The stack and! the stack
pointer

Iff you “google” the word stack, one of the definitions you will get is:

A reserved area ofi memory: used to keep) track of a program's internal operations, including functions, return addresses, passed parameters, etc. A stack is
usually' maintained as a "last in, first out” () data structure, so that the last item|added to the structure is the first item used.

Sometimesi is useful to have alregion of memory for temporary: storage,
which does not have to be allocated as named! variables.

When youl use subroutines and interrupts it will be essential to have such a storage

|1

Such region is called a

Ox3BFA The (SP) register is used to indicate the location of the last item put onto

0x3BFB the stack.

0x3BFC

8%2:;2 When you PUT something ONTO the stack (onto the stack), the SP'is decremented
X - .

e before the itemis placed on the stack.

0x3C00

When you take something OFF of the stack (firom the stack), the SPis incremented

M

useergory after the item;is pulled from the stack.

by MCU

(Debug12 Before youl can use a stack you have to initialize the SP to point to one value higher than
Data) the highest memory location in the stack.

For the HC12 use a block of memory fiom about $3B00 to $3BFE for the stack.

For this region of memory, initialize the stack pointer to . Use LDS (Load Stack
Pointer) to initialize the stack pointer.

The stack pointer is initialized only one time in the program.

0x3BF6
0x3BF7
0x3BF8
0x3BF9
O0x3BFA
0x3BFB
0x3BFC
0x3BFD
O0x3BFE
0x3BFF
0x3C00

Memory
used
by MCU

Tihe stack is an array of memory dedicated to
temporary: storage

SP points to location last item placed in block

SP decreases when you put an item on the stack

SP increases when you pull the item from the stack

For the HC12, use as initial SP.

SP

PC

STACK: EQU
LDS

$3C00
#STACK

CCR

An example off some code which
uses the stack

Stack pointer:
Initialize ONCE before the first use (LDS #STACK)
Points to last used storage location

Decreases when you put something on stack, and increases when you take something off stack

l T STACK: equ $3C00
[[5 #STACK
0x3BFA Idaa #$2e
0x3BFB
0x3BFC o #1254
0x3BFD psha
OX3BFE pshx
Ox3BFF
0x3C00 cra A
e Idx #Sffff
used X
by MCU CODE THAT USES A & X
SP
pulx

pula

An example off some code which
uses the stack

Core User Guide — S12CPU15UG V1.2

PSHX Push X onto Stack PSHX

Operation [SP) $0

Core User Guide — $12CPU15UG V1.2

PS HA Push A onto Stack P S H A

Operation (SP)- 50001 = SP - :
(A) = Mgp g s SP by two and loads the high byte of X into the address to which SP pounts.
Decrements SP by one and loads the value in A into the address to which SP points Loads the low byte of X into the address to which SP points plus one. After PSHX executes,
- 1 ced value of the lugh byte of X
Push instructions are commonly used to save the ¢ of one or more
ubroutine. Complementary pull instn can be used to restore the saved
15 just before returning from the subroutine.

Push instructions are commonly used to save the contents of one or

the start of a subroutine. ary pull instructions can restore the sav
registers just before retuming from the subroutine.

CCR

Effects N Z V C

Code and Code and

CPU C: - CPU Addres: Machine
Cycles Cycles Code [Hex)
e e

Subroutines

A subroutine is a section of code which performs a specific task, usually aitask which needs to be executed by: different parts of the program.

v
sqrt:

(o] o 0] 0]0)

call sgrt
; ??

call sgrt

SWi

compute sguare root

jmp iabel

Example:
-Math functions, such as square root (sqrt)

Because a subroutine can be called firom) different placesiinia program, you cannot get
out of' a subroutine with ani instruction such as

jmp label

Because you would need to jump; to different places depending upon which section; off
the code called the subroutine.

When youlwant to call the subroutine your code has to save the address where the
subroutine should returnito. It does this by saving the return address on the

- This/isidone automatically for you wheni you get to the subroutine by
using JSR (JQump to Subroutine) or BSR (Branch to Subrouting)
instruction. This instruction pushes the address of the instruction
following the JSR (BSR) instruction on the stack

After the subroutine is done executing) its code, it needs to return to the address saved
on the

- This isidone automatically: when youi return from; the subroutine by,
using RTS (Return from Subroutine) instruction. This instruction pulls
the return address offi the stack and loads it into the PC.

Subroutines

The subroutine will' probably’ need to use some HC12 registers to do its work. However, the calling code may: be using| its registers, form some
reason — the calling| code may: not work correctly: if the subroutine changes the values of the HC12 registers.

Tio avoid| this problem, the subroutine should save the HC12 registers befare it uses them, and restore the HC12 registers after it is done with them.

Core User Guide — S12CPUTSUG V1.2

B S R Branch to Subroutine B S R

Operation

CCR
Effects

Code and
CPU
Cycles

(8P - 50002 = 5P
RETNgRTN, = MspMsp .y
(PCy+50002 + ml = PC

Sets up conditions o rturn to normal program flow, then transfers control to 2 subroutine.
Uses the addmss of the instruction afier the BSR a5 a retum address.

Decrements the SP by two, to sllow the two bytes of the mturn addmss to be stacked.
Stacks the return addmess {the SP paints to the high byte of the return address).
Branches to a location determined by the branch offset,

Subroutines ar normally erminated with an RTS instruction, which rstores the rturn
address from the stack.

Core User Guide — $12CPU15UG V1.2

RTS Return from Subroutine RTS

Operation (Mgp)(Mgp . ;) = PCy:PCy
(SP) + $0002 = SP

Restores the value of PC from the stack and increments SP by two. Program execution
continues at the address restored from the stack.

CCR
Effects § X H I NZ V C

Code and
CPU
Cycles

Example of a subroutine to delay: for certain
amount off time

; Subroutine to wait for 100 ms

Delay: Idaa #250
Loop2: Idx #800
Loopl: dex
bne Loopl
deca
bne Loop2
rts

What is the problem with this subroutine?
It changes the values of the registers that are most frequently used: A and X

How: can we solve this problem?

Example of a subroutine to delay: for certain
amount off time

To solve, save the values off A and X on the stack before using them, and restore them before returning.

» Subroutine to wait for 100 ms

Delay:

Idaa #250
Loop2: Idx #800
Loop1: dex

bne Loop1l

deca

bne Loop2

; restore registers

rts

- Program to make binary counter on' LEDS

A sample program

; The program uses a subroutine to insert a delay between counts

prog:

STACK:
PORTA:
PORTB:

DDRA:
DDRB:

loop:

equ
equ
equ
equ
equ
equ

org
Ids
Idaa
staa
clr
jsr
inc
bra

$1000
$3C00
$0000
$0001
$0002
$0003

prog
#STACK
Sff:
DDRA
PORTA
delay
PORTA
loop

; Subroutine to wait for 100 ms

delay:

loop2:
loop1:

psha
pshx
Idaa
Idx
dex
bne
deca
bne
pulx
pula
rts

#250
#800

loop1l

loop2

; initialize stack

; put all 1s into DDRA

; to make PORTA output
; put $00 into PORTA

; wait a bit

;add 1 to PORTA

; repeat forever

JSR and BSR place return address on stack
RIS returns to instruction after JSR or BSR

STACK: equ $3C00
org $1000
1000 CF 3C 00 Ids #STACK
1003 16 10 07 jsr MY_SUB
1006 7F SWi
825?73 1007 CE 12 34 MY_SUB: Idx #$1234
0x3BF8 100A 3D rts
0x3BF9
Ox3BFA
0x3BFB
0x3BFC
0x3BFD A B
0x3BFE - .
O0X3BFF D :
0x3C00 [mmmmmmeeeemememeoooeoooooe- ;
Memory X
used
by MCU
Y
SP
PC

CCR

Another example using ai subroutine

Using a subroutine to wait for an event to occur then take action
Wait until bit 7 of address $00CC is set.

Wirite the value, off ACCA to address $00CE

; This routine waits until the HC12 serial port is ready, then send a byte of data to the serial port

putchar: brclr $00CC,#$80,putchar ; Data Terminal Equip- ready
staa $00CFE ;' Send char
rts

; Program) to send the word “hello” to the HC12 seriall port

Idx #str
loop: Idaa 1,x+
beq (e[o]]
jsr putchar
bra loop
done: Swi
str: fcc “hello” ; form constant character

(e [off) $0a,$0d,0 7 CR-LF

Another example using ai subroutine

A complete program te) write to the screen

prog:
data:
stack:

loop:

character
done:

putchar:
ready

str:

equ
equ
equ

org
Ids
Idx
Idaa
beq
jsr
bra

SWi

brclr

staa
rts

org
fcc
(¢ [o] o)

$1000
$2000
$3c00

prog
#stack
#str
1,x+
done
putchar
loop

$00CC,$80,putchar

$O00CF

data
“hello”
$0a,$0d,0

; initialize stack
; load pointer to “hello”

; is done then end program

; write character to screen
; branch to read next

; check is serial port is

; and send

; form constant character
7 CR-LF

JSR and BSR place return address on stack
RIS returns to instruction after JSR or BSR

Core User Guide — S12CPUM5UG V1.2

J S R Jump to Subroutine

Operation (SF)- %0002 = SP
RTNgRTNg = (Mgp):(Mgp 1)

Subroutine address = PC

Sets up conditions to return to normal program flow, then transfers control to a subroutine.
Uses the address of the mstruction following the ISR as a return addiess.

Decrements SP by two, to allow the two bytes of the retuen address to be stacked.

Stacks the return address (SP points to the high byte of the return address).

Caleulates an effective address according to the rules for extended, direct, or indexed
addressing.

Jumps to the location determuned by the effective address.

Subroutines are normally terminated with an RTS instruction, which restores the retum
address from the stack

CCR
Effects

Code and
CPU
Cycles

EILPEPE

Using DIP switches to get data into the HC12

DIP switches make or break a connections (usually to ground)

I

Using DIP switches to get data into the HC12

Tio use DIP! switches, connect one end of each switch to) a resistor
Connect the other end of the resistor to +5V.

Connect the junction of the DIP: switch and the resistor to an input port on the HC12

5V

PBO
PB1

()

When the switchiis open, the input port sees a logic 1 (+5V)

When the switchiis closed, the input sees ailogic 0/ (0V)

|Looking at the state ofi a few! iInput pins

Want to look for a particular pattern on 4 input pins
-For example want to do something| ifi pattern on PB3-PB0/is 0110
Don't know! or care what are on the other 4 pins (PB7-PB4)

Here is the wrong way to do it:

Idaa PORTB
cmpa #b0110
beq task

If PB7-PB4 are anything| other than 0000, you will not execute the task.

You need to mask out the Don't Care bits before checking for the pattern on the bits you are interested in

Idaa PORTB
andaa #b00001111
cmpa #b00000110
beq task

Now, whatever pattern appears oni PB7-4 is ignored

Using an HC12 output port te contrel an LED

Connect an output port friom the HC12 to an LED.

Using an output port te control an LED

PAO

Resistor, LED, and
' Ground connected internally inside
\Vi /M1 breadboard

R e e

When a current flows
Through an LED, it emits light

Making a pattern on a 7-segement LED

Want to make a particular pattern on a 7-segmen LED.
Determine a number (hex or binary) that willl generate each element ofi the pattern

-For example, to display a 0, turn on segmentsia, b, ¢, d, e, and f, or bits 0, 1, 2, 3, 4, and| 5/ of PTH. The binary patterniis 00111111,
or $3f

-Todisplay 0, 2, 4, 6, 8, the hex numbers are $3f, $5b, $66, $7d, $7f.
Put the numbers in a table
Go through the table one by one to display the pattern

When youl get to the last element repeat the loop

a
—

f b
g
I—
eI c
I—

table

table_end

Ox3f

0x5b

0x66

0x7d

Ox7f

Flow: chart te display the patterns on a 7-segement

<X

LED

L1:

L2:

Inc pointer

X <end

|daa #$ff
staa DDRH

Idx #table

[daa 0,x

staa PORTH

inx

cpx #end_table
bls L2

bra L1

Program to display the patterns on a 7-segement

LED
; Program to display patterns
prog: equ $1000 delay: psha
data: equ $2000 pshx
stack: equ $3C00 Idaa #250
PTH: equ $0260 Loop2: Idx #8000
DDRH: equ $0262 Loop1: dex
org prog bne Loop1
Ids #stack deca
Idaa #ff bne Loop2
staa DDRH pulx
L1: Idx #table pula
L2: Idaa 1,x+ rts
staa PTH
jsr delay
cpx #table_end org data
bls L2 table: dc.b $3f
bra L1 dc.b $5b
dc.b $66
dc.b $7d

table_end: dc:b $7f

