
Introduction to
SQL

Phil Spector

Introduction to SQL

Phil Spector

Statistical Computing Facility
University of California, Berkeley

Introduction to
SQL

Introduction to
SQL What is SQL?

I Structured Query Language
I Usually “talk” to a database server
I Used as front end to many databases (mysql,

postgresql, oracle, sybase)
I Three Subsystems: data description, data access and

privileges
I Optimized for certain data arrangements
I The language is case-sensitive, but I use upper case

for keywords.

Introduction to
SQL What is SQL?

I Structured Query Language

I Usually “talk” to a database server
I Used as front end to many databases (mysql,

postgresql, oracle, sybase)
I Three Subsystems: data description, data access and

privileges
I Optimized for certain data arrangements
I The language is case-sensitive, but I use upper case

for keywords.

Introduction to
SQL What is SQL?

I Structured Query Language
I Usually “talk” to a database server

I Used as front end to many databases (mysql,
postgresql, oracle, sybase)

I Three Subsystems: data description, data access and
privileges

I Optimized for certain data arrangements
I The language is case-sensitive, but I use upper case

for keywords.

Introduction to
SQL What is SQL?

I Structured Query Language
I Usually “talk” to a database server
I Used as front end to many databases (mysql,

postgresql, oracle, sybase)

I Three Subsystems: data description, data access and
privileges

I Optimized for certain data arrangements
I The language is case-sensitive, but I use upper case

for keywords.

Introduction to
SQL What is SQL?

I Structured Query Language
I Usually “talk” to a database server
I Used as front end to many databases (mysql,

postgresql, oracle, sybase)
I Three Subsystems: data description, data access and

privileges

I Optimized for certain data arrangements
I The language is case-sensitive, but I use upper case

for keywords.

Introduction to
SQL What is SQL?

I Structured Query Language
I Usually “talk” to a database server
I Used as front end to many databases (mysql,

postgresql, oracle, sybase)
I Three Subsystems: data description, data access and

privileges
I Optimized for certain data arrangements

I The language is case-sensitive, but I use upper case
for keywords.

Introduction to
SQL What is SQL?

I Structured Query Language
I Usually “talk” to a database server
I Used as front end to many databases (mysql,

postgresql, oracle, sybase)
I Three Subsystems: data description, data access and

privileges
I Optimized for certain data arrangements
I The language is case-sensitive, but I use upper case

for keywords.

Introduction to
SQL When do you need a Database?

I Multiple simultaneous changes to data (concurrency)
I Data changes on a regular basis
I Large data sets where you only need some

observations/variables
I Share huge data set among many people
I Rapid queries with no analysis
I Web interfaces to data, especially dynamic data

Introduction to
SQL When do you need a Database?

I Multiple simultaneous changes to data (concurrency)

I Data changes on a regular basis
I Large data sets where you only need some

observations/variables
I Share huge data set among many people
I Rapid queries with no analysis
I Web interfaces to data, especially dynamic data

Introduction to
SQL When do you need a Database?

I Multiple simultaneous changes to data (concurrency)
I Data changes on a regular basis

I Large data sets where you only need some
observations/variables

I Share huge data set among many people
I Rapid queries with no analysis
I Web interfaces to data, especially dynamic data

Introduction to
SQL When do you need a Database?

I Multiple simultaneous changes to data (concurrency)
I Data changes on a regular basis
I Large data sets where you only need some

observations/variables

I Share huge data set among many people
I Rapid queries with no analysis
I Web interfaces to data, especially dynamic data

Introduction to
SQL When do you need a Database?

I Multiple simultaneous changes to data (concurrency)
I Data changes on a regular basis
I Large data sets where you only need some

observations/variables
I Share huge data set among many people

I Rapid queries with no analysis
I Web interfaces to data, especially dynamic data

Introduction to
SQL When do you need a Database?

I Multiple simultaneous changes to data (concurrency)
I Data changes on a regular basis
I Large data sets where you only need some

observations/variables
I Share huge data set among many people
I Rapid queries with no analysis

I Web interfaces to data, especially dynamic data

Introduction to
SQL When do you need a Database?

I Multiple simultaneous changes to data (concurrency)
I Data changes on a regular basis
I Large data sets where you only need some

observations/variables
I Share huge data set among many people
I Rapid queries with no analysis
I Web interfaces to data, especially dynamic data

Introduction to
SQL Uses of Databases

Traditional Uses:

I Live Queries
I Report Generation
I Normalization, foreign keys, joins, etc.

Newer uses:
I Storage - data is extracted and analyzed in another

application
I Backends to web sites
I Traditional rules may not be as important

Introduction to
SQL Uses of Databases

Traditional Uses:
I Live Queries

I Report Generation
I Normalization, foreign keys, joins, etc.

Newer uses:
I Storage - data is extracted and analyzed in another

application
I Backends to web sites
I Traditional rules may not be as important

Introduction to
SQL Uses of Databases

Traditional Uses:
I Live Queries
I Report Generation

I Normalization, foreign keys, joins, etc.
Newer uses:

I Storage - data is extracted and analyzed in another
application

I Backends to web sites
I Traditional rules may not be as important

Introduction to
SQL Uses of Databases

Traditional Uses:
I Live Queries
I Report Generation
I Normalization, foreign keys, joins, etc.

Newer uses:
I Storage - data is extracted and analyzed in another

application
I Backends to web sites
I Traditional rules may not be as important

Introduction to
SQL Uses of Databases

Traditional Uses:
I Live Queries
I Report Generation
I Normalization, foreign keys, joins, etc.

Newer uses:

I Storage - data is extracted and analyzed in another
application

I Backends to web sites
I Traditional rules may not be as important

Introduction to
SQL Uses of Databases

Traditional Uses:
I Live Queries
I Report Generation
I Normalization, foreign keys, joins, etc.

Newer uses:
I Storage - data is extracted and analyzed in another

application

I Backends to web sites
I Traditional rules may not be as important

Introduction to
SQL Uses of Databases

Traditional Uses:
I Live Queries
I Report Generation
I Normalization, foreign keys, joins, etc.

Newer uses:
I Storage - data is extracted and analyzed in another

application
I Backends to web sites

I Traditional rules may not be as important

Introduction to
SQL Uses of Databases

Traditional Uses:
I Live Queries
I Report Generation
I Normalization, foreign keys, joins, etc.

Newer uses:
I Storage - data is extracted and analyzed in another

application
I Backends to web sites
I Traditional rules may not be as important

Introduction to
SQL Ways to Use SQL

I console command (mysql -u user -p dbname)
I GUI interfaces are often available
I Interfaces to many programming languages: R,

python, perl, PHP, etc.
I SQLite - use SQL without a database server
I PROC SQL in SAS

Introduction to
SQL Ways to Use SQL

I console command (mysql -u user -p dbname)

I GUI interfaces are often available
I Interfaces to many programming languages: R,

python, perl, PHP, etc.
I SQLite - use SQL without a database server
I PROC SQL in SAS

Introduction to
SQL Ways to Use SQL

I console command (mysql -u user -p dbname)
I GUI interfaces are often available

I Interfaces to many programming languages: R,
python, perl, PHP, etc.

I SQLite - use SQL without a database server
I PROC SQL in SAS

Introduction to
SQL Ways to Use SQL

I console command (mysql -u user -p dbname)
I GUI interfaces are often available
I Interfaces to many programming languages: R,

python, perl, PHP, etc.

I SQLite - use SQL without a database server
I PROC SQL in SAS

Introduction to
SQL Ways to Use SQL

I console command (mysql -u user -p dbname)
I GUI interfaces are often available
I Interfaces to many programming languages: R,

python, perl, PHP, etc.
I SQLite - use SQL without a database server

I PROC SQL in SAS

Introduction to
SQL Ways to Use SQL

I console command (mysql -u user -p dbname)
I GUI interfaces are often available
I Interfaces to many programming languages: R,

python, perl, PHP, etc.
I SQLite - use SQL without a database server
I PROC SQL in SAS

Introduction to
SQL Some Relational Database Concepts

I A database server can contain many databases
I Databases are collections of tables
I Tables are two-dimensional with rows (observations)

and columns (variables)
I Limited mathematical and summary operations

available
I Very good at combining information from several

tables

Introduction to
SQL Some Relational Database Concepts

I A database server can contain many databases

I Databases are collections of tables
I Tables are two-dimensional with rows (observations)

and columns (variables)
I Limited mathematical and summary operations

available
I Very good at combining information from several

tables

Introduction to
SQL Some Relational Database Concepts

I A database server can contain many databases
I Databases are collections of tables

I Tables are two-dimensional with rows (observations)
and columns (variables)

I Limited mathematical and summary operations
available

I Very good at combining information from several
tables

Introduction to
SQL Some Relational Database Concepts

I A database server can contain many databases
I Databases are collections of tables
I Tables are two-dimensional with rows (observations)

and columns (variables)

I Limited mathematical and summary operations
available

I Very good at combining information from several
tables

Introduction to
SQL Some Relational Database Concepts

I A database server can contain many databases
I Databases are collections of tables
I Tables are two-dimensional with rows (observations)

and columns (variables)
I Limited mathematical and summary operations

available

I Very good at combining information from several
tables

Introduction to
SQL Some Relational Database Concepts

I A database server can contain many databases
I Databases are collections of tables
I Tables are two-dimensional with rows (observations)

and columns (variables)
I Limited mathematical and summary operations

available
I Very good at combining information from several

tables

Introduction to
SQL Finding Your Way Around the Server

Since a single server can support many databases, each
containing many tables, with each table having a variety
of columns, it’s easy to get lost when you’re working with
databases. These commands will help figure out what’s
available:

I SHOW DATABASES;

I SHOW TABLES IN database;

I SHOW COLUMNS IN table;

I DESCRIBE table; - shows the columns and their
types

Introduction to
SQL Finding Your Way Around the Server

Since a single server can support many databases, each
containing many tables, with each table having a variety
of columns, it’s easy to get lost when you’re working with
databases. These commands will help figure out what’s
available:

I SHOW DATABASES;

I SHOW TABLES IN database;

I SHOW COLUMNS IN table;

I DESCRIBE table; - shows the columns and their
types

Introduction to
SQL Finding Your Way Around the Server

Since a single server can support many databases, each
containing many tables, with each table having a variety
of columns, it’s easy to get lost when you’re working with
databases. These commands will help figure out what’s
available:

I SHOW DATABASES;

I SHOW TABLES IN database;

I SHOW COLUMNS IN table;

I DESCRIBE table; - shows the columns and their
types

Introduction to
SQL Finding Your Way Around the Server

Since a single server can support many databases, each
containing many tables, with each table having a variety
of columns, it’s easy to get lost when you’re working with
databases. These commands will help figure out what’s
available:

I SHOW DATABASES;

I SHOW TABLES IN database;

I SHOW COLUMNS IN table;

I DESCRIBE table; - shows the columns and their
types

Introduction to
SQL Finding Your Way Around the Server

Since a single server can support many databases, each
containing many tables, with each table having a variety
of columns, it’s easy to get lost when you’re working with
databases. These commands will help figure out what’s
available:

I SHOW DATABASES;

I SHOW TABLES IN database;

I SHOW COLUMNS IN table;

I DESCRIBE table; - shows the columns and their
types

Introduction to
SQL Variable Types

SQL supports a very large number of different formats for
internal storage of information.

Numeric
I INTEGER, SMALLINT, BIGINT
I NUMERIC(w,d), DECIMAL(w,d) - numbers with width

w and d decimal places
I REAL, DOUBLE PRECISION - machine and database

dependent
I FLOAT(p) - floating point number with p binary

digits of precision

Introduction to
SQL Variable Types

SQL supports a very large number of different formats for
internal storage of information.

Numeric

I INTEGER, SMALLINT, BIGINT
I NUMERIC(w,d), DECIMAL(w,d) - numbers with width

w and d decimal places
I REAL, DOUBLE PRECISION - machine and database

dependent
I FLOAT(p) - floating point number with p binary

digits of precision

Introduction to
SQL Variable Types

SQL supports a very large number of different formats for
internal storage of information.

Numeric
I INTEGER, SMALLINT, BIGINT

I NUMERIC(w,d), DECIMAL(w,d) - numbers with width
w and d decimal places

I REAL, DOUBLE PRECISION - machine and database
dependent

I FLOAT(p) - floating point number with p binary
digits of precision

Introduction to
SQL Variable Types

SQL supports a very large number of different formats for
internal storage of information.

Numeric
I INTEGER, SMALLINT, BIGINT
I NUMERIC(w,d), DECIMAL(w,d) - numbers with width

w and d decimal places

I REAL, DOUBLE PRECISION - machine and database
dependent

I FLOAT(p) - floating point number with p binary
digits of precision

Introduction to
SQL Variable Types

SQL supports a very large number of different formats for
internal storage of information.

Numeric
I INTEGER, SMALLINT, BIGINT
I NUMERIC(w,d), DECIMAL(w,d) - numbers with width

w and d decimal places
I REAL, DOUBLE PRECISION - machine and database

dependent

I FLOAT(p) - floating point number with p binary
digits of precision

Introduction to
SQL Variable Types

SQL supports a very large number of different formats for
internal storage of information.

Numeric
I INTEGER, SMALLINT, BIGINT
I NUMERIC(w,d), DECIMAL(w,d) - numbers with width

w and d decimal places
I REAL, DOUBLE PRECISION - machine and database

dependent
I FLOAT(p) - floating point number with p binary

digits of precision

Introduction to
SQL Variable Types (cont’d)

Character

I CHARACTER(L) - a fixed-length character of length L

I CHARACTER VARYING(L) or VARCHAR(L) - supports
maximum length of L

Binary
I BIT(L), BIT VARYING(L) - like corresponding

characters
I BINARY LARGE OBJECT(L) or BLOB(L)

Temporal
I DATE

I TIME

I TIMESTAMP

Introduction to
SQL Variable Types (cont’d)

Character
I CHARACTER(L) - a fixed-length character of length L

I CHARACTER VARYING(L) or VARCHAR(L) - supports
maximum length of L

Binary
I BIT(L), BIT VARYING(L) - like corresponding

characters
I BINARY LARGE OBJECT(L) or BLOB(L)

Temporal
I DATE

I TIME

I TIMESTAMP

Introduction to
SQL Variable Types (cont’d)

Character
I CHARACTER(L) - a fixed-length character of length L

I CHARACTER VARYING(L) or VARCHAR(L) - supports
maximum length of L

Binary
I BIT(L), BIT VARYING(L) - like corresponding

characters
I BINARY LARGE OBJECT(L) or BLOB(L)

Temporal
I DATE

I TIME

I TIMESTAMP

Introduction to
SQL Variable Types (cont’d)

Character
I CHARACTER(L) - a fixed-length character of length L

I CHARACTER VARYING(L) or VARCHAR(L) - supports
maximum length of L

Binary

I BIT(L), BIT VARYING(L) - like corresponding
characters

I BINARY LARGE OBJECT(L) or BLOB(L)
Temporal

I DATE

I TIME

I TIMESTAMP

Introduction to
SQL Variable Types (cont’d)

Character
I CHARACTER(L) - a fixed-length character of length L

I CHARACTER VARYING(L) or VARCHAR(L) - supports
maximum length of L

Binary
I BIT(L), BIT VARYING(L) - like corresponding

characters

I BINARY LARGE OBJECT(L) or BLOB(L)
Temporal

I DATE

I TIME

I TIMESTAMP

Introduction to
SQL Variable Types (cont’d)

Character
I CHARACTER(L) - a fixed-length character of length L

I CHARACTER VARYING(L) or VARCHAR(L) - supports
maximum length of L

Binary
I BIT(L), BIT VARYING(L) - like corresponding

characters
I BINARY LARGE OBJECT(L) or BLOB(L)

Temporal
I DATE

I TIME

I TIMESTAMP

Introduction to
SQL Variable Types (cont’d)

Character
I CHARACTER(L) - a fixed-length character of length L

I CHARACTER VARYING(L) or VARCHAR(L) - supports
maximum length of L

Binary
I BIT(L), BIT VARYING(L) - like corresponding

characters
I BINARY LARGE OBJECT(L) or BLOB(L)

Temporal

I DATE

I TIME

I TIMESTAMP

Introduction to
SQL Variable Types (cont’d)

Character
I CHARACTER(L) - a fixed-length character of length L

I CHARACTER VARYING(L) or VARCHAR(L) - supports
maximum length of L

Binary
I BIT(L), BIT VARYING(L) - like corresponding

characters
I BINARY LARGE OBJECT(L) or BLOB(L)

Temporal
I DATE

I TIME

I TIMESTAMP

Introduction to
SQL Variable Types (cont’d)

Character
I CHARACTER(L) - a fixed-length character of length L

I CHARACTER VARYING(L) or VARCHAR(L) - supports
maximum length of L

Binary
I BIT(L), BIT VARYING(L) - like corresponding

characters
I BINARY LARGE OBJECT(L) or BLOB(L)

Temporal
I DATE

I TIME

I TIMESTAMP

Introduction to
SQL Variable Types (cont’d)

Character
I CHARACTER(L) - a fixed-length character of length L

I CHARACTER VARYING(L) or VARCHAR(L) - supports
maximum length of L

Binary
I BIT(L), BIT VARYING(L) - like corresponding

characters
I BINARY LARGE OBJECT(L) or BLOB(L)

Temporal
I DATE

I TIME

I TIMESTAMP

Introduction to
SQL

CREATE TABLE statement

Suppose we have data measured on the height and weight
of children over a range of ages. The first step is deciding
on the appropriate variable types, and creating the table
with the CREATE TABLE command.

CREATE TABLE kids(id CHAR(6),
race SMALLINT,
age DECIMAL(6,3),
height DECIMAL(7,3),
weight DECIMAL(7,3),
sex SMALLINT);

Introduction to
SQL

CREATE TABLE statement

Suppose we have data measured on the height and weight
of children over a range of ages. The first step is deciding
on the appropriate variable types, and creating the table
with the CREATE TABLE command.

CREATE TABLE kids(id CHAR(6),
race SMALLINT,
age DECIMAL(6,3),
height DECIMAL(7,3),
weight DECIMAL(7,3),
sex SMALLINT);

Introduction to
SQL Entering observations into a table

We could now enter individual items with the INSERT
command:

INSERT INTO kids VALUES(100011,2,10.346,
148.5,38.95,1);

This quickly gets tedious. We can automate the process
using the LOAD DATA command:

LOAD DATA INFILE ’kids.tab’
INTO TABLE kids
FIELDS TERMINATED BY ’\t’;

This will read an entire tab-separated file into the
database in one command.

Introduction to
SQL Entering observations into a table

We could now enter individual items with the INSERT
command:

INSERT INTO kids VALUES(100011,2,10.346,
148.5,38.95,1);

This quickly gets tedious. We can automate the process
using the LOAD DATA command:

LOAD DATA INFILE ’kids.tab’
INTO TABLE kids
FIELDS TERMINATED BY ’\t’;

This will read an entire tab-separated file into the
database in one command.

Introduction to
SQL Entering observations into a table

We could now enter individual items with the INSERT
command:

INSERT INTO kids VALUES(100011,2,10.346,
148.5,38.95,1);

This quickly gets tedious. We can automate the process
using the LOAD DATA command:

LOAD DATA INFILE ’kids.tab’
INTO TABLE kids
FIELDS TERMINATED BY ’\t’;

This will read an entire tab-separated file into the
database in one command.

Introduction to
SQL Comparison Operators

In SQL, the WHERE clause allows you to operate on subsets
of a table. The following comparison operators are
avaiable:

I Usual logical operators: < > <= >= = <>

I BETWEEN used to test for a range
I IN used to test group membership
I Keyword NOT used for negation
I LIKE operator allows wildcards

I _ means single character, % means anything
I SELECT salary WHERE name LIKE ’Fred %’;

I RLIKE operator allows regular expressions
I Use AND(&&) and OR(||) to combine conditions

Introduction to
SQL Comparison Operators

In SQL, the WHERE clause allows you to operate on subsets
of a table. The following comparison operators are
avaiable:

I Usual logical operators: < > <= >= = <>

I BETWEEN used to test for a range
I IN used to test group membership
I Keyword NOT used for negation
I LIKE operator allows wildcards

I _ means single character, % means anything
I SELECT salary WHERE name LIKE ’Fred %’;

I RLIKE operator allows regular expressions
I Use AND(&&) and OR(||) to combine conditions

Introduction to
SQL Comparison Operators

In SQL, the WHERE clause allows you to operate on subsets
of a table. The following comparison operators are
avaiable:

I Usual logical operators: < > <= >= = <>

I BETWEEN used to test for a range

I IN used to test group membership
I Keyword NOT used for negation
I LIKE operator allows wildcards

I _ means single character, % means anything
I SELECT salary WHERE name LIKE ’Fred %’;

I RLIKE operator allows regular expressions
I Use AND(&&) and OR(||) to combine conditions

Introduction to
SQL Comparison Operators

In SQL, the WHERE clause allows you to operate on subsets
of a table. The following comparison operators are
avaiable:

I Usual logical operators: < > <= >= = <>

I BETWEEN used to test for a range
I IN used to test group membership
I Keyword NOT used for negation

I LIKE operator allows wildcards

I _ means single character, % means anything
I SELECT salary WHERE name LIKE ’Fred %’;

I RLIKE operator allows regular expressions
I Use AND(&&) and OR(||) to combine conditions

Introduction to
SQL Comparison Operators

In SQL, the WHERE clause allows you to operate on subsets
of a table. The following comparison operators are
avaiable:

I Usual logical operators: < > <= >= = <>

I BETWEEN used to test for a range
I IN used to test group membership
I Keyword NOT used for negation
I LIKE operator allows wildcards

I _ means single character, % means anything
I SELECT salary WHERE name LIKE ’Fred %’;

I RLIKE operator allows regular expressions
I Use AND(&&) and OR(||) to combine conditions

Introduction to
SQL Comparison Operators

In SQL, the WHERE clause allows you to operate on subsets
of a table. The following comparison operators are
avaiable:

I Usual logical operators: < > <= >= = <>

I BETWEEN used to test for a range
I IN used to test group membership
I Keyword NOT used for negation
I LIKE operator allows wildcards

I _ means single character, % means anything

I SELECT salary WHERE name LIKE ’Fred %’;

I RLIKE operator allows regular expressions
I Use AND(&&) and OR(||) to combine conditions

Introduction to
SQL Comparison Operators

In SQL, the WHERE clause allows you to operate on subsets
of a table. The following comparison operators are
avaiable:

I Usual logical operators: < > <= >= = <>

I BETWEEN used to test for a range
I IN used to test group membership
I Keyword NOT used for negation
I LIKE operator allows wildcards

I _ means single character, % means anything
I SELECT salary WHERE name LIKE ’Fred %’;

I RLIKE operator allows regular expressions
I Use AND(&&) and OR(||) to combine conditions

Introduction to
SQL Comparison Operators

In SQL, the WHERE clause allows you to operate on subsets
of a table. The following comparison operators are
avaiable:

I Usual logical operators: < > <= >= = <>

I BETWEEN used to test for a range
I IN used to test group membership
I Keyword NOT used for negation
I LIKE operator allows wildcards

I _ means single character, % means anything
I SELECT salary WHERE name LIKE ’Fred %’;

I RLIKE operator allows regular expressions

I Use AND(&&) and OR(||) to combine conditions

Introduction to
SQL Comparison Operators

In SQL, the WHERE clause allows you to operate on subsets
of a table. The following comparison operators are
avaiable:

I Usual logical operators: < > <= >= = <>

I BETWEEN used to test for a range
I IN used to test group membership
I Keyword NOT used for negation
I LIKE operator allows wildcards

I _ means single character, % means anything
I SELECT salary WHERE name LIKE ’Fred %’;

I RLIKE operator allows regular expressions
I Use AND(&&) and OR(||) to combine conditions

Introduction to
SQL Updating a Table

To change some of the values of columns of a table, you
can use the UPDATE command. Changes are provided as a
comma-separated list of column/value pairs.

For example, to add one to the weight of an observation
in the kids table where id is 101311 and age is between 9
and 10, we could use:

UPDATE kids SET weight=weight + 1
WHERE id=’101311’ AND
age BETWEEN 9 and 10;

Be careful with UPDATE, because if you don’t provide a
WHERE clause, all the rows of the table will be changed.

Introduction to
SQL Updating a Table

To change some of the values of columns of a table, you
can use the UPDATE command. Changes are provided as a
comma-separated list of column/value pairs.

For example, to add one to the weight of an observation
in the kids table where id is 101311 and age is between 9
and 10, we could use:

UPDATE kids SET weight=weight + 1
WHERE id=’101311’ AND
age BETWEEN 9 and 10;

Be careful with UPDATE, because if you don’t provide a
WHERE clause, all the rows of the table will be changed.

Introduction to
SQL Updating a Table

To change some of the values of columns of a table, you
can use the UPDATE command. Changes are provided as a
comma-separated list of column/value pairs.

For example, to add one to the weight of an observation
in the kids table where id is 101311 and age is between 9
and 10, we could use:

UPDATE kids SET weight=weight + 1
WHERE id=’101311’ AND
age BETWEEN 9 and 10;

Be careful with UPDATE, because if you don’t provide a
WHERE clause, all the rows of the table will be changed.

Introduction to
SQL Updating a Table

To change some of the values of columns of a table, you
can use the UPDATE command. Changes are provided as a
comma-separated list of column/value pairs.

For example, to add one to the weight of an observation
in the kids table where id is 101311 and age is between 9
and 10, we could use:

UPDATE kids SET weight=weight + 1
WHERE id=’101311’ AND
age BETWEEN 9 and 10;

Be careful with UPDATE, because if you don’t provide a
WHERE clause, all the rows of the table will be changed.

Introduction to
SQL The SELECT statement

For many of the modern uses of databases, all you’ll need
to do with the database is to select some subset of the
variables and/or observations from a table, and let some
other program manipulate them. In SQL the SELECT
statement is the workhorse for these operations.

SELECT columns or computations
FROM table
WHERE condition
GROUP BY columns
HAVING condition
ORDER BY column [ASC | DESC]
LIMIT offset,count;

Introduction to
SQL The SELECT statement

For many of the modern uses of databases, all you’ll need
to do with the database is to select some subset of the
variables and/or observations from a table, and let some
other program manipulate them. In SQL the SELECT
statement is the workhorse for these operations.

SELECT columns or computations
FROM table
WHERE condition
GROUP BY columns
HAVING condition
ORDER BY column [ASC | DESC]
LIMIT offset,count;

Introduction to
SQL Examples of SELECT queries

Suppose we wish to simply see all of the data:

SELECT * FROM kids; View

Find the age, race, height and weight for any observations
with weight greater than 80kg and height less than 150cm:
SELECT age,race,height,weight FROM kids View

WHERE weight > 80 AND height < 150;

Find all information about the 10 tallest observations:
SELECT * FROM kids View

ORDER BY height DESC limit 1,10;

Find all information about observations where age is from
17 to 18 and weight is from 180 to 185:
SELECT * FROM kids WHERE age BETWEEN 17 AND 18

AND weight BETWEEN 180 AND 185; View

Introduction to
SQL Examples of SELECT queries

Suppose we wish to simply see all of the data:
SELECT * FROM kids; View

Find the age, race, height and weight for any observations
with weight greater than 80kg and height less than 150cm:
SELECT age,race,height,weight FROM kids View

WHERE weight > 80 AND height < 150;

Find all information about the 10 tallest observations:
SELECT * FROM kids View

ORDER BY height DESC limit 1,10;

Find all information about observations where age is from
17 to 18 and weight is from 180 to 185:
SELECT * FROM kids WHERE age BETWEEN 17 AND 18

AND weight BETWEEN 180 AND 185; View

Introduction to
SQL Examples of SELECT queries

Suppose we wish to simply see all of the data:
SELECT * FROM kids; View

Find the age, race, height and weight for any observations
with weight greater than 80kg and height less than 150cm:

SELECT age,race,height,weight FROM kids View

WHERE weight > 80 AND height < 150;

Find all information about the 10 tallest observations:
SELECT * FROM kids View

ORDER BY height DESC limit 1,10;

Find all information about observations where age is from
17 to 18 and weight is from 180 to 185:
SELECT * FROM kids WHERE age BETWEEN 17 AND 18

AND weight BETWEEN 180 AND 185; View

Introduction to
SQL Examples of SELECT queries

Suppose we wish to simply see all of the data:
SELECT * FROM kids; View

Find the age, race, height and weight for any observations
with weight greater than 80kg and height less than 150cm:
SELECT age,race,height,weight FROM kids View

WHERE weight > 80 AND height < 150;

Find all information about the 10 tallest observations:
SELECT * FROM kids View

ORDER BY height DESC limit 1,10;

Find all information about observations where age is from
17 to 18 and weight is from 180 to 185:
SELECT * FROM kids WHERE age BETWEEN 17 AND 18

AND weight BETWEEN 180 AND 185; View

Introduction to
SQL Examples of SELECT queries

Suppose we wish to simply see all of the data:
SELECT * FROM kids; View

Find the age, race, height and weight for any observations
with weight greater than 80kg and height less than 150cm:
SELECT age,race,height,weight FROM kids View

WHERE weight > 80 AND height < 150;

Find all information about the 10 tallest observations:

SELECT * FROM kids View

ORDER BY height DESC limit 1,10;

Find all information about observations where age is from
17 to 18 and weight is from 180 to 185:
SELECT * FROM kids WHERE age BETWEEN 17 AND 18

AND weight BETWEEN 180 AND 185; View

Introduction to
SQL Examples of SELECT queries

Suppose we wish to simply see all of the data:
SELECT * FROM kids; View

Find the age, race, height and weight for any observations
with weight greater than 80kg and height less than 150cm:
SELECT age,race,height,weight FROM kids View

WHERE weight > 80 AND height < 150;

Find all information about the 10 tallest observations:
SELECT * FROM kids View

ORDER BY height DESC limit 1,10;

Find all information about observations where age is from
17 to 18 and weight is from 180 to 185:
SELECT * FROM kids WHERE age BETWEEN 17 AND 18

AND weight BETWEEN 180 AND 185; View

Introduction to
SQL Examples of SELECT queries

Suppose we wish to simply see all of the data:
SELECT * FROM kids; View

Find the age, race, height and weight for any observations
with weight greater than 80kg and height less than 150cm:
SELECT age,race,height,weight FROM kids View

WHERE weight > 80 AND height < 150;

Find all information about the 10 tallest observations:
SELECT * FROM kids View

ORDER BY height DESC limit 1,10;

Find all information about observations where age is from
17 to 18 and weight is from 180 to 185:

SELECT * FROM kids WHERE age BETWEEN 17 AND 18
AND weight BETWEEN 180 AND 185; View

Introduction to
SQL Examples of SELECT queries

Suppose we wish to simply see all of the data:
SELECT * FROM kids; View

Find the age, race, height and weight for any observations
with weight greater than 80kg and height less than 150cm:
SELECT age,race,height,weight FROM kids View

WHERE weight > 80 AND height < 150;

Find all information about the 10 tallest observations:
SELECT * FROM kids View

ORDER BY height DESC limit 1,10;

Find all information about observations where age is from
17 to 18 and weight is from 180 to 185:
SELECT * FROM kids WHERE age BETWEEN 17 AND 18

AND weight BETWEEN 180 AND 185; View

Introduction to
SQL Summaries and Computations

SQL supports basic arithmetic operations to create new
columns, as well as some summarization functions which
include

I COUNT()

I AVG() (mean)
I SUM()

I MIN()

I MAX()

Since the COUNT for all columns is the same, the form
COUNT(*) is often used.
Other functions (ABS(), FLOOR(), ROUND(), SQRT(), etc.)
may also be available.

Introduction to
SQL Summaries and Computations

SQL supports basic arithmetic operations to create new
columns, as well as some summarization functions which
include

I COUNT()

I AVG() (mean)
I SUM()

I MIN()

I MAX()

Since the COUNT for all columns is the same, the form
COUNT(*) is often used.
Other functions (ABS(), FLOOR(), ROUND(), SQRT(), etc.)
may also be available.

Introduction to
SQL Summaries and Computations

SQL supports basic arithmetic operations to create new
columns, as well as some summarization functions which
include

I COUNT()

I AVG() (mean)

I SUM()

I MIN()

I MAX()

Since the COUNT for all columns is the same, the form
COUNT(*) is often used.
Other functions (ABS(), FLOOR(), ROUND(), SQRT(), etc.)
may also be available.

Introduction to
SQL Summaries and Computations

SQL supports basic arithmetic operations to create new
columns, as well as some summarization functions which
include

I COUNT()

I AVG() (mean)
I SUM()

I MIN()

I MAX()

Since the COUNT for all columns is the same, the form
COUNT(*) is often used.
Other functions (ABS(), FLOOR(), ROUND(), SQRT(), etc.)
may also be available.

Introduction to
SQL Summaries and Computations

SQL supports basic arithmetic operations to create new
columns, as well as some summarization functions which
include

I COUNT()

I AVG() (mean)
I SUM()

I MIN()

I MAX()

Since the COUNT for all columns is the same, the form
COUNT(*) is often used.
Other functions (ABS(), FLOOR(), ROUND(), SQRT(), etc.)
may also be available.

Introduction to
SQL Summaries and Computations

SQL supports basic arithmetic operations to create new
columns, as well as some summarization functions which
include

I COUNT()

I AVG() (mean)
I SUM()

I MIN()

I MAX()

Since the COUNT for all columns is the same, the form
COUNT(*) is often used.
Other functions (ABS(), FLOOR(), ROUND(), SQRT(), etc.)
may also be available.

Introduction to
SQL Summaries and Computations

SQL supports basic arithmetic operations to create new
columns, as well as some summarization functions which
include

I COUNT()

I AVG() (mean)
I SUM()

I MIN()

I MAX()

Since the COUNT for all columns is the same, the form
COUNT(*) is often used.

Other functions (ABS(), FLOOR(), ROUND(), SQRT(), etc.)
may also be available.

Introduction to
SQL Summaries and Computations

SQL supports basic arithmetic operations to create new
columns, as well as some summarization functions which
include

I COUNT()

I AVG() (mean)
I SUM()

I MIN()

I MAX()

Since the COUNT for all columns is the same, the form
COUNT(*) is often used.
Other functions (ABS(), FLOOR(), ROUND(), SQRT(), etc.)
may also be available.

Introduction to
SQL Summary and Computation examples

Find max. height for age between 10 and 11 and race=1:
SELECT MAX(height) FROM kids View

WHERE age BETWEEN 10 AND 11 AND race = 1 ;

By combining with the GROUP BY command, useful
summaries can be obtained.

Find the average BMI (weight/height2 ∗ 10000) by sex
and race:
SELECT sex,race,count(*) AS n, View

AVG(weight/(height*height)*10000) AS bmi
FROM kids GROUP BY sex,race;

The SUM function can count logical expressions:
SELECT race,SUM(height > 150)/COUNT(*) View

FROM kids GROUP BY race;

Introduction to
SQL Summary and Computation examples

Find max. height for age between 10 and 11 and race=1:

SELECT MAX(height) FROM kids View

WHERE age BETWEEN 10 AND 11 AND race = 1 ;

By combining with the GROUP BY command, useful
summaries can be obtained.

Find the average BMI (weight/height2 ∗ 10000) by sex
and race:
SELECT sex,race,count(*) AS n, View

AVG(weight/(height*height)*10000) AS bmi
FROM kids GROUP BY sex,race;

The SUM function can count logical expressions:
SELECT race,SUM(height > 150)/COUNT(*) View

FROM kids GROUP BY race;

Introduction to
SQL Summary and Computation examples

Find max. height for age between 10 and 11 and race=1:
SELECT MAX(height) FROM kids View

WHERE age BETWEEN 10 AND 11 AND race = 1 ;

By combining with the GROUP BY command, useful
summaries can be obtained.

Find the average BMI (weight/height2 ∗ 10000) by sex
and race:
SELECT sex,race,count(*) AS n, View

AVG(weight/(height*height)*10000) AS bmi
FROM kids GROUP BY sex,race;

The SUM function can count logical expressions:
SELECT race,SUM(height > 150)/COUNT(*) View

FROM kids GROUP BY race;

Introduction to
SQL Summary and Computation examples

Find max. height for age between 10 and 11 and race=1:
SELECT MAX(height) FROM kids View

WHERE age BETWEEN 10 AND 11 AND race = 1 ;

By combining with the GROUP BY command, useful
summaries can be obtained.

Find the average BMI (weight/height2 ∗ 10000) by sex
and race:
SELECT sex,race,count(*) AS n, View

AVG(weight/(height*height)*10000) AS bmi
FROM kids GROUP BY sex,race;

The SUM function can count logical expressions:
SELECT race,SUM(height > 150)/COUNT(*) View

FROM kids GROUP BY race;

Introduction to
SQL Summary and Computation examples

Find max. height for age between 10 and 11 and race=1:
SELECT MAX(height) FROM kids View

WHERE age BETWEEN 10 AND 11 AND race = 1 ;

By combining with the GROUP BY command, useful
summaries can be obtained.

Find the average BMI (weight/height2 ∗ 10000) by sex
and race:

SELECT sex,race,count(*) AS n, View

AVG(weight/(height*height)*10000) AS bmi
FROM kids GROUP BY sex,race;

The SUM function can count logical expressions:
SELECT race,SUM(height > 150)/COUNT(*) View

FROM kids GROUP BY race;

Introduction to
SQL Summary and Computation examples

Find max. height for age between 10 and 11 and race=1:
SELECT MAX(height) FROM kids View

WHERE age BETWEEN 10 AND 11 AND race = 1 ;

By combining with the GROUP BY command, useful
summaries can be obtained.

Find the average BMI (weight/height2 ∗ 10000) by sex
and race:
SELECT sex,race,count(*) AS n, View

AVG(weight/(height*height)*10000) AS bmi
FROM kids GROUP BY sex,race;

The SUM function can count logical expressions:
SELECT race,SUM(height > 150)/COUNT(*) View

FROM kids GROUP BY race;

Introduction to
SQL Summary and Computation examples

Find max. height for age between 10 and 11 and race=1:
SELECT MAX(height) FROM kids View

WHERE age BETWEEN 10 AND 11 AND race = 1 ;

By combining with the GROUP BY command, useful
summaries can be obtained.

Find the average BMI (weight/height2 ∗ 10000) by sex
and race:
SELECT sex,race,count(*) AS n, View

AVG(weight/(height*height)*10000) AS bmi
FROM kids GROUP BY sex,race;

The SUM function can count logical expressions:

SELECT race,SUM(height > 150)/COUNT(*) View

FROM kids GROUP BY race;

Introduction to
SQL Summary and Computation examples

Find max. height for age between 10 and 11 and race=1:
SELECT MAX(height) FROM kids View

WHERE age BETWEEN 10 AND 11 AND race = 1 ;

By combining with the GROUP BY command, useful
summaries can be obtained.

Find the average BMI (weight/height2 ∗ 10000) by sex
and race:
SELECT sex,race,count(*) AS n, View

AVG(weight/(height*height)*10000) AS bmi
FROM kids GROUP BY sex,race;

The SUM function can count logical expressions:
SELECT race,SUM(height > 150)/COUNT(*) View

FROM kids GROUP BY race;

Introduction to
SQL Selecting based on Summaries

Summaries can’t be used in the WHERE clause, but they
can be used in the HAVING clause. For example, suppose
we wanted to find all the IDs in the kids database for
which there were less than 2 observations:

SELECT id FROM kids View

GROUP BY id HAVING COUNT(*) < 2;

Get all information about ids that have exactly ten
observations:
SELECT * FROM kids View

GROUP BY id HAVING COUNT(*) = 10;

This doesn’t work - it only gives the first observation for
each id.

Introduction to
SQL Selecting based on Summaries

Summaries can’t be used in the WHERE clause, but they
can be used in the HAVING clause. For example, suppose
we wanted to find all the IDs in the kids database for
which there were less than 2 observations:
SELECT id FROM kids View

GROUP BY id HAVING COUNT(*) < 2;

Get all information about ids that have exactly ten
observations:
SELECT * FROM kids View

GROUP BY id HAVING COUNT(*) = 10;

This doesn’t work - it only gives the first observation for
each id.

Introduction to
SQL Selecting based on Summaries

Summaries can’t be used in the WHERE clause, but they
can be used in the HAVING clause. For example, suppose
we wanted to find all the IDs in the kids database for
which there were less than 2 observations:
SELECT id FROM kids View

GROUP BY id HAVING COUNT(*) < 2;

Get all information about ids that have exactly ten
observations:

SELECT * FROM kids View

GROUP BY id HAVING COUNT(*) = 10;

This doesn’t work - it only gives the first observation for
each id.

Introduction to
SQL Selecting based on Summaries

Summaries can’t be used in the WHERE clause, but they
can be used in the HAVING clause. For example, suppose
we wanted to find all the IDs in the kids database for
which there were less than 2 observations:
SELECT id FROM kids View

GROUP BY id HAVING COUNT(*) < 2;

Get all information about ids that have exactly ten
observations:
SELECT * FROM kids View

GROUP BY id HAVING COUNT(*) = 10;

This doesn’t work - it only gives the first observation for
each id.

Introduction to
SQL Selecting based on Summaries

Summaries can’t be used in the WHERE clause, but they
can be used in the HAVING clause. For example, suppose
we wanted to find all the IDs in the kids database for
which there were less than 2 observations:
SELECT id FROM kids View

GROUP BY id HAVING COUNT(*) < 2;

Get all information about ids that have exactly ten
observations:
SELECT * FROM kids View

GROUP BY id HAVING COUNT(*) = 10;

This doesn’t work - it only gives the first observation for
each id.

Introduction to
SQL Subqueries

By putting a SELECT statement in parentheses, you can
use it in other SELECT statements as if it were another
table.

SELECT * FROM kids View

WHERE id IN
(SELECT id FROM kids
GROUP BY id
HAVING COUNT(*) = 10);

This may be slow if the number of ids is large.

A more efficient way is to use the subquery in an inner
join (discussed later):
SELECT * FROM kids View

INNER JOIN
(SELECT id FROM kids
GROUP BY id
HAVING COUNT(*) = 10) AS t USING(id);

This is considerably faster than the previous query.

Introduction to
SQL Subqueries

By putting a SELECT statement in parentheses, you can
use it in other SELECT statements as if it were another
table.
SELECT * FROM kids View

WHERE id IN
(SELECT id FROM kids
GROUP BY id
HAVING COUNT(*) = 10);

This may be slow if the number of ids is large.

A more efficient way is to use the subquery in an inner
join (discussed later):
SELECT * FROM kids View

INNER JOIN
(SELECT id FROM kids
GROUP BY id
HAVING COUNT(*) = 10) AS t USING(id);

This is considerably faster than the previous query.

Introduction to
SQL Subqueries

By putting a SELECT statement in parentheses, you can
use it in other SELECT statements as if it were another
table.
SELECT * FROM kids View

WHERE id IN
(SELECT id FROM kids
GROUP BY id
HAVING COUNT(*) = 10);

This may be slow if the number of ids is large.

A more efficient way is to use the subquery in an inner
join (discussed later):
SELECT * FROM kids View

INNER JOIN
(SELECT id FROM kids
GROUP BY id
HAVING COUNT(*) = 10) AS t USING(id);

This is considerably faster than the previous query.

Introduction to
SQL Subqueries

By putting a SELECT statement in parentheses, you can
use it in other SELECT statements as if it were another
table.
SELECT * FROM kids View

WHERE id IN
(SELECT id FROM kids
GROUP BY id
HAVING COUNT(*) = 10);

This may be slow if the number of ids is large.

A more efficient way is to use the subquery in an inner
join (discussed later):

SELECT * FROM kids View

INNER JOIN
(SELECT id FROM kids
GROUP BY id
HAVING COUNT(*) = 10) AS t USING(id);

This is considerably faster than the previous query.

Introduction to
SQL Subqueries

By putting a SELECT statement in parentheses, you can
use it in other SELECT statements as if it were another
table.
SELECT * FROM kids View

WHERE id IN
(SELECT id FROM kids
GROUP BY id
HAVING COUNT(*) = 10);

This may be slow if the number of ids is large.

A more efficient way is to use the subquery in an inner
join (discussed later):
SELECT * FROM kids View

INNER JOIN
(SELECT id FROM kids
GROUP BY id
HAVING COUNT(*) = 10) AS t USING(id);

This is considerably faster than the previous query.

Introduction to
SQL Subqueries

By putting a SELECT statement in parentheses, you can
use it in other SELECT statements as if it were another
table.
SELECT * FROM kids View

WHERE id IN
(SELECT id FROM kids
GROUP BY id
HAVING COUNT(*) = 10);

This may be slow if the number of ids is large.

A more efficient way is to use the subquery in an inner
join (discussed later):
SELECT * FROM kids View

INNER JOIN
(SELECT id FROM kids
GROUP BY id
HAVING COUNT(*) = 10) AS t USING(id);

This is considerably faster than the previous query.

Introduction to
SQL Subqueries (cont’d)

Suppose we want to find all information about the
observation with maximum weight:

SELECT * FROM kids View

HAVING weight = MAX(weight);

It returns an empty set!

Subqueries can be used to find the correct information:
SELECT * FROM kids View

WHERE weight =
(SELECT MAX(weight) FROM kids);

A similar thing can be done when there are grouping
variables:
SELECT k.id,k.sex,k.race,k.age, View

k.weight,k.height FROM kids AS k,
(SELECT sex,race,max(weight) AS weight from
kids) AS m WHERE k.sex=m.sex AND
k.race=m.race AND k.weight=m.weight;

Introduction to
SQL Subqueries (cont’d)

Suppose we want to find all information about the
observation with maximum weight:
SELECT * FROM kids View

HAVING weight = MAX(weight);

It returns an empty set!

Subqueries can be used to find the correct information:
SELECT * FROM kids View

WHERE weight =
(SELECT MAX(weight) FROM kids);

A similar thing can be done when there are grouping
variables:
SELECT k.id,k.sex,k.race,k.age, View

k.weight,k.height FROM kids AS k,
(SELECT sex,race,max(weight) AS weight from
kids) AS m WHERE k.sex=m.sex AND
k.race=m.race AND k.weight=m.weight;

Introduction to
SQL Subqueries (cont’d)

Suppose we want to find all information about the
observation with maximum weight:
SELECT * FROM kids View

HAVING weight = MAX(weight);

It returns an empty set!

Subqueries can be used to find the correct information:
SELECT * FROM kids View

WHERE weight =
(SELECT MAX(weight) FROM kids);

A similar thing can be done when there are grouping
variables:
SELECT k.id,k.sex,k.race,k.age, View

k.weight,k.height FROM kids AS k,
(SELECT sex,race,max(weight) AS weight from
kids) AS m WHERE k.sex=m.sex AND
k.race=m.race AND k.weight=m.weight;

Introduction to
SQL Subqueries (cont’d)

Suppose we want to find all information about the
observation with maximum weight:
SELECT * FROM kids View

HAVING weight = MAX(weight);

It returns an empty set!

Subqueries can be used to find the correct information:

SELECT * FROM kids View

WHERE weight =
(SELECT MAX(weight) FROM kids);

A similar thing can be done when there are grouping
variables:
SELECT k.id,k.sex,k.race,k.age, View

k.weight,k.height FROM kids AS k,
(SELECT sex,race,max(weight) AS weight from
kids) AS m WHERE k.sex=m.sex AND
k.race=m.race AND k.weight=m.weight;

Introduction to
SQL Subqueries (cont’d)

Suppose we want to find all information about the
observation with maximum weight:
SELECT * FROM kids View

HAVING weight = MAX(weight);

It returns an empty set!

Subqueries can be used to find the correct information:
SELECT * FROM kids View

WHERE weight =
(SELECT MAX(weight) FROM kids);

A similar thing can be done when there are grouping
variables:
SELECT k.id,k.sex,k.race,k.age, View

k.weight,k.height FROM kids AS k,
(SELECT sex,race,max(weight) AS weight from
kids) AS m WHERE k.sex=m.sex AND
k.race=m.race AND k.weight=m.weight;

Introduction to
SQL Subqueries (cont’d)

Suppose we want to find all information about the
observation with maximum weight:
SELECT * FROM kids View

HAVING weight = MAX(weight);

It returns an empty set!

Subqueries can be used to find the correct information:
SELECT * FROM kids View

WHERE weight =
(SELECT MAX(weight) FROM kids);

A similar thing can be done when there are grouping
variables:

SELECT k.id,k.sex,k.race,k.age, View

k.weight,k.height FROM kids AS k,
(SELECT sex,race,max(weight) AS weight from
kids) AS m WHERE k.sex=m.sex AND
k.race=m.race AND k.weight=m.weight;

Introduction to
SQL Subqueries (cont’d)

Suppose we want to find all information about the
observation with maximum weight:
SELECT * FROM kids View

HAVING weight = MAX(weight);

It returns an empty set!

Subqueries can be used to find the correct information:
SELECT * FROM kids View

WHERE weight =
(SELECT MAX(weight) FROM kids);

A similar thing can be done when there are grouping
variables:
SELECT k.id,k.sex,k.race,k.age, View

k.weight,k.height FROM kids AS k,
(SELECT sex,race,max(weight) AS weight from
kids) AS m WHERE k.sex=m.sex AND
k.race=m.race AND k.weight=m.weight;

Introduction to
SQL Making Tables from Queries

Sometimes it is useful to store a table which results from
a query.

Suppose we want to create a table with only observations
with age less than 15.

CREATE TABLE young LIKE kids;
INSERT INTO young SELECT * FROM kids

WHERE age < 15;

Such a table will stay on the database – to create a
temporary one:

CREATE TEMPORARY TABLE young LIKE kids;

Alternatively, you can DROP the table when you’re done:

DROP TABLE young;

Introduction to
SQL Making Tables from Queries

Sometimes it is useful to store a table which results from
a query.
Suppose we want to create a table with only observations
with age less than 15.

CREATE TABLE young LIKE kids;
INSERT INTO young SELECT * FROM kids

WHERE age < 15;

Such a table will stay on the database – to create a
temporary one:

CREATE TEMPORARY TABLE young LIKE kids;

Alternatively, you can DROP the table when you’re done:

DROP TABLE young;

Introduction to
SQL Making Tables from Queries

Sometimes it is useful to store a table which results from
a query.
Suppose we want to create a table with only observations
with age less than 15.

CREATE TABLE young LIKE kids;
INSERT INTO young SELECT * FROM kids

WHERE age < 15;

Such a table will stay on the database – to create a
temporary one:

CREATE TEMPORARY TABLE young LIKE kids;

Alternatively, you can DROP the table when you’re done:

DROP TABLE young;

Introduction to
SQL Making Tables from Queries

Sometimes it is useful to store a table which results from
a query.
Suppose we want to create a table with only observations
with age less than 15.

CREATE TABLE young LIKE kids;
INSERT INTO young SELECT * FROM kids

WHERE age < 15;

Such a table will stay on the database – to create a
temporary one:

CREATE TEMPORARY TABLE young LIKE kids;

Alternatively, you can DROP the table when you’re done:

DROP TABLE young;

Introduction to
SQL Making Tables from Queries

Sometimes it is useful to store a table which results from
a query.
Suppose we want to create a table with only observations
with age less than 15.

CREATE TABLE young LIKE kids;
INSERT INTO young SELECT * FROM kids

WHERE age < 15;

Such a table will stay on the database – to create a
temporary one:

CREATE TEMPORARY TABLE young LIKE kids;

Alternatively, you can DROP the table when you’re done:

DROP TABLE young;

Introduction to
SQL Making Tables from Queries

Sometimes it is useful to store a table which results from
a query.
Suppose we want to create a table with only observations
with age less than 15.

CREATE TABLE young LIKE kids;
INSERT INTO young SELECT * FROM kids

WHERE age < 15;

Such a table will stay on the database – to create a
temporary one:

CREATE TEMPORARY TABLE young LIKE kids;

Alternatively, you can DROP the table when you’re done:

DROP TABLE young;

Introduction to
SQL Making Tables from Queries

Sometimes it is useful to store a table which results from
a query.
Suppose we want to create a table with only observations
with age less than 15.

CREATE TABLE young LIKE kids;
INSERT INTO young SELECT * FROM kids

WHERE age < 15;

Such a table will stay on the database – to create a
temporary one:

CREATE TEMPORARY TABLE young LIKE kids;

Alternatively, you can DROP the table when you’re done:

DROP TABLE young;

Introduction to
SQL Music Collection Example

Traditionally, redundancy is the enemy of database
design, because it wastes storage space and increase data
entry errors. For this reason, may traditional databases
have a separate table for each attribute of importance.
For example, suppose we have a collection of songs,
organized into albums. Rather than store each song as a
row with the album title and artist, we would create three
tables: one for songs(tracks), one for albums, and one for
artists.

Album Artist Track
alid INT aid INT tid INT

aid INT name VARCHAR(40) alid INT

title VARCHAR(60) time INT

title VARCHAR(40)

filename VARCHAR(14)

Introduction to
SQL Music Collection Example

Traditionally, redundancy is the enemy of database
design, because it wastes storage space and increase data
entry errors. For this reason, may traditional databases
have a separate table for each attribute of importance.
For example, suppose we have a collection of songs,
organized into albums. Rather than store each song as a
row with the album title and artist, we would create three
tables: one for songs(tracks), one for albums, and one for
artists.

Album Artist Track
alid INT aid INT tid INT

aid INT name VARCHAR(40) alid INT

title VARCHAR(60) time INT

title VARCHAR(40)

filename VARCHAR(14)

Introduction to
SQL A Look at the Tables

mysql> select * from album limit 1,5;

+------+------+------------------------+

| alid | aid | title |

+------+------+------------------------+

| 140 | 102 | Ugetsu |

| 150 | 109 | Born To Be Blue |

| 151 | 109 | Connecticut Jazz Party |

| 152 | 109 | Easy Does It |

| 153 | 109 | In Person |

+------+------+------------------------+

5 rows in set (0.03 sec)

mysql> select * from artist limit 1,5;

+------+-----------------+

| aid | name |

+------+-----------------+

| 109 | Bobby Timmons |

| 134 | Dizzy Gillespie |

| 140 | Elmo Hope |

| 146 | Erroll Garner |

| 159 | Horace Silver |

+------+-----------------+

5 rows in set (0.03 sec)

mysql> select * from track limit 1,5;

+------+------+------+----------------------------------+----------------+

| tid | alid | time | title | filename |

+------+------+------+----------------------------------+----------------+

| 1713 | 139 | 413 | Sincerely Diane (alternate take) | 1077698286.mp3 |

| 1714 | 139 | 384 | Yama | 1077698288.mp3 |

| 1715 | 139 | 404 | When your lover has gone | 1077698290.mp3 |

| 2276 | 139 | 398 | So tired | 1077699502.mp3 |

| 3669 | 139 | 408 | Sincerely Diana | 1077702347.mp3 |

+------+------+------+----------------------------------+----------------+

5 rows in set (0.03 sec)

Introduction to
SQL SELECT with multiple tables

Produce a list of album titles along with artist:

SELECT a.title,r.name View

FROM album AS a, artist AS r
WHERE a.aid = r.aid;

This is a common operation, known as an inner join:

SELECT a.title,r.name FROM album AS a
INNER JOIN artist AS r USING(aid);

This produces the same result as the previous query.

Find the sum of the times on each album:
SELECT SUM(time) as duration View

FROM track GROUP BY alid
ORDER BY duration DESC;

Unfortunately, all we have are the album ids, not the
names

Introduction to
SQL SELECT with multiple tables

Produce a list of album titles along with artist:
SELECT a.title,r.name View

FROM album AS a, artist AS r
WHERE a.aid = r.aid;

This is a common operation, known as an inner join:

SELECT a.title,r.name FROM album AS a
INNER JOIN artist AS r USING(aid);

This produces the same result as the previous query.

Find the sum of the times on each album:
SELECT SUM(time) as duration View

FROM track GROUP BY alid
ORDER BY duration DESC;

Unfortunately, all we have are the album ids, not the
names

Introduction to
SQL SELECT with multiple tables

Produce a list of album titles along with artist:
SELECT a.title,r.name View

FROM album AS a, artist AS r
WHERE a.aid = r.aid;

This is a common operation, known as an inner join:

SELECT a.title,r.name FROM album AS a
INNER JOIN artist AS r USING(aid);

This produces the same result as the previous query.

Find the sum of the times on each album:
SELECT SUM(time) as duration View

FROM track GROUP BY alid
ORDER BY duration DESC;

Unfortunately, all we have are the album ids, not the
names

Introduction to
SQL SELECT with multiple tables

Produce a list of album titles along with artist:
SELECT a.title,r.name View

FROM album AS a, artist AS r
WHERE a.aid = r.aid;

This is a common operation, known as an inner join:

SELECT a.title,r.name FROM album AS a
INNER JOIN artist AS r USING(aid);

This produces the same result as the previous query.

Find the sum of the times on each album:
SELECT SUM(time) as duration View

FROM track GROUP BY alid
ORDER BY duration DESC;

Unfortunately, all we have are the album ids, not the
names

Introduction to
SQL SELECT with multiple tables

Produce a list of album titles along with artist:
SELECT a.title,r.name View

FROM album AS a, artist AS r
WHERE a.aid = r.aid;

This is a common operation, known as an inner join:

SELECT a.title,r.name FROM album AS a
INNER JOIN artist AS r USING(aid);

This produces the same result as the previous query.

Find the sum of the times on each album:
SELECT SUM(time) as duration View

FROM track GROUP BY alid
ORDER BY duration DESC;

Unfortunately, all we have are the album ids, not the
names

Introduction to
SQL SELECT with multiple tables

Produce a list of album titles along with artist:
SELECT a.title,r.name View

FROM album AS a, artist AS r
WHERE a.aid = r.aid;

This is a common operation, known as an inner join:

SELECT a.title,r.name FROM album AS a
INNER JOIN artist AS r USING(aid);

This produces the same result as the previous query.

Find the sum of the times on each album:
SELECT SUM(time) as duration View

FROM track GROUP BY alid
ORDER BY duration DESC;

Unfortunately, all we have are the album ids, not the
names

Introduction to
SQL SELECT with multiple tables

Produce a list of album titles along with artist:
SELECT a.title,r.name View

FROM album AS a, artist AS r
WHERE a.aid = r.aid;

This is a common operation, known as an inner join:

SELECT a.title,r.name FROM album AS a
INNER JOIN artist AS r USING(aid);

This produces the same result as the previous query.

Find the sum of the times on each album:
SELECT SUM(time) as duration View

FROM track GROUP BY alid
ORDER BY duration DESC;

Unfortunately, all we have are the album ids, not the
names

Introduction to
SQL SELECT with multiple tables(cont’d)

To improve our previous example, we need to combine the
track information with album and artist information.
Suppose we want to find the 10 longest albums in the
collection:

SELECT a.title,r.name, View

SUM(time) AS duration
FROM track AS t, album as a, artist as r
WHERE t.alid = a.alid AND a.aid = r.aid
GROUP BY t.alid ORDER BY duration DESC
LIMIT 1,10;

Introduction to
SQL SELECT with multiple tables(cont’d)

To improve our previous example, we need to combine the
track information with album and artist information.
Suppose we want to find the 10 longest albums in the
collection:
SELECT a.title,r.name, View

SUM(time) AS duration
FROM track AS t, album as a, artist as r
WHERE t.alid = a.alid AND a.aid = r.aid
GROUP BY t.alid ORDER BY duration DESC
LIMIT 1,10;

Introduction to
SQL SELECT with multiple tables(cont’d)

To improve our previous example, we need to combine the
track information with album and artist information.
Suppose we want to find the 10 longest albums in the
collection:
SELECT a.title,r.name, View

SUM(time) AS duration
FROM track AS t, album as a, artist as r
WHERE t.alid = a.alid AND a.aid = r.aid
GROUP BY t.alid ORDER BY duration DESC
LIMIT 1,10;

Introduction to
SQL The Rules Have Changed

As powerful as SQL is, we can use it as a data store
without having to use all of the SQL features.

I Don’t hesitate to use familiar programs to do the
hard work

I Repeated SELECT queries in loops can do wonders
I Load up data structures with entire tables
I Use as little or as much pure SQL as you like

These ideas are illustrated using the music collection
data, R, python, and perl

Introduction to
SQL The Rules Have Changed

As powerful as SQL is, we can use it as a data store
without having to use all of the SQL features.

I Don’t hesitate to use familiar programs to do the
hard work

I Repeated SELECT queries in loops can do wonders
I Load up data structures with entire tables
I Use as little or as much pure SQL as you like

These ideas are illustrated using the music collection
data, R, python, and perl

Introduction to
SQL The Rules Have Changed

As powerful as SQL is, we can use it as a data store
without having to use all of the SQL features.

I Don’t hesitate to use familiar programs to do the
hard work

I Repeated SELECT queries in loops can do wonders

I Load up data structures with entire tables
I Use as little or as much pure SQL as you like

These ideas are illustrated using the music collection
data, R, python, and perl

Introduction to
SQL The Rules Have Changed

As powerful as SQL is, we can use it as a data store
without having to use all of the SQL features.

I Don’t hesitate to use familiar programs to do the
hard work

I Repeated SELECT queries in loops can do wonders
I Load up data structures with entire tables

I Use as little or as much pure SQL as you like
These ideas are illustrated using the music collection
data, R, python, and perl

Introduction to
SQL The Rules Have Changed

As powerful as SQL is, we can use it as a data store
without having to use all of the SQL features.

I Don’t hesitate to use familiar programs to do the
hard work

I Repeated SELECT queries in loops can do wonders
I Load up data structures with entire tables
I Use as little or as much pure SQL as you like

These ideas are illustrated using the music collection
data, R, python, and perl

Introduction to
SQL The Rules Have Changed

As powerful as SQL is, we can use it as a data store
without having to use all of the SQL features.

I Don’t hesitate to use familiar programs to do the
hard work

I Repeated SELECT queries in loops can do wonders
I Load up data structures with entire tables
I Use as little or as much pure SQL as you like

These ideas are illustrated using the music collection
data, R, python, and perl

Introduction to
SQL Using SQL in R

library(RMySQL)

drv = dbDriver("MySQL")

con = dbConnect(drv,dbname="dbname",user="user",pass="pass")

rs = dbSendQuery(con,statement="select * from album")

album = fetch(rs,n=-1)

rs = dbSendQuery(con,statement="select * from track")

track = fetch(rs,n=-1)

rs = dbSendQuery(con,statement="select * from artist")

artist = fetch(rs,n=-1)

tracks = data.frame(

album = factor(track$alid,levels=album$alid,

labels=album$title),

artist = factor(merge(track[,"alid",drop=FALSE],

album[,c("alid","aid")],by="alid")$aid,

levels=artist$aid,

labels=artist$name),

time = track$time)

res = aggregate(tracks$time,

list(album=tracks$album,artist=tracks$artist),sum)

res = res[order(res$x,decreasing=TRUE),]

print(res[1:10,])

Introduction to
SQL Using SQL in python

#!/usr/bin/python

from MySQLdb import *

con = connect(user=’user’,passwd=’pass’,db=’dbname’)

cursor = con.cursor()

cursor.execute(’select * from track’)

tracks = cursor.fetchall()

durations = {}

for t in tracks:

durations[t[1]] = durations.get(t[1],0) + t[2]

alids = durations.keys()

alids.sort(lambda x,y:cmp(durations[y],durations[x]))

for i in range(10):

cursor.execute(

’select title,aid from album where alid = %d’ % alids[i])

title,aid = cursor.fetchall()[0]

cursor.execute(’select name from artist where aid = %d’ % aid)

name = cursor.fetchall()[0][0]

print ’%s\t%s\t%d’ % (title,name,durations[alids[i]])

Introduction to
SQL Using SQL in perl

#!/usr/bin/perl

use DBI;

$dbh = DBI->connect(’DBI:mysql:dbname:localhost’,’user’,’pass’);

$sth = $dbh->prepare(’select * from album’);

$sth->execute();

while((@row) = $sth->fetchrow()){

$album{$row[0]} = $row[2];

$aartist{$row[0]} = $row[1];

}

$sth = $dbh->prepare(’select * from artist’);

$sth->execute();

$artist{$row[0]} = $row[1] while((@row) = $sth->fetchrow());

$sth = $dbh->prepare(’select * from track’);

$sth->execute();

$duration{$row[1]} += $row[2] while((@row) = $sth->fetchrow());

@salbum = sort({$duration{$b} <=> $duration{$a}} keys(%duration));

foreach $i (0..9){

print

"$album{$salbum[$i]}\t$artist{$aartist{$salbum[$i]}}\t",

"$duration{$salbum[$i]}\n"

}

Introduction to
SQL

mysql> select * from kids;

+--------+------+--------+---------+---------+------+

| id | race | age | height | weight | sex |

+--------+------+--------+---------+---------+------+

| 100011 | 2 | 10.346 | 148.500 | 38.950 | 1 |

| 100011 | 2 | 11.282 | 157.100 | 44.100 | 1 |

| 100011 | 2 | 14.428 | 165.950 | 57.800 | 1 |

| 100011 | 2 | 15.321 | 167.050 | 59.650 | 1 |

| 100031 | 1 | 10.920 | 158.000 | 63.700 | 1 |

| 100031 | 1 | 11.917 | 161.000 | 68.500 | 1 |

| 100031 | 1 | 13.007 | 162.750 | 85.950 | 1 |

.

| 308091 | 1 | 9.460 | 138.000 | 39.000 | 1 |

| 308091 | 1 | 10.740 | 147.500 | 53.100 | 1 |

| 308091 | 1 | 11.359 | 151.750 | 57.050 | 1 |

| 308101 | 1 | 9.800 | 152.350 | 38.500 | 2 |

| 308101 | 1 | 10.781 | 159.335 | 48.235 | 2 |

| 308101 | 1 | 11.701 | 164.285 | 51.700 | 2 |

+--------+------+--------+---------+---------+------+

20704 rows in set (0.18 sec)

Return

Introduction to
SQL

mysql> select age,race,height,weight from kids

-> where weight > 80 and height < 150;

+--------+------+---------+--------+

| age | race | height | weight |

+--------+------+---------+--------+

| 12.429 | 2 | 147.800 | 83.000 |

| 11.674 | 2 | 149.350 | 82.950 |

| 14.414 | 2 | 149.300 | 86.750 |

+--------+------+---------+--------+

3 rows in set (0.06 sec)

Return

Introduction to
SQL

mysql> select * from kids order by height desc;

+--------+------+--------+---------+---------+------+

| id | race | age | height | weight | sex |

+--------+------+--------+---------+---------+------+

| 302941 | 2 | 19.657 | 201.905 | 83.820 | 2 |

| 300861 | 2 | 17.804 | 201.850 | 126.610 | 2 |

| 302941 | 2 | 16.572 | 201.795 | 76.670 | 2 |

| 300861 | 2 | 14.833 | 201.520 | 124.245 | 2 |

| 300861 | 2 | 18.781 | 201.520 | 123.310 | 2 |

| 302941 | 2 | 18.611 | 201.410 | 83.710 | 2 |

| 107061 | 2 | 17.626 | 201.300 | 82.005 | 2 |

| 302941 | 2 | 15.537 | 201.190 | 72.820 | 2 |

| 304441 | 1 | 17.946 | 201.190 | 67.430 | 2 |

| 116741 | 1 | 17.338 | 201.025 | 72.710 | 2 |

+--------+------+--------+---------+---------+------+

10 rows in set (0.10 sec)

Return

Introduction to
SQL

mysql> select * from kids

-> where age between 17 and 18

-> and weight between 180 and 185;

+--------+------+--------+---------+---------+------+

| id | race | age | height | weight | sex |

+--------+------+--------+---------+---------+------+

| 304741 | 1 | 17.875 | 194.150 | 184.250 | 2 |

+--------+------+--------+---------+---------+------+

1 row in set (0.03 sec)

Return

Introduction to
SQL

mysql> select max(height) from kids

-> where age between 10 and 11 and race = 1;

+-------------+

| max(height) |

+-------------+

| 178.750 |

+-------------+

1 row in set (0.06 sec)

Return

Introduction to
SQL

mysql> select sex,race,count(*) as n,

-> avg(weight/(height*height)*10000) as bmi

-> from kids group by sex,race;

+------+------+------+--------------+

| sex | race | n | bmi |

+------+------+------+--------------+

| 1 | 1 | 4977 | 21.312670406 |

| 1 | 2 | 5532 | 23.489962065 |

| 2 | 1 | 4973 | 19.153469602 |

| 2 | 2 | 5222 | 21.040500147 |

+------+------+------+--------------+

4 rows in set (0.12 sec)

Return

Introduction to
SQL

mysql> select race,sum(height > 150)/count(*)

-> from kids group by race;

+------+----------------------------+

| race | sum(height > 150)/count(*) |

+------+----------------------------+

| 1 | 0.85 |

| 2 | 0.89 |

+------+----------------------------+

2 rows in set (0.05 sec)

Return

Introduction to
SQL

mysql> select id from kids

-> group by id having count(*) < 2;

+--------+

| id |

+--------+

| 101051 |

| 103181 |

| 103191 |

| 107231 |

| 109001 |

. . .

| 207291 |

| 207961 |

| 302241 |

| 304561 |

| 307081 |

+--------+

22 rows in set (0.10 sec)

Return

Introduction to
SQL

mysql> select * from kids group by id having count(*)=10;

+--------+------+--------+---------+--------+------+

| id | race | age | height | weight | sex |

+--------+------+--------+---------+--------+------+

| 100031 | 1 | 10.920 | 158.000 | 63.700 | 1 |

| 100041 | 1 | 10.070 | 159.500 | 51.700 | 2 |

| 100071 | 2 | 10.630 | 139.700 | 37.500 | 1 |

| 100081 | 2 | 9.110 | 152.130 | 36.795 | 2 |

| 100091 | 2 | 9.200 | 148.250 | 54.150 | 1 |

.

| 308021 | 1 | 9.330 | 157.850 | 41.470 | 2 |

| 308041 | 1 | 10.810 | 157.025 | 38.060 | 2 |

| 308061 | 1 | 10.120 | 156.200 | 32.780 | 2 |

| 308071 | 1 | 10.990 | 138.500 | 29.450 | 1 |

| 308081 | 1 | 9.920 | 152.900 | 31.130 | 2 |

+--------+------+--------+---------+--------+------+

1303 rows in set (0.11 sec)

Return

Introduction to
SQL

mysql> select * from kids where id in

-> (select id from kids group by id

-> having count(*)=10);

+--------+------+--------+---------+---------+------+

| id | race | age | height | weight | sex |

+--------+------+--------+---------+---------+------+

| 100011 | 2 | 10.346 | 148.500 | 38.950 | 1 |

| 100011 | 2 | 11.282 | 157.100 | 44.100 | 1 |

| 100011 | 2 | 12.336 | 163.900 | 51.150 | 1 |

| 100011 | 2 | 13.388 | 166.450 | 57.400 | 1 |

| 100011 | 2 | 14.428 | 165.950 | 57.800 | 1 |

.

| 308081 | 1 | 14.803 | 183.700 | 55.935 | 2 |

| 308081 | 1 | 15.780 | 183.590 | 54.780 | 2 |

| 308081 | 1 | 16.865 | 184.195 | 58.905 | 2 |

| 308081 | 1 | 17.864 | 184.580 | 56.320 | 2 |

| 308081 | 1 | 18.631 | 184.195 | 56.100 | 2 |

+--------+------+--------+---------+---------+------+

13030 rows in set (35 min 33.96 sec)

Return

Introduction to
SQL

mysql> select * from kids inner join

-> (select id from kids group by id having count(*)=10)

-> as a using(id);

+--------+------+--------+---------+---------+------+

| id | race | age | height | weight | sex |

+--------+------+--------+---------+---------+------+

| 100011 | 2 | 10.346 | 148.500 | 38.950 | 1 |

| 100011 | 2 | 11.282 | 157.100 | 44.100 | 1 |

| 100011 | 2 | 12.336 | 163.900 | 51.150 | 1 |

| 100011 | 2 | 13.388 | 166.450 | 57.400 | 1 |

| 100011 | 2 | 14.428 | 165.950 | 57.800 | 1 |

.

| 308081 | 1 | 14.803 | 183.700 | 55.935 | 2 |

| 308081 | 1 | 15.780 | 183.590 | 54.780 | 2 |

| 308081 | 1 | 16.865 | 184.195 | 58.905 | 2 |

| 308081 | 1 | 17.864 | 184.580 | 56.320 | 2 |

| 308081 | 1 | 18.631 | 184.195 | 56.100 | 2 |

+--------+------+--------+---------+---------+------+

13030 rows in set (11.89 sec)

Return

Introduction to
SQL

mysql> select * from kids

-> having weight = max(weight);

Empty set (0.00 sec)

Return

Introduction to
SQL

mysql> select * from kids

-> where weight = (select max(weight) from kids);

+--------+------+--------+---------+---------+------+

| id | race | age | height | weight | sex |

+--------+------+--------+---------+---------+------+

| 304741 | 1 | 18.680 | 192.940 | 189.695 | 2 |

+--------+------+--------+---------+---------+------+

1 row in set (0.03 sec)

Return

Introduction to
SQL

mysql> select k.id,k.sex,k.race,k.age,k.weight,k.height

-> from kids as k, (select sex,race,max(weight) as weight

-> from kids group by sex,race) as m

-> where k.sex = m.sex and k.race = m.race and

-> k.weight = m.weight;

+--------+------+------+--------+---------+---------+

| id | sex | race | age | weight | height |

+--------+------+------+--------+---------+---------+

| 207201 | 2 | 2 | 19.405 | 173.360 | 191.565 |

| 207931 | 1 | 2 | 19.674 | 151.200 | 164.900 |

| 208171 | 1 | 1 | 18.633 | 128.500 | 168.100 |

| 304741 | 2 | 1 | 18.680 | 189.695 | 192.940 |

+--------+------+------+--------+---------+---------+

4 rows in set (0.34 sec)

Return

Introduction to
SQL

mysql> select a.title,r.name from album as a,artist as r where a.aid = r.aid;

+--+------------------------------+

| title | name |

+--+------------------------------+

| A Night in Tunisia | Art Blakey & Jazz Messengers |

| Ugetsu | Art Blakey & Jazz Messengers |

| Born To Be Blue | Bobby Timmons |

| Connecticut Jazz Party | Bobby Timmons |

| Easy Does It | Bobby Timmons |

| In Person | Bobby Timmons |

| Moanin’ Blues | Bobby Timmons |

| The Prestige Trio Sessions | Bobby Timmons |

| Soul Man Soul Food | Bobby Timmons |

| Soul Time | Bobby Timmons |

| Workin’ Out | Bobby Timmons |

| 1945-1950 Small Groups | Dizzy Gillespie |

.

| Live at the Circle Room and Mo | Nat King Cole |

| Birth of the Cole 1938-1939 | Nat King Cole |

| Rockin’ Boppin’ & Blues | Nat King Cole |

| WWII Transcriptions | Nat King Cole |

| Oscar Peterson And Clark Terry | Oscar Peterson |

| A Tribute To My Friends | Oscar Peterson |

| The Oscar Peterson Trio Live At Zardi’s - Disc One | Oscar Peterson |

| The Oscar Peterson Trio Live At Zardi’s - Disc Two | Oscar Peterson |

| Skol | Oscar Peterson |

| Oscar Peterson and Dizzy Gillespie | Oscar Peterson |

| Overseas | Tommy Flanagan |

| The Tommy Flanagan Trio | Tommy Flanagan |

| Trio & Sextet | Tommy Flanagan |

+--+------------------------------+

72 rows in set (0.02 sec)

Return

Introduction to
SQL

mysql> select alid,sum(time) as duration

-> from track group by alid order by duration desc;

+------+----------+

| alid | duration |

+------+----------+

| 150 | 6057 |

| 286 | 5664 |

| 264 | 5028 |

| 156 | 4764 |

| 158 | 4674 |

. . . .

| 343 | 2031 |

| 263 | 1865 |

| 281 | 1749 |

| 280 | 1611 |

| 287 | 1519 |

| 203 | 1061 |

+------+----------+

72 rows in set (0.04 sec)

Return

Introduction to
SQL

mysql> select a.title,r.name,sum(time) as duration

-> from track as t,album as a,artist as r

-> where t.alid=a.alid and a.aid = r.aid

-> group by t.alid

-> order by duration desc limit 1,10;

+--+----------------+----------+

| title | name | duration |

+--+----------------+----------+

| My Funny Valentine | Miles Davis | 5664 |

| Trio | Kenny Drew | 5028 |

| Soul Man Soul Food | Bobby Timmons | 4764 |

| Workin’ Out | Bobby Timmons | 4674 |

| The All-Stars Sessions | Elmo Hope | 4636 |

| The Oscar Peterson Trio Live At Zardi’s - Disc Two | Oscar Peterson | 4567 |

| Memories Of You | Erroll Garner | 4538 |

| Elmo Hope | Elmo Hope | 4536 |

| WWII Transcriptions | Nat King Cole | 4456 |

| The Oscar Peterson Trio Live At Zardi’s - Disc One | Oscar Peterson | 4355 |

+--+----------------+----------+

10 rows in set (0.10 sec)

Return

	Overview of SQL
	Databases
	Creating Database Tables
	Querying a Database
	More traditional databases
	Using SQL in Other Programs
	Appendix

