C++ atomics: from pbasic to
advanced. What do they do?

Adapted from
CppCon 2017

Atomics: the tool of lock-free programming
Lock-free means “fast”

Compare performance of two programs

Both programs perform the same computations and get the
same results

Both programs are correct
No “wait loops” or other tricks

One program uses std::mutex, the other is wait-free (even
better than lock-freel!)

Speedup

Lock-free means “fast”

>0 - \Wait-free
40 ¥ Mutex
30

20

10

8 16

Number of threads

32

o4

128

Lock-free means “fast”

Atomic
std::atomic<unsigned long> sum;
void do_work(size_t N, unsigned long™* a) {
for (size_ti= 0; i< N; ++1i)
sum += ali];
}
Mutex
unsigned long sum(0); std::mutex M;
void do_work(size_t N, unsigned long™* a) {
unsigned long s = 0;
for (size_ti= 0; i< N; ++i) s +=alil;
std::lock_guard<std::mutex> L(M); sum +=s;

}

Time, ns

Is lock-free faster?

B —— = — - g——uu

1E+7 /

1E+6 .

" - \Wait-free
-¥- Mutex

1E+45

1E+4

1E43

1 2 4 8 16 32 64 128

Number of threads

Is lock-free faster?

Algorithm rules supreme
“Wait-free” has nothing to do with time

Walit-free refers to the number of compute “steps”
Steps do not have to be of the same duration
Atomic operations do not guarantee good performance
There is no substitute for understanding what you’re doing
This class is the next best thing

Let’s now understand C++ atomics

What is an atomic operation?

Atomic operation is an operation that is guaranteed to be
execute as a single transaction:

Other threads will see the state of the system before the
operation started or after it finished, but cannot see any
intermediate state

At the low level, atomic operations are special hardware
instructions (hardware guarantees atomicity)

This is a general concept, not limited to hardware
instructions (example: database transactions)

Atomic operation example

Increment is a “read-modify-write” operation:

read x from memory
add 1 to x

write new x to memory

Atomic operation example

X =
Read-modify-write increment isnon- ,

atomic
This is a data race (i.e. undefined
behavior)

10

What’s really going on?

++

What’s really going on?

11

More insidious atomic operation example

12

Reads and writes do not have to be atomic! ?

- On x86 they are for built-in types (int, long)

How to access shared data from multiple threads in C++7?

Data sharing in C++

C++11: std::atomic
#include <atomic>
std::atomic<int> x(0); // NOT std::atomic<int> x=0;

++X IS now atomic!

—another thread cannot access during increment

13

What’s really going on now?

++ ++

\

Menlor
A Siemens Business

14

15

std::atomic
What C++ types can be made atomic?
What operations can be done on these types?

Are all operations on atomic types atomic?
How fast are atomic operations?

Are atomic operations slower than non-atomic?

Are atomic operations faster than locks?
Is “atomic” same as “lock-free”?

If atomic operations avoid locks, there is no waiting, right?

16

What types can be made atomic?

Any trivially copyable type can be made atomic

What is trivially copyable?
Continuous chunk of memory
Copying the object means copying all bits (memcpy)

No virtual functions, noexcept constructor

std::atomic<int> i; // OK
std::atomic<double> Xx; // OK
struct S { long x; long y; };

std::atomic<S> s; // OK!

17

What operations can be done on std::atomic<T>?

Assignment (read and write) — always
Special atomic operations
Other operations depend on the type T

OK, what operations can be done on std::atomic<int>?

One of these is not the same as the others:
std::atomic<int> x{0}; // Not x=0! x(0) is OK
++X;

X++;

X +=1;

X |=2;

X *=2; does not compile
inty =x"2; X

=y+1;

X=X+ 1;

X=X%*2:

19

OK, what operations can be done on std::atomic<int>?

One of these is not the same as the others:
std::atomic<int> x{0}; // Not x=0! x(0) is OK
++X;

X++;

X +=1;

X |=2;

X *=2; does not compile
inty =x"2; X
=y +1;
X=X+ 1;
X=X%*2:

not
atomic

20

std::atomic<T> and overloaded operators

std::atomic<T> provides operator overloads only for atomlc
operations (incorrect code does not compile)

Any expression with atomic variables will not be computed
atomically (easy to make mistakes 7))

++X; is the same as x+=1; is the same as x=x+1;

° - Unless x is atomic!

What operations can be done on std::atomic<T>
for other types?
Assignment and copy (read and write) for all types
Built-in and user-defined
Increment and decrement for raw pointers

Addition, subtraction, and bitwise logic operations for
integers (++, +=, —, -=, |=, &=, A=)

std::atomic<bool> is valid, no special operations
std:;:atomic<double> is valid, no special operations

No atomic increment for floating-point numbers!

21

22

What “other operations” can be done on
std::atomic<T>7

Explicit reads and writes:
std::atomic<T> X;

Ty = x.load(); // Same as Ty =x;
x.store(y); // Same as X = V;

Atomic exchange:
T z = x.exchange(y); // Atomically: z = x; X = y;

Compare-and-swap (conditional exchange):
bool success = x.compare_exchange_strong(y, z);
// If x==y, make x=z and return true
// Otherwise, set y=x and return false

Key to most lock-free algorithms

23

What is so special about CAS?

Compare-and-swap (CAS) is used in most lock-free
algorithms

Example: atomic increment with CAS:

std::atomic<int> x{0};

 intx0 =x;

« while (Ix.compare_exchange_strong(x0, xO+1)) {}

For int, we have atomic increment, but CAS can be used to
increment doubles, multiply integers, and many more while (
Ix.compare_exchange_strong(x0, x0*2)) {}

24

What “other operations” can be done on
std::atomic<T>7
For integer T:

std::atomic<int> x;

x.fetch_add(y); // Same as X +=;
int z = x.fetch_add(y); // Sameasz=(X+=Y)-V;

Also fetch_sub(), fetch_and(), fetch_or(), fetch_xor()
- Same as +=, -= etc operators

More verbose but less error-prone than operators and
expressions

- Including load() and store() instead of operator=()

25

std::atomic<T> and overloaded operators

std::atomic<T> provides operator overloads only for atomlc
operations (incorrect code does not compile)

Any expression with atomic variables will not be computed
atomically (easy to make mistakes 7))

Member functions make atomic operations explicit

Compilers understand you either way and do exactly what you
asked

* Not necessarily what you wanted

Programmers tend to see what they thought you meant not
what you really meant (x=x+1)

26

How fast are atomic operations?

27

Operations/second

Are atomic operations slower than non-atomic?

1E+12
-A-read -@-atomic read

1E+11 -+ Write atomic write

++ - ++ atomic

1E+10

A 4
v

1E+09
IEr08 ——a— —— —n— — ——
1E+07

1 2 4 8 16 32 64 128

Number of threads

28

Are atomic operations faster than locks?

29

Operations/second

Are atomic operations faster than locks?

1E+09
- ++ atomic
++ mutex
1E+08 \ —— = —— T~
1E+07
1E+06
1 2 4 8 16 32 64 128

Number of threads

30

Operations/second

gy

Are atomic operations faster than locks?

1E+09
- ++ atomic
++ mutex
-®- ++ spinlock
—— - - t:k“
1E+07
1E+06
1 2 4 8 16 32 64 128

Number of threads

31

Operations/second

Are atomic operations faster than locks?

1E+09

1E+08

1E+07

1E+06

- ++ atomic
++ mutex
-@- ++ spinlock
:: - —e ® *— ———o———9¢
‘\\\\\\'—— —n -— - — . _an
Haswell, 4 cores
1 2 8 16 32 64

Number of threads

128

32

Operations/second

Remember CAS?

1E+09

- ++ atomic

++ mutex
-@- ++ spinlock
- ++ CAS
1E+08 :;ﬁ\: —— — -—
\ — = —] —— i&
— P ‘*A\H
1E+07
1E+06
1 2 4 8 16 32 64 128

Number of threads

33

Is atomic the same as lock-free?

std::atomic is hiding a huge secret: it’s not always lock-free
* long x;

struct A { long x; }

struct B { long x; long vy; };

struct C { long x; long y; long z; };

