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1. Who should read this

This page is about a technique for reducing the memory footprint of programs in compiled
languages with C-like structures - manually repacking these declarations for reduced size.
To read it, you will require basic knowledge of the C programming language.

You need to know this technique if you intend to write code for memory-constrained
embedded systems, or operating-system kernels. It is useful if you are working with
application data sets so large that your programs routinely hit memory limits. It is good to
know in any application where you really, really care about optimizing your use of memory
bandwidth and minimizing cache-line misses.

Finally, knowing this technique is a gateway to other esoteric C topics. You are not an
advanced C programmer until you have grasped these rules. You are not a master of C until
you could have written this document yourself and can criticize it intelligently.

This document originated with "C" in the title, but almost everything in it applies to C++ as
well. Many of the techniques discussed here also apply to the Go language, and should
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generalize to any compiled language with C-like structures. There is a note discussing C++,
Go, Rust, Java, Swift, and C# towards the end.

2. Why | wrote it

This webpage exists because in late 2013 I found myself heavily applying an optimization
technique that I had learned more than two decades previously and not used much since.

I needed to reduce the memory footprint of a program that used thousands - sometimes
hundreds of thousands - of C struct instances. The program was cvs-fast-export and the
problem was that it was dying with out-of-memory errors on large repositories.

There are ways to reduce memory usage significantly in situations like this, by rearranging
the order of structure members in careful ways. This can lead to dramatic gains - in my case
I was able to cut the working-set size by around 40%, enabling the program to handle much
larger repositories without dying.

But as I worked, and thought about what I was doing, it began to dawn on me that the
technique I was using has been more than half forgotten in these latter days. A little web
research confirmed that programmers don’t seem to talk about it much any more, at least
not where a search engine can see them. A couple of Wikipedia entries touch the topic, but I
found nobody who covered it comprehensively.

There are actually reasons for this that aren’t stupid. CS courses (rightly) steer people away
from micro-optimization towards finding better algorithms. The plunging price of machine
resources has made squeezing memory usage less necessary. And the way hackers used to
learn how to do it back in the day was by bumping their noses on strange hardware
architectures - a less common experience now.

But the technique still has value in important situations, and will as long as memory is
finite. This document is intended to save programmers from having to rediscover the
technique, so they can concentrate effort on more important things.

3. Alignment requirements

The first thing to understand is that, on modern processors, the way your compiler lays out
basic datatypes in memory is constrained in order to make memory accesses faster. Our
examples are in C, but any compiled language generates code under the same constraints.

There is a large class of modern ISAs (Instruction Set Architectures) for which these
constraints lead to identical layouts. These ISAs include Intel, ARM, and RISC-V; I will
refer to these as "vanilla" ISAs.

Storage for the basic C datatypes on a vanilla ISA doesn’t normally start at arbitrary byte
addresses in memory. Rather, each type except char has an alignment requirement; chars
can start on any byte address, but 2-byte shorts must start on an even address, 4-byte ints
or floats must start on an address divisible by 4, and 8-byte longs or doubles must start on
an address divisible by 8. Signed or unsigned makes no difference.

The jargon for this is that basic C types on a vanilla ISA are self-aligned. Pointers, whether
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32-bit (4-byte) or 64-bit (8-byte) are self-aligned too.

Self-alignment makes access faster because it facilitates generating single-instruction
fetches and puts of the typed data. Without alignment constraints, on the other hand, the
code might end up having to do two or more accesses spanning machine-word boundaries.
Characters are a special case; they’re equally expensive from anywhere they live inside a
single machine word. That’s why they don’t have a preferred alignment.

I said "on modern processors" because on some older ones forcing your C program to
violate alignment rules (say, by casting an odd address into an int pointer and trying to use
it) didn’t just slow your code down, it caused an illegal instruction fault. This was the
behavior, for example, on Sun SPARC chips. In fact, with sufficient determination and the
right (e18) hardware flag set on the processor, you can still trigger this on x86.

Also, self-alignment is not the only possible rule. Historically, some processors (especially
those lacking barrel shifters) have had more restrictive ones. If you do embedded systems,
you might trip over one of these lurking in the underbrush. Be aware this is possible.

One curious and illustrative exception is the Motorola 68020 and its successors. These are
word-oriented 32-bit machines - that is, the underlying granularity of fast access is 16 bits.
Compilers can start structs on 16-bit boundaries without a speed penalty, even if the first
member was a 32-bit scalar. Therefore, only character fields with odd byte lengths can ever
cause padding.

From when it was first written at the beginning of 2014 until late 2016, this section ended
with other caveats about odd architectures. During that period I've learned something
rather reassuring from working with the source code for the reference implementation of
NTP. It does packet analysis by reading packets off the wire directly into memory that the
rest of the code sees as a struct, relying on the assumption of minimal self-aligned padding -
or zero padding in odd cases like 690x0.

The interesting news is that NTP has apparently being getting away with this for decades
across a very wide span of hardware, operating systems, and compilers, including not just
Unixes but under Windows variants as well. This suggests that platforms with padding
rules other than self-alignment are either nonexistent or confined to such specialized niches
that they’re never either NTP servers or clients.

4. Padding

Now we'll look at a simple example of variable layout in memory. Consider the following
series of variable declarations in the top level of a C module:

char *p;
char c;
int x;

If you didn’t know anything about data alignment, you might assume that these three
variables would occupy a continuous span of bytes in memory. That is, on a 32-bit machine
4 bytes of pointer would be immediately followed by 1 byte of char and that immediately
followed by 4 bytes of int. And a 64-bit machine would be different only in that the pointer
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would be 8 bytes.

In fact, the hidden assumption that the allocated order of static variables is their source
order is not necessarily valid; the C standards don’t mandate it. I'm going to ignore this
detail because (a) that hidden assumption is usually correct anyway, and (b) the actual
purpose of talking about padding and packing outside structures is to prepare you for what
happens inside them.

Here’s what actually happens (on an x86 or ARM or anything else with self-aligned types).
The storage for p starts on a self-aligned 4- or 8-byte boundary depending on the machine

word size. This is pointer alignment - the strictest possible.

The storage for c follows immediately. But the 4-byte alignment requirement of x forces a
gap in the layout; it comes out as though there were a fourth intervening variable, like this:

char *p; /* 4 or 8 bytes */
char c; /* 1 byte */
char pad[3]; /* 3 bytes */
int x; /* 4 bytes */

The pad [3] character array represents the fact that there are three bytes of waste space in
the structure. The old-school term for this was "slop". The value of the padding bits is
undefined; in particular it is not guaranteed that they will be zeroed.

Compare what happens if x is a 2-byte short:

char *p;
char c;
short x;

In that case, the actual layout will be this:

char *p; /* 4 or 8 bytes */
char c; /* 1 byte */
char pad[1l]; /* 1 byte */
short x; /* 2 bytes */

On the other hand, if x is a long on a 64-bit machine

char *p;
char c;
long x;

we end up with this:

char *p; /* 8 bytes */
char c; /* 1 byte

char pad[7]; /* 7 bytes */
long x; /* 8 bytes */
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If you have been following carefully, you are probably now wondering about the case where
the shorter variable declaration comes first:

char c;
char *p;
int x;

If the actual memory layout were written like this

char c;

char padl[M];
char *p;

char pad2[N];
int x;

what can we say about M and N?

First, in this case N will be zero. The address of x, coming right after p, is guaranteed to be
pointer-aligned, which is never less strict than int-aligned.

The value of M is less predictable. If the compiler happened to map c to the last byte of a
machine word, the next byte (the first of p) would be the first byte of the next one and
properly pointer-aligned. M would be zero.

It is more likely that c will be mapped to the first byte of a machine word. In that case M
will be whatever padding is needed to ensure that p has pointer alignment - 3 on a 32-bit
machine, 7 on a 64-bit machine.

Intermediate cases are possible. M can be anything from o to 7 (0 to 3 on 32-bit) because a
char can start on any byte boundary in a machine word.

If you wanted to make those variables take up less space, you could get that effect by
swapping x with c in the original sequence.

char *p; /* 8 bytes */
long x; /* 8 bytes */
char c; /* 1 byte

Usually, for the small number of scalar variables in your C programs, bumming out the few
bytes you can get by changing the order of declaration won’t save you enough to be
significant. The technique becomes more interesting when applied to nonscalar variables -
especially structs.

Before we get to those, let’s dispose of arrays of scalars. On a platform with self-aligned
types, arrays of char/short/int/long/pointer have no internal padding; each member is
automatically self-aligned at the end of the next one.

All these rules and examples map over to Go structs, and to Rust structs with the "repr(C)"
attribute, with only syntactic changes.
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In the next section we will see that the same is not necessarily true of structure arrays.

5. Structure alignment and padding

In general, a struct instance will have the alignment of its widest scalar member. Compilers
do this as the easiest way to ensure that all the members are self-aligned for fast access.

Also, in C (and Go, and Rust) the address of a struct is the same as the address of its first
member - there is no leading padding. In C++ this may not be true; see Section 14, “Other
languages”.

(When you’re in doubt about this sort of thing, ANSI C provides an offsetof() macro which
can be used to read out structure member offsets.)

Consider this struct:

struct fool {
char *p;
char c;
long x;

}s

Assuming a 64-bit machine, any instance of st ruct fool will have 8-byte alignment. The
memory layout of one of these looks unsurprising, like this:

struct fool {

char *p; /* 8 bytes */
char c; /* 1 byte

char pad[7]; /* 7 bytes */
long x; /* 8 bytes */

}s

It’s laid out exactly as though variables of these types has been separately declared. But if
we put c first, that’s no longer true.

struct foo2 {

char c; /* 1 byte */
char pad[7]; /* 7 bytes */
char *p; /* 8 bytes */
long x; /* 8 bytes */

}s

If the members were separate variables, c could start at any byte boundary and the size of
pad might vary. Because struct foo2 has the pointer alignment of its widest member,
that’s no longer possible. Now c has to be pointer-aligned, and following padding of 7 bytes
is locked in.

Now let’s talk about trailing padding on structures. To explain this, I need to introduce a
basic concept which I'll call the stride address of a structure. It is the first address following
the structure data that has the same alignment as the structure.
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The general rule of trailing structure padding is this: the compiler will behave as though the
structure has trailing padding out to its stride address. This rule controls what sizeof ()
will return.

Consider this example on a 64-bit x86 or ARM machine:

struct foo3 {
char *p; /* 8 bytes */
char c; /* 1 byte */
}s

struct foo3 singleton;
struct foo3 quadl[4];

You might think that sizeof (struct foo3) should be 9, but it’s actually 16. The stride
address is that of (&p) [2]. Thus, in the quad array, each member has 7 bytes of trailing
padding, because the first member of each following struct wants to be self-aligned on an 8-
byte boundary. The memory layout is as though the structure had been declared like this:

struct foo3 {
char *p; /* 8 bytes */
char c; /* 1 byte */
char padl[7];

i

For contrast, consider the following example:

struct food {
short s; /* 2 bytes */
char c; /* 1 byte */
i

Because s only needs to be 2-byte aligned, the stride address is just one byte after c, and
struct foo4 as a whole only needs one byte of trailing padding. It will be laid out like
this:

struct foo4d {
short s; /* 2 bytes */
char c; /* 1 byte */
char padl[l];

}s

and sizeof (struct foo4) will return 4.

Here’s a last important detail: If your structure has structure members, the inner structs
want to have the alignment of longest scalar too. Suppose you write this:

struct foob5 {
char c;
struct foo5 inner ({
char *p;
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short x;
} inner;

i

The char *p member in the inner struct forces the outer struct to be pointer-aligned as
well as the inner. Actual layout will be like this on a 64-bit machine:

struct foob {

char c; /* 1 byte*x/
char padl[7]; /* 7 bytes */
struct foo5 inner ({
char *p; /* 8 bytes */
short x; /* 2 bytes */
char pad2[6]; /* 6 bytes */
} inner;

}i

This structure gives us a hint of the savings that might be possible from repacking
structures. Of 24 bytes, 13 of them are padding. That’s more than 50% waste space!

6. Bitfields

Now let’s consider C bitfields. What they give you the ability to do is declare structure fields
of smaller than character width, down to 1 bit, like this:

struct fooo6 {
short s;
char c;
int flip:1;
int nybble:4;
int septet:7;
i

The thing to know about bitfields is that they are implemented with word- and byte-level
mask and rotate instructions operating on machine words, and cannot cross word
boundaries. C99 guarentees that bit-fields will be packed as tightly as possible, provided
they don’t cross storage unit boundaries (6.7.2.1 #10).

This restriction is relaxed in C11 (6.7.2.1p11) and C++14 ([class.bit]p1); these revisions do
not actually require struct foo9 to be 64 bits instead of 32; a bit-field can span multiple
allocation units instead of starting a new one. It’s up to the implementation to decide; GCC
leaves it up to the ABI, which for x64 does prevent them from sharing an allocation unit.

Assuming we’re on a 32-bit machine, the C99 rules imply that the layout may look like this:

struct foob {

short s; /* 2 bytes */

char c; /* 1 byte */

int flip:1; /* total 1 bit */

int nybble:4; /* total 5 bits */

int padl:3; /* pad to an 8-bit boundary */

int septet:7; /* 7 bits */
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int pad2:25; /* pad to 32 bits */
by

But this isn’t the only possibility, because the C standard does not specify that bits are
allocated low-to-high. So the layout could look like this:

struct foob6b {

short s; /* 2 bytes */

char c; /* 1 byte */

int padl:3; /* pad to an 8-bit boundary */
int flip:1; /* total 1 bit */

int nybble:4; /* total 5 bits */
int pad2:25; /* pad to 32 bits */
int septet:7; /* 7 bits */

b

That is, the padding could precede rather than following the payload bits.

Note also that, as with normal structure padding, the padding bits are not guaranteed to be
zero; C99 mentions this.

Note that the base type of a bit field is interpreted for signedness but not necessarily for
size. It is up to implementors whether "short flip:1" or "long flip:1" are supported, and
whether those base types change the size of the storage unit the field is packed into.

Proceed with caution and check with -Wpadded if you have it available (e.g. under clang).
Compilers on exotic hardware might interpret the Cg9 rules in surprising ways; older
compilers might not quite follow them.

The restriction that bitfields cannot cross machine word boundaries means that, while the
first two of the following structures pack into one and two 32-bit words as you’d expect, the
third (struct foo?9) takes up three 32-bit words in C99, in the last of which only one bit
is used.

struct foo7 {
int bigfield:31; /* 32-bit word 1 begins */
int littlefield:1;

}s

struct foo8 {

int bigfieldl:31; /* 32-bit word 1 begins /*
int littlefieldl:1;
int bigfield2:31; /* 32-bit word 2 begins */

int littlefield2:1;
}s

struct foo9 {
int bigfieldl:31; /* 32-bit word 1 begins */
int bigfield2:31; /* 32-bit word 2 begins */
int littlefieldl:1;
int littlefield2:1; /* 32-bit word 3 begins */
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Again, C11 and C++14 may pack foo9 tighter, but it would perhaps be unwise to count on
this.

On the other hand, struct foo8 would fit into a single 64-bit word if the machine has
those.

7. Structure reordering

Now that you know how and why compilers insert padding in and after your structures we’ll
examine what you can do to squeeze out the slop. This is the art of structure packing.

The first thing to notice is that slop only happens in two places. One is where storage bound
to a larger data type (with stricter alignment requirements) follows storage bound to a
smaller one. The other is where a struct naturally ends before its stride address, requiring
padding so the next one will be properly aligned.

The simplest way to eliminate slop is to reorder the structure members by decreasing
alignment. That is: make all the pointer-aligned subfields come first, because on a 64-bit
machine they will be 8 bytes. Then the 4-byte ints; then the 2-byte shorts; then the
character fields.

So, for example, consider this simple linked-list structure:

struct foolO {
char c;
struct fool0 *p;
short x;

b
With the implied slop made explicit, here it is:

struct foolO {

char c; /* 1 byte */
char padl[7]; /* 7 bytes */
struct foolO *p; /* 8 bytes */
short x; /* 2 bytes */
char pad2([6]; /* 6 bytes */

I
That’s 24 bytes. If we reorder by size, we get this:

struct fooll {
struct fooll *p;
short x;
char c;

}i

Considering self-alignment, we see that none of the data fields need padding. This is
because the stride address for a (longer) field with stricter alignment is always a validly-
aligned start address for a (shorter) field with less strict requirements. All the repacked
struct actually requires is trailing padding:
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struct fooll {

struct fooll *p; /*
short x; /*
char c; /*
char padl[5]; /*

i

http://www.catb.org/esr/structure-packing/# proof _and_exce...

8 bytes */
2 bytes */
1 byte */

5 bytes */

Our repack transformation drops the size from 24 to 16 bytes. This might not seem like a
lot, but suppose you have a linked list of 200K of these? The savings add up fast - especially
on memory-constrained embedded systems or in the core part of an OS kernel that has to

stay resident.

Note that reordering is not guaranteed to produce savings. Applying this technique to an

earlier example, struct foo5, we get this:

struct fool2 {
struct foob {

char *p; /*
short x; /*
} inner;
char c; /*

}i
With padding written out, this is

struct fool2 {
struct foob {

char *p; /*
short x; /*
char padl[6]; /*
} inner;
char c; /*
char padl[7]; /*

}s

8 bytes */
2 bytes */

1 byte*/

bytes */
bytes */
bytes */

o N 0o

byte*/
bytes */

=

It’s still 24 bytes because c cannot back into the inner struct’s trailing padding. To collect

that gain you would need to redesign your data structures.

Curiously, strictly ordering your structure fields by increasing size also works to mimimize
padding. You can minimize padding with any order in which (a) all fields of any one size are

in a continuous span (completely eliminating padding between them), and (b) the gaps
between those spans are such that the sizes on either side have as few doubling steps of
difference from each other as possible. Usually this means no padding at all on one side.

Even more general minimal-padding orders are possible. Example:

struct fool3 {
int32 t 1i;
int32 t 1i2;
char octet[8];
int32 t 1i3;
int32 t i4;
int6d4 t 1;
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int32 t 1i5;
int32 t 1i6;
bi

This struct has zero padding under self-alignment rules. Working out why is a useful
exercise to develop your understanding.

Since shipping the first version of this guide I have been asked why, if reordering for
minimal slop is so simple, C compilers don’t do it automatically. The answer: Cis a
language originally designed for writing operating systems and other code close to the
hardware. Automatic reordering would interfere with a systems programmer’s ability to lay
out structures that exactly match the byte and bit-level layout of memory-mapped device
control blocks.

Go hews to the C philosophy and does not reorder fields. Rust makes the opposite choice;
by default, its compiler may reorder structure fields.

8. Awkward scalar cases

Using enumerated types instead of #defines is a good idea, if only because symbolic
debuggers have those symbols available and can show them rather than raw integers. But,
while enums are guaranteed to be compatible with an integral type, the C standard does not
specify which underlying integral type is to be used for them.

Be aware when repacking your structs that while enumerated-type variables are usually
ints, this is compiler-dependent; they could be shorts, longs, or even chars by default. Your
compiler may have a pragma or command-line option to force the size.

The 1ong double type is a similar trouble spot. Some C platforms implement this in 80
bits, some in 128, and some of the 80-bit platforms pad it to 96 or 128 bits.

In both cases it’s best to use sizeof () to check the storage size.

Finally, under x86 Linux doubles are sometimes an exception to the self-alignment rule; an
8-byte double may require only 4-byte alignment within a struct even though standalone
doubles variables have 8-byte self-alignment. This depends on compiler and options.

9. Readability and cache locality

While reordering by size is the simplest way to eliminate slop, it’s not necessarily the right
thing. There are two more issues: readability and cache locality.

Programs are not just communications to a computer, they are communications to other
human beings. Code readability is important even (or especially!) when the audience of the
communication is only your future self.

A clumsy, mechanical reordering of your structure can harm readability. When possible, it
is better to reorder fields so they remain in coherent groups with semantically related pieces
of data kept close together. Ideally, the design of your structure should communicate the
design of your program.
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When your program frequently accesses a structure, or parts of a structure, it is helpful for
performance if the accesses tend to fit within a cache line - the memory block fetched by
your processor when it is told to get any single address within the block. On 64-bit x86 a
cache line is 64 bytes beginning on a self-aligned address; on other platforms it is often 32

bytes.

The things you should do to preserve readability - grouping related and co-accessed data in
adjacent fields - also improve cache-line locality. These are both reasons to reorder
intelligently, with awareness of your code’s data-access patterns.

If your code does concurrent access to a structure from multiple threads, there’s a third
issue: cache line bouncing. To minimize expensive bus traffic, you should arrange your data
so that reads come from one cache line and writes go to another in your tighter loops.

And yes, this sometimes contradicts the previous guidance about grouping related data in
the same cache-line-sized block. Multithreading is hard. Cache-line bouncing and other
multithread optimization issues are very advanced topics which deserve an entire tutorial of
their own. The best I can do here is make you aware that these issues exist.

10. Other packing techniques

Reordering works best when combined with other techniques for slimming your structures.
If you have several boolean flags in a struct, for example, consider reducing them to 1-bit
bitfields and packing them into a place in the structure that would otherwise be slop.

You'll take a small access-time penalty for this - but if it squeezes the working set enough
smaller, that penalty will be swamped by your gains from avoided cache misses.

More generally, look for ways to shorten data field sizes. In cvs-fast-export, for example,
one squeeze I applied was to use the knowledge that RCS and CVS repositories didn’t exist
before 1982. I dropped a 64-bit Unix time t (zero date at the beginning of 1970) for a 32-
bit time offset from 1982-01-01T00:00:00; this will cover dates to 2118. (Note: if you pull a
trick like this, do a bounds check whenever you set the field to prevent nasty bugs!)

Each such field shortening not only decreases the explicit size of your structure, it may
remove slop and/or create additional opportunities for gains from field reordering.
Virtuous cascades of such effects are not very hard to trigger.

The riskiest form of packing is to use unions. If you know that certain fields in your
structure are never used in combination with certain other fields, consider using a union to
make them share storage. But be extra careful and verify your work with regression testing,
because if your lifetime analysis is even slightly wrong you will get bugs ranging from
crashes to (much worse) subtle data corruption.

11. Overriding alignment rules

Sometimes you can coerce your compiler into not using the processor’s normal alignment
rules by using a pragma, usually #pragma pack. GCC and clang have a "packed" attribute
you can attach to individual structure declarations; GCC has an -fpack-struct option for
entire compilations.
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Do not do this casually, as it forces the generation of more expensive and slower code.
Usually you can save as much memory, or almost as much, with the techniques I describe
here.

The only really compelling reason for #pragma pack is if you have to exactly match your C
data layout to some kind of bit-level hardware or protocol requirement, like a memory-
mapped hardware port, and violating normal alignment is required for that to work. If
you're in that situation, and you don’t already know everything else I'm writing about here,
you’re in deep trouble and I wish you luck.

12. Tools

The clang compiler has a -Wpadded option that causes it to generate messages about
alignment holes and padding. Some versions also have an undocumented -fdump-record-
layouts option that yields more information.

If you're using C11, you can deploy static_assert to check your assumptions about type and
structure sizes. Example:

#include <assert.h>
struct food {

short s; /* 2 bytes */
char c; /* 1 byte */
i
static assert (sizeof (struct foo4) == 4, “Check your assumptions");

I have not used it myself, but several respondents speak well of a program called pahole.
This tool cooperates with a compiler to produce reports on your structures that describe
padding, alignment, and cache line boundaries. This was at one time a standalone C
program, but that is now unmaintained; a script with the name pahole now ships with gdb
and that is what you should use.

I've received a report that a proprietary code auditing tool called "PVS Studio" can detect
structure-packing opportunities.

13. Proof and exceptional cases

You can download sourcecode for a little program that demonstrates the assertions about
scalar and structure sizes made above. It is packtest.c.

If you look through enough strange combinations of compilers, options, and unusual
hardware, you will find exceptions to some of the rules I have described. They get more
common as you go back in time to older processor designs.

The next level beyond knowing these rules is knowing how and when to expect that they
will be broken. In the years when I learned them (the early 1980s) we spoke of people who
didn’t get this as victims of "all-the-world’s-a-VAX" syndrome. Remember that not all the
world is vanilla.

10/21/24, 1:31 PM

http://www.catb.org/esr/structure-packing/# proof _and_exce...


http://lists.cs.uiuc.edu/pipermail/cfe-dev/2014-July/037778.html
http://lists.cs.uiuc.edu/pipermail/cfe-dev/2014-July/037778.html
http://www.catb.org/esr/structure-packing/packtest.c
http://www.catb.org/esr/structure-packing/packtest.c

The Lost Art of Structure Packing http://www.catb.org/esr/structure-packing/# proof _and_exce...

14. Other languages

In this section we’ll call a language "C-like" if structure and array members are self-aligned,
are not reordered by the compiler, the address of a struct is the address of its first member,
and structs have trailing pdding to their stride length.

If you know the implications of self-aligment in C, you can apply them directly to
calculating sizes and offsets in any language that is C-like in this sense, and to space-
optimizing in the language’s structures.

14.1. C++

C++ is C-like, except that classes that look like structs may ignore the rule that the address
of a struct is the address of its first member! Whether they do or not depends on how base
classes and virtual member functions are implemented, and varies by compiler. Otherwise
everything we’ve observed about C applies.

14.2. Go

The Go language is in many respects similar to C. It has structures and arrays, though not
bitfields or unions. Go compilers have the same optimization and alignment issues as C
compilers. As in C, array elements are padded up to the following stride address.

There is no Go equivalent of the C #pack pragma.

Variables and struct fields will normally be self-aligned for the same reasons rgis is a rule in
C. However, there is one peculiat exception; on 32—bit platforms, 64-bit struct fields only
require akignment on a machine word boundary, e.g. 32 bits. There has been discussion of
https://go.googlesource.com/proposal/+/master/design/36606-64-bit-field-
alignment.md[a proposal to change this, but it stands.

On the other hand, the Go specification makes no guarantees about how structure fields are
ordered. Unlike C, it would be legal for a Go compiler to lay out fields in an order different
from their specification in the source. As of 2022 no Go compiler that actually does this has
beenbn sughted in the wild.

Go has one odd really odd quirk. Since Go 1.5, a zero-length field at the end of a struct (that
is, a zero-length array or empty struct) is sized and aligned as though it is one byte. The
reasons for this are discussed in an essay Padding is Hard by one of the Go developers.

There’s a specific discussion of Go alignment rules that includes pointers tp some tools that
can automatically tweak your structures to optimal alignment. Another such tool is
strucrslop. I have not used any of these, try at your own risk.

14.3. Rust

Rust follows C-like packing rules if a structure is annotated with "repr(C)". Otherwise (by
default) all bets are off: padding rules are (deliberately) unspecified and the compiler may
even reorder structure members. It is probably best to let the Rust compiler do space
optimization rather than forcing it.
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14.4. Java

Java’s JNI (Java Native Interface) supports C-like packing rules for structure members so
that JNTI Java structures can map exactly to C equivalents. There is a pack pragma.

Packing in the JVM itself, however, is not well defined. The JVM spec simply says "The Java
Virtual Machine does not mandate any particular internal structure for objects.", making
choices about this implementation-dependent.

That said, many JVM implementations are word-oriented in an even stricter way than
Motorola processors - structure and array members can start at any 32-bit boundary but
not at a 16- or 8-bit one. This will create internal padding after char and 16-bit short
members where it wouldn’t be expected under C-like rules.

14.5. Swift
Swift is exactly C-like. There is no equivalent of a pack pragma.

14.6. C#

C# is C-like with the default structure layout attribute LayoutKind.Sequential.
LayoutKind.Auto allows the compiler to reorder, and LayoutKind.Explicit allows the
programmmer to specify field sizes explicitly. There’s a Pack modifier which is equivalent to
a C pack pragma.

15. Supporting this work

If you were educated or entertained by this document, please sign up for my Patreon feed.
The time needed to write and maintain documents like this one is not free, and while I
enjoying giving them to the world my bills won’t pay themselves. Even a few dollars a
month - from enough of you - helps a lot.

16. Related Reading

This section exists to collect pointers to essays which I judge to be good companions to this
one.

A Guide to Undefined Behavior in C and C++

Time, Clock, and Calendar Programming In C

Things Every Hacker Once Knew

17. Version history

2.5 @ 2020-04-30
Revision and expansion of the section on Go packing/alignment rules.

2.4 @ 2020-04-28
Added coverage of Java, Swift, and C#.
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2.3 @ 2020-04-20
Describe exceptional alignment rules on Motorola 680x0. Sightly improve coverage of
Rust alignment rules.

2.2 @ 2019-12-19
Minor markup fix.

2.1 @ 2019-02-14
Correct a minor error in one of the examples pointed out by Luis Emilio Moreno
Duran.

2.0 @ 2018-08-06
Drop "C" out of the title as these techniques are applicable to Go and Rust as well.
More coverage of Go and Rust. The pahole tool has been replaced by a script in the
gdb distribution.

1.19 @ 2018-02-12
Describe usefulness of static_assert() in C11. Added Go and Rust coverage.

1.18 @ 2017-06-01
More general zero-padding orders. C11 and C14 relax a constraint on bitfield packing.

1.17 @ 2016-11-14
Typo fixes.

1.16 @ 2016-10-21
Answer an objection about allocation order being unrelated to source order.

1.15 @ 2016-10-20
Note the field evidence from NTP.

1.14 @ 2015-12-19
Typo correction: -Wpadding — -Wpadded.

1.13 @ 2015-11-23
Be explicit about padding bits being undefined. More about bitfields.

1.12 @ 2015-11-11
Major revision of section on bitfields reflecting C99 rules.

1.11 @ 2015-07-23
Mention the clang -fdump-record-layouts option.

1.10 @ 2015-02-20
Mention attributepacked, -fpack-struct, and PVS Studio.

1.9 @ 2014-10-01
Added link to "Time, Clock, and Calendar Programming In C".

1.8 @ 2014-05-20
Improved explanation for the bitfield examples,

1.7 @ 2014-05-17
Correct a minor error in the description of the layout of st ruct foo8.

1.6 @ 2014-05-14
Emphasize that bitfields cannot cross word boundaries. Idea from Dale Gulledge.

1.5 @ 2014-01-13
Explain why structure member reordering is not done automatically.
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1.4 @ 2014-01-04
A note about double under x86 Linux.

1.3 @ 2014-01-03
New sections on awkward scalar cases, readability and cache locality, and tools.

1.2 @ 2014-01-02
Correct an erroneous address calculation.

1.1 @ 2014-01-01
Explain why aligned accesses are faster. Mention offsetof. Various minor fixes,
including the packtest.c download link.

1.0 @ 2014-01-01
Initial release.

18 0of 18 10/21/24, 1:31 PM



