatic

restarting of system calls, such as 4.2BSD or 4.3BSD, the read from the terminal will be restarted

when handler returns, and we'll be right back where we started. Thus, for portability, we need
some way to get out of the read even on systems that restart it after a signal arrives.

The setjmp and longjmp Functions

If C allowed us to goto a label in another function, we could solve this problem easily. Simply

place a label after the call to fgets, and then instead of doing a return from handler, call goto
with that label as an argument. Unfortunately, we can't do this.

However, UNIX provides two functions that do allow this type of non-local branching:

#include <setjmp.h>

int setjmp(jmp_buf env);

void longjmp(jmp_buf env, int val);

The setjmp function is called first, and saves the current program state in the variable env. When

called directly, setjmp returns 0. In order to return to the point in the program at which we called

setjmp, the longjmp function is used. The first argument, env, is the same one we passed to

setjmp. The second argument, val, is a nonzero value that becomes the return value from setjmp.

This second argument allows us to have more than one longjmp for a single setjmp.

Example 10-5 shows a re-implementation of our timeout program, this time using setjmp and

longjmp.

Signals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 237

Example 10-5: timeout2

#include <signal.h>

#include <unistd.h>

#include <setjmp.h>

#include <stdio.h>

jmp_buf env;

void handler(int);

int

main(void)

{

 char buf[BUFSIZ];

 char *defstring = "hello";

 /*

 * Set up signal handler.

 */

 signal(SIGALRM, handler);

 /*

 * If setjmp returns 0, we're going through the first time.

 * Otherwise, we're going through after a longjmp.

 */

 if (setjmp(env) == 0) {

 /*

 * Set an alarm for 10 seconds.

 */

 alarm(10);

 /*

 * Prompt for a string and strip the newline.

 */

 printf("Enter a string: ");

 fgets(buf, sizeof(buf), stdin);

 buf[strlen(buf)-1] = '\0';

 /*

 * Turn off the alarm; they typed something.

 */

 alarm(0);

 }

 else {

 strcpy(buf, defstring);

 putchar('\n');

 }

 /*

 * Display the string we're using.

 */

 printf("Using string \"%s\"\n", buf);

 exit(0);

}

/*

UNIX Systems Programming for SVR4

238 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 * handler - catch alarm signal and longjmp.

 */

void

handler(int sig)

{

 longjmp(env, 1);

}

% timeout2

Enter a string: howdy

Using string "howdy"

% timeout2

Enter a string:

Using string "hello"

The first time through the program, we call setjmp, which returns 0. This allows us to schedule our
alarm and prompt for the string. If the user types something, we turn off the alarm and continue with

the program. However, if the user doesn't type anything, we eventually receive a SIGALRM signal,

and handler is called. In handler, we call longjmp with the val parameter equal to 1. This

transfers control back to the if in main, and makes it appear to the program that setjmp has just

returned 1. This causes us to take the else branch, and copy in the default string.

This version of timeout will work on any type of UNIX system, regardless of whether or not it

restarts system calls. However, there is still another problem. If the program is used on a system that

provides reliable signals, then recall that when handler is called, SIGALRM will be added to the

process' signal mask. Since we don't actually return from handler, SIGALRM will still be blocked

after the call to longjmp. This means that the process will no longer receive SIGALRM signals.

The 4.2BSD and 4.3BSD versions of setjmp and longjmp handle this case properly, by saving
and restoring the signal mask. However, the SVR4 versions of these functions do not handle this

case. One way to deal with it is to call sigrelse inside handler before doing the longjmp.

Another way is to use the POSIX sigsetjmp and siglongjmp functions; these are described later
in this chapter.

NOTE

Although the timeout mechanism shown here is viable, the select and poll functions
described in Chapter 6, Special File Operations, are more efficient and more flexible for

this type of work.

Interval Timers

4.2BSD introduced a substantially more intricate version of timers and timeouts than those provided

by alarm and sleep, called interval timers. These timers provide millisecond accuracy (subject to

the resolution of the system's on-board clock). Interval timers have been carried forward into SVR4

as well. There are two basic functions for working with interval timers:

#include <sys/time.h>

int getitimer(int which, struct itimerval *value);

Signals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 239

int setitimer(int which, struct itimerval *value,

 struct itimerval *ovalue);

The getitimer function looks up the current settings for the interval timer identified by which,

and returns them in the area pointed to by value. The setitimer function makes the settings for

the interval timer identified by which equal to those in value; if ovalue is non-null, the previous

settings are returned.

There are four interval timers, identified by which:

ITIMER_REAL Decrements in real time (“clock on the wall” time). A SIGALRM signal is
delivered to the process when this timer expires.

ITIMER_VIRTUAL Decrements in process virtual time. This timer runs only when the

process is executing. A SIGVTALRM signal is delivered to the process
when this timer expires.

ITIMER_PROF Decrements in both process virtual time and when the system is

executing on behalf of the process. This timer is designed to be used by

interpreters when statistically profiling the execution of interpreted

programs. A SIGPROF signal is delivered to the process when this timer
expires.

ITIMER_REALPROF Decrements in real time. This timer is designed to be used for real-time

profiling of multithreaded programs. This timer is specific to Solaris 2.x.

A timer is described by a structure of type struct itimerval:

struct itimerval {

 struct timeval it_interval;

 struct timeval it_value;

};

The it_value element of the structure specifies, in seconds and microseconds, the amount of time

remaining until the timer expires. The it_interval element specifies a value to be used in

reloading it_value when the timer expires. Thus, interval timers run over and over again, sending

a signal each time they expire. Setting it_value to zero disables a timer, regardless of the value of

it_interval. Setting it_interval to zero disables a timer after its next expiration (assuming

it_value is non-zero). Example 10-6 shows another implementation of our timeout program using
interval timers.

Example 10-6: timeout3

#include <sys/time.h>

#include <signal.h>

#include <unistd.h>

#include <stdio.h>

int flag = 0;

UNIX Systems Programming for SVR4

240 FOR PERSONAL, NON-COMMERCIAL USE ONLY

void handler(int);

int

main(void)

{

 char buf[BUFSIZ];

 struct itimerval itv;

 char *defstring = "hello";

 /*

 * Set up a timeout of 10 seconds.

 */

 signal(SIGALRM, handler);

 itv.it_interval.tv_usec = 0;

 itv.it_interval.tv_sec = 0;

 itv.it_value.tv_usec = 0;

 itv.it_value.tv_sec = 10;

 setitimer(ITIMER_REAL, &itv, (struct itimerval *) 0);

 /*

 * Prompt for a string and strip the newline.

 */

 printf("Enter a string: ");

 fgets(buf, sizeof(buf), stdin);

 buf[strlen(buf)-1] = '\0';

 /*

 * Turn off the alarm, they typed something.

 */

 itv.it_value.tv_usec = 0;

 itv.it_value.tv_sec = 0;

 setitimer(ITIMER_REAL, &itv, (struct itimerval *) 0);

 /*

 * If flag is 1, the alarm went off. Assume default string.

 */

 if (flag == 1) {

 strcpy(buf, defstring);

 putchar('\n');

 }

 /*

 * Display the string we're using.

 */

 printf("Using string \"%s\"\n", buf);

 exit(0);

}

/*

 * handler - catch alarm signal and set flag.

 */

void

handler(int sig)

{

 flag = 1;

Signals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 241

}

% timeout3

Enter a string: howdy

Using string "howdy"

% timeout3

Enter a string:

Using string "hello"

Advanced Signal Handling

The POSIX standard specifies a substantially more complex mechanism for processing signals.

However, in return for the added complexity, the programmer gains significant new functionality.

The POSIX mechanism is based, in large part, on the signal handling functions introduced in

4.2BSD. However, although the concepts and functionality are similar, the functions and their
arguments are completely new.

The signal processing functions introduced up to this point, while not POSIX-compliant, are quite

adequate for the needs of most programmers. Unless POSIX-compliance is a requirement, in fact,

the functions described to this point are in a sense more desirable, because they allow portability to

older systems. However, because more and more operating systems are being made POSIX-

compliant, and because of the additional functionality offered by the POSIX interface, it is

nevertheless important to be familiar with it.

The POSIX signal interface implements reliable signals.

Signal Sets

Many of the functions in the POSIX signal interface work with signal sets, rather than individual

signals. A signal set is simply a bit mask, with one bit for each signal. If the bit is on, the

corresponding signal is in the set; if the bit is zero, the corresponding signal is not in the set. Signal

sets are called masks in the 4.2BSD signal interface.

Signal sets are described by the data type sigset_t, defined in the include file signal.h. There are
five functions defined for manipulating signal sets:

#include <signal.h>

int sigemptyset(sigset_t *set);

int sigfillset(sigset_t *set);

int sigaddset(sigset_t *set, int sig);

int sigdelset(sigset_t *set, int sig);

int sigismember(sigset_t *set, int sig);

The sigemptyset function initializes the set pointed to by set to exclude all signals defined by

the system; that is, it initializes the set to the empty set.

UNIX Systems Programming for SVR4

242 FOR PERSONAL, NON-COMMERCIAL USE ONLY

The sigfillset function initializes the set pointed to by set to include all signals defined by the

system; that is, it initializes the set to the value “all signals.”

The sigaddset function adds the individual signal identified by sig to the set pointed to by set.

The sigdelset function does the opposite; it removes the individual signal identified by sig from

the set pointed to by set.

The sigismember function returns 1 if the individual signal identified by sig is a member of the

set pointed to by set, or 0 if it is not.

A signal set must be initialized by calling either sigemptyset or sigfillset before it can be
used with any of the other functions. Upon successful completion all of the above functions (except

sigismember) return 0; otherwise –1 is returned and errno is set to identify the error.

The sigaction Function

The principal workhorse of the POSIX signal mechanism is the sigaction function:

#include <signal.h>

int sigaction(int sig, const struct sigaction *act,

 struct sigaction *oact);

The purpose of sigaction is to examine or specify the action to be taken on delivery of a specific

signal, identified by the sig parameter. If the act argument is not null, it points to a structure

specifying the new action to be taken when delivering sig. If the oact argument is not null, it

points to a structure where the action previously associated with sig is to be stored on return from

the call to sigaction.

The struct sigaction structure is defined in signal.h and contains at least the following
members:

struct sigaction {

 void (*sa_handler)(int);

 void (*sa_sigaction)(int, siginfo_t *, void *);

 sigset_t sa_mask;

 int sa_flags;

};

If the SA_SIGINFO flag in the sa_flags element of the structure is not set, the sa_handler

element of the structure specifies the action to be associated with the signal specified in sig. It may

take on any of the values SIG_DFL, SIG_IGN, or SIG_HOLD, or it may be the address of a signal

handler function. In Solaris 2.x, if the SA_SIGINFO flag is set in sa_flags, then the

sa_sigaction element of the structure specifies the signal handling function to be associated with

sig. HP-UX 10.x and IRIX 5.x use the sa_handler field in this case, and do not define the

sa_sigaction field.

The sa_mask element of the structure specifies a set of signals to be blocked while the signal
handler is active; on entry to the signal handler this set of signals is added to the set of signals already

Signals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 243

being blocked when the signal is delivered. Additionally, the signal that caused the handler to be

executed will be blocked, unless the SA_NODEFER flag has been set in sa_flags.

The sa_flags element of the structure specifies a set of flags that can be used to modify the

delivery of the signal identified by sig. The value of sa_flags is formed by a logical or of the

following values:

SA_ONSTACK If set and the signal is caught, and the process has defined an alternate signal

stack with sigaltstack, then the signal will be processed on the alternate
stack. Otherwise, the signal is processed on the process' main stack.

SA_RESETHAND If set and the signal is caught, the disposition of the signal will be reset to

SIG_DFL and the signal will not be blocked on entry to the signal handler.
This allows the old behavior of unreliable signals to be obtained.

SA_NODEFER If set and the signal is caught, the signal will not be automatically blocked by

the kernel while the signal handler is executing. This flag is not available in

HP-UX 10.x.

SA_RESTART If set and the signal is caught, a system call that is interrupted by the execution

of this signal's handler will be restarted by the system when the signal handler

returns. Otherwise, the system call will return with errno set to EINTR. This
flag is not available in HP-UX 10.x.

SA_NOCLDWAIT If set and sig is SIGCHLD, the system will not create zombie processes when

children of the calling process exit. If the calling process later issues a call to

wait, it blocks until all of the calling process' child processes terminate, and

then returns –1 with errno set to ECHILD. This flag, in conjunction with

SA_NOCLDSTOP, allows the System V SIGCLD behavior to be obtained. This
flag is not available in HP-UX 10.x.

SA_NOCLDSTOP If set and sig is SIGCHLD, SIGCHLD will not be sent to the calling process

when its child processes stop or continue. In conjunction with

SA_NOCLDWAIT, this flag allows the System V SIGCLD behavior to be

obtained.

SA_WAITSIG If set and sig is SIGWAITING, then the system will send SIGWAITING to the

process when all of its lightweight processes are blocked. This flag is not

available in HP-UX 10.x.

SA_SIGINFO If not set and the signal identified by sig is caught, the function identified in

sa_handler will be called, with sig as its only argument. If set and the

signal is caught, pending signals of type sig will be reliably queued to the

calling process, and the function identified in sa_sigaction will be called

with three arguments. The first argument is the signal number, sig. The

second argument, if non-null, points to a siginfo_t structure containing the
reason why the signal was generated. The third argument points to a

UNIX Systems Programming for SVR4

244 FOR PERSONAL, NON-COMMERCIAL USE ONLY

ucontext_t structure describing the receiving process' context when the
signal was delivered. This flag is not available in HP-UX 10.x.

(The only one of these values defined by the POSIX standard is SA_NOCLDSTOP.)

On success, sigaction returns 0. On failure, it returns –1 and sets errno to indicate the error. If

sigaction fails, no new signal handler will be installed.

The siginfo_t Structure

If a process is catching a signal, it can ask the system to provide information about why it generated

that signal. If the process is monitoring its child processes, it can ask the system to tell it why a child

process changed state. In either case, this information is provided by means of a siginfo_t
structure:

typedef struct {

 int si_signo;

 int si_errno;

 int si_code;

 union sigval si_value;

 pid_t si_pid;

 uid_t si_uid;

 caddr_t si_addr;

 int si_status;

 long si_band;

} siginfo_t;

The si_signo element of the structure contains the system-generated signal number; when used

with waitid, si_signo is always SIGCHLD.

If si_errno is non-zero, it contains an error number associated with the signal, as defined in the
include file errno.h.

The si_code element of the structure contains a code identifying the cause of the signal. If the

value of si_code is SI_NOINFO, then only the si_signo element of the structure is meaningful,
and the value of all other elements of the structure is undefined.

If the value of si_code is less than or equal to zero, then the signal was generated by a user process

(using one of the functions kill, _lwp_kill, sigsend, abort, or raise). If this is the case, then

the si_pid element of the structure will contain the process-id of the process that sent the signal,

and the si_uid element will contain the user-id of the process that sent the signal. When si_code
is less than or equal to zero, it will contain one of the following values:

SI_USER The signal was sent by one of the functions kill, sigsend, raise, or abort.

SI_LWP The signal was sent by _lwp_kill, a function used with lightweight processes.
This code is available only in Solaris 2.x.

SI_QUEUE The signal was sent by the sigqueue function, used in real-time programming.

Signals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 245

SI_TIMER The signal was generated by the expiration of a timer set with the

timer_settime function, used in real-time programming. This code is
available only in Solaris 2.x.

SI_ASYNCIO The signal was generated by the completion of an asynchronous input/output

request. This code is available only in Solaris 2.x.

SI_MESGQ The signal was generated by the arrival of a message on an empty message

queue (used in real-time programming). This code is available only in Solaris

2.x.

In the latter four cases, the si_value element of the structure will contain the application-specified
value that was passed to the signal-catching function when the signal was delivered.

If si_code contains a value greater than zero, it indicates the signal-specific reason why the system
generated the signal, as shown in Table 10-1.

Table 10-1: Values of si_code

si_signo si_code Reason

SIGILL ILL_ILLOPC illegal opcode

ILL_ILLOPN illegal operand

ILL_ILLADDR illegal addressing mode

ILL_ILLTRP illegal trap

ILL_PRVOPC privileged opcode

ILL_PRVREG privileged register

ILL_COPROC co-processor error

ILL_BADSTK internal stack error

SIGFPE FPE_INTDIV integer division by 0

FPE_INTOVF integer overflow

FPE_FLTDIV floating-point divide by 0

FPE_FLTOVF floating-point overflow

FPE_FLTUND floating-point underflow

FPE_FLTRES floating-point inexact result

FPE_FLTINV invalid floating-point operation

FPE_FLTSUB subscript out of range

SIGSEGV SEGV_MAPERR address not mapped to object

SEGV_ACCERR invalid permissions for mapped object

SIGBUS BUS_ADRALN invalid address alignment

BUS_ADRERR non-existent physical address

BUS_OBJERR object-specific hardware error

SIGTRAP TRAP_BRKPT process breakpoint

UNIX Systems Programming for SVR4

246 FOR PERSONAL, NON-COMMERCIAL USE ONLY

si_signo si_code Reason

TRAP_TRACE process trace trap

SIGCHLD CLD_EXITED child has exited

CLD_KILLED child was killed

CLD_DUMPED child terminated abnormally

CLD_TRAPPED traced child has trapped

CLD_STOPPED child has stopped

CLD_CONTINUED stopped child has continued

SIGPOLL POLL_IN data input available

POLL_OUT output buffers available

POLL_MSG input message available

POLL_ERR I/O error

POLL_PRI high priority input available

POLL_HUP device disconnected

In addition, other information may be provided for certain signals.

If the signal is SIGILL or SIGFPE, the si_addr element of the structure contains the address of the

faulting instruction. If the signal is SIGSEGV or SIGBUS, si_addr contains the address of the

fauling memory reference. (For some implementations the exact value of si_addr may not be

available; in that case, si_addr is guaranteed to be on the same page as the faulting instruction or
memory reference.)

If the signal is SIGCHLD, then the si_pid element of the structure will contain the process-id of the

described child, and si_status will contain either the child's exit status (if si_code is

CLD_EXITED) or the signal that caused the child to change state.

If the signal is SIGPOLL, the si_band element of the structure will contain the band event if

si_code is equal to POLL_IN, POLL_OUT, or POLL_MSG.

Other Functions

Although the sigaction function is the most significant part of the POSIX signal mechanism,

there are also a number of other functions defined as well. Some of these functions are simply
souped-up versions of things we've already covered, while others are entirely new.

Sending Signals

Although the kill function can still be used for sending signals to processes, SVR4 also defines
two new functions that give the programmer somewhat more control over the set of processes the

signal is delivered to:

#include <sys/types.h>

#include <sys/signal.h>

#include <sys/procset.h>

Signals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 247

int sigsend(idtype_t idtype, id_t id, int sig);

int sigsendset(procset_t *psp, int sig);

The sigsend function sends the signal specified by sig to the process or set of processes identified

by idtype and id. If sig is zero, error checking is performed but no signal is actually sent. The

legal values for idtype and their meanings are:

P_PID The signal will be sent to the process with process-id id.

P_PGID The signal will be sent to any process with process group-id id (see Chapter 11,

Processes).

P_SID The signal will be sent to any process with session-id id (see Chapter 11, Processes).

P_UID The signal will be sent to any process with effective user-id id.

P_GID The signal will be sent to any process with effective group-id id.

P_CID The signal will be sent to any process with scheduler class-id id. This value is not

available in HP-UX 10.x.

P_ALL The signal will be sent to all processes; id is ignored.

If id is P_MYPID, the value of id is taken to be the calling process' process-id.

The sigsendset function provides an interesting way to send a signal to a set of processes. The

signal is specified by sig, and the set of processes is specified by psp. The psp argument is a

pointer to a structure of type proceset_t:

typedef struct {

 idop_t p_op;

 idtype_t p_lidtype;

 id_t p_lid;

 idtype_t p_ridtype;

 id_t p_rid;

} procset_t;

The p_lidtype and p_lid elements specify one set of processes (the “left” set), and the

p_ridtype and p_rid elements specify another set (the “right” set). The idtypes and ids are

specified in the same manner as for sigsend, described above.

The p_op element of the structure identifies an operation to be performed on the two sets of

processes; the results of this operation are then used as the set of processes to which sig is delivered.

The values for p_op are:

POP_DIFF Set difference. Processes in the left set that are not in the right set.

POP_AND Set intersection. Processes in both the left and right sets.

POP_OR Set union. Processes in either the left set, right set, or both.

UNIX Systems Programming for SVR4

248 FOR PERSONAL, NON-COMMERCIAL USE ONLY

POP_XOR Set exclusive-or. Processes in either the left or right set, but not both.

On success, sigsend and sigsendset return 0. On failure, they return –1 and errno will contain
the reason for failure.

With both sigsend and sigsendset, the process with process-id 0 is always excluded, and the

process with process-id 1 is excluded for all values of idtype except P_PID.

Also in both cases, the real or effective user-id of the calling process must match the real or effective

user-id of the receiving process, unless the effective user-id of the sending process is that of the

super-user, or sig is SIGCONT and the sending process has the same session-id as the receiving

process.

Waiting for Signals to Occur

The POSIX standard provides two new functions for stopping a process until a signal occurs. The

pause and sigpause functions, described earlier, may also be used for this purpose (however,

sigpause should not be used with the POSIX signal functions, since it is part of a different signal
mechanism).

#include <signal.h>

int sigsuspend(const sigset_t *set);

int sigwait(sigset_t *set);

The sigsuspend function replaces the process' signal mask with the set of signals pointed to by

set, and then suspends the process until delivery of a signal whose action is either to execute a

signal-catching function or to terminate the process. On return, the process' signal mask is restored

to the set that existed before the call to sigsuspend.

The sigwait function selects a signal from the set pointed to by set that is pending for the process.

If no signals in set are pending, then sigwait blocks until a signal in set becomes pending. The

selected signal is cleared from the set of signals pending for the process, and the number of the

signal is returned. The selection of a signal in set is independent of the process' signal mask. This

means that a process can synchronously wait for signals that are being blocked by the signal mask.

Both sigsuspend and sigwait return –1 and set errno if an error occurs.

Printing Signal Information

The psginal function, described earlier, can still be used with the POSIX signal functions to print

information about signals. SVR4 also provides a second function, for use with the siginfo_t
structure:

#include <siginfo.h>

void psiginfo(siginfo_t *pinfo, char *s);

Signals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 249

Like psignal, psiginfo prints the string pointed to by s, followed by a colon, followed by a

string describing the signal (pinfo->si_signo). It then prints a description of the reason the signal

was delivered, as indicated by the siginfo_t structure pointed to by pinfo.

The psiginfo function is not available in HP-UX 10.x.

Example 10-7 shows another version of our signal program that demonstrates the use of psiginfo.

Example 10-7: signal4

#include <signal.h>

#include <stdio.h>

void handler(int, siginfo_t *, void *);

int

main(void)

{

 struct sigaction sact;

 /*

 * Set up the sigaction structure. We want to get the

 * extra information about the signal, so set SA_SIGINFO.

 */

 sact.sa_sigaction = handler;

 sact.sa_flags = SA_SIGINFO;

 sigemptyset(&sact.sa_mask);

 /*

 * Send SIGUSR1 and SIGUSR2 to the handler function.

 */

 if (sigaction(SIGUSR1, &sact, (struct sigaction *) NULL) < 0) {

 fprintf(stderr, "cannot set handler for SIGUSR1\n");

 exit(1);

 }

 if (sigaction(SIGUSR2, &sact, (struct sigaction *) NULL) < 0) {

 fprintf(stderr, "cannot set handler for SIGUSR2\n");

 exit(1);

 }

 /*

 * Now wait for signals to arrive.

 */

 for (;;)

 pause();

}

/*

 * handler - handle a signal.

 */

void

handler(int sig, siginfo_t *sinf, void *ucon)

{

 /*

UNIX Systems Programming for SVR4

250 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 * Print out what we received.

 */

 psiginfo(sinf, "Received signal");

}

% signal4 &

 [1] 12345

% kill -USR1 12345

Received signal: Signal User 1 (from process 678)

% kill -USR2 12345

Received signal: Signal User 2 (from process 678)

% kill -USR1 12345

Received signal: Signal User 1 (from process 678)

% kill -USR2 12345

Received signal: Signal User 2 (from process 678)

% kill 12345

 [1] + Terminated signal4

Manipulating the Signal Mask

The POSIX standard also specifies the way in which a process may examine and change its signal

mask. This method is similar to, but less cumbersome than, the sighold/sigrelse method offered

by SVR3.

#include <signal.h>

int sigprocmask(int how, const sigset_t *set, sigset_t *oset);

The sigprocmask function is used both for examining and changing the signal mask. If set is

non-null, then the signal set it points to modifies the signal mask according to the value of how:

SIG_BLOCK The signal set pointed to by set is added to the current signal mask.

SIG_UNBLOCK The signal set pointed to by set is removed from the current signal mask.

SIG_SETMASK The signal set pointed to by set replaces the current signal mask.

If oset is non-null, the previous value of the signal mask is stored in the area it points to. If set is

null, the value of how is ignored and the signal mask is not changed; this enables the process to

inquire about its current signal mask.

If there are any pending unblocked signals after the call to sigprocmask, at least one of those

signals will be delivered to the process before sigprocmask returns.

On success, sigprocmask returns 0. On failure, it returns –1 and errno will contain the reason for
failure.

Examining the List of Pending Signals

POSIX provides the sigpending function to obtain the list of signals a process has pending:

#include <signal.h>

Signals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 251

int sigpending(sigset_t *set);

The function returns the list of signals that have been sent to the process but are being blocked from

delivery by the signal mask, and stores them in the area pointed to by set. On success, sigpending

returns 0; if it fails, it returns –1 and stores the reason for failure in errno.

The setjmp and longjmp Functions, Revisited

Recall that, when we discussed the setjmp and longjmp functions, we mentioned that they had

one particularly annoying problem. Because the longjmp function is usually called from within a
signal handler, and transfers control out of the signal handler without the handler ever returning, the

signal that originally caused the handler to be invoked remains blocked in the process' signal mask.

To get around this problem, POSIX defines two new functions:

#include <setjmp.h>

int sigsetjmp(sigjmp_buf env, int savemask);

void siglongjmp(sigjmp_buf env, int val);

These two functions are identical to setjmp and longjmp, except that they use a sigjmp_buf data

type instead of a jmp_buf data type, and sigsetjmp takes an additional argument. If the value of

savemask is non-zero, then sigsetjmp saves the process' signal mask and scheduling parameters,

and they will be restored when siglongjmp is called.

The POSIX signal mechanism is substantially more powerful than either the Version 7 or SVR3

mechanisms, particularly for complex applications in which signals must be blocked or detailed

information about why a signal was delivered is needed. However, as mentioned before, it's

somewhat more than the average programmer usually needs.

Porting Berkeley Signals to SVR4

Berkeley signals are both a blessing and a curse. They are a blessing in the sense that they introduced

several important concepts such as reliable signals and restartable system calls. They are a curse

because they are different from every other version of UNIX.

4.2BSD was the first version of UNIX to overhaul the signal mechanism; it is here that the concepts

of reliable signals and restartable system calls were both introduced. In this section, we examine the

4.2BSD and 4.3BSD signal mechanisms in detail, as they pertain to porting programs that use them

to SVR4.

It is important to understand that the way in which Berkeley implemented the new signal mechanism

not only provided a number of new functions that will be described shortly, but it also changed the

behavior of the standard signal function. Thus, any program being ported from 4.2BSD or 4.3BSD
to SVR4 will need to have its signal handling code examined, not just those programs that use the

new functions.

UNIX Systems Programming for SVR4

252 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Fortunately however, most programmers avoided the new Berkeley signal functions, and continued

to simply use signal. This means that they did not take advantage of any of the special features,
and thus, the porting effort will (usually) be simple. The only thing to remember in this case is that

in Berkeley UNIX, the signal function provides reliable signals, while in SVR4 it does not.

However, in SVR4, the sigset function does provide reliable signals. So, most programs that use

signal can be ported from Berkeley UNIX simply by placing the line

#define signal sigset

at the top of the program. The only exception to this rule occurs when the program handles SIGCHLD;

recall that the sigset function implements the System V semantics for this signal. In this case, the

program must be modified to use sigaction.

For those programs that do make use of the Berkeley signal functions, the rest of this section

provides a basic description of these functions and how they work.

The sigvec Function

The primary function for handling signals in Berkeley UNIX is called sigvec:

#include <signal.h>

int sigvec(int sig, struct sigvec *vec, struct sigvec *ovec);

The function sets the disposition for the signal identified in sig to the information provided in vec

if it is non-null; if ovec is non-null, the previous disposition information is returned.

The struct sigvec structure is defined this way in 4.2BSD:

struct sigvec {

 int (*sv_handler)(int, int, struct sigcontext *);

 int sv_mask;

 int sv_onstack;

};

The sv_handler element of the structure is a pointer to the handler function; it may also take on

the values SIG_DFL and SIG_IGN. The sv_mask element specifies a signal mask (see below) of

signals that should be blocked for the duration of the signal handler. The sv_onstack element, if

non-zero, indicates that the signal should be handled on an alternate signal stack instead of the

process' main stack.

In 4.3BSD, the structure was changed to:

struct sigvec {

 int (*sv_handler)(int, int, struct sigcontext *);

 int sv_mask;

 int sv_flags;

};

Signals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 253

The sv_flags element could take on the values SV_ONSTACK to indicate the alternate signal stack,

and SV_INTERRUPT, to specify that the signal should interrupt system calls, rather than restart them.

Generally speaking, if sv_mask and sv_flags (sv_onstack) are not used, calls to sigvec can

be replaced with analagous calls to sigset. If the sv_mask element of the structure is used,

sigaction should be used, with the sa_mask element of the sigaction structure. If the alternate

signal stack is used (which it rarely, if ever, was), the sigaction function must be used, in

conjunction with sigaltstack (not described in this book).

Handler Calling Conventions

Signal handlers in Berkeley UNIX use three arguments:

int (*handler)(int sig, int code, struct sigcontext *context);

The sig parameter is the signal number, just as in all other versions of UNIX. The code parameter

related the signal to a hardware trap; this information is provided by SVR4 in the si_info element

of the siginfo_t structure. The context parameter describes the program context to be restored

on return from the signal handler; this information can be obtained by using the sa_sigaction

handler with sigaction.

Signal Masks

Berkeley UNIX provides the concept of signal masks just as SVR4 does. A signal mask defines the

set of signals currently blocked from devlivery. If the ith bit in the mask is 1, then signal number i

is blocked. The ith bit is set by oring in a 1 shifted left i–1 places:

1 << (i-1)

4.3BSD defines a macro, sigmask, that performs this computation:

#include <signal.h>

int sigmask(int sig);

Calls to sigmask should be replaced with calls to sigemptyset, sigfillset, sigaddset, and

sigdelset.

To install a new signal mask, the sigsetmask function is used:

#include <signal.h>

int sigsetmask(int mask);

The previous signal mask is returned. This call can be replaced with a call to sigprocmask with

SIG_SETMASK as the first argument.

To add a set of signals to the current signal mask, the sigblock function is used:

UNIX Systems Programming for SVR4

254 FOR PERSONAL, NON-COMMERCIAL USE ONLY

#include <signal.h>

int sigblock(int mask);

The previous mask is returned. This call can be replaced with a call to sigprocmask with

SIG_BLOCK as the first argument, or with a call to sighold.

Waiting for Signals

Berkeley UNIX also provides a sigpause function:

#include <signal.h>

int sigpause(int mask);

The new mask is installed and the program blocked until a signal occurs. When sigpause returns,

the old signal mask is restored. Note that this behavior is identical to the POSIX sigsuspend

function, but that it is not the same as the SVR3 sigpause function.

The setjmp and longjmp Functions

In Berkeley UNIX, the setjmp and longjmp functions do save and restore the signal mask, unlike

the SVR4 version. Calls to setjmp and longjmp should be replaced with calls to sigsetjmp and

siglongjmp, respectively.

Chapter Summary

In this chapter, we learned how to process signals, and how to use signals to implement important

functions such as timeouts. When writing systems-level programs, handling signals is almost always

required to some extent, and knowledge of the material in this chapter is vital. In the next chapter
we will learn how to handle processes, including how to implement job control. Job control

demonstrates many of the complex interactions between processes and signals that the systems

programmer sometimes has to deal with.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 255

Chapter 11
Processes

The UNIX operating system, unlike the operating systems on most personal computers, is a

multiuser, multitasking operating system. The first term, multiuser, means that more than one person

can use the system at the same time to get work done. The second term, multitasking, means that

the system as a whole, and each user individually, can do more than one thing at a time. Contrast

this with a personal computer, in which generally there may be only one user at a time, and that

person may only use one program at a time.

But, this is all an illusion. On most computers, there is only one processor, and that processor can

only do one thing at a time. (Some newer systems have more than one processor, but each processor

can still only do one thing at a time.) The UNIX system creates the illusion that the computer is

doing several things at once by timesharing the processor(s). The processor spends a few

microseconds doing one task, and then switches to another. It spends a few microseconds there, and

then switches to still another task. Since microseconds are too short for most humans to deal with,

it appears that all these tasks are taking place simultaneously. This scheme usually works well,

because while some tasks are blocked (for example, waiting on the user to type something), other

tasks can be processed. It only breaks down when there are so many tasks waiting to be serviced

that the time between those little several-microsecond periods when the processor works on the task

begins to grow. Then the system seems slow, and everyone starts to complain.

Processes are what the UNIX system uses to split work up into tasks. Each task is placed into a

separate process, and the operating system timeshares the processor among all currently active

processes. When a new task is started, for example by a user executing a command, a new process

is created. When the task is finished, the process associated with that task is destroyed. Many

processes stand alone as individual tasks. Other processes however, may be interrelated by being

subtasks of a larger task. In this chapter, we will examine processes in detail—how to create them,

how to destroy them, and how to control them. We will also examine the interrelationships between

processes, and how these can be used to provide some interesting features that would otherwise be

impossible.

UNIX Systems Programming for SVR4

256 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Process Concepts

In order to discuss the functions used for manipulating processes, it is necessary to first explain a

number of concepts. These concepts all relate to one another in important ways, and must be

understood in order to write programs that handle processes correctly.

Process Identifiers

Each process in the system has a unique process identifier, or process-id. The process-id is a positive

integer, usually in the range from 0 to about 32,000. Each time a new process is created, the
operating system assigns it the next sequential, unused process-id. When the maximum process-id

is reached, the numbers wrap around to zero again. The process-id is the only well-known (i.e.,

accessible outside the operating system itself) identifier of a process. A process can determine its

process-id by using the getpid function:

#include <sys/types.h>

#include <unistd.h>

pid_t getpid(void);

The process-id is actually used as an index into an array of structures of type struct proc (see

the include file sys/proc.h) called the process table. Each array element in the process table describes

one process. Each struct proc structure contains all of the state information about a process,

including its real and effective user- and group-ids, its signal mask, its list of pending signals, the

command name, the amount of processor time used so far, pointers into the open file table, and all
sorts of other information.

New processes come into being when existing processes create them. When a process creates

another process, the new process is said to be a child of the existing process. Similarly, the existing

process is said to be the parent of the new process. The parent process-id of a process is the process-

id of the process that created it. A process can learn its parent's process-id (usually, see below) by

using the getppid function:

#include <sys/types.h>

#include <unistd.h>

pid_t getppid(void);

System Processes

Generally, there is no direct correspondence between process-ids and programs. When a program is

executed, it just gets the next available process-id. Execute the program more than once, and it will
have a different process-id each time. However, there are a few, usually less than five, special

processes that always have the same process-id. These processes are called system processes.

The process with process-id 0 is the system scheduler, usually called sched or swapper. It is

responsible for allocating those few-millisecond time slices to all the other processes on the system.

The scheduler is not a command in the usual sense; there is no corresponding program on the disk

for it. It is instead a part of the operating system kernel itself.

Processes

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 257

The process with process-id 1 is the init process. This program is responsible for bringing the system

up after a reboot. It executes the /etc/rc files, and brings the system to a specific state (usually

multiuser operation). The init process is a regular user-level process (i.e., it's a command that can

be executed). After starting up the system, it stays around to perform some process-related

bookkeeping tasks, described below. If init is killed (or otherwise exits), the system will shut down.

On modern versions of UNIX that support virtual memory, the process with process-id 2 is usually
the page daemon, called pagedaemon or pageout. This is a kernel process like the scheduler, and is

responsible for moving unused pages of memory out to disk so that other programs may use them.

Termination Status

Eventually, most processes finish whatever they're intended to do, and terminate. There are three

ways for a process to terminate normally:

1. Executing a return from the main function.

2. Calling the exit function (described later in this chapter). This function is defined by ANSI C,
and handles calling any exit handlers that have been defined, and closing all Standard I/O

Library streams.

3. Calling the _exit function. This function is not usually called directly, but is called by exit.
It is responsible for cleaning up operating system-specific resources used by the process; since

ANSI C is operating system-independent, it cannot specify these functions.

There are also two ways in which a process can terminate abnormally:

1. The program can call the abort function (see Chapter 16, Miscellaneous Routines).

2. The program can receive a signal from itself, from another process, or from the operating

system. The signal can cause the program to terminate, sometimes with an accompanying core

dump.

When a program terminates, the operating system provides a termination status to the process'

parent. The termination status indicates whether the process terminated normally or abnormally. If

the process terminated normally, the termination status provides the parent process with an exit

status for the process; the exit status is used by some programs to indicate success, failure, and other

events. If the process terminated abnormally, the termination status includes information about how

the program terminated (what signal it received) and whether or not a core dump was produced.

The termination status of a child process is returned to the parent process when the parent calls the

wait function, or one of its derivatives. These functions are described later in the chapter. The
important point to understand here is that it is up to the parent to ask for the termination status of a

child—it can do this as soon as the child terminates, several minutes or hours later, or even not at

all.

Zombie Processes

Since it is up to the parent process to request the termination status of a child process, what happens

when the child process terminates? The system can't keep the entire process around; resources such

as memory, open files, process table slots (process-ids), and so forth would rapidly be exhausted.

UNIX Systems Programming for SVR4

258 FOR PERSONAL, NON-COMMERCIAL USE ONLY

On the other hand, it can't get rid of the process entirely, either, because then the termination status

would not be available to return to the parent process.

To resolve this dilemma, UNIX compromises. When a process terminates, the operating system

frees up all of the resources used by the process except the process table entry. The termination

status of the process is stored in the process table entry, where it can be retrieved later by the parent.

When the parent process finally does issue a call to wait or a similar function, the termination status
is returned and the process table slot can be freed for reuse.

During the time between when a process terminates and the parent picks up its termination status,

the process is called a zombie process. All of its resources have been freed except for the process
table entry, and thus it is in some sense dead, but in another sense still walking around in the system.

Zombie processes are usually labeled as “<defunct>,” in the output from the ps command and have

a process status of “Z.”

Orphaned Processes

When a process terminates before its parent, it becomes a zombie process until the parent picks up

its termination status. But what happens when the parent terminates before the child process? This
is not an abnormal event; in fact, it happens all the time. Does the child process still have a parent?

What happens if the child calls getppid?

UNIX handles this situation by arranging for the init process to become the new parent process of
any process whose real parent terminates. When a process terminates, the operating system goes

through the list of all active processes, looking for any whose parent is the terminating process. If it

finds any, it sets those processes' parent process-id to 1 (the init process).

What happens when a process that has been inherited by init terminates? Since its original parent

is no longer around to pick up its termination status, does it become a zombie forever? Fortunately,

no. One of the functions of the init process is to call one of the wait functions each time one of its
child processes terminates. In this way it picks up these orphaned processes' termination statuses (it

simply discards them), and keeps the system from becoming clogged with zombie processes.

Process Groups

In addition to having a process-id, each process is also a member of a process group. A process

group is a collection of one or more processes, and is identified by a unique positive integer called

a process group-id. A process may obtain its process group-id by calling the getpgrp function:

#include <sys/types.h>

#include <unistd.h>

pid_t getpgrp(void);

The processes in a process group are usually related in some way. Process groups were introduced

in Berkeley UNIX to implement job control. Shells that perform job control, such as the C shell or

the Korn shell, usually place all of the commands in a pipeline into a single process group. For

example, in the command

Processes

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 259

% eqn myreport | tbl | troff | psdit | lp

each program (eqn, tbl, troff, psdit, and lp) would be running as a separate process with a separate

process-id (e.g., 123, 124, 125, 126, and 127). However, all five processes would have the same

process group-id, e.g., 127. This allows the shell to treat those five processes as a single entity (a
“job”) for purposes of stopping them, continuing them, and moving them between the foreground

and the background.

The Process Group Leader

Each process group starts out with a process group leader. This is the process whose process group-

id is equal to its process-id. It is, of course, possible for the process group leader to terminate at any

time. The process group however, remains in existence until the last process in that process group
terminates. When a process group is created as the result of a pipeline, the last process in the pipeline

is usually the process group leader. There is no deep and meaningful reason for this; it is simply a

side effect of the way pipelines are created.

Sessions

The POSIX standard introduced still another idea, called a session. A session is a collection of one

or more process groups. The idea is that while each process group is a group of related processes
(such as a pipeline), a session is a group of related process groups (such as all the jobs currently

being run by the user logged in on a particular terminal). Sessions exist purely for the purposes of

job control, and exist mainly to fix some deficiencies in the Berkeley job control implementation

(which only used process groups).

The Session Leader

When a process creates a new session, it becomes the leader of that session. The session leader has
certain privileges that other members of the session do not (see below).

in the POSIX standard, there is no concept of a session-id like that of the process-id and process

group-id. However, SVR4 defines such an identifier; it is equal to the process-id of the session

leader. A process can be identified as a session leader if its process-id, process group-id, and session-

id are all equal. To make this identification process easier, SVR4 provides the getsid function:

#include <sys/types.h>

pid_t getsid(void);

This function is not part of the POSIX standard.

The Controlling Terminal

A controlling terminal can be associated with a session; in the case of interactive logins, the

controlling terminal is usually the device on which the user is logged in. When a session is initially

created, it has no controlling terminal. A controlling terminal is allocated for a session when the

session leader opens a terminal device that is not already associated with a session, unless the session

leader supplies the O_NOCTTY flag on the call to open (see Chapter 3, Low-Level I/O Routines). The

UNIX Systems Programming for SVR4

260 FOR PERSONAL, NON-COMMERCIAL USE ONLY

session leader that establishes the connection to the controlling terminal is called the controlling

process.

When a session has a controlling terminal associated with it, a number of interesting things can

happen. At all times, the controlling terminal is associated with a process group. When one of the

session's process groups has the same process group-id as that of the controlling terminal, that

process group is said to be in the foreground. If the process group's process group-id is not the same
as that of the controlling terminal, the process group is said to be in the background. The foreground

or background status of a process group has a number of interesting effects.

Whenever the interrupt key (usually CTRL-C) or quit key (usually CTRL-\) is pressed on the

controlling terminal, a signal (either SIGINT or SIGQUIT) is delivered to all processes in the
foreground process group. If job control is enabled, pressing the suspend key (usually CTRL-Z) on

the controlling terminal sends a SIGTSTP signal to all processes in the foreground process group.

Whenever a modem disconnect on the controlling terminal is detected by the system, the SIGHUP

signal is sent to the controlling process (session leader).

When job control is enabled, only a process in the foreground process group may read from the

terminal. Processes in background process groups will be stopped with a SIGTTIN signal if they

attempt to read from the controlling terminal. If the TOSTOP mode is set on the controlling terminal
(see Chapter 12, Terminals), only processes in the foreground process group may write to the

controlling terminal. If a process in a background process group attempts to write to the controlling

terminal, it will be stopped with a SIGTTOU signal.

Job control shells such as the C shell and Korn shell use the controlling terminal to implement job

control. In order to move a job into the foreground, the shell changes the process group of the

controlling terminal to the process group-id of that job, and, if necessary, starts the job running again

by sending the processes in that process group a SIGCONT signal. Each time a different job is placed

into the foreground, the controlling terminal's process group is changed to the process group of that

job.

Sometimes, a program wishes to talk to the controlling terminal, regardless of whether or not the

standard input or standard output have been redirected. For example, the passwd program insists on

reading a new password from the keyboard; it does not want to read it from a file (if the password

is stored in a file, it is probably not secret any more). When this is necessary, the process can open

the special file /dev/tty. This special file name is translated within the kernel to refer to the

controlling terminal for the process. If the process does not have a controlling terminal, an open of

/dev/tty will fail.

Priorities

The UNIX scheduler is responsible for allocating slices of the processor's time to each process in

the system. In order to do this in an equitable manner, the scheduler computes a priority for each

process in the system. These priorities are recalculated frequently based on a complex formula that

takes into account such things as the amount of memory the process is using, the amount of input

and output it is performing, how long it's been since the last time the process got any processor time,

and so forth. The calculation varies between different versions of UNIX, but the end result is the

Processes

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 261

same—an ordered list of processes, sorted by priority. Generally speaking, processes with a high

priority execute more often and/or for longer time slices.

A process cannot set or change its priority; this calculation is performed by the operating system.

However, the process is allowed to influence the priority calculation by a little bit. One of the

parameters of the scheduler's priority calculation is a process' nice value. This is a number that

ranges from 0 to 40, with the default value being 20. If a process wishes to lower its priority (allow
other processes to take precedence), it increases its nice value to something between 20 and 40.

(This is where the name “nice” comes from—large jobs are supposed to be nice to the system by

increasing their nice value.) If a process wishes to raise its priority (take precedence over other

processes), it decreases its nice value to something between 0 and 20. Usually, any process may

increase its nice value (give itself a worse priority), but only processes with super-user privileges

may lower their nice values. The nice value is changed with the nice function:

#include <unistd.h>

int nice(int incr);

When called, nice adds incr, which may be positive or negative, to the process' current nice value.

It should be noted here that in colloquial speech, the term “priority” is usually used when referring

to the nice value, even though this is not technically correct. Increasing a process' “priority” refers
to reducing its nice value, while lowering its “priority” refers to increasing its nice value.

Program Termination

As described above, when a process terminates the operating system saves the termination status of

that process. The termination status can be retrieved later by the parent process (we will describe

how to do this later in the chapter). As described so far, the termination status contains information

about whether the process terminated normally or abnormally, and if it terminated abnormally, the

reason for termination.

When a process terminates normally, it may optionally return an exit status to the parent process.

The exit status is a small integer value that can communicate information about how things went.

Convention dictates that a zero exit status be used to indicate that everything went fine, no errors

occurred. A non-zero exit status usually indicates that something went wrong, although this is not

always the case. It is up to the programmer to define the meanings for non-zero exit statuses. Many

programs simply use exit status 1 to indicate something went wrong, without being more specific

(error messages usually supplement this). But some programs have several different exit statuses,

with special meaning assigned to each one. For example, the grep utility exits with status 0 if

matches were found, status 1 if no matches were found, and status 2 if the pattern specification was

erroneous. For an example of even more special meanings, look at the manual page for the fsck

program.

A program provides an exit status to the parent process by using the exit function:

#include <stdlib.h>

UNIX Systems Programming for SVR4

262 FOR PERSONAL, NON-COMMERCIAL USE ONLY

void exit(int status);

The status argument is the exit status. The function sets the exit status, and then causes the

program to terminate.

The exit function is actually a library routine defined by ANSI C that closes all the Standard I/O

Library streams the process has open, and then calls another function, _exit. The _exit function
is a system call, and it is the entity that is actually reponsible for causing the process to terminate.

The _exit function does a number of things, including closing all the process' open files, sending

a SIGCHLD signal to the parent process, setting the process' child processes' parent process-ids to 1,
freeing up any interprocess communication resources used by the process, and so forth. The reason

that these chores are not performed by exit itself is that ANSI C does not specify operating system-

dependent functionality, and thus cannot specify everything exit should do.

The exit function exists in all versions of UNIX. However, for those versions that support ANSI

C, some additional functionality is provided. The programmer is allowed to register up to 32

functions to be called automatically at the time the program exits, either by calling exit or by

returning from main. These functions are registered by using the atexit function:

#include <stdlib.h>

int atexit(void (*func)(void));

Each function registered will be called, with no arguments, when the program exits. The functions

will be called in the reverse order of their registration. Again, this functionality is only available in

ANSI C.

Simple Program Execution

The simplest way to execute a program from within your program is to use the system function:

#include <stdlib.h>

int system(const char *string);

The system function uses the Bourne shell (/bin/sh) with its -c option to execute the shell command

contained in string, waits for the command to complete, and then returns the termination status

(which includes the exit status) of the command. Example 11-1 shows a small program that

demonstrates the use of system.

Example 11-1: system

#include <stdlib.h>

#include <stdio.h>

struct {

Processes

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 263

 char *abbrev;

 char *fullname;

} days[] = {

 "Sun", "Sunday",

 "Mon", "Monday",

 "Tue", "Tuesday",

 "Wed", "Wednesday",

 "Thu", "Thursday",

 "Fri", "Friday",

 "Sat", "Saturday",

 0, 0

};

int

main(void)

{

 int i;

 int status;

 char command[BUFSIZ];

 /*

 * For each day, construct a command.

 */

 for (i=0; days[i].abbrev != NULL; i++) {

 /*

 * Run the date command, and use grep to search for

 * the day's abbreviated name. Redirect the output

 * to /dev/null; we'll use the exit status to find

 * what we want.

 */

 sprintf(command, "date | grep %s > /dev/null", days[i].abbrev);

 /*

 * Run the command. The termination status is returned

 * in status.

 */

 status = system(command);

 /*

 * The exit status is in the second byte of the

 * termination status.

 *

 * Grep returns 0 if a match was found, 1 if no

 * match was found, and 2 if an error occurred.

 */

 switch ((status >> 8) & 0xff) {

 case 0:

 printf("Today is %s.\n", days[i].fullname);

 break;

 case 1:

 printf("Today is not %s.\n", days[i].fullname);

 break;

 case 2:

 printf("Error in pattern specification.\n");

 exit(1);

 }

 }

UNIX Systems Programming for SVR4

264 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 /*

 * Exit with a status of 0, indicating that

 * everything went fine.

 */

 exit(0);

}

% system

Today is not Sunday.

Today is not Monday.

Today is not Tuesday.

Today is Wednesday.

Today is not Thursday.

Today is not Friday.

Today is not Saturday.

Obviously, this is a horribly inefficient way to figure out what day of the week it is, but it

demonstrates a number of the concepts we have been talking about. For each day of the week, the
program constructs a command to execute date, sending the output from that into grep, searching

for the abbreviated day name. Each time, we save the termination status of grep (in a pipeline, the

termination status of the entire pipeline is defined by the termination status of the last command in

the pipeline) in the variable status. Next, we extract the exit status from the termination status,

figure out what grep was telling us, and print an appropriate message.

The extraction of the exit status from the termination status is done in a non-portable fashion in this

example. As it turns out, this example will work on all versions of UNIX; the exit status is always

in the second byte of the termination status. However, there is a more portable way to examine the

termination status and extract information from it; this is shown in the following section.

Finally, note that the commands we build redirect their output to /dev/null (the “bit bucket”). We

can do this, because we are only interested in whether or not grep found anything, not what it found,

and grep tells us this with its exit status. If we did not redirect the output to /dev/null, then when we

found a match, the output from date (as printed by grep) would appear in the middle of the output

from our program. Try removing the redirection from the command to see the difference.

There are three final points to make about system:

1. Although terribly convenient, system is also terribly inefficient. Every time it is called, it not
only starts the command you want to execute, but also starts up a copy of the shell. If your

program will be executing many commands, you should execute them yourself directly, rather

than by using system. The means to do this are described in the next section.

2. System calls and library routines are always more efficient than using system to do the same
thing. For example, instead of calling

system("rm -f file");

system("mkdir foo");

system("mv oldfile newfile");

you could instead do this internally to your program by using functions we have discussed in

previous chapters:

Processes

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 265

unlink("file");

mkdir("foo");

rename("oldfile", "newfile");

3. The system function should never, under any circumstances, be used in programs that will be

run with super-user permissions, or with the set-user-id bit set. Because system uses the shell

to execute commands, there may be ways in which an unethical person can fool your program

into executing a command other than the one you intended. This may enable the person to
circumvent the security of your computer system.

Advanced Program Execution

In this section, we will examine the procedures used to create new processes, execute other

programs, and retrieve processes' termination statuses. All three of these procedures are used in the

construction of the system function, described above, and at the end of this section, we will show

how system can be written.

Creating a New Process

The first step in executing a program is to create a new process. The function to do this is called

fork:

#include <sys/types.h>

#include <unistd.h>

pid_t fork(void);

The fork function creates an exact copy of the calling process. This means that the child process
inherits a number of characteristics from the parent process:

 The real user-id, real group-id, effective user-id, and effective group-id of the parent process.

 The set-user-id and set-group-id mode bits of the parent process.

 The supplementary group-id list of the parent process.

 The saved user-id and saved group-id of the parent process.

 All of the parent process' environment variables (see Chapter 16, Miscellaneous Routines).

 All of the parent process' open file descriptors and file offsets.

 Any file descriptor close-on-exec flags (see Chapter 6, Special-Purpose File Operations) set by

the parent process.

 The file mode creation mask (umask) of the parent process.

 Any signal handling dispositions (SIG_DFL, SIG_IGN, SIG_HOLD, or a handler function
address) set by the parent process.

UNIX Systems Programming for SVR4

266 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 The session-id and process group-id of the parent process.

 The parent process' controlling terminal.

 The parent process' nice value (see above).

 The current working directory of the parent process.

 The parent process' resource limits.

The child process will differ from the parent process in the following ways:

 The child process will have a unique process-id.

 The child process will have a different parent process-id.

 The child process will have its own copy of the parent's open file descriptors. It may close these

file descriptors without affecting the parent. However, the parent and child will share the file

offset for each descriptor; this means that if they both write to the file at the same time, the

output will be intermixed. Likewise, if they both read from the file, they will each receive only

part of the data.

 The child process will not have any of the file locks its parent may have created.

 The set of pending signals for the child process is initialized to the empty set.

The fork function is interesting in that it returns twice—once in the parent, and once in the child.

In the parent process, fork returns the process-id of the child process (it returns –1 if a child process

could not be created). In the child process however, fork returns 0. In this way, the parent and child
can distinguish themselves from one another.

As soon as fork returns, there are two nearly identical copies of the program running. There is no
guarantee that the child will run before the parent or vice-versa; this must be taken into account to

avoid a deadlock condition in which each process is waiting on the other to do something. Example

11-2 shows a program that creates a child process. The child process writes out the lowercase letters

in alphabetical order ten times; the parent process writes out the uppercase letters in alphabetical

order ten times. Note that running the program multiple times may not produce the same output each

time; this is because two processes are performing the task, and the order in which they execute is

dependent on the system scheduler, how many other processes are running on the system, and other

parameters outside of the program's control.

Example 11-2: fork

#include <sys/types.h>

#include <unistd.h>

int

main(void)

{

 int i;

 char c;

 pid_t pid;

Processes

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 267

 /*

 * Create a child process.

 */

 if ((pid = fork()) < 0) {

 perror("fork");

 exit(1);

 }

 if (pid == 0) {

 /*

 * This code executes in the child process

 * (fork returned zero).

 */

 for (i=0; i < 10; i++) {

 for (c = 'a'; c <= 'z'; c++)

 write(1, &c, 1);

 }

 }

 else {

 /*

 * This code executes in the parent process.

 */

 for (i=0; i < 10; i++) {

 for (c = 'A'; c <= 'Z'; c++)

 write(1, &c, 1);

 }

 }

 /*

 * This code executes in both processes (i.e.,

 * it gets executed twice).

 */

 write(1, "\n", 1);

 exit(0);

}

% fork

abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnABCDEFG

HIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZAB

CDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVW

XYZABCDEFopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz

abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstu

vwxyzabcdefghijklmnopqGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDE

FGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ

% fork

abcdefghijklmnopqrABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABC

DEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWX

YZABCDEFGHIJKLMNstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvw

xyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqr

stuvwxyzabcOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCdefghijklmnopqrstuvwx

yzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijkDEFGHIJK

LMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ

UNIX Systems Programming for SVR4

268 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Executing a Program

The second step in executing a program is to bring the program into memory and begin executing

the instructions it contains. This can be accomplished using one of several routines, all generically

referred to as the exec functions:

#include <unistd.h>

int execl(const char *path, const char *arg0, ..., const char *argn,

 char * /*NULL*/);

int execv(const char *path, const char *argv[]);

int execle(const char *path, const char *arg0, ..., const char *argn,

 char * /*NULL*/, const char *envp[]);

int execve(const char *path, const char *argv[], const char *envp[]);

int execlp(const char *file, const char *arg0, ..., const char *argn,

 char * /*NULL*/);

int execvp(const char *file, const char *argv[], const char *envp[]);

In all its forms, exec overlays the image of the calling process with the image of a new program.
The new process image is constructed from an ordinary executable file, either an object file as

produced by a compiler, or a file of data for an interpreter, such as the shell. If exec succeeds, it
never returns, because the calling process is overlaid by the new process image (and thus no longer

exists).

On most modern UNIX systems, shell scripts and other files of interpreted commands may begin

with a line of the form

#!pathname [argument]

where pathname is the full path name to the interpreter, and argument is an optional argument.

For example, “#!/bin/sh” is common in shell scripts. When one of these files is the target of an

exec, the interpreter is invoked with its zeroth argument equal to pathname, and if present, its first

argument equal to argument. The remaining arguments to the interpreter are the arguments

specified in the call to exec. Most UNIX systems limit the length of this line to about 32 characters.

When an object file is executed, it is called as follows:

int main(int argc, char *argv[], char *envp[]);

where argc is the argument count, argv is an array of character pointers to the arguments

themselves, and envp is an array of character pointers to the environment strings (see Chapter 16,

Miscellaneous Routines). The argc parameter is always at least 1, and the first element of argv

points to the name of the executable file.

Processes

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 269

The execl and execle functions execute the file (command) named by the path name in path,

with the strings pointed to by arg0 through argn as arguments. The argument following argn

should be a null pointer, to indicate the end of the argument list. By convention, arg0 should always

be present; it will become the name of the process as displayed by the ps command. Usually, arg0

is given as the path name of the executable file, or the last component of the path name. A program

executed by execl will inherit the calling process' environment strings; execle allows the calling

process to provide a new set of environment strings in envp.

The execv and execve functions execute the file (command) named by the path name in path,

with the strings pointed to by the array of pointers in argv as arguments. By convention, argv

should always contain at least one member, which will become the name of the process as displayed

by the ps command. Usually, argv[0] is given as the path name of the executable file, or the last

component of the path name. A program executed by execv will inherit the calling process'

environment strings; execve allows the calling process to provide a new set of environment strings

in envp.

The execlp and execvp functions are identical to execl and execv, except that instead of
specifying a path name to the executable file, only the file's name is supplied. These functions then

search the directories in the calling process' search path (as defined by the PATH environment
variable), looking for an executable file of the same name. The first such file encountered is then

executed. If the target file is not an object file or executable interpreter script as described above,

the contents of the file are used as input to the Bourne shell (/bin/sh).

When an exec takes place, the new process inherits the open file descriptors of the calling process,
except those with the close-on-exec flag set (see Chapter 6, Special-Purpose File Operations). For

those file descriptors that remain open, the file offset is unchanged. Signals that are being caught by

the calling process are reset to their default dispositions in the new process; all other signal

dispositions remain the same. If a call to exec fails, it returns –1 and places the reason for failure in

errno.

Example 11-3 shows a program that creates a child process, and then both the child and parent

processes execute other commands.

Example 11-3: forkexec

#include <sys/types.h>

#include <unistd.h>

int

main(void)

{

 pid_t pid;

 char *args[4];

 /*

 * Create a child process.

 */

 if ((pid = fork()) < 0) {

 perror("fork");

UNIX Systems Programming for SVR4

270 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 exit(1);

 }

 if (pid == 0) {

 /*

 * This code executes in the child process

 * (fork returned zero).

 */

 execl("/bin/echo", "echo", "Today's", "date", "is:", 0);

 /*

 * If the exec succeeds, we'll never get here.

 */

 perror("exec");

 exit(1);

 }

 /*

 * This code executes in the parent process.

 */

 args[0] = "date";

 args[1] = "+%A, %B %d, %Y";

 args[2] = NULL;

 execv("/bin/date", args);

 /*

 * If the exec succeeds, we'll never get here.

 */

 perror("exec");

 exit(1);

}

% forkexec

Today's date is:

Wednesday, November 30, 1994

% forkexec

Wednesday, November 30, 1994

Today's date is:

Note that this program suffers from the same plight that our last example did—because there is no

guarantee that the child process will execute before the parent process, the output can come out in
the wrong order (you may have to run the program several times to see this behavior). One way we

might try to get around this would be to place a call to sleep in the parent right before the call to

exec. However, if we use a small sleep like one or two seconds, there is no guarantee, on a heavily
loaded system, that the child will get to execute in that amount of time. But if we use anything much

larger than one or two seconds, the program will have an uncomfortable delay between printing

“Today's date is:” and actually printing the date. In the next section, we will see how to solve
this problem.

Processes

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 271

Collecting the Process Termination Status

The last part of executing a program is to wait for it to complete, and collect the termination status

of the process. As alluded to earlier, this is an optional step; if it is not performed, the child process

will become a zombie while the parent process still exists, and if the parent process exits, the child

process will be inherited by init.

The basic function used to wait for a child process to complete, and retrieve its termination status,

is called wait:

#include <sys/types.h>

#include <sys/wait.h>

pid_t wait(int *status);

The wait function suspends the calling process until one of its immediate child processes
terminates. (It will also return if a child process that is being traced is stopped due to the receipt of

a signal, but that is beyond the scope of this book.) The termination status of the child process will

be stored in the integer pointed to by status. If the calling process does not care about the

termination status, and is only interested in waiting until the child process terminates, status may

be given as the null pointer. If a child process has terminated prior to the call to wait, wait returns

immediately with the status for that process. The process-id of the process that terminated is returned

by wait; if there are no unwaited-for child processes, wait returns –1.

A number of macros are defined in the include file sys/wait.h to assist in decoding the termination

status returned by wait. All of them take a single argument, the integer containing the termination
status.

WIFEXITED Evaluates to a non-zero value if the process terminated normally.

WEXITSTATUS If WIFEXITED evalutes to a non-zero value (indicating normal termination),

this macro evalutes to the exit code the process passed to exit or returned

from main.

WIFSIGNALED Evaluates to a non-zero value if the process terminated due to the receipt of

a signal.

WTERMSIG If WIFSIGNALED evaluates to a non-zero value (indicating termination due to
a signal), this macro evaluates to the number of the signal that caused the

process to terminate.

WIFSTOPPED Evaluates to a non-zero value if the process is currently stopped.

WSTOPSIG If WIFSTOPPED evaluates to a non-zero value (indicating the process is
stopped), this macro evalutes to the number of the signal that caused the

process to stop.

WIFCONTINUED Evaluates to a non-zero value if the process has been continued from a

stopped state. This macro is not defined in HP-UX 10.x.

UNIX Systems Programming for SVR4

272 FOR PERSONAL, NON-COMMERCIAL USE ONLY

WCOREDUMP If WIFSIGNALED evaluates to a non-zero value (indicating termination due to
a signal), this macro evaluates to a non-zero value if a core image of the

process was created.

Example 11-4 shows how we can modify the program from Example 11-3 to always print things in

the right order. The only difference is the addition of the call to wait in the parent.

Example 11-4: forkexecwait

#include <sys/types.h>

#include <unistd.h>

int

main(void)

{

 pid_t pid;

 char *args[4];

 /*

 * Create a child process.

 */

 if ((pid = fork()) < 0) {

 perror("fork");

 exit(1);

 }

 if (pid == 0) {

 /*

 * This code executes in the child process

 * (fork returned zero).

 */

 execl("/bin/echo", "echo", "Today's", "date", "is:", 0);

 /*

 * If the exec succeeds, we'll never get here.

 */

 perror("exec");

 exit(1);

 }

 /*

 * Wait for the child process to complete. We

 * don't care about the termination status.

 */

 while (wait((int *) 0) != pid)

 continue;

 /*

 * This code executes in the parent process.

 */

 args[0] = "date";

 args[1] = "+%A, %B %d, %Y";

 args[2] = NULL;

 execv("/bin/date", args);

Processes

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 273

 /*

 * If the exec succeeds, we'll never get here.

 */

 perror("exec");

 exit(1);

}

% forkexecwait

Today's date is:

Wednesday, November 30, 1994

% forkexecwait

Today's date is:

Wednesday, November 30, 1994

There are two variants of the wait function that provide additional functionality:

#include <sys/types.h>

#include <sys/wait.h>

pid_t waitpid(pid_t pid, int *status, int options);

pid_t waitid(idtype_t idtype, id_t id, singinfo_t *info,

 int options);

The waitpid function is specified by the POSIX standard. It allows the programmer greater control

over waiting for processes, by assigning several meanings to the values in the pid argument:

 If pid is equal to –1, the status is requested for any child process (in this case, waitpid is

equivalent to wait).

 If pid is greater than zero, the status is requested for the process whose process-id is equal to

pid. The process identified by pid must be a child of the calling process.

 If pid is equal to zero, the status is requested for any process in the same process group as the

calling process.

 If pid is less than –1, the status is requested for any process whose process group-id is equal to

the absolute value of pid. The processes in that process group must be children of the calling

process.

The waitid function, which is not specified by the POSIX standard, allows the list of processes to

be waited for to be specified in much the same way as for the sigsend and sigsendset functions

described in the last chapter. The idtype and id parameters specify which processes waitid

should wait for:

 If idtype is P_PID, waitid waits for the child with process-id id.

 If idtype is P_PGID, waitid waits for any child process with process group-id id.

 If idtype is P_ALL, waitid waits for any child process, and id is ignored.

UNIX Systems Programming for SVR4

274 FOR PERSONAL, NON-COMMERCIAL USE ONLY

The waitid function is not available in HP-UX 10.x.

Both waitpid and waitid use the options parameter to allow the programmer to specify the

state changes that are of interest. The value of the options parameter is constructed from the logical

or of the following values:

WCONTINUED The status of any specified process that has continued, and whose status has not

been reported since it continued, is also reported (waitid only).

WEXITED Wait for processes to exit (waitid only).

WNOHANG Do not cause the calling process to block. If no status is immediately available,

–1 is returned with errno set to ECHILD. This allows a process to poll for status
information periodically while otherwise performing other tasks.

WNOWAIT Keep the process whose status is returned in a waitable state. The process may

be waited for again with identical results. This option is not available in IRIX
5.x.

WSTOPPED Wait for and return the status of any process that has been stopped due to a

signal (waitid only).

WTRAPPED Wait for traced processes to become trapped or reach a breakpoint (waitid

only).

WUNTRACED The status of any specified child processes that are stopped, and whose status

has not yet been reported since they stopped, is also reported (waitpid only).

If we put all three of these steps together, we can construct a function much like system. Example

11-5 shows our function, called shellcmd, and also demonstrates the use of the macros described
above.

Example 11-5: shellcmd

#include <sys/types.h>

#include <sys/wait.h>

#include <signal.h>

#include <unistd.h>

#include <string.h>

#include <errno.h>

#include <stdio.h>

int shellcmd(char *);

void prstat(int);

int

main(void)

{

 int status;

 char command[BUFSIZ];

 /*

 * Forever...

Processes

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 275

 */

 for (;;) {

 /*

 * Prompt for a command.

 */

 printf("Enter a command: ");

 /*

 * Read a command. If NULL is returned, the

 * user typed CTRL-D, so exit.

 */

 if (fgets(command, sizeof(command), stdin) == NULL) {

 putchar('\n');

 exit(0);

 }

 /*

 * Strip off the trailing newline character

 * left by fgets.

 */

 command[strlen(command)-1] = '\0';

 /*

 * Execute the command and print the termination

 * status.

 */

 status = shellcmd(command);

 prstat(status);

 putchar('\n');

 }

}

/*

 * shellcmd - start a child process, and pass command to the shell.

 */

int

shellcmd(char *command)

{

 int status;

 pid_t p, pid;

 extern int errno;

 sigset_t mask, savemask;

 struct sigaction ignore, saveint, savequit;

 /*

 * Set up a sigaction structure to ignore signals.

 */

 sigemptyset(&ignore.sa_mask);

 ignore.sa_handler = SIG_IGN;

 ignore.sa_flags = 0;

 /*

 * Ignore keyboard signals; save old dispositions.

 */

 sigaction(SIGINT, &ignore, &saveint);

 sigaction(SIGQUIT, &ignore, &savequit);

 /*

UNIX Systems Programming for SVR4

276 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 * Block SIGCHLD.

 */

 sigemptyset(&mask);

 sigaddset(&mask, SIGCHLD);

 sigprocmask(SIG_BLOCK, &mask, &savemask);

 /*

 * Start a child process.

 */

 if ((pid = fork()) < 0)

 status = -1;

 /*

 * This code executes in the child process.

 */

 if (pid == 0) {

 /*

 * Restore signals to their original dispositions,

 * and restore the signal mask.

 */

 sigaction(SIGINT, &saveint, (struct sigaction *) 0);

 sigaction(SIGQUIT, &savequit, (struct sigaction *) 0);

 sigprocmask(SIG_SETMASK, &savemask, (sigset_t *) 0);

 /*

 * Execute a shell with the command as argument.

 */

 execl("/bin/sh", "sh", "-c", command, 0);

 _exit(127);

 }

 /*

 * Wait for the child process to finish.

 */

 while (waitpid(pid, &status, 0) < 0) {

 /*

 * EINTR (interrupted system call) is okay; otherwise,

 * we got some error that we need to report back.

 */

 if (errno != EINTR) {

 status = -1;

 break;

 }

 }

 /*

 * Restore signals to their original dispositions,

 * and restore the signal mask.

 */

 sigaction(SIGINT, &saveint, (struct sigaction *) 0);

 sigaction(SIGQUIT, &savequit, (struct sigaction *) 0);

 sigprocmask(SIG_SETMASK, &savemask, (sigset_t *) 0);

 /*

 * Return the child process' termination status.

 */

 return(status);

}

Processes

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 277

/*

 * prstat - decode the termination status.

 */

void

prstat(int status)

{

 if (WIFEXITED(status)) {

 printf("Process terminated normally, exit status = %d.\n",

 WEXITSTATUS(status));

 }

 else if (WIFSIGNALED(status)) {

 printf("Process terminated abnormally, signal = %d (%s)",

 WTERMSIG(status), strsignal(WTERMSIG(status)));

 if (WCOREDUMP(status))

 printf(" -- core file generated.\n");

 else

 printf(".\n");

 }

 else if (WIFSTOPPED(status)) {

 printf("Process stopped, signal = %d (%s).\n",

 WSTOPSIG(status), strsignal(WSTOPSIG(status)));

 }

 else if (WIFCONTINUED(status)) {

 printf("Process continued.\n");

 }

}

% shellcmd

Enter a command: date

Wed Nov 30 17:15:24 EST 1994

Process terminated normally, exit status = 0.

Enter a command: date | grep Wed

Wed Nov 30 17:15:42 EST 1994

Process terminated normally, exit status = 0.

Enter a command: date | grep Thu

Process terminated normally, exit status = 1.

Enter a command: sleep 5

^CProcess terminated normally, exit status = 130.

Enter a command: sleep 5

^\Quit - core dumped

Process terminated normally, exit status = 131.

Enter a command: exec sleep 5

^CProcess terminated abnormally, signal = 2 (Interrupt).

Enter a command: exec sleep 5

^\Process terminated abnormally, signal = 3 (Quit) -- core file generated.

Enter a command: ^D

Before we look at our program, let's look at the example of its execution.

In the first case, we execute the command date, which terminates normally with an exit status of 0.

In the second case, we execute the date command and send the output into grep, searching for the

string “Wed.” The grep command finds the string, prints the line on which it occurs, and exits with

status 0, indicating a match was found. In the third case, we repeat this experiment, but search for

the string “Thu.” This time, grep exits with status 1, meaning no matches were found.

UNIX Systems Programming for SVR4

278 FOR PERSONAL, NON-COMMERCIAL USE ONLY

In the next two cases, we try to demonstrate what happens when we press the interrupt (CTRL-C)

and quit (CTRL-\) keys on the keyboard. We would expect that the command should terminate

abnormally, and we should learn what signal terminated it. But, this doesn't happen. Instead, we find

out that the command terminated normally! The problem here is that our shellcmd function is
using the Bourne shell to execute our command, rather than executing it directly. The shell is waiting

for our command to complete, catching the fact that it terminated abnormally (that's where the

“Quit—core dumped” message comes from), and then the shell is exiting normally. But, the shell
indicates in its exit status that the command terminated abnormally, and with what signal it

terminated, by adding the signal's number to a base value of 128.

In the last two cases, we accomplish what we wanted to do in the previous two. All UNIX shells

have a built-in command called exec that tells them to execute the following command without

starting a child process. This overlays the shell with the new command, and when the new command
exits, the shell is just gone. By using the exec command here, we can eliminate the shell's checking

of our command's termination status, allowing us to obtain it directly.

Now let's look at the program itself, specifically, the shellcmd function.

The first thing the function does is set the disposition of the two keyboard interrupt signals, SIGINT

and SIGQUIT to be ignored. Recall from above that the keyboard-generated signals are delivered to
all foreground processes—that means that both the child process (which we meant to interrupt) and

the parent process (which we didn't mean to interrupt) will receive the signal. As an experiment, try

commenting out the first two calls to sigaction and see what happens when you press CTRL-C
or CTRL-\.

The next thing shellcmd does is set up a signal mask to block SIGCHLD. This is not really

necessary in our example here, but it is necessary in the real system function. If system did not

block SIGCHLD from delivery, and the calling process was catching SIGCHLD for its own purposes,

its signal handler would be called when the child process started by system terminates. But since

the parent process is presumably catching SIGCHLD because it is interested in processes it started

itself, it might get confused if it received the signal for a process that system started instead.

After setting up the signal handling, shellcmd creates a child process with fork. The first thing
the child process does is restore the two keyboard signals to their original dispositions (we want

them to interrupt the child process), and reset the signal mask to its original value. We reset the

signal mask so that if the command we execute needs SIGCHLD, it will be available. Then the child

process executes the shell, passing the command string as an argument. The last thing we do in the

child is call _exit; if the exec succeeds, this will never happen. But, if the exec fails, the child
process still needs to exit, or the parent will block indefinitely waiting for it to terminate. We call

_exit instead of exit so that we don't call any exit handlers that may have been registered with

atexit.

While the child process is doing all that, the parent is patiently sitting in the call to waitpid, waiting

until the child process is done. The advantage to using waitpid here is that we are guaranteed that

we will only receive the termination status of the process we started ourselves. If we used wait
instead, we might receive the status of some process started by our caller; this would then make that

status unavailable to the caller when it tries to get it later. If our call to waitpid is interrupted by a

Processes

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 279

signal, we continue to wait. Finally, we restore our signal dispositions to their original values, restore

the signal mask, and then return the child process' termination status.

The vfork Function

Most versions of UNIX that implement virtual memory also provide a function called vfork. This

function also creates a child process, but unlike fork, it does not copy the entire address space of
the calling process. Rather, the child process executes using the parent's address space, and thus the

parent's memory and thread of control.

The purpose of vfork is to provide a more efficient method of creating a child process when the

purpose is to execute another program via exec. Since the call to exec will overwrite the calling
process' address space anyway, there is little point in copying everything first. Needless to say, great

havoc can result if vfork is used to create a process that does not immediately call exec.

The need for vfork has diminished in more recent versions of UNIX, because they usually

implement copy-on-write in fork. That is, the address space of the parent is not copied for the child

unless and until the child tries to modify that address space. The use of vfork in new programs is
discouraged since it is non-standard, but it may crop up from time to time when porting older

software.

The vfork function is not available in IRIX 5.x.

Redirecting Input and Output

One of the most useful features of the UNIX shells, aside from their obvious ability to execute

commands, is their ability to redirect input and output. For example, the command

 ls > listing

places the output from the ls command into the file listing instead of sending it to the screen.

Likewise, the command

 a.out < data

tells the a.out command to read its input from the file data instead of from the keyboard. How does

the shell arrange for this to work?

Earlier in the chapter, we said that files remain open across a call to exec. Thus, if we can arrange
for the standard input (file descriptor 0) and the standard output (file descriptor 1) to refer to the

files we want to use for input and output before calling exec, the newly-executed program will read
from and write to these files.

In Chapter 3, Low-Level I/O Routines, we described the dup and dup2 functions:

#include <unitstd.h>

int dup(int fd);

UNIX Systems Programming for SVR4

280 FOR PERSONAL, NON-COMMERCIAL USE ONLY

int dup2(int fd, int fd2);

As you may recall, dup returns a new file descriptor that references the same file as fd. The new

descriptor has the same access mode (read, write, or read/write) and the same read/write offset as

the original. The file descriptor returned will be the lowest numbered one available. dup2 causes

the file descriptor fd2 to refer to the same file as fd. If fd2 refers to an already-open file, that file

is closed first.

Thus, all that is necessary to perform input and output redirection in the shell is to have the shell

open the files in question, call dup or dup2 to attach those files to file descriptors 0 and 1, and then
execute the command. Example 11-6 shows a very rudimentary shell-like program that does just

this.

NOTE

The bufsplit function is broken in some versions of Solaris 2.4. If this example does not

appear to work for you, edit the example program and remove the “#ifdef notdef” and

“#endif” to enable the use of a locally-defined version of the function.

Example 11-6: shell

#include <sys/types.h>

#include <sys/wait.h>

#include <libgen.h>

#include <signal.h>

#include <unistd.h>

#include <string.h>

#include <fcntl.h>

#include <errno.h>

#include <stdio.h>

#define NARGS 64

int execute(char **, char *, char *);

int

main(void)

{

 char **cp;

 int n, status;

 char *args[NARGS];

 char command[BUFSIZ];

 char *infile, *outfile;

 /*

 * Set up bufsplit to parse the command line.

 */

 bufsplit(" \t\n", 0, NULL);

 /*

 * Forever...

 */

Processes

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 281

 for (;;) {

 /*

 * Prompt for a command.

 */

again: printf("--> ");

 /*

 * Read a command. If NULL is returned, the

 * user typed CTRL-D, so exit.

 */

 if (fgets(command, sizeof(command), stdin) == NULL) {

 putchar('\n');

 exit(0);

 }

 /*

 * Split the command into words.

 */

 n = bufsplit(command, NARGS, args);

 args[n] = NULL;

 /*

 * Ignore blank lines.

 */

 if (**args == '\0')

 continue;

 /*

 * Find any input and output redirections.

 */

 infile = NULL;

 outfile = NULL;

 for (cp = args; *cp != NULL; cp++) {

 if (strcmp(*cp, "<") == 0) {

 if (*(cp+1) == NULL) {

 fprintf(stderr, "You must specify ");

 fprintf(stderr, "an input file.\n");

 goto again;

 }

 *cp++ = NULL;

 infile = *cp;

 }

 else if (strcmp(*cp, ">") == 0) {

 if (*(cp+1) == NULL) {

 fprintf(stderr, "You must specify ");

 fprintf(stderr, "an output file.\n");

 goto again;

 }

 *cp++ = NULL;

 outfile = *cp;

 }

 }

 /*

 * Execute the command.

UNIX Systems Programming for SVR4

282 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 */

 status = execute(args, infile, outfile);

 }

}

/*

 * execute - execute a command, possibly with input/output redirection

 */

int

execute(char **args, char *infile, char *outfile)

{

 int status;

 pid_t p, pid;

 int infd, outfd;

 extern int errno;

 sigset_t mask, savemask;

 struct sigaction ignore, saveint, savequit;

 infd = -1;

 outfd = -1;

 /*

 * If an input file was given, open it.

 */

 if (infile != NULL) {

 if ((infd = open(infile, O_RDONLY)) < 0) {

 perror(infile);

 return(-1);

 }

 }

 /*

 * If an output file was given, create it.

 */

 if (outfile != NULL) {

 if ((outfd = creat(outfile, 0666)) < 0) {

 perror(outfile);

 close(infd);

 return(-1);

 }

 }

 /*

 * Set up a sigaction structure to ignore signals.

 */

 sigemptyset(&ignore.sa_mask);

 ignore.sa_handler = SIG_IGN;

 ignore.sa_flags = 0;

 /*

 * Ignore keyboard signals; save old dispositions.

 */

 sigaction(SIGINT, &ignore, &saveint);

 sigaction(SIGQUIT, &ignore, &savequit);

 /*

 * Block SIGCHLD.

 */

Processes

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 283

 sigemptyset(&mask);

 sigaddset(&mask, SIGCHLD);

 sigprocmask(SIG_BLOCK, &mask, &savemask);

 /*

 * Start a child process.

 */

 if ((pid = fork()) < 0)

 status = -1;

 /*

 * This code executes in the child process.

 */

 if (pid == 0) {

 /*

 * Restore signals to their original dispositions,

 * and restore the signal mask.

 */

 sigaction(SIGINT, &saveint, (struct sigaction *) 0);

 sigaction(SIGQUIT, &savequit, (struct sigaction *) 0);

 sigprocmask(SIG_SETMASK, &savemask, (sigset_t *) 0);

 /*

 * Perform output redirection.

 */

 if (infd > 0)

 dup2(infd, 0);

 if (outfd > 0)

 dup2(outfd, 1);

 /*

 * Execute the command.

 */

 execvp(*args, args);

 perror("exec");

 _exit(127);

 }

 /*

 * Wait for the child process to finish.

 */

 while (waitpid(pid, &status, 0) < 0) {

 /*

 * EINTR (interrupted system call) is okay; otherwise,

 * we got some error that we need to report back.

 */

 if (errno != EINTR) {

 status = -1;

 break;

 }

 }

 /*

 * Restore signals to their original dispositions,

 * and restore the signal mask.

 */

 sigaction(SIGINT, &saveint, (struct sigaction *) 0);

UNIX Systems Programming for SVR4

284 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 sigaction(SIGQUIT, &savequit, (struct sigaction *) 0);

 sigprocmask(SIG_SETMASK, &savemask, (sigset_t *) 0);

 /*

 * Close file descriptors.

 */

 close(outfd);

 close(infd);

 /*

 * Return the child process' termination status.

 */

 return(status);

}

/*

 * The bufsplit() function on Solaris 2.4 is broken. Remove the

 * "#ifdef notdef" and "#endif" lines to enable this version.

 */

#ifdef notdef

size_t

bufsplit(char *buf, size_t n, char **a)

{

 int i, nsplit;

 static char *splitch = "\t\n";

 if (buf != NULL && n == 0) {

 splitch = buf;

 return(1);

 }

 nsplit = 0;

 while (nsplit < n) {

 a[nsplit++] = buf;

 if ((buf = strpbrk(buf, splitch)) == NULL)

 break;

 *(buf++) = '\0';

 if (*buf == '\0')

 break;

 }

 buf = strrchr(a[nsplit-1], '\0');

 for (i=nsplit; i < n; i++)

 a[i] = buf;

 return(nsplit);

}

#endif

% shell

--> ls > listing

--> cat listing

Makefile

Processes

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 285

fork.c

forkexec.c

forkexecwait.c

listing

shell.c

shellcmd.c

system.c

--> sort -r < listing > listing2

--> cat listing2

system.c

shellcmd.c

shell.c

listing

forkexecwait.c

forkexec.c

fork.c

Makefile

--> ^D

Technically, the files could be opened in the child process just as well as in the parent; this would

save the parent having to close them later. However, the method used in the example is preferable,

because it does not waste a call to fork if one of the files is inaccessible.

Job Control

As discussed at the beginning of the chapter, sessions and process groups exist for the purposes of

performing job control. A process group is a group of related processes, such as those in a pipeline.

A session is a group of related process groups, such as all of the jobs currently being run by a user

on a specific terminal. Usually, sessions are created by the system login process and process groups

are managed by a job control shell; the average program doesn't have to worry about them. However,

sometimes it is desirable to be able to manipulate them directly.

A new session is created with the setsid function:

#include <sys/types.h>

#include <unistd.h>

pid_t setsid(void);

If the process is not already a process group leader, three things happen when setsid is called:

1. The process becomes the session leader of a new session. The session-id of this new session

will be the same as the process' process-id.

2. The process becomes the process group leader of a new process group. The process group-id of

this new process group will be the same as the process' process-id (and thus the session-id).

3. If the calling process had a controlling terminal associated with it, that association is broken. If

the process later opens a terminal device, the first device opened will become the process'
controlling terminal.

UNIX Systems Programming for SVR4

286 FOR PERSONAL, NON-COMMERCIAL USE ONLY

A process that is already a process group leader may not call setsid. To insure that this is not the

case, the usual procedure is to call fork and have the parent process terminate and the child process

continue. If a new session is created, setsid returns the session-id of the session. Otherwise, –1 is

returned and errno is set to the error condition.

A process may create a new process group, or join an existing one, by calling setpgid:

#include <sys/types.h>

#include <unistd.h>

int setpgid(pid_t pid, pid_t pgid);

This function sets the process group-id of the process with process-id pid to pgid. If pgid is equal

to pid, the process becomes a process group leader. A process may only change the process group

of itself and its children. If setpgid succeeds, it returns 0. Otherwise, it returns –1 and stores the

reason for failure in errno.

Timing Process Execution

It is often useful to be able to determine how much processor time a process has consumed. This

can be used for accounting purposes, or to attempt to optimize a program. In UNIX, processor time

is divided into two parts, user time and system time. User time is the amount of time the processor

spends executing in user mode; that is, time spent executing the parts of the program written by the

user such as loops and local functions. System time is the amount of time the processor spends

executing operating system code on the user's behalf; that is, time spent in system calls such as read

and write.

The basic function for obtaining processor usage is called times:

#include <sys/times.h>

#include <limits.h>

clock_t times(struct tms *buffer);

The struct tms structure is defined as follows:

struct tms {

 clock_t tms_utime;

 clock_t tms_stime;

 clock_t tms_cutime;

 clock_t tms_cstime;

}

The information reported by times pertains to the calling process and all of its terminated child

processes for which it has called a wait function. (It is not possible to obtain information about
processes that are still running.)

Processes

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 287

The tms_utime and tms_stime elements of the structure report the amount of user and system

time, respectively, used by the calling process. The tms_cutime element represents the sum of the

tms_utime and tms_cutime of the calling process' children (thus, a process inherits the times of

its children.) The tms_cstime element represents the sum of the tms_stime and tms_cstime of

the calling process' children.

All times are reported in clock ticks. The value of a clock tick is defined by the CLK_TCK constant
in the include file limits.h. To obtain a value in seconds, the element of interest in the structure

should be divided by CLK_TCK.

On success, times returns the elapsed real time in clock ticks from some arbitrary point in the past

(usually system boot time). This point does not change between calls to times, so by making two

calls (say, before a call to fork and after a call to wait), it is possible to determine how long a
process took to execute.

Porting Notes

In BSD-based versions of UNIX, the getpgrp function accepts a process-id as an argument, and

returns the process group of that process. In SVR4, this can be accomplished by using the getpgid
function:

#include <sys/types.h>

#include <unistd.h>

pid_t getpgid(pid_t pid);

BSD UNIX provides functions called getpriority and setpriority to get and set the priorities
(nice values) of processes respectively. There is no direct replacement for these functions in SVR4,

although the priocntl function supplies much of the same functionality.

The wait3 function offered by BSD UNIX is not present in SVR4 (except in the compatibility

library). Its functionality can mostly be provided by waitpid, except that waitpid will not return

resource usage statistics as wait3 does.

The BSD killpg function, that sends a signal to a process group, can be replaced with a call to the

kill function, specifying the process group-id as a negative number.

Calls to the BSD setpgrp function should be replaced with calls to setsid. Note that other
changes will probably be necessary, since all versions of Berkley UNIX prior to 4.4BSD do not

offer POSIX sessions.

In BSD UNIX, a process disassociated itself from the controlling terminal with the following code

sequence:

.

.

.

UNIX Systems Programming for SVR4

288 FOR PERSONAL, NON-COMMERCIAL USE ONLY

pid = fork();

if (pid == 0) {

 if ((fd = open("/dev/tty", 0)) >= 0) {

 ioctl(fd, TIOCNOTTY, 0);

 close(fd);

 }

 .

.

.

}

.

.

.

In the POSIX environment, this should be replaced with a call to setsid:

.

.

.

pid = fork();

if (pid == 0) {

 setsid();

 .

.

.

}

.

.

.

The BSD implementation of times returns times in units of 1/HZ seconds, where HZ is defined in
the include file sys/param.h.

Chapter Summary

In this chapter, we examined how to execute other programs, which in some ways can be viewed as

the primary purpose of the UNIX operating system. The most common tasks performed on a UNIX

system require the ability to execute programs, although much of this is hidden from the user by the

shell. Many of these same tasks require the ability to execute multiple programs and tie them

together with pipelines or interprocess communications facilities; this is discussed in detail in
Chapter 13, Interprocess Communication.

Processes

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 289

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 291

Chapter 12
Terminals

Terminal I/O is probably the messiest topic in UNIX systems programming; it is certainly the

biggest stumbling block to portability. The problem is that serial lines are used for so many different

things: connecting terminals to the system, communicating with printers, hooking up modems,

talking to specialized devices, etc. Each of these uses has its own needs, and while they all overlap

to some extent, the terminal interface has had to be extended each time a new use arose. The end

result is that things have gotten very complex—the interface is pretty straight forward, but the
number of options has grown to the point that it's difficult to know which ones to choose. This is

true not just for UNIX, but for any operating system that allows the programmer to control serial

port processing.

The other problem with terminal I/O control is that in the UNIX community, there have historically

been two different, and incompatible, interfaces to it. The original interface was developed for

Version 7, and was based on the stty and ioctl functions. Berkeley later extended this interface
to cover the additional functionality added by their versions of the operating system, and this

interface is present in all versions of BSD UNIX save the last (which has adopted the POSIX

interface). The other interface was first developed in System III, and has continued forward through

all releases of System V, including SVR4 (although its presence there is primarily for backward

compatibility; the POSIX interface is preferred).

When the System III interface first became public, many programmers (including the author) viewed

it as a gratuitous change made solely for the purposes of being different. However, in reality, the

change was made with the best of intentions. The original Version 7 interface, especially as extended
by Berkeley, was showing its age. It was made up of several different data structures, each used for

different purposes, representing, in a way, its rather piecemeal development process. The designers

of System III recognized this, and more importantly recognized that as other extensions became

necessary in the future, they would probably have to be “grafted onto” the interface, rather than

integrated with it. So, they designed a new interface that unified all of the parts from the old

interface, as well as some new capabilities, into a single, coherent whole. Furthermore, they

designed the interface in such a way that new functionality could be added within the existing

framework, rather than by extending the interface in incompatible ways. Although the first versions

of this new interface suffered from a few deficiencies, these have since been fixed, and the interface

has indeed met the goals set for it by the designers, while the older interface has been all but

UNIX Systems Programming for SVR4

292 FOR PERSONAL, NON-COMMERCIAL USE ONLY

discarded. Indeed, when the POSIX committee specified a terminal I/O control interface, they chose

one based on (in fact, nearly identical to) the System III/System V interface.

In this chapter, we will examine the issue of terminal I/O control in detail. We begin by discussing

the topic at a high level, in order to introduce many of the concepts necessary to understand the

remainder of the chapter. We follow this with a discussion of the POSIX terminal control interface;

this interface is perhaps the easiest to understand. After presenting the POSIX interface, we present
the System V interface, on which it is based. And then, because there are so many programs that

must be ported from the BSD environment to SVR4, we present the Berkeley interface in detail,

rather than trying to deal with it briefly in a porting notes section.

Overview of Terminal I/O

Terminal input and output is processed in one of two modes:

Canonical Mode In canonical mode, terminal input is processed in units of lines. A line

is delimited by a newline (ASCII LF), an end-of-file character (ASCII
EOT), or an end-of-line character (user defined). This means that a

program attempting to read from the terminal will be suspended until

an entire line has been typed. Furthermore, no matter how many

characters are requested in the read call, at most one line will be

returned. It is, of course, not necessary to read an entire line at once;

one or a few characters may be read at a time, and the operating system

will satisfy the reads from the buffered input line. But it is important

to understand that the first read request, regardless of its size, will not

be satisfied until an entire line has been typed.

When in canonical mode, certain keyboard characters enable special

processing. The erase character allows one character at a time to be
deleted from the input, to correct typing mistakes. The kill character

allows the entire input line typed to this point to be discarded. Other

keyboard characters provide advanced editing features; these are

discussed below. Because input is processed a line at a time, the erase

and kill processing is done before a program reading from the terminal

sees the input; therefore, the average program does not have to deal

with these issues.

Canonical mode input processing also allows certain keyboard

sequences to generate signals that are sent to the processes in the

terminal's process group. These keyboard sequences can cause a

program to terminate, with or without a core dump, and, on systems

that support job control, can cause a program to stop execution.

Finally, canonical mode enables certain output processing features

such as the generation of delays after the output of certain characters

such as newlines, tabs, and form feeds, the expansion of tabs to spaces,

Terminals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 293

and the conversion of lowercase letters to uppercase (for very old,

uppercase-only terminals).

Non-canonical Mode In non-canonical mode, input characters are not assembled into lines,

and erase and kill processing does not occur. Signal generation and

output processing are still performed, although they may be disabled.

When in non-canonical mode, input characters are returned to a
reading process based on either a minimum input threshold (reads

return after some minimum number of characters has been typed), a

maximum time (reads return after a timer expires), or some

combination of these.

In Version 7 and BSD UNIX, there are different terms used for these two modes. Because these

terms are still in general use today, even when describing systems on which they do not apply, they

are presented below.

Cooked Mode Cooked mode corresponds to canonical mode, above. Input is processed a line

at a time, and input editing and signal generation is enabled. Output processing

is also performed.

Cbreak Mode Cbreak mode corresponds to basic non-canonical mode, above. It is a sort of

“half-cooked” mode in which input editing is disabled, and reads are satisfied
one character at a time (input is not buffered). When in cbreak mode, signal

generation and output processing are still performed.

Raw Mode In raw mode, all input and output processing is disabled, as is all signal

generation. Read requests are satisfied one character at a time. Raw mode

corresponds to non-canonical mode above, with the addition of disabling

keyboard signals and output processing.

Special Characters

When in canonical mode, there are a number of characters that have special meaning. Version 7

provided only a basic set of these characters; most of the ones in the list below were added by

Berkeley, and then later adopted by POSIX and SVR4. Almost all of these characters can be changed

under program control; the default values are shown in parentheses.

CR (Carriage Return) This character cannot be changed. This character is recognized in

canonical input mode. Usually, the CR character is translated to

NL (newline) and has the same effect as an NL character. This

character is returned to the reading process (perhaps after being

translated to NL).

DISCARD (CTRL-O) This character causes all subsequent output to be discarded, until
another DISCARD character is entered or the discard condition is

cleared. This character is discarded by the terminal driver when

processed; it is not returned to the reading process. This character

UNIX Systems Programming for SVR4

294 FOR PERSONAL, NON-COMMERCIAL USE ONLY

is not specified in the POSIX standard, nor is it is not available in

HP-UX 10.x.

DSUSP (CTRL-Y) This is the delayed-suspend character; it is recoginized in

canonical and basic non-canonical modes if job control is in

effect. Like the SUSP character, this character sends the SIGTSTP
signal to all processes in the foreground process group. However,

the signal is not delivered until a process reads from the

controlling terminal, rather than being delivered when the

character is typed. This character is discarded by the terminal
driver when processed; it is not returned to the reading process.

This character is not specified in the POSIX standard.

EOF (CTRL-D) This character is recognized on input in canonical mode. When

this character is entered, all bytes remaining to be read are

immediately passed to the reading process. If there are no bytes

remaining, a count of zero is returned to the read. Entering an EOF

character at the beginning of a line is the usual way to indicate an

end-of-file to a program. This character is discarded by the

terminal driver when processed; it is not returned to the reading

process.

Some operating systems, such as MS-DOS, use a character to

mark the end of a file (MS-DOS uses CTRL-Z). This character,
when encountered during reading, indicates the end of the file.

UNIX, on the other hand, signifies the end-of-file condition by

causing read to return zero. The presence of an EOF character in
the input stream does not indicate the end of a file. Its only

purpose is to tell the terminal driver to generate the end-of-file

condition for the reading process.

EOL (No default) In POSIX, this character functions as an additional end-of-line

delimiter when in canonical mode. It is not normally used. This

character is returned to the reading process.

EOL2 (No default) In SVR4, this character functions as still another end-of-line

delimiter when in canonical mode. It is not normally used. This

character is returned to the reading process.

ERASE (DEL or CTRL-H) This character is recognized in canonical mode, and causes the

previous character in the line to be erased. It is not possible to
erase beyond the beiginning of the line. This character is

discarded by the terminal driver; it is not returned to the reading

process.

INTR (CTRL-C or DEL) This character is recognized in canonical and basic non-canonical

mode. When received, it causes a SIGINT signal to be delivered
to all processes in the foreground process group. This character is

Terminals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 295

discarded by the terminal driver; it is not returned to the reading

process.

KILL (CTRL-U) This character is recognized in canonical mode, and erases the

entire input line. It is discarded by the terminal driver; it is not

returned to the reading process.

LNEXT (CTRL-V) This character is recognized in canonical mode and causes the
special meaning of the next character to be typed to be ignored

(“LNEXT” stands for “literal next”). This allows the user to type

any of the characters in this section to a program. This character

is discarded when processed by the terminal driver, but the next

character typed is passed to the reading process. This character is

not specified by the POSIX standard.

NL (Newline) This character is recognized in canonical mode and serves as the

end-of-line delimiter. This character cannot be changed. This

character is returned to the reading process.

QUIT (CTRL-\) This character is recognized in canonical and basic non-canonical

mode. It causes the SIGQUIT signal to be delivered to all
processes in the foreground process group. This character is

discarded when processed by the terminal driver; it is not returned

to the reading process.

REPRINT (CTRL-R) This character is recognized in canonical mode. It causes all
unread input (the line as typed so far) to be reprinted. This

character is discarded when processed; it is not returned to the

reading process. This character is not specified by the POSIX

standard, nor is it available in HP-UX 10.x.

START (CTRL-Q) This character is recognized in canonical and basic non-canonical

mode if flow control is enabled. When received, it causes output

that has been suspended with a STOP character to start again. This

character is discarded when processed; it is not returned to the

reading process.

STOP (CTRL-S) This character is recognized in canonical and basic non-canonical

mode if flow control is enabled. When received, it causes output
to be suspended (but not discarded) until a START character is

received. This character is not returned to the reading process.

SUSP (CTRL-Z) This character is recognized in canonical and basic non-canonical

mode when job control is enabled. It causes a SIGTSTP signal to
be delivered to all processes in the foreground process group. This

character is discarded by the terminal driver; it is not returned to

the reading process.

UNIX Systems Programming for SVR4

296 FOR PERSONAL, NON-COMMERCIAL USE ONLY

WERASE (CTRL-W) This character is recognized in canonical mode. It causes the

previous word to be erased. A “word” is delimited by whitespace.

This character is not returned to the reading process.

BREAK BREAK is not really a character, but rather a condition that can

be generated by the terminal hardware. Usually, BREAK is

interpreted as a synonym for the INTR character, although this is
not required.

Terminal Characteristics

For reference purposes, and to serve as a brief (and probably mystifying) description of what the

rest of this chapter is about, Table 12-1 shows all the terminal characteristics that can be controlled

on POSIX, System V, and BSD systems. Several vendors have added additional characteristics to

this list; those additions are not discussed in this book.

The table briefly describes each characteristic, and then gives an indication of the flag and option

that controls this characteristic in each of the three versions. The flags and options are described in

detail in the remaining sections of the chapter.

Table 12-1: Terminal Characteristics

Characteristic POSIX System V BSD

Generate SIGINT on BREAK BRKINT BRKINT (cooked, cbreak)

Ignore BREAK condition IGNBRK IGNBRK (raw)

Map NL to CR on input INLCR INLCR —

Map CR to NL on input ICRNL ICRNL CRMOD

Ignore CR IGNCR IGNCR —

Enable input parity checking INPCK INPCK EVENP, ODDP

Ignore characters with parity errors IGNPAR IGNPAR (cooked, cbreak)

Mark characters with parity errors PARMRK PARMRK —

Strip eighth bit off input characters ISTRIP ISTRIP LPASS8

Enable start/stop input flow control IXOFF IXOFF TANDEM

Enable start/stop output flow

control
IXON IXON (cooked, cbreak)

Enable any character to restart

output
— IXANY LDECCTQ

Map uppercase to lowercase on

input
— IUCLC LCASE

Ring terminal bell on input queue

full
— IMAXBEL NTTYDISC

Perform output processing OPOST OPOST LLITOUT

Backspace delay mask — BSDLY BSDELAY

Terminals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 297

Characteristic POSIX System V BSD

Carriage return delay mask — CRDLY CRDELAY

Form feed delay mask — FFDLY VTDELAY

Horizontal tab delay mask — TABDLY TBDELAY

Newline delay mask — NLDLY NLDELAY

Vertical tab delay mask — VTDLY VTDELAY

Use fill character for delay — OFILL —

Fill character is DEL, else NUL — OFDEL —

Map CR to NL on output — OCRNL —

Map NL to CR-NL on output — ONLCR CRMOD

NL performs CR function — ONLRET —

No CR output at column zero — ONOCR —

Map lowercase to uppercase on

output
— OLCUC LCASE

Expand tabs to spaces — XTABS XTABS

Baud rate B0…B38400 B0…B38400 B0…B9600

Character size mask CSIZE CSIZE —

Send two stop bits, else one CSTOPB CSTOPB —

Enable parity PARENB PARENB —

Odd parity, else even PARODD PARODD ODDP, EVENP

Extended parity (mark and space) — PAREXT —

Ignore modem status lines CLOCAL CLOCAL —

No hangup when carrier drops — — LNOHANG

Hangup on last close HUPCL HUPCL TIOCHPCL

Flow control via carrier drops — — LMDMBUF

Enable receiver CREAD CREAD —

Convert ~ to ` on output

(Hazeltine)
— — LTILDE

Canonical input ICANON ICANON (cooked)

Enable extended input processing IEXTEN IEXTEN NTTYDISC

Enable tty-generated signals ISIG ISIG (cooked, cbreak)

Enable character echo ECHO ECHO ECHO

Backspace on erase — — LCRTBS

Visually erase with backspace-

space-backspace
ECHOE ECHOE LCRTERA

Echo newline after kill ECHOK ECHOK default

Visually kill with backspace-

space-backspace
ECHOKE — LCRTKILL

UNIX Systems Programming for SVR4

298 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Characteristic POSIX System V BSD

Visual erase/kill for hardcopy

terminals
— ECHOPRT LPRTERA

Echo control characters as ^X — ECHOCTL LCTLECH

Echo NL even if ECHO is off ECHONL ECHONL —

Output is being flushed — FLUSHO LFLUSHO

Disable flush after interrupt/quit NOFLSH NLFLSH —

Retype pending input on next

character
— PENDIN LPENDIN

Send SIGTTOU on output from

background
TOSTOP — LTOSTOP

Canonical uppercase/lowercase

presentation
— XCASE LCASE

Terminal-Related Functions

Before getting into the functions and methods for examining and changing terminal attributes, we

discuss three functions that are often used in conjunction with these procedures.

The ctermid function is defined by the POSIX standard to return the name of the calling process'
controlling terminal:

#include <stdio.h>

char *ctermid(char *s);

The single parameter s should point to a character array of at least L_ctermid bytes; this constant

is defined in the include file. The name of the terminal will be stored in this array, and the address

of the array returned. If s is null, ctermid stores the terminal name in an internal static array that

is overwritten on each call, and returns a pointer to that array. If the process has no controlling

terminal, ctermid returns a null pointer.

In the previous chapter, we said that a program can always refer to the file /dev/tty when it wants to

reference the controlling terminal; this makes ctermid seem somewhat superfluous. However, this
statement is only true for UNIX systems. Other POSIX-compliant systems, such as Digital's VMS,

may use a different name. The ctermid function allows the name to be determined in a portable
manner.

If a program wants to obtain the name of the terminal attached to a specific file descriptor, it can

use the ttyname function:

#include <stdlib.h>

char *ttyname(int fd);

Terminals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 299

The fd parameter should be an open file descriptor referencing a terminal device. A pointer to a

static array containing the name of the terminal device associated with that file descriptor is returned.

The null pointer is returned if the file descriptor does not refer to a terminal device. Note that

ttyname will always return the real name of the terminal referenced by fd; it will never return

/dev/tty.

To determine if a file descriptor does refer to a terminal device, the isatty function can be used:

#include <stdlib.h>

int isatty(int fd);

The fd parameter should be a file descriptor referencing an open file. If the file is a terminal device,

isatty returns 1; it returns 0 otherwise.

POSIX Terminal Control

On POSIX-based systems, all of the terminal input and output modes are controlled via a struct

termios structure and the functions described in this section. The struct termios structure is

defined in the include file termios.h:

struct termios {

 tcflag_t c_iflag;

 tcflag_t c_oflag;

 tcflag_t c_cflag;

 tcflag_t c_lflag;

 cc_t c_cc[NCCS];

};

The c_iflag element of the structure contains flags controlling the input of characters by the

terminal driver, the c_oflag element contains flags controlling the output of characters, the

c_cflag element contains flags controlling the hardware interface, and the c_lflag element

contains flags controlling the interface between the terminal driver and the user. The c_cc array

contains the values of the various special characters described earlier.

The c_cc array is indexed by constants whose names are identical to the special characters' names

with a ‘V’ prepended. For example, to set the line-kill character to CTRL-X, we might use:

#include <termios.h>

.

.

.

struct termios modes;

modes.c_cc[VKILL] = '\030';

UNIX Systems Programming for SVR4

300 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Where the octal value 030 is CTRL-X. A special character can be disabled by setting it to a special

value. The special value can be obtained by calling pathconf or fpathconf (see Chapter 9, System

Configuration and Resource Limits) with the _PC_VDISABLE argument. For example, to disable the
interrupt character, we might use:

#include <termios.h>

#include <unistd.h>

.

.

.

struct termios modes;

long vdisable;

vdisable = fpathconf(0, _PC_VDISABLE);

modes.c_cc[VINTR] = vdisable;

Each of the flag elements of the structure is constructed from the logical or of the attributes described
in Table 12-1. To turn on a particular attribute, the flag value is ored into the flag element. For

example, to turn the ECHO attribute on, we might use this:

#include <termios.h>

.

.

.

struct termios modes;

modes.c_lflag |= ECHO;

To turn a feature off, the complement of the attribute is anded into the flag element. For example,

to turn the ECHO attribute off, we would use this:

#include <termios.h>

.

.

.

struct termios modes;

modes.c_lflag &= ~ECHO;

Table 12-1 lists all the attributes that are available, and provides a very brief description of what

they do. Most of these attributes, however, are not used very often. Some of the more commonly

used attributes are described in more detail below:

ICRNL (c_iflag) When set, this attribute tells the terminal driver to map the carriage

return character to a newline character on input. Recall that UNIX uses the

newline character as a line terminator; this attribute allows the user to use the
carriage return key on the keyboard to signify the end of a line.

Terminals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 301

ISTRIP (c_iflag) When set, this attribute tells the terminal driver to strip the eighth
bit off of all input characters (by making it zero). Since ASCII is a 7-bit code,

this has the general effect of forcing input into the ASCII character set.

OPOST (c_oflag) When set, this attribute enables the output post-processing features
of the terminal driver. This includes inserting delays after certain characters

such as newline and tab for slow devices, mapping newline to carriage return-

newline, and so forth.

ONLCR (c_oflag) When set, this attribute tells the terminal driver to output a carriage
return and a newline each time a newline character occurs in the output. Most

terminal devices (and printers) will move “down” when a newline is received,

but they will not move back to the leftmost column unless a carriage return is

also received.

B0... B38400 (c_cflag) The baud rate is set by turning on one of these attributes. For

example, B9600 represents 9600 baud. The special rate B0 has the effect of
turning off the Data Terminal Ready signal, effectively hanging up the phone

line.

CREAD (c_cflag) This attribute enables the receiver. If it is not set, characters cannot
be received from the device.

ICANON (c_lflag) When set, this attribute enables canonical input mode. This mode
is described in detail below.

IEXTEN (c_lflag) This attribute enables the processing of certain implementation-

defined features. In SVR4, it enables the processing of the WERASE, REPRINT,

DISCARD, and LNEXT special characters, and enables the processing of the

TOSTOP, ECHOCTL, ECHOPRT, ECHOKE, FLUSHO, and PENDIN attributes.

ISIG (c_lflag) When set, this attribute enables the signal-generating properties of
some of the the special characters (DSUSP, INTR, QUIT, and SUSP).

ECHO (c_lflag) When set, characters typed by the user are echoed (printed) back to
the terminal. This attribute is normally turned off when prompting for

passwords (and for other reasons).

ECHOE (c_lflag) When set, characters are erased on receipt of the ERASE character
by printing a backspace, a space, and another backspace. If not set, the user has

to mentally keep track of how many characters were erased.

ECHOK (c_lflag) When set, the terminal driver will echo a newline character when
the KILL character is received; this makes things a little easier to read.

ECHOKE (c_lflag) When set, the line is erased on receipt of a KILL character by
printing a sequence of backspace-space-backspace characters.

TOSTOP (c_lflag) When set, a process in the background that tries to perform output

to the terminal will be stopped with a SIGTTOU signal until it is brought into

UNIX Systems Programming for SVR4

302 FOR PERSONAL, NON-COMMERCIAL USE ONLY

the foreground. If not set, background processes can write to the terminal

unimpeded; this usually has the effect of “messing up” whatever the user is

doing at the moment.

Examining and Changing Terminal Attributes

Terminal attributes can be examined and changed by using the tcgetattr and tcsetattr
functions:

#include <termios.h>

int tcgetattr(int fd, struct termios *modes);

int tcsetattr(int fd, int action, struct termios *modes);

The tcgetattr function obtains the attributes for the terminal device referenced by the open file

descriptor fd, and stores them in the area pointed to by modes. The tcsetattr function sets the

attributes of the terminal device referenced by the open file descriptor fd to the attributes contained

in the struct termios structure pointed to by modes. The value of action must be one of:

TCSANOW The change occurs immediately.

TCSADRAIN The change occurs after all pending output to the device has been transmitted.
This function should be used when changing parameters that affect output.

TCSAFLUSH The change occurs after all pending output to the device has been transmitted. All

input that has been received but not read by a program is discarded before the

change is made.

Both tcgetattr and tcsetattr return 0 on success; if fd does not refer to a terminal device, or

another error occurs, they return –1 and set errno to indicate the error.

Note that because tcsetattr sets all terminal attributes, it is necessary to pass a completely filled-

in struct termios structure. Conventionally, this is done by first calling tcgetattr to get the
current attributes, making changes to the structure it returns, and then passing the result to

tcsetattr.

Baud Rates

The term “baud rate” is outdated and should really be referred to now as “bits per second.” However,

most UNIX documentation and functions still refer to baud rate, mostly due to when UNIX was

originally developed. The baud rate of a device is stored in the struct termios structure, but the
POSIX standard does not specify where. This means that it's implementation-dependent, and so

there are functions provided to examine and change the baud rate in the structure:

#include <termios.h>

speed_t cfgetispeed(const struct termios *modes);

speed_t cfgetospeed(const struct termios *modes);

Terminals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 303

int cfsetispeed(struct termios *modes, speed_t speed);

int cfsetospeed(struct termios *modes, speed_t speed);

The cfgetispeed and cfgetospeed functions extract the input and output baud rates for the

device from the struct termios structure pointed to by modes. Note that tcgetattr must be

called first, to place meaningful information into the structure. These functions return one of the

constants B0... B38400.

The cfsetispeed and cfsetospeed functions set the input and output baud rates (which may be

different if the device supports it) in the struct termios structure pointed to by modes to the

value passed in the speed parameter. This value should be one of the constants B0... B38400. Note

that these functions only make the settings in the structure; the change does not take effect on the

device until tcsetattr is called.

Job Control Functions

There are three functions defined for manipulating session-ids and process group-ids of the terminal:

#include <sys/types.h>

#include <termios.h>

pid_t tcgetpgrp(int fd);

int tcsetpgrp(int fd, pid_t pgid);

pid_t tcgetsid(int fd);

The tcgetpgrp function returns the process group-id of the terminal referenced by the open file

descriptor fd. The tcgetsid function returns the session-id of the terminal referenced by fd.

The tcsetpgrp function sets the process group-id of the terminal referenced by the open file

descriptor fd to pgid. For this to succeed, the terminal must be the controlling terminal of the

calling process, the controlling terminal must be associated with the session of the calling process,

and pgid must be the process group-id of a process in the same session as the calling process.

On success, tcsetpgrp returns 0. On failure, all three functions return –1 and set errno to indicate
the error.

Other Functions

The POSIX standard specifies four additional functions for manipulating terminal devices:

#include <termios.h>

int tcsendbreak(int fd, int duration);

int tcdrain(int fd);

int tcflush(int fd, int queue);

UNIX Systems Programming for SVR4

304 FOR PERSONAL, NON-COMMERCIAL USE ONLY

int tcflow(int fd, int action);

The tcsendbreak function transmits a continuous stream of zero-valued bits (called a break

condition) for the specified duration. The POSIX standard specifies that if duration is 0, the

transmission lasts for between 0.25 and 0.50 seconds. But, it also specifies that if duration is non-

zero, the result is implementation dependent. In SVR4, a non-zero value for duration means that

no bits are transmitted at all—instead, the function behaves like tcdrain. In some other systems,

a non-zero value may mean to transmit for duration×N, where N is between 0.25 and 0.50 seconds.

Still other systems may provide other interpretations. Non-zero values for duration should

probably be avoided for portability reasons.

The tcdrain function waits until all output written to the device referred to by fd has been

transmitted, and then returns.

The tcflush function discards data written to the device referenced by fd but not transmitted, or

data received but not read, depending on the value of queue:

TCIFLUSH Flush data received but not read.

TCOFLUSH Flush data written but not transmitted.

TCIOFLUSH Flush both data received but not read and data written but not transmitted.

The tcflow function suspends the transmission or reception of data on the device referred to by

fd, depending on the value of action:

TCOOFF Suspend output.

TCOON Resume output.

TCIOFF Cause the system to transmit a STOP character, telling the device to stop

transmitting data to the system.

TCION Cause the system to transmit a START character, telling the device to start

transmitting data to the system.

Canonical Mode

Canonical mode is the usual mode that terminals operate in. All of our examples up to this point

have used the terminal in canonical mode. In this mode, a program issues a read request, and the

read returns when a line has been entered. It is not necessary for the program to read an entire line;

if a partial line is read, the next read will start where the previous one left off.

For the most part, programs that interact with the user will keep the terminal in canonical mode—

it's easier to deal with, since the operating system handles all the messy details of buffering the input,

handling character erases and line kills, keeping track of typeahead (when the user types faster than

the program is reading), and so forth. However, there are times when operating in canonical mode
that a program might want to change some of a terminal's attributes.

The most common situation in which this occurs is when reading a password. Passwords, because

they are meant to be secret, should not be printed on the screen as they are typed. In order to

Terminals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 305

accomplish this, the program reading the password should disable the character echo attribute on

the terminal. Example 12-1 shows a program that does this.

Example 12-1: readpass

#include <termios.h>

#include <signal.h>

#include <stdio.h>

int

main(void)

{

 char line[BUFSIZ];

 sigset_t sig, savesig;

 struct termios modes, savemodes;

 /*

 * Block keyboard signals.

 */

 sigemptyset(&sig);

 sigaddset(&sig, SIGINT);

 sigaddset(&sig, SIGQUIT);

 sigaddset(&sig, SIGTSTP);

 sigprocmask(SIG_BLOCK, &sig, &savesig);

 /*

 * Get current terminal attributes.

 */

 if (tcgetattr(0, &modes) < 0) {

 perror("tcgetattr");

 exit(1);

 }

 /*

 * Save a copy of them to restore later, and then

 * change the attributes to remove echo.

 */

 savemodes = modes;

 modes.c_lflag &= ~(ECHO | ECHOE | ECHOK | ECHOKE);

 /*

 * Make our changes take effect.

 */

 if (tcsetattr(0, TCSAFLUSH, &modes) < 0) {

 perror("tcsetattr");

 exit(1);

 }

 /*

 * Prompt for and read a line.

 */

 printf("Enter a line (will not echo): ");

 fgets(line, sizeof(line), stdin);

 line[strlen(line)-1] = '\0';

 putchar('\n');

UNIX Systems Programming for SVR4

306 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 /*

 * Restore original terminal attributes.

 */

 if (tcsetattr(0, TCSAFLUSH, &savemodes) < 0) {

 perror("tcsetattr");

 exit(1);

 }

 /*

 * Restore original signal mask.

 */

 sigprocmask(SIG_SETMASK, &savesig, (sigset_t *) 0);

 /*

 * Print out what the user typed.

 */

 printf("You entered \"%s\"\n", line);

 exit(0);

}

% readpass

Enter a line (will not echo):

You entered "test"

The program begins by setting up a signal mask to block the receipt of signals that can be generated

from the keyboard. The reason for doing this is that one of these signals can cause the program to

terminate or stop, leaving the terminal in an undesirable state (character echo turned off). The

tcgetattr function is then used to obtain the current terminal attributes. These are saved, and then

modified to remove the character echo attribute. We also remove all the “visual” erase attributes.

The new attributes are set with tcsetattr, and then the user is prompted to enter a line of text.
Once the line is read, the original terminal attributes are restored, the original signal mask is restored,

and the line is printed. Note that a newline character is output right after reading the input; because

echo is turned off, the newline entered by the user will not be printed.

This program can be used to verify that even with echo turned off, everything else in canonical mode

still works. Try entering a line of text and using your character erase and line kill characters, and

verify that the output is what you'd expect.

Non-Canonical Mode

Some programs cannot use canonical mode. For example, consider the vi editor (or emacs, if you

prefer). The editor's commands are single characters, and they must be acted upon immediately,
without waiting for the user to press return. Thus, we need a way to obtain input from the user in

units of characters, rather than lines. Furthermore, some of the commands used by the editor are

special to the terminal driver and are not normally passed to the reading program (e.g., CTRL-D,

the default EOF character, tells vi to scroll down half a screen, and CTRL-R, the REPRINT

character, tells emacs to search in the reverse direction). So, we need a way to turn off these special

meanings, as well.

This is what non-canonical mode is for. Non-canonical mode is entered by turning off the ICANON
attribute. When in non-canonical mode, all of the special characters except those that generate

Terminals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 307

signals are disabled. If we also turn off the ISIG attribute, we can disable the signal-generating
special characters as well. Non-canonical mode also stops the system from buffering the input into

units of lines.

But if non-canonical mode disables the line-by-line processing of input, how does the system know

when to return to data to us? Older systems, which use raw or cbreak mode for non-canonical input,

return the data one character at a time. Unfortunately, this can be very inefficient, because it requires

a lot of overhead. Thus, POSIX allows us to tell the system to return input when either a specified

amount of data has been read, or after a certain amount of time has passed. The implementation of

this uses two variables in the c_cc array, MIN and TIME, indexed by VMIN and VTIME, respectively.

MIN specifies a minimum number of characters to be processed before a read returns. TIME specifies
the time, in tenths of a second, to wait for input. There are four combinations of these two variables:

Case A: MIN > 0, TIME > 0 In this case, TIME serves as an intercharacter timer that is
activiated after the first character is received, and reset after each

subsequent character is received. If MIN characters are received
before the timer expires, the read returns the bytes received. If the

timer expires before MIN bytes have been read, the characters read
so far are received. At least one character is guaranteed to be

returned, because the timer does not start until the first character

is processed.

Case B: MIN > 0, TIME = 0 Since TIME is zero, there is no timer involved in this case. A read

will not be satisfied until MIN characters have been received.

Case C: MIN = 0, TIME > 0 In this case, since MIN is zero, TIME does not serve as an
intercharacter timer. Instead, it serves as a read timer that is started

as soon as the read call is issued. A read is satisfied as soon as a

single character is typed, or when the timer expires. Note that if

the timer expires, no character is read, and read returns 0.

Case D: MIN = 0, TIME = 0 In this case, return is immediate. If data is available, the read will

return up to the number of characters requested. If no data is

available, read returns 0.

Example 12-2 shows a program that uses non-canonical mode to read one character at a time.

Example 12-2: caseflip

#include <termios.h>

#include <signal.h>

#include <stdlib.h>

#include <ctype.h>

int

main(void)

{

 char c, lastc;

 sigset_t sig, savesig;

UNIX Systems Programming for SVR4

308 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 struct termios modes, savemodes;

 /*

 * Block keyboard signals.

 */

 sigemptyset(&sig);

 sigaddset(&sig, SIGINT);

 sigaddset(&sig, SIGQUIT);

 sigaddset(&sig, SIGTSTP);

 sigprocmask(SIG_BLOCK, &sig, &savesig);

 /*

 * Get current terminal attributes.

 */

 if (tcgetattr(0, &modes) < 0) {

 perror("tcgetattr");

 exit(1);

 }

 /*

 * Save a copy of them to restore later, and then

 * change the attributes to set character-at-a-time

 * input, turn off canonical mode, and turn off echo.

 */

 savemodes = modes;

 modes.c_cc[VMIN] = 1;

 modes.c_cc[VTIME] = 0;

 modes.c_lflag &= ~ICANON;

 modes.c_lflag &= ~(ECHO | ECHOE | ECHOK | ECHOKE);

 /*

 * Make our changes take effect.

 */

 if (tcsetattr(0, TCSAFLUSH, &modes) < 0) {

 perror("tcsetattr");

 exit(1);

 }

 /*

 * Read characters.

 */

 while (read(0, &c, 1) > 0) {

 /*

 * Turn uppercase to lowercase and lowercase

 * to uppercase.

 */

 if (isupper(c))

 c = tolower(c);

 else if (islower(c))

 c = toupper(c);

 /*

 * Since non-canonical mode disables EOF,

 * we need to handle it ourselves.

 */

 if (c == savemodes.c_cc[VEOF] && lastc == '\n')

 break;

Terminals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 309

 /*

 * Output the new character and save

 * it.

 */

 write(1, &c, 1);

 lastc = c;

 }

 /*

 * Restore the original terminal attributes.

 */

 if (tcsetattr(0, TCSAFLUSH, &savemodes) < 0) {

 perror("tcsetattr");

 exit(1);

 }

 /*

 * Restore the original signal mask.

 */

 sigprocmask(SIG_SETMASK, &savesig, (sigset_t *) 0);

 exit(0);

}

As in our previous example, this program sets a signal mask to block keyboard interrupts. It then

sets MIN and TIME for character-at-a-time input, turns off canonical mode, and disables character
echo. The program then reads one character at a time. For each lowercase letter it encounters, it

echos the uppercase equivalent. For each uppercase letter, it echos the lowercase equivalent.

Because non-canonical mode disables most of the special characters, there is no way to signal an

end-of-file from the keyboard to terminate this loop. Thus, the program must check the characters

it reads to see if one of them is the EOF character (and that it occurs at the beginning of a line) and

break out of the loop itself.

Emulating Cbreak and Raw Modes

When porting software from BSD-based systems, it is common to encounter two modes not

available in POSIX. These are cbreak mode, enabled by setting the CBREAK attribute, and raw mode,

enabled by setting the RAW attribute. These modes are described in detail above.

Cbreak mode can be reproduced on a POSIX system as follows:

 Enable non-canonical mode (turn off ICANON).

 Enable one character at a time input (set MIN to 1 and TIME to 0).

Raw mode can reproduced with the following steps:

 Enable non-canonical mode (turn off ICANON).

 Disable CR-to-NL mapping on input (turn off ICRNL).

 Disable input parity detection (turn off INPCK) and input parity checking (turn off PARENB).

 Disable stripping of the eighth bit on input (turn off ISTRIP).

 Disable output flow control (turn off IXON).

UNIX Systems Programming for SVR4

310 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 Make sure characters are eight bits wide (turn on CS8).

 Disable all output processing (turn off OPOST).

 Enable one character at a time input (set MIN to 1 and TIME to 0).

Pre-POSIX Terminal Control

Depending on the program, porting code that manipulates terminal attributes from a pre-POSIX

operating system to a POSIX platform may or may not be a simple task. In this section we examine

the other two common interfaces to terminal input and output control, those of System V and BSD.

System V Terminal Control

POSIX terminal attribute control is based on the System V interface, and is almost identical from a

data structure and flag name point of view. System V uses a struct termio instead of struct

termios; this structure is defined as follows in the include file termio.h:

struct termio {

 unsigned short c_iflag;

 unsigned short c_oflag;

 unsigned short c_cflag;

 unsigned short c_lflag;

 char c_line;

 unsigned char c_cc[NCC];

};

The elements of this structure bear a one-to-one correspondence to their struct termios

counterparts (the c_line element was for future expansion and never used). There are some
differences in the attributes that can be stored in the flags; these are summarized in Table 12-1.

System V releases prior to SVR4 did not support job control or most of the other terminal driver

features added by Berkeley. The list of special characters supported by these versions is much
shorter: EOF, EOL, ERASE, INTR, KILL, QUIT, and SWTCH. (SWTCH was for System V's

layers job control facility, which was abandoned by POSIX in favor of Berkeley-style job control.)

The biggest difference between the System V interface and the POSIX interface is that instead of

using tcgetattr, tcsetattr, and the other functions described in the last section, the System V

interface uses the ioctl system call:

#include <unistd.h>

#include <termio.h>

int ioctl(int fd, int request, /* arg */ ...);

The ioctl function is the traditional UNIX system call for manipulating I/O devices. It performs

some operation, defined by the value of request, on the device referenced by the open file

descriptor fd. Each operation may have one argument, a pointer to which is provided by the third

parameter to ioctl. The principal reason for POSIX's abandonment of this interface is that the third

Terminals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 311

argument may be a pointer to different data types, depending on the value of request, making type

checking impossible. (POSIX actually does offer an ioctl-based interface to terminal control, but
its use is discouraged.)

In the case of the System V terminal interface, the third argument to ioctl is always the address of

a struct termio structure. The legal values for request are:

TCGETA The current terminal attributes are retrieved and stored in the struct

termio structure pointed to by the third argument. This is like

tcgetattr.

TCSETA The current terminal attributes are set to those stored in the struct

termio structure pointed to by the third argument. This is like tcsetattr

with the TCSANOW action.

TCSETAW The current terminal attributes are set to those stored in the struct

termio structure pointed to by the third argument. The changes do not take
effect until all characters written to the device have been transmitted. This

is like tcsetattr with the TCSADRAIN action.

TCSETAFTCSETAW The current terminal attributes are set to those stored in the struct termio

structure pointed to by the third argument. The changes do not take effect

until all characters written to the device have been transmitted, and all input

that has been received but not read is discarded. This is like tcsetattr with

the TCSAFLUSH action.

BSD Terminal Control

The BSD terminal control interface is substantially less organized than the System V and POSIX

interfaces, with five different data structures, each of which manipulates part of the interface.

However, the functionality of the BSD interface is comparable to that of the other two.

The BSD interface, like the System V one, is based on the ioctl function. In all cases, the third
argument is a pointer to one of the five data structures; which structure is obvious from the value of

the request argument. There are also two older functions called gtty and stty; these functions

work only with the struct sgttyb structure, and are left over from the early days when that was
the only structure that described terminal attributes. These two functions can be emulated as follows:

#include <sgtty.h>

int gtty(int fd, struct sgttyb *arg)

{

 return(ioctl(fd, TIOCGETP, arg));

}

int stty(int fd, struct sgttyb *arg)

{

 return(ioctl(fd, TIOCSETP, arg));

}

UNIX Systems Programming for SVR4

312 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Line Disciplines

Berkeley UNIX provides two line disciplines; essentially these are two different terminal drivers

(although they are not implemented as such). The old line discipline resembles the original Version

7 terminal driver, and also the one provided by pre-SVR4 versions of System V. The new line

discipline supports all the features added by Berkeley; most significantly job control. The new line

discipline provides essentially the same set of features as the POSIX terminal driver.

To change between the two line disciplines, the following ioctl actions are used:

TIOCGETD Get the current line discipline and store it in the integer pointed to by the third

argument.

TIOCSETD Set the current line discipline to the value stored in the integer pointed to by the

third argument.

The legal values for the line discipline are OTTYDISC for the old line discipline, and NTTYDISC for
the new line discipline.

The struct sgttyb Structure

The basic terminal driver modes, in both the old and new line disciplines, are set with a structure of

type struct sgttyb, defined in the include file sgtty.h:

struct sgttyb {

 char sg_ispeed;

 char sg_ospeed;

 char sg_erase;

 char sg_kill;

 char sg_flags;

};

The sg_ispeed and sg_ospeed elements describe the input and output baud rates, and contain

values from the set B0... B9600. The sg_erase and sg_kill elements are the ERASE and KILL

characters, respectively. The sg_flags element is a set of attribute flags that can be ored together.

Some of the more interesting flags are:

ECHO Enable character echo. This is identical to the POSIX ECHO.

CRMOD Map carriage return to newline on input, and echo newline or carriage return as

carriage return-newline on output. This is a mix of the POSIX ICRNL and ONLCR
attributes.

RAW Turn on raw mode, as described earlier. The POSIX equivalent of raw mode is

described in the section on POSIX terminal control.

CBREAK Turn on cbreak mode, as described earlier. The POSIX equivalent of cbreak mode is

described in the section on POSIX terminal control.

The values of the ioctl request argument that take a pointer to a struct sgttyb structure are:

Terminals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 313

TIOCGETP Get the current attributes and store them in the structure pointed to by the third

argument.

TIOCSETP Set the current attributes from the structure pointed to by the third argument. This

does not take effect until queued output has drained, and it flushes pending input.

TIOCSETN Set the current attributes from the structure pointed to by the third argument. Do

not wait for output to drain, and do not flush input. (Input is always flushed when
entering or leaving raw mode.)

Some other ioctl request values of interest are:

TIOCFLUSH Flush all pending input and output. The third argument is ignored. This can be

replaced with the POSIX tcflush function.

TIOCHPCL Enable or disable hangup-on-last-close mode, in which the last close of the device

hangs up the terminal. If the integer pointed to by the third argument is non-zero
this mode is enabled, it is disabled otherwise. This can be replaced by the POSIX

HUPCL attribute.

FIONREAD Return in the integer pointed to by the third argument the number of characters
pending on the input queue that have been received but not read by the program.

There is no replacement for this in POSIX, although the functionality can be

obtained with the select or poll functions, described in Chapter 6, Special-
Purpose File Operations.

The struct tchars Structure

The struct tchars structure is used to set special characters in both the old and new line
disciplines. It is defined as follows in the include file sys/ioctl.h:

struct tchars {

 char t_intrc;

 char t_quitc;

 char t_startc;

 char t_stopc;

 char t_eofc;

 char t_brkc;

};

These characters correspond to the POSIX INTR, QUIT, START, STOP, EOF, and EOL characters,

respectively.

The values of the ioctl request argument that take a pointer to a struct tchars structure are:

TIOCGETC Get the current set of characters and store them in the structure pointed to by the

third argument.

TIOCSETC Set the current set of characters from the structure pointed to by the third

argument.

UNIX Systems Programming for SVR4

314 FOR PERSONAL, NON-COMMERCIAL USE ONLY

The Local Mode Word

The local mode word is an integer containing attribute flags used by the new line discipline only.

These attributes are set by oring them into the mode word. Some of the more interesting attributes

are:

LPRTERA Printing terminal erase mode, like System V's ECHOPRT.

LCRTERA Erase with backspace-space-backspace, like POSIX ECHOE.

LLITOUT Suppress output translations, like turning off POSIX OPOST.

LTOSTOP Send SIGTTOU to background programs attempting to write to the terminal, like

POSIX TOSTOP.

LCRTKIL Kill lines with backspace-space-backspace, like POSIX ECHOKE.

LPASS8 Pass all eight bits of each character through, like turning off POSIX ISTRIP.

LCTLECH Echo control characters on input as “^X”; SVR4 (but not POSIX) offers this feature

as ECHOCTL.

The values of the ioctl request argument that take a pointer to a local mode word integer are:

TIOCLGET Get the current value of the local mode word and place it in the integer pointed to

by the third argument.

TIOCLSET Treat the third argument as a pointer to a mask of bits to replace the current
contents of the local mode word.

TIOCLBIS Treat the third argument as a pointer to a mask of bits to be set in the local mode

word.

TIOCLBIC Treat the third argument as a pointer to a mask of bits to be cleared in the local

mode word.

The struct ltchars Structure

The last structure used by the Berkeley terminal interface is the struct ltchars structure; this
structure sets the additional special characters used by the new line discipline. It is defined in the

include file sys/ioctl.h:

struct ltchars {

 char t_suspc;

 char t_dsuspc;

 char t_rprntc;

 char t_flushc;

 char t_werasc;

 char t_lnextc;

};

These elements correspond to the POSIX special characters SUSP, DSUSP, REPRINT, DISCARD,

WERASE, and LNEXT, respectively.

Terminals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 315

The values of the ioctl request argument that take a pointer to a struct ltchars structure

are:

TIOCGLTC Get the current special characters and store them in the structure pointed to by the

third argument.

TIOCSLTC Set the current special characters to those stored in the structure pointed to by the

third argument.

Terminal Window Size

Both BSD and SVR4 provide a method to keep track of the current terminal size (or window size).

The kernel will notify the foreground process group whenever this information is changed (e.g.,

when the user resizes his window) by sending a SIGWINCH signal. (Background processes should
check the window size when they are moved into the foregound, to be sure it hasn't changed.)

The window size is stored in a struct winsize structure, defined in the include file termio.h on
SVR4 systems, and the include file sys/ioctl.h on BSD systems:

struct winsize {

 unsigned short ws_row;

 unsigned short ws_col;

 unsigned short ws_xpixel;

 unsigned short ws_ypixel;

};

The ws_row element contains the number of character rows (lines) on the terminal, while the

ws_col element contains the number of character columns. The ws_xpixel and ws_ypixel
elements contain the size of the window in pixels in the X (horizontal) and Y (vertical) directions,

respectively.

The struct winsize structure is manipulated with the ioctl function described earlier. The

second argument (request) may be one of:

TIOCGWINSZ Get the current window size and store it in the structure pointed to by the third

argument.

TIOCSWINSZ Set the current window size to the values contained in the structure pointed to

by the third argument. If these values are different from the current values,

generate a SIGWINCH signal.

Chapter Summary

In this chapter, we examined the functions provided to the programmer for controlling terminal input
and output functions. Although these functions are not needed for basic terminal input and output,

any program that requires special services such as input without echo or character-at-a-time input

UNIX Systems Programming for SVR4

316 FOR PERSONAL, NON-COMMERCIAL USE ONLY

must make use of them. Because of the evolution of the terminal interface over the years, the

functions described in this chapter are also one of the stickiest points in porting software between

different versions of UNIX, and between other operating systems as well. However, the POSIX

interface has gone a long way toward simplifying this interface and alleviating the portability

problems.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 317

Chapter 13
Interprocess Communication

One of the most important features of the UNIX operating system is its ability to allow two processes

to communicate with each other by exchanging data. This allows simple programs, each with a

single purpose, to be joined together into complex tools. It is a major tenet of the “UNIX philosophy”

that it is better to develop small tools that do one thing well and then combine them, rather than

develop huge monolithic programs that attempt to do everything for everyone. The former idea

makes it easy to add new functionality by adding another program; the latter makes this more
difficult, because each program needs to be changed to add the same functionality.

In this chapter, we examine the myriad ways in which two processes executing on the same

computer can communicate with each other. In the next two chapters, we examine how processes

running on different computers can communicate. We begin this chapter with a discussion of pipes,

the most basic form of interprocess communication (IPC), that has been around since UNIX was

created. We move on to first-in first-out devices, usually called FIFOs or named pipes, and then to

UNIX-domain sockets, which in some sense are the same thing implemented differently. We finish

with a discussion of message queues, semaphores, and shared memory; these three ideas are often

collectively referred to as System V IPC.

Pipes

A pipe joins two processes together. It is a special pair of file descriptors that, rather than being

connected to a file, are connected to another process. When process A writes to its pipe file

descriptor, process B can read that data from its pipe file descriptor. Alternatively, when process B

writes to its pipe file descriptor, process A can read the data from its pipe file descriptor. Thus, a

pipe provides a unidirectional communications medium for two cooperating processes.

Once a pipe has been created, there is very little difference between a pipe file descriptor and a

regular file descriptor. In fact, unless a program takes special steps to find out, there is no way for it

to know that it is reading or writing a pipe instead of a file. The UNIX shell makes use of this fact
all the time, when it creates pipeline commands. For example, consider the following shell

commands:

% eqn report > out1

UNIX Systems Programming for SVR4

318 FOR PERSONAL, NON-COMMERCIAL USE ONLY

% tbl out1 > out2

% troff out2 > out3

% psdit out3 > out4

% lp out4

% rm out1 out2 out3 out4

Although we can certainly execute these programs in this fashion, it's not terribly efficient. There's

a lot of typing involved, there are four temporary files created which must then must be deleted, etc.

However, with the knowledge that each of the above commands has been written as a filter, we can

simplify things. A filter is a program that will read from its standard input (instead of from a disk
file) and write to its standard output. Programs that have been written in this way can be joined

together in pipelines by the shell. For example, we can combine the five commands above into a

single command as follows:

% eqn report | tbl | troff | psdit | lp

The eqn program reads its input from the file report, just as in the previous example. But, instead of

storing its output in the file out1, we have told the shell to connect the standard output from eqn to

the standard input of the tbl command. The tbl command, instead of reading its input from the file

out1, reads it from standard input. The standard output from tbl has been connected to the standard

input of troff. The standard output from troff has been connected to the standard input of psdit. And

finally, the standard output from psdit has been connected to the standard input of lp. Thus, data
flows from one program to the next, with no need for temporary files in between. The tool used to

connect these programs together is a pipe. The programs themselves, however, have no knowledge

of being used in this manner—they just know that if there are no file name arguments given to them

on the command line, they should read from their standard input and write to their standard output.

For all they know, the standard input could be a file and the standard output could be the terminal

screen. Because pipes work just like file descriptors, there is no need for special code in each of

these programs to handle them.

Simple Pipe Creation

The simplest way to create a pipe to another process is to use the popen function:

#include <stdio.h>

FILE *popen(const char *command, const char *type);

The popen function is similar to fopen, described in Chapter 4, The Standard I/O Library, except
that instead of opening a file for reading or writing, it creates a pipe for reading from or writing to

another command. The command, passed in the command string, may be any valid shell command;

it is executed with the Bourne shell (/bin/sh) using the shell's -c option. The type argument contains

one of the strings “r” (open the pipe for reading) or “w” (open the pipe for writing).

When called, popen creates a new process, and executes the command. It also creates a pipe to that
process, and connects it to the process' standard input or standard output, depending on the value in

the type argument. It then returns a file pointer to the calling process. The calling process may read

from this file pointer to obtain output from the child process, or may write to the file pointer to

Interprocess Communication

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 319

provide input to the child process. If the command cannot be executed, or the pipe cannot be created,

popen returns the constant NULL.

With one exception, all of the usual Standard I/O Library functions described in Chapter 4 may be

used with the file pointer returned by popen. The one exception is the fclose function. Instead,

the pclose function should be used:

#include <stdio.h>

int pclose(FILE *stream);

The pclose function closes the stream and frees up the buffers associated with it, just like fclose.

However, it also issues a call to waitpid (see Chapter 11, Processes) to wait for the child process
to terminate, and then returns the child's termination status to the caller.

Example 13-1 shows a different version of the program from Example 11-1 that prints out the day

of the week, this one using popen.

Example 13-1: popen

#include <stdio.h>

struct {

 char *abbrev;

 char *fullname;

} days[] = {

 "Sun", "Sunday",

 "Mon", "Monday",

 "Tue", "Tuesday",

 "Wed", "Wednesday",

 "Thu", "Thursday",

 "Fri", "Friday",

 "Sat", "Saturday",

 0, 0

};

int

main(void)

{

 int i;

 FILE *pf;

 char line[BUFSIZ];

 /*

 * Open a pipe to the data command. We will

 * be reading from the pipe.

 */

 if ((pf = popen("date", "r")) == NULL) {

 perror("popen");

 exit(1);

 }

 /*

UNIX Systems Programming for SVR4

320 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 * Read one line of output from the pipe.

 */

 if (fgets(line, sizeof(line), pf) == NULL) {

 fprintf(stderr, "No ouput from date command!\n");

 exit(1);

 }

 /*

 * For each day, see if it matches the output

 * from the date command.

 */

 for (i=0; days[i].abbrev != NULL; i++) {

 if (strncmp(line, days[i].abbrev, 3) == 0)

 printf("Today is %s.\n", days[i].fullname);

 else

 printf("Today is not %s.\n", days[i].fullname);

 }

 /*

 * Close the pipe and pick up the command's

 * termination status (which we ignore).

 */

 pclose(pf);

 /*

 * Exit with a status of 0, indicating that

 * everything went fine.

 */

 exit(0);

}

% popen

Today is not Sunday.

Today is not Monday.

Today is not Tuesday.

Today is not Wednesday.

Today is Thursday.

Today is not Friday.

Today is not Saturday.

This program creates a pipe from the date command, and reads its output. It then compares that

output to its list of day name abbreviations, and prints out the appropriate information. This version

of our program is much more efficient that the version from Chapter 11, because it only creates one

child process, instead of seven.

Because it works in a similar way, we can make the same points about popen that we did about

system:

 Although terribly convenient, popen is also terribly inefficient. Every time it is called, it not
only starts up a copy of the command you want to execute, but it also starts up a copy of the

shell. If your program will be executing many commands, you should execute them yourself

directly and do your own “plumbing,” rather than using popen. The means to do this are
described in the next section.

Interprocess Communication

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 321

 System calls and library routines are always more efficient than using popen. In the example

above, it would be much better to simply use the time and localtime functions described in
Chapter 7, Time of Day Operations, and avoid the overhead of executing a child process to

obtain the same information.

 The popen function should never, under any circumstances, be used in programs that will be

run with super-user permissions, or with the set-user-id bit set. Because popen uses the shell
to execute commands, there may be ways in which an unethical person can fool your program

into executing a command other than the one you intended. This may enable the person to

circumvent the security of your computer system.

Advanced Pipe Creation

In this section, we will examine the procedures used to create pipes ourselves. Before reading this

section, you should be familiar with the information in Chapter 11, Processes, on which it relies.

A pipe is created with the pipe function:

#include <unistd.h>

int pipe(int fd[2]);

This function creates two file descriptors; fd[0] is open for reading, and fd[1] is open for writing.

The two file descriptors are joined like a pipe, such that data written to fd[1] can be read from

fd[0]. If the pipe is successfully created, pipe returns 0. If it cannot be created, pipe returns –1,

and places the reason for failure in errno.

After creating a pipe, the calling process normally calls fork to create a child process, and the two
processes can then communicate, in one direction, using the pipe. Note that because a pipe is a half-

duplex communications channel (it can only be used to communicate in one direction), either the
parent may send data to the child, or the child may send data to the parent, but not both. If both

processes must be able to send data to each other, two pipes must be created, one for the child to

use to send data to the parent, and the other for the parent to use to send data to the child.

In SVR4, pipes are full-duplex communications channels. This means that both file descriptors are

opened for both reading and writing. A read from fd[0] accesses the data written to fd[1], and a

read from fd[1] accesses the data written to fd[0]. However, this feature is peculiar to SVR4, and

is not the way pipes work on other UNIX systems. The POSIX standard specifies the more common

half-duplex pipe described in the previous paragraph, and that is what we describe in the rest of this

section.

As long as both ends of a pipe are open, communication can take place. When one end of a pipe is

closed, the following rules apply:

 If the write end of a pipe has been closed, any further reads from the pipe (after all the data

remaining in the pipe has been read) will return 0, or end-of-file.

 If the read end of a pipe has been closed, any attempt to write to the pipe will result in a SIGPIPE
signal being delivered to the process attempting the write.

UNIX Systems Programming for SVR4

322 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Each pipe has a buffer size; this size is described by the constant PIPE_BUF, described in the include
file limits.h. A write of this many bytes or less is guaranteed not to be interleaved with the writes

from other processes writing the same pipe. Writes of more than PIPE_BUF bytes however, can get
jumbled up in the pipe if more than one process is writing to it at the same time. (It is possible to

have more than one process writing to a pipe by using dup or dup2 on the file descriptor.)

Example 13-2 shows a reimplementation of the program in Example 13-1; this time we create the

pipe and execute date ourselves.

Example 13-2: pipedate

#include <sys/types.h>

#include <unistd.h>

struct {

 char *abbrev;

 char *fullname;

} days[] = {

 "Sun", "Sunday",

 "Mon", "Monday",

 "Tue", "Tuesday",

 "Wed", "Wednesday",

 "Thu", "Thursday",

 "Fri", "Friday",

 "Sat", "Saturday",

 0, 0

};

int

main(void)

{

 pid_t pid;

 int pfd[2];

 int i, status;

 char line[64];

 /*

 * Create a pipe.

 */

 if (pipe(pfd) < 0) {

 perror("pipe");

 exit(1);

 }

 /*

 * Create a child process.

 */

 if ((pid = fork()) < 0) {

 perror("fork");

 exit(1);

 }

 /*

 * The child process executes "date".

 */

Interprocess Communication

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 323

 if (pid == 0) {

 /*

 * Attach standard output to the pipe.

 */

 dup2(pfd[1], 1);

 close(pfd[0]);

 execl("/bin/date", "date", 0);

 perror("exec");

 _exit(127);

 }

 /*

 * We will not be writing to the pipe.

 */

 close(pfd[1]);

 /*

 * Read the output of "date".

 */

 if (read(pfd[0], line, 3) < 0) {

 perror("read");

 exit(1);

 }

 /*

 * For each day, see if it matches the output

 * from the date command.

 */

 for (i=0; days[i].abbrev != NULL; i++) {

 if (strncmp(line, days[i].abbrev, 3) == 0)

 printf("Today is %s.\n", days[i].fullname);

 else

 printf("Today is not %s.\n", days[i].fullname);

 }

 /*

 * Close the pipe and wait for the child

 * to exit.

 */

 close(pfd[0]);

 waitpid(pid, &status, 0);

 /*

 * Exit with a status of 0, indicating that

 * everything went fine.

 */

 exit(0);

}

% pipedate

Today is not Sunday.

Today is not Monday.

Today is not Tuesday.

Today is not Wednesday.

Today is Thursday.

Today is not Friday.

UNIX Systems Programming for SVR4

324 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Today is not Saturday.

The program begins by creating a pipe. It then calls fork to create a child process. The child process
will be executing the date command, and we want the parent to be able to read the output from this

command, so the child process calls dup2 to attach its standard output to pfd[1]. Because the child

process will not be reading from the pipe, it closes pfd[0]. The child process then calls execl to

execute the date command. Meanwhile, the parent closes pfd[1], since it will not be writing to the

pipe. It then calls read to obtain the data it needs, and examines the data just as in the previous

example. Finally, the parent closes the read side of the pipe since it's done with it, and calls waitpid

to wait for the child process to terminate, and pick up its termination status.

Example 13-3 shows another program; this one uses the pipe in the other direction, to allow the
parent to send data to the child.

Example 13-3: pipemail

#include <sys/types.h>

#include <unistd.h>

#include <stdio.h>

int

main(void)

{

 pid_t pid;

 int pfd[2];

 int i, status;

 char *username;

 /*

 * Obtain the user name of the person

 * running this program.

 */

 if ((username = cuserid(NULL)) == NULL) {

 fprintf(stderr, "Who are you?\n");

 exit(1);

 }

 /*

 * Create a pipe.

 */

 if (pipe(pfd) < 0) {

 perror("pipe");

 exit(1);

 }

 /*

 * Create a child process.

 */

 if ((pid = fork()) < 0) {

 perror("fork");

 exit(1);

 }

Interprocess Communication

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 325

 /*

 * The child process executes "mail".

 */

 if (pid == 0) {

 /*

 * Attach standard input to the pipe.

 */

 dup2(pfd[0], 0);

 close(pfd[1]);

 execl("/bin/mail", "mail", username, 0);

 perror("exec");

 _exit(127);

 }

 /*

 * We won't be reading from the pipe.

 */

 close(pfd[0]);

 /*

 * Write our mail message to the pipe.

 */

 write(pfd[1], "Greetings and salutations,\n\n", 28);

 write(pfd[1], "This is your program saying hello.\n", 35);

 write(pfd[1], "Have a nice day.\n\n", 18);

 write(pfd[1], "Bye.\n", 5);

 /*

 * Close the pipe and wait for the child

 * to exit.

 */

 close(pfd[1]);

 waitpid(pid, &status, 0);

 /*

 * Exit with a status of 0, indicating that

 * everything went fine.

 */

 exit(0);

}

% pipemail

% mailx

mailx version 5.0 Mon Sep 27 07:25:51 PDT 1993 Type ? for help.

"/var/mail/davy": 1 message 1 new

>N 1 David A. Curry Thu Dec 8 11:43 19/383

? 1

Message 1:

From davy Thu Dec 8 11:43 EST 1994

Date: Thu, 8 Dec 1994 11:43:55 +0500

From: davy (David A. Curry)

Greetings and salutations,

This is your program saying hello.

Have a nice day.

UNIX Systems Programming for SVR4

326 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Bye.

? d

? q

In this case, the child process executes the mail command, and the parent will be sending a message.

Since mail reads from its standard input, the child process uses dup2 to attach its standard input to

the read side of the pipe. Since it won't be writing to the pipe, it closes pfd[1]. The parent closes

pfd[0] since it won't be reading from the pipe, and then writes a few strings to the child process

by using pfd[1]. It then closes the write side of the pipe (this provides the end-of-file indication to

the mail command), and waits for the child process to terminate.

NOTE

When you execute this program, depending on the load on your system, it may take

anywhere from a few seconds to several minutes for the mail message to be delivered to

your mailbox. Be patient before assuming the program doesn't work.

FIFOs

Pipes are extraordinarily useful, but suffer from one major limitation: they can only be used between

related processes. To get around this limitation, the FIFO (first-in, first-out) was invented. FIFOs

are often called named pipes, because they are associated with an entry in the file system. This name

allows them to be used by processes that are not related to each other.

Just like pipes, FIFOs can have multiple processes writing to them. However, if this is the case, each

writer must be careful to keep their writes no larger than PIPE_BUF bytes, or the data from multiple
processes will become intermixed. In Solaris 2.x, FIFOs are full-duplex communications channels

that allow bidirectional communication, but this behavior is not standard, and should not be relied

upon if portability is an issue.

FIFOs can be created on most System V systems with the mknod function, which is used for creating
special device files of all types. However, the POSIX standard specifies a function just for creating

FIFOs, called mkfifo:

#include <sys/types.h>

#include <sys/stat.h>

int mkfifo(const char *path, mode_t mode);

The path parameter provides a path name to the desired FIFO to be created, which must not already

exist. The mode argument contains a set of permission bits to set on the FIFO; these are modified

by the process' umask value. Upon successful completion, mkfifo returns 0. If it fails, it returns –

1 and sets errno to indicate the error.

Interprocess Communication

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 327

A FIFO may also be created on most systems with the mkfifo command. This allows a FIFO to be

created using a shell command, and then accessed using normal I/O redirection.

Once a FIFO has been created, it must be opened for use with the open function (see Chapter 3,

Low-Level I/O Routines). When a FIFO is opened, the O_NONBLOCK option affects what happens:

 If O_NONBLOCK is not specified (the usual case), an open for reading only blocks until another
process opens the FIFO for writing. Similarly, an open for writing only blocks until another

process opens the FIFO for reading.

 If O_NONBLOCK is specified, an open for reading only returns immediately. But an open for
writing only will return an error if no process has yet opened the FIFO for reading.

Like pipes, an attempt to write to a FIFO that has no process reading it will generate a SIGPIPE
signal. When the last writer on a FIFO closes it, an end-of-file indication is generated for the reader.

Examples 13-4 and 13-5 show two programs, a server and a client, that use a FIFO to communicate.

The server simply prints any data it receives from the client.

Example 13-4: fifo-srvr

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#define FIFONAME "myfifo"

int

main(void)

{

 int n, fd;

 char buf[1024];

 /*

 * Remove any previous FIFO.

 */

 unlink(FIFONAME);

 /*

 * Create the FIFO.

 */

 if (mkfifo(FIFONAME, 0666) < 0) {

 perror("mkfifo");

 exit(1);

 }

 /*

 * Open the FIFO for reading.

 */

 if ((fd = open(FIFONAME, O_RDONLY)) < 0) {

 perror("open");

 exit(1);

 }

UNIX Systems Programming for SVR4

328 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 /*

 * Read from the FIFO until end-of-file and

 * print what we get on the standard output.

 */

 while ((n = read(fd, buf, sizeof(buf))) > 0)

 write(1, buf, n);

 close(fd);

 exit(0);

}

Example 13-5: fifo-clnt

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#define FIFONAME "myfifo"

int

main(void)

{

 int n, fd;

 char buf[1024];

 /*

 * Open the FIFO for writing. It was

 * created by the server.

 */

 if ((fd = open(FIFONAME, O_WRONLY)) < 0) {

 perror("open");

 exit(1);

 }

 /*

 * Read from standard input, and copy the

 * data to the FIFO.

 */

 while ((n = read(0, buf, sizeof(buf))) > 0)

 write(fd, buf, n);

 close(fd);

 exit(0);

}

% fifo-srvr &

% fifo-clnt < /etc/motd

Sun Microsystems Inc. SunOS 5.3 Generic September 1993

The server process first uses unlink to delete any old FIFO, and then calls mkfifo to create a new
one. This is not strictly necessary, but insures that the FIFO has the proper modes and ownership.

The server then opens the FIFO for reading, and copies anything it receives to the standard output.

The client opens the FIFO (which has been created by the server) for writing, and copies its standard

input to the FIFO.

Interprocess Communication

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 329

UNIX-Domain Sockets

UNIX-domain sockets are similar to named pipes, in that they provide an address in the file system

that unrelated processes may use to communicate. They differ from named pipes in the way that

they are accessed. Named pipes (FIFOs) are accessed just like any other file; in fact, a command

executed from the shell whose input or output is redirected to a FIFO never need know that it is

using a named pipe. On the other hand, UNIX-domain sockets are implemented using the Berkeley

networking paradigm, usually called the socket interface. This interface has a set of specialized

functions used to create, destroy, and transfer data over communications channels.

Interprocess communication with sockets is usually described in terms of the client-server model.

In this model, one process is usually called the server; it is responsible for satisfying the requests

made of it by other processes, called clients. A server usually has a well-known address; this address

is always the same, so that client programs will know where to contact it. An analogy in the real

world might be the telephone number 9-1-1, which, at least in the United States, contacts the
police/fire/ambulance service wherever it is dialed.

In order to use the functions described in this section, a program must be linked with the -lnsl and -

lsocket libraries on Solaris 2.x, and with the -lnsl library on IRIX 5.x.

Creating a Socket

The basic unit of communication in the Berkeley networking paradigm is the socket, created with

the socket function:

#include <sys/types.h>

#include <sys/socket.h>

int socket(int domain, int type, int protocol);

The domain argument specifies the domain, or address family, in which addresses should be

interpreted; it imposes certain restrictions on the length of addresses, and what they mean. In this

section, we will be using the AF_UNIX domain, in which addresses are ordinary UNIX path names.

In the next chapter, we will look at the AF_INET domain, which is used for Internet addresses.

There are two types of communications channels supported by sockets, selected with the type

argument:

SOCK_STREAM This type of connection is usually called a virtual circuit. It is a bidirectional

continuous byte stream that guarantees the reliable delivery of data in the

order it was sent. No data can be sent until the circuit is established; the circuit

then remains intact until the conversation is complete. A telephone call is a

real-world example of a virtual circuit; a FIFO is another example.

SOCK_DGRAM This type of connection is used to send distinct packets of information called

datagrams. Datagrams are not guaranteed to be delivered to the remote side

of the communications channel in the same order they were sent. In fact, they
are not guaranteed to be delivered at all. (This is not as undesirable as it may

sound; there are many applications for which it is perfectly suited.) The U.S.

UNIX Systems Programming for SVR4

330 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Mail system is a real-world example of datagrams: each letter is an individual

message, letters may arrive in a different order than they were sent, and some

may even get lost.

The protocol parameter specifies the protocol number that should be used on the socket; it is

usually the same as the address family. In this section we will be using the PF_UNIX protocol family;

in the next chapter we will examine the PF_INET family. The protocol parameter can usually be

given as 0, and the system will figure it out.

When a socket is successfully created, a socket descriptor is returned. This is a small non-negative

integer, similar to a file descriptor (but with slightly different semantics). If the socket cannot be

created, –1 is returned and the error information is stored in errno.

There is a second method for creating sockets that can be used by two related processes (parent and

child) to establish a full-duplex communications channel:

#include <sys/types.h>

#include <sys/socket.h>

int socketpair(int domain, int type, int protocol, int sv[2]);

This creates an unnamed pair of sockets and places their descriptors in sv[0] and sv[1]. Each

socket is a bidirectional communications channel. A read from sv[0] accesses the data written to

sv[1], and a read from sv[1] accesses the data written to sv[0]. If the socket pair is successfully

created, socketpair returns 0. Otherwise, it returns –1 and stores the error code in errno.

Server-Side Functions

The server process needs to call each of these functions, in order, if it is to exchange data with a

client.

Naming a Socket

After creating a socket, a server process must provide that socket with a name, or client programs

will not be able to access it. The function to assign a name to a socket is called bind:

#include <sys/types.h>

#include <sys/socket.h>

int bind(int s, const struct sockaddr *name, int addrlen);

After completion, the communications channel referenced by the socket descriptor s will have the

address described by name. In order for bind to succeed, the address must not already be in use.

Because name may be of different sizes depending on the address family being used, addrlen is

used to indicate its length. If bind succeeds, it returns 0. If it fails (often because the address is

already in use), it returns –1 and stores an error code in errno.

In the UNIX domain, the name parameter is actually of type struct sockaddr_un, defined in the

include file sys/un.h:

Interprocess Communication

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 331

struct sockaddr_un {

 short sun_family;

 char sun_path[108];

};

The sun_family element is always set to AF_UNIX, identifying this address as being in the UNIX

domain. The sun_path element contains the file system path name of the socket. As a side effect
of the implementation of UNIX-domain sockets, this file is actually created when it is bound. Before

a server calls bind, it should make sure that this file does not exist and delete it if it does, or the
bind will fail because the address is already in use.

Waiting for Connections

If a server is providing a service via a stream-based socket, it must notify the operating system when

it is ready to accept connections from clients on that socket. To do this, it uses the listen function:

#include <sys/types.h>

#include <sys/socket.h>

int listen(int s, int backlog);

This function tells the operating system that the server is ready to accept connections on the socket

referenced by s. The backlog parameter specifies the number of connection requests that may be

pending at any given time; most operating systems silently limit this to a maximum of five. If a

connection request arrives when the queue of pending connections is full, the client will receive a

connection refused error.

Accepting Connections

To actually accept a connection, the server uses the accept function:

#include <sys/types.h>

#include <sys/socket.h>

int accept(int s, struct sockaddr *name, int *addrlen);

When a connection request arrives on the socket referenced by s, accept will return a new socket

descriptor. The server can use this new descriptor to communicate with the client; the old descriptor

(the one bound to the well-known address) may continue to be used for accepting additional

connections. When the connection is accepted, if name is not null, the operating system will store

the address of the client there, and will store the length of the address in addrlen. If accept fails,

it returns –1 and places the reason for failure in errno.

Connecting to a Server

In order to connect to a server using a stream-based socket, the client program calls the connect
function:

#include <sys/types.h>

#include <sys/socket.h>

UNIX Systems Programming for SVR4

332 FOR PERSONAL, NON-COMMERCIAL USE ONLY

int connect(int s, struct sockaddr *name, int addrlen);

This function connects the socket referenced by s to the server at the address described by name.

The addrlen parameter specifies the length of the address in name. If the connection is completed,

connect returns 0. Otherwise, it returns –1 and places the reason for failure in errno.

A client may use connect to connect a datagram socket to the server as well. This is not strictly
necessary, and does not actually establish a connection. However, it does enable the client to send

datagrams on the socket without having to specify the destination address for each datagram.

Transferring Data

To transfer data on a stream-based connection, the client and server may simply use read and

write. However, there are also two functions specifically used with stream-based sockets:

#include <sys/types.h>

#include <sys/socket.h>

int recv(int s, char *buf, int len, int flags);

int send(int s, const char *buf, int len, int flags);

These functions are exactly identical to read and write, except that they have a fourth argument.
This argument allows the program to specify flags that affect how the data is sent or received. Only

one flag has any meaning in the UNIX domain:

MSG_PEEK If specified in a call to recv, the data is copied into buf as usual, but it is not

“consumed.” Another call to recv will return the same data. This allows a

program to “peek” at the data before reading it, to decide how it should be

handled.

When using datagram-based sockets, the server does not call listen or accept, and the client

(generally) does not call connect. Thus, there is no way for the operating system to figure out
automatically where data on these sockets is to be sent. Instead, the sender must tell the operating

system each time where the data is to be delivered, and the receiver must ask where it came from.

To do this, two other functions are defined:

#include <sys/types.h>

#include <sys/socket.h>

int recvfrom(int s, char *buf, int len, int flags,

 struct sockaddr *from, int *fromlen);

int sendto(int s, const char *buf, int len, int flags,

 struct sockaddr *to, int tolen);

The sendto function sends len bytes from buf via the socket referenced by s to the server located

at the address given in to. The tolen parameter specifies the length of the address. The number of

bytes actually transferred is returned, or –1 if an error occurred. There is no indication whether or

Interprocess Communication

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 333

not the data actually reaches its destination. The recvfrom function receives up to len bytes of

data from the socket referenced by s and stores them in buf. The address from which the data came

is stored in from, and fromlen is modified to indicate the length of the address. The number of

bytes received is returned, or –1 if an error occurs.

Destroying the Communications Channel

Sockets may be closed with the close function, with the side effect that if the socket refers to a
stream-based socket, the close will block until all data has been transmitted.

The shutdown function may also be used to shut down the communications channel:

#include <sys/types.h>

#include <sys/socket.h>

int shutdown(int s, int how);

This function shuts down either or both sides of the communications channel referenced by s,

depending on the value of how. If how is 0, the socket is shut down for reading; all further reads

from the socket return end-of-file. If how is 1, the socket is shut down for writing; all further writes

to the socket will fail. This also informs the operating system that no effort need be made to deliver

any outstanding data on the socket. If how is 2, then both sides of the socket are shut down and it

essentially becomes useless.

Putting it All Together

Examples 13-6 and 13-7 show small server and client programs that transfer data between

themselves using a virtual circuit. These two programs are identical in operation to the programs in

Examples 13-4 and 13-5, except they are implemented using UNIX-domain sockets.

Example 13-6: socket-srvr

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/un.h>

#include <string.h>

#define SOCKETNAME "mysocket"

int

main(void)

{

 char buf[1024];

 int n, s, ns, len;

 struct sockaddr_un name;

 /*

 * Remove any previous socket.

 */

 unlink(SOCKETNAME);

UNIX Systems Programming for SVR4

334 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 /*

 * Create the socket.

 */

 if ((s = socket(AF_UNIX, SOCK_STREAM, 0)) < 0) {

 perror("socket");

 exit(1);

 }

 /*

 * Create the address of the server.

 */

 memset(&name, 0, sizeof(struct sockaddr_un));

 name.sun_family = AF_UNIX;

 strcpy(name.sun_path, SOCKETNAME);

 len = sizeof(name.sun_family) + strlen(name.sun_path);

 /*

 * Bind the socket to the address.

 */

 if (bind(s, (struct sockaddr *) &name, len) < 0) {

 perror("bind");

 exit(1);

 }

 /*

 * Listen for connections.

 */

 if (listen(s, 5) < 0) {

 perror("listen");

 exit(1);

 }

 /*

 * Accept a connection.

 */

 if ((ns = accept(s, (struct sockaddr *) &name, &len)) < 0) {

 perror("accept");

 exit(1);

 }

 /*

 * Read from the socket until end-of-file and

 * print what we get on the standard output.

 */

 while ((n = recv(ns, buf, sizeof(buf), 0)) > 0)

 write(1, buf, n);

 close(ns);

 close(s);

 exit(0);

}

Example 13-7: socket-clnt

#include <sys/types.h>

Interprocess Communication

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 335

#include <sys/socket.h>

#include <string.h>

#include <sys/un.h>

#define SOCKETNAME "mysocket"

int

main(void)

{

 int n, s, len;

 char buf[1024];

 struct sockaddr_un name;

 /*

 * Create a socket in the UNIX

 * domain.

 */

 if ((s = socket(AF_UNIX, SOCK_STREAM, 0)) < 0) {

 perror("socket");

 exit(1);

 }

 /*

 * Create the address of the server.

 */

 memset(&name, 0, sizeof(struct sockaddr_un));

 name.sun_family = AF_UNIX;

 strcpy(name.sun_path, SOCKETNAME);

 len = sizeof(name.sun_family) + strlen(name.sun_path);

 /*

 * Connect to the server.

 */

 if (connect(s, (struct sockaddr *) &name, len) < 0) {

 perror("connect");

 exit(1);

 }

 /*

 * Read from standard input, and copy the

 * data to the socket.

 */

 while ((n = read(0, buf, sizeof(buf))) > 0) {

 if (send(s, buf, n, 0) < 0) {

 perror("send");

 exit(1);

 }

 }

 close(s);

 exit(0);

}

% socket-srvr &

% socket-clnt < /etc/motd

Sun Microsystems Inc. SunOS 5.3 Generic September 1993

UNIX Systems Programming for SVR4

336 FOR PERSONAL, NON-COMMERCIAL USE ONLY

System V IPC Functions

Three types of interprocess communication, message queues, shared memory, and semaphores, are

usually referred to collectively as System V IPC. They originated in SVR2, but have since been

made available by most vendors, and they are also available in SVR4.

Each type of IPC structure (message queue, shared memory segment, or semaphore) is referred to

by a non-negative integer identifier. To make use of a message queue for example, all the processes

using that message queue must know its identifier. When an IPC structure is being created, the

program doing the creation provides a key of type key_t. The operating system will convert this
key into an IPC identifier. Keys can be specified in one of three ways:

1. The server can create a new structure by specifying a key of IPC_PRIVATE. The creation
procedure will return an identifier for the newly created structure. The problem with this is that

in order for client programs to make use of the structure, they must know the identifier. Thus,

the server has to place the identifier in a file somewhere for the clients to read it.

2. The server and clients can agree on a key value, by defining it in a common header file, for

example. The server creates a new IPC structure with this key, and the clients use the key to

access the structure. The problem with this is that the key may already be in use by some other

group of programs, in which case the IPC structure cannot be created.

3. The server and clients can agree on a path name to an existing file in the file system, and a

project-id (a value between 0 and 255), and call the ftok function to convert these two values
into a key:

#include <sys/types.h>

#include <sys/ipc.h>

key_t ftok(const char *path, int projectid);

This key is then used in step 2, above.

To create a new IPC structure, the server (usually) calls the appropriate “get” function, either with

the key argument equal to IPC_PRIVATE, or with the key argument equal to some key and the

IPC_CREAT bit set in the flag argument. A client accesses an existing IPC structure (created by

the server) by calling the approriate “get” function with the key argument equal to the appropriate

key and with the IPC_CREAT bit cleared in the flag argument. To be sure that a new IPC structure

is created, rather than referencing an existing one with the same identifier, the IPC_EXCL bit can be

set in the flag argument to the “get” function. This causes the “get” function to return an error if

the IPC structure already exists.

Each IPC structure has a permissions structure associated with it, defined in the include file

sys/ipc.h:

struct ipc_perm {

 uid_t uid;

 gid_t gid;

 uid_t cuid;

 gid_t cgid;

Interprocess Communication

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 337

 mode_t mode;

 ulong seq;

 key_t key;

 long pad[4];

};

The cuid and cgid elements identify the user who created the object, the uid and gid elements

identify the owner of the object. The mode element is a set of read/write permission bits identical to

those for files, that specify owner, group, and world permissions to examine and change the object.

The “control” function for each type of IPC can be used to examine and change this structure.

The System V IPC mechanisms have one major problem. All of the IPC structures are global to the

system, and do not have a reference count. This means that if a program creates one of these

structures, and then exits without destroying it, the operating system has no way of knowing whether

any other programs are using it. Thus, the operating system has no choice but to leave the structure

there; it cannot delete it. These structures remain in the system until someone comes along and

removes them, or until the system is rebooted. This can be a serious problem, because the system
places a limit on how many of these structures may exist at any point in time. Aside from consuming

space that could be used by other programs, the structures left around by improperly-behaving

programs can eventually consume all available IPC resources.

Message Queues

A message queue is a linked list of messages, each of a fixed maximum size. Messages are added
to the end of the queue such that the order in which they were sent is preserved. However, each

message may have a type, allowing multiple message streams to be processed in the same queue.

Before using a message queue, a process must obtain the queue identifier for it. This is done using

the msgget function:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

int msgget(key_t key, int msgflg);

The key parameter specifies the key to use for this message queue; it may either be the value

IPC_PRIVATE, in which case a new message queue will always be created, or a non-zero value. If

key contains a non-zero value, msgget will either create a new message queue or return the

identifier of an existing message queue, depending on whether or not the IPC_CREAT bit is set in

the msgflg argument. The msgflg parameter is also used to specify the read/write permissions on

the message queue, in the same manner as with open and creat. Upon successful completion, a
message queue identifier is returned. If the queue does not exist or cannot be created, –1 is returned

and errno will describe the error that occurred.

The msgctl function allows several different control operations to be performed on a message
queue:

#include <sys/types.h>

UNIX Systems Programming for SVR4

338 FOR PERSONAL, NON-COMMERCIAL USE ONLY

#include <sys/ipc.h>

#include <sys/msg.h>

int msgctl(int msqid, int cmd, struct msqid_ds *buf);

The msqid parameter contains the message queue identifier of interest. The buf parameter points

to a structure of type struct msqid_ds, which describes the message queue:

struct msqid_ds {

 struct ipc_perm msg_perm;

 struct msg *msg_first;

 struct msg *msg_last;

 ulong msg_cbytes;

 ulong msg_qnum;

 ulong msg_qbytes;

 pid_t msg_lspid;

 pid_t msg_lrpid;

 time_t msg_stime;

 long msg_pad1;

 time_t msg_rtime;

 long msg_pad2;

 time_t msg_ctime;

 long msg_pad3;

 kcondvar_t msg_cv;

 kcondvar_t msg_qnum_cv;

 long msg_pad4[3];

};

The msg_perm element of this structure describes the permission bits on the queue, as described in

the introduction to this section. The msg_qnum, msg_cbytes, and msg_qbytes elements contain
the number of messages on the queue, number of bytes on the queue, and maximum number of bytes

on the queue, respectively. The msg_lspid and msg_lrpid elements contain the process-id of the

last process to send and receive a message on the queue, respectively. Finally, the msg_stime,

msg_rtime, and msg_ctime elements contain the time of the last send on the queue, time of the

last receive on the queue, and time of the last permissions change on the queue, respectively.

The cmd parameter to msgctl may be one of the following values:

IPC_STAT Place the current contents of the struct msqid_ds structure into the area

pointed to by buf.

IPC_SET Change the msg_perm.uid, msg_perm.gid, msg_perm.mode, and

msg_qbytes elements of the struct msqid_ds structure to the values found

in the area pointed to by buf. This operation is restricted to processes with an

effective user-id of the super-user, or that is equal to either msg_perm.cuid or

msg_perm.uid. The msg_qbytes element may only be changed by the super-
user.

IPC_RMID Remove the message queue identifier specified by msqid from the system, and

destroy the message queue and data structure associated with it. This command

Interprocess Communication

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 339

may only be executed by a process with an effective user-id of the super-user, or

that is equal to either msg_perm.cuid or msg_perm.uid.

On success, msgctl returns 0. If an error occurs, msgctl returns –1 and stores the reason for failure

in errno.

To send and receive messages on a message queue, the msgsnd and msgrcv functions are used:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);

int msgrcv(int msqid, void *msgp, size_t msgsz, long msgtype, int msgflg);

The msgsnd function sends a message, pointed to by msgp and of size msgsz, on the message queue

identified by msqid. A message has the following structure:

struct msgbuf {

 long mtype;

 char mtext[];

};

The mtype element of this structure is a positive integer that can be used by the receiving process

for message selection. The mtext element of the structure is a buffer of msgsz bytes; msgsz may

be any value from 0 to some system-imposed maximum (usually 2048). On success, msgsnd returns

0; otherwise it returns –1 and places an error code in errno.

The msgrcv function retrieves a message from the message queue specified by msqid, and stores

it in the area pointed to by msgp, which is large enough to hold a message of msgsz bytes. The

message retrieved is controlled by the msgtype parameter:

 If msgtype is zero, the next message on the queue is returned.

 If msgtype is greater than zero, the next message on the queue with mtype equal to msgtype

is returned.

 If msgtype is less than zero, the next message on the queue with mtype less than or equal to

the absolute value of msgtype is returned.

If a message is successfully received, msgrcv returns the number of bytes stored in msgp. If an error

occurs, –1 is returned and errno will indicate the error.

For both msgsnd and msgrcv, the msgflg argument may contain the constant IPC_NOWAIT. This

causes msgsnd to return an error immediately if the message queue is full, instead of blocking until

space is available. It causes msgrcv to return an error immediately if no message of the specified
type is available, instead of blocking until one arrives.

Examples 13-8 and 13-9 show a small server and client program that transfer data using message

queues.

UNIX Systems Programming for SVR4

340 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Example 13-8: msq-srvr

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

#define MSQKEY 34856

#define MSQSIZE 32

struct mymsgbuf {

 long mtype;

 char mtext[MSQSIZE];

};

int

main(void)

{

 key_t key;

 int n, msqid;

 struct mymsgbuf mb;

 /*

 * Create a new message queue. We use IPC_CREAT to create it,

 * and IPC_EXCL to make sure it does not exist already. If

 * you get an error on this, something on your system is using

 * the same key - change MSQKEY to something else.

 */

 key = MSQKEY;

 if ((msqid = msgget(key, IPC_CREAT | IPC_EXCL | 0666)) < 0) {

 perror("msgget");

 exit(1);

 }

 /*

 * Receive messages. Messages of type 1 are to be printed

 * on the standard output; a message of type 2 indicates that

 * we're done.

 */

 while ((n = msgrcv(msqid, &mb, MSQSIZE, 0, 0)) > 0) {

 switch (mb.mtype) {

 case 1:

 write(1, mb.mtext, n);

 break;

 case 2:

 goto out;

 }

 }

out:

 /*

 * Remove the message queue from the system.

 */

 if (msgctl(msqid, IPC_RMID, (struct msqid_ds *) 0) < 0) {

 perror("msgctl");

 exit(1);

 }

Interprocess Communication

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 341

 exit(0);

}

Example 13-9: msq-clnt

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

#define MSQKEY 34856

#define MSQSIZE 32

struct mymsgbuf {

 long mtype;

 char mtext[MSQSIZE];

};

int

main(void)

{

 key_t key;

 int n, msqid;

 struct mymsgbuf mb;

 /*

 * Get a message queue. The server must have created it

 * already.

 */

 key = MSQKEY;

 if ((msqid = msgget(key, 0666)) < 0) {

 perror("msgget");

 exit(1);

 }

 /*

 * Read data from standard input and send it in

 * messages of type 1.

 */

 mb.mtype = 1;

 while ((n = read(0, mb.mtext, MSQSIZE)) > 0) {

 if (msgsnd(msqid, &mb, n, 0) < 0) {

 perror("msgsnd");

 exit(1);

 }

 }

 /*

 * Send a message of type 2 to indicate we're done.

 */

 mb.mtype = 2;

 memset(mb.mtext, 0, MSQSIZE);

 if (msgsnd(msqid, &mb, MSQSIZE, 0) < 0) {

 perror("msgsnd");

 exit(1);

 }

UNIX Systems Programming for SVR4

342 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 exit(0);

}

% msq-srvr &

% msq-clnt < /etc/motd

Sun Microsystems Inc. SunOS 5.3 Generic September 1993

The server creates a new message queue that may be read and written by anyone. (We use IPC_EXCL
here to insure that nothing else in the system is using this key value - if you get an error when you

try to start the server, use a different key value.) The server then receives messages from the queue.

Messages of type 1 are data, and are printed on the standard output. Since there is no concept of

end-of-file on a message queue, we use a message of type 2 to tell the server there is no more data.

The client simply obtains the message queue identifier, and then reads from its standard input,

sending the data in messages of type 1. It sends a final message of type 2 to tell the server there is
no more data.

Shared Memory

Shared memory allows two or more processes to share a region of memory, such that they may all

examine and change its contents. Obviously, some type of synchronization between the processes

is required, such that one process is not changing the memory while another is accessing it.

Before using a shared memory segment, a process must obtain the queue identifier for it. This is

done using the shmget function:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

int shmget(key_t key, int size, int shmflg);

The size parameter specifies the size of the desired segment, in bytes. The key parameter specifies

the key to use for this memory segment; it may either be the value IPC_PRIVATE, in which case a

new segment will always be created, or a non-zero value. If key contains a non-zero value, msgget

will either create a new memory segment or return the identifier of an existing segment, depending

on whether or not the IPC_CREAT bit is set in the shmflg argument. The shmflg parameter is also

used to specify the read/write permissions on the memory segment, in the same manner as with

open and creat. Upon successful completion, a shared memory segment identifier is returned. If

the segment does not exist or cannot be created, –1 is returned and errno will describe the error
that occurred.

The shmctl function allows several different control operations to be performed on a shared
memory segment:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

Interprocess Communication

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 343

The shmid parameter contains the shared memory segment identifier of interest. The buf parameter

points to a structure of type struct shmid_ds, which describes the memory segment:

struct shmid_ds {

 struct ipc_perm shm_perm;

 int shm_segsz;

 struct anon_map *shm_amp;

 ushort shm_lkcnt;

 pid_t shm_lpid;

 pid_t shm_cpid;

 ulong shm_nattch;

 ulong shm_cnattch;

 time_t shm_atime;

 long shm_pad1;

 time_t shm_dtime;

 long shm_pad2;

 time_t shm_ctime;

 long shm_pad3;

 kcondvar_t shm_cv;

 char shm_pad4[2];

 struct as *shm_sptas;

 long shm_pad5[2];

};

The shm_perm element of this structure describes the permission bits on the segment, as described

in the introduction to this section. The shm_segsz element contains the size of the segment, in

bytes. The shm_lpid and shm_cpid elements contain the process-id of the last process to modify

the segment, and the process-id that created the segement, respectively. The shm_lkcnt element

contains the number of locks on this segment. The shm_nattch element contains the number of

processes that currently have this memory segment attached. Finally, the shm_atime, shm_dtime,

and shm_ctime elements contain the time of the last attachment of the segment, time of the last

detachment of the segment, and time of the last permissions change on the segment, respectively.

The cmd parameter to shmctl may be one of the following values:

IPC_STAT Place the current contents of the struct shmid_ds structure into the area

pointed to by buf.

IPC_SET Change the shm_perm.uid, shm_perm.gid, and shm_perm.mode elements

of the struct shmid_ds structure to the values found in the area pointed to

by buf. This operation is restricted to processes with an effective user-id of the

super-user, or that is equal to either shm_perm.cuid or shm_perm.uid.

IPC_RMID Remove the shared memory identifier specified by shmid from the system, and

destroy the memory segment and data structure associated with it. This

command may only be executed by a process with an effective user-id of the

super-user, or that is equal to either shm_perm.cuid or shm_perm.uid.

SHM_LOCK Lock the shared memory segment specified by shmid into memory. This may

only be executed by the super-user.

UNIX Systems Programming for SVR4

344 FOR PERSONAL, NON-COMMERCIAL USE ONLY

SHM_UNLOCK Unlock the shared memory segment specified by shmid. This may only be

executed by the super-user.

On success, shmctl returns 0. If an error occurs, shmctl returns –1 and stores the reason for failure

in errno.

Before a process may use a shared memory segment, it must attach that segment; this maps the

segment into the process' address space. The function to attach a shared memory segment is called

shmat:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

void *shmat(int shmid, void *shmaddr, int shmflg);

The shmid parameter specifies the identifier of the segment to be attached. The shmaddr parameter

specifies the address at which the memory should be attached; normally this is specified as 0

(allowing the system to choose) unless special circumstances prevail. If shmflg contains the

constant SHM_RDONLY the memory segment is attached read-only, otherwise it is attached read-

write. If the memory segment is successfully attached, shmat will return the address at which it

starts. Otherwise, it returns (void *) –1 and the reason for failure is stored in errno.

Once a program is done using a shared memory segment, it may call shmdt to detach it:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

int shmdt(void *shmaddr);

The shmaddr parameter should contain the value returned by shmat.

Semaphores

Semaphores are not used for exchanging data between processes. Instead, they are counters that are

used to provide synchronized access to a shared data object among multiple processes. To obtain

access to a shared resource, a process:

1. Tests the value of the semaphore that controls access to the resource.

2. If the value is greater than zero, the process can use the resource. It decrements the semaphore

by 1, indicating that it is using one unit of the resource.

3. If the value of the semaphore is zero, the process goes to sleep until the semaphore's value is

greater than zero. When the process wakes up, it returns to step 1.

When a process is done using a shared resource controlled by a semaphore, the semaphore's value

is incremented by 1. If any processes are stuck in step 3 above, one of them is awakened. Most

semaphores are binary, and their values are initialized to 1. However, any positive value can be
used, with the value indicating how many units of the resource are available for sharing.

Interprocess Communication

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 345

For semaphores to work properly, it must be possible to both test the value of a semaphore and

decrement it in a single operation. For this reason, semaphores are usually implemented in the

kernel.

The System V IPC version of semaphores operates on semaphore sets, rather than individual

semaphores. Before using a semaphore set, a process must obtain the identifier for it. This is done

using the semget function:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

int semget(key_t key, int nsems, int semflg);

The nsems parameter specifies the number of semaphores in the set. The key parameter specifies

the key to use for this semaphore set; it may either be the value IPC_PRIVATE, in which case a new

set will always be created, or a non-zero value. If key contains a non-zero value, msgget will either

create a new semaphore set or return the identifier of an existing set, depending on whether or not

the IPC_CREAT bit is set in the semflg argument. The semflg parameter is also used to specify

the read/write permissions on the semaphores in the set, in the same manner as with open and

creat. Upon successful completion, a semaphore set identifier is returned. If the set does not exist

or cannot be created, –1 is returned and errno will describe the error that occurred.

The semctl function allows several different control operations to be performed on a semaphore
set:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

int semctl(int semid, int semnum, int cmd, union semun arg);

union semun {

 int val;

 struct semid_ds *buf;

 ushort *array;

};

The semid parameter contains the semaphore set identifier of interest, while the semnum parameter

contains the number of the specific semaphore of interest. The arg parameter is a union of type

union semun; its use is described below. A structure of type struct semid_ds describes the
semaphore set:

struct semid_ds {

 struct ipc_perm sem_perm;

 struct sem *sem_base;

 ushort sem_nsems;

 time_t sem_otime;

 long sem_pad1;

 time_t sem_ctime;

 long sem_pad2;

UNIX Systems Programming for SVR4

346 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 long sem_pad3[4];

};

The sem_perm element of this structure describes the permission bits on the set, as described in the

introduction to this section. The sem_nsems element contains the number of semaphores in the set.

The sem_otime and shm_ctime elements contain the time of the last semaphore operation and the
time of the last permissions change on the set, respectively.

Each semaphore in the set is described by a structure of type struct sem:

struct sem {

 ushort semval;

 pid_t sempid;

 ushort semncnt;

 ushort semzcnt;

 kcondvar_t semncnt_cv;

 kcondvar_t semzcnt_cv;

};

The semval element contains the semaphore's current value. The sempid element contains the

process-id of the last process to operate on this semaphore. The semncnt and semzcnt elements
contain the number of processes waiting for the semaphore's value to become greater than its current

value, and to become zero, respectively.

The cmd parameter to semctl may be one of the following values:

IPC_STAT Place the current contents of the struct semid_ds structure into the area

pointed to by arg.buf.

IPC_SET Change the sem_perm.uid, sem_perm.gid, and sem_perm.mode elements of

the struct semid_ds structure to the values found in the area pointed to by

arg.buf. This operation is restricted to processes with an effective user-id of the

super-user, or that is equal to either sem_perm.cuid or sem_perm.uid.

IPC_RMID Remove the semaphore set identifier specified by semid from the system, and

destroy the set of semaphores and data structure associated with it. This command

may only be executed by a process with an effective user-id of the super-user, or

that is equal to either sem_perm.cuid or sem_perm.uid.

GETVAL Return the value of semval for the specified semaphore.

SETVAL Set the value of semval for the specified semaphore to arg.val.

GETPID Return the value of sempid for the specified semaphore.

GETNCNT Return the value of semncnt for the specified semaphore.

GETZCNT Return the value of semzcnt for the specified semaphore.

GETALL Store the value of semval for all semaphores in the set in the array pointed to by

arg.array.

Interprocess Communication

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 347

SETALL Set the value of semval for all semaphores in the set to the values in the array

pointed to by arg.array.

On success, semctl returns a positive value for the GETVAL, GETPID, GETNCNT, and GETZCNT

commands, and 0 otherwise. If an error occurs, semctl returns –1 and stores the reason for failure

in errno.

Semaphores are operated on with the semop function:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

int semop(int semid, struct sembuf *ops, size_t nops);

struct sembuf {

 ushort sem_num;

 short sem_op;

 short sem_flg;

};

The semid argument specifies the semaphore set of interest, and ops points to a list of nops

structures of type struct sembuf. Within each structure, sem_num specifies the number of the

semaphore to be manipulated, sem_op specifies the operation to be performed, and sem_flg
specifies any flags for the operation:

 If sem_op is positive, its value is added to the semaphore's value. This corresponds to releasing
a shared resource the program was using.

 If sem_op is negative, this corresponds to the program wanting to obtain resources controlled
by the semaphore.

If the semaphore's value is greater than or equal to the absolute value of sem_op (the resources

are available), the absolute value of sem_op is subtracted from the semaphore's value.

If the semaphore's value is less than the absolute value of sem_op (the resources are not

available), semop either returns immediately with an error (if IPC_NOWAIT was specified in

sem_flg), or puts the process to sleep until the semaphore's value becomes greater than or

equal to the absolute value of sem_op.

 If sem_op is zero, semop blocks until the semaphore's value becomes zero (unless

IPC_NOWAIT is specificed in sem_flg).

Chapter Summary

In this chapter, we examined a number of methods provided to allow two processes on the same
computer to communicate. For related processes (parent and child), pipes are the most common and

widespread solution, although others may be used. For unrelated processes, FIFOs (in the System

V world) and UNIX-domain sockets (in the Berkeley world) are the most common. The so-called

UNIX Systems Programming for SVR4

348 FOR PERSONAL, NON-COMMERCIAL USE ONLY

System V IPC functions, while sometimes convenient, have a number of drawbacks associated with

them, and should probably be avoided unless absolutely necessary.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 349

Chapter 14
Networking with Sockets

These days, nearly every UNIX system is connected to a network of some sort. Desktop systems are

connected via a network to file servers, and they use the network to access system and user files.

Most universities and government organizations, and more and more companies, are connected to

the Internet, and use the network to communicate with users, access data, and distribute information

world-wide. Even many home computers now connect to the Internet or a private network via dial-

up networking.

The de facto standard network protocol suite in use today is called TCP/IP, for Transmission Control

Protocol/Internet Protocol. This protocol suite was developed by the Internet Engineering Task

Force, and is the protocol suite used world-wide by hosts connected to the Internet. It is also used

for most UNIX-based local-area networking applications such as remote login, network file service,

and so forth. There is another international standard protocol suite, usually called OSI (Open

Systems Interconnect), that has been standardized by the International Standards Organization

(ISO). Although fairly popular in Europe, this protocol suite has never caught on in the United

States, for a wide variety of both technical and political reasons. Although there was much talk of

TCP/IP becoming obsolete when the ISO/OSI standards were first released, it is now clear that

TCP/IP is here to stay, and even organizations that use ISO/OSI internally must also support TCP/IP

if they want to connect to the outside world and the Internet.

Because TCP/IP development was funded by the U.S. Defense Advanced Research Projects Agency

(DARPA), and DARPA also provided principal funding for the development of Berkeley UNIX,

BSD UNIX was the first version of the operating system to support internetworking via TCP/IP.

The Berkeley networking paradigm, usually called the socket interface, has since spread to nearly

every other version of UNIX, SVR4 included.

In Chapter 13, we introduced the Berkeley socket interface as it applied to UNIX-domain sockets,

used for communicating between two or more processes on the same machine. In this chapter, we

will again examine the socket interface, but this time as it applies to Internet-domain sockets, used

for communicating between two or more processes on different machines. In the next chapter, we

will examine the Transport Layer Interface (TLI), an alternate interface to the network first

introduced in SVR3.

All programs that make use of the socket library functions must be linked with the -lnsl and -lsocket
libraries on Solaris 2.x, and with the -lnsl library on IRIX 5.x.

UNIX Systems Programming for SVR4

350 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Networking Concepts

Before discussing how network programs are written, a number of concepts must first be explained.

Host Names and Addresses

In order to communicate between hosts, it must be possible to specify the host to communicate with.

This is done by humans using host names, and by programs using host addresses.

Host Names

Each host on the network has a host name that distinguishes it from every other host on the network.

On a private network, host names can be simple, such as “fred” or “wilma.” On the Internet

however, a host name must actually be a fully-qualified domain name, such as

“fred.some.college.edu” or “wilma.company.com.”

The Internet Domain Name System allows the host name space to be subdivided into a number of

logical areas, or domains. There are two principal reasons for wanting to do this. First, it allows the

administration of the host name space to be spread out such that in general, each organization on the
Internet can administer its own name space. In olden days, the entire host name space was controlled

by the Network Information Center, and any time a new host was added to the network, it had to be

registered with them. With over six million hosts on the Internet as of January 1996, this is obviously

no longer workable. The other reason for subdividing the name space is that it allows host names to

be re-used in different areas of the name space. Before the domain name system, there could be one

and only one host named “fred” on the entire Internet. Again, with over six million hosts, this rapidly

becomes unworkable unless we all use host names such as “aaaaaaa,” “aaaaaab,” and so forth. The

domain name system allows the “fred” host name to be used in each logical area. There can still be

one and only one “fred” within a logical area, but two different logical areas can each have a “fred.”

At the top level of the system are the largest domains; each country has a two-letter domain. For

example, “us” is the United States, “se” is Sweden, and “mx” is Mexico. In the United States, there
are four other top-level domains: “edu” is educational institutions (mostly colleges and universities),

“mil” is military organizations, “gov” is non-military government organizations, and “com” is

commercial organizations. These domains should really be under the “us” domain, since they are

specific to the United States, but historical reasons make it otherwise.

Each top-level domain is subdivided into other domains. For example, the “edu” domain is divided

into domains for each college or university: “mit.edu,” “purdue.edu,” “berkeley.edu,” and so on.

These domains can then be subdivided even further, for example, “cs.purdue.edu” for the Computer

Science department, “cc.purdue.edu” for the Computer Center, and “physics.purdue.edu” for the

Physics department. There is, generally speaking, no practical limit to how many times a domain

may be subdivided, although most are not broken up beyond three or four levels.

The last subdivision of a domain is the host name. For example, “fred.cs.berkeley.edu” and

“wilma.cs.berkeley.edu.” On hosts within the “cs.berkeley.edu” domain, these hosts can be referred
to as simply “fred” and “wilma.” However, from a host not in the “cs.berkeley.edu” domain, the

fully-qualified domain name (“fred.cs.berkeley.edu” or “wilma.cs.berkeley.edu”) must be used.

Note that because the domain name is part of the host name, “fred.cc.purdue.edu,” “fred.mit.edu,”

“fred.army.mil,” “fred.se,” and “fred.co.ac.uk” all refer to different hosts.

Networking with Sockets

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 351

The local host's name may be obtained by using the uname function, described in Chapter 9.
However, for portability reasons, when using the Berkeley socket interface, it is more common to

obtain the host name using the gethostname function:

int gethostname(char *name, int len);

This function places the local host's name into the character array pointed to by name, which is len

bytes in size. It returns 0 on success; on failure it returns –1 and stores the reason for failure in

errno. Note that depending on the particular configuration of your host, gethostname may or
may not return the fully-qualified domain name for the host.

Host Addresses

Host names are a useful way for identifying hosts to other human beings, but they do not provide
enough information in and of themselves to allow the networking software to make much use of

them. For this reason, each host also has a host address. A host address is a unique 32-bit number;

each host on the network has a different address.

Host addresses, also called network addresses or Internet addresses, are usually written in “dotted

quad” notation, in which each byte of the address is converted to an unsigned decimal number and

separated from the next by a period (dot). For example, the hexadecimal network address

0x7b2d4359 would be written as 123.45.67.89.

Each network address consists of two parts: a network number and a host number. There are

different types of addresses: Class A network addresses use one byte for the network number and

three bytes for the host number; Class B network addresses use two bytes for the network number

and two bytes for the host number; Class C addresses use three bytes for the network number and

one byte for the host number. It is also possible to divide the host number part of an address further;
part of it can be used to represent a subnetwork number, and the rest of it can be used to represent

the host number on that subnetwork.

The network number part of an address is used by the network routing software to decide how to

deliver data from one network (say, the one at Berkeley) to another (say, the one at Harvard). It

corresponds in some ways to the area code part of a telephone number that tells the telephone

switches how to route the call from one area of the country to another. The subnetwork number tells

the network routing software within a given network what part of the network to deliver the data to.

For example, within Berkeley. the subnetwork number would indicate whether the data should go

to the Computer Science department or the English department. It corresponds in some ways to the

exchange part of a telephone number in the United States, which tells the telephone system which

central office should receive the data. Finally, the host number part of an address indicates the
specific host that is to receive the data, just as the last part of a telephone number identifies the

specific telephone to ring.

To translate between host names and host addresses, several functions are provided:

#include <sys/types.h>

#include <sys/socket.h>

#include <netdb.h>

#include <netinet/in.h>

UNIX Systems Programming for SVR4

352 FOR PERSONAL, NON-COMMERCIAL USE ONLY

struct hostent *gethostent(void);

struct hostent *gethostbyname(const char *name);

struct hostent *gethostbyaddr(const char *addr, int len, int type);

int sethostent(int stayopen);

int endhostent(void);

These functions look up host names and host addresses in one of several different databases,

depending on how your system is configured. The /etc/hosts file lists host name and address pairs,
and is usually used only for local area addresses. The Network Information Service (Yellow Pages)

provides a different interface to the /etc/hosts file. Finally, the name server provides a distributed

(by domain) database of host name and address information. On SVR4, the file /etc/nsswitch.conf

controls which databases are used, and the order in which they are searched.

The sethostent function opens the database and sets the “current entry” pointer to the beginning

of the file. The stayopen parameter, if non-zero, indicates that the database should remain open

across calls to the other functions; this cuts down on the number of system calls used to open the

database. The endhostent function closes the database.

The gethostent function reads the next host name and address from the database, and returns it.

The gethostbyname function searches for the entry in the database for the host with name name,

and returns its entry. The gethostbyaddr function searches for the entry in the database for the

host with address addr, whose length is specified by len, and type is given by type and returns its

entry. All three of these functions return NULL if the entry cannot be found or end of file is

encountered. On success, they return a pointer to a structure of type struct hostent:

struct hostent {

 char *h_name;

 char **h_aliases;

 int h_addrtype;

 int h_length;

 char *h_addr_list;

};

The h_name field will contain the official host name of the host (usually this is the fully-qualified

domain name). The h_aliases element will contain pointers to any other names the host is known

by. The h_addrtype field indicates the type of addresses these are. The h_length element

indicates how long (in bytes) an address is. And finally, h_addr_list will contain a list of the
addresses for that host.

NOTE

Older systems use a h_addr field in the structure instead of h_addr_list; this was
changed when it was realized that systems may have more than one address. On newer

Networking with Sockets

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 353

systems, h_addr is usually defined to refer to h_addr_list[0], for backward
compatibility.

Services and Port Numbers

On any given host on the network, a number of network services may be provided. For example, a

single host may offer remote login, file transfer, electronic mail delivery, and so forth. To distinguish

data sent to the file transfer service from data sent to, say, the electronic mail service, each service

is assigned a port number. The port number is a small integer used to identify the service to which

data is to be delivered.

In order for two hosts to communicate using some service, they must agree on the port number to

be used for that service. If two hosts used different port numbers for the same service, they would

not be able to communicate. All standard Internet protocols use well-known ports for this purpose.

For example, if host “fred” wants to transfer a file to host “wilma” using the File Transfer Protocol

(FTP), it knows that it should use port number 21. If “fred” tries to use some other port number for

this purpose, things won't work, because “wilma” is expecting FTP traffic on port 21. Likewise, if

“fred” sends some other type of traffic (say, remote login) to port 21 on “wilma” things won't work,
because “wilma” is expecting file transfer traffic on that port.

Most versions of UNIX, SVR4 included, use the file /etc/services to store the list of well-known

port numbers. This file lists the name of the service and the port number and protocol (TCP or UDP;

see below) to be used for communicating with that service. The /etc/services file is read using the

following functions:

#include <netdb.h>

struct servent *getservent(void);

struct servent *getservbyname(const char *name, char *proto);

struct servent *getservbyport(int port, char *proto);

int setservent(int stayopen);

int endservent(void);

The setservent function opens the services file and sets the “current entry” pointer to the start of

the file. The stayopen parameter, if non-zero, indicates that the file should remain open across

calls to the other functions. The endservent function closes the services file.

The getservent function reads the next entry in the file and returns it. The getservbyname

function searches for the service with name name and returns the entry for it. The getservbyport

function searches for the service with port number port and returns the entry for it. The proto

argument to these two functions is either “tcp” or “udp.” There are actually two sets of port
numbers, one for TCP (streams-based) services and one for UDP (datagram-based) services; it is

therefore necessary to indicate which port number is of interest. All three of these functions return

NULL if the entry cannot be found or end-of-file is encountered. If they succeed, they return a pointer

to a structure of type struct servent:

UNIX Systems Programming for SVR4

354 FOR PERSONAL, NON-COMMERCIAL USE ONLY

struct servent {

 char *s_name;

 char **s_aliases;

 int s_port;

 char *s_proto;

};

The s_name field indicates the official name of the service; the s_aliases field indicates any

alternate names for the service. The s_port field provides the port number, and the s_proto field
indicates the protocol to use when communicating with the service.

Network Byte Order

When implementing integer storage on a computer, manufacturers have two choices. They can place

the most significant byte in the lowest memory address, with less significant bytes stored in higher

addresses; this is called “big endian” notation. Or they can place the most significant byte in the

highest memory address, with less significant bytes stored in lower addresses; this is called “little

endian” notation. Intel chips (80x86) and Digital Equipment Corp. VAX computers are well-known

little-endian architectures; Motorola 680x0 chips and Sun SPARC systems are two well-known big-

endian architectures. Generally speaking, big-endian is the more common notation, but this is not

to say that little-endian is by any means rare.

A 32-bit integer value as stored on a big-endian machine looks different than one stored on a little-
endian machine. To copy data from one type of host to the other, it is necessary to transform the

data into the proper format. However, without knowing the notation used by both machines, it is

impossible to do this. Since there is no way to tell which format a remote machine on the network

uses, a network byte order has been defined. The network byte order (which happens to be big-

endian) insures that all traffic arriving from the network at a host will be in the same format. The

host can then convert from this standard format to whatever format it uses internally. Similarly, all

traffic sent by the host is converted to network byte order before it leaves, insuring that whatever

host receives it will know what format it is in.

The Berkeley networking paradigm specifies that each network program must perform these byte

order conversions itself. (It would be difficult to do it anywhere else, since only the program knows

the structure of the data it is transferring, and what parts need to be converted.) Four functions are
provided to make these translations:

#include <sys/types.h>

#include <netinet/in.h>

u_long htonl(u_long hostlong);

u_short htonl(u_short hostshort);

u_long ntohl(u_long netlong);

u_long ntohs(u_short netshort);

The htonl function converts the 32-bit hostlong value from host byte order to network byte order.

The htons function converts the 16-bit hostshort value from host byte order to network byte

Networking with Sockets

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 355

order. The ntohl function converts the 32-bit netlong value from network byte order to host byte

order. And, the ntohs function converts the 16-bit netshort value from network byte order to

host byte order. These functions are usually implemented as C preprocessor macros, and may be

“no-ops,” depending on the host architecture.

It is important to remember to use these functions whenever integer data is exchanged across the

network. Character strings do not need to be converted, since they are arrays of one-byte values.

There is no network floating point format; floating point numbers should generally be exchanged

only by converting them to integers or by printing them as character strings and then sending the

strings to the remote side, where they are converted back into floating point numbers.

The gethostby* and getservby* functions return integer values in network byte order.

Creating a Socket

The basic unit of communication in the Berkeley networking paradigm is the socket, created with

the socket function:

#include <sys/types.h>

#include <sys/socket.h>

int socket(int domain, int type, int protocol);

The domain argument specifies the domain, or address family, in which addresses should be

interpreted; it imposes certain restrictions on the length of addresses, and what they mean. In the

last chapter, we used the AF_UNIX domain, in which addresses are ordinary UNIX path names. In

this chapter, we will look at the AF_INET domain, which is used for Internet addresses.

There are two types of communications channels supported by sockets, selected with the type

argument:

SOCK_STREAM This type of connection is usually called a virtual circuit. It is a bidirectional

continuous byte stream that guarantees the reliable delivery of data in the

order it was sent. No data can be sent until the circuit is established; the circuit

then remains intact until the conversation is complete. A telephone call is a

real-world example of a virtual circuit; a FIFO is another example. Virtual

circuits are implemented in the Internet domain using the Internet-standard
Transmission Control Protocol (TCP).

SOCK_DGRAM This type of connection is used to send distinct packets of information called

datagrams. Datagrams are not guaranteed to be delivered to the remote side

of the communications channel in the same order they were sent. In fact, they

are not guaranteed to be delivered at all. (This is not as undesirable as it may

sound; there are many applications for which it is perfectly suited.) The U.S.

Mail system is a real-world example of datagrams: each letter is an individual

message, letters may arrive in a different order than they were sent, and some

UNIX Systems Programming for SVR4

356 FOR PERSONAL, NON-COMMERCIAL USE ONLY

may even get lost. Datagrams are implemented in the Internet domain using

the Internet-standard User Datagram Protocol (UDP).

The protocol parameter specifies the protocol number that should be used on the socket; it is

usually the same as the address family. In the last chapter we used the PF_UNIX protocol family; in

this chapter we will use the PF_INET family. The protocol parameter may usually be specified as

0, and the system will figure it out.

When a socket is successfully created, a socket descriptor is returned. This is a small non-negative

integer, similar to a file descriptor (but with slightly different semantics). If the socket cannot be

created, –1 is returned and the error information is stored in errno.

Server-Side Functions

The server process needs to call each of these functions, in order, if it is to exchange data with a

client.

Naming a Socket

After creating a socket, a server process must provide that socket with a name, or client programs

will not be able to access it. The function to assign a name to a socket is called bind:

#include <sys/types.h>

#include <sys/socket.h>

int bind(int s, const struct sockaddr *name, int addrlen);

After completion, the communications channel referenced by the socket descriptor s will have the

address described by name. In order for bind to succeed, the address must not already be in use.

Because name may be of different sizes depending on the address family being used, addrlen is

used to indicate its length. If bind succeeds, it returns 0. If it fails (often because the address is

already in use), it returns –1 and stores an error code in errno.

In the Internet domain, the name parameter is actually of type struct sockaddr_in, defined in

the include file netinet/in.h:

struct sockaddr_in {

 short sin_family;

 u_short sin_port;

 struct in_addr sin_addr;

};

The sin_family element is always set to AF_INET, identifying this address as being in the Internet

domain. The sin_port is the port number associated with this socket. The sin_addr element
contains the host address associated with the port.

When writing server processes, it is important to realize that the host on which the process is running

may have more than one network interface, and therefore, more than one network address. To handle

Networking with Sockets

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 357

this case, it is possible to create more than one socket, and bind a name to each socket, using the

same value for sin_port, and different values for sin_addr, for each socket. An easier way

though is to use the wildcard address INADDR_ANY in the sin_addr element; this will allow a single
socket to receive data from all network interfaces.

Waiting for Connections

If a server is providing a service via a stream-based socket, it must notify the operating system when

it is ready to accept connections from clients on that socket. To do this, it uses the listen function:

#include <sys/types.h>

#include <sys/socket.h>

int listen(int s, int backlog);

This function tells the operating system that the server is ready to accept connections on the socket

referenced by s. The backlog parameter specifies the number of connection requests that may be

pending at any given time; most operating systems silently limit this to a maximum of five. If a

connection request arrives when the queue of pending connections is full, the client will receive a

connection refused error.

Accepting Connections

To accept a connection, the server uses the accept function:

#include <sys/types.h>

#include <sys/socket.h>

int accept(int s, struct sockaddr *name, int *addrlen);

When a connection request arrives on the socket referenced by s, accept will return a new socket

descriptor. The server can use this new descriptor to communicate with the client; the old descriptor

(the one bound to the well-known address) may continue to be used for accepting additional

connections. When the connection is accepted, if name is not null, the operating system will store

the address of the client there, and will store the length of the address in addrlen. If accept fails,

it returns –1 and places the reason for failure in errno.

Client-Side Functions

In order to communicate with a server process, a client process needs to call the following functions,

in order.

Connecting to a Server

In order to connect to a server using a stream-based socket, the client program calls the connect
function:

#include <sys/types.h>

UNIX Systems Programming for SVR4

358 FOR PERSONAL, NON-COMMERCIAL USE ONLY

#include <sys/socket.h>

int connect(int s, struct sockaddr *name, int addrlen);

This function connects the socket referenced by s to the server at the address described by name.

The addrlen parameter specifies the length of the address in name. If the connection is completed,

connect returns 0. Otherwise, it returns –1 and places the reason for failure in errno.

A client may use connect to connect a datagram socket to the server as well. This is not strictly
necessary, and does not actually establish a connection. However, it does enable the client to send

datagrams on the socket without having to specify the destination address for each datagram.

Transferring Data

To transfer data on a stream-based connection, the client and server may simply use read and

write. However, there are also two functions specifically used with stream-based sockets:

#include <sys/types.h>

#include <sys/socket.h>

int recv(int s, char *buf, int len, int flags);

int send(int s, const char *buf, int len, int flags);

These functions are exactly identical to read and write, except that they have a fourth argument.
This argument allows the program to specify flags that affect how the data is sent or received. The

flags are:

MSG_DONTROUTE If specified in a call to send, this flag disables network routing of the data.
It is only used by diagnostic and routing programs.

MSG_OOB If specified in a call to send, the data is send as out-of-band data. This data
“jumps over” any other data that has been sent and not received. It is used,

for example, to handle interrupt characters in a remote login session. If

specified in a call to recv, any pending out-of-band data will be returned
instead of “regular” data.

MSG_PEEK If specified in a call to recv, the data is copied into buf as usual, but it is

not “consumed.” Another call to recv will return the same data. This
allows a program to “peek” at the data before reading it, to decide how it

should be handled.

When using datagram-based sockets, the server does not call listen or accept, and the client

(generally) does not call connect. Thus, there is no way for the operating system to automatically

figure out where data on these sockets is to be sent. Instead, the sender must tell the operating system

each time where the data is to be delivered, and the receiver must ask where it came from. To do
this, two other functions are defined:

#include <sys/types.h>

#include <sys/socket.h>

Networking with Sockets

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 359

int recvfrom(int s, char *buf, int len, int flags,

 struct sockaddr *from, int *fromlen);

int sendto(int s, const char *buf, int len, int flags,

 struct sockaddr *to, int tolen);

The sendto function sends len bytes from buf via the socket referenced by s to the server located

at the address given in to. The tolen parameter specifies the length of the address. The number of

bytes actually transferred is returned, or –1 if an error occurred. There is no indication whether or

not the data actually reaches its destination. The recvfrom function receives up to len bytes of

data from the socket referenced by s and stores them in buf. The address from which the data came

is stored in from, and fromlen is modified to indicate the length of the address. The number of

bytes received is returned, or –1 if an error occurs.

Destroying the Communications Channel

Sockets may be closed with the close function, with the side effect that if the socket refers to a
stream-based socket, the close will block until all data has been transmitted.

The shutdown function may also be used to shut down the commincations channel:

#include <sys/types.h>

#include <sys/socket.h>

int shutdown(int s, int how);

This function shuts down either or both sides of the communications channel referenced by s,

depending on the value of how. If how is 0, the socket is shut down for reading; all further reads

from the socket return end-of-file. If how is 1, the socket is shut down for writing; all further writes

to the socket will fail. This also informs the operating system that no effort need be made to deliver

any outstanding data on the socket. If how is 2, then both sides of the socket are shut down and it

essentially becomes useless.

Putting it All Together

Examples 14-1 and 14-2 show small server and client programs that transfer data between

themselves using a virtual circuit. These two programs are identical in operation to the programs in

Examples 13-6 and 13-7, except they are implemented using Internet-domain sockets.

Example 14-1: server

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <string.h>

#define PORTNUMBER 12345

UNIX Systems Programming for SVR4

360 FOR PERSONAL, NON-COMMERCIAL USE ONLY

int

main(void)

{

 char buf[1024];

 int n, s, ns, len;

 struct sockaddr_in name;

 /*

 * Create the socket.

 */

 if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0) {

 perror("socket");

 exit(1);

 }

 /*

 * Create the address of the server.

 */

 memset(&name, 0, sizeof(struct sockaddr_in));

 name.sin_family = AF_INET;

 name.sin_port = htons(PORTNUMBER);

 len = sizeof(struct sockaddr_in);

 /*

 * Use the wildcard address.

 */

 n = INADDR_ANY;

 memcpy(&name.sin_addr, &n, sizeof(long));

 /*

 * Bind the socket to the address.

 */

 if (bind(s, (struct sockaddr *) &name, len) < 0) {

 perror("bind");

 exit(1);

 }

 /*

 * Listen for connections.

 */

 if (listen(s, 5) < 0) {

 perror("listen");

 exit(1);

 }

 /*

 * Accept a connection.

 */

 if ((ns = accept(s, (struct sockaddr *) &name, &len)) < 0) {

 perror("accept");

 exit(1);

 }

 /*

 * Read from the socket until end-of-file and

 * print what we get on the standard output.

Networking with Sockets

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 361

 */

 while ((n = recv(ns, buf, sizeof(buf), 0)) > 0)

 write(1, buf, n);

 close(ns);

 close(s);

 exit(0);

}

Example 14-2: client

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <string.h>

#include <netdb.h>

#include <stdio.h>

#define PORTNUMBER 12345

int

main(void)

{

 int n, s, len;

 char buf[1024];

 char hostname[64];

 struct hostent *hp;

 struct sockaddr_in name;

 /*

 * Get our local host name.

 */

 if (gethostname(hostname, sizeof(hostname)) < 0) {

 perror("gethostname");

 exit(1);

 }

 /*

 * Look up our host's network address.

 */

 if ((hp = gethostbyname(hostname)) == NULL) {

 fprintf(stderr, "unknown host: %s.\n", hostname);

 exit(1);

 }

 /*

 * Create a socket in the INET

 * domain.

 */

 if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0) {

 perror("socket");

 exit(1);

 }

 /*

 * Create the address of the server.

UNIX Systems Programming for SVR4

362 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 */

 memset(&name, 0, sizeof(struct sockaddr_in));

 name.sin_family = AF_INET;

 name.sin_port = htons(PORTNUMBER);

 memcpy(&name.sin_addr, hp->h_addr_list[0], hp->h_length);

 len = sizeof(struct sockaddr_in);

 /*

 * Connect to the server.

 */

 if (connect(s, (struct sockaddr *) &name, len) < 0) {

 perror("connect");

 exit(1);

 }

 /*

 * Read from standard input, and copy the

 * data to the socket.

 */

 while ((n = read(0, buf, sizeof(buf))) > 0) {

 if (send(s, buf, n, 0) < 0) {

 perror("send");

 exit(1);

 }

 }

 close(s);

 exit(0);

}

% server &

% client < /etc/motd

Sun Microsystems Inc. SunOS 5.3 Generic September 1993

Example 14-3 shows a sample datagram client program that connects to the “daytime” service on

every host named on the command line. The “daytime” service is an Internet standard service that

returns the local time (to the server) in an ASCII string. It is defined for both TCP and UDP; try

modifying the program to use TCP instead.

Example 14-3: daytime

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <string.h>

#include <netdb.h>

#include <stdio.h>

#define SERVICENAME "daytime"

int

main(int argc, char **argv)

{

 int n, s, len;

Networking with Sockets

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 363

 char buf[1024];

 char *hostname;

 struct hostent *hp;

 struct servent *sp;

 struct sockaddr_in name, from;

 if (argc < 2) {

 fprintf(stderr, "Usage: %s hostname [hostname...]\n", *argv);

 exit(1);

 }

 /*

 * Look up our service. We want the UDP version.

 */

 if ((sp = getservbyname(SERVICENAME, "udp")) == NULL) {

 fprintf(stderr, "%s/udp: unknown service.\n", SERVICENAME);

 exit(1);

 }

 while (--argc) {

 hostname = *++argv;

 /*

 * Look up the host's network address.

 */

 if ((hp = gethostbyname(hostname)) == NULL) {

 fprintf(stderr, "%s: unknown host.\n", hostname);

 continue;

 }

 /*

 * Create a socket in the INET

 * domain.

 */

 if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {

 perror("socket");

 exit(1);

 }

 /*

 * Create the address of the server.

 */

 memset(&name, 0, sizeof(struct sockaddr_in));

 name.sin_family = AF_INET;

 name.sin_port = sp->s_port;

 memcpy(&name.sin_addr, hp->h_addr_list[0], hp->h_length);

 len = sizeof(struct sockaddr_in);

 /*

 * Send a packet to the server.

 */

 memset(buf, 0, sizeof(buf));

 n = sendto(s, buf, sizeof(buf), 0, (struct sockaddr *) &name,

 sizeof(struct sockaddr_in));

 if (n < 0) {

UNIX Systems Programming for SVR4

364 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 perror("sendto");

 exit(1);

 }

 /*

 * Receive a packet back.

 */

 len = sizeof(struct sockaddr_in);

 n = recvfrom(s, buf, sizeof(buf), 0, (struct sockaddr *) &from, &len);

 if (n < 0) {

 perror("recvfrom");

 exit(1);

 }

 /*

 * Print the packet.

 */

 buf[n] = '\0';

 printf("%s: %s", hostname, buf);

 /*

 * Close the socket.

 */

 close(s);

 }

 exit(0);

}

% daytime localhost

localhost: Mon Mar 20 15:50:54 1995

Other Functions

There are a number of other functions that can be used with sockets, although their use is less

common that those routines described so far.

Socket “Names”

There are two functions provided for obtaining the name bound to a socket:

#include <sys/types.h>

#include <sys/socket.h>

int getsockname(int s, struct sockaddr *name, int *namelen);

int getpeername(int s, struct sockaddr *name, int *namelen);

The getsockname function obtains the name bound to the socket s, and stores it in the area pointed

to by name. Since name is of different sizes depending on the networking domain (i.e., it may point

to a struct sockaddr_un or a struct sockaddr_in), the length of the name is stored in

Networking with Sockets

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 365

namelen. Note that namelen should be initialized to the size of the area pointed to by name; on

return it will be set to the actual length of name.

The getpeername function obtains the name of the peer connected to the socket s. In other words,

it obtains the address and port number of the remote host. A server can use this information to find

out who has connected to it. The name and namelen parameters are as described above.

Both getsockname and getpeername return 0 on success; on failure they return –1 and store an

error code in errno.

Socket Options

A number of options may be set on a socket to control its behavior; there are two functions for

manipulating these options:

#include <sys/types.h>

#include <sys/socket.h>

int getsockopt(int s, int level, int optname, char *optval, int *optlen);

int setsockopt(int s, int level, int optname, char *optval, int optlen);

The getsockopt function returns information about the state of options currently set on the socket

s; setsockopt changes the state of those options.

Options may exist at multiple protocol levels. Therefore, it is necessary to specify the level at which

the option in question resides. All of the options described in this section exist at the socket level;

the level parameter should always be set to SOL_SOCKET.

The optval parameter specifies a pointer to a buffer that either contains the value to be set for the

option, or is used to store the value of the option. The optlen parameter specifies the size of the

area pointed to by optval; on return from getsockopt, optlen will be modified to indicate the

actual size of the value.

The optname parameter specifies the option of interest:

SO_DEBUG Enables or disables debugging in the underlying protocol module.

SO_REUSEADDR Indicates that the rules used in validating addresses provided with

calls to bind should be modified to allow re-use of local addresses.

SO_KEEPALIVE Enables the periodic transmission of “are you there” messages on a
connected socket. If the connected party fails to respond to these

messages, the connection is considered broken and processes using

the socket will receive a SIGPIPE signal the next time they try to
use it.

SO_DONTROUTE Indicates that outgoing messages should bypass the network routing

facilities. This is used only for debugging and diagnostic purposes.

UNIX Systems Programming for SVR4

366 FOR PERSONAL, NON-COMMERCIAL USE ONLY

SO_LINGER If SO_LINGER is set on a socket that guarantees reliable data

delivery, and a close is performed on the socket, the system will

block the process on the close until any unsent data has been
transmitted, or until the transmission times out. The timeout in

seconds is specified in the optval parameter to setsockopt. If

SO_LINGER is disabled and a close is issued, the system will
process it in a manner that allows the calling process to continue as

quickly as possible.

SO_BROADCAST Requests permission to send broadcast datagrams (datagrams to be
received by all hosts) on the socket.

SO_OOBINLINE On sockets that support out-of-band data, requests that the out-of-

band data be placed in the normal input queue when it arrives; this

allows the data to be processed by read or recv calls without the

MSG_OOB flag.

SO_SNDBUF, SO_RCVBUF Adjust the size of the normal send and receive buffers, respectively.
Generally speaking, for large data transfers, these buffers should be

made as large as possible to make the transfer as efficient as

possible. The maximum limit on the buffer size in SVR4 is 64

Kbytes.

SO_TYPE Used with getsockopt only; returns the type of the socket (e.g.,

SOCK_STREAM).

SO_ERROR Used with getsockopt only; returns any pending error on the

socket and clears the error status.

Address Conversion

Routines are also provided to convert between the internal (binary) and external (character string)

representations of Internet addresses:

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

unsigned long inet_addr(const char *cp);

char *inet_ntoa(const struct in_addr addr);

The inet_addr function takes a character string containing an Internet address in “dotted-quad”

notation and returns the integer representation of that address. The inet_ntoa function takes an
integer representation of an Internet address, and returns a character string representation of the

address in “dotted-quad” notation.

Networking with Sockets

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 367

The Berkeley “R” Commands

The functionality of the Berkeley rsh command, which contacts a remote host and passes a

command to the shell, is accessible through the rcmd function:

int rcmd(char **ahost, unsigned short inport, char *luser,

 char *ruser, char *cmd, int *fd2p);

int rresvport(int *port);

The authentication scheme is based on reserved port numbers, defined to be port numbers less than
1024. On BSD UNIX systems (and other systems, such as SVR4, that support the concept), a

reserved port may only be obtained by the super-user. On the server side, when a client connects,

the server checks to see that the client is using a reserved port between 513 and 1024; port numbers

less than or equal to 512 are not permitted. If the port number used by the client is greater than 1024,

it is not a reserved port, and the server will not allow it. Note that the whole concept of reserved

ports is specific to UNIX; it is not an Internet standard. This means that the authentication provided

by this mechanism is dubious at best (for example, a personal computer running MS-DOS can create

any port it wants, since there is no concept of a super-user).

A reserved port number is obtained using the rresvport function; it returns either a reserved port

suitable for use as the inport parameter to rcmd, or –1 on error.

The rcmd function connects to the host named in *aname, which is modified to contain the official

host name, using the reserved port given by inport. It returns a stream socket on success, or –1 on

failure. The luser parameter should contain the name of the local user; the ruser parameter should

contain the name of the user on the remote host whose account is to be used to execute the command.

On the remote host, the rshd daemon will search ruser's.rhosts file for a line specifying the

connecting host and luser. If such a line is found, access is granted; otherwise, access is denied.

If access is granted, the shell command in cmd will be executed. The standard input and output of

the command will be connected to the socket returned by rcmd. If fd2p is non-null, an auxilliary

channel to a control process will be set up, and a descriptor for it will be placed in *fd2p. The

control process will return the command's standard error output on this channel; it will also accept

bytes on this channel as signal numbers to be delivered to the process group of the command. If

fd2p is null, the standard error output of the command will be made the same as its standard output,

and no provision for delivering signals to the process will be made.

As mentioned above, rcmd may only be used by the super-user, since it requires a reserved port.

Generally, this means that the program using it must either be executed by “root,” or made set-user-

id to “root.” Obviously, for the average user, this presents a problem. The rexec function avoids
this problem, to some extent:

int rexec(char **ahost, unsigned short inport, char *user,

 char *password, char *cmd, int *fd2p);

The usage and parameters of rexec are basically the same as those of rcmd. However, the inport

parameter does not have to specify a reserved port, and instead of using.rhosts-based authentication,

UNIX Systems Programming for SVR4

368 FOR PERSONAL, NON-COMMERCIAL USE ONLY

a login name and password for the remote host must be specified. The advantage of rexec is that
is does not require a privileged port. However, this advantage is lost because a password is now

required rather than using.rhosts; it means that programs using rexec cannot safely be used in a
non-interactive environment since compiling the password into the program would be unsafe.

A server can implement.rhosts-based authentication by calling the ruserok function:

int ruserok(char *rhost, int suser, char *ruser, char *luser);

The rhost parameter should be the name of the remote host, as returned by gethostbyaddr. The

ruser parameter is the name of the calling user on the remote host, and the luser parameter is the

name of the user on the local host (the user whose.rhosts file should be checked). The suser flag

should be 1 if the luser name is that of the super-user and 0 otherwise; this bypasses the check of

the /etc/hosts.equiv file (which is not used if the local user is the super-user).

The inetd Super-Server

When Berkeley originally developed their networking support, each service was served by a

separate daemon server process. As the number of services increased, so did the number of daemons.

Unfortunately, many of these daemons executed only rarely, since their services were relatively

unused. So, the daemon processes sat around all the time consuming system resources and cluttering

up the process table, but only rarely did they do anything useful.

To avoid this problem, the inetd program was created. Inetd is a super-server. It reads a configuration

file (/etc/inetd.conf, usually) and then opens a socket for each service listed in the file, and binds to
the appropriate port. When a connection or datagram comes in on one of these ports, inetd spawns

a child process and executes the daemon responsible for handling that service. In this way, most of

the time the only daemon running is inetd. All the other daemons only run when they have something

to do, thus freeing up system resources.

When a daemon server is invoked via inetd, its standard input and output are connected to the socket.

When the server reads from standard input, it is actually reading from the network, and when it

writes to standard output, it is actually writing to the network. All of the calls to socket, bind,

accept, and listen described above are unnecessary. The daemon can use the getpeername
function if it needs to know who (what host) is connecting to it.

Generally speaking, servers should be written to operate out of inetd. This is usually more efficient,

and it is always much simpler. The only exception to this rule is a server that receives a high volume

of connections; the performance cost of having inetd fork and spawn a new copy of the server for

each connection may outweigh the performance gained by not having another server out there all

the time.

Chapter Summary

In this chapter, we examined the Berkeley networking paradigm, called sockets. This paradigm is

used throughout the world when writing networking applications for UNIX systems. For the most

part, is is portable to just about any version of UNIX, since most vendors simply adopted Berkeley's

Networking with Sockets

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 369

implementation. The only significant difference between versions are the socket options available

via the getsockopt and setsockopt functions.

Network programming is actually fairly straightforward. The functions are relatively simple to

understand, and there are no major “gotchas” to be wary of. For a more complete understanding of

UNIX network programming though, it is helpful to examine some of the actual network programs

used on the typical UNIX system, such as ping, tftp, and rlogin. Seeing how commands that you use

every day are actually written will help you to better understand just how all these pieces are glued

together.

If you would like to conduct this examination on your own, the Berkeley 4.4BSD Lite operating
system distribution is widely available on the Internet. It contains the full source code to a number

of commonly used UNIX network programs, including ping, rlogin, rsh, telnet, ftp, tftp, routed, and

named. Source code for the Linux, 386BSD, and FreeBSD operating systems is also available on

the Internet; these operating systems are based at least in part on the Berkeley code, and also make

good reference sources.

If you would prefer to be guided through the examination, the definitive reference on the topic is

W. Richard Stevens' UNIX Network Programming, published by Prentice-Hall. Stevens covers the

network programming functions in detail, and then reinforces the dicsussion by examining the actual

source code for a number of common UNIX networking programs including ping, tftp, lpr, rlogin,

and rmt. The discussion of these programs breaks them down almost line by line, explaining what

they do. If you plan to be doing a substantial amount of network programming, you'll find this book

indispensable.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 371

Chapter 15
Networking with TLI

Although the socket interface described in Chapters 13 and 14 is both simple and popular, it suffers

from a design flaw in that it is not protocol-independent. Although sockets can be used with a wide

variety of protocols, including UNIX IPC, TCP/IP, ISO/OSI, and XNS, a socket program written to

use one of these protocols cannot be used with another protocol without making changes to the

source code. These changes, although usually minor, mean that it is not possible to have a single

program that can simultaneously operate over any of the aforementioned protocols.

The Transport Layer Interface (TLI) attempts to solve this problem. The TLI is a library of functions

that allow two programs to communicate using a transport provider. The transport provider is a

device driver or other operating system interface that provides communications support. For

example, the TCP/IP protocol support would be one transport provider, while support for the Novell

IPX protocol would be another. The key to the design of the TLI, though, is that provided the

programmer is careful to avoid taking any protocol-dependent actions, a single program written to

the TLI can operate over any number of different transport providers without any source code

changes. In fact, the program doesn't even need to be recompiled when a new transport provider is

added.

The TLI library was introduced in System V Release 3. Unfortunately, although AT&T went to all

the trouble of developing this interface, they neglected to include a transport provider with SVR3,
meaning that without purchasing a third-party product, the TLI had nothing to talk to. Thus, until

SVR4 was released, which included a TCP/IP transport provider, sockets continued to be the only

viable interface for writing network programs, and TLI pretty much fell by the wayside. It is next

to impossible to find any programs, outside of the System V source code, that make use of the TLI.

Even though it is rarely used, the TLI is still worth learning about, especially for people who will

be supporting or maintaining System V systems. In this chapter, we examine the TLI functions, and

discuss some of the differences between them and the socket interface. We will reimplement the

examples from Chapter 14 here with TLI; you may find it useful to compare the two

implementations.

Between SVR3 and SVR4, a number of improvements were made to the TLI library; most of these

changes involved adding a network-independent method for handling host and service addresses.

These changes were adopted by Sun and Silicon Graphics, and are included in Solaris 2.x and IRIX

UNIX Systems Programming for SVR4

372 FOR PERSONAL, NON-COMMERCIAL USE ONLY

5.x. Hewlett-Packard on the other hand, for reasons of backward compatibility with their earlier

releases, did not adopt these new functions. The TLI library in HP-UX 10.x is much more like the

TLI library originally provided with SVR3 (and included in earlier versions of HP-UX). In this

chapter, we will describe the SVR4 TLI library. However, sections have been included that describe

the differences between this and the library used on HP-UX 10.x.

All programs that make use of the TLI must be linked with the -lnsl library on Solaris 2.x and IRIX
5.x, and with the -lnsl_s library on HP-UX 10.x.

The netbuf Structure

Because it is protocol-independent, the data structures used by the various TLI functions are the
same, regardless of the network protocol being used. However, at the transport provider interface,

there is no standard for data formats, and indeed, different transport providers use different formats.

For example, there is no standard for how a host address is to be represented—TCP/IP uses a 32-bit

value, but ISO/OSI uses a 160-bit value.

At some point, it is necessary for the TLI functions to deal with these different data formats.

However, it must be done in such a manner that the functions are not troubled by the differences. In

the socket interface described in the last two chapters, this was handled by using a generic struct

sockaddr data type, and typecasting the protocol-dependent data structures (struct

sockaddr_un, struct sockaddr_in, etc.) to this generic type. In the TLI, it is handled with a

struct netbuf structure, defined in the include file tiuser.h:

struct netbuf {

 unsigned int maxlen;

 unsigned int len;

 char *buf;

}

The buf element of the structure contains the data (network address, etc.), and the len element

indicates the length, in bytes, of buf. For the cases in which a TLI function fills in a buf provided

by the user, the maxlen element indicates the size of the buffer, so that the function will not
overflow it.

The struct netbuf structure is used throughout the SVR4 TLI library. It is not available in HP-
UX 10.x.

Network Selection

The advantage of the TLI revolves around its ability to work, without changes, over different

transport providers (network protocols). For example, a program that requires a virtual circuit

connection doesn't really care if this connection is made via TCP/IP or ISO/OSI, as long as it can

get the job done. When a programmer writes a program with sockets, he must decide which protocol

he wants to use, and write the program accordingly. When a programmer writes a program with TLI

however, she only has to decide what type of service she wants—virtual circuit, datagram, etc. The

Networking with TLI

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 373

program will work on any system that provides a transport provider (any transport provider) that

offers that type of service. (Obviously, for processes on two machines to communicate, both

machines must speak the same networking protocol.)

The network selection function in TLI is driven by the /etc/netconfig file:

NetID Semantics Flags Proto Proto Network Directory Lookup

Family Name Device Libraries

udp tpi_clts v inet udp /dev/udp

switch.so,tcpip.so

tcp tpi_cots_ord v inet tcp /dev/tcp

switch.so,tcpip.so

rawip tpi_raw - inet - /dev/rawip

switch.so,tcpip.so

ticlts tpi_clts v loopback - /dev/ticlts straddr.so

ticotsord tpi_cots_ord v loopback - /dev/ticotsord straddr.so

ticots tpi_cots v loopback - /dev/ticots straddr.so

This file contains one entry for every network protocol installed on the system. Each entry has seven
fields: the first field is a unique name for the network. The second field, called the network

“semantics,” describes the type of service provided by the network. There are currently four legal

values for this field:

tpi_clts Connectionless Transport Service (datagrams).

tpi_cots Connection-Oriented Transport Service (virtual circuits).

tpi_cots_ord Connection-Oriented Transport Service with Orderly Release. The difference

between this and tpi_cots is in what happens when a connection is
terminated. If the transport provider discards any outstanding data (data that

has been sent by the local end but not yet delivered over the network to the

remote end), it is said to have abortive release. If, on the other hand, the

transport provider reliably delivers any outstanding data to the other side

before tearing down the connection, it is said to have an orderly release.

tpi_raw A “raw” (low-level) interface to the networking protocols.

The next field in the entry is a flags word; the only flag currently defined is ‘v,’ which indicates that
the entry is visible to the NETPATH routines, described below. A dash may be used to make a

network temporarily (or permanently) invisible to these routines.

The fourth field describes a name for the protocol family; all the Internet protocols for example are

grouped under the name “inet.” The fifth field specifies the name of the protocol itself; a dash

may be used if the protocol has no name.

The sixth field provides the path name of the device to use when accessing the network and the
protocol. The last field is a comma-separated list of shared libraries that contain the network

protocol's name-to-address translation functions.

UNIX Systems Programming for SVR4

374 FOR PERSONAL, NON-COMMERCIAL USE ONLY

There are two sets of functions for reading the /etc/netconfig file, described in the following sections.

Both of them use a struct netconfig structure to describe an entry:

#include <netconfig.h>

struct netconfig {

 char *nc_netid;

 unsigned long nc_semantics;

 unsigned long nc_flag;

 char *nc_protofmly;

 char *nc_proto;

 char *nc_device;

 unsigned long nc_nlookups;

 char **nc_lookups;

};

The nc_netid, nc_protofmly, nc_proto, and nc_device elements of the structure contain the
network identifier, protocol family, protocol name, and network device name, as described above.

The nc_lookups element contains the names of the name-to-address translation libraries;

nc_nlookups indicates how many of these there are. The nc_semantics field of the structure

contains one of NC_TPI_CLTS, NC_TPI_COTS, NC_TPI_COTS_ORD, or NC_TPI_RAW, as described

above. The nc_flag element will contain either NC_NOFLAG or NC_VISIBLE.

The network selection functions described in the following two sections are part of the SVR4 TLI

implementation, and are not provided in HP-UX 10.x.

The Network Configuration Library

The simplest way to read the /etc/netconfig file is one entry at a time, or by looking for a specific

entry by its network identifier. The functions to do this are contained in the network configuration

library:

#include <netconfig.h>

void *setnetconfig(void);

int endnetconfig(void *handlep);

struct netconfig *getnetconfig(void *handlep);

struct netconfig *getnetconfigent(const char *netid);

void freenetconfigent(struct netconfig *netconfigp);

void nc_perror(const char *msg);

char *nc_sperror(void);

The setnetconfig function opens or rewinds the /etc/netconfig file. It returns a pointer to a

“handle” that must be used with some of the other functions. The setnetconfig function must be

called before any calls to getnetconfig, but it does not have to be called before

Networking with TLI

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 375

getnetconfigent. The endnetconfig function closes the network configuration database;

handlep should be the value returned by a call to setnetconfig.

The getnetconfig function takes a single argument, handlep, which should be the value returned

from a call to setnetconfig. It returns the next entry in the network configuration database, or

NULL when there are no more entries to read. The getnetconfigent function returns the entry

whose network identifier is equal to netid, or NULL if no entry is found.

The memory returned by getnetconfig and getnetconfigent is dynamically allocated. The

freenetconfigent function can be called to free this memory. Note that a call to endnetconfig
will also free the memory allocated by any calls to these functions; care should be taken not to call

it before the program is finished with this information.

The nc_perror function can be called when an error is returned by one of the other functions in

the library; it will print the string contained in msg on the standard error output, followed by an error

message describing the error that occurred. The nc_sperror function will return the error message

string rather than printing it.

To make a TLI program portable, the idea is to call getnetconfig repeatedly looking for any
network with the desired semantics. For example, a datagram application might call it as follows:

void *handlep;

struct netconfig *ncp;

handlep = setnetconfig();

while ((ncp = getnetconfig(handlep)) != NULL) {

 if (ncp->nc_semantics == NC_TPI_CLTS)

 break;

}

if (ncp == NULL) {

 fprintf(stderr, "cannot find acceptable transport provider.\n");

 exit(1);

}

/* use the network described by ncp */

A program that uses getnetconfigent, on the other hand, is by definition not portable across
different transport providers, since it is requesting a specific transport provider.

The NETPATH Library

The NETPATH library provides an alternate way to read the /etc/netconfig file; this method allows

the user to express some control (preferences) over the networks that are chosen. To do this, the user

sets the NETPATH environment variable to a colon-separated list of network identifiers he is willing
to use, in the order he prefers them. For example, if a user prefers TCP over ISO TP4, but prefers

ISO TP0 over UDP, she would set her NETPATH environment variable as follows:

NETPATH=tcp:iso_tp4:iso_tp0:udp

UNIX Systems Programming for SVR4

376 FOR PERSONAL, NON-COMMERCIAL USE ONLY

There are three functions in the NETPATH library:

#include <netconfig.h>

void *setnetpath(void);

int endnetpath(void *handlep);

struct netconfig *getnetpath(void *handlep);

The setnetpath function opens or rewinds the /etc/netconfig file, and returns a pointer to a

“handle” describing the file. It must be called before any calls to getnetpath. The endnetpath

function closes the file and releases all allocated resources returned by the routines.

The getnetpath function reads the network configuration file described by handlep, which

should be the value returned by a call to setnetpath. However, rather than reading the file

sequentially, getnetpath returns the entry for the next valid network identifier contained in the

NETPATH environment variable. Thus, regardless of the order in which the networks are listed in the

file, getnetpath will always return them in the order given by the environment variable.

getnetpath silently ignores invalid or nonexistent network identifiers contained in NETPATH, and

returns NULL when it runs out of NETPATH entries.

If the NETPATH variable is not set, then getnetpath returns the list of “default” networks; these
are the networks listed as “visible” in the network configuration file. The networks will be returned

in the order listed.

The use of the getnetpath function is essentially the same as that described above for

getnetconfig: the program calls getnetpath repeatedly until it finds a network with the

semantics it wants. However, by ordering the values in the NETPATH environment variable, the user
can exert some control over which network is chosen when more than one network with the same

semantics exists.

Network Selection in HP-UX 10.x

Network transport selection in HP-UX 10.x is performed at compile time, rather than at run time.

There is no library of functions to let the programmer choose a network based on type of service

requirements; the programmer has to know exactly what she wants and code the name of the network

device directly into her program. Thus, a program that is written to use TCP as its connection-

oriented transport service would have to be modified to use ISO TP4 instead.

From a technical standpoint, the solution offered by SVR4 is a better one—it is more portable, and

can be moved between systems with different networking services with no modifications. From a

practical standpoint however, it probably doesn't matter. Almost every system that is connected to

a network at all is connected to a TCP/IP network, and thus the program is portable “by default.”

For those programs that use some other network transport, it's doubtful that they are intended to be
portable outside their own local environment anyway.

Networking with TLI

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 377

Name To Address Translation

As explained in Chapter 14, host names are a useful way for people to refer to hosts, but network

protocols prefer to use addresses. So, as in the case of the socket interface, TLI must provide a way

to translate between hosts and addresses, and port names and port numbers:

#include <netdir.h>

int netdir_getbyname(const struct netconfig *config,

 const struct nd_hostserv *service,

 struct nd_addrlist **addrs);

int netdir_getbyaddr(const struct netconfig *config,

 struct nd_hostservlist **service,

 const struct netbuf *netaddr);

int netdir_options(const struct netconfig *netconfig,

 const int opt, const int fd, char *argp);

void netdir_free(void *ptr, const int struct_type);

void netdir_perror(char *s);

char *netdir_sperror(void);

Rather than treating host addresses and services (port numbers) independently as the socket interface

does, TLI views them as integrated. Thus, an address is a tuple of (host address, port number).

The netdir_getbyname function looks up a host name and service name as given in the service

argument, which is a pointer to type struct nd_hostserv:

struct nd_hostserv {

 char *h_host;

 char *h_serv;

};

The h_host field contains the name of the host, and the h_serv field contains the name of the

service. For services that do not have names (e.g., some arbirtrarily selected port number), h_serv

should point to a character string representation of the port number. The h_host element may

contain some special values instead of a host name:

HOST_SELF Represents the address by which local programs may refer to the local
host. This address is not meaningful outside the local host.

HOST_ANY Represents any host accessible by this transport provider. This is

equivalent to the INADDR_ANY value in the socket interface.

HOST_SELF_CONNECT Represents the host address that can be used to connect to the local

host.

UNIX Systems Programming for SVR4

378 FOR PERSONAL, NON-COMMERCIAL USE ONLY

HOST_BROADCAST Represents the address for all hosts reachable by this transport

provider. Network requests to this address will be sent to all machines

on the network.

The netdir_getbyname function returns a list of all valid addresses for the host and service in the

addrs parameter, which is a pointer to an array of structures of type struct nd_addrlist:

struct nd_addrlist {

 int n_cnt;

 struct netbuf *n_addrs;

};

Each element of n_addrs contains one address; the n_cnt element indicates how many addresses
there are.

The netdir_getbyaddr function looks up a host address and port number, as given in netaddr,

and returns a list of host and service names in service, which is a pointer to an array of type
struct nd_hostservlist:

struct nd_hostservlist {

 int h_cnt;

 struct nd_hostserv *h_hostservs;

};

Both netdir_getbyname and netdir_getbyaddr return zero on success, or non-zero on failure.

If they fail, the netdir_perror and netdir_sperror functions can be used to learn why.

The memory used by these functions can be freed by calling netdir_free. The first argument is

a pointer to the memory, and the second is a constant indicating the type of structure to be freed:

ND_ADDR Free a struct netbuf structure.

ND_ADDRLIST Free a struct nd_addrlist structure.

ND_HOSTSERV Free a struct hostserv structure.

ND_HOSTSERVLIST Free a struct nd_hostservlist structure.

The netdir_options function allows the programmer to set or check various options on the

address he chooses. The fd parameter is the transport endpoint, defined later. The opt parameter

specifies the option, which may be one of:

ND_SET_BROADCAST If the transport provider supports broadcast, set the program up

to send broadcast packets. The argp parameter is ignored.

ND_SET_RESERVEDPORT If the concept of a reserved port exists for the transport provider,

allow the caller to bind a reserved port. If argp is NULL, an

arbitrary reserved port will be chosen. If argp points to a

struct netbuf structure, an attempt will be made to bind to
the reserved port it describes.

Networking with TLI

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 379

ND_CHECK_RESERVEDPORT Used to check whether or not the address contained in the

struct netbuf structure pointed to by argp is on a reserved

port or not.

ND_MERGEADDR Used to convert a “local” address to a “real” address that may

be used by other clients. The argp parameter should point to a

structure of type struct nd_mergearg:

struct nd_mergearg {

 char *s_uaddr;

 char *c_uaddr;

 char *m_uaddr;

};

The s_uaddr element should point to the server's (local

machine) address, and the c_uaddr element should point to the
client's (remote machine) address. After the call completes,

m_uaddr will contain an address that the client can use to
contact the server. (It's not really clear that this option is useful

for anything, since this information is all available through

other means.)

The netdir_options function returns zero on success, non-zero on failure.

The name to address translation functions are a part of the SVR4 TLI library, and are not available

in HP-UX 10.x.

Name To Address Translation in HP-UX 10.x

As mentioned in the beginning of the chapter, SVR3, where TLI was first introduced, did not provide
a network transport. Thus, vendors who adopted SVR3 as their base operating system had to “graft”

their existing transport layers onto TLI. Most vendors did this in a similar way—they made use of

the existing data structures and library routines provided by their socket interface (described in

Chapter 14, Networking With Sockets), making only minor changes to support the differences

between sockets and TLI.

As with network selection, this method of implementing things is inherently less portable. The data

structures needed to deal with 32-bit TCP/IP addresses are different from those needed to deal with

160-bit ISO addresses. To make a program written for one transport provider work with another one

would require some significant changes. From a practical standpoint though, it probably doesn't

matter. Almost every system that is connected to a network at all is connected to a TCP/IP network,

and thus the program is portable “by default.” For those programs that use some other network

transport, it's doubtful that they are intended to be portable outside their own local environment
anyway.

UNIX Systems Programming for SVR4

380 FOR PERSONAL, NON-COMMERCIAL USE ONLY

TLI Utility Functions

There are three utility functions that are used frequently in conjunction with the rest of the TLI

library:

#include <tiuser.h>

void t_error(const char *errmsg);

char *t_alloc(int fd, int struct_type, int fields);

int t_free(char *ptr, int struct_type);

The t_error function is used to print error messages when TLI functions fail. TLI functions set

the external integer t_errno to an error code; t_error prints the string contained in errmsg,

followed by an error message describing the error, to the standard error output. If the failure is due

to a system error (as opposed to a library error), t_error also prints the system error message.

The t_alloc function can be used to allocate structures for use with the rest of the TLI library. The

fd parameter is the transport endpoint (see below). The struct_type parameter specifies the type

of structure to be allocated:

T_BIND Allocate a struct t_bind structure.

T_CALL Allocate a struct t_call structure.

T_DIS Allocate a struct t_discon structure.

T_INFO Allocate a struct t_info structure.

T_OPTMGMT Allocate a struct t_optmgmt structure.

T_UDERROR Allocate a struct t_uderror structure.

T_UNITDATA Allocate a struct t_unitdata structure.

With the exception of the struct t_info structure, all of these structures contain one or more

struct netbuf structures. The fields parameter is used to specify which, if any, of these buffers

should be allocated as well. The fields parameter is the logical or of any of the following:

T_ADDR Allocate the addr field of the t_bind, tcall, t_unitdata, or t_uderr
structures.

T_OPT Allocate the opt field of the t_optmgmt, t_call, t_unitdata, or t_uderr
structures.

T_UDATA Allocate the udata field of the t_call, t_discon, or t_unitdata structures.

T_ALL Allocate all relevant fields of a given structure.

The t_alloc function will allocate the buf portion of the struct netbuf structure, and set the

maxlen field appropriately. This frees the application from having to know how big a buffer needs

Networking with TLI

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 381

to be for any particular purpose. If a structure cannot be allocated, t_alloc returns NULL.
Otherwise, it returns a pointer to the allocated structure.

The t_free function frees the structure pointed to by ptr, which should have been allocated with

t_alloc. The struct_type parameter specifies the type of structure, as described above for

t_alloc. If one of the fields of the structure is NULL, t_alloc will not attempt to free it; in this

way, partially-allocated structures can be freed.

Transport Endpoint Management

In the socket interface, a socket was used to refer to one end of a communications channel. The

socket was simply a file descriptor, and could be used with read and write, as well as the special-
purpose networking functions.

In the TLI, the end of a communications channel is called a transport endpoint. A transport endpoint

is a file descriptor and some associated state information. Without some special preparations

described later in this chapter, transport endpoints cannot be be used with read and write; they
must instead be accessed through TLI functions.

Creating a Transport Endpoint

To create a transport endpoint, the t_open function is used:

#include <tiuser.h>

#include <fcntl.h>

int t_open(const char *path, int oflag, struct t_info *info);

The path parameter should be the path to the communications device; this will usually be the

nc_device field of a struct netconfig structure. The oflag parameter specifies how the

endpoint should be opened; it is specified using the same flags that are used with the open system

call (see Chapter 3, Low-Level I/O Routines) and should include at least O_RDWR. The info

parameter, if non-null, points to a structure of type struct t_info into which the characteristics

of the underlying transport protocol will be stored. On success, t_open returns a valid file

descriptor. On failure, it returns –1 and stores the reason for failure in t_errno (and perhaps

errno).

Information about the characteristics of the underlying protocol may be obtained when the transport

endpoint is created. It may also be obtained at any other time by using the t_getinfo function:

#include <tiuser.h>

int t_getinfo(int fd, struct t_info *info);

The fd parameter should refer to a transport endpoint, and info should point to a structure of type

struct t_info:

UNIX Systems Programming for SVR4

382 FOR PERSONAL, NON-COMMERCIAL USE ONLY

struct t_info {

 long addr;

 long options;

 long tsdu;

 long etsdu;

 long connect;

 long discon;

 long servtype;

};

The fields of this structure have the following meanings:

addr The maximum size of a transport protocol address; a value of –1 indicates that there

is no maximum, and a value of –2 indicates that the user does not have access to

transport protocol addresses.

options The maximum number of bytes of protocol-specific options supported by the

provider; a value of –1 indcates that there is no maximum, and a value of –2 indicates

that the transport provider does not support user-settable options.

tsdu The maximum size of a Transport Service Data Unit (TSDU). This is the maximum

amount of data whose message boundaries are preserved from one transport

endpoint to another. A value of zero indicates that the transport provider does not

support the concept of a TSDU, although it does support transferring data across a

stream with no logical boundaries. A value of –1 indicates that there is no limit on

the size of a TSDU; a value of –2 indicates that the transport provider does not

support the transfer of normal data.

etsdu The maximum size of an Expedited Transport Service Data Unit (ETSDU), with the

same meanings as for the TSDU. Expedited data is delivered immediately, without
waiting for the delivery of previously-sent normal data. (The socket interface term

for this is out-of-band data.)

connect The maximum amount of data that can be sent along with a connection request; –1

indicates there is no limit, and –2 indicates that data may not be sent with connection

establishment functions.

discon The maximum amount of data that can be associated with the t_snddis and

t_rcvdis functions. A value of –1 indicates no limit; a value of –2 indicates that
data may not be sent with these functions.

srvtype The type of service supported by the transport provider:

T_COTS Connection-oriented service, but without orderly release.

T_COTS_ORD Connection-oriented service with orderly release.

T_CLTS Connectionless service. For this type of service, etdsu,

connect, and discon will contain –2.

On success, t_getinfo returns 0. On failure, it returns –1, and t_errno (and possibly errno) will
be set to indicate the error.

Networking with TLI

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 383

Binding an Address to a Transport Endpoint

Before a transport endpoint can be used, it must be bound to an address. Unlike the socket interface,

in which a client program only needs to bind its socket to an address if it wants to use a specific port

number, TLI requires both the client and server processes to bind addresses to their transport

endpoints.

An address is described by a structure of type struct t_bind:

struct t_bind {

 struct netbuf addr;

 unsigned int qlen;

};

The addr field contains the address to be bound, and the qlen field specifies the maximum number
of outstanding connection requests a server will allow on the endpoint.

The t_bind function is used to bind an address to a transport endpoint:

#include <tiuser.h>

int t_bind(int fd, struct t_bind *reqp, struct t_bind *retp);

The fd parameter is the transport endpoint. The reqp parameter specifies the requested address,

and the retp parameter, if non-null, points to a location in which the actual address that is bound

will be stored.

Note that the actual address bound by t_bind may be different than the requested address; this will
occur if an address is already in use. In the case of servers, which usually have to live at a specific

address, the benefit of this behavior is not clear. It would probably make more sense to just refuse

to bind the address, and return an “address in use” error, like the socket interface does. At any rate,

after performing the t_bind, a process that cares about the address it is bound to should check to

see that the address in retp is the same as that in reqp.

If reqp is NULL, the system will assume that the user doesn't care what address is used, and the

system will choose an appropriate one. This is usually the case with client programs (except for

those that use reserved ports).

On success, t_bind returns 0. On failure, it returns –1 and t_errno (and perhaps errno) will be
set to indicate the error.

Closing a Transport Endpoint

The t_unbind function disables a transport endpoint:

#include <tiuser.h>

int t_unbind(int fd);

UNIX Systems Programming for SVR4

384 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Upon return, the endpoint may no longer be used to transfer data. The endpoint may be bound to

another address at this time. The t_unbind function returns 0 on success, or –1 on failure. If a

failure occurs, the error indication will be stored in t_errno (and perhaps errno).

The t_close function closes a transport endpoint:

#include <tiuser.h>

int t_close(int fd);

This function should be called when the endpoint is in an unbound state (after a call to t_unbind),
but can be called when the endpoint is in any state. It frees any local library resources used by the

endpoint, and closes the file descriptor. On success, t_close returns 0; on failure it returns –1 and

stores the reason for failure in t_errno (and perhaps errno).

Transport Endpoint Options

Some transport providers allow certain protocol options to be controlled by the user. To examine

and change these options, TLI provides the t_optmgmt function:

#include <tiuser.h>

int t_optmgmt(int fd, const struct t_optmgmt *req,

 struct t_optmgmt *ret);

The fd parameter is a bound transport endpoint. The req and ret parameters point to structures of

type struct t_optmgmt:

struct t_optmgmt {

 struct netbuf opt;

 long flags;

};

The opt field contains the options (in req, len contains the number of bytes in the options, and

buf contains the options; in ret, maxlen contains the maximum size of buf). The flags field

specifies the action to be taken with the options:

T_NEGOTIATE Negotiate the values of the options specified in req with the transport

provider. The provider will examine the options and negotiate the values, and

return the negotiated values through ret.

T_CHECK Check whether or not the options specified in req are supported by the

transport provider. On return, the flags field of ret will contain either

T_SUCCESS or T_FAILURE.

T_DEFAULT Retrieve the default options supported by the transport provider into ret.

When making this call, the len field in req must be zero.

The actual structure and content of the options are imposed by the transport provider.

Networking with TLI

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 385

If t_optmgmt succeeds, it returns zero. If it fails, it returns –1, and places an error code in t_errno

(and perhaps errno).

Connectionless Service

Connectionless (datagram) service is the simplest of the two types of communication that can be

performed with the TLI. After the client and server have created their transport endpoints and bound

them to addresses, they can exchange data using the t_sndudata and t_rcvudata functions:

#include <tiuser.h>

int t_sndudata(int fd, struct t_unitdata *data);

int t_rcvudata(int fd, struct t_unitdata *data, int *flags);

In both functions, fd is a transport endpoint, and data points to a structure of type struct

t_unitdata:

struct t_unitdata {

 struct netbuf addr;

 struct netbuf opt;

 struct netbuf udata;

};

In this structure, addr is the address to which the data is to be sent or from which it was received,

opt contains any protocol-specific options associated with the data, and udata contains the data

that was transferred. Note that the maxlen field of all three of these structures must be set before

calling t_rcvudata.

The flags parameter to t_rcvudata should point at an area in which flags can be set. This area

should be initialized to zero. The only flag currently defined is T_MORE, which will be set if the size

of the udata buffer is not large enough to retrieve all the available data. Subsequent calls to

t_rcvudata can be used to retrieve the remaining data.

The t_sndudata and t_rcvudata functions return zero on success, and –1 on failure. If a failure

occurs, an error code will be stored in t_errno (and perhaps errno).

When receiving data, it is possible for an error to occur that will prevent the receipt of more data

until it is dealt with. In connectionless mode, the only error that can occur in this way is the failure

of a previous attempt to send data with t_sndudata. If t_rcvudata fails and sets t_errno to

TLOOK, the application must call t_rcvuderr to clear the error:

#include <tiuser.h>

int t_rcvuderr(int fd, struct t_uderr *uderr);

The struct t_uderr structure is defined as:

UNIX Systems Programming for SVR4

386 FOR PERSONAL, NON-COMMERCIAL USE ONLY

struct t_uderr {

 struct netbuf addr;

 struct netbuf opt;

 long error;

};

The maxlen field of addr and opt must be set before the call. On return, addr will contain the

address of the failed transmission, opt will contain any options associated with the transmission,

and error will contain an implementation-dependent error code.

One has to question why, when using an inherently unreliable service in which datagrams may be

lost or discarded, TLI's designers decided it was necessary to inform the user of this particular error

condition (but not of others). There is little that can be done about it (since no indication of which

datagram failed is provided, no retransmission can be done), and it serves only to make the

implementation of connectionless service that much more complicated.

Example 15-1 shows a reimplementation of Example 14-3 using SVR4 TLI. This program connects

to the “daytime” service, an Internet standard service that returns the local time as an ASCII string.

Example 15-1: daytime

#include <netconfig.h>

#include <netdir.h>

#include <tiuser.h>

#include <string.h>

#include <fcntl.h>

#include <stdio.h>

#define SERVICENAME "daytime"

extern int t_errno;

int

main(int argc, char **argv)

{

 int fd, flags;

 struct netconfig *ncp;

 struct nd_hostserv ndh;

 struct t_unitdata *udp;

 struct nd_addrlist *nal;

 if (argc < 2) {

 fprintf(stderr, "Usage: %s hostname [hostname...]\n", *argv);

 exit(1);

 }

 /*

 * Select the UDP transport provider.

 */

 if ((ncp = getnetconfigent("udp")) == NULL) {

 nc_perror("udp");

 exit(1);

 }

Networking with TLI

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 387

 while (--argc) {

 ndh.h_host = *++argv;

 ndh.h_serv = SERVICENAME;

 /*

 * Get a host and service address for this host.

 */

 if (netdir_getbyname(ncp, &ndh, &nal) != 0) {

 netdir_perror(*argv);

 exit(1);

 }

 /*

 * Create a transport endpoint.

 */

 if ((fd = t_open(ncp->nc_device, O_RDWR, NULL)) < 0) {

 t_error("t_open");

 exit(1);

 }

 /*

 * Bind an arbitrary address to the transport

 * endpoint.

 */

 if (t_bind(fd, NULL, NULL) < 0) {

 t_error("t_bind");

 exit(1);

 }

 /*

 * Allocate a datagram.

 */

 udp = (struct t_unitdata *) t_alloc(fd, T_UNITDATA, T_ALL);

 if (udp == NULL) {

 t_error("t_alloc");

 exit(1);

 }

 /*

 * Construct the datagram.

 */

 memcpy(&udp->addr, &nal->n_addrs[0], sizeof(struct netbuf));

 udp->udata.len = 1;

 /*

 * Send a packet to the server.

 */

 if (t_sndudata(fd, udp) < 0) {

 t_error("t_sndudata");

 exit(1);

 }

 /*

 * Receive a packet back.

 */

 if (t_rcvudata(fd, udp, &flags) < 0) {

 if (t_errno == TLOOK) {

UNIX Systems Programming for SVR4

388 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 if (t_rcvuderr(fd, NULL) < 0) {

 t_error("t_rcvuderr");

 exit(1);

 }

 }

 else {

 t_error("t_rcvudata");

 exit(1);

 }

 }

 /*

 * Print the packet.

 */

 udp->udata.buf[udp->udata.len] = '\0';

 printf("%s: %s", *argv, udp->udata.buf);

 /*

 * Shut down the connection.

 */

 t_unbind(fd);

 t_close(fd);

 }

 exit(0);

}

% daytime localhost

localhost: Mon Mar 20 15:50:54 1995

Example 15-2 shows the same program as it is implemented in HP-UX 10.x. The primary differences

are as follows:

1. Rather than using netdir_getbyname to obtain a host/service address, getservbyname is

used to get the service address (port number), and gethostbyname is used to get the host
address. These functions are described in Chapter 14, Networking With Sockets.

2. Rather than using getnetconfigent to obtain the name of a suitable network device for use

with t_open, the device name is simply compiled in. In this case, /dev/inet_clts provides a
connectionless transport service using the Internet protocol suite (TCP/IP).

3. Instead of using a transport-independent struct nd_addrlist structure for handling

network addresses, a struct sockaddr_in structure (specific to the Internet protocol
domain) is used. Creating the host and service address for the host is much the same as what

we did when using the socket interface.

Example 15-2: daytime

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <tiuser.h>

#include <string.h>

Networking with TLI

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 389

#include <netdb.h>

#include <fcntl.h>

#include <stdio.h>

#define SERVICENAME "daytime"

extern int t_errno;

int

main(int argc, char **argv)

{

 int fd, flags;

 struct hostent *hp;

 struct servent *sp;

 struct t_unitdata *udp;

 struct nd_addrlist *nal;

 struct sockaddr_in rem_addr;

 if (argc < 2) {

 fprintf(stderr, "Usage: %s hostname [hostname...]\n", *argv);

 exit(1);

 }

 if ((sp = getservbyname(SERVICENAME, "udp")) == NULL) {

 fprintf(stderr, "%s/udp: unknown service\n", SERVICENAME);

 exit(1);

 }

 while (--argc) {

 if ((hp = gethostbyname(*++argv)) == NULL) {

 fprintf(stderr, "%s: unknown host\n", *argv);

 continue;

 }

 /*

 * Create a transport endpoint.

 */

 if ((fd = t_open("/dev/inet_clts", O_RDWR, NULL)) < 0) {

 t_error("t_open");

 exit(1);

 }

 /*

 * Bind an arbitrary address to the transport

 * endpoint.

 */

 if (t_bind(fd, NULL, NULL) < 0) {

 t_error("t_bind");

 exit(1);

 }

 /*

 * Allocate a datagram.

 */

 udp = (struct t_unitdata *) t_alloc(fd, T_UNITDATA, T_ALL);

 if (udp == NULL) {

 t_error("t_alloc");

UNIX Systems Programming for SVR4

390 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 exit(1);

 }

 /*

 * Create a host and service address for our host.

 */

 memset((char *) &rem_addr, 0, sizeof(struct sockaddr_in));

 memcpy((char *) &rem_addr.sin_addr.s_addr, (char *) hp->h_addr,

 hp->h_length);

 rem_addr.sin_port = sp->s_port;

 rem_addr.sin_family = AF_INET;

 /*

 * Construct the datagram.

 */

 udp->addr.maxlen = sizeof(struct sockaddr_in);

 udp->addr.len = sizeof(struct sockaddr_in);

 udp->addr.buf = (char *) &rem_addr;

 udp->opt.buf = (char *) 0;

 udp->opt.maxlen = 0;

 udp->opt.len = 0;

 udp->udata.len = 1;

 /*

 * Send a packet to the server.

 */

 if (t_sndudata(fd, udp) < 0) {

 t_error("t_sndudata");

 exit(1);

 }

 /*

 * Receive a packet back.

 */

 if (t_rcvudata(fd, udp, &flags) < 0) {

 if (t_errno == TLOOK) {

 if (t_rcvuderr(fd, NULL) < 0) {

 t_error("t_rcvuderr");

 exit(1);

 }

 }

 else {

 t_error("t_rcvudata");

 exit(1);

 }

 }

 /*

 * Print the packet.

 */

 udp->udata.buf[udp->udata.len] = '\0';

 printf("%s: %s", *argv, udp->udata.buf);

 /*

 * Shut down the connection.

 */

 t_unbind(fd);

 t_close(fd);

Networking with TLI

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 391

 }

 exit(0);

}

Connection-Oriented Service

Connection-oriented service is more involved than connectionless service, just as it was for the

socket interface. However, it is not really much more complicated than the socket interface.

Server-Side Functions

In order to be a server, a process must inform the operating system that it wishes to receive

connections, and then process those connection requests as they come in.

Waiting for Connections

Unlike the socket interface, in which the server calls listen once and then loops on calls to accept

to be notified of incoming connections, in TLI the server loops on calls to t_listen:

#include <tiuser.h>

int t_listen(int fd, struct t_call *call);

This function will block until a connection request arrives on the transport endpoint referenced by

fd. When a connection request arrives, a description of the request will be placed in call, a pointer

to a structure of type struct t_call:

struct t_call {

 struct netbuf addr;

 struct netbuf opt;

 struct netbuf udata;

 int sequence;

};

The maxlen field of addr, opt, and udata must be set before the call to t_listen. On return,

addr will contain the address of the caller, opt will contain any protocol-specific options associated

with the request, and udata will contain any data sent by the caller in the connection request (if the

transport provider supports this). The sequence field will uniquely identify the connection request,
to allow a server to listen for multiple connection requests before responding to any of them.

On success, t_listen returns 0. If a failure occurs, it returns –1 and the error indication is stored

in t_errno (and perhaps errno).

Accepting and Rejecting Connections

Once a connection request has been received via t_listen, the server can either accept or reject

that request. To accept the request, the server calls the t_accept function:

UNIX Systems Programming for SVR4

392 FOR PERSONAL, NON-COMMERCIAL USE ONLY

#include <tiuser.h>

int t_accept(int fd, int resfd, struct t_call *call);

The fd parameter refers to the transport endpoint, and the call parameter should be a pointer to

the struct t_call structure returned by t_listen.

If resfd is equal to fd, the connection will be accepted on the same transport endpoint it arrived

on. This is permissible only when there are no outstanding connection indications on the endpoint

that have not been responded to. If resfd is not equal to fd, it should refer to another bound

endpoint that will be used to accept the connection. This will allow the server to continue to receive

connection requests on the original endpoint (which for servers using well-known ports is the

desired behavior).

To reject a connection request, the server uses the t_snddis function:

#include <tiuser.h>

int t_snddis(int fd, struct t_call *call);

The fd parameter is the transport endpoint, and call should point to the struct t_call structure

returned by t_listen.

Both t_accept and t_snddis return 0 on success, and –1 on failure. If an error occurs, its

indication will be placed in t_errno (and perhaps errno).

Client-Side Functions

Before it can transfer data, a client program must connect to the server. To do this, it uses the

t_connect function:

#include <tiuser.h>

int t_connect(int fd, struct t_call *sndcall,

 struct t_call *rcvcall);

The fd parameter refers to a bound transport endpoint. The sndcall and rcvcall parameters

point to structures of type t_call (see above).

In sndcall, addr is the address of the server to connect to, opt contains any protocol-specific

options, and udata may contain data to be transmitted along with the connection request if the
transport provider supports this.

In rcvcall, the maxlen field of the struct netbuf structures must be set before the call. On

return, the addr field will contain the address of the remote end of the connection, opt will contain

any protocol-specific options, and udata will contain any data returned with the connection

establishment or rejection. If rcvcall is NULL, no information will be returned.

If the connection request is rejected by the server, t_connect will fail with t_errno set to TLOOK.

In this case, the client should then call t_rcvdis:

Networking with TLI

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 393

#include <tiuser.h>

int t_rcvdis(int fd, struct t_discon *discon);

The fd parameter specifies the transport endpoint, and the discon parameter points to a structure

of type struct t_discon, which will contain the reason for rejection:

struct t_discon {

 struct netbuf udata;

 int reason;

 int sequence;

};

The udata field will contain any data sent by the server along with the rejection. The reason

parameter specifies an implementation-specific reason for the rejection, and sequence is unused in

this case. If the client is not interested in the reason for rejection it can specify discon as NULL, but

it must still make the call to t_rcvdis.

Both t_connect and t_rcvdis return 0 on success, and –1 on failure. If the operation fails,

t_errno (and perhaps errno) will contain the error indication.

Transferring Data

Once a connection has been established, the client and server can exchange data using the t_snd

and t_rcv functions:

#include <tiuser.h>

int t_snd(int fd, char *buf, unsigned nbytes, int flags);

int t_rcv(int fd, char *buf, unsigned nbytes, int *flags);

In both cases, fd is the transport endpoint. In t_snd, buf is the data to be transferred, and nbytes

is the number of bytes to be transferred. In t_rcv, buf is the buffer in which to store received data,

and nbytes specifies the size of the buffer.

In t_snd, the flags parameter specifies options on the send:

T_EXPEDITED Send the data as expedited (out-of-band) data instead of as normal data.

T_MORE Specifies that the current TSDU is being sent in multiple t_snd calls. Each

call with T_MORE set will append to the current TSDU; when a send without
this flag is executed, the TSDU will be sent.

In t_rcv, flags points to a flags word that will be modified to contain any flags from the call to

t_snd.

On successful completion, t_snd and t_rcv return the number of bytes sent or received. On failure,

they return –1 and store the error indication in t_errno (and perhaps errno).

UNIX Systems Programming for SVR4

394 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Connection Release

If the connection supports orderly release, the server and client must negotiate the orderly release

of the connection. This is done with the t_sndrel and t_rcvrel functions:

#include <tiuser.h>

int t_sndrel(int fd);

int t_rcvrel(int fd);

When the client or server has nothing more to send, it should call t_sndrel. When the client or

server receives the notification of this (see below), it should call t_rcvrel to acknowledge its

receipt. To shut down the connection completely in both directions, both sides should eventually

call both of these functions.

Both of these functions return 0 on success, and –1 on failure. If they fail, an error indication will

be stored in t_errno (and perhaps errno).

Examples 15-3 and 15-4 show reimplementations of the client and server programs from Examples
14-1 and 14-2 using TLI. These two programs exchange data using a virtual circuit.

Example 15-3: server

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netconfig.h>

#include <tiuser.h>

#include <netdir.h>

#include <string.h>

#include <fcntl.h>

#include <stdio.h>

#define PORTNUMBER 12345

extern int t_errno;

int

main(void)

{

 int n, fd, flags;

 struct t_call *callp;

 struct netconfig *ncp;

 struct nd_hostserv ndh;

 struct nd_addrlist *nal;

 struct t_bind *reqp, *retp;

 char buf[1024], hostname[64];

 /*

 * Get our local host name.

 */

 if (gethostname(hostname, sizeof(hostname)) < 0) {

 perror("gethostname");

Networking with TLI

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 395

 exit(1);

 }

 /*

 * Select the TCP transport provider.

 */

 if ((ncp = getnetconfigent("tcp")) == NULL) {

 nc_perror("tcp");

 exit(1);

 }

 /*

 * Get a host and service address for our host. Since our

 * port number is not registered in the services file, we

 * send down the ASCII string representation of it.

 */

 sprintf(buf, "%d", PORTNUMBER);

 ndh.h_host = hostname;

 ndh.h_serv = buf;

 if (netdir_getbyname(ncp, &ndh, &nal) != 0) {

 netdir_perror(hostname);

 exit(1);

 }

 /*

 * Create a transport endpoint.

 */

 if ((fd = t_open(ncp->nc_device, O_RDWR, NULL)) < 0) {

 t_error("t_open");

 exit(1);

 }

 /*

 * Bind the address to the transport endpoint.

 */

 retp = (struct t_bind *) t_alloc(fd, T_BIND, T_ADDR);

 reqp = (struct t_bind *) t_alloc(fd, T_BIND, T_ADDR);

 if (reqp == NULL || retp == NULL) {

 t_error("t_alloc");

 exit(1);

 }

 memcpy(&reqp->addr, &nal->n_addrs[0], sizeof(struct netbuf));

 reqp->qlen = 5;

 if (t_bind(fd, reqp, retp) < 0) {

 t_error("t_bind");

 exit(1);

 }

 if (retp->addr.len != nal->n_addrs[0].len ||

 memcmp(retp->addr.buf, nal->n_addrs[0].buf, retp->addr.len) != 0) {

 fprintf(stderr, "did not bind requested address.\n");

 exit(1);

 }

UNIX Systems Programming for SVR4

396 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 /*

 * Allocate a call structure.

 */

 callp = (struct t_call *) t_alloc(fd, T_CALL, T_ALL);

 if (callp == NULL) {

 t_error("t_alloc");

 exit(1);

 }

 /*

 * Listen for a connection.

 */

 if (t_listen(fd, callp) < 0) {

 t_error("t_listen");

 exit(1);

 }

 /*

 * Accept a connect on the same file descriptor used for listeing.

 */

 if (t_accept(fd, fd, callp) < 0) {

 t_error("t_accept");

 exit(1);

 }

 /*

 * Read from the network until end-of-file and

 * print what we get on the standard output.

 */

 while ((n = t_rcv(fd, buf, sizeof(buf), &flags)) > 0)

 write(1, buf, n);

 /*

 * Release the connection.

 */

 t_rcvrel(fd);

 t_sndrel(fd);

 t_unbind(fd);

 t_close(fd);

 exit(0);

}

Example 15-4: client

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netconfig.h>

#include <tiuser.h>

#include <netdir.h>

#include <string.h>

#include <fcntl.h>

#include <stdio.h>

Networking with TLI

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 397

#define PORTNUMBER 12345

extern int t_errno;

int

main(void)

{

 int n, fd;

 struct t_call *callp;

 struct netconfig *ncp;

 struct nd_hostserv ndh;

 struct nd_addrlist *nal;

 char buf[32], hostname[64];

 /*

 * Get our local host name.

 */

 if (gethostname(hostname, sizeof(hostname)) < 0) {

 perror("gethostname");

 exit(1);

 }

 /*

 * Select the TCP transport provider.

 */

 if ((ncp = getnetconfigent("tcp")) == NULL) {

 nc_perror("tcp");

 exit(1);

 }

 /*

 * Get a host and service address for our host. Since our

 * port number is not registered in the services file, we

 * send down the ASCII string representation of it.

 */

 sprintf(buf, "%d", PORTNUMBER);

 ndh.h_host = hostname;

 ndh.h_serv = buf;

 if (netdir_getbyname(ncp, &ndh, &nal) != 0) {

 netdir_perror(hostname);

 exit(1);

 }

 /*

 * Create a transport endpoint.

 */

 if ((fd = t_open(ncp->nc_device, O_RDWR, NULL)) < 0) {

 t_error("t_open");

 exit(1);

 }

 /*

 * Bind an arbitrary address to the transport

 * endpoint.

 */

 if (t_bind(fd, NULL, NULL) < 0) {

 t_error("t_bind");

UNIX Systems Programming for SVR4

398 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 exit(1);

 }

 /*

 * Allocate a connection structure.

 */

 callp = (struct t_call *) t_alloc(fd, T_CALL, 0);

 if (callp == NULL) {

 t_error("t_alloc");

 exit(1);

 }

 /*

 * Construct the connection request.

 */

 memcpy(&callp->addr, &nal->n_addrs[0], sizeof(struct netbuf));

 /*

 * Connect to the server.

 */

 if (t_connect(fd, callp, NULL) < 0) {

 if (t_errno == TLOOK) {

 if (t_rcvdis(fd, NULL) < 0) {

 t_error("t_rcvdis");

 exit(1);

 }

 }

 else {

 t_error("t_connect");

 exit(1);

 }

 }

 /*

 * Read from standard input, and copy the

 * data to the network.

 */

 while ((n = read(0, buf, sizeof(buf))) > 0) {

 if (t_snd(fd, buf, n, 0) < 0) {

 t_error("t_snd");

 exit(1);

 }

 }

 /*

 * Release the connection.

 */

 t_sndrel(fd);

 t_rcvrel(fd);

 t_unbind(fd);

 t_close(fd);

 exit(0);

}

Networking with TLI

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 399

% server &

% client < /etc/motd

Sun Microsystems Inc. SunOS 5.3 Generic September 1993

Examples 15-5 and 15-6 show the same programs as they are implemented in HP-UX 10.x. The

primary differences are as follows:

1. Rather than using netdir_getbyname to obtain a host/service address, gethostbyname is

used to get the host address, and the port number is already known. The gethostbyname
function is described in Chapter 14, Networking With Sockets.

2. Rather than using getnetconfigent to obtain the name of a suitable network device for use

with t_open, the device name is simply compiled in. In this case, /dev/inet_cots provides a
connection-oriented transport service using the Internet protocol suite (TCP/IP).

3. Instead of using a transport-independent struct nd_addrlist structure for handling

network addresses, a struct sockaddr_in structure (specific to the Internet protocol
domain) is used. Creating the host and service address for the host is much the same as what

we did when using the socket interface.

Example 15-5: server

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <tiuser.h>

#include <string.h>

#include <fcntl.h>

#include <stdio.h>

#define PORTNUMBER 12345

extern int t_errno;

int

main(void)

{

 int n, fd, flags;

 struct t_call *callp;

 struct t_bind *reqp, *retp;

 struct sockaddr_in loc_addr;

 char buf[1024], hostname[64];

 /*

 * Get our local host name.

 */

 if (gethostname(hostname, sizeof(hostname)) < 0) {

 perror("gethostname");

 exit(1);

 }

 /*

 * Create a host and service address for our host.

UNIX Systems Programming for SVR4

400 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 */

 memset((char *) &loc_addr, 0, sizeof(struct sockaddr_in));

 loc_addr.sin_addr.s_addr = htonl(INADDR_ANY);

 loc_addr.sin_port = htons(PORTNUMBER);

 loc_addr.sin_family = AF_INET;

 /*

 * Create a transport endpoint.

 */

 if ((fd = t_open("/dev/inet_cots", O_RDWR, NULL)) < 0) {

 t_error("t_open");

 exit(1);

 }

 /*

 * Bind the address to the transport endpoint.

 */

 retp = (struct t_bind *) t_alloc(fd, T_BIND, T_ADDR);

 reqp = (struct t_bind *) t_alloc(fd, T_BIND, T_ADDR);

 if (reqp == NULL || retp == NULL) {

 t_error("t_alloc");

 exit(1);

 }

 reqp->addr.maxlen = sizeof(struct sockaddr_in);

 reqp->addr.len = sizeof(struct sockaddr_in);

 reqp->addr.buf = (char *) &loc_addr;

 reqp->qlen = 5;

 if (t_bind(fd, reqp, retp) < 0) {

 t_error("t_bind");

 exit(1);

 }

 if (retp->addr.len != reqp->addr.len ||

 memcmp(retp->addr.buf, reqp->addr.buf, retp->addr.len) != 0) {

 fprintf(stderr, "did not bind requested address.\n");

 exit(1);

 }

 /*

 * Allocate a call structure.

 */

 callp = (struct t_call *) t_alloc(fd, T_CALL, T_ALL);

 if (callp == NULL) {

 t_error("t_alloc");

 exit(1);

 }

 /*

 * Listen for a connection.

 */

 if (t_listen(fd, callp) < 0) {

 t_error("t_listen");

 exit(1);

 }

Networking with TLI

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 401

 /*

 * Accept a connect on the same file descriptor used for listeing.

 */

 if (t_accept(fd, fd, callp) < 0) {

 t_error("t_accept");

 exit(1);

 }

 /*

 * Read from the network until end-of-file and

 * print what we get on the standard output.

 */

 while ((n = t_rcv(fd, buf, sizeof(buf), &flags)) > 0)

 write(1, buf, n);

 /*

 * Release the connection.

 */

 t_rcvrel(fd);

 t_sndrel(fd);

 t_unbind(fd);

 t_close(fd);

 exit(0);

}

Example 15-6: client

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <tiuser.h>

#include <string.h>

#include <netdb.h>

#include <fcntl.h>

#include <stdio.h>

#define PORTNUMBER 12345

extern int t_errno;

int

main(void)

{

 int n, fd;

 struct hostent *hp;

 struct t_call *callp;

 char buf[32], hostname[64];

 struct sockaddr_in rem_addr;

 /*

 * Get our local host name.

 */

 if (gethostname(hostname, sizeof(hostname)) < 0) {

 perror("gethostname");

UNIX Systems Programming for SVR4

402 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 exit(1);

 }

 /*

 * Get the address of our host.

 */

 if ((hp = gethostbyname(hostname)) == NULL) {

 fprintf(stderr, "Cannot find address for %s\n", hostname);

 exit(1);

 }

 /*

 * Create a host and service address for our host.

 */

 memset((char *) &rem_addr, 0, sizeof(struct sockaddr_in));

 memcpy((char *) &rem_addr.sin_addr.s_addr, (char *) hp->h_addr,

 hp->h_length);

 rem_addr.sin_port = htons(PORTNUMBER);

 rem_addr.sin_family = AF_INET;

 /*

 * Create a transport endpoint.

 */

 if ((fd = t_open("/dev/inet_cots", O_RDWR, NULL)) < 0) {

 t_error("t_open");

 exit(1);

 }

 /*

 * Bind an arbitrary address to the transport

 * endpoint.

 */

 if (t_bind(fd, NULL, NULL) < 0) {

 t_error("t_bind");

 exit(1);

 }

 /*

 * Allocate a connection structure.

 */

 callp = (struct t_call *) t_alloc(fd, T_CALL, T_ADDR);

 if (callp == NULL) {

 t_error("t_alloc");

 exit(1);

 }

 /*

 * Construct the connection request.

 */

 callp->addr.maxlen = sizeof(struct sockaddr_in);

 callp->addr.len = sizeof(struct sockaddr_in);

 callp->addr.buf = (char *) &rem_addr;

 callp->udata.len = 0;

 callp->opt.len = 0;

 /*

 * Connect to the server.

Networking with TLI

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 403

 */

 if (t_connect(fd, callp, NULL) < 0) {

 if (t_errno == TLOOK) {

 if (t_rcvdis(fd, NULL) < 0) {

 t_error("t_rcvdis");

 exit(1);

 }

 }

 else {

 t_error("t_connect");

 exit(1);

 }

 }

 /*

 * Read from standard input, and copy the

 * data to the network.

 */

 while ((n = read(0, buf, sizeof(buf))) > 0) {

 if (t_snd(fd, buf, n, 0) < 0) {

 t_error("t_snd");

 exit(1);

 }

 }

 /*

 * Release the connection.

 */

 t_sndrel(fd);

 t_rcvrel(fd);

 t_unbind(fd);

 t_close(fd);

 exit(0);

}

Other Functions

There are several other functions provided in the TLI that may occasionally be of use.

Transport Endpoint Names

To obtain the address bound to the local or remote side of a connection, the t_getname function is
used (through an oversight, this function is not documented in SVR4):

#include <tiuser.h>

int t_getname(int fd, struct netbuf *namep, int type);

The fd parameter is the transport endpoint. In the struct netbuf structure pointed to by namep,

the buf and maxlen fields should be set accordingly. The type parameter may take on one of two

values:

UNIX Systems Programming for SVR4

404 FOR PERSONAL, NON-COMMERCIAL USE ONLY

LOCALNAME Return the address bound to the local transport endpoint.

REMOTENAME Return the address bound to the remote transport endpoint.

The t_getname function returns zero on success, and –1 on failure. If it fails, t_errno (and

perhaps errno) will contain the error indication.

Connection State

To obtain the current state of a transport endpoint, the t_getstate function is used:

#include <tiuser.h>

int t_getstate(int fd);

This function returns –1 if an error occurs and places the error indication in t_errno (and perhaps

errno). On success, it returns one of the following constants, describing the state of the endpoint:

T_UNBND The transport endpoint is not bound to an address.

T_IDLE The transport endpoint is bound to an address, but is not connected to anything.

T_OUTCON An outgoing connection request is pending on the endpoint.

T_INCON An incoming connection request is pending on the endpoint.

T_DATAXFER The endpoint is currently transferring data.

T_OUTREL An orderly release has been sent on the endpoint.

T_INREL An orderly release has been received on the endpoint.

One interesting problem with the TLI is that after a call to exec, the library state is lost. This makes

it impossible to use the t_getstate function. To fix this, the t_sync function can be called to
restore the library state:

#include <tiuser.h>

int t_sync(int fd);

On success, the current state as defined above is returned. On failure, –1 is returned and t_errno

(and perhaps errno) will contain the error indication.

Asynchronous Events

A number of asynchronous events can occur on the communications channel that will cause TLI

functions to return errors. Whenever they do return an error, t_errno should be examined. If its

value is TLOOK, then the t_look function should be called:

#include <tiuser.h>

int t_look(int fd);

Networking with TLI

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 405

This function returns –1 on error and stores the error indication in t_errno (and perhaps errno).
On success, it returns an indication of which asynchronous event has occurred:

T_LISTEN A connection request has arrived on the endpoint.

T_CONNECT A connection confirmation has arrived on the endpoint.

T_DATA Normal data has arrived on the endpoint.

T_EXDATA Expedited data has arrived on the endpoint.

T_DISCONNECT A disconnect indication has arrived on the endpoint.

T_UDERR A datagram error indication has arrived on the endpoint.

T_ORDREL An orderly release indication has arrived on the endpoint.

Address Conversion

It is possible to convert between the internal representation of an address and a character string. The

character string is a set of decimal byte values, separated by periods. Note that the string includes

both the host address and the service port number. The functions to perform these conversions are:

#include <netdir.h>

char *taddr2uaddr(const struct netconfig *config,

 const struct netbuf *addr);

struct netbuf *uaddr2taddr(const struct netconfig *config,

 const char *uaddr);

The taddr2uaddr function converts the TLI address in the struct netbuf structure pointed to

by addr to a “universal address” in a character string and returns the character string. The

uaddr2taddr function converts the universal address in uaddr to a TLI address and returns a

pointer to it in a struct netbuf. Both functions must have the current network selection passed

to them in the config parameter.

These functions are not available in HP-UX 10.x.

Using read and write with TLI

Earlier we said that read and write could not be used on transport endpoints without some special
preparations. To make these preparations, it is necessary to understand that TLI is implemented on

top of the STREAMS subsystem, which is not discussed in this book. The original Streams

subsystem was invented by Dennis Ritchie and included in Research UNIX Version 8. AT&T

productized Streams by adding some additional functionality and changing the name to STREAMS,

and released it for the first time in System V Release 3.0. However, SVR4 is the first release to fully

support all devices with STREAMS drivers.

UNIX Systems Programming for SVR4

406 FOR PERSONAL, NON-COMMERCIAL USE ONLY

The STREAMS subsystem provides, in essence, a raw data stream between the user and some

device—a disk, a terminal, or a network interface. It removes the specialized drivers for each

different type of device (there are still drivers, but they all have a common interface now). The user

can add (“push”) and remove (“pop”) intermediate processing elements, called modules, to and from

the data stream at will. The modules can be stacked so that more than one processes the data stream

at the same time. This allows relatively simple, single-purpose modules to be combined in new and
interesting ways to perform complex tasks, much like the UNIX shell allows complex tasks to be

built out of simpler ones using pipelines.

STREAMS works by passing messages between adjacent processing elements. These messages are

why read and write can't be used—they expect a plain byte stream, and do not know what to do

with the message headers. In order to use read and write on a trnasport endpoint, it is necessary

to push a processing module that essentially removes these message headers from the stream for the
read side, and converts writes to messages on the write side. To push this module, the following call

is used:

#include <sys/ioctl.h>

#include <sys/stropts.h>

.

.

.

ioctl(fd, I_PUSH, "tirdwr");

.

.

.

After the module has been pushed, read and write can be used to transfer data. However, while
the module is on the stream, the TLI functions cannot be used (although some may work). To use a

TLI function, the module must be popped back off the stream:

#include <sys/ioctl.h>

#include <sys/stropts.h>

.

.

.

ioctl(fd, I_POP, "tirdwr");

.

.

.

For all the hassles involved with this, it's probably not worth doing in the general case.

Networking with TLI

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 407

Chapter Summary

In this chapter, we examined the Transport Layer Interface, an alternative to the socket interface for

UNIX networking. Although the TLI is arguably a better interface than the socket interface, since it

is protocol-independent and sockets are not, the fact remains that for the most part, nobody uses it.

If portability is a goal, the TLI should be avoided in favor of the socket interface.

The information in this chapter covers only the basics of using the TLI. For a thorough discussion

of the interface, as well as the STREAMS subsystem on which it is based, consult Stephen A. Rago's

book UNIX System V Network Programming, published by Addison-Wesley.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 409

Chapter 16
Miscellaneous Routines

In this last chapter of the book, we collect the miscellaneous utility routines that have not been

discussed in the previous chapters. These functions are less frequently used than the ones described

in Chapter 2, Utility Routines, but this is not to say that they are only rarely used, or that they are

not useful in their own right.

Exiting When Errors Occur

Often times when debugging a program, having a core dump of the program's current state to

examine with a debugger can be invaluable. As discussed in Chapter 10, Signals, there are a number

of events that will cause the operating system to send a signal to a process that causes a core dump.

But there are a wide variety of other circumstances in which the operating system doesn't know

anything is wrong and yet it would be nice to have a core dump.

The abort function can be used to generate a core dump at any time:

#include <stdlib.h>

void abort(void);

When called, abort will attempt to close all open files, and then will send a SIGABRT signal to the
calling process. If the process is not catching or ignoring this signal, a core dump will result.

The assert function (actually, it's a preprocessor macro) provides an easy way to use abort in
debugging:

#include <assrt.h>

void assert(int expression);

The assert macro evaluates expression, and if it evaluates to false (zero), prints a line on the

standard error output containing the expression, the source file name, and the line number, and then

calls abort.

UNIX Systems Programming for SVR4

410 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Example 16-1 shows a small program that accepts numbers as arguments. It adds these numbers

together and prints the total. However, before printing the total, it uses assert to check that the

total is greater than 100. If it isn't, assert will print an error message and call abort.

Example 16-1: assert

#include <assert.h>

#include <stdio.h>

int

main(int argc, char **argv)

{

 int total;

 total = 0;

 while (--argc)

 total += atoi(*++argv);

 assert(total > 100);

 printf("%d\n", total);

 exit(0);

}

% assert 10 20 30 40 50

150

% assert 1 2 3 4 5

assert.c:14: failed assertion ‘total > 100’

Abort (core dumped)

Error Logging

When systems programs encounter errors, it's often difficult to figure out where to print the error
message. For commands executed by users, the answer is simple; print the message on the terminal

screen. But for daemons, programs run out of at or cron, and so forth, the answer is more difficult.

One method is simply to open /dev/console (the machine's console terminal) and print the error

there. Back in the days of console terminals such as Decwriters that had a printer instead of a screen,

this made sense. But most machines now have a video screen for a console, if they have one at all.

Once a message scrolls off the top of the screen, it is gone forever. If nobody sees it before it

disappears, the error will never be noted and fixed.

In 4.2BSD, Berkeley introduced the syslog daemon, an idea which has since been picked up by most

vendors. The syslogd program is started when the system boots, and remains there permanently.

Programs (and the operating system itself) that have errors or other information to report send these

messages to the daemon. The daemon, based on the directions in its configuration file, usually stored

in /etc/syslog.conf, can do a number of things with the message:

Miscellaneous Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 411

 It can print the message on the system console. The message will be preceded by the current

date and time, the name of the program that sent it, and optionally, the program's process-id

number.

 It can print the message to a log file. Different types of messages may be sent to the same log

file, but they may also be sent to different files.

 It can send the message to a syslogd running on another host. The remote host will then process
the message. It is common to configure client systems to send all their messages to the file

server for logging, both because of the additional disk space on the server, and to reduce the

number of places messages are logged.

 It can ignore the message. It is common to ignore debugging messages; if they are needed,

syslogd can always be told to process them for the small time period they are of interest.

To log error messages via syslogd, a program must first call the openlog function:

#include <syslog.h>

void openlog(char *ident, int logopts, int facility);

void closelog(void);

The ident parameter is a name that identifies the program. Usually, it can just be the value of

argv[0] with any leading pathname removed. The logopts parameter specifies several logging

options that may be or'ed together:

LOG_PID Log the process-id with each message. This is frequently used in daemon
processes to identify the particular instance of the daemon.

LOG_CONS Write messages to the system console if they cannot be sent to syslogd. This is

safe to use in daemon processes that have no controlling terminal, as syslog
will spawn a child process to open the console.

LOG_NDELAY Open the connection to syslogd immediately, instead of waiting until the first

message is logged. This can be used in programs that need to manage the order

in which file descriptors are allocated.

LOG_NOWAIT Do not wait for child processes that have been spawned to write on the system

console. This should be used by processes that receive notification of child exits

via SIGCHLD, since otherwise syslog may block waiting for a child whose exit
status has already been collected.

The facility parameter specifies a default facility (category) to be assigned to all messages that

do not have a facility encoded in them. The facility is used in the syslogd configuration file to group

messages of certain types together. The allowable facilities are:

LOG_KERN Messages generated by the operating system kernel. These

cannot be generated by user processes.

UNIX Systems Programming for SVR4

412 FOR PERSONAL, NON-COMMERCIAL USE ONLY

LOG_USER Messages generated by user processes. This is the default

facility if none is specified.

LOG_MAIL Messages generated by the mail subsystem.

LOG_DAEMON Messages generated by system daemon processes.

LOG_AUTH Messages generated by the authentication subsystem (login, su,

etc.).

LOG_LPR Messages generated by the print spooler subsystem.

LOG_NEWS Messages generated by the USENET news subsystem. This

facility is not available in HP-UX 10.x.

LOG_UUCP Messages generated by the UUCP subsystem. This facility is

not available in HP-UX 10.x.

LOG_CRON Messages generated by cron and at. This facility is available

only in Solaris 2.x.

LOG_LOCAL0–LOG_LOCAL7 Reserved for local use. These can be assigned to any purpose

the system administrator desires.

The closelog function closes the log file.

Messages are actually logged using the syslog function:

#include <syslog.h>

void syslog(int priority, char *mesg, /* args */ ...);

#include <stdarg.h>

int vsyslog(int priority, char *mesg, va_list ap);

The mesg parameter is a character string identical to that used by printf, with the additional

conversion specification “%m,” which is replaced with a system error message (as would be printed

by perror). The args parameters correspond to the conversion specifications in mesg, just as they

do in printf.

The priority parameter is encoded as a facility and a level, or'ed together. The facility part is as

described above; if ommitted, the facility declared in the call to openlog is used. The level part
may be one of:

LOG_EMERG A panic condition; messages at this level are usually broadcast to all logged-

in users.

LOG_ALERT A condition that should be corrected immediately, such as a corrupt system

database.

LOG_CRIT Critical conditions, such as hard device errors.

Miscellaneous Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 413

LOG_ERR Errors such as non-existent files, etc. This is the most frequently used level.

LOG_WARNING Warning messages.

LOG_NOTICE Conditions that are not errors, but may require special attention.

LOG_INFO Informational messages.

LOG_DEBUG Debugging messages. Normally only used when debugging a program.

The vsyslog function is to syslog as vprintf is to printf (see Chapter 4, The Standard I/O

Library). It takes a variable-length argument list and breaks it apart with the stdarg functions. The

vsyslog function is not available in HP-UX 10.x.

Finally, the setlogmask function can be used to control which messages actually get delivered to
syslogd:

#include <syslog.h>

int setlogmask(int maskpri);

It sets the current mask priority to maskpri and returns the previous priority. Messages whose

priority is not contained in maskpri are not delivered to syslogd. The mask for an individual priority

pri is calculated with the macro

LOG_MASK(pri)

The mask for all priorities up to and including pri is calculated with the macro

LOG_UPTO(pri)

One use of priorities is to include debugging messages in a program, but print them only when
debugging is enabled. This can be done with a code segment such as:

#include <syslog.h>

.

.

.

openlog(ident, logopt, facility);

if (debug)

 setlogmask(LOG_UPTO(LOG_DEBUG));

else

 setlogmask(LOG_UPTO(LOG_ERR));

Although it is a matter of local policy, it is usually appropriate for most system programs to log to

the LOG_DAEMON or one of the LOG_LOCALn facilities. A program that generates a large amount of

logging information should probably either have one of the LOG_LOCALn facilities reserved for its

UNIX Systems Programming for SVR4

414 FOR PERSONAL, NON-COMMERCIAL USE ONLY

use so that the syslogd configuration file can be used to separate those messages from others, or it

should simply open its own log file and not use syslog at all.

Searching

SVR4 provides a number of useful routines for performing standard types of searches in memory,
including linear search, binary search, and hash tables. These tasks are performed frequently, and a

set of library routines that provide good algorithmic implementations of them is a valuable addition

to the UNIX programming library. Unfortunately, most other implementations do not provide these

functions.

Linear Search

A linear search is the most inefficient of searches, but it is useful for small lists. When searching for
a specific item, the search begins at the front of the list, and compares each item in turn until the

desired item is found. On average, n/2 comparisons are performed in each search, where n is the

size of the list.

The linear search algorithm is implemented by the lsearch and lfind functions:

#include <search.h>

void *lsearch(const void *key, void *base, size_t *nelp,

 size_t width, int (*compar)(const void *, const void *));

void *lfind(const void *key, const void *base, size_t *nelp,

 size_t width, int (*compar)(const void *, const void *));

These functions implement Algorithm S from Donald Knuth's The Art of Computer Programming,

Volume 3, Section 6.1.

In both cases, key is the datum to be found in the table, base points to the first element in the table,

nelp points to an integer containing the number of elements currently in the table, and width is the

size of a table element in bytes. The compar parameter is a pointer to a function (e.g., strcmp) used

to compare two elements of the table. The function must return 0 if the elements are equal, and non-

zero otherwise.

The lsearch function searches for the key in the table, and returns a pointer to it. If the key is not

found, it is added to the end of the table, nelp is incremented, and a pointer to the new entry is

returned.

The lfind function searches for the key in the table, and returns a pointer to it. If the key is not
found however, it is not added to the table, a null pointer is returned instead.

Note that the pointers to the key and the element at the base of the table may be of any type. The

comparison function does not need to compare every byte of its arguments; this allows arbitrary

data types (strings, integers, structures) to be searched. A side effect of using lsearch to create the

Miscellaneous Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 415

table is to remove duplicates from a list, since it only adds an element to the list if it is not already

present.

Example 16-2 shows a small program that demonstrates the use of lsearch and lfind. The

program prompts the user for several strings, and adds them to a table. Since it uses lsearch to add
them to the table, duplicates won't be added. The program then prints the resulting table, and lets

the user search for strings. The searches are done with lfind, so that strings not in the table do not
get added.

Example 16-2: lsearch

#include <search.h>

#include <string.h>

#include <stdio.h>

#define TABLESIZE 10 /* max. size of the table */

#define ELEMENTSIZE 16 /* max. size of a table element */

int compare(const void *, const void *);

int

main(void)

{

 int i;

 char *p;

 size_t nel;

 char line[ELEMENTSIZE];

 char table[TABLESIZE][ELEMENTSIZE];

 /*

 * Tell the user what to do.

 */

 printf("Enter %d strings, not all unique.\n\n", TABLESIZE);

 /*

 * Read in some strings.

 */

 nel = 0;

 for (i = 0; i < TABLESIZE; i++) {

 /*

 * Prompt for each string.

 */

 printf("%2d> ", i + 1);

 /*

 * Read the string.

 */

 if (fgets(line, sizeof(line), stdin) == NULL)

 exit(0);

 /*

 * Strip the newline.

 */

 line[strlen(line) - 1] = '\0';

UNIX Systems Programming for SVR4

416 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 /*

 * Search for the string. If it's not in the table,

 * lsearch will add it for us.

 */

 (void) lsearch(line, table, &nel, ELEMENTSIZE, compare);

 }

 /*

 * Print the contents of the table.

 */

 printf("\nContents of the table:\n");

 for (i = 0; i < nel; i++)

 printf("\t%s\n", table[i]);

 /*

 * Let the user search for things.

 */

 for (;;) {

 /*

 * Prompt for a search string.

 */

 printf("\nSearch for: ");

 /*

 * Read the search string.

 */

 if (fgets(line, sizeof(line), stdin) == NULL) {

 putchar('\n');

 exit(0);

 }

 /*

 * Strip the newline.

 */

 line[strlen(line) - 1] = '\0';

 /*

 * Search for the string. lfind will return null

 * if it's not there.

 */

 p = (char *) lfind(line, table, &nel, ELEMENTSIZE, compare);

 /*

 * Print the search results.

 */

 if (p == NULL) {

 printf("String not found.\n");

 }

 else {

 printf("Found at location %d.\n",

 ((int) p - (int) table) / ELEMENTSIZE + 1);

 }

 }

}

/*

 * compare - compare two strings, return 0 if equal, non-zero if not.

Miscellaneous Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 417

 */

int

compare(const void *a, const void *b)

{

 return(strcmp((char *) a, (char *) b));

}

% lsearch

Enter 10 strings, not all unique.

1> abcdef

 2> ghijkl

 3> mnopqr

 4> stuvwx

 5> yz

 6> abcdef

 7> ghijkl

 8> mnopqr

 9> stuvwx

10> yz

Contents of the table:

 abcdef

 ghijkl

 mnopqr

 stuvwx

 yz

Search for: abc

String not found.

Search for: abcdef

Found at location 1.

Search for: ghijkl

Found at location 2.

Search for: mn

String not found.

Search for: yz

Found at location 5.

Search for: ^D

Binary Search

The binary search is one of the most efficient methods for searching large tables. Given a table of n

entries, a binary search compares the item to be found against item n/2 in the table. If the item to be
found is “less” than the item in the middle of the table, it then looks at the item halfway between the

start of the table and the middle of the table. If the item to be found is “more” than the item in the

middle of the table, it then looks at the item halfway between the middle of the table and the end of

the table. This process continues, dividing the search space in half each time, until the item is found

or not. In order for a binary search to work though, the table must be sorted into increasing order.

On average, log2 n comparisons are performed to find any item in the table. Even for large tables,
this is very efficient—a table of one million entries only requires 20 comparisons to find any item

in the table.

The binary search algorithm is implemented by the bsearch function:

#include <stdlib.h>

UNIX Systems Programming for SVR4

418 FOR PERSONAL, NON-COMMERCIAL USE ONLY

void *bsearch(const void *key, const void *base, size_t nel,

 size_t size, int (*compar)(const void *, const void *));

This function implements Algorithm B from Donald Knuth's The Art of Computer Programming,
Volume 3, Section 6.2.1.

The key parameter is the item to be found; base points to the beginning of the table in which to

look. The table must be sorted into increasing order. The nel parameter gives the number of

elements in the table, each of which is size bytes in size. The compar parameter must point to a

function that compares two table entries and returns less than, equal to, or greater than zero

depending on whether the first item is to be considered less than, equal to, or greater than the second

item. If the item is found, bsearch returns a pointer to it; if the item is not in the table, NULL is
returned.

Example 16-3 shows a program that reads in the system spelling dictionary, /usr/dict/words, and

then performs searches on it. The file is already sorted, but the sort is case-independent. For this

reason, we use strcasecmp in our comparison function.

Example 16-3: bsearch

#include <search.h>

#include <string.h>

#include <stdio.h>

#define TABLESIZE 32768 /* max. size of the table */

#define ELEMENTSIZE 32 /* max. size of a table element */

int compare(const void *, const void *);

int

main(void)

{

 char *p;

 FILE *fp;

 size_t nel;

 char line[ELEMENTSIZE];

 char table[TABLESIZE][ELEMENTSIZE];

 /*

 * Open the file.

 */

 if ((fp = fopen("/usr/dict/words", "r")) == NULL) {

 perror("/usr/dict/words");

 exit(1);

 }

 printf("Reading the table... ");

 fflush(stdout);

 /*

 * Read in the file.

 */

 for (nel = 0; nel < TABLESIZE; nel++) {

Miscellaneous Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 419

 /*

 * Read a line.

 */

 if (fgets(table[nel], ELEMENTSIZE, fp) == NULL)

 break;

 /*

 * Strip the newline.

 */

 table[nel][strlen(table[nel]) - 1] = '\0';

 }

 printf("done.\n");

 fclose(fp);

 /*

 * Let the user search for things.

 */

 for (;;) {

 /*

 * Prompt for a search string.

 */

 printf("\nSearch for: ");

 /*

 * Read the search string.

 */

 if (fgets(line, sizeof(line), stdin) == NULL) {

 putchar('\n');

 exit(0);

 }

 /*

 * Strip the newline.

 */

 line[strlen(line) - 1] = '\0';

 /*

 * Do a binary search for the string.

 */

 p = (char *) bsearch(line, table, nel, ELEMENTSIZE, compare);

 /*

 * Print the search results.

 */

 if (p == NULL) {

 printf("String not found.\n");

 }

 else {

 printf("Found at location %d.\n",

 ((int) p - (int) table) / ELEMENTSIZE);

 }

 }

}

/*

 * compare - compare two strings, return 0 if equal, non-zero if not.

 */

UNIX Systems Programming for SVR4

420 FOR PERSONAL, NON-COMMERCIAL USE ONLY

int

compare(const void *a, const void *b)

{

 return(strcasecmp((char *) a, (char *) b));

}

% bsearch

Reading the table... done.

Search for: mambo

Found at location 14113.

Search for: zip

Found at location 25121.

Search for: alpha

Found at location 722.

Search for: xyzzy

String not found.

Search for: ^D

Hash Tables

Hash tables are frequently used to manage symbol tables in compilers and other similar programs.
They store items in a series of buckets (for example, one bucket for each letter of the alphabet) where

they can be found with a minimum of searching. The advantage to using a hash table as opposed to

a linear or binary search is that items can be inserted into the table in any order (unlike binary

search), yet they can be found quickly (unlike linear search). The disadvantage is that without a

good estimate of how large your table needs to be, hashing can be very inefficient.

Hash tables are implemented with the hsearch, hcreate, and hdestroy functions:

#include <search.h>

typedef struct {

 char *key;

 char *data;

} ENTRY;

typedef enum { FIND, ENTER } ACTION;

ENTRY *hsearch(ENTRY item, ACTION action);

int hcreate(size_t nel);

void hdestroy(void);

These functions implement Algorithm D from Donald Knuth's The Art of Computer Programming,

Volume 3, Section 6.4.

A hash table is created with the hcreate function; the nel parameter is an estimate of the maximum

number of entries the table will contain. A hash table is destroyed with the hdestroy function.
Only one hash table may be in use at a time.

The hsearch function searches for item in the hash table by using strcmp to compare the

item.key fields. The item.data field points to arbitrary data associated with the key. If action

Miscellaneous Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 421

is FIND, hsearch will return a pointer to the item, or NULL if it is not in the table. If action is

ENTER, hsearch will search for the item, and if it is found, return a pointer to the item already in
the table. If it is not found, the item will be added to the table, and a pointer to its location returned.

The hsearch function uses malloc to allocate space for the table entries.

Example 16-4 shows a sample program that uses hsearch to manage a list of people and some

personal data about them. It first prompts for some input data, stores that in the hash table, and then
lets the user search the table.

Example 16-4: hsearch

#include <search.h>

#include <string.h>

#include <stdlib.h>

#include <stdio.h>

struct data {

 int age;

 int height;

 int weight;

};

int

main(void)

{

 char *p;

 ENTRY item;

 ENTRY *result;

 struct data *d;

 char buf[BUFSIZ];

 /*

 * Create the hash table.

 */

 hcreate(100);

 printf("Enter Name/age/height/weight; terminate with blank line.\n\n");

 /*

 * Read information until a blank line.

 */

 while (fgets(buf, sizeof(buf), stdin) != NULL) {

 /*

 * Blank line, all done.

 */

 if (*buf == '\n')

 break;

 /*

 * Allocate a data structure (we should check for

 * errors here).

 */

 d = (struct data *) malloc(sizeof(struct data));

 item.data = (char *) d;

UNIX Systems Programming for SVR4

422 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 /*

 * Split up the data (we should check for errors

 * here).

 */

 p = strtok(buf, "/");

 item.key = strdup(p);

 p = strtok(NULL, "/");

 d->age = atoi(p);

 p = strtok(NULL, "/");

 d->height = atoi(p);

 p = strtok(NULL, "/");

 d->weight = atoi(p);

 /*

 * Add the item to the table.

 */

 (void) hsearch(item, ENTER);

 }

 /*

 * Let the user search for things.

 */

 for (;;) {

 /*

 * Prompt for a search string.

 */

 printf("\nSearch for: ");

 /*

 * Read the search string.

 */

 if (fgets(buf, sizeof(buf), stdin) == NULL) {

 putchar('\n');

 hdestroy();

 exit(0);

 }

 /*

 * Strip the newline.

 */

 buf[strlen(buf) - 1] = '\0';

 /*

 * Look in the table for the item.

 */

 item.key = buf;

 result = hsearch(item, FIND);

 /*

 * Print the search results.

 */

 if (result == NULL) {

 printf("Entry not found.\n");

 }

Miscellaneous Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 423

 else {

 d = (struct data *) result->data;

 printf("Name: %s\nAge: %d\nHeight: %d\nWeight: %d\n",

 result->key, d->age, d->height, d->weight);

 }

 }

}

% hsearch

Enter Name/age/height/weight; terminate with blank line.

Dave/32/73/220

Cathy/34/64/120

Trevor/8/48/85

Sean/3/32/31

Search for: Cathy

Name: Cathy

Age: 34

Height: 64

Weight: 120

Search for: Trevor

Name: Trevor

Age: 8

Height: 48

Weight: 85

Search for: Fred

Entry not found.

Search for: ^D

Binary Trees

Binary trees are an efficient way to maintain a list of items in sorted order. At any given node in the

tree, all of the items below and to the left of that node are “less” than that node, and all of the items

below and to the right of that node are “greater” than that node. For a tree with n nodes, searches of

the tree can be performed in log2 n comparisons.

The binary tree algorithms are implemented with the tsearch, tfind, tdelete, and twalk
functions:

#include <search.h>

typedef enum { preorder, postorder, endorder, leaf } VISIT;

void *tsearch(const void *key, void **rootp,

 int (*compar)(const void *, const void *));

void *tfind(const void *key, const void **rootp,

 int (*compar)(const void *, const void *));

void *tdelete(const void *key, void **rootp,

 int (*compar)(const void *, const void *));

void twalk(void *rootp, void(*action)(void **, VISIT, int));

UNIX Systems Programming for SVR4

424 FOR PERSONAL, NON-COMMERCIAL USE ONLY

These functions implement Algorithm D and Algorithm T from Donald Knuth's The Art of Computer

Programming, Volume 3, Section 6.2.2.

The compar parameter to the first three functions is a pointer to a function that compares two items

and returns less than, equal to, or greater than zero depending on whether the first key should be

considered less than, equal to, or greater than the second key.

The tsearch function is used to build and search the tree. It searches the tree for key, and if found,

returns a pointer to it. If not found, tsearch adds it to the tree and returns a pointer to it. Only

pointers are copied into the tree; the calling program is responsible for saving the data. The rootp

function is a pointer to a variable that points to the root of the tree; if rootp is NULL, a new tree will

be created.

The tfind function is almost identical to tsearch, except that instead of adding an item to the tree

if it is not already there, tfind returns NULL in this case. Note that there is one level less redirection

in rootp when used with tfind.

The tdelete function removes an item from the tree. It returns a pointer to the item's parent node,

or NULL if the item was not in the tree.

The twalk function traverses the tree rooted at rootp (any node may be used as the root of the tree

for a walk below that node). The action parameter is a pointer to a function that is called at each

node. The function takes three arguments: a pointer to the node being visited, the number of times

the node has been visited, and the level at which the node resides in the tree, with the root being

level zero. The second argument is given as an enumerated type with the following values:

preorder The node has been visited for the first time, before any of its children.

postorder The node has been visited for the second time, after its left child but before its

right child.

endorder The node has been visited for the third time, after both of its children.

leaf The node is a leaf; it has no children (and hence is only visited once).

Note that there is an alternative notation for trees using the terms “preorder,” “inorder,” and

“postorder” for the same three node visits; this may cause some confusion with the different

meanings of “postorder.”

Example 16-5 shows a program that reads a number of strings from the standard input, storing them

in a binary tree. It then prints the tree in alphabetical order.

Example 16-5: tsearch

#include <search.h>

#include <string.h>

#include <stdlib.h>

#include <stdio.h>

struct node {

 char *string;

Miscellaneous Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 425

 int length;

};

int compareNode(const void *, const void *);

void printNode(void **, VISIT, int);

int

main(void)

{

 void *root;

 struct node *n;

 char buf[BUFSIZ];

 root = NULL;

 /*

 * Read strings until end of file.

 */

 while (fgets(buf, sizeof(buf), stdin) != NULL) {

 /*

 * Strip the newline.

 */

 buf[strlen(buf) - 1] = '\0';

 /*

 * Allocate a node structure.

 */

 n = (struct node *) malloc(sizeof(struct node));

 if (n == NULL) {

 fprintf(stderr, "out of memory.\n");

 exit(1);

 }

 /*

 * Save the information in the node.

 */

 n->string = strdup(buf);

 n->length = strlen(buf);

 /*

 * Add the item to the tree.

 */

 (void) tsearch((void *) n, &root, compareNode);

 }

 /*

 * Print out the tree in alphabetical order.

 */

 twalk(root, printNode);

 exit(0);

}

/*

 * compareNode - compare the strings in two nodes.

 */

int

UNIX Systems Programming for SVR4

426 FOR PERSONAL, NON-COMMERCIAL USE ONLY

compareNode(const void *a, const void *b)

{

 struct node *aa, *bb;

 aa = (struct node *) a;

 bb = (struct node *) b;

 return(strcmp(aa->string, bb->string));

}

/*

 * printNode - print a node - we only print if this is the postorder (inorder)

 * visit or a leaf; this results in alphabetical order.

 */

void

printNode(void **node, VISIT order, int level)

{

 struct node *n;

 n = *(struct node **) node;

 if (order == postorder || order == leaf)

 printf("level=%d, length=%d, string=%s\n", level, n->length, n-

>string);

}

% tsearch

one

two

three

four

five

six

seven

eight

nine

ten

^D

level=3, length=5, string=eight

level=2, length=4, string=five

level=1, length=4, string=four

level=2, length=4, string=nine

level=0, length=3, string=one

level=4, length=5, string=seven

level=3, length=3, string=six

level=4, length=3, string=ten

level=2, length=5, string=three

level=1, length=3, string=two

Queues

Two functions are provided to manipulate queues built from doubly-linked lists:

#include <search.h>

void insque(struct qelem *elem, struct qelem *pred);

Miscellaneous Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 427

void remque(struct qelem *elem);

Each element in the list must be of type struct qelem:

struct qelem {

 struct qelem *q_forw;

 struct qelem *q_back;

 char *q_data;

};

The insque function inserts the element pointed to by elem into the queue immediately after the

element pointed to by pred. The remque function removes the element pointed to by elem from

the queue.

HP-UX 10.x does not provide the struct qelem data type; instead the arguments to insque and

remque are of type void *.

Sorting

Every version of UNIX provides the same function to sort a table of data “in place:”

#include <stdlib.h>

void qsort(void *base, size_t nel, size_t width,

 int (*compar)(const void *, const void *));

This function implements Quicksort, a reasonably efficient general-purpose sorting algorithm. The

base parameter points to the first element of the table to be sorted; nel indicates the number of

elements in the table, each of size width. The compar parameter is a pointer to a function that

compares two elements of the table and returns less than, equal to, or greater than zero, depending

on whether the first element is to be considered less than, equal to, or greater than the second

element.

Example 16-6 shows a small program that sorts an array of numbers.

Example 16-6: qsort

#include <stdlib.h>

#define NELEM 10

int compare(const void *, const void *);

int

main(void)

{

 int i;

 int array[NELEM];

UNIX Systems Programming for SVR4

428 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 /*

 * Fill the array with numbers.

 */

 for (i = 0; i < NELEM; i++)

 array[NELEM - i - 1] = (i * i) & 0xf;

 /*

 * Print it.

 */

 printf("Before sorting:\n\t");

 for (i = 0; i < NELEM; i++)

 printf("%d ", array[i]);

 putchar('\n');

 /*

 * Sort it.

 */

 qsort(array, NELEM, sizeof(int), compare);

 /*

 * Print it again.

 */

 printf("After sorting:\n\t");

 for (i = 0; i < NELEM; i++)

 printf("%d ", array[i]);

 putchar('\n');

 exit(0);

}

/*

 * compare - compare two integers.

 */

int

compare(const void *a, const void *b)

{

 int *aa, *bb;

 aa = (int *) a;

 bb = (int *) b;

 return(*aa - *bb);

}

% qsort

Before sorting:

 1 0 1 4 9 0 9 4 1 0

After sorting:

 0 0 0 1 1 1 4 4 9 9

Miscellaneous Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 429

Environment Variables

Each process has a set of variables associated with it called its environment. The variables are called

environment variables. These variables include the search path, the terminal type, the user's login

name, and so forth. The UNIX shells provide a method for adding, changing, and removing

environment variables.

As discussed in Chapter 11, Processes, a program is actually invoked as:

int

main(int argv, char **argv, char **envp)

The argc and argv parameters are the number of arguments passed to the program and the

arguments themselves. The envp parameter is the array of environment variables. The execve and

execle functions described in Chapter 11 can be used to execute a program with a new set of

environment variables; the other exec functions allow the program to inherit its environment from
the parent. Example 16-7 shows a small program that prints its environment variables.

Example 16-7: printenv

#include <stdio.h>

int

main(int argc, char **argv, char **envp)

{

 while (*envp != NULL)

 printf("%s\n", *envp++);

 exit(0);

}

% printenv

HOME=/home/foo

HZ=100

LOGNAME=foo

MAIL=/var/mail/foo

PATH=/usr/opt/bin:/usr/local/bin:/usr/bin

SHELL=/bin/sh

TERM=xterm

TZ=US/East-Indiana

To obtain the value of a specific environment variable, the getenv function is used:

#include <stdlib.h>

char *getenv(char *name);

The name parameter should be the name of the desired variable (the part in front of the ‘=’ in the

example above). If the variable exists, its value (the part after the ‘=’) is returned; otherwise, NULL
is returned.

UNIX Systems Programming for SVR4

430 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Most newer versions of UNIX, SVR4 included, also offer the putenv function, which places a new
variable into the environment:

#include <stdlib.h>

int putenv(char *string);

The putenv function uses malloc to allocate a new environment large enough for the old

environment plus the string contained in string. The string contained in string should be of the

form “name=value;” by convention, environment variable names are usually all uppercase. Note

that the string variable should remain in existence for the life of the program; that is, it should be

declared static or dyanmically allocated. Changing the value of string will change the value of

the variable in the environment.

If the environment is successfully modified, putenv returns zero; otherwise it returns non-zero.

Passwords

UNIX password encryption is based on a modified version of the Data Encryption Standard (DES).

Contrary to popular belief, the password itself is not encrypted. Rather, the password is used as the

key to encrypt a block of zero-valued bytes. The result of this encryption is a 13-character string
that is stored in either the password file or the shadow password file (see Chapter 8, Users and

Groups).

When a user selects a password, the passwd program chooses two characters at random; this value

is called the salt. It then prompts the user for his password, and passes this value and the salt to the

crypt function:

#include <crypt.h>

char *crypt(const char *key, const char *salt);

The crypt function extracts seven bits from each character of the password, ignoring the parity bit,
to form the 56-bit DES key. This implies that no more than eight characters are significant in the

password. Next, one of the internal tables in the DES algorithm is permuted in one of 4,096 different

ways depending on the value of the salt. The purpose of the salt is to make it more difficult to use
DES chips or a precomputed list of encrypted passwords to attack the algorithm (although with

current processor speeds and disk capacities, this deterrent is not as significant as it once was). The

DES algorithm (with the modified table) is then invoked for 25 iterations on a block of zeros. The

output of this encryption, which is 64 bits long, is then coerced into a 64-character alphabet (A-Z,

a-z, 0-9, ‘.’, and ‘/’). Because this coercion involves translations in which several different values

are represented by the same character, password encryption is essentially one way; the result cannot

be decrypted. The resulting string returned by crypt contains the two-character salt followed by

the eleven-character coerced result of the encryption.

When a program prompts the user for a password, it usually uses the getpass function:

Miscellaneous Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 431

#include <stdlib.h>

char *getpass(const char *prompt);

This function prints the string contained in prompt, turns off character echo on the terminal, reads

the password, and then restores the terminal modes. The typed password is returned. Note that

getpass truncates the typed password to at most eight characters.

After prompting for the password, the program looks up the user's password in the password file or
shadow password file (if a shadow password file is used, the program must be running with super-

user permissions). It then passes the value typed by the user to the crypt function, along with the

salt, and compares the reult with the value obtained from the password file. If they are the same the
user's password was correct. This process is shown below:

#include <stdlib.h>

#include <crypt.h>

char *typed, *encrypted;

.

.

.

encrypted = /* obtain the encrypted password */;

typed = getpass("Password: ");

if (strcmp(crypt(typed, encrypted), encrypted) == 0)

 /* okay... */

else

 /* not okay... */

Random Numbers

A number of applications occasionally require one or more random numbers. All versions of UNIX

provide a pseudo-random number generator:

#include <stdlib.h>

int rand(void);

void srand(int seed);

Before requesting any random numbers, the generator should be seeded by calling srand. The seed

parameter should be an interger value; the output of getpid or time(0) is usually a good value.

Each time srand is called with the same seed, the output of the random number generator will be
the same.

The rand function returns a random number in the range 0 to 215–1.

UNIX Systems Programming for SVR4

432 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Some versions of UNIX, usually those based on BSD, also supply random and srandom, with
similar semantics.

System V versions of UNIX provide a number of other random number generators described in the

drand48 manual page; because they are not portable to all versions of the operationg system, they
are not frequently used.

Directory Trees

SVR4 provides three functions for traversing directory trees. Implementations of the ftw function
are also available in the public domain.

#include <ftw.h>

int ftw(const char *path, int (*fn)(const char *,

 const struct stat *, int), int depth);

int nftw(const char *path, int (*fn)(const char *,

 const struct stat *, int, struct FTW *),

 int depth, int flags);

#include <libgen.h>

char *pathfind(const char *path, const char *name,

 const char *mode);

The ftw function recursively descends the directory hierarchy rooted at path. For each object in

the directory, it calls the user-defined function fn. This function takes three arguments: the first

argument is the name of the object, the second argument is a pointer to a struct stat structure
(see Chapter 5, Files and Directories), and the third argument is a flag. Possible values of the flag

are:

FTW_F The object is a file.

FTW_D The object is a directory.

FTW_DNR The object is a directory that cannot be read. Descendants of the directory will not

be processed.

FTW_NS The call to stat on the object failed, either because of permissions problems or

because it is a symbolic link pointing to a non-existent file. The contents of the

struct stat structure are undefined.

The last parameter to ftw is depth, a limit on the number of file descriptors ftw may use. It requires

one file descriptor for each level in the tree. The traversal will visit a directory (call fn on it) before

it visits subdirectories of that directory.

The traversal continues until the fn function returns a non-zero value, or some error occurs. If the

tree is exhausted, ftw will return 0. If fn returns a non-zero value, ftw stops the traversal and

returns that value.

Miscellaneous Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 433

Example 16-8 shows an example of the use of ftw.

Example 16-8: ftw

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

#include <stdio.h>

#include <ftw.h>

int process(const char *, const struct stat *, int);

int

main(int argc, char **argv)

{

 while (--argc) {

 printf("Directory %s:\n", *++argv);

 ftw(*argv, process, sysconf(_SC_OPEN_MAX) - 3);

 putchar('\n');

 }

 exit(0);

}

int

process(const char *path, const struct stat *st, int flag)

{

 printf("%-24s", path);

 switch (flag) {

 case FTW_F:

 printf("file, mode %o\n", st->st_mode & 07777);

 break;

 case FTW_D:

 printf("directory, mode %o\n", st->st_mode & 07777);

 break;

 case FTW_DNR:

 printf("unreadable directory, mode %o\n", st->st_mode & 07777);

 break;

 case FTW_NS:

 printf("unknown; stat() failed\n");

 break;

 }

 return(0);

}

% ftw /tmp

Directory /tmp:

/tmp directory, mode 777

/tmp/.X11-unix directory, mode 777

/tmp/.X11-unix/X0 file, mode 0

/tmp/ps_data file, mode 664

/tmp/sh304.1 file, mode 640

UNIX Systems Programming for SVR4

434 FOR PERSONAL, NON-COMMERCIAL USE ONLY

/tmp/sh309.1 file, mode 640

/tmp/foo file, mode 640

/tmp/jreca002Ll file, mode 640

/tmp/zip file, mode 640

/tmp/foo.ps file, mode 640

/tmp/zip.ps file, mode 640

/tmp/jovea002Ll file, mode 600

/tmp/jreca002Ow file, mode 640

/tmp/jovea002Ow file, mode 600

The nftw function is similar to ftw, except that it takes an additional argument, flags, which may

specify any of the following values, or'ed together:

FTW_PHYS Perform a “physical” walk; do not follow symbolic links. By default, nftw
follows symbolic links.

FTW_MOUNT Do not cross file system mount points.

FTW_DEPTH Perform a depth-first search; visit subdirectories of a directory before visiting

the directory itself.

FTW_CHDIR Change to each directory before reading it.

The fn function also has an additional parameter, a structure of type struct FTW:

struct FTW {

 int base;

 int level;

};

The base field contains the offset of the file name in the path name parameter, and the level field

contains the current level in the tree.

The nftw function also allows two additional flags to be passed to fn:

FTP_DP The object is a directory whose subdirectories have already been visited.

FTW_SL The object is a symblic link to a non-existent file.

Example 16-9 shows a slightly different version of Example 16-8; this one uses nftw and shows
the structure of the directory tree with indentation.

Example 16-9: nftw

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

#include <stdio.h>

#include <ftw.h>

int process(const char *, const struct stat *, int, struct FTW *);

int

main(int argc, char **argv)

Miscellaneous Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 435

{

 while (--argc) {

 printf("Directory %s:\n", *++argv);

 nftw(*argv, process, sysconf(_SC_OPEN_MAX) - 3, 0);

 putchar('\n');

 }

 exit(0);

}

int

process(const char *path, const struct stat *st, int flag, struct FTW *info)

{

 int i;

 for (i = 0; i < info->level; i++)

 printf(" ");

 printf("%-*s", 36 - 2 * info->level, &path[info->base]);

 switch (flag) {

 case FTW_F:

 printf("file, mode %o\n", st->st_mode & 07777);

 break;

 case FTW_D:

 case FTW_DP:

 printf("directory, mode %o\n", st->st_mode & 07777);

 break;

 case FTW_SL:

 printf("symbolic link to nowhere\n");

 break;

 case FTW_DNR:

 printf("unreadable directory, mode %o\n", st->st_mode & 07777);

 break;

 case FTW_NS:

 printf("unknown; stat() failed\n");

 break;

 }

 return(0);

}

% nftp /tmp

Directory /tmp:

tmp directory, mode 777

 .X11-unix directory, mode 777

 X0 file, mode 0

 ps_data file, mode 664

 sh304.1 file, mode 640

 sh309.1 file, mode 640

 foo file, mode 640

 jreca002Ll file, mode 640

 zip file, mode 640

 foo.ps file, mode 640

 zip.ps file, mode 640

UNIX Systems Programming for SVR4

436 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 jovea002Ll file, mode 600

 jreca002Ow file, mode 640

 jovea002Ow file, mode 600

The pathfind function is sort of a library implementation of the find command. It could also be

implemented fairly easily with ftw or nftw. To make use of the pathfind function, your program

must be linked with the -lgen library.

#include <libgen.h>

char *pathfind(const char *path, const char *name, const char *mode);

The pathfind function searches the directories in path, which should be separated by semicolons,

for a file whose name is name, and whose mode matches mode. The mode parameter is a character

string containing one or more of the following:

r The object is readable by the user.

w The object is writable by the user.

x The object is executable by the user.

f The object is a regular file.

b The object is a block-special device file.

c The object is a character-special device file.

d The object is a directory.

p The object is a FIFO (pipe).

u The object has the set-user-id bit set.

g The object has the set-group-id bit set.

k The object has the “sticky” bit set.

s The object has non-zero size.

If an item matching the requirements is found, pathfind returns the concatenation of path and

name. If no object is found, pathfind returns NULL.

Example 16-10 shows a program that uses pathfind to tell the caller what version of a program he
is using. The user's search path is used as the list of directories to search, and files with the execute

bit set are of interest. This program is similar to the which command provided by most versions of

UNIX.

The pathfind function is not available in HP-UX 10.x.

Example 16-10: pathfind

#include <stdlib.h>

Miscellaneous Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 437

#include <libgen.h>

int

main(int argc, char **argv)

{

 char *p, *path;

 if ((path = getenv("PATH")) == NULL) {

 fprintf(stderr, "cannot find path in environment.\n");

 exit(1);

 }

 while (--argc) {

 if ((p = pathfind(path, *++argv, "x")) == NULL)

 printf("%s: not found in search path.\n", *argv);

 else

 printf("%s: %s\n", *argv, p);

 }

 exit(0);

}

% pathfind ls

ls: /usr/bin/ls

Database Management

Most versions of UNIX provide a library to maintain a rudimentary database. This database is

basically an on-disk hash table (see above), designed for efficiency. The routines can handle very

large databases (up to a billion blocks), and require only one or two file system accesses to retrieve

an item.

Although not necessary on most versions of SVR4, HP-UX 10.x reuires linking with the -lndbm

library to use these functions.

#include <ndbm.h>

DBM *dbm_open(char *file, int flags, int mode);

void dbm_close(DBM *db);

int dbm_store(DBM *db, datum key, datum content, int flags);

datum dbm_fetch(DBM *db, datum key);

int dbm_delete (DBM *db, datum key);

datum dbm_firstkey(DBM *db);

datum dbm_nextkey(DBM *db);

int dbm_clearerr(DBM *db);

int dbm_error(DBM *db);

UNIX Systems Programming for SVR4

438 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Before using the other functions, the database must be opened with dbm_open. The database is
stored in two files, one with a “.dir” suffix and the other with a “.pag” suffix. The root name of the

file (without the suffixes) should be passed to dbm_open in the file parameter. The flags and

mode arguments are given as for the open function. On success, dbm_open returns a pointer to type

DBM; otherwise it returns NULL. A database can be closed with dbm_close.

Keys and contents are described with objects of type datum:

typedef struct {

 char *dptr;

 int dsize;

} datum;

The dptr field points to the data, and dsize indicates the size of the data. Note that both keys and

contents may be arbitrary data types.

An item is stored in the database by calling dbm_store. The db argument is a pointer to an open

database. The key parameter is the key under which the data in the content parameter is to be

stored. The flags argument may be one of:

DBM_INSERT Insert an item into the database. If an item with this key is already in the

database, do not replace it with the new value. If an existing entry is found,

dbm_store returns 1, otherwise it returns 0.

DBM_REPLACE Insert an item into the database. If an item with this key is already in the

database, replace it with the new value.

To retrieve an item from the database, the dbm_fetch function is used. The db parameter specifies

an open database, and the key for the item is given in key. The content for that key is returned as a

datum type; note that the structure itself is returned, not a pointer to the structure. If no item was

found for the key, then the dptr field of the datum structure will be null.

To delete an item with key key from the database referred to by db, the dbm_delete function is

used.

The dbm_firstkey and dbm_nextkey functions can be used to make a linear pass through all
keys in the database as follows:

#include <ndbm.h>

.

.

.

for (key = dbm_firstkey(db); key.dptr != NULL; key = dbm_nextkey(db)) {

 ...

 content = dbm_fetch(db, key);

 ...

}

.

.

.

Miscellaneous Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 439

The dbm_error function returns non-zero when an error has occurred in reading or writing the

database referenced by db; the dbm_clearerr function clears the error condition.

Portability Notes

Some particularly old versions of UNIX may offer only the predecessor to the -lndbm library, called

the -ldbm library. This version of the library uses functions with the same names, except without the

leading “dbm_.” They do not accept a db argument, and handle only one open database at a time.

Replacing these functions with the newer ones is straightforward.

Pattern Matching

Most of the UNIX shells and text editors allow the user to supply a single string that matches a large

set of items. For example, “a*” matches all file names that begin with ‘a’ in the shell, and

“^whi[lnt]e.*sleeping$” matches all lines that begin with “while,” “whine,” or “white” and

end in “sleeping” in a text editor.

The code that performs this type of matching is fairly complex, and would be difficult to reproduce
each time a program needed these facilities. For this reason, library routines that implement these

functions are provided.

Shell Pattern Matching

Pattern matching in the shell, also called globbing, is used primarily to generate lists of file names.

In a shell pattern, the following characters have special meaning:

* Matches any string, including the null string.

? Matches any single character.

[] Matches any one of the enclosed characters. Two characters separated by ‘-’ match any

one character lexically between the two characters (i.e., “[a-z]” matches any of the

characters ‘a’ through ‘z’). If the first character after the ‘[’ is ‘!,’ then this matches any
character except one of the enclosed characters.

These special characters, also called metacharacters, may be escaped with a backslash; i.e., “\?”
matches the actual question mark character.

The gmatch function is used to perform shell pattern matching in a program. This function is
contained in the -lgen library:

#include <libgen.h>

int gmatch(const char *str, const char *pattern);

The gmatch function returns non-zero if the shell pattern in pattern matches the string contained

in str; it returns 0 if they do not match. The additional pattern matching characters provided by the

C-shell, most notably “{},” are not supported by gmatch.

UNIX Systems Programming for SVR4

440 FOR PERSONAL, NON-COMMERCIAL USE ONLY

The gmatch function is not available in HP-UX 10.x. However, a similar function, fnmatch, is

available. You can use fnmatch to emulate gmatch as follows:

int

gmatch(const char *str, const char *pattern)

{

 return(!fnmatch(patter, str, 0));

}

Example 16-11 shows a program that uses gmatch to search a file given as its second argument for
lines that match the pattern given as its first argument. Note that the pattern must be enclosed in

quotes to prevent the shell from processing it.

Example 16-11: gmatch

#include <libgen.h>

#include <stdio.h>

int

main(int argc, char **argv)

{

 FILE *fp;

 char line[BUFSIZ];

 char *pattern, *filename;

 /*

 * Check arguments.

 */

 if (argc != 3) {

 fprintf(stderr, "Usage: %s pattern file\n", *argv);

 exit(1);

 }

 pattern = *++argv;

 filename = *++argv;

 /*

 * Open the file.

 */

 if ((fp = fopen(filename, "r")) == NULL) {

 perror(filename);

 exit(1);

 }

 /*

 * Read lines from the file.

 */

 while (fgets(line, sizeof(line), fp) != NULL) {

 /*

 * Strip the newline.

 */

 line[strlen(line) - 1] = '\0';

 /*

Miscellaneous Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 441

 * If it matches, print it.

 */

 if (gmatch(line, pattern) != 0)

 puts(line);

 }

 fclose(fp);

 exit(0);

}

% gmatch 'A????d' /usr/dict/words

Aeneid

Alfred

Arnold

Atwood

% gmatch 'z*[ty]' /usr/dict/words

zealot

zest

zesty

zippy

zloty

zoology

Regular Expressions

A regular expression specifies a set of strings, through the use of special characters. Most text

editors support regular expressions in some form or another; the grep familiy of commands also

supports them. The canonical definition of a regular expression is provided by the ed text editor,

which was the first UNIX text editor to implement them.

In ed, a regular expression is defined as follows:

 A single character (except a special character, see below) is a one-character regular expression

that matches itself.

 A backslash preceding a special character causes that character to lose its special meaning.

 A period (‘.’) is a one-character regular expression that matches any single character.

 A string of characters enclosed in square brackets (‘[’ and ‘]’) is a one-character regular
expression that matches any single character in the string, unless the first character of the string

is a circumflex (‘^’), in which case the string is a regular expression that matches any single
character not in the string. The circumflex has special meaning only when it is the first character

in the string.

Within the string, a dash (‘-’) may be used to specify a range of characters; e.g., “[0-9]”

matches the same thing as “[0123456789].” If the dash is the first character (following the
circumflex) or last character in the string, it loses its special meaning.

The right square bracket (‘]’) may be included in the string only if it is the first character of the
string.

The other special characters have no special meaning within square brackets.

UNIX Systems Programming for SVR4

442 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 Regular expressions may be concantenated together to form larger regular expressions.

 A regular expression preceded by a circumflex (‘^’) is constrained to match at the beginning of
a line.

 A regular expression followed by a dollar sign (‘$’) is constrained to match at the end of a line.

 A regular expression both preceded by a circumflex and followed by a dollar sign is constrained

to match an entire line.

 A regular expression followed by an asterisk (‘*’) matches zero or more occurrences of the

regular expression. For example, “ab*c” matches “ac,” “abc,” “abbc,” and so forth. When a
choice exists, the longest leftmost match will be chosen.

 A regular expression contained between “\(” and “\)” matches the same string that the
unenclosed regular expression matches.

 The regular expression “\n” matches the same string that the nth regular expression enclosed

in “\(” and “\)” in the same regular expression matches. For example, “\(abc\)\1” matches

the string “abcabc.”

 A regular expression followed by “\{m\}” matches exactly m occurrences of that regular

expression. A regular expression followed by “\{m,\}” matches at least m occurrences of that

regular expression. A regular expression followed by “\{m,n\}” matches at least m and no

more than n occurrences of that regular expression.

This notation was originally introduced in PWB UNIX, and from there made its way into

System V. Versions of UNIX that do not have PWB UNIX as an ancestor (i.e., Berkeley-based

versions) do not support this notation.

 A regular expression preceded by “\<” is constrained to match at the beginning of a line or to
follow a character that is not a digit, underscore, or letter.

A regular expression followed by “\>” is constrained to match at the end of a line or to precede
a character that is not a digit, underscore, or letter.

This allows a regular expression to be constrained to match words.

This notation was introduced in the ex and vi editors. Versions of ed prior to the one in SVR4

do not support this notation.

The basic functions provided for using regular expressions in programs are regcmp and regex:

#include <libgen.h>

char *regcmp(const char *str1, /* const char *str2 */, ... , NULL);

char *regex(const char *re, const char *str, /* char *ret0 */, ...);

extern char *__loc1;

Miscellaneous Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 443

The regcmp function compiles the regular expression consisting of its concatenated arguments and
returns a pointer to the compiled form. The memory to hold the compiled form is allocated with

malloc; it is the user's responsibility to free this memory when it is no longer needed. If one of the

arguments contains an error, regcmp returns NULL.

The regex function applies the compiled regular expression re to the string in str. Additional

arguments may be given to receive values back (see below). If the pattern matches, a pointer to the

next unmatched character in str is returned, and the external character pointer __loc1 will point

to the place where the match begins. If the pattern does not match, regex returns NULL.

HP-UX 10.x requires you to link with the -lPW library to use these functions.

The regular expressions used by regcmp and regex are somewhat different from those described
above:

 The dollar sign (‘$’) matches the end of the string; “\n” matches a newline.

 A regular expression followed by a plus sign (‘+’) matches one or more occurrences of the
regular expression.

 The curly-brace notation does not use backslashes to escape the curly braces. For example,

while ed uses “\{m\},” regcmp and regex use “{m}.”

 The parenthesis notation from ed (“\(...)\”) has been replaced with the following:

(...)$n The part of the string that matches the regular expression will be returned. The

value will be stored in the string pointed to by the (n+1)th argument following

str in the call to regex. At most ten strings may be returned this way.

(...) Parentheses are used for grouping. The operators ‘*,’ ‘+,’ and “{}” can operate

on a single character or on a regular expression contained in parentheses.

SVR4 also provides a second set of functions for implementing regular expressions, called

compile, advance, and step. These functions implement regular expressions just as they exist in

ed and grep, but their usage is complicated, and, because they are not available in other versions of
the operating system, not portable. For more information on them, however, consult the regexpr (5)

manual page.

Example 16-12 shows a different version of the file-searching program from Example 16-11; this

one uses regular expressions, much like the grep command. Note again that the pattern must be

enclosed in quotes to prevent the shell from trying to interpret it.

Example 16-12: regexp

#include <libgen.h>

#include <stdio.h>

int

main(int argc, char **argv)

{

 FILE *fp;

UNIX Systems Programming for SVR4

444 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 char line[BUFSIZ];

 char *re, *pattern, *filename;

 /*

 * Check arguments.

 */

 if (argc != 3) {

 fprintf(stderr, "Usage: %s pattern file\n", *argv);

 exit(1);

 }

 pattern = *++argv;

 filename = *++argv;

 /*

 * Compile the regular expression.

 */

 if ((re = regcmp(pattern, NULL)) == NULL) {

 fprintf(stderr, "bad regular expression.\n");

 exit(1);

 }

 /*

 * Open the file.

 */

 if ((fp = fopen(filename, "r")) == NULL) {

 perror(filename);

 exit(1);

 }

 /*

 * Read lines from the file.

 */

 while (fgets(line, sizeof(line), fp) != NULL) {

 /*

 * Strip the newline.

 */

 line[strlen(line) - 1] = '\0';

 /*

 * If it matches, print it.

 */

 if (regex(re, line) != NULL)

 puts(line);

 }

 fclose(fp);

 exit(0);

}

% regexp 'A....d' /usr/dict/words

Aeneid

Alameda

Alfred

Alfredo

Amerada

Aphrodite

Miscellaneous Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 445

Arnold

Atwood

Avogadro

% regexp '^A....d$' /usr/dict/words

Aeneid

Alfred

Arnold

Atwood

% regexp 'b(an){2,}' /usr/dict/words

banana

Portability Notes

The regcmp and regex functions are available on System V-based systems only. BSD-based
systems provide a slightly different set of functions:

char *re_comp(const char *re);

int re_exec(const char *str);

The re_comp function compiles the regular expression contained in re and stores the result

internally. If the expression is compiled successfully, re_comp returns NULL; otherwise it returns a

pointer to an error message describing the problem. The re_exec function compares the string str

to the last compiled regular expression and returns 1 if they match, 0 if they don't, and –1 if an error

occurs (such as calling re_exec before calling re_comp).

The BSD functions are nicer than their System V counterparts in that they accept standard ed regular

expressions. However, the System V functions are nicer in that they allow multiple regular

expressions to be used simultaneously without having to constantly recompile them, and they allow

the program to obtain the parts of the string that matched the regular expression.

If portability is a concern, it is necessary to write code such that either set of regular expression
functions can be used. The aforementioned lack of support for simultaneous use of multiple regular

expressions in the BSD functions can make this difficult, however. Another approach is to obtain a

free or public domain implementation of regular expression functions and simply include those with

the program.

Henry Spencer of the University of Toronto offers a wonderful public domain implementation of

the regular expression functions included in Research UNIX Version 8; his package includes not

only the compile and match functions, but also a function to perform substitutions in strings much

like a text editor. The package is available from

ftp://ftp.cs.toronto.edu/pub/regexp.shar.Z. The GNU Project also provides a fairly
robust implementation of the regular expression functions; their implementation is covered by the

GNU Public License, which may cause problems for some implementors. The package is available

from ftp://prep.ai.mit.edu/pub/gnu/regex-0.12.tar.gz.

UNIX Systems Programming for SVR4

446 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Internationalization

For years, UNIX used the ASCII character set. ASCII, being the American Standard Code for

Information Interchange, works great in the United States. But in England, where the monetary

symbol is ‘£,’ a non-ASCII character, a problem arises. In countries that use diacritical marks with
their letters, e.g., â, ç, ì, õ, and ü, the problem is even worse. And in countries like Japan, where the

character set is not even remotely Latin in origin, ASCII is completely hopeless.

In recent years, as UNIX has spread throughout the world, so has interest in internationalizing it.

All programs should handle the local country's character set, whatever that is. Programs that print

dates and times should print them in the commonly accepted format of the local country. Programs

that print formatted numbers should use the proper character to mark the decimal point, and so forth.

Internationalization is a complex topic. Complex enough that it would be impossible to cover the

entire topic in this short section. Instead, we present here a few basic functions that can make a

program at least a little more friendly on an international scale. There are a whole slew of functions,

however, that we do not cover here.

Programs using the functions described in this section must be linked with the -lintl library.

Defining the Locale

A locale defines the characteristics of the environment, from an internationalization standpoint, that

a program is operating in. The “UNIX” locale is named “C.” Other locales generally use a two-
character name, usually the ISO standard two-letter abbreviation for the country name. For example,

“de” is the German locale, “fr” is the French locale, and “ja” is the Japanese locale.

The setlocale function sets a program's locale for any of several different categories:

#include <locale.h>

char *setlocale(int category, const char *locale);

The locale parameter contains the name of the locale; this will be used by the internationalization

functions to look at various databases contained in the subdirectory of the same name in

/usr/lib/locale. If locale contains the empty string, the value will be taken from environment

variables. If locale is NULL, the current locale will be returned and no changes made.

The category parameter must be one of the following:

LC_CTYPE Affects the behavior of the character type functions such as isdigit and

tolower.

LC_NUMERIC Affects the decimal point character and the thousands digit separator

character for formatted input/output functions (scanf, printf, etc.) and

string conversion functions (strtol, etc.).

LC_TIME Affects the date and time formats delivered by ascftime, cftime,

getdate, and strftime.

Miscellaneous Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 447

LC_COLLATE Affects the sort order produced by strcoll and strxfrm (see below).

LC_MONETARY Affects the monetary formatting information returns by localeconv (see
below).

LC_MESSAGES Affects the behavior of dgettext, gettext, and gettxt (not discussed in
this book).

LC_ALL A shorthand way to specify all of the above categories.

If setlocale succeeds, it returns locale. If it fails, it returns NULL.

Formatting Numbers

There are a number of issues involved in formatting numbers in different countries. Aside from the

obvious differences in monetary symbols, there are also differences in the character used for a

decimal point (some countries use period, others use comma), the character used to separate

thousands groups (some countries use comma, others use period), and so forth.

The localeconv function returns information about how to format numbers in the program's

current locale:

#include <locale.h>

struct lconv *localeconv(void);

The function returns a pointer to a structure of type struct lconv:

struct lconv {

 char *decimal_point;

 char *thousands_sep;

 char *grouping;

 char *int_curr_symbol;

 char *currency_symbol;

 char *mon_decimal_point;

 char *mon_thousands_sep;

 char *mon_grouping;

 char *positive_sign;

 char *negative_sign;

 char int_frac_digits;

 char frac_digits;

 char p_cs_precedes;

 char p_sep_by_space;

 char n_cs_precedes;

 char n_sep_by_space;

 char p_sign_posn;

 char n_sign_posn;

};

The fields of this structure are:

decimal_point The decimal point character used to format non-monetary quantities.

UNIX Systems Programming for SVR4

448 FOR PERSONAL, NON-COMMERCIAL USE ONLY

thousands_sep The character used to separate groups of digits to the left of the decimal

point in non-monetary quantities.

grouping A string in which each byte is taken as an integer that indicates the

number of digits comprising the current group in a formatted non-

monetary quantity. Each integer is interpreted according to the

following:

CHAR_MAX No further grouping should be performed.

0 The previous element is to be used repeatedly for the

remainder of the digits.

other The value is the number of digits that comprise the

current group. The next element is examined to

determine the size of the next group of digits to the

left of the current group.

int_curr_symbol The international currency symbol applicable to the current locale.

currency_symbol The local currency symbol applicable to the current locale.

mon_decimal_point The decimal point character to be used in formatting monetary

quantities.

mon_grouping A string in which each byte is taken as an integer that indicates the
number of digits comprising the current group in a formatted monetary

quantity. Each integer is interpreted according to the rules described

above.

positive_sign The string used to indicate a non-negative formatted monetary

quantity.

negative_sign The string used to indicate a negative formatted monetary quantity.

int_frac_digits The number of decimal places to the right of the decimal to display in

internationally formatted monetary quantities.

frac_digits The number of decimal places to the right of the decimal to display in

locally formatted monetary quantities.

p_cs_precedes Set to 1 or 0 to indicate whether the currency symbol precedes (1) or
succeeds (0) the value for non-negative formatted monetary quantities.

p_sep_by_space Set to 1 or 0 to indicate whether the currency symbol is (1) or is not

(0) separated by a space from the value for a non-negative formatted

monetary quantity.

n_cs_precedes Set to 1 or 0 to indicate whether the currency symbol precedes (1) or

succeeds (0) the value for negative formatted monetary quantities.

Miscellaneous Routines

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 449

n_sep_by_space Set to 1 or 0 to indicate whehter the currency symbol is (1) or is not

(0) separated by a space from the value for a negative formatted

monetary quantity.

p_sign_posn Indicates how to position the positive sign for a non-negative

formatted monetary quantity, as follows:

0 Parentheses surround the quantity and currency symbol.

1 The sign string precedes the quantity and currency symbol.

2 The sign string follows the quantity and currency symbol.

3 The sign string immediately precedes the currency symbol.

4 The sign string immediately follows the currency symbol.

n_sign_posn Indicates the positioning of the negative sign for a negative formatted

monetary quantity. The possible values are as described above for

p_sign_posn.

Collating Sequences

Functions such as strcmp compare strings based on the ASCII collating sequence, which in general
is the same as alphabetical order. However, these functions do not work properly for character sets

other than ASCII. Thus, when working in an international environment, qsort cannot be used with

strcmp to sort strings into the proper order.

The strcoll and strxfrm functions can be used instead to make these comparisons:

#include <string.h>

int strcoll(const char *s1, const char *s2);

size_t strxfrm(char *dst, const char *src, size_t n);

The strcoll function compares strings s1 and s2 and returns less than, equal to, or greater than

zero depending on whether s1 should be considered less than, equal to, or greater than s2 when the

strings are interpreted in the program's locale for the LC_COLLATE category.

The strxfrm function transforms the string src, placing the result in dst. If strcmp is applied to

two transformed strings, it will return the same result as if strcoll had been applied to the original

strings. No more than n bytes will be placed into dst, including the terminating null character. If

dst is null and n is 0, strxfrm will return the number of bytes required to store the transformed

string. The length of the transformed string is returned by strxfrm; if this is greater than n, the

contents of dst are undefined.

The strcoll function simply calls strxfrm on s1 and s2 and then returns the result fo comparing

them with strcmp. If a large number of strings are to be compared against a single string for a

match, it is more efficient to call strxfrm and strcmp yourself.

UNIX Systems Programming for SVR4

450 FOR PERSONAL, NON-COMMERCIAL USE ONLY

As mentioned previously, these functions are just the tip of the iceberg. Functions and libraries are

also available to help the programmer implement multilingual error messages, handle multi-byte

characters (for languages such as Japanese), and so forth. For a complete discussion of the issues

involved in internationalization and the functions provided to work around them, consult one of the

several books devoted to the topic.

Chapter Summary

Just as we began this book with a discussion of the numerous little functions that you've probably

used every day, we finish the book with a discussion of a number of functions that you may not use

every day, but that are just as useful. The number of functions available to the systems programmer

grows with every release of UNIX. Some of the new functions are useful, and others are less so. As

new functions are added, some of them catch on and start to show up in lots of programs. These

functions tend to start propagating to other versions of UNIX, as programmers demand them. Other

functions are added and then later removed, as their use never catches on, or as better replacements
are developed.

Most of the functions described in this chapter are available in most newer versions of UNIX. The

exception to this rule, unfortunately, are the search functions, which are only available in System

V-based versions. Hopefully, as more vendors standardize on (or at least adopt parts of) SVR4, this

will become less of a portability problem.

Appendix A
Significant Changes in ANSI C

From its inception, the C programming language was defined by the book The C Programming

Language by Brian Kernighan and Dennis Ritchie. Unfortunately, while the book was an excellent

tool for learning the language, it was not an unambiguous specification of the language. This resulted

in a variety of compilers which, while mostly compatible, would do different things with certain

constructs, making for a portability nightmare. Furthermore, a few extensions were added to the

langage at various points (enumerated types, the void type, and structures as function arguments

and return values) but never sufficiently documented, resulting in different levels of support in

different compilers.

Accessing the Network at the Link Level

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 451

In the late 1980s, the American National Standards Institute set out to remedy this situation. The

X3J11 Technical Committee was charged with developing a standard for the C programming

language that rectified the ambiguities in the language, and rectified the problems of divergent

implementations. For the most part, the committee attempted to codify existing practice, rather than

invent new language mechanisms. However, where it seemed valuable, the committee did define

some new features that were thought to be generally useful. Overall, they did a pretty good job of
this (although there are some surprising places where they didn't).

In 1989, ANSI Standard X3.159 was released, and became the standard for the C programming

language. Most modern C compilers implement the ANSI version of the language, including the

compilers described in Chapter 1 of this book. In this appendix, we describe some of the more

significant changes made in ANSI C. This is not an exhaustive list; if you need more information,

you should consult the standard itself, or one of the numerous books on the topic (Kernighan and

Ritchie, Second Edition, is the definitive reference). If you are already a proficient C programmer,

you may wish to examine A C User's Guide to ANSI C, by Ken Arnold and John Peyton. This book

presents all the changes in a concise manner for readers who already know the pre-ANSI version of

the language.

Tokens

Tokens are the smallest recognizable units of the language. For example, operators, variable names,

keywords, and constants are all tokens.

String Concatenation

The ANSI C standard says that adjacent string constants with no operators between them should

simply be concatenated. This means that

"foo" "bar"

is equivalent to

"foobar"

This is useful in situations in which a long string needs to be defined. For example:

char *usage = "Usage: thisprogram [-b] [-g] [-l] files...\n"

 " -b babble incessantly about everything\n"

 " -g babble in ancient greek\n"

 " -l babble in latin\n";

Escape Sequences

The ANSI C standard has defined some new backslash escape sequences:

\a For “alert.” When printed, this sequence should ring the terminal's bell.

\v Vertical tab (this escape was already supported by many compilers).

UNIX Systems Programming for SVR4

452 FOR PERSONAL, NON-COMMERCIAL USE ONLY

\x Introduces a hexadecimal constant, much like a blackslash followed by a digit introduces

an octal constant.

The number of digits in an octal constant has been formally limited to three; some compilers

previously allowed more. This means that “\0123” is now always a two-character string: the

character with octal value 012 followed by the character ‘3.’

The digits 8 and 9 are no longer allowed in octal constants. This shouldn't be any great surprise.

However, some compilers allowed “\128” and took it to mean “\130.”

The Preprocessor

The C preprocessor has always been a source of portability problems, mostly because numerous

programmers took advantage of the way a particular processor handled something. A number of
preprocessor constructs that are used frequently were never actually specified as part of the

language; their use relies on knowledge of how the internals of the preprocessor work.

String Substitution

String substitution in preprocessor macros is one of these areas. Consider the following macro:

#define PRINT(value) printf("value = %d\n", value)

Some preprocessors would expand PRINT(x) to:

printf("x = %d\n", x)

while others would expand it to:

printf("value = %d\n", x)

The difference here is how macro parameters are expanded inside character strings. The ANSI

standard specifies that the latter behavior is correct, and introduces a new syntax for achieving the

former behavior:

#define PRINT(value) printf(#value " = %d\n", value)

The #value gets expanded to a quoted version of the parameter (e.g., “x”), and then the string

concatenation rules take over to produce the desired result.

Character Constants

The same rule used above that says preprocessor tokens are not replaced inside character strings

also applies to character constants. A frequent construct in pre-ANSI C is:

#define CTRL(c) (037 & 'c')

Accessing the Network at the Link Level

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 453

This macro produces the control character version of a regular character. Thus CTRL(L) would
produce a CTRL-L. Unfortunately, in ANSI C, this will not work. The simplest way to avoid this

problem is to define the macro slightly differently:

#define CTRL(c) (037 & c)

This macro is then called as CTRL('L').

Token Pasting

One of the features of some preprocessors is that they allow “token pasting.” This has never been

a documented behavior, but is used frequently. With a token pasting preprocessor, there are at least

two ways to combine two tokens:

#define self(a) a

#define glue(a,b) a/**/b

self(x)1

glue(x,1)

Both of these are intended to produce a single token, “x1.” In ANSI C however, they both produce

two separate tokens, “x” and “1.”

The ANSI C standard defines a new syntax for token pasting:

#define glue(a, b) a ## b

Since “##” is now a legitimate operator, programmers have much more freedom in the use of white
space in both the definition and invocation of token pasting macros.

The #elif Directive

The ANSI C preprocessor now provides a #elif directive that may be used in conjunction with

#ifdef and #endif.

The #error Directive

The ANSI C preprocessor provides a #error directive that prints the error message given as an
argument and exits. This allows code of the form:

#if defined(BSD)

... BSD stuff ...

#elif defined(SYSV)

... System V stuff ...

#else

#error "One of BSD or SYSV must be defined."

#endif

UNIX Systems Programming for SVR4

454 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Predefined Symbols

All preprocessors offer the predefined symbols __FILE__ (the current source file as a quoted

string) and __LINE__ (the current line number as an integer). The ANSI C standard has added

__DATE__ and __TIME__ , which give the current date and time (as of when the program was
compiled) as quoted strings.

The constant __STDC__ is defined as 1 in compilers that are compliant with ANSI C. This can be
used to test whether or not ANSI C features may be used:

#ifdef __STDC__

... ANSI stuff ...

#else

... Non-ANSI stuff ...

#endif

NOTE

In the ANSI standard, the only defined value for __STDC__ is 1. If it is defined to any
other value, the meaning is undefined. Unfortunately, the standard is somewhat ambiguous

on this point.

This is a problem on SVR4, where AT&T uses __STDC__ with a value of zero to enable
certain ANSI C features outside of a strictly ANSI C-compliant environment. This means

that the test above for an ANSI environment no longer works; it must be rewritten as

#if __STDC__ == 1

... ANSI stuff ...

#else

... Non-ANSI stuff ...

#endif

Text After #else and #endif

Most preprocessors have always allowed constructs like:

#ifdef FOO

...

#else FOO

...

#endif FOO

However, this has never been strictly legal, since #else and #endif are not supposed to have
arguments. In ANSI C this syntax is now expressly forbidden (although most compilers will just

print a warning and accept it); it should be rewritten:

#ifdef FOO

...

#else /* FOO */

...

#endif /* FOO */

Accessing the Network at the Link Level

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 455

Declarations

The ANSI C standard has cleaned up variable declarations, both by formalizing the use of some

non-standard types, and defining a few new ones.

The void Type

Most newer non-ANSI compilers accept some form of the void type, but support for all of its

features is varied. The void type has three uses in ANSI C:

1. Declaring a function with a return type of void means that the function returns no value. By

declaring functions that do have a return value appropriately, and indicating functions that do

not have a return value with a type of void, the compiler can perform type checking for the
programmer.

2. Declaring a function prototype (see below) with a parameter specification of void means that
the function has no arguments. The compiler can use this for checking parameter lists in

function calls.

3. The type void * is now used as the universal pointer. Prior to the invention of void, the char

* type was usually used; this did not work well on systems that used different sized pointers for
different objects.

The enum Type

The ANSI C standard has officially codified the enum data type. Use of enum variables as array
subscripts is explicitly allowed; some compilers previously disallowed this.

The char Type

Because there is no standard among hardware vendors as to whether a char is signed or unsigned,

there is also no standard defined by ANSI. The signedness or unsignedness of a char in ANSI C is
explicitly hardware-dependent.

If a specific type (signed or unsigned) is needed, the familiar unsigned qualifier and the new-to-

ANSI signed qualifier may be used when declaring variables of type char.

Type Qualifiers

ANSI C has defined two new type qualifiers:

const This qualifier says that the object will not be modified. This allows the compiler

to refuse to modify the object; it also allows the compiler more freedom in making

optimizations. Note that initializing an object is not the same as modifying the

object. For example, the following is perfectly legal:

const int True = 1;

The use of the const qualifier is somewhat tricky, however. For example, the
declaration

UNIX Systems Programming for SVR4

456 FOR PERSONAL, NON-COMMERCIAL USE ONLY

const char *s;

means that s will only point at characters that will not be modified through s

(although they might be modified through some other means). It does not mean

that s will not be modified. To declare that, you would say

char *const s;

instead.

volatile This is the opposite of const. It tells the compiler that this variable may change
in ways the compiler cannot predict. Basically, it tells the compiler not to optimize

references to this variable, since the optimizations may not be accurate in all

circumstances.

Functions

ANSI C has also made two significant changes when it comes to declaring and calling functions.

Function Prototypes

Perhaps the most visible change in ANSI C is the introduction of function prototypes, borrowed

from C++. With function prototypes, the number and type of a function's parameters are specified

when the function is declared. This allows the compiler to perform type checking, and also to avoid

unnecessary type promotions.

We have used function prototypes throughout this book. For example:

FILE *fopen(char *filename, char *mode);

This is the most explicit of the prototype syntaxes. It is also possible to leave out the variable names

in the prototype, e.g.,

FILE *fopen(char *, char *);

However, the variable names help in remembering what parameter goes where; the second form

provides no clue in this regard. And of course, the old pre-ANSI syntax is still valid:

FILE *fopen();

However, in this case, the compiler is not able to perform type checking.

Function definition may follow either the most explicit of the prototype syntaxes,

FILE *

fopen(char *filename, char *mode)

{

Accessing the Network at the Link Level

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 457

 .

.

.

}

or it may follow the old pre-ANSI syntax:

FILE *

fopen(filename, mode)

char *filename, *mode;

{

 .

.

.

}

Note however that the type of each parameter must be specified explicitly, even if two consecutive
parameters have the same type. In other words,

FILE *fopen(char *filename, char *mode);

is correct, but

FILE *fopen(char *filename, *mode);

is not.

Functions with a variable number of arguments are handled with a trailing “....” This means that

there may be zero or more parameters after this point. For example, the prototype for the fprintf
function looks like:

int fprintf(FILE *, const char *, ...);

Note that this syntax requires that the “...” be last in the list.

Finally, functions with no parameters are now declared using the void type:

int getpid(void);

This allows the compiler to make sure that no parameters are passed to the function when it is

compiled.

Handling Prototypes in Non-ANSI Environments

Even though you may be using an ANSI C compiler, it is quite likely that the code you are writing

may still have to be compiled on systems that do not have an ANSI compiler. Rather than avoiding

the use of function prototypes altogether, there are a few approaches you can take.

The simplest approach simply has two declarations for every function:

UNIX Systems Programming for SVR4

458 FOR PERSONAL, NON-COMMERCIAL USE ONLY

#ifdef __STDC__

int fact(int);

#else

int fact();

#endif

#ifdef __STDC__

int fact(int n)

#else

int fact(n)

int n;

#endif

{

.

.

.

}

Unfortunately, this is rather ugly. Another possibility is to do the above for the declarations, but use

old-style definitions:

#ifdef __STDC__

int fact(int);

#else

int fact();

#endif

int fact(n)

int n;

{

.

.

.

}

This is less ugly, but still requires declaring the function twice, leaving a potential for error.

A more elegant solution, one that you will see used often, is to define a macro, usually called _P or

_proto, that handles the prototypes, and then use old-style definitions:

#ifdef __STDC__

#define _P(args) args

#else

#define _P(args) ()

#endif

int fact _P((int));

int fact(n)

int n;

{

.

.

Accessing the Network at the Link Level

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 459

.

}

When __STDC__ is defined, the prototype expands to

int fact (int);

while when __STDC__ is not defined, it expands to

int fact ();

Widened Types

In K&R C, because the compiler had no way to type-check function parameters, it would promote

all arguments of types smaller than int to int, and all arguments of type float to double. Since

at the time most compilers performed all floating point arithmetic in double precision anyway, this

wasn't usually a problem.

ANSI C still promotes function parameters to their widened types when a function is called.

However, inside the function, the widened types are converted back to their original, narrower sizes.

This can cause some serious problems with carelessly-written pre-ANSI code.

One of the most common errors is to assume that floats are really doubles. For example:

foo(f)

float f;

{

 bar(&f);

}

bar(d)

double *d;

{

 .

.

.

}

The problem here is that in pre-ANSI C, f never really was a float. It was declared as one, but the

compiler treated it as a double. So in bar, where we assumed a pointer to a double, you could get
away with it, because that's how things really worked.

And in ANSI C, you will not get a warning from the compiler about this, because, being pre-ANSI

C, there are no function prototypes (which serves to prove that function prototypes are a good thing).

But, when you try to execute your program, bar will fail in any one of a number of different ways

trying to use *d as if it were actually a double.

UNIX Systems Programming for SVR4

460 FOR PERSONAL, NON-COMMERCIAL USE ONLY

To avoid this problem, when writing code to be used both with and without function prototypes, use

only widened types—no char or short (use int), and no float (use double). Pointers to any of
the types (widened or unwidened) are okay, though.

Expressions

Perhaps the most significant change to widely accepted practice was made in expression evaluation.

In original K&R C, unsigned specified exactly one type. There were no unsigned chars,

unsigned shorts, or unsigned longs. This is not to say that most compilers did not support
these types, just that they were never “official.” Naturally, since the rules for how these unofficial

types behaved in expressions in which they were mixed with other types did not exist, different

compiler implementors used different rules.

In most C compilers, a “sign preserving” rule is used. If an unsigned type needs to be widened, it is

widened to a larger unsigned type. And when an unsigned type mixes with a signed type, the result

is an unsigned type. This makes a certain amount of sense, but can lead to unexpected results in

certain situations. For example, subtracting unsigned short 5 from unsigned short 3 will
produce a large unsigned number with the same bit pattern as –2.

ANSI C on the other hand specifies that a “value preserving” rule should be used. When an unsigned

type smaller than an int needs to be widened, it is widened to a signed int if that is large enough

to hold the type, otherwise it is widened to an unsigned int. This produces more intuitive

behavior in cases like the above (in which the result would be a signed int –2), and makes no

difference in most other cases. However, programs that rely on the earlier behavior will need to be

modified (usually by inserting appropriate typecasts) if they are to work correctly.

Summary

For the most part, the changes made in ANSI C are a good thing. ANSI C is rapidly becoming

available on almost all UNIX platforms, and its growing use will result in code that is both more

portable and less prone to error, provided that features such as function prototypes are used wherever

possible.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 461

Appendix B
Accessing File System Data

Structures

A number of system admnistration tasks require the ability to obtain information about one or more

mounted file systems. Although it is usually possible to obtain this information using existing

commands, there are times when it's easier to “roll your own.” This appendix describes the functions

and procedures necessary for doing just that.

NOTE

The functions and procedures described in this appendix differ from one version of UNIX
to another. They even differ among the various vendors' versions of SVR4. The text and

examples in this appendix describe the situation as it exists in Solaris 2.x. However, the on-

line examples for the book also include working copies of these programs for HP-UX 10.x

and IRIX 5.x; compare those files for information about how those operating systems differ

from what is described here.

The Mounted File System Table

The file /etc/mnttab contains a list of the file systems that are currently mounted, and some
information about them. This file is mostly maintained by the mount and umount commands,

although other processes such as the automounter and the volume management daemon also make

updates to it, if they are in use.

In SVR4, the /etc/mnttab file is a text file, with each entry in the file consuming one line. In most

other versions of UNIX, it is a binary file, with each entry consisting of a structure that contains

more or less the same information. The functions provided for reading this file use a structure of

type struct mnttab to describe each entry. This structure is declared in the include file
sys/mnttab.h:

struct mnttab {

 char *mnt_special;

 char *mnt_mountp;

UNIX Systems Programming for SVR4

462 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 char *mnt_fstype;

 char *mnt_mntopts;

 char *mnt_time;

};

The fields of the structure are:

mnt_special The name of the block-special device the file system resides on.

mnt_mountp The name of the file system mount point, i.e., the directory that it is mounted

on.

mnt_fstype The type of the file system, e.g., “ufs,” “nfs,” “hsfs,” or “pcfs.”

mnt_mntopts A comma-separated list of the options the file system was mounted with. The

legal values vary with the file system type, but this includes things such as

read-only, no set-user-id, and so forth.

mnt_time The time the file system was mounted. This is a character string containing

the time_t value in ASCII; it must be converted to an integer with atoi and

then passed to ctime or whatever (see Chapter 7, Time of Day Operations).

There are three functions used for reading the /etc/mnttab file:

#include <stdio.h>

#include <sys/mnttab.h>

int getmntent(FILE *fp, struct mnttab *mnt);

int getmntany(FILE *fp, struct mnttab *mnt, struct mnttab *mntref);

char *hasmntopt(struct mnttab *mnt, char *option);

The getmntent function reads the next entry from the file referenced by fp, and stores the broken-

out fields of the entry in the area pointed to by mnt. The getmntany function searches the file

referenced by fp for an entry that matches the non-null fields of mntref, and stores the broken-out

fields of the entry in the area pointed to by mnt. Note that neither of these functions opens, closes,

or rewinds the /etc/mnttab file.

Both getmntent and getmntany return 0 if an entry is successfully read, and –1 if end-of-file is

encountered. If a formatting error occurs in the file, they return one of the following:

MNT_TOOLONG A line in the file exceeded the maximum line length.

MNT_TOOMANY A line in the file contains too many fields.

MNT_TOOFEW A line in the file does not contain enough fields.

The hasmntopt function scans the mnt_mntopts field of mnt for a substring that matches option.

It returns a pointer to the substring if it is present, and NULL if is not.

Accessing File System Data Structures

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 463

The File System Defaults File

The file /etc/vfstab contains “default” information about file systems. This information includes

device names, mount points, mount options, and so forth. The table is used by the system bootstrap

procedure to mount the file systems that should be mounted automatically. It may also be used to

record the location of other file systems that are mounted only on command. A file system does not

have to be listed in this file to be mounted; listing it here simply makes the mount command simpler.

On most other versions of UNIX, including HP-UX 10.x and IRIX 5.x, this file is called /etc/fstab,

and has a slightly different format.

Each line in the file constitutes an entry, which is described by a structure of type struct vfstab,
declared in the include file sys/vfstab.h:

struct vfstab {

 char *vfs_special;

 char *vfs_fsckdev;

 char *vfs_mountp;

 char *vfs_fstype;

 char *vfs_fsckpass;

 char *vfs_automnt;

 char *vfs_mntopts;

};

The fields of the structure are:

vfs_special The name of the block-special device the file system resides on.

vfs_fsckdev The name of the character-special device the file system resides on. This field

is so named because the fsck program uses this device to check the file
system's integrity at boot time.

vfs_mountp The name of the file system mount point, that is, the directory it is to be

mounted on.

vfs_fstype The type of the file system, e.g., “ufs,” “nfs,” “hsfs,” or “pcfs.”

vfs_fsckpass When fsck runs, certain file systems must be checked before others. This

number indicates which pass of fsck should check this file system.

vfs_automnt An indication of whether or not the file system should be mounted

automatically when the system boots.

vfs_mntopts The options that should be used when mounting this file system. These vary

with the file system type.

Any of these fields may be null if they do not apply to the file system in question.

There are four functions provided for reading the /etc/vfstab file:

#include <stdio.h>

#include <sys/vfstab.h>

UNIX Systems Programming for SVR4

464 FOR PERSONAL, NON-COMMERCIAL USE ONLY

int getvfsent(FILE *fp, struct vfstab *vfs);

int getvfsfile(FILE *fp, struct vfstab *vfs, char *file);

int getvfsspec(FILE *fp, struct vfstab *vfs, char *spec);

int getvfsany(FILE *fp, struct vfstab *vfs, struct vfstab *vfsref);

The getvfsent function reads the next entry from the file referenced by fp, and stores the broken-

out fields of the entry in the area pointed to by vfs. The getvfsfile function searches the file for

an entry whose vfs_mountp field is the same as file and stores the broken-out fields of the entry

in the area pointed to by vfs. The getvfsspec function searches the file for an entry whose

vfs_special field is the same as spec and stores the broken-out fields of the entry in the area

pointed to by vfs. The getvfsany function searches the file referenced by fp for an entry that

matches the non-null fields of vfsref, and stores the broken-out fields of the entry in the area

pointed to by vfs. Note that none of these functions opens, closes, or rewinds the /etc/vfstab file.

All four of these functions return 0 if an entry is successfully read, and –1 if end-of-file is

encountered. If a formatting error occurs in the file, they return one of the following:

VFS_TOOLONG A line in the file exceeded the maximum line length.

VFS_TOOMANY A line in the file contains too many fields.

VFS_TOOFEW A line in the file does not contain enough fields.

Obtaining File System Statistics

There are a number of file system statistics that are generally useful to system administration

programs, including the amount of space used or available in the file system, the number of files in

the file system, and so forth. The statvfs and fstatvfs functions can be used to obtain this

information:

#include <sys/types.h>

#include <sys/statvfs.h>

int statvfs(const char *path, struct statvfs *stats);

int fstatvfs(int fd, struct statvfs *stats);

The statvfs function obtains statistics about the file system in which the file named by path

resides, and returns them in the area pointed to by stats. The fstatvfs function does the same

thing, but uses a file descriptor instead of a path name to refer to the file. Both functions return 0 on

success; if an error occurs, –1 is returned and errno is set to indicate the error.

Both of these functions return statistics in a structure of type struct statvfs:

typedef struct statvfs {

 u_long f_bsize;

Accessing File System Data Structures

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 465

 u_long f_frsize;

 u_long f_blocks;

 u_long f_bfree;

 u_long f_bavail;

 u_long f_files;

 u_long f_ffree;

 u_long f_favail;

 u_long f_fsid;

 char f_basetype[FSTYPSZ];

 u_long f_flag;

 u_long f_namemax;

 char f_fstr[32];

 u_long f_filler[16];

} statvfs_t;

The fields of this structure are:

f_bsize The preferred file system block size. Reads and writes on the file system should
use this block size for optimum performance.

f_frsize The fundamental file system block size. This is also called the fragment size.

This is the smallest unit of disk space that can be consumed by a file (i.e., even

if a file is smaller than this value, it consumes a block of this size on the disk).

f_blocks The total number of blocks that can be used in the file system, in units of

f_frsize.

f_bfree The total number of free blocks in the file system.

f_bavail The number of free blocks in the file system available to non-privileged

processes. The system reserves a small amount (usually ten percent) of the

space for use only by the super-user.

f_files The total number of files (i-nodes) that can be created in the file system. This

value is not available for file systems mounted via NFS.

f_ffree The total number of free files (i-nodes) in the file system. This value is not

available for file systems mounted via NFS.

f_avail The number of free files (i-nodes) in the file system available to non-privileged

processes. It is possible for the system to reserve a small number of these for

use only by the super-user, although this is rarely done. This value is not

available for file systems mounted via NFS.

f_fsid A unique identifier for the file system.

f_basetype The file system type name.

f_flag A bit mask of flags. Possible values are:

ST_RDONLY The file system is read-only.

ST_NOSUID The file system does not support set-user-id and set-group-

id bit semantics.

UNIX Systems Programming for SVR4

466 FOR PERSONAL, NON-COMMERCIAL USE ONLY

ST_NOTRUNC The file system does not truncate file names longer than the

maximum length.

f_namemax The maximum length of a file name on this file system.

f_str A file system specific string used only by the kernel.

Example B-1 shows a program that reads the mounted file system table, and for each file system,

prints out the information stored for it in the table. It also looks the file system up in the file system

defaults table and prints any information it finds there. And finally, it uses statvfs to obtain

statistics about the file system, and prints them out.

Example B-1: fsysinfo

#include <sys/types.h>

#include <sys/statvfs.h>

#include <sys/time.h>

#include <string.h>

#include <stdio.h>

#include <sys/mnttab.h>

#include <sys/vfstab.h>

char *mnttabFile = "/etc/mnttab";

char *vfstabFile = "/etc/vfstab";

struct statvfs *getfsInfo(char *);

struct mnttab *getmnttabEntry(FILE *);

struct vfstab *getvfstabEntry(FILE *, struct mnttab *);

int

main(void)

{

 time_t clock;

 struct mnttab *mnt;

 struct vfstab *vfs;

 struct statvfs *stats;

 FILE *mnttabFP, *vfstabFP;

 /*

 * Open the mounted file system table.

 */

 if ((mnttabFP = fopen(mnttabFile, "r")) == NULL) {

 perror(mnttabFile);

 exit(1);

 }

 /*

 * Open the file system defaults file.

 */

 if ((vfstabFP = fopen(vfstabFile, "r")) == NULL) {

 perror(vfstabFile);

 exit(1);

 }

 /*

Accessing File System Data Structures

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 467

 * For each file system...

 */

 while ((mnt = getmnttabEntry(mnttabFP)) != NULL) {

 /*

 * If it's not an "ignore" file system, look it

 * up in the defaults file and get its current

 * stats.

 */

 if (hasmntopt(mnt, "ignore") == 0) {

 vfs = getvfstabEntry(vfstabFP, mnt);

 stats = getfsInfo(mnt->mnt_mountp);

 }

 else {

 stats = NULL;

 vfs = NULL;

 }

 clock = atoi(mnt->mnt_time);

 /*

 * Print the mnttab structure.

 */

 printf("%s:\n", mnt->mnt_mountp);

 printf(" %s information:\n", mnttabFile);

 printf(" file system type: %s\n", mnt->mnt_fstype);

 printf(" mounted on device: %s\n", mnt->mnt_special);

 printf(" mounted with options: %s\n", mnt->mnt_mntopts);

 printf(" mounted since: %s", ctime(&clock));

 /*

 * Print the vfstab structure.

 */

 if (vfs != NULL) {

 printf(" %s information:\n", vfstabFile);

 printf(" file system type: %s\n",

 vfs->vfs_fstype ? vfs->vfs_fstype : "");

 printf(" mount device: %s\n",

 vfs->vfs_special ? vfs->vfs_special : "");

 printf(" fsck device: %s\n",

 vfs->vfs_fsckdev ? vfs->vfs_fsckdev : "");

 printf(" fsck pass number: %s\n",

 vfs->vfs_fsckpass ? vfs->vfs_fsckpass : "");

 printf(" mount at boot time: %s\n",

 vfs->vfs_automnt ? vfs->vfs_automnt : "");

 printf(" mount with options: %s\n",

 vfs->vfs_mntopts ? vfs->vfs_mntopts : "");

 }

 /*

 * Print the statvfs structure.

 */

 if (stats != NULL) {

 printf(" statvfs information:\n");

 printf(" maximum name length: %u\n", stats->f_namemax);

 printf(" preferred block size: %u\n", stats->f_bsize);

 printf(" fundam. block size: %u\n", stats->f_frsize);

 printf(" total blocks: %u\n", stats->f_blocks);

 printf(" total blocks free: %u\n", stats->f_bfree);

UNIX Systems Programming for SVR4

468 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 printf(" total blocks avail: %u\n", stats->f_bavail);

 printf(" total files: %u\n", stats->f_files);

 printf(" total files free: %u\n", stats->f_ffree);

 printf(" total files avail: %u\n", stats->f_favail);

 }

 putchar('\n');

 }

 /*

 * All done.

 */

 fclose(mnttabFP);

 fclose(vfstabFP);

 exit(0);

}

/*

 * getmnttabEntry - read an entry from the mount table.

 */

struct mnttab *

getmnttabEntry(FILE *fp)

{

 int n;

 static int line = 0;

 static struct mnttab mnt;

 /*

 * Until we get a good entry...

 */

 for (;;) {

 /*

 * Read the next entry.

 */

 n = getmntent(fp, &mnt);

 line++;

 switch (n) {

 case 0: /* okay */

 return(&mnt);

 case -1: /* end of file */

 return(NULL);

 case MNT_TOOLONG:

 fprintf(stderr, "%s: %d: line too long.\n", mnttabFile, line);

 break;

 case MNT_TOOMANY:

 fprintf(stderr, "%s: %d: too many fields.\n", mnttabFile, line);

 break;

 case MNT_TOOFEW:

 fprintf(stderr, "%s: %d: not enough fields.\n", mnttabFile, line);

 break;

 }

 }

}

/*

 * getvfstabEntry - look up the file system defaults for the file system

 * described by mnt.

Accessing File System Data Structures

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 469

 */

struct vfstab *

getvfstabEntry(FILE *fp, struct mnttab *mnt)

{

 struct vfstab vfsref;

 static struct vfstab vfs;

 /*

 * Have to rewind each time.

 */

 rewind(fp);

 /*

 * Zero out the reference structure.

 */

 memset((char *) &vfsref, 0, sizeof(struct vfstab));

 /*

 * Look for an entry that has the same special device,

 * mount point, and file system type.

 */

 vfsref.vfs_special = mnt->mnt_special;

 vfsref.vfs_mountp = mnt->mnt_mountp;

 vfsref.vfs_fstype = mnt->mnt_fstype;

 /*

 * Look it up.

 */

 if (getvfsany(fp, &vfs, &vfsref) == 0)

 return(&vfs);

 return(NULL);

}

/*

 * getfsInfo - look up information about the file system.

 */

struct statvfs *

getfsInfo(char *filsys)

{

 static struct statvfs stats;

 if (statvfs(filsys, &stats) < 0) {

 perror(filsys);

 return(NULL);

 }

 return(&stats);

}

% fsysinfo

/:

 /etc/mnttab information:

 file system type: ufs

 mounted on device: /dev/dsk/c0t3d0s0

 mounted with options: rw,suid

 mounted since: Mon Dec 5 09:05:28 1994

UNIX Systems Programming for SVR4

470 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 /etc/vfstab information:

 file system type: ufs

 mount device: /dev/dsk/c0t3d0s0

 fsck device: /dev/rdsk/c0t3d0s0

 fsck pass number: 1

 mount at boot time: no

 mount with options:

 statvfs information:

 maximum name length: 255

 preferred block size: 8192

 fundam. block size: 1024

 total blocks: 23063

 total blocks free: 7696

 total blocks avail: 5396

 total files: 13440

 total files free: 10936

 total files avail: 10936

/usr:

 /etc/mnttab information:

 file system type: ufs

 mounted on device: /dev/dsk/c0t3d0s5

 mounted with options: rw,suid

 mounted since: Mon Dec 5 09:05:28 1994

 /etc/vfstab information:

 file system type: ufs

 mount device: /dev/dsk/c0t3d0s5

 fsck device: /dev/rdsk/c0t3d0s5

 fsck pass number: 2

 mount at boot time: no

 mount with options:

 statvfs information:

 maximum name length: 255

 preferred block size: 8192

 fundam. block size: 1024

 total blocks: 129775

 total blocks free: 15669

 total blocks avail: 2699

 total files: 64512

 total files free: 53128

 total files avail: 53128

.

.

.

/vol:

 /etc/mnttab information:

 file system type: nfs

 mounted on device: msw:vold(pid174)

 mounted with options: ignore

 mounted since: Mon Dec 5 09:06:33 1994

Reading File System Data Structures

There are certain operations for which it is preferable to access a file system by reading the disk
directly, rather than going through the operating system kernel. The most common of these is file

Accessing File System Data Structures

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 471

system backups, although there are others. The principal reason for doing so is speed; it is much

faster to read the disk directly. It is also the only way to read a file that contains “holes” and only

obtain the actual disk blocks in use.

Reading the disk directly however, is complex. The program must understand the layout of the file

system data structures on the disk, and must be able to interpret a number of “private” bits of

information correctly. Because it bypasses all security mechanisms (file ownership and permissions
bits), this operation is usually restricted to the super-user (by setting the ownership and permissions

of the block and character special devices for the file system).

Two common on-disk file systems have been developed over the years; the original file system as

invented by Ken Thompson and Dennis Ritchie, and the Berkeley Fast File System, developed by

Kirk McKusick, Bill Joy, Sam Leffler, and Robert Fabry. In SVR4, both file systems are supported:

the (slightly modified) original is called the “System V File System,” and the Fast File System is

called the “UNIX File System.” Solaris 2.x supports only the Fast File System (“UNIX File

System”); support for the “System V File System” has been removed. In this section we will only

discuss the Fast File System, since that is by far the more popular of the two. The discussion applies

for the most part to the older file system as well, although the details are different (generally, the

older file system is somewhat simpler to implement, but it is also substantially less efficient).

NOTE

Silicon Graphics uses their own file system format, the Extended File System (EFS).

Although it is fairly similar to the UFS file system described in this seciton, there are some

differences.

Disk Terminology

In order to understand how the file system is laid out on the disk, it is first necessary to understand
a little bit about how a disk drive works.

A disk drive contains one or more platters, on which data is stored. Each platter is a circular piece

of metal with a hole in the middle, much like a phonograph record or compact disc. The platter is

coated with a substance that responds to magnetic fields, similar to the coating on a video tape. The

platter(s) are mounted on a spindle, with gaps between them. Each platter has two surfaces on which

data can be recorded, but the outer surfaces of the top and bottom platters are usually not used.

There is one read/write head for each platter surface in the disk drive. Usually, the heads are mounted

to a common assembly so that they all move together, although this is not always the case. The

heads move in and out from the edge to the center of the platters; there is no side-to-side motion.

During a read/write operation, the heads are held stationary over a given section of the platters while

the platters rotate at a high speed (several thousand revolutions per minute) underneath them.

The area on one side of a single platter that can be read or written without moving the head is called
a track. Tracks are thus concentric circles, and each time a platter completes a full revolution, an

entire track has passed under the read/write head. There may be anywhere from a few hundred to a

few thousand tracks on each side of each platter. If each track is extended up and down to include

the same track on all the other platters, this is called a cylinder. Thus, there are the same number of

cylinders on the disk drive as there are tracks on a single platter. For a six-platter disk drive, there

UNIX Systems Programming for SVR4

472 FOR PERSONAL, NON-COMMERCIAL USE ONLY

are ten tracks in each cylinder (remember, the outer surfaces of the top and bottom platters are not

used).

Tracks are further subdivided into sectors. Each sector is 512 bytes in size, and is the smallest

addressable unit on a disk drive. Thus, when a file that is fifteen bytes long is stored on the disk, it

actually consumes 512 bytes of space. The term disk block (or just block) is often used as a synonym

for sector, but this term is often ambiguous and should be avoided if possible.

Information is recorded on the tracks of a disk by writing data into one or more sectors. To perform

this operation, the disk must be told the head number, track number, and sector number where the

data is to be stored. When a write (or read) operation begins, the disk must first position the head

assembly over the proper track. It then has to wait for the proper sector to arrive under the read/write

head. Once this occurs, the data transfer can take place. There are thus three factors affecting the

rate at which a disk can transfer data:

1. seek time, the amount of time it takes to position the head assembly over the proper track,

2. latency time, the amount of time it takes for the right sector to arrive under the heads, and

3. transfer rate, the amount of time it takes to transfer the data to or from the disk.

(There are actually other factors affecting the final transfer rate, including the speed of the disk

controller, the speed of the system's input/output bus, and the speed of the system's memory, but

these are outside the control of the disk manufacturer.)

The Super Block

The super block is the most important part of a file system. It contains all of the information

necessary to locate the other file system data structures on the disk. Without the super block to

indicate where these data structures are located, the file system would be a meaningless collection

of bits. Because the super block is so critical to the operation of the file system, it is replicated in
several places on the disk when the file system is first created. Since the critical information in the

super block does not change, it is not necessary to update these copies.

The super block structure is declared in the include file sys/fs/ufs_fs.h:

struct fs {

 struct fs *fs_link; /* linked list of file systems */

 struct fs *fs_rlink; /* used for incore super blocks */

 daddr_t fs_sblkno; /* addr of super-block in filesys */

 daddr_t fs_cblkno; /* offset of cyl-block in filesys */

 daddr_t fs_iblkno; /* offset of inode-blocks in filesys */

 daddr_t fs_dblkno; /* offset of first data after cg */

 long fs_cgoffset; /* cylinder group offset in cylinder */

 long fs_cgmask; /* used to calc mod fs_ntrak */

 time_t fs_time; /* last time written */

 long fs_size; /* number of blocks in fs */

 long fs_dsize; /* number of data blocks in fs */

 long fs_ncg; /* number of cylinder groups */

 long fs_bsize; /* size of basic blocks in fs */

 long fs_fsize; /* size of frag blocks in fs */

 long fs_frag; /* number of frags in a block in fs */

/* these are configuration parameters */

Accessing File System Data Structures

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 473

 long fs_minfree; /* minimum percentage of free blocks */

 long fs_rotdelay; /* num of ms for optimal next block */

 long fs_rps; /* disk revolutions per second */

/* these fields can be computed from the others */

 long fs_bmask; /* "blkoff" calc of blk offsets */

 long fs_fmask; /* "fragoff" calc of frag offsets */

 long fs_bshift; /* "lblkno" calc of logical blkno */

 long fs_fshift; /* "numfrags" calc number of frags */

/* these are configuration parameters */

 long fs_maxcontig; /* max number of contiguous blks */

 long fs_maxbpg; /* max number of blks per cyl group */

/* these fields can be computed from the others */

 long fs_fragshift; /* block to frag shift */

 long fs_fsbtodb; /* fsbtodb and dbtofsb shift constant */

 long fs_sbsize; /* actual size of super block */

 long fs_csmask; /* csum block offset */

 long fs_csshift; /* csum block number */

 long fs_nindir; /* value of NINDIR */

 long fs_inopb; /* value of INOPB */

 long fs_nspf; /* value of NSPF */

/* yet another configuration parameter */

 long fs_optim; /* optimization preference, see below */

/* these fields are derived from the hardware */

 long fs_npsect; /* # sectors/track including spares */

 long fs_interleave; /* hardware sector interleave */

 long fs_trackskew; /* sector 0 skew, per track */

/* a unique id for this filesystem (currently unused and unmaintained) */

/* In 4.3 Tahoe this space is used by fs_headswitch and fs_trkseek */

/* Neither of those fields is used in the Tahoe code right now but */

/* there could be problems if they are. */

 long fs_id[2]; /* file system id */

/* sizes determined by number of cylinder groups and their sizes */

 daddr_t fs_csaddr; /* blk addr of cyl grp summary area */

 long fs_cssize; /* size of cyl grp summary area */

 long fs_cgsize; /* cylinder group size */

/* these fields are derived from the hardware */

 long fs_ntrak; /* tracks per cylinder */

 long fs_nsect; /* sectors per track */

 long fs_spc; /* sectors per cylinder */

/* this comes from the disk driver partitioning */

 long fs_ncyl; /* cylinders in file system */

/* these fields can be computed from the others */

 long fs_cpg; /* cylinders per group */

 long fs_ipg; /* inodes per group */

 long fs_fpg; /* blocks per group * fs_frag */

/* this data must be re-computed after crashes */

 struct csum fs_cstotal; /* cylinder summary information */

/* these fields are cleared at mount time */

 char fs_fmod; /* super block modified flag */

 char fs_clean; /* file system state flag */

 char fs_ronly; /* mounted read-only flag */

 char fs_flags; /* currently unused flag */

 char fs_fsmnt[MAXMNTLEN]; /* name mounted on */

/* these fields retain the current block allocation info */

 long fs_cgrotor; /* last cg searched */

 struct csum *fs_csp[MAXCSBUFS]; /* list of fs_cs info buffers */

 long fs_cpc; /* cyl per cycle in postbl */

 short fs_opostbl[16][8]; /* old rotation block list head */

UNIX Systems Programming for SVR4

474 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 long fs_sparecon[55]; /* reserved for future constants */

#define fs_ntime fs_sparecon[54] /* INCORE only; time in nanoseconds */

 long fs_state; /* file system state time stamp */

 quad fs_qbmask; /* ~fs_bmask - for use with quad size */

 quad fs_qfmask; /* ~fs_fmask - for use with quad size */

 long fs_postblformat; /* format of positional layout tables */

 long fs_nrpos; /* number of rotaional positions */

 long fs_postbloff; /* (short) rotation block list head */

 long fs_rotbloff; /* (u_char) blocks for each rotation */

 long fs_magic; /* magic number */

 u_char fs_space[1]; /* list of blocks for each rotation */

/* actually longer */

};

Most of these fields are not of interest here; they are used by the kernel for implementing the file

system, but have little meaning outside of that context. Some of the fields that are of interest,

however, are:

fs_bsize The file system block size, in bytes. The file system block size is some multiple

of the disk sector size; it is more efficient to access the file system in larger units.
The usual block size for a Fast File System is 8192 bytes (the old file system uses

512 or 1024 bytes). Since the maximum size of any individual file in the Fast File

System is 231 bytes, this limits the minimum file system block size to 4096 bytes.

fs_fsize The file system fragment block size. The larger block sizes introduced in the Fast

File System, although they make input and output more efficient, also waste more

of the disk. For example, if the smallest available block size were 4096 bytes, a

1027-byte file would waste 3069 bytes on the disk. For this reason, the Fast File

System allows a file system block to be divided into two, four, or eight fragments

of equal size. A file will take up some number of full file system blocks, and then

the last little bit of the file will be written into one or more fragments. The other

fragments in the same block may be used by some other file. Thus, with a 4094-
byte file system block size and a 1024-byte fragment size, a 5120-byte file would

consume one file system block (4096 bytes) and one fragment (1024 bytes). The

other three fragments could be used by other files.

fs_frag The number of fragments in a file system block. This is easily computed from the

above two parameters, but is precomputed here for speed.

fs_size The total number of blocks in the file system, in units of the fragment size. This

includes the blocks used to store other bookkeeping information as well as the

blocks actually used for data storage.

fs_dsize The number of file system data blocks in the file system that may be used for data

storage, in units of the fragment size.

fs_ncg The number of cylinder groups in the file system. See the following sections for

a discussion of cylinder groups.

Accessing File System Data Structures

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 475

fs_ipg The number of i-nodes per cylinder group. See the following sections for a

discussion of cylinder groups. This number, when multiplied by fs_ncg (above),
gives the maximum number of distinct files that may be stored in the file system.

fs_fsmnt The name of the mount point this file system is currently mounted on. If the file

system is not currently mounted, this will contain the name of the last mount point

it was mounted on.

I-Nodes

As we explained in Chapter 5, Files and Directories, the i-node structure is used to store all of the

important information about a file, such as its type, owner, group, mode, size, number of links, last

access time, last modification time, and so forth. As we shall see below, the i-node also contains the

addresses of all the disk blocks used to store the contents of the file.

There is one i-node for each file in the file system. The i-nodes are allocated when the file system

is created, which means that the number of files that can be created in the file system is static. If all

the i-nodes are used up with very tiny files, it is possible to have a large quantity of free data blocks

that simply cannot be used (because no more files can be created). However, it is much more
common to run out of data blocks before running out of i-nodes.

There are actually two i-node structures; the one stored on the disk, and the one used in memory by

the kernel. The in-memory one has some extra fields used for bookkeeping purposes. The common

part between the two structures is stored in a structure of type struct icommon; the on-disk i-node

is called a struct dinode. These structures are defined in the include file sys/fs/ufs_inode.h:

struct icommon {

 o_mode_t ic_smode; /* 0: mode and type of file */

 short ic_nlink; /* 2: number of links to file */

 o_uid_t ic_suid; /* 4: owner's user id */

 o_gid_t ic_sgid; /* 6: owner's group id */

 quad ic_size; /* 8: number of bytes in file */

#ifdef _KERNEL

 struct timeval ic_atime; /* 16: time last accessed */

 struct timeval ic_mtime; /* 24: time last modified */

 struct timeval ic_ctime; /* 32: last time inode changed */

#else

 time_t ic_atime; /* 16: time last accessed */

 long ic_atspare;

 time_t ic_mtime; /* 24: time last modified */

 long ic_mtspare;

 time_t ic_ctime; /* 32: last time inode changed */

 long ic_ctspare;

#endif

 daddr_t ic_db[NDADDR]; /* 40: disk block addresses */

 daddr_t ic_ib[NIADDR]; /* 88: indirect blocks */

 long ic_flags; /* 100: status, currently unused */

 long ic_blocks; /* 104: blocks actually held */

 long ic_gen; /* 108: generation number */

 long ic_mode_reserv; /* 112: reserved */

 uid_t ic_uid; /* 116: long EFT version of uid */

 gid_t ic_gid; /* 120: long EFT version of gid */

UNIX Systems Programming for SVR4

476 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 ulong ic_oeftflag; /* 124: reserved */

};

struct dinode {

 union {

 struct icommon di_icom;

 char di_size[128];

 } di_un;

};

#define di_ic di_un.di_icom

#define di_mode di_ic.ic_smode

#define di_nlink di_ic.ic_nlink

#define di_uid di_ic.ic_uid

#define di_gid di_ic.ic_gid

#define di_smode di_ic.ic_smode

#define di_suid di_ic.ic_suid

#define di_sgid di_ic.ic_sgid

#if defined(vax) || defined(i386)

#define di_size di_ic.ic_size.val[0]

#endif

#if defined(mc68000) || defined(sparc) || defined(u3b2) || defined(u3b15)

#define di_size di_ic.ic_size.val[1]

#endif

#define di_db di_ic.ic_db

#define di_ib di_ic.ic_ib

#define di_atime di_ic.ic_atime

#define di_mtime di_ic.ic_mtime

#define di_ctime di_ic.ic_ctime

#define di_ordev di_ic.ic_db[0]

#define di_blocks di_ic.ic_blocks

#define di_gen di_ic.ic_gen

The di_mode, di_nlink, di_uid, di_gid, di_size, di_atime, di_mtime, and di_ctime

elements of this structure have the obvious meanings. These are copied to the struct stat

structure when the stat or fstat functions are called.

The di_db array stores the addresses of the first NDADDR data blocks in the file. These are called

direct blocks, because their addresses are stored directly in the i-node. The value of NDADDR can

vary, but is usually 12. The di_ib array stores NIADDR levels of indirect blocks. As with NDADDR,

the value of NIADDR can vary, but is almost always 3.

The first element of the di_ib array contains the address of a singly-indirect block. This block is

used to store the addresses of more direct blocks. Thus, for a file system block size of 8192, the first

level of indirection allows another 2048 data blocks to be addressed.

The second element of the di_ib array contains the address of a doubly-indirect block. This block

is used to store the addresses of more singly-indirect blocks. Thus, for our 8192-byte block size, the

second level of indirection allows another 2048 singly-indirect blocks to be addressed, which in turn
means that over four million additional data blocks can be addressed.

Accessing File System Data Structures

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 477

The third element of the di_ib array, of course, contains the address of a triply indirect block. This
block is used to store the addresses of more doubly-indirect blocks. A triply-indirect block allows

over eight trillion more data blocks to be addressed.

Cylinder Groups

In the original UNIX file system, the i-node structures were stored on the disk immediately

following the super block, and then the data blocks followed the i-nodes. This is a simple layout,

but results in a lot of back-and-forth head motion when accessing files. The Fast File System solves

this problem by dividing the disk into several groups of cylinders called, appropriately, cylinder

groups.

Each cylinder group contains a structure defining bookkeeping information for the group, a

redundant copy of the super block, some i-node structures, and data blocks. The cylinder group

bookkeeping information includes a list of which inodes in the group are in use, and which disk

blocks are not in use. The cylinder group concept allows a file's data blocks to be laid out as much

as possible in a contiguous fashion, minimizing the rotational latency from one block to the next.

The cylinder group information is stored in a structure of type struct cg, defined in the include
file sys/fs/ufs_fs.h:

struct cg {

 struct cg *cg_link; /* linked list of cyl groups */

 long cg_magic; /* magic number */

 time_t cg_time; /* time last written */

 long cg_cgx; /* we are the cgx'th cylinder group */

 short cg_ncyl; /* number of cyl's this cg */

 short cg_niblk; /* number of inode blocks this cg */

 long cg_ndblk; /* number of data blocks this cg */

 struct csum cg_cs; /* cylinder summary information */

 long cg_rotor; /* position of last used block */

 long cg_frotor; /* position of last used frag */

 long cg_irotor; /* position of last used inode */

 long cg_frsum[MAXFRAG]; /* counts of available frags */

 long cg_btotoff; /* (long) block totals per cylinder */

 long cg_boff; /* (short) free block positions */

 long cg_iusedoff; /* (char) used inode map */

 long cg_freeoff; /* (u_char) free block map */

 long cg_nextfreeoff; /* (u_char) next available space */

 long cg_sparecon[16]; /* reserved for future use */

 u_char cg_space[1]; /* space for cylinder group maps */

/* actually longer */

};

Putting it All Together

Example B-2 shows a program that reads file system data structures directly from the disk to

calculate the disk usage for each user. Running this program requires the ability to read the

character-special device for the file system, which usually means it must be run as the super-user.

This example will not work on IRIX 5.x, which uses the EFS file system.

UNIX Systems Programming for SVR4

478 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Example B-2: diskuse

#include <sys/param.h>

#include <sys/time.h>

#include <sys/vnode.h>

#include <sys/fs/ufs_inode.h>

#include <sys/fs/ufs_fs.h>

#include <unistd.h>

#include <limits.h>

#include <fcntl.h>

#include <stdio.h>

#include <sys/vfstab.h>

#include <pwd.h>

#define sblock sb_un.u_sblock

/*

 * We need a union to hold the super block, because it takes up an

 * entire disk block (the smallest unit in which you can read), but

 * the structure is not actually that big.

 */

union {

 struct fs u_sblock;

 char u_dummy[SBSIZE];

} sb_un;

/*

 * Keep track of usage with this. We need to save the uid so that

 * we can sort the array by number of blocks used.

 */

struct usage {

 int u_uid;

 size_t u_blocks;

} usageByUid[UID_MAX];

/*

 * Name of the file system defaults file.

 */

char *vfstabFile = "/etc/vfstab";

int diskuse(char *);

int bread(int, daddr_t, char *, int);

int compare(const void *, const void *);

int

main(int argc, char **argv)

{

 int n;

 FILE *fp;

 char *fsname;

 struct passwd *pwd;

 struct vfstab vfstab;

 /*

 * Open vfstab.

 */

 if ((fp = fopen(vfstabFile, "r")) == NULL) {

Accessing File System Data Structures

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 479

 perror(vfstabFile);

 exit(1);

 }

 /*

 * For each file system...

 */

 while (--argc) {

 fsname = *++argv;

 /*

 * Rewind vfstab.

 */

 rewind(fp);

 /*

 * Look up the file system so we can get the

 * character device it's on.

 */

 if (getvfsfile(fp, &vfstab, fsname) != 0) {

 fprintf(stderr, "%s: not found in %s.\n", fsname, vfstabFile);

 continue;

 }

 /*

 * Zero out our counters.

 */

 memset(usageByUid, 0, UID_MAX * sizeof(struct usage));

 /*

 * Put the uids in the counters. The array is

 * initially in uid order, but later we sort it

 * by blocks.

 */

 for (n = 0; n < UID_MAX; n++)

 usageByUid[n].u_uid = n;

 /*

 * Calculate disk usage.

 */

 if (diskuse(vfstab.vfs_fsckdev) < 0)

 continue;

 /*

 * Sort the usage array by blocks.

 */

 qsort(usageByUid, UID_MAX, sizeof(struct usage), compare);

 /*

 * Print a header.

 */

 printf("%s (%s):\n", vfstab.vfs_mountp, vfstab.vfs_fsckdev);

 /*

 * Print the usage information.

 */

 for (n = 0; n < UID_MAX; n++) {

 /*

UNIX Systems Programming for SVR4

480 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 * Skip users with no usage.

 */

 if (usageByUid[n].u_blocks == 0)

 continue;

 /*

 * Look up the login name. If not found,

 * use the user-id.

 */

 if ((pwd = getpwuid(usageByUid[n].u_uid)) != NULL)

 printf("\t%-10s", pwd->pw_name);

 else

 printf("\t#%-9d", usageByUid[n].u_uid);

 /*

 * Print the usage. The number we have is in

 * 512-byte (actually DEV_BSIZE) blocks; we

 * convert this to kbytes.

 */

 printf("\t%8d\n", usageByUid[n].u_blocks / 2);

 }

 putchar('\n');

 }

 fclose(fp);

 exit(0);

}

/*

 * diskuse - tabulate disk usage for the named device.

 */

int

diskuse(char *device)

{

 ino_t ino;

 daddr_t iblk;

 int i, fd, nfiles;

 struct dinode itab[MAXBSIZE / sizeof(struct dinode)];

 /*

 * Open the device for reading.

 */

 if ((fd = open(device, O_RDONLY)) < 0) {

 perror(device);

 return(-1);

 }

 /*

 * Sync everything out to disk.

 */

 (void) sync();

 /*

 * Read in the superblock.

 */

 if (bread(fd, SBLOCK, (char *) &sblock, SBSIZE) < 0) {

 (void) close(fd);

Accessing File System Data Structures

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 481

 return(-1);

 }

 /*

 * The number of files (number of inodes) is equal to

 * the number of inodes per cylinder group times the

 * number of cylinder groups.

 */

 nfiles = sblock.fs_ipg * sblock.fs_ncg;

 for (ino = 0; ino < nfiles;) {

 /*

 * Read in the inode table for this cylinder group. The

 * fsbtodb macro converts a file system block number to

 * a disk block number. The itod macro converts an inode

 * number to its file system block number.

 */

 iblk = fsbtodb(&sblock, itod(&sblock, ino));

 if (bread(fd, iblk, (char *) itab, sblock.fs_bsize) < 0) {

 (void) close(fd);

 return(-1);

 }

 /*

 * For each inode...

 */

 for (i = 0; i < INOPB(&sblock) && ino < nfiles; i++, ino++) {

 /*

 * Inodes 0 and 1 are not used.

 */

 if (ino < UFSROOTINO)

 continue;

 /*

 * Skip unallocated inodes.

 */

 if ((itab[i].di_mode & IFMT) == 0)

 continue;

 /*

 * Count the blocks as used.

 */

 usageByUid[itab[i].di_uid].u_blocks += itab[i].di_blocks;

 }

 }

 return(0);

}

/*

 * bread - read count bytes into buf, starting at disk block blockno.

 */

int

bread(int fd, daddr_t blockno, char *buf, int count)

{

 /*

 * Seek to the right place.

UNIX Systems Programming for SVR4

482 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 */

 if (lseek(fd, (long) blockno * DEV_BSIZE, SEEK_SET) < 0) {

 perror("lseek");

 return(-1);

 }

 /*

 * Read in the data.

 */

 if ((count = read(fd, buf, count)) < 0) {

 perror("read");

 return(-1);

 }

 return(count);

}

/*

 * compare - compare two usage structures for qsort.

 */

int

compare(const void *a, const void *b)

{

 struct usage *aa, *bb;

 aa = (struct usage *) a;

 bb = (struct usage *) b;

 return(bb->u_blocks - aa->u_blocks);

}

diskuse /usr

/usr (/dev/rdsk/c0t3d0s5):

 root 58148

 bin 52888

 lp 2289

 uucp 779

 sys 1

 adm 1

The program begins by using the getvfsfile function to determine the character-special device
for the file system. It then opens this device for reading. The first thing read from the disk is the

super block. This is used to determine the number of i-node structures in the file system, which is

computed by multiplying the number of cylinder groups by the number of i-nodes per cylinder

group. The program then enters a loop, reading through all the groups of i-nodes. On each pass

through the outer loop, a block of i-nodes is read in from the disk. The inner loop iterates over the

block of i-nodes, and for each allocated i-node, records the number of blocks used by that file.

This program does not read the data blocks associated with each file, since the information it needs
is recorded in the i-node itself. To read the data blocks, it is necessary to first read the direct blocks,

and then the indirect blocks. This can be done in a recursive function, as shown by the code in

Example B-3.

This example will not work on IRIX 5.x, which uses the EFS file system.

Accessing File System Data Structures

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 483

Example B-3: readblocks.c

#include <sys/param.h>

#include <sys/time.h>

#include <sys/vnode.h>

#include <sys/fs/ufs_inode.h>

#include <sys/fs/ufs_fs.h>

#include <unistd.h>

int bread(int, daddr_t, char *, int);

int readDataBlocks(int, struct fs *, struct dinode *, int (*)(char *, int));

int readIndirect(int, struct fs *, daddr_t, int, int *, int (*)(char *, int));

int

readDataBlocks(int fd, struct fs *sblock, struct dinode *dp,

 int (*fn)(char *, int))

{

 int i, n, count;

 char block[MAXBSIZE];

 /*

 * Read the direct blocks. There are NDADDR of them.

 */

 count = dp->di_size;

 for (i = 0; i < NDADDR && count > 0; i++) {

 /*

 * Read in the block from disk.

 */

 n = min(count, sblock->fs_bsize);

 if (bread(fd, fsbtodb(sblock, dp->di_db[i]), block, n) < 0)

 return(-1);

 count -= n;

 /*

 * Call the user's function on the block.

 */

 (*fn)(block, n);

 }

 /*

 * Now read the indirect blocks. There are NIADDR of them.

 * Recall that the first address is a singly indirect block,

 * the second is a doubly indirect block, and so on.

 */

 for (i = 0; i < NIADDR && count > 0; i++) {

 if (readIndirect(fd, sblock, dp->di_ib[i], i, &count, fn) < 0)

 return(-1);

 }

 return(0);

}

int

readIndirect(int fd, struct fs *sblock, daddr_t blkno, int level, int *count,

UNIX Systems Programming for SVR4

484 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 int (*fn)(char *, int))

{

 int i, n;

 char block[MAXBSIZE];

 daddr_t idblk[MAXBSIZE / sizeof(daddr_t)];

 /*

 * Read the block in from disk.

 */

 if (blkno)

 bread(fd, fsbtodb(sblock, blkno), (char *) idblk, sblock->fs_bsize);

 else

 memset(idblk, 0, sizeof(idblk));

 /*

 * If level is zero, then this block contains disk block

 * addresses (i.e., it's singly indirect). If level is

 * non-zero, then this block contains addresses of more

 * indirect blocks.

 */

 if (level == 0) {

 /*

 * Read the disk blocks. There are NINDIR

 * of them.

 */

 for (i = 0; i < NINDIR(sblock) && *count > 0; i++) {

 n = min(*count, sblock->fs_bsize);

 if (bread(fd, fsbtodb(sblock, idblk[i]), block, n) < 0)

 return(-1);

 *count -= n;

 /*

 * Call the user's function.

 */

 (*fn)(block, n);

 }

 }

 else {

 /*

 * Decrement the level.

 */

 level--;

 /*

 * Handle the next level of indirection by calling

 * ourselves recursively with each address in this

 * block.

 */

 for (i = 0; i < NINDIR(sblock); i++) {

 n = readIndirect(fd, sblock, idblk[i], level, count, fn);

 if (n < 0)

 return(-1);

 }

 }

Accessing File System Data Structures

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 485

 return(0);

}

/*

 * bread - read count bytes into buf, starting at disk block blockno.

 */

int

bread(int fd, daddr_t blockno, char *buf, int count)

{

 /*

 * Seek to the right place.

 */

 if (lseek(fd, (long) blockno * DEV_BSIZE, SEEK_SET) < 0) {

 perror("lseek");

 return(-1);

 }

 /*

 * Read in the data.

 */

 if ((count = read(fd, buf, count)) < 0) {

 perror("read");

 return(-1);

 }

 return(count);

}

Summary

Reading a file system's data structures directly off the disk is not immensely difficult, but is hindered

by the fact that there is very little documentation available on the structures used to implement the

file system. A number of the fields in these structures are stored in various units (e.g., file system

blocks), and must be converted to other units (e.g., disk blocks) to be used. The units used, as well

as the formulas to convert them, are not generally documented.

There is nothing inherently “wrong” with reading a file system in this way; indeed, sometimes it is

necessary. However, it is relatively non-portable, and also requires privileged processes. Both of

these concerns must be addressed when making any decision about going through the kernel or

reading the file system directly.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 487

Appendix C
The /proc File System

In older versions of UNIX, access to process data such as that obtained by the ps command is

obtained by reading kernel memory directly. This process, aside from being very complex, requires

super-user permissions and is inherently non-portable. To get around these problems, and to provide

a general interface to process' memory images, SVR4 (as well as some other newer versions) offer

the /proc file system.

NOTE

Because it does not provide the /proc file system, the information in this appendix does not

apply to HP-UX 10.x.

The /proc file system contains one file for each process currently running on the system; the name

of the file is the same as the process-id for the process. The owner of the file is set to the process'

real user-id, and the permission bits are set such that the file is readable and writable only by its

owner. The super-user, of course, may open, read, and write any file (process). For security reasons,

an open of a file in /proc fails unless both the user-id and group-id of the caller match those of the

process and the process' object file is readable by the caller. Files corresponding to set-user-id and

set-group-id processes may be opened only by the super-user.

The interface to the /proc file system is through the normal file system system calls: open, close,

read, write, and ioctl. An open for reading and writing enables control of the process; this is
used by debuggers and the like. An open for reading only allows inspection but not control of the

process; this is used by ps and so forth. The control of processes as performed by debuggers is

beyond the scope of this book; we will discuss only the features for process inspection here.

Information about a process is obtained via the ioctl function:

#include <sys/types.h>

#include <sys/signal.h>

#include <sys/fault.h>

#include <sys/syscall.h>

#include <sys/procfs.h>

int ioctl(int fd, int code, void *ptr);

UNIX Systems Programming for SVR4

488 FOR PERSONAL, NON-COMMERCIAL USE ONLY

The fd parameter is a file descriptor for the open process, code is a code describing the operation

to be performed (see below), and ptr is a pointer to a structure in which to store results. The

structure type varies depending on the value of code. The ioctl function returns 0 on success; if

it fails it returns –1 and stores an error indication in errno.

Obtaining Process Status

The PIOCSTATUS code returns status information for the open process, and places it into a structure

of type prstatus_t, which looks like this in Solaris 2.x (it's slightly different in IRIX 5.x):

typedef struct prstatus {

 long pr_flags; /* Flags (see below) */

 short pr_why; /* Reason for process stop (if stopped) */

 short pr_what; /* More detailed reason */

 siginfo_t pr_info; /* Info associated with signal or fault */

 short pr_cursig; /* Current signal */

 u_short pr_nlwp; /* Number of lwps in the process */

 sigset_t pr_sigpend; /* Set of signals pending to the process */

 sigset_t pr_sighold; /* Set of signals held (blocked) by the lwp */

 struct sigaltstack pr_altstack; /* Alternate signal stack info */

 struct sigaction pr_action; /* Signal action for current signal */

 pid_t pr_pid; /* Process id */

 pid_t pr_ppid; /* Parent process id */

 pid_t pr_pgrp; /* Process group id */

 pid_t pr_sid; /* Session id */

 timestruc_t pr_utime; /* Process user cpu time */

 timestruc_t pr_stime; /* Process system cpu time */

 timestruc_t pr_cutime; /* Sum of children's user times */

 timestruc_t pr_cstime; /* Sum of children's system times */

 char pr_clname[PRCLSZ]; /* Scheduling class name */

 short pr_syscall; /* System call number (if in syscall) */

 short pr_nsysarg; /* Number of arguments to this syscall */

 long pr_sysarg[PRSYSARGS]; /* Arguments to this syscall */

 id_t pr_who; /* Specific lwp identifier */

 sigset_t pr_lwppend; /* Set of signals pending to the lwp */

 struct ucontext *pr_oldcontext; /* Address of previous ucontext */

 caddr_t pr_brkbase; /* Address of the process heap */

 u_long pr_brksize; /* Size of the process heap, in bytes */

 caddr_t pr_stkbase; /* Address of the process stack */

 u_long pr_stksize; /* Size of the process stack, in bytes */

 short pr_processor; /* processor which last ran this LWP */

 short pr_bind; /* processor LWP bound to or PBIND_NONE */

 long pr_instr; /* Current instruction */

 prgregset_t pr_reg; /* General registers */

 prstatus_t;

Some of the more interesting fields of this structure are:

pr_pid The process' process-id.

pr_ppid The process' parent process-id.

The /proc File System

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 489

pr_pgrp The process' process-group-id.

pr_sid The process' session-id.

pr_utime The amount of user time the process has accumulated. User time is accumulated

when the CPU is executing the process' program code. The timestruc_t

structure is similar to a struct timeval, except that it contains elements for
seconds and nanoseconds (as opposed to seconds and microseconds). The

elements of the structure are tv_sec and tv_nsec, respectively.

pr_stime The amount of system time the process has accumulated. System time is

accumulated when the CPU is executing operating system kernel code on behalf

of the process; in other words, this is the amount of time the process has spent

doing system calls.

pr_cutime The sum of the user time accumulated by all of the process' children. This

number includes only those processes that have exited and been waited on.

pr_cstime The sum of the system time accumulated by all of the process' children. This

number includes only those processes that have exited and been waited on.

pr_brksize The size in bytes of the process' break, the amount of memory that has been

allocated via the brk and sbrk system calls. Generally, this number gives the

amount of memory the process has dynamically allocated using malloc and its
associated routines.

pr_stksize The size in bytes of the process' stack. The stack grows automatically as more
space is needed.

Obtaining Process Information

The PIOCPSINFO code returns miscellaneous information about the process such as that used by

the ps command, and stores it in a structure of type prpsinfo_t, which looks like this in Solaris
2.x (it's slightly different in IRIX 5.x):

typedef struct prpsinfo {

 char pr_state; /* numeric process state (see pr_sname) */

 char pr_sname; /* printable character representing pr_state */

 char pr_zomb; /* !=0: process terminated but not waited for */

 char pr_nice; /* nice for cpu usage */

 u_long pr_flag; /* process flags */

 uid_t pr_uid; /* real user id */

 gid_t pr_gid; /* real group id */

 pid_t pr_pid; /* unique process id */

 pid_t pr_ppid; /* process id of parent */

 pid_t pr_pgrp; /* pid of process group leader */

 pid_t pr_sid; /* session id */

 caddr_t pr_addr; /* physical address of process */

 long pr_size; /* size of process image in pages */

 long pr_rssize; /* resident set size in pages */

UNIX Systems Programming for SVR4

490 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 caddr_t pr_wchan; /* wait addr for sleeping process */

 timestruc_t pr_start; /* process start time, sec+nsec since epoch */

 timestruc_t pr_time; /* usr+sys cpu time for this process */

 long pr_pri; /* priority, high value is high priority */

 char pr_oldpri; /* pre-SVR4, low value is high priority */

 char pr_cpu; /* pre-SVR4, cpu usage for scheduling */

 o_dev_t pr_ottydev; /* short tty device number */

 dev_t pr_lttydev; /* controlling tty device (PRNODEV if none) */

 char pr_clname[PRCLSZ]; /* scheduling class name */

 char pr_fname[PRFNSZ]; /* last component of execed pathname */

 char pr_psargs[PRARGSZ]; /* initial characters of arg list */

 short pr_syscall; /* system call number (if in syscall) */

 short pr_fill;

 timestruc_t pr_ctime; /* usr+sys cpu time for reaped children */

 u_long pr_bysize; /* size of process image in bytes */

 u_long pr_byrssize; /* resident set size in bytes */

 int pr_argc; /* initial argument count */

 char **pr_argv; /* initial argument vector */

 char **pr_envp; /* initial environment vector */

 int pr_wstat; /* if zombie, the wait() status */

 long pr_filler[11]; /* for future expansion */

} prpsinfo_t;

Some of the more interesting fields of this structure are:

pr_sname A character representation of the process' current state. The possible values

are:

I Idle; the process is being created.

O The process is currently running on a processor.

R Runnable; the process is on the run queue.

S Sleeping; the process is waiting for an event to complete (such as

device input/output).

T Stopped (traced); the process has been stopped by a signal or

because another process is tracing it.

X SXBRK status; the process is waiting for more primary memory.

Z Zombie; the process has exited, but its parent has not waited for it

yet.

pr_nice The process' nice value (see Chapter 11, Processes).

pr_uid The process' user-id.

pr_gid The process' group-id.

pr_pid The process' process-id.

pr_ppid The process' parent process-id.

pr_pgrp The process' process-group-id.

The /proc File System

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 491

pr_sid The process' session-id.

pr_start The time the process started; this can be printed with the ctime function,
among others.

pr_time The sum of the process' user and system times.

pr_ctime The sum of the process' child process' user and system times. This value only

includes processes that have exited and been waited on.

pr_pri The process' scheduling priority; higher values are better than lower ones.

pr_lttydev The major/minor device numbers of the controlling terminal, or PRNODEV if
there isn't one.

pr_fname The last component of the exec'd path name, i.e., the name of the command.

pr_psargs The first several bytes of the command and its argument list.

pr_bysize The size of the process (text segment, data segment, and stack) in bytes.

pr_byrssize The size of the process' resident set size, the amount of memory the process

is actually taking up (which, because of demand paging, is usually much

smaller than its total size).

Obtaining Process Resource Usage

The PIOCUSAGE code obtains the process' resource usage information and stores it in a structure of

type prusage_t:

typedef struct prusage {

 id_t pr_lwpid; /* lwp id. 0: process or defunct */

 u_long pr_count; /* number of contributing lwps */

 timestruc_t pr_tstamp; /* current time stamp */

 timestruc_t pr_create; /* process/lwp creation time stamp */

 timestruc_t pr_term; /* process/lwp termination time stamp */

 timestruc_t pr_rtime; /* total lwp real (elapsed) time */

 timestruc_t pr_utime; /* user level CPU time */

 timestruc_t pr_stime; /* system call CPU time */

 timestruc_t pr_ttime; /* other system trap CPU time */

 timestruc_t pr_tftime; /* text page fault sleep time */

 timestruc_t pr_dftime; /* data page fault sleep time */

 timestruc_t pr_kftime; /* kernel page fault sleep time */

 timestruc_t pr_ltime; /* user lock wait sleep time */

 timestruc_t pr_slptime; /* all other sleep time */

 timestruc_t pr_wtime; /* wait-cpu (latency) time */

 timestruc_t pr_stoptime; /* stopped time */

 timestruc_t filltime[6]; /* filler for future expansion */

 u_long pr_minf; /* minor page faults */

 u_long pr_majf; /* major page faults */

 u_long pr_nswap; /* swaps */

 u_long pr_inblk; /* input blocks */

 u_long pr_oublk; /* output blocks */

UNIX Systems Programming for SVR4

492 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 u_long pr_msnd; /* messages sent */

 u_long pr_mrcv; /* messages received */

 u_long pr_sigs; /* signals received */

 u_long pr_vctx; /* voluntary context switches */

 u_long pr_ictx; /* involuntary context switches */

 u_long pr_sysc; /* system calls */

 u_long pr_ioch; /* chars read and written */

 u_long filler[10]; /* filler for future expansion */

 prusage_t;

Some of the more interesting fields of this structure are:

pr_rtime The elapsed time since the process was created.

pr_utime The amount of user time used by the process.

pr_stime The amount of time spent by the process in system calls.

pr_slptime The amount of time the process has spent sleeping.

pr_stoptime The amount of time the process has spent in the stopped state.

pr_minf The number of minor page faults incurred by the process. A minor page fault

is one that can be serviced without any I/O activity by reclaiming the page

from the list of pages awaiting reallocation.

pr_majf The number of major page faults incurred by the process. A major page fault

is one that requires I/O activity to service.

pr_nswap The number of times the process has been swapped out of main memory.

pr_inblk The number of blocks input for the process by the file system.

pr_oublk The number of blocks output for the process by the file system.

pr_sigs The number of signals received by the process.

pr_sysc The number of system calls made by the process.

pr_ioch The number of characters input and output by the process to terminal-like

devices.

An Example

Example C-1 shows a program that uses the PIOCPSINFO and PIOCUSAGE codes to obtain
information about the processes named on the command line. For each process, it prints out several

of the fields in these structures.

Example C-1: procinfo

#include <sys/param.h>

#include <sys/signal.h>

The /proc File System

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 493

#include <sys/fault.h>

#include <sys/syscall.h>

#include <sys/procfs.h>

#include <sys/stat.h>

#include <dirent.h>

#include <fcntl.h>

#include <stdio.h>

char *procFileSystem = "/proc";

void printTime(char *, time_t);

void printProcInfo(prpsinfo_t *, prusage_t *);

int

main(int argc, char **argv)

{

 int fd;

 prusage_t prusage;

 prpsinfo_t prpsinfo;

 char procname[BUFSIZ], tmp[BUFSIZ];

 /*

 * For each argument...

 */

 while (--argc) {

 /*

 * Create the file name in the proc file system.

 */

 sprintf(procname, "%s/%s", procFileSystem, *++argv);

 /*

 * Open the file.

 */

 if ((fd = open(procname, O_RDONLY)) < 0) {

 perror(procname);

 continue;

 }

 /*

 * Get the "ps" information.

 */

 if (ioctl(fd, PIOCPSINFO, &prpsinfo) < 0) {

 sprintf(tmp, "%s: PIOCPSINFO", procname);

 perror(tmp);

 close(fd);

 continue;

 }

 /*

 * Get the resource usage information.

 */

 if (ioctl(fd, PIOCUSAGE, &prusage) < 0) {

 sprintf(tmp, "%s: PIOCPRUSAGE", procname);

 perror(tmp);

 close(fd);

 continue;

 }

UNIX Systems Programming for SVR4

494 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 /*

 * Print the information.

 */

 printProcInfo(&prpsinfo, &prusage);

 close(fd);

 }

 exit(0);

}

/*

 * printProcInfo - print "interesting" fields of the prpsinfo and prusage

 * structures.

 */

void

printProcInfo(prpsinfo_t *prpsinfo, prusage_t *prusage)

{

 printf("Command: %s\n", prpsinfo->pr_psargs);

 printf("Started at: %s", ctime(&prpsinfo->pr_start.tv_sec));

 printf("Process-ID: %d Parent Process-ID: %d\n", prpsinfo->pr_pid,

 prpsinfo->pr_ppid);

 printf("Process Group Leader: %d Session-ID: %d\n", prpsinfo->pr_pgrp,

 prpsinfo->pr_sid);

 printf("User-ID: %d Group-ID: %d ", prpsinfo->pr_uid, prpsinfo->pr_gid);

 printf("Priority: %d Nice: %d\n", prpsinfo->pr_pri, prpsinfo->pr_nice);

 printf("Process Size: %d KB Resident Set Size: %d KB\n",

 prpsinfo->pr_bysize / 1024, prpsinfo->pr_byrssize / 1024);

 printTime("Process Elapsed Time", prusage->pr_rtime.tv_sec);

 printTime(" Process User CPU Time", prusage->pr_utime.tv_sec);

 putchar('\n');

 printTime("Process System Call Time", prusage->pr_stime.tv_sec);

 printTime(" Process System Trap Time", prusage->pr_ttime.tv_sec);

 putchar('\n');

 printTime("Process Page Fault Time", prusage->pr_tftime.tv_sec +

 prusage->pr_dftime.tv_sec + prusage->pr_kftime.tv_sec);

 printTime(" Process Sleep Time", prusage->pr_ltime.tv_sec +

 prusage->pr_slptime.tv_sec + prusage->pr_wtime.tv_sec);

 putchar('\n');

 printTime("Process Stopped Time", prusage->pr_stoptime.tv_sec);

 putchar('\n');

 printf("Major Page Faults: %d Minor Page Faults: %d Swaps: %d\n",

 prusage->pr_majf, prusage->pr_minf, prusage->pr_nswap);

 printf("Input Blocks: %d Output Blocks: %d Character I/O: %d\n",

 prusage->pr_inblk, prusage->pr_oublk, prusage->pr_ioch);

 printf("System Calls: %d Signals Received: %d\n", prusage->pr_sysc,

 prusage->pr_sigs);

 putchar('\n');

}

/*

 * printTime - convert a number of seconds to days, hours, minutes, and

 * seconds, and print it out.

 */

void

printTime(char *str, time_t secs)

{

 int d, h, m, s;

The /proc File System

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 495

 s = secs;

 /*

 * Simple conversion to days, hours, minutes, seconds.

 */

 d = s / 86400;

 s = s % 86400;

 h = s / 3600;

 s = s % 3600;

 m = s / 60;

 s = s % 60;

 /*

 * Print the label.

 */

 printf("%s: ", str);

 /*

 * Print the days.

 */

 if (d)

 printf("%dd", d);

 /*

 * Print the hours, minutes, and seconds.

 */

 printf("%02d:%02d:%02d", h, m, s);

}

% procinfo 12567

Command: /usr/local/bin/emacs appC.sgml

Started at: Wed Mar 29 14:13:34 1995

Process-ID: 12567 Parent Process-ID: 262

Process Group Leader: 12567 Session-ID: 262

User-ID: 40 Group-ID: 1 Priority: 59 Nice: 20

Process Size: 4028 KB Resident Set Size: 700 KB

Process Elapsed Time: 01:17:16 Process User CPU Time: 00:01:35

Process System Call Time: 00:00:25 Process System Trap Time: 00:00:00

Process Page Fault Time: 00:00:02 Process Sleep Time: 01:15:11

Process Stopped Time: 00:00:00

Major Page Faults: 154 Minor Page Faults: 0 Swaps: 0

Input Blocks: 17 Output Blocks: 107 Character I/O: 2004141

System Calls: 150222 Signals Received: 4

Without super-user privileges, this program can obtain information about any process owned by its

caller that is not running with set-user-id or set-group-id permissions.

Summary

This appendix has only touched on the capabilities available with the /proc file system. Debuggers

and similar programs can make use of a number of other features to control the execution of a

process, examine its memory, and even change its memory. The complete set of available commands

is described in the proc (4) manual page.

UNIX Systems Programming for SVR4

496 FOR PERSONAL, NON-COMMERCIAL USE ONLY

The /proc file system is a substantial improvement over the old method of obtaining process

information, reading kernel memory and the swap area. Not only is it simpler for the programmer

to implement, it is also portable between different versions of the operating system that support

/proc.

.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 497

Appendix D
Pseudo-Terminals

There are times when it's useful to be able to execute a program on a terminal, but to have the input

and output of the program connected to a program, rather than to the keyboard and screen. For

example, some programs, such as passwd, insist on reading from the terminal—it is impossible to

talk to programs like this via a pipe. Programs like rlogin and telnet need to set up a “terminal” on

the remote host so that things like text editors will work, but their input and output must be

connected, via the network, to the user's keyboard and screen. There are also times when it is
convenient to be able to record all the input and output of a session; this is what the script utility

does.

Most modern versions of UNIX provide a facility called pseudo-terminals that can be used for just

these purposes. A pseudo-terminal is a software construct that acts as if it were a terminal. A

program running on a pseudo-terminal has no way of knowing whether it is attached to a real

terminal or a pseudo-terminal (other than looking at the name of the device, anyway).

A pseudo-terminal is implemented as two devices, called the master and the slave. The master is

opened by the controlling process (the one that wants to be the “keyboard” and ”screen”). The slave

is opened by some process as its standard input and output; the process will see the slave as a

terminal device. When the controlling process writes to the master device, the data will appear as

input on the slave device, where the process there will see it as if it were typed on the keyboard.
When the process running on the slave device writes to the “screen,” it will appear as input that the

controlling process may read from the master device.

BSD Pseudo-Terminals

On BSD systems, where pseudo-terminals were first implemented, master pseudo-terminals have

device names like /dev/ptyXX, and slave pseudo-terminals have names like /dev/ttyXX. The

procedure for opening a pseudo-terminal is to cycle through all the possible masters, trying to open

one. If the open fails, the device is already in use. Once the master side is open, the slave side can
also be opened. The code looks something like this:

char *s, *t;

int master, slave;

UNIX Systems Programming for SVR4

498 FOR PERSONAL, NON-COMMERCIAL USE ONLY

char mastername[32], slavename[32];

.

.

.

for (s = "pqrs"; *s != '\0'; s++) {

 for (t = "0123456789abcdef"; *t != '\0'; t++) {

 sprintf(mastername, "/dev/pty%c%c", *s, *t);

 if ((master = open(mastername, O_RDWR)) >= 0)

 goto out;

 }

}

if (*s == '\0' && *t == '\0')

 /* all pseudo-terminals in use */

sprintf(slavename, "/dev/tty%c%c", *s, *t);

slave = open(slavename, O_RDWR);

.

.

.

The problem with this approach, aside from the fact that if the number of pseudo-terminals is ever

increased the program will have to be modified to know about the new device names, is that there

is a race condition between opening the master and opening the slave. This race condition presents
certain security problems.

SVR4 Pseudo-Terminals

In SVR4, the race condition has been solved by creating a special “clone device” to use when

allocating a master pseudo-terminal. The clone device, when opened, returns a file descriptor

referring to an unused pseudo-terminal, and locks out the corresponding slave device so that it

cannot be opened by another process. The process that has the master side open can then unlock the

slave and open it itself.

Example D-1 shows an implementation of the script command. This program executes a copy of

the user's shell on a pseudo-terminal, and copies all the user's input and output to a file. In this way,

a record is made of the entire session.

Example D-1: script

#include <sys/types.h>

#include <sys/ioctl.h>

#include <sys/time.h>

#include <stropts.h>

#include <termios.h>

#include <stdlib.h>

#include <signal.h>

#include <unistd.h>

#include <string.h>

Pseudo-Terminals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 499

#include <fcntl.h>

#include <stdio.h>

#define MAXARGS 32 /* max. cmd. args */

char *shell = "/bin/sh"; /* default shell */

char *filename = "scriptfile"; /* default file */

char *mastername = "/dev/ptmx"; /* pty clone device */

int master; /* master side of pty */

FILE *script; /* script file */

struct termios newtty, origtty; /* tty modes */

void finish(int);

int ptyopen(char *, struct termios *);

int

main(int argc, char **argv)

{

 char *p;

 int n, nfd;

 time_t clock;

 fd_set readmask;

 char buf[BUFSIZ];

 /*

 * If an argument is given, it's a new script file.

 */

 if (argc > 1)

 filename = *++argv;

 /*

 * 1. Use the user's shell, if known.

 */

 if ((p = getenv("SHELL")) != NULL)

 shell = p;

 /*

 * 2. Open the script file.

 */

 if ((script = fopen(filename, "w")) == NULL) {

 perror(filename);

 exit(1);

 }

 /*

 * 3. Get the tty modes. We'll use these both to

 * set modes on the pseudo-tty, and to restore

 * modes on the user's tty.

 */

 if (tcgetattr(0, &origtty) < 0) {

 perror("tcgetattr: stdin");

 exit(1);

 }

 /*

 * 4. Grab a pseudo-tty and start a shell on it.

 */

UNIX Systems Programming for SVR4

500 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 if ((master = ptyopen(shell, &origtty)) < 0)

 exit(1);

 /*

 * Print a little start message.

 */

 time(&clock);

 fprintf(script, "Script started on %s", ctime(&clock));

 printf("Script started, file is %s\n", filename);

 /*

 * 5. We need to catch signals, now that we're going

 * to change tty modes.

 */

 sigset(SIGINT, finish);

 sigset(SIGQUIT, finish);

 /*

 * 6. Change the user's tty modes such that pretty

 * much everything gets passed through to the

 * pseudo-tty. Set "raw" mode so that we can pass

 * characters as they're typed, etc.

 */

 newtty = origtty;

 newtty.c_cc[VMIN] = 1;

 newtty.c_cc[VTIME] = 0;

 newtty.c_oflag &= ~OPOST;

 newtty.c_lflag &= ~(ICANON|ISIG|ECHO);

 newtty.c_iflag &= ~(INLCR|IGNCR|ICRNL|IUCLC|IXON);

 /*

 * 7. Set the new tty modes.

 */

 if (tcsetattr(0, TCSANOW, &newtty) < 0) {

 perror("tcsetattr: stdin");

 exit(1);

 }

 /*

 * 8. Now just sit in a loop reading from the keyboard and

 * writing to the pseudo-tty, and reading from the

 * pseudo-tty and writing to the screen and the script file.

 */

 for (;;) {

 FD_ZERO(&readmask);

 FD_SET(master, &readmask);

 FD_SET(0, &readmask);

 nfd = master + 1;

 /*

 * 8a. Wait for something to read.

 */

 n = select(nfd, &readmask, (fd_set *) 0, (fd_set *) 0,

 (struct timeval *) 0);

 if (n < 0) {

 perror("select");

 exit(1);

Pseudo-Terminals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 501

 }

 /*

 * 8b. The user typed something... read it and pass

 * it on to the pseudo-tty.

 */

 if (FD_ISSET(0, &readmask)) {

 if ((n = read(0, buf, sizeof(buf))) < 0) {

 perror("read: stdin");

 exit(1);

 }

 /*

 * The user typed end-of-file; we're

 * done.

 */

 if (n == 0)

 finish(0);

 if (write(master, buf, n) != n) {

 perror("write: pty");

 exit(1);

 }

 }

 /*

 * 8c. There's output on the pseudo-tty... read it and

 * pass it on to the screen and the script file.

 */

 if (FD_ISSET(master, &readmask)) {

 /*

 * The process died.

 */

 if ((n = read(master, buf, sizeof(buf))) <= 0)

 finish(0);

 fwrite(buf, sizeof(char), n, script);

 write(1, buf, n);

 }

 }

}

/*

 * ptyopen - start command on a pseudo-tty and return a file descriptor

 * with which to speak to it.

 */

int

ptyopen(char *command, struct termios *ttymodes)

{

 char *p;

 pid_t pid;

 char *slavename;

 char *args[MAXARGS];

 int nargs, master, slave;

 /*

 * 9. Break the command into arguments.

 */

UNIX Systems Programming for SVR4

502 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 nargs = 0;

 p = strtok(command, " \t\n");

 do {

 if (nargs == MAXARGS) {

 fprintf(stderr, "too many arguments.\n");

 return(-1);

 }

 args[nargs++] = p;

 p = strtok(NULL, " \t\n");

 } while (p != NULL);

 args[nargs] = NULL;

 /*

 * 10. Get a master pseudo-tty.

 */

 if ((master = open(mastername, O_RDWR)) < 0) {

 perror(mastername);

 return(-1);

 }

 /*

 * 11. Set the permissions on the slave.

 */

 if (grantpt(master) < 0) {

 perror("granpt");

 close(master);

 return(-1);

 }

 /*

 * 12. Unlock the slave.

 */

 if (unlockpt(master) < 0) {

 perror("unlockpt");

 close(master);

 return(-1);

 }

 /*

 * 13. Start a child process.

 */

 if ((pid = fork()) < 0) {

 perror("fork");

 close(master);

 return(-1);

 }

 /*

 * 14. The child process will open the slave, which will become

 * its controlling terminal.

 */

 if (pid == 0) {

 /*

 * 14a. Get rid of our current controlling terminal.

 */

Pseudo-Terminals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 503

 setsid();

 /*

 * 14b. Get the name of the slave pseudo-tty.

 */

 if ((slavename = ptsname(master)) == NULL) {

 perror("ptsname");

 close(master);

 exit(1);

 }

 /*

 * 14c. Open the slave pseudo-tty.

 */

 if ((slave = open(slavename, O_RDWR)) < 0) {

 perror(slavename);

 close(master);

 exit(1);

 }

 /*

 * 14d. Push the hardware emulation module.

 */

 if (ioctl(slave, I_PUSH, "ptem") < 0) {

 perror("ioctl: ptem");

 close(master);

 close(slave);

 exit(1);

 }

 /*

 * 14e. Push the line discipline module.

 */

 if (ioctl(slave, I_PUSH, "ldterm") < 0) {

 perror("ioctl: ldterm");

 close(master);

 close(slave);

 exit(1);

 }

 /*

 * 14f. Copy the user's terminal modes to the slave

 * pseudo-tty.

 */

 if (tcsetattr(slave, TCSANOW, ttymodes) < 0) {

 perror("tcsetattr: pty");

 close(master);

 close(slave);

 exit(1);

 }

 /*

 * 14g. Close the script file and the master; these

 * are not needed in the slave.

 */

 fclose(script);

 close(master);

UNIX Systems Programming for SVR4

504 FOR PERSONAL, NON-COMMERCIAL USE ONLY

 /*

 * 14h. Set the slave to be our standard input, output,

 * and error output. Then get rid of the original

 * file descriptor.

 */

 dup2(slave, 0);

 dup2(slave, 1);

 dup2(slave, 2);

 close(slave);

 /*

 * 14i. Execute the command.

 */

 execv(args[0], args);

 perror(args[0]);

 exit(1);

 }

 /*

 * 15. Return the file descriptor for communicating with

 * the process to our caller.

 */

 return(master);

}

/*

 * finish - called when we're done.

 */

void

finish(int sig)

{

 time_t clock;

 /*

 * 16. Restore our original tty modes.

 */

 if (tcsetattr(0, TCSANOW, &origtty) < 0)

 perror("tcsetattr: stdin");

 /*

 * Print a finishing message.

 */

 time(&clock);

 fprintf(script, "\nScript finished at %s", ctime(&clock));

 printf("\nScript done, file is %s\n", filename);

 /*

 * 17. All done.

 */

 fclose(script);

 close(master);

 exit(0);

}

The steps executed in this program are as follows.

1. Use the getenv function (Chapter 16) to obtain the name of the user's shell. If this cannot be
determined, use /bin/sh as the default.

Pseudo-Terminals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 505

2. Create the script file, where all input and output will be recorded.

3. Get the modes of the user's terminal (Chapter 12). These are needed both to copy them to the

pseudo-terminal, and to change them on the user's terminal.

4. Call the ptyopen function to allocate a pseudo-terminal and start the shell on it. This function
is described beginning with Step 9, below.

5. Catch the interrupt and quit signals (the ones that can be generated from the keyboard). We

need to do this before we change the user's terminal modes; once they are changed, catching

these signals will allow us to restore them if an interrupt is received.

6. Change the user's terminal modes (Chapter 12). Because the keyboard and screen will now be
tied to the pseudo-terminal through our program, most of the terminal input/output processing

on the user's real terminal needs to be disabled. In particular, ECHO needs to be turned off (since

the operating system will echo all characters “typed” on the pseudo-terminal, the controlling
process will see them as “output” on the pseudo-terminal). The terminal is also placed in “raw”

mode so that as each character is typed it will be read and delivered to the pseudo-terminal.

7. Actually change the user's terminal modes.

8. The controlling program now enters a loop:

a. The select function (Chapter 6) is used to monitor both the standard input (the keyboard)
and the “screen” of the pseudo-terminal. The function will block until something is

available to be read.

b. If the standard input (file descriptor 0) appears in the bitmask returned by select, this
means the user has typed something on the keyboard. The program must read this, and then

write it to the pseudo-terminal. The process attached to the pseudo-terminal will see this as

“keyboard” input. Note that the user's input is not written to the script file here; if the

pseudo-terminal has ECHO turned on, the operating system will echo the characters and
they will be seen as output.

c. If the pseudo-terminal file descriptor appears in the bitmask returned by select, this
means the program attached to the pseudo-terminal has written some output to its “screen.”

The controlling program must read this data and print it to the user's screen, and also copy

it to the script file.

The program continues in this loop until a read from either the user's terminal or the pseudo-

terminal returns 0, indicating either that the user has typed an end-of-file character, or the

program on the pseudo-terminal has exited.

9. The ptyopen function is where all the pseudo-terminal allocation code is executed. The
function begins by breaking the command it is to execute into individual arguments.

10. Pseudo-terminal allocation begins by opening the clone device, /dev/ptmx. If the open succeeds,

it will return a file descriptor that may be used to read and write to the master side of an unused

pseudo-terminal.

UNIX Systems Programming for SVR4

506 FOR PERSONAL, NON-COMMERCIAL USE ONLY

11. The grantpt function is used to change the modes and ownership of the slave pseudo-terminal
device to those of the user calling the functon:

#include <stdlib.h>

int grantpt(int fd);

The argument should be the file descriptor attached to the master pseudo-terminal. The granpt

function works by executing a small set-user-id “root” program to do its work.

12. The unlockpt function is used to clear the lock on the slave pseudo-terminal device, so that it

can be opened:

#include <stdlib.h>

int unlockpt(int fd);

Again, the argument should be the file descriptor attached to the master pseudo-terminal.

13. Now a child process is started, to execute the command given as an argument to ptyopen
(Chapter 11).

The child process is responsible for opening the slave side of the pseudo-terminal and executing

the command:

a. The setsid function (Chapter 11) is called to begin a new session. This has the side effect
of clearing the process' controlling terminal.

b. The ptsname function returns the device name of the slave side of the pseudo-terminal:

#include <stdlib.h>

char *ptsname(int fd);

The fd parameter should be the file descriptor attached to the master side of the pseudo-

terminal.

c. The slave side of the pseudo-terminal is opened. As a side effect of this, because the process

has no controlling terminal (it was cleared by setsid), the slave device will become the
process' controlling terminal. This means that any signals generated from the slave side's

“keyboard” will be sent to the slave process, since it is the session leader.

d. The “ptem” module is pushed onto the stream from the pseudo-terminal. This is a module
built into the kernel that allows the pseudo-terminal to emulate a real terminal. It intercepts

all the terminal mode change requests and adjusts the pseudo-terminal driver to behave

accordingly.

e. The “ldterm” module is pushed onto the stream from the pseudo-terminal. This is a
module built into the kernel that allows the pseudo-terminal to emulate the line discipline

functions (Chapter 12) associated with real terminal devices.

Pseudo-Terminals

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 507

f. The user's terminal modes are copied to the pseudo-terminal.

g. The script file and master pseudo-terminal file descriptors, opened in the parent process,

are closed. The child process has no use for these.

h. The dup2 function (Chapter 3) is used to attach the child process' standard input, output,
and error output to the slave pseudo-terminal. The original file descriptor is then closed, as

it is no longer needed.

i. The command is executed. When this succeeds, the command will be running on the slave

pseudo-terminal (which it will see as a real terminal), and the command's input and output

will be attached to the controlling process through the master side of the pseudo-terminal.

14. The file descriptor attached to the master side of the pseudo-terminal is returned to the

controlling process, which can now use it to communicate with the command.

Once the command on the pseudo-terminal has exited or the user has typed end-of-file, the

program restores the user's original terminal modes.

It then closes the script file, and closes the master pseudo-terminal. If the process on the pseudo-

terminal has not yet exited, this close will generate an end-of-file on its input, causing it to exit

now.

The clone device method of allocating pseudo-terminals is generally easier to deal with than the old

Berkeley method. It is not the only solution though; other vendors have developed other methods

for opening pseudo-terminals. However, most of them are similar to one of the two methods

described here, and differ only in some minor details.

Appendix E
Accessing the Network at the

Link Level

In Chapters 14 and 15, we described the operating system interfaces provided to allow programs to

communicate via a network. There are some tasks, however, that cannot be provided via these

interfaces.

UNIX Systems Programming for SVR4

508 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Low-level Protocol Interfaces

The socket and TLI functions provide the programmer with an interface to protocols designed for

end-to-end communication. The underlying network, however, is hidden from the programmer by

these interfaces. There is no way for the programmer to tell (and no need for her to know) whether

the underlying network hardware is Ethernet, Fiber Distributed Data Interface (FDDI),

Asynchronous Transfer Mode (ATM), or something else altogether.

This has advantages, in that the programmer's life is made simpler by not having to worry about

esoterica such as packet formats and other details that really have nothing to do with the task at

hand, getting data from here to there. However, there are disadvantages too. Because the interfaces

hide the underlying network from the programmer, there is no way to use those interfaces to send

or receive data at the underlying network level.

There are valid reasons for doing this, however. One of them is shown in the in.rarpd command.

When a diskless workstation is first turned on, it has no notion of what its network address is.
Because it has an Ethernet chip, it has an Ethernet address, but this is not the same as an Internet

Protocol address. And it needs to know its Internet Protocol address to talk to its server and begin

the boot process. So, it sends out a special Ethernet broadcast packet using the Reverse Address

Resolution Protocol (RARP), asking “Hey, does anybody know what my Internet Protocol address

is?'' The in.rarpd program, running on a server, receives this packet, looks up the workstation's

address in a database (usually the /etc/ethers file), and sends a RARP reply packet back to the

workstation saying, “Yes, your address is AAA.BBB.CCC.DDD.''

The RARP protocol is not an Internet protocol like TCP and UDP are. The RARP protocol has its

very own packet format that is defined differently for each network medium on which it is used.

Thus, in.rarpd cannot use the socket or TLI interfaces to send or receive RARP packets. Instead, it

must monitor the Ethernet directly waiting for these packets to arrive, and it must then format its
own Ethernet packets in which to send its responses.

Network Monitoring

The other task that cannot be performed through the socket and TLI interfaces is network

monitoring. A network monitoring program, such as the snoop program included with SVR4, must

be able to receive all packets on a network, regardless of who they are addressed to. But the socket

and TLI interfaces require a program to specify an address at which it wishes to receive data. There

is no way to specify “give me everything on the network, including all the stuff addressed to other
machines.”

In order to monitor the network, a network monitoring program has to be able to place the system's

network interface(s) into promiscuous mode. In this mode, the network interface copies all packets

from the network rather than just those that are destined for the local host. The operating system

must then arrange for the monitoring program to be given a copy of all of these packets. While it's

doing that though, it also has to continue processing all the packets addressed to it in the normal

fashion, or else turning on a network monitor would turn off everything else.

Index

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 509

The Data Link Provider Interface

SVR4 provides a means for solving both of the above problems, called the Data Link Provider

Interface (DLPI). The DLPI is a STREAMS-based interface to the low-level network device drivers.

It is similar in functionality to the Network Interface Tap (NIT) provided in SunOS 4.x, and the

Berkeley Packet Filter (BPF) provided by recent versions of BSD UNIX. Most other vendors

provide similar functionality.

NOTE

In order to preserve backward compatibility with their earlier releases, Silicon Graphics

does not supply the DLPI interface. Instead, they provide the snoop interface with IRIX

5.x.

A program accesses the DLPI through a file descriptor. When the program reads from the file

descriptor, it receives raw network packets with all of their headers still attached. The program is

responsible for extracting necessary information from these headers, stripping them off to get at the
data, and so forth. Depending on the type of packet and what is to be learned from it, this can be a

complex task. When the program writes to the file descriptor, the data is transmitted on the network.

The program is responsible for formatting its data into a legal packet format including headers,

checksums, and so forth. If anything, this can be even more complex than reading packets.

Example Program

Because of the complexity involved in accessing the network at the link layer, it would require too

much space to include an example in the text of this appendix. Aside from the code to set up the
DLPI, which is straight-forward but non-trivial, it is necessary to show how to process the data once

it is received, or how to format it in order to be sent. However, the topic is of sufficient interest to

systems programmers that a sample program has been included in the electronic distribution of the

example programs for this book. The preface to this book provides instructions on how to obtain

this distribution.

The example program is a complete packet monitoring tool. It monitors a network and captures all

packets transiting it. These packets are broken down into numerous classifications (local or foreign

traffic, network protocol, application protocol, etc.) and recorded in a series of counters. The

counters are saved periodically to a file, from which they can later be added together and printed

out. The tool can thus be used to perform long-term traffic analysis of a network. The program is

well-commented, and should be sufficient for understanding not only the DLPI, but also how to
process the various packet formats transmitted on an Ethernet network.

NOTE

This example program makes use of extensions to the DLPI interface that are only available

in Solaris 2.x.

UNIX Systems Programming for SVR4

510 FOR PERSONAL, NON-COMMERCIAL USE ONLY

Additional Documentation

In addition to the example program, the electronic distribution includes a copy of a white paper

written by Neal Nuckolls of Sun Microsystems' Internet Engineering group. This paper, which

comes complete with a set of working example programs, describes each feature of the DLPI in

detail, and shows how to use it both to receive packets as well as send them.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 511

About the Author

David A. Curry is employed as a Senior Internet Security Analyst for the IBM Internet Emergency

Response Service (IBM-ERS), where he is a member of the IBM-ERS Level 3 technical team. IBM-

ERS provides Internet security services, incident management and response functions, and firewall

testing services to IBM-ERS customers. Dave is responsible for the IBM-ERS Security

Vulnerability Alert function of the service, and for developing the service’s quality management

program. He received a Bachelor of Science degree in Computer Science from Purdue University
in 1993.

Dave began his UNIX systems programming career at the Purdue University Engineering Computer

Network in 1985, where he worked through 1988. He then moved to California where he worked as

a Research Associate for the Research Institute for Advanced Computer Science at NASA Ames

Research Center, and as a Senior Systems Programmer for the Information, Telecommunications,

and Automation Division at SRI International in Menlo Park, CA. Following his marriage in 1991,

Dave decided he really hated living in California, and returned to the Midwest and Purdue

University, where he served as the Manager of the UNIX Systems Programming Group for the

Purdue University Engineering Computer Network until December, 1995.

Dave is a member of the USENIX Association and the National Computer Security Association. He

also serves as the IBM-ERS representative to the Forum of Incident Response and Security Teams
(FIRST). Dave has written several popular programs distributed widely on the Internet, and authored

the document “Improving the Security of Your UNIX System,” distributed by SRI International in

1990. He is also the author of two other books: Using C on the UNIX System, published by O’Reilly

& Associates, and UNIX System Security: A Guide for Users and System Administrators, published

by Addison-Wesley.

 FOR PERSONAL, NON-COMMERCIAL USE ONLY 513

Colophon

Our look is the result of reader comments, our own experimentation, and distribution channels.

Distinctive covers complement our distinctive approach to technical topics, breathing personality

and life into potentially dry subjects. UNIX and its attendant programs can be unruly beasts. Nutshell

Handbooks help you tame them.

The animal featured on the cover of UNIX Systems Programming for SVR4 is a lian, a large,

carnivorous cat inhabiting western India and Africa south of the Sahara. The most sociable of cats,
lions live in prides consisting of one to four males and a collection of up to thirty females and cubs.

However, the members of a pride are seldom all together at one time, instead moving about their

territory as individuals or small groups. A pride’s territory may be anywhere from 15 to 150 square

miles, depending on the abundance of food, and is marked by scent and roaring.

Lions eat both fresh kill and carrion—dead animals or the kill of other animals. When they do kill,

they show a preference for large prey such as zebra or wildebeest which will feed the entire pride.

Females do the majority of the hunting, frequently working cooperatively to encircle or bring down

large game. During the hunt, lions are careful to move under cover of darkness or foliage, but tend

to disregard the wind direction and thus frequently give themselves away.

Edie Freedman designed this cover and the entire UNIX bestiary that appears on Nutshell

Handbooks, using a 19th-century engraving from the Dover Pictorial Archive. The cover layout was

produced with Quark XPress 3.3 using the ITC Garamond font.

The inside layout was designed by Jennifer Niederst and Nancy Priest. Text was prepared by Erik

Ray in SGML DocBook 2.4 DTD. The print version of this book was created by translating the

SGML source into a set of gtroff macros using a filter developed at ORA by Norman Walsh. Steve

Talbott designed and wrote the underlying macro set on the basis of the GNU troff –gs macros;

Lenny Muellner adapted them to SGML and implemented the book design. The GNU groff text

formatter version 1.09 was used to generate PostScript output. The text and heading fonts are ITC

Garamond Light and Garamond Book. The illustrations that appear in the book were created in

Macromedia Freehand 5.0 by Chris Reilley.

	UNIX Systems Programming for SVR4
	Preface
	About This Book
	Scope of This Book
	Audience
	Assumptions
	Font Conventions
	Example Programs
	FTP
	Ftpmail
	BITFTP
	UUCP

	Comments and Questions
	Acknowledgements

	Chapter 1 Introduction to SVR4
	Standards Compliance
	Notes on Compilers
	The HP-UX 10.x Compiler
	The IRIX 5.x Compiler
	The Solaris 2.x Compiler
	The GNU C Compiler

	The BSD Source Compatibility Package

	Chapter 2 Utility Routines
	Manipulating Character Strings
	Computing the Length of a String
	Comparing Character Strings
	Copying Character Strings
	Searching Character Strings
	Non-Standard Character String Functions
	Searching Character Strings
	Processing Character Escape Sequences
	Breaking Up Delimited Strings
	Translating Characters

	Porting Notes

	Manipulating Byte Strings
	Comparing Byte Strings
	Copying Byte Strings
	Searching Byte Strings
	Initializing Byte Strings
	Porting Notes

	Manipulating Character Classes
	Testing Character Class Membership
	Changing Character Class Membership
	Porting Notes

	Dynamic Memory Allocation
	Porting Notes

	Manipulating Temporary Files
	Porting Notes

	Parsing Command Line Arguments
	Porting Notes

	Miscellaneous
	String to Number Conversion
	Printing Error Messages
	Porting Notes

	Pausing a Program
	Exiting a Program

	Chapter Summary

	Chapter 3 Low-Level I/O Routines
	File Descriptors
	Opening and Closing Files
	Porting Notes

	Input and Output
	Repositioning the Read/Write Offset
	Porting Notes

	Duplicating File Descriptors
	Chapter Summary

	Chapter 4 The Standard I/O Library
	Data Types and Constants
	Opening and Closing Files
	Porting Notes

	Character-Based Input and Output
	Line-Based Input and Output
	Buffer-Based Input and Output
	Formatted Input and Output
	The printf Functions
	Integers
	Floating-Point Numbers
	Characters and Character Strings
	Field Width and Precision
	Variable Argument Lists

	The scanf Functions
	Integers
	Floating-Point Numbers
	Characters and Character Strings
	Field Widths

	Porting Notes

	Repositioning the Read/Write Offset
	Reassigning a File Pointer
	Buffering
	Porting Notes

	Stream Status
	File Pointers and File Descriptors
	Chapter Summary

	Chapter 5 Files and Directories
	File System Concepts
	The UNIX File System
	Basic File Types
	Regular Files
	Special Files
	Directories

	Removable File Systems
	Device Numbers
	I-Numbers, the I-List, and I-Nodes
	Other File Types
	Hard Links
	Symbolic Links
	FIFOs
	UNIX-Domain Sockets

	Obtaining File Attributes
	Getting Information From an I-Node
	Getting Information From a Symbolic Link
	Determining the Accessibility of a File

	Changing File Attributes
	Changing a File's Permission Bits
	Changing a File's Ownership
	Changing a File's Size
	Changing a File's Access and Modification Times

	Creating and Deleting Files and Directories
	Deleting Files
	Creating and Deleting Directories
	Creating Links
	Renaming Files and Directories

	Working With Directories
	Determining the Current Working Directory
	Porting Notes

	Changing the Current Working Directory
	Reading Directories
	Porting Notes

	Chapter Summary

	Chapter 6 Special-Purpose File Operations
	File Descriptor Attributes
	Managing Multiple File Descriptors
	The select Function
	The poll Function

	File and Record Locking
	Locking Files With fcntl
	Locking Files With lockf
	Porting Notes

	Memory-Mapped Files
	Mapping a File Into Memory
	Removing a Mapping
	Changing the Protection Mode of Mapped Segments
	Providing Advice to the System
	Synchronizing Memory With Physical Storage

	The /dev/fd File System
	Miscellaneous Functions
	Controlling File Creation Modes
	The Root Directory
	Synchronizing a File With the Disk

	Chapter Summary

	Chapter 7 Time of Day Operations
	The Complexities of Time
	Obtaining the Current Time
	Porting Notes

	Obtaining the Local Timezone
	Porting Notes

	Converting Between UNIX Time and Human Time
	Porting Notes

	Formatting Date Strings
	Porting Notes

	Chapter Summary

	Chapter 8 Users and Groups
	Login Names
	The User-Id Number
	Porting Notes

	The Group-Id Number
	Group Membership
	Porting Notes

	The Password File
	The Shadow Password File
	The Group File
	The Utmp and Wtmp Files
	Porting Notes

	The Lastlog File
	The Shells File
	Writing Set-User-Id and Set-Group-Id Programs
	Chapter Summary

	Chapter 9 System Configuration and Resource Limits
	General System Information
	Porting Notes

	System Resource Limits
	Porting Notes

	Process Resource Limits
	Porting Notes

	Resource Utilization Information
	Porting Notes

	Chapter Summary

	Chapter 10 Signals
	Signal Concepts
	Basic Signal Handling
	Sending Signals
	Waiting for Signals
	Printing Signal Information
	Handling Signals

	Unreliable Signals
	Reliable signals
	Terminology
	The sigset Function
	Porting Note

	Other Functions

	Signals and System Calls
	Using Signals for Timeouts
	The setjmp and longjmp Functions
	Interval Timers

	Advanced Signal Handling
	Signal Sets
	The sigaction Function
	The siginfo_t Structure

	Other Functions
	Sending Signals
	Waiting for Signals to Occur
	Printing Signal Information
	Manipulating the Signal Mask
	Examining the List of Pending Signals
	The setjmp and longjmp Functions, Revisited

	Porting Berkeley Signals to SVR4
	The sigvec Function
	Handler Calling Conventions
	Signal Masks
	Waiting for Signals
	The setjmp and longjmp Functions

	Chapter Summary

	Chapter 11 Processes
	Process Concepts
	Process Identifiers
	System Processes

	Termination Status
	Zombie Processes
	Orphaned Processes

	Process Groups
	The Process Group Leader

	Sessions
	The Session Leader

	The Controlling Terminal
	Priorities

	Program Termination
	Simple Program Execution
	Advanced Program Execution
	Creating a New Process
	Executing a Program
	Collecting the Process Termination Status
	The vfork Function

	Redirecting Input and Output
	Job Control
	Timing Process Execution
	Porting Notes
	Chapter Summary

	Chapter 12 Terminals
	Overview of Terminal I/O
	Special Characters
	Terminal Characteristics

	Terminal-Related Functions
	POSIX Terminal Control
	Examining and Changing Terminal Attributes
	Baud Rates
	Job Control Functions
	Other Functions
	Canonical Mode
	Non-Canonical Mode
	Emulating Cbreak and Raw Modes

	Pre-POSIX Terminal Control
	System V Terminal Control
	BSD Terminal Control
	Line Disciplines
	The struct sgttyb Structure
	The struct tchars Structure
	The Local Mode Word
	The struct ltchars Structure

	Terminal Window Size
	Chapter Summary

	Chapter 13 Interprocess Communication
	Pipes
	Simple Pipe Creation
	Advanced Pipe Creation

	FIFOs
	UNIX-Domain Sockets
	Creating a Socket
	Server-Side Functions
	Naming a Socket
	Waiting for Connections
	Accepting Connections

	Connecting to a Server
	Transferring Data
	Destroying the Communications Channel
	Putting it All Together

	System V IPC Functions
	Message Queues
	Shared Memory
	Semaphores
	Chapter Summary

	Chapter 14 Networking with Sockets
	Networking Concepts
	Host Names and Addresses
	Host Names
	Host Addresses

	Services and Port Numbers
	Network Byte Order

	Creating a Socket
	Server-Side Functions
	Naming a Socket
	Waiting for Connections
	Accepting Connections

	Client-Side Functions
	Connecting to a Server
	Transferring Data
	Destroying the Communications Channel

	Putting it All Together
	Other Functions
	Socket “Names”
	Socket Options
	Address Conversion
	The Berkeley “R” Commands
	The inetd Super-Server

	Chapter Summary

	Chapter 15 Networking with TLI
	The netbuf Structure
	Network Selection
	The Network Configuration Library
	The NETPATH Library
	Network Selection in HP-UX 10.x

	Name To Address Translation
	Name To Address Translation in HP-UX 10.x

	TLI Utility Functions
	Transport Endpoint Management
	Creating a Transport Endpoint
	Binding an Address to a Transport Endpoint
	Closing a Transport Endpoint
	Transport Endpoint Options

	Connectionless Service
	Connection-Oriented Service
	Server-Side Functions
	Waiting for Connections
	Accepting and Rejecting Connections

	Client-Side Functions
	Transferring Data
	Connection Release

	Other Functions
	Transport Endpoint Names
	Connection State
	Asynchronous Events
	Address Conversion

	Using read and write with TLI
	Chapter Summary

	Chapter 16 Miscellaneous Routines
	Exiting When Errors Occur
	Error Logging
	Searching
	Linear Search
	Binary Search
	Hash Tables
	Binary Trees
	Queues

	Sorting
	Environment Variables
	Passwords
	Random Numbers
	Directory Trees
	Database Management
	Portability Notes

	Pattern Matching
	Shell Pattern Matching
	Regular Expressions
	Portability Notes

	Internationalization
	Defining the Locale
	Formatting Numbers
	Collating Sequences

	Chapter Summary

	Appendix A Significant Changes in ANSI C
	Tokens
	String Concatenation
	Escape Sequences

	The Preprocessor
	String Substitution
	Character Constants
	Token Pasting
	The #elif Directive
	The #error Directive
	Predefined Symbols
	Text After #else and #endif

	Declarations
	The void Type
	The enum Type
	The char Type
	Type Qualifiers

	Functions
	Function Prototypes
	Handling Prototypes in Non-ANSI Environments

	Widened Types

	Expressions
	Summary

	Appendix B Accessing File System Data Structures
	The Mounted File System Table
	The File System Defaults File
	Obtaining File System Statistics
	Reading File System Data Structures
	Disk Terminology
	The Super Block
	I-Nodes
	Cylinder Groups
	Putting it All Together

	Summary

	Appendix C The /proc File System
	Obtaining Process Status
	Obtaining Process Information
	Obtaining Process Resource Usage
	An Example
	Summary

	Appendix D Pseudo-Terminals
	BSD Pseudo-Terminals
	SVR4 Pseudo-Terminals

	Appendix E Accessing the Network at the Link Level
	Low-level Protocol Interfaces
	Network Monitoring
	The Data Link Provider Interface
	Example Program
	Additional Documentation

	About the Author
	Colophon

