
© 2010 Charles E. Leiserson 1

6.172
Performance 
Engineering of 
Software Systems

LECTURE 16

Synchronizing 
without Locks

Charles E. Leiserson

November 4, 2010



© 2010 Charles E. Leiserson 2

OUTLINE

•Memory Consistency
•Lock-Free Protocols
•The ABA Problem
•Reducer Hyperobjects



© 2010 Charles E. Leiserson 3

OUTLINE

•Memory Consistency
•Lock-Free Protocols
•The ABA Problem
•Reducer Hyperobjects



© 2010 Charles E. Leiserson 4

Memory Models

mov 1, a    ;Store

mov b, %ebx ;Load

Initially, a = b = 0.

Processor 0 Processor 1

mov 1, b    ;Store

mov a, %eax ;Load

Q. What are the final possible values of 
%eax and %ebx after both processors 
have executed?

A. It depends on the memory model:
how memory operations behave in 
the parallel computer system.



© 2010 Charles E. Leiserson 5

Sequential Consistency

―[T]he result of any execution is the same as if the 
operations of all the processors were executed in 
some sequential order, and the operations of 
each individual processor appear in this sequence 
in the order specified by its program.‖

— Leslie Lamport [1979]

∙ The sequence of instructions as defined by a processor’s 
program are interleaved with the corresponding 
sequences defined by the other processors’s programs to 
produce a global linear order of all instructions.

∙ A load instruction receives the value stored to that 
address by the most recent store instruction that 
precedes the load, according to the linear order.

∙ The hardware can do whatever it wants, but for the 
execution to be sequentially consistent, it must appear as 
if loads and stores obey some global linear order.



© 2010 Charles E. Leiserson 6

Example

1

2

3

4

Interleavings

1 1 1 3 3 3

2 3 3 1 1 4

3 2 4 2 4 1

4 4 2 4 2 2

%eax 1 1 1 1 1 0

%ebx 0 1 1 1 1 1

Sequential consistency implies that no 
execution ends with %eax= %ebx = 0.

mov 1, a    ;Store

mov b, %ebx ;Load

Initially, a = b = 0.

Processor 0 Processor 1

mov 1, b    ;Store

mov a, %eax ;Load



© 2010 Charles E. Leiserson 7

Mutual-Exclusion Problem

Most implementations of mutual exclusion 
employ an atomic read-modify-write
instruction or the equivalent, usually to 
implement a lock:
• e.g., xchg, test-and-set, compare-and-

swap, load-linked-store-conditional.
Q. Can mutual exclusion be implemented 

with only atomic loads and stores?
A. Yes, Dekker and Dijkstra showed that it 

can as long as the computer system is 
sequentially consistent.



Peterson’s Algorithm

x

widget x; //protected variable

bool she_wants(false);

bool he_wants(false);

enum theirs {hers, his} turn;

widget

© Microsoft. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/fairuse.

© 2010 Charles E. Leiserson 8

Thread Thread
she_wants = true;

turn = his;

while(he_wants && turn==his);

frob(x); //critical section

she_wants = false;

he_wants = true;

turn = hers;

while(she_wants && turn==hers);

borf(x); //critical section

he_wants = false;

Her His

http://ocw.mit.edu/fairuse


© 2010 Charles E. Leiserson 9

Memory Models Today

∙No modern-day processor implements 
sequential consistency.

∙All implement some form of relaxed 
consistency.

∙Hardware actively reorders instructions.
∙Compilers may reorder instructions, too.



© 2010 Charles E. Leiserson 10

Instruction Reordering

Q. Why might the hardware or compiler decide 
to reorder these instructions?

A. To obtain higher performance by covering 
load latency — instruction-level parallelism.  

mov 1, a    ;Store

mov b, %ebx ;Load

mov b, %ebx ;Load

mov 1, a    ;Store

Program Order Execution Order



© 2010 Charles E. Leiserson 11

Instruction Reordering

Q. When is it safe for the hardware or compiler 
to perform this reordering?

A. When a ≠ b.

A′. And there’s no concurrency.

mov 1, a    ;Store

mov b, %ebx ;Load

mov b, %ebx ;Load

mov 1, a    ;Store

Program Order Execution Order



© 2010 Charles E. Leiserson 12

Hardware Reordering

∙ The processor can issue stores faster than the network 
can handle them ⇒ store buffer.

∙ Since a load may stall the processor until it is satisfied, 
loads take priority, bypassing the store buffer.

∙ If a load address matches an address in the store 
buffer, the store buffer returns the result.

∙ Thus, a load can bypass a store to a different address.

Memory 
System

Load Bypass

Processor Network

Store Buffer



© 2010 Charles E. Leiserson 13

x86 Memory Consistency

1. Loads are not reordered with loads.

2. Stores are not reordered with stores.

3. Stores are not reordered with prior loads.

4. A load may be reordered with a prior store to 
a different location but not with a prior store
to the same location.

5. Loads and stores are not reordered with lock
instructions.

6. Stores to the same location respect a global 
total order.

7. Lock instructions respect a global total order. 

8. Memory ordering preserves transitive visibility
(―causality‖).



© 2010 Charles E. Leiserson 14

Impact of Reordering

1

2

3

4

mov 1, a    ;Store

mov b, %ebx ;Load

Processor 0 Processor 1

mov 1, b    ;Store

mov a, %eax ;Load



© 2010 Charles E. Leiserson 15

Impact of Reordering

The ordering 2, 4, 1, 3 produces %eax = %ebx = 0.

Instruction reordering violates 
sequential consistency!

1

2

3

4

mov 1, a    ;Store

mov b, %ebx ;Load

Processor 0 Processor 1

mov 1, b    ;Store

mov a, %eax ;Load

2

1

4

3

mov b, %ebx ;Load

mov 1, a    ;Store

mov a, %eax ;Load

mov 1, b    ;Store



© 2010 Charles E. Leiserson 16

Further Impact of Reordering

she_wants = true;

turn = his;

while(he_wants && turn==his);

frob(x); //critical section

she_wants = false;

he_wants = true;

turn = hers;

while(she_wants && turn==hers);

borf(x); //critical section

he_wants = false;

Peterson’s algorithm revisited

∙ The loads of he_wants/she_wants can be reordered 
before the stores of she_wants/he_wants.

∙ Both threads might enter their critical sections 
simultaneously!



© 2010 Charles E. Leiserson 17

Memory Fences

∙ A memory fence (or memory barrier ) is a hardware 
action that enforces an ordering constraint between the 
instructions before and after the fence.

∙ A memory fence can be issued explicitly as an 
instruction (x86: mfence) or be performed implicitly by 
locking, compare-and-swap, and other synchronizing 
instructions.

∙ The gcc and Intel compilers implement a memory fence 

via the built-in function __sync_synchronize().*

∙ The typical cost of a memory fence is comparable to 
that of an L2-cache access.

*See <http://gcc.gnu.org/onlinedocs/gcc-4.3.4/gcc/Atomic-Builtins.html#Atomic-Builtins>.  
Some versions of gcc contain a bug which causes the mfence instruction to be omitted, however, 
but there is a patch: <http://gcc.gnu.org/viewcvs/branches/gcc-4_3-
branch/gcc/config/i386/sse.md?r1=142310&r2=142309&pathrev=142310>. 

http://gcc.gnu.org/onlinedocs/gcc-4.3.4/gcc/Atomic-Builtins.html#Atomic-Builtins
http://gcc.gnu.org/viewcvs/branches/gcc-4_3-branch/gcc/config/i386/sse.md?r1=142310&r2=142309&pathrev=142310
http://gcc.gnu.org/viewcvs/branches/gcc-4_3-branch/gcc/config/i386/sse.md?r1=142310&r2=142309&pathrev=142310


© 2010 Charles E. Leiserson 18

Fixing the Reordering Error

she_wants = true;

turn = his;

__sync_synchronize();

while(he_wants && turn==his);

frob(x); //critical section

she_wants = false;

Peterson’s algorithm with memory fences

he_wants = true;

turn = hers;

__sync_synchronize();

while(she_wants && turn==hers);

borf(x); //critical section

he_wants = false;

Memory fences can restore consistency.



© 2010 Charles E. Leiserson 19

OUTLINE

•Memory Consistency
•Lock-Free Protocols
•The ABA Problem
•Reducer Hyperobjects



0

Recall: Summing Problem

© 2010 Charles E. Leiserson 2

int compute(const X& v); 

int main() 

{ 

const std::size_t n = 1000000;

extern X myArray[n];

// ... 

int result = 0; 

for (std::size_t i = 0; i < n; ++i) 

{ 

result += compute(myArray[i]); 

} 

std::cout << "The result is: " 

<< result

<< std::endl; 

return 0; 

}



© 2010 Charles E. Leiserson 21

Summing Example in Cilk++

int compute(const X& v); 

int main() 

{ 

const std::size_t n = 1000000;

extern X myArray[n];

// ... 

int result = 0; 

cilk_for (std::size_t i = 0; i < n; ++i) 

{ 

result += compute(myArray[i]); 

} 

std::cout << "The result is: " 

<< result

<< std::endl; 

return 0; 

}

Race!



© 2010 Charles E. Leiserson 22

Mutex for the Summing Problem

int result = 0; 

mutex L;

cilk_for (std::size_t i = 0; i < n; ++i) 

{   

int temp = compute(myArray[i]);

L.lock();

result += temp; 

L.unlock();

} 

Contention,  yes, but it may not be significant 
if compute(myArray[i]) takes sufficiently 
long.  Still, in a multiprogrammed setting, 
there may be other problems….



© 2010 Charles E. Leiserson 23

Mutex for the Summing Problem

int result = 0; 

mutex L;

cilk_for (std::size_t i = 0; i < n; ++i) 

{   

int temp = compute(myArray[i]);

L.lock();

result += temp; 

L.unlock();

} 

Q. What happens if the operating system 
swaps out a loop iteration just after it 
acquires the mutex?

A. All other loop iterations must wait.



© 2010 Charles E. Leiserson 24

Compare-and-Swap

Compare-and-swap is provided by the cmpxchg
instruction on x86.  The gcc and Intel compilers 
implement compare-and-swap via the built-in 
function __sync_bool_compare_and_swap() which 
operates on values of type int, long, long long, 
and their unsigned counterparts.*

Implementation logic
bool

__sync_bool_compare_and_swap (T *x, T old, T new) { 

if (*x == old) { *x = new; return 1; } 

return 0; 

} Executes atomically.

*See <http://gcc.gnu.org/onlinedocs/gcc-4.3.4/gcc/Atomic-Builtins.html#Atomic-Builtins>.

http://gcc.gnu.org/onlinedocs/gcc-4.3.4/gcc/Atomic-Builtins.html#Atomic-Builtins


© 2010 Charles E. Leiserson 25

CAS for Summing

int result = 0; 

cilk_for (std::size_t i = 0; i < n; ++i) 

{ 

temp = compute(myArray[i]);

do {

int old = result;

int new = result + temp;

} while ( !__sync_bool_compare_and_swap

(&result, old, new) );

}

Q. What happens if the operating system 
swaps out a loop iteration?

A. No other loop iterations need wait.



© 2010 Charles E. Leiserson 26

Lock-Free Stack

77 75head:

struct Node {

Node* next;

int data;

};

class Stack {

private:

Node* head;

⋮



© 2010 Charles E. Leiserson 27

Lock-Free Push

81

77 75

node:

head:

public:

void push(Node* node) {

do {

node->next = head;

} while (!__sync_bool_compare_and_swap

(&head, node->next, node));

}

⋮



© 2010 Charles E. Leiserson 28

Lock-Free Push with Contention

81

77 75head:

33

The compare-and-swap fails!

public:

void push(Node* node) {

do {

node->next = head;

} while (!__sync_bool_compare_and_swap

(&head, node->next, node));

}

⋮



© 2010 Charles E. Leiserson 29

Lock-Free Pop

Node* pop() {

Node* current = head;

while(current) {

if(__sync_bool_compare_and_swap

(&head, 

current, 

current->next)) break;

current = head;

}

return current; 

}

}

15 94 26head:

current:



© 2010 Charles E. Leiserson 30

OUTLINE

•Memory Consistency
•Lock-Free Protocols
•The ABA Problem
•Reducer Hyperobjects



© 2010 Charles E. Leiserson 31

ABA Problem

15 94 26head:

current:

1. Thread 1 begins to pop 15, but stalls after 
reading current->next.  



© 2010 Charles E. Leiserson 32

1515

ABA Problem

94 26head:

current:

1. Thread 1 begins to pop 15, but stalls after 
reading current->next.  

2. Thread 2 pops 15.



© 2010 Charles E. Leiserson 33

9494

ABA Problem

15 26head:

current:

1. Thread 1 begins to pop 15, but stalls after 
reading current->next.  

2. Thread 2 pops 15.
3. Thread 2 pops 94.



© 2010 Charles E. Leiserson 34

1515

ABA Problem

94 26head:

current:

1. Thread 1 begins to pop 15, but stalls after 
reading current->next.  

2. Thread 2 pops 15.
3. Thread 2 pops 94.
4. Thread 2 pushes 15 back on.



© 2010 Charles E. Leiserson 35

ABA Problem

15 94 26head:

current:

1. Thread 1 begins to pop 15, but stalls after 
reading current->next.  

2. Thread 2 pops 15.
3. Thread 2 pops 94.
4. Thread 2 pushes 15 back on.
5. Thread 1 resumes, and the compare-and-

swap completes, removing 15, but putting 
the garbage 94 back on the list.



© 2010 Charles E. Leiserson 36

Solution to ABA

Versioning
∙ Pack a version number with each pointer in the 

same atomically updatable word. 
∙ Increment the version number every time the 

pointer is changed.  
∙ Compare-and-swap both the pointer and the 

version number as a single atomic operation.

Issue: Version numbers may need to be very large.

As an alternative to compare-and-swap, some 
architectures feature a load-linked, store conditional
instruction.



© 2010 Charles E. Leiserson 37

OUTLINE

•Memory Models
•Lock-Free 
Synchronization

•The ABA Problem
•Reducer Hyperobjects



© 2010 Charles E. Leiserson 38

Recall: Summing Problem

int compute(const X& v); 

int main() 

{ 

const std::size_t n = 1000000;

extern X myArray[n];

// ... 

int result = 0; 

for (std::size_t i = 0; i < n; ++i) 

{ 

result += compute(myArray[i]); 

} 

std::cout << "The result is: " 

<< result

<< std::endl; 

return 0; 

}



© 2010 Charles E. Leiserson 39

Reducer Solution

int compute(const X& v); 

int main() 

{ 

const std::size_t ARRAY_SIZE = 1000000;

extern X myArray[ARRAY_SIZE];

// ... 

cilk::reducer_opadd<int> result; 

cilk_for (std::size_t i = 0; i < ARRAY_SIZE; ++i) 

{ 

result += compute(myArray[i]); 

} 

std::cout << "The result is: " 

<< result.get_value()

<< std::endl; 

return 0; 

}



© 2010 Charles E. Leiserson 40

Reducer Solution

int compute(const X& v); 

int main() 

{ 

const std::size_t ARRAY_SIZE = 1000000;

extern X myArray[ARRAY_SIZE];

// ... 

cilk::reducer_opadd<int> result; 

cilk_for (std::size_t i = 0; i < ARRAY_SIZE; ++i) 

{ 

result += compute(myArray[i]); 

} 

std::cout << "The result is: " 

<< result.get_value()

<< std::endl; 

return 0; 

}

Declare result to 
be a summing 

reducer over int.
Updates are resolved 
automatically without 
races or contention.

At the end, the 
underlying int value 
can be extracted.



© 2010 Charles E. Leiserson 41

Reducers

∙ A variable x can be declared as a reducer over an 
associative operation, such as addition, multiplication, 
logical AND, list concatenation, etc. 

∙ Strands can update x as if it were an ordinary nonlocal 
variable, but x is, in fact, maintained as a collection of 
different copies, called views.

∙ The Cilk++ runtime system coordinates the views and
combines them when appropriate.

∙ When only one view of x remains, the underlying value 
is stable and can be extracted.

x: 42 x: 14

89

x: 33Example:
summing 
reducer



© 2010 Charles E. Leiserson 42

Conceptual Behavior

original equivalent

x = 0; x1 = 0;

x += 3; x1 += 3;

x++; x1++;

x += 4; x1 += 4;

x++; x1++;

x += 5; x1 += 5;

x += 9; x2 = 0;

x -= 2; x2 += 9;

x += 6; x2 -= 2;

x += 5; x2 += 6;

x2 += 5;

x = x1 + x2;

If you don’t ―look‖ at the intermediate values, the 
result is determinate, because addition is associative.

Can execute 
in parallel 

with no races!



© 2010 Charles E. Leiserson 43

Conceptual Behavior

original equivalent equivalent

x = 0; x1 = 0; x1 = 0;

x += 3; x1 += 3; x1 += 3;

x++; x1++; x1++;

x += 4; x1 += 4; x2 = 0;

x++; x1++; x2 += 4;

x += 5; x1 += 5; x2++;

x += 9; x2 = 0; x2 += 5;

x -= 2; x2 += 9; x2 += 9;

x += 6; x2 -= 2; x2 -= 2;

x += 5; x2 += 6; x2 += 6;

x2 += 5; x2 += 5;

x = x1 + x2; x = x1 + x2;

If you don’t ―look‖ at the intermediate values, the 
result is determinate, because addition is associative.



© 2010 Charles E. Leiserson 44

Related Work

∙ OpenMP’s reduction construct
 Tied to parallel for loop.

∙ TBB’s parallel reduce template
 Tied to loop construct.

∙ Data-parallel (APL, NESL, ZPL, etc.) reduction
 Tied to the vector operation.

∙ Google’s MapReduce
 Tied to the map function.

In contrast, Cilk++ reducers are not tied to any 
control or data structure.  They can be named 
anywhere (globally, passed as parameters, stored in 
data structures, etc.).  Wherever and whenever they 
are dereferenced, they produce the local view.



© 2010 Charles E. Leiserson 45

Algebraic Framework

Definition.  A monoid is 
a triple (T, ⊗, e), where
∙T is a set,
∙⊗ is an associative

binary operator on 
elements of T, 

∙e ∈ T is an identity
element for ⊗.

Associative

a ⊗(b⊗c) = (a⊗b)⊗c

Identity
a⊗e = e⊗a = a

∙(ℤ, +, 0)
∙(ℝ, ×, 1)

Examples: ∙ ({TRUE, FALSE}, ∧, TRUE)
∙ (Σ*, ∥, ε)
∙(ℤ, MAX, –∞)



© 2010 Charles E. Leiserson 46

Representing Monoids

In Cilk++ we represent a monoid over T by a C++ 
class that inherits from cilk::monoid_base<T>
and defines

∙ a member function reduce() that implements 
the binary operator ⊗ and 

∙ a member function identity() that constructs a 
fresh identity e. 

Example:

struct sum_monoid : cilk::monoid_base<int> {

void reduce(int* left, int* right) const {

*left += *right; // order is important!

}

void identity(int* p) const {

new (p) int(0);

}

};



© 2010 Charles E. Leiserson 47

Defining a Reducer

A reducer over sum_monoid may now be defined 
as follows:

cilk::reducer<sum_monoid> x;

The local view of x can be accessed as x().  

Issues
∙ It is generally inconvenient to replace every 

access to x in a legacy code base with x().
∙ Accesses to x are not safe.  Nothing prevents 

a programmer from writing ―x() *= 2‖, even 
though the reducer is defined over +. 

A wrapper class solves these problems.



© 2010 Charles E. Leiserson 48

Reducer Library

Cilk++’s hyperobject library contains 

many commonly used reducers:
• reducer_list_append

• reducer_list_prepend

• reducer_max

• reducer_max_index

• reducer_min

• reducer_min_index

• reducer_opadd*

• reducer_ostream

• reducer_basic_string

• …

You can also roll your own reducers using 
cilk::monoid_base and cilk::reducer.

*Behavior is nondeterministic when used with floating-point numbers.



© 2010 Charles E. Leiserson 49

Real-World Example

Pickup
Truck

Body Chassis Engine
Drive
Train

Cab Doors

A mechanical assembly 
is represented as a tree
of subassemblies down 
to individual parts.

© Kevin Hulsey Illustration, Inc. All rights reserved .
This content is excluded from our Creative Commons
license. For more information, see 
http://ocw.mit.edu/fairuse.

.

Flatbed

Collision-detection problem: Find all ―collisions‖ 
between an assembly and a target object. 

http://ocw.mit.edu/fairuse


© 2010 Charles E. Leiserson 50

C++ Code

Goal

Create a list of 
all the parts in 
a mechanical 
assembly that 
collide with a 
given target 
object.

Node *target;

std::list<Node *> output_list;

...

void walk(Node *x)

{

switch (x->kind) {

case Node::LEAF:

if (target->collides_with(x)) 

{

output_list.push_back(x);

}

break;

case Node::INTERNAL:

for (Node::const_iterator child = x.begin(); 

child != x.end(); 

++child) 

{

walk(child);

}

break;

}

}



© 2010 Charles E. Leiserson 51

Naive Parallelization

Idea

Parallelize the 
search by 
using a 
cilk_for to 
search all the 
children of 
each internal 
node in 
parallel.

Node *target;

std::list<Node *> output_list;

...

void walk(Node *x)

{

switch (x->kind) {

case Node::LEAF:

if (target->collides_with(x)) 

{

output_list.push_back(x);

}

break;

case Node::INTERNAL:

cilk_for (Node::const_iterator child = x.begin(); 

child != x.end(); 

++child) 

{

walk(child);

}

break;

}

Oops!
}



© 2010 Charles E. Leiserson 52

Problematic Parallelization

Problem

The global 
variable 
output_list

is updated in 
parallel, 
causing a 
race bug.

Node *target;

std::list<Node *> output_list;

...

void walk(Node *x)

{

switch (x->kind) {

case Node::LEAF:

if (target->collides_with(x)) 

{

output_list.push_back(x);

}

break;

case Node::INTERNAL:

cilk_for (Node::const_iterator child = x.begin(); 

child != x.end(); 

++child) 

{

walk(child);

}

break;

}

}

Race!



© 2010 Charles E. Leiserson 53

A Mutex Solution

Locking

Each leaf locks 
output_list

to ensure that 
updates occur 
atomically.  
Unfortunately, 
lock contention
inhibits speed-
up.  Also, the 
list is produced 
in a jumbled 
order.

Node *target;

std::list<Node *> output_list;

mutex output_list_mutex;

...

Void walk(Node *x)

{

switch (x->kind) {

case Node::LEAF:

if (target->collides_with(x)) 

{

output_list_mutex.lock();

output_list.push_back(x);

output_list_mutex.unlock();

}

break;

case Node::INTERNAL:

cilk_for (Node::const_iterator child = x.begin(); 

child != x.end(); 

++child) 

{

walk(child);

}

break;

}

}



© 2010 Charles E. Leiserson 54

Hyperobject Solution

Declare 
output_list

to be a 
reducer whose 
reduce()

function 
concatenates 
lists.* The 
output_list

is produced in 
the same 
order as in the 
original C++. 

Node *target;

cilk::reducer_list_append<Node *> output_list;

...

void walk(Node *x)

{

switch (x->kind) {

case Node::LEAF:

if (target->collides_with(x)) 

{

output_list.push_back(x);

}

break;

case Node::INTERNAL:

cilk_for (Node::const_iterator child = x.begin(); 

child != x.end(); 

++child) 

{

walk(child);

}

break;

}

}

*List concatenation is associative. 



© 2010 Charles E. Leiserson 55

30

25

20

15

10

5

0

1 2 3 4 5 6 7 8

C++
lock
manual

Performance of Collision Detection

)
d
s

n reducer

c
o

e
s(

im
e
 

T

Processors



© 2010 Charles E. Leiserson 56

Reducer Implementation

∙ Each worker (processor) maintains a hypermap as a 
hash table, which maps hyperobjects into views.*

∙ An access to a reducer x() causes the worker to look 
up the local view of x() in the hypermap.  

∙ If a view of x() does not exist in the hypermap, the 
worker creates a new view with value e.

∙ During load-balancing, when a worker ―steals‖ a sub-
computation, it creates an empty hypermap.

∙ When a worker finishes its subcomputation, hyper-
maps are combined using the appropriate reduce()
functions.  

∙ The actual distributed protocol becomes rather tricky 
to avoid deadlock and ensure rapid completion — see 
the SPAA 2009 paper or the code itself for details.

*In fact, each worker maintains two additional auxiliary hypermaps
to assist in bookkeeping. 



© 2010 Charles E. Leiserson 57

Overheads

∙ For programs with sufficient 
parallelism, the total cost of performing 
O(1)-time reduce() functions is provably 
small.

∙ The cost of an access to a reducer view is 
never worse than a hash-table look-up.

∙ If the reducer is accessed several times 
within a region of code, however, the 
compiler can optimize look-ups using 
common-subexpression elimination.

∙ In this common case, the hash-table look-
up is performed only once, resulting in an 
access cost equal to one additional level of 
indirection (typically an L1-cache hit).



MIT OpenCourseWare
http://ocw.mit.edu 

6.172 Performance Engineering of Software Systems

Fall 2010 

 

 

 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu/terms
http://ocw.mit.edu

