
Egor Rogov

PostgreSQL 14
Internals

Postgres Professional

Moscow, ����

The elephant on the cover is a fragment of an illustration from Edward Topsell’s

The History of Four-footed Beasts and Serpents, published in London in ����

PostgreSQL 14 Internals

by Egor Rogov

Translated from Russian by Liudmila Mantrova

© Postgres Professional, 2022–2023

ISBN 978-5-6045970-4-0

This book in ��� is available at postgrespro.com/community/books/internals

https://postgrespro.com/community/books/internals

Contents at a Glance

About This Book . 15

1 Introduction . 20

Part I Isolation and MVCC 37

2 Isolation . 39

3 Pages and Tuples . 62

4 Snapshots . 80

5 Page Pruning and HOT Updates . 92

6 Vacuum and Autovacuum . 102

7 Freezing . 123

8 Rebuilding Tables and Indexes . 135

Part II Buffer Cache and WAL 145

9 Buffer Cache . 147

10 Write-Ahead Log . 164

11 WAL Modes . 182

Part III Locks 197

12 Relation-Level Locks . 199

13 Row-Level Locks . 210

14 Miscellaneous Locks . 231

15 Locks on Memory Structures . 240

Part IV Query Execution 249

16 Query Execution Stages . 251

17 Statistics . 271

18 Table Access Methods . 294

19 Index Access Methods . 313

20 Index Scans . 330

21 Nested Loop . 350

22 Hashing . 367

23 Sorting and Merging . 387

3

Contents at a Glance

Part V Types of Indexes 409

24 Hash . 411

25 B-tree . 421

26 GiST . 444

27 SP-GiST . 472

28 GIN . 492

29 BRIN . 517

Conclusion . 540

Index . 541

4

Table of Contents

About This Book 15

1 Introduction 20

1.1 Data Organization . 20

Databases . 20

System Catalog . 21

Schemas . 22

Tablespaces . 22

Relations . 24

Files and Forks . 24

Pages . 28

TOAST . 28

1.2 Processes and Memory . 33

1.3 Clients and the Client-Server Protocol . 34

Part I Isolation and MVCC 37

2 Isolation 39

2.1 Consistency . 39

2.2 Isolation Levels and Anomalies in SQL Standard 41

Lost Update . 41

Dirty Reads and Read Uncommitted . 42

Non-Repeatable Reads and Read Committed 42

Phantom Reads and Repeatable Read . 42

No Anomalies and Serializable . 43

Why These Anomalies? . 43

2.3 Isolation Levels in PostgreSQL . 44

Read Committed . 45

Repeatable Read . 52

Serializable . 58

2.4 Which Isolation Level to Use? . 61

3 Pages and Tuples 62

3.1 Page Structure . 62

Page Header . 62

Special Space . 63

5

Table of Contents

Tuples . 63

Item Pointers . 63

Free Space . 64

3.2 Row Version Layout . 64

3.3 Operations on Tuples . 66

Insert . 67

Commit . 70

Delete . 72

Abort . 72

Update . 73

3.4 Indexes . 74

3.5 TOAST . 74

3.6 Virtual Transactions . 75

3.7 Subtransactions . 76

Savepoints . 76

Errors and Atomicity . 78

4 Snapshots 80

4.1 What is a Snapshot? . 80

4.2 Row Version Visibility . 81

4.3 Snapshot Structure . 82

4.4 Visibility of Transactions’ Own Changes . 86

4.5 Transaction Horizon . 87

4.6 System Catalog Snapshots . 89

4.7 Exporting Snapshots . 90

5 Page Pruning and HOT Updates 92

5.1 Page Pruning . 92

5.2 HOT Updates . 95

5.3 Page Pruning for HOT Updates . 98

5.4 HOT Chain Splits . 99

5.5 Page Pruning for Indexes . 101

6 Vacuum and Autovacuum 102

6.1 Vacuum . 102

6.2 Database Horizon Revisited . 104

6.3 Vacuum Phases . 107

Heap Scan . 107

Index Vacuuming . 107

Heap Vacuuming . 108

Heap Truncation . 108

6

Table of Contents

6.4 Analysis . 109

6.5 Automatic Vacuum and Analysis . 109

About the Autovacuum Mechanism . 110

Which Tables Need to be Vacuumed? . 111

Which Tables Need to Be Analyzed? . 113

Autovacuum in Action . 113

6.6 Managing the Load . 117

Vacuum Throttling . 117

Autovacuum Throttling . 118

6.7 Monitoring . 119

Monitoring Vacuum . 119

Monitoring Autovacuum . 121

7 Freezing 123

7.1 Transaction ID Wraparound . 123

7.2 Tuple Freezing and Visibility Rules . 124

7.3 Managing Freezing . 127

Minimal Freezing Age . 127

Age for Aggressive Freezing . 129

Age for Forced Autovacuum . 131

Age for Failsafe Freezing . 132

7.4 Manual Freezing . 132

Freezing by Vacuum . 133

Freezing Data at the Initial Loading . 133

8 Rebuilding Tables and Indexes 135

8.1 Full Vacuuming . 135

Why is Routine Vacuuming not Enough? . 135

Estimating Data Density . 136

Freezing . 139

8.2 Other Rebuilding Methods . 140

Alternatives to Full Vacuuming . 140

Reducing Downtime During Rebuilding . 140

8.3 Precautions . 141

Read-Only Queries . 141

Data Updates . 142

7

Table of Contents

Part II Buffer Cache and WAL 145

9 Buffer Cache 147

9.1 Caching . 147

9.2 Buffer Cache Design . 148

9.3 Cache Hits . 149

9.4 Cache Misses . 153

Buffer Search and Eviction . 154

9.5 Bulk Eviction . 156

9.6 Choosing the Buffer Cache Size . 158

9.7 Cache Warming . 161

9.8 Local Cache . 163

10 Write-Ahead Log 164

10.1 Logging . 164

10.2 WAL Structure . 165

Logical Structure . 165

Physical Structure . 168

10.3 Checkpoint . 170

10.4 Recovery . 173

10.5 Background Writing . 176

10.6 WAL Setup . 177

Configuring Checkpoints . 177

Configuring Background Writing . 179

Monitoring . 179

11 WALModes 182

11.1 Performance . 182

11.2 Fault Tolerance . 185

Caching . 186

Data Corruption . 187

Non-Atomic Writes . 189

11.3 WAL Levels . 191

Minimal . 192

Replica . 193

Logical . 196

Part III Locks 197

12 Relation-Level Locks 199

12.1 About Locks . 199

8

Table of Contents

12.2 Heavyweight Locks . 201

12.3 Locks on Transaction IDs . 202

12.4 Relation-Level Locks . 204

12.5 Wait Queue . 206

13 Row-Level Locks 210

13.1 Lock Design . 210

13.2 Row-Level Locking Modes . 211

Exclusive Modes . 211

Shared Modes . 213

13.3 Multitransactions . 213

13.4 Wait Queue . 215

Exclusive Modes . 215

Shared Modes . 221

13.5 No-Wait Locks . 224

13.6 Deadlocks . 225

Deadlocks by Row Updates . 227

Deadlocks Between Two UPDATE Statements 228

14 Miscellaneous Locks 231

14.1 Non-Object Locks . 231

14.2 Relation Extension Locks . 232

14.3 Page Locks . 233

14.4 Advisory Locks . 234

14.5 Predicate Locks . 235

15 Locks on Memory Structures 240

15.1 Spinlocks . 240

15.2 Lightweight Locks . 240

15.3 Examples . 241

Buffer Cache . 241

WAL Buffers . 242

15.4 Monitoring Waits . 243

15.5 Sampling . 245

Part IV Query Execution 249

16 Query Execution Stages 251

16.1 Demo Database . 251

16.2 Simple Query Protocol . 252

Parsing . 254

9

Table of Contents

Transformation . 255

Planning . 257

Execution . 264

16.3 Extended Query Protocol . 266

Preparation . 266

Parameter Binding . 267

Planning and Execution . 267

Getting the Results . 270

17 Statistics 271

17.1 Basic Statistics . 271

17.2 NULL Values . 274

17.3 Distinct Values . 276

17.4 Most Common Values . 277

17.5 Histogram . 279

17.6 Statistics for Non-Scalar Data Types . 283

17.7 Average Field Width . 284

17.8 Correlation . 284

17.9 Expression Statistics . 285

Extended Expression Statistics . 286

Statistics for Expression Indexes . 287

17.10 Multivariate Statistics . 288

Functional Dependencies Between Columns 288

Multivariate Number of Distinct Values . 290

Multivariate MCV Lists . 291

18 Table Access Methods 294

18.1 Pluggable Storage Engines . 294

18.2 Sequential Scans . 296

Cost Estimation . 296

18.3 Parallel Plans . 300

18.4 Parallel Sequential Scans . 301

Cost Estimation . 301

18.5 Parallel Execution Limitations . 305

Number of Background Workers . 305

Non-Parallelizable Queries . 308

Parallel Restricted Queries . 309

19 Index Access Methods 313

19.1 Indexes and Extensibility . 313

10

Table of Contents

19.2 Operator Classes and Families . 315

Operator Classes . 315

Operator Families . 320

19.3 Indexing Engine Interface . 322

Access Method Properties . 322

Index-Level Properties . 326

Column-Level Properties . 327

20 Index Scans 330

20.1 Regular Index Scans . 330

Cost Estimation . 331

Good Scenario: High Correlation . 331

Bad Scenario: Low Correlation . 334

20.2 Index-Only Scans . 337

Indexes with the Include Clause . 339

20.3 Bitmap Scans . 340

Bitmap Accuracy . 342

Operations on Bitmaps . 343

Cost Estimation . 343

20.4 Parallel Index Scans . 347

20.5 Comparison of Various Access Methods . 348

21 Nested Loop 350

21.1 Join Types and Methods . 350

21.2 Nested Loop Joins . 351

Cartesian Product . 352

Parameterized Joins . 355

Caching Rows (Memoization) . 359

Outer Joins . 362

Anti- and Semi-joins . 363

Non-Equi-joins . 365

Parallel Mode . 366

22 Hashing 367

22.1 Hash Joins . 367

One-Pass Hash Joins . 367

Two-Pass Hash Joins . 372

Dynamic Adjustments . 374

Hash Joins in Parallel Plans . 377

Parallel One-Pass Hash Joins . 378

Parallel Two-Pass Hash Joins . 380

11

Table of Contents

Modifications . 382

22.2 Distinct Values and Grouping . 384

23 Sorting and Merging 387

23.1 Merge Joins . 387

Merging Sorted Sets . 387

Parallel Mode . 390

Modifications . 391

23.2 Sorting . 392

Quicksort . 393

Top-N Heapsort . 394

External Sorting . 396

Incremental Sorting . 399

Parallel Mode . 401

23.3 Distinct Values and Grouping . 403

23.4 Comparison of Join Methods . 405

Part V Types of Indexes 409

24 Hash 411

24.1 Overview . 411

24.2 Page Layout . 412

24.3 Operator Class . 417

24.4 Properties . 418

Access Method Properties . 419

Index-Level Properties . 419

Column-Level Properties . 420

25 B-tree 421

25.1 Overview . 421

25.2 Search and Insertions . 422

Search by Equality . 422

Search by Inequality . 423

Search by Range . 424

Insertions . 425

25.3 Page Layout . 426

Deduplication . 429

Compact Storage of Inner Index Entries . 431

25.4 Operator Class . 432

Comparison Semantics . 432

12

Table of Contents

Multicolumn Indexes and Sorting . 437

25.5 Properties . 441

Access Method Properties . 441

Index-Level Properties . 442

Column-Level Properties . 443

26 GiST 444

26.1 Overview . 444

26.2 R-Trees for Points . 445

Page Layout . 447

Operator Class . 448

Search for Contained Elements . 450

Nearest Neighbor Search . 452

Insertion . 456

Exclusion Constraints . 457

Properties . 459

26.3 RD-Trees for Full-Text Search . 462

About Full-Text Search . 462

Indexing tsvector Data . 463

Properties . 469

26.4 Other Data Types . 470

27 SP-GiST 472

27.1 Overview . 472

27.2 Quadtrees for Points . 473

Operator Class . 475

Page Layout . 477

Search . 479

Insertion . 480

Properties . 482

27.3 K-Dimensional Trees for Points . 483

27.4 Radix Trees for Strings . 485

Operator Class . 486

Search . 487

Insertion . 489

Properties . 490

27.5 Other Data Types . 490

28 GIN 492

28.1 Overview . 492

13

Table of Contents

28.2 Index for Full-Text Search . 493

Page Layout . 494

Operator Class . 496

Search . 497

Frequent and Rare Lexemes . 499

Insertions . 501

Limiting Result Set Size . 503

Properties . 505

GIN Limitations and RUM Index . 506

28.3 Trigrams . 507

28.4 Indexing Arrays . 508

28.5 Indexing JSON . 511

jsonb_ops Operator Class . 512

jsonb_path_ops Operator Class . 514

28.6 Indexing Other Data Types . 516

29 BRIN 517

29.1 Overview . 517

29.2 Example . 518

29.3 Page Layout . 519

29.4 Search . 521

29.5 Summary Information Updates . 522

Value Insertion . 522

Range Summarization . 522

29.6 Minmax Classes . 523

Choosing Columns to be Indexed . 525

Range Size and Search Efficiency . 525

Properties . 528

29.7 Minmax-Multi Classes . 530

29.8 Inclusion Classes . 533

29.9 Bloom Classes . 536

Conclusion 540

Index 541

14

About This Book

Books are not made to be believed, but to be

subjected to inquiry.

— Umberto Eco, The Name of the Rose

For Whom Is This Book?

This book is for those who will not settle for a black-box approach when working with a

database. If you are eager to learn, prefer not to take expert advice for granted, and would

like to figure out everything yourself, follow along.

I assume that the reader has already tried using Postgre��� and has at least some general

understanding of how it works. Entry-level users may find the text a bit difficult. For

example, I will not tell anything about how to install the server, enter psql commands, or

set configuration parameters.

I hope that the book will also be useful for those who are familiar with another database

system, but switch over to Postgre��� and would like to understand how they differ.

A book like this would have saved me a lot of time several years ago. And that’s exactly

why I finally wrote it.

What This Book Will Not Provide

This book is not a collection of recipes. You cannot find ready-made solutions for every

possible occasion, but if you understand inner mechanisms of a complex system, you will

be able to analyze and critically evaluate other people’s experience and come to your own

conclusions. For this reason, I explain such details that may at first seem to be of no

practical use.

But this book is not a tutorial either. While delving deeply into some fields (in which I am

more interested myself), it may say nothing at all about the other.

By no means is this book a reference. I tried to be precise, but I did not aim at replacing

documentation, so I could easily leave out some details that I considered insignificant. In

any unclear situation read the documentation.

15

About This Book

This book will not teach you how to develop the Postgre��� core. I do not expect any

knowledge of the C language, as this book is mainly intended for database administrators

and application developers. But I do providemultiple references to the source code,which

can give you as many details as you like, and even more.

What This Book Does Provide

In the introductory chapter, I briefly touch upon the main database concepts that will

serve as the foundation for all the further narration. I do not expect you to get much new

information from this chapter but still include it to complete the big picture. Besides, this

overview can be found useful by those who are migrating from other database systems.

Part I is devoted to questions of data consistency and isolation. I first cover them from

the user’s perspective (you will learn which isolation levels are available and what are the

implications) and then dwell on their internals. For this purpose, I have to explain im-

plementation details of multiversion concurrency control and snapshot isolation, paying

special attention to cleanup of outdated row versions.

Part II describes buffer cache and ���, which is used to restore data consistency after a

failure.

Part III goes into details about the structure and usage of various types of locks:

lightweight locks for ���, heavyweight locks for relations, and row-level locks.

Part IV explains how the server plans and executes ��� queries. I will tell you which data

access methods are available, which join methods can be used, and how the collected

statistics are applied.

Part V extends the discussion of indexes from the already covered B-trees to other access

methods. I will explain some general principles of extensibility that define the boundaries

between the core of the indexing system, index accessmethods, and data types (which will

bring us to the concept of operator classes), and then elaborate on each of the available

methods.

Postgre��� includes multiple “introspective” extensions, which are not used in routine

work, but give us an opportunity to peek into the server’s internal behavior. This book uses

quite a few of them. Apart from letting us explore the server internals, these extensions

can also facilitate troubleshooting in complex usage scenarios.

16

Conventions

Conventions

I tried to write this book in a way that would allow reading it page by page, from start to

finish. But it is hardly possible to uncover all the truth at once, so I had to get back to the

same topic several times. Writing that “it will be considered later” over and over again

would inevitably make the text much longer, that’s why in such cases I simply put the

page number in the margin p. ��to refer you to further discussion. A similar number pointing

backwards will take you to the page where something has been already said on the subject.

Both the text and all the code examples in this book apply to Postgre��� ��. Next to

some paragraphs, you can see a version number in the page margin. v. ��It means that the

provided information is relevant starting from the indicated Postgre��� version, while all

the previous versions either did not have the described feature at all, or used a different

implementation. Such notes can be useful for those who have not upgraded their systems

to the latest release yet.

I also use the margins to show the default values of the discussed parameters. The names

of both regular and storage parameters are printed in italics: 4MBwork_mem.

In footnotes, I provide multiple links to various sources of information. There are several

of them, but first and foremost, I list the Postgre��� documentation,1 which is a well-

spring of knowledge. Being an essential part of the project, it is always kept up-to-date

by Postgre��� developers themselves. However, the primary reference is definitely the

source code.2 It is amazing how many answers you can find by simply reading comments

and browsing through ������ files, even if you do not know C. Sometimes I also refer

to commitfest entries:3 you can always trace the history of all changes and understand

the logic of decisions taken by developers if you read the related discussions in the psql-

hackers mailing list, but it requires digging through piles of emails.

Side notes that can lead the discussion astray (which I could not help but include into the book)

are printed like this, so they can be easily skipped.

Naturally, the book contains multiple code examples,mainly in ���. The code is provided

with the prompt =>; the server response follows if necessary:

=> SELECT now();

now

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2023−03−06 14:00:08.008545+03

(1 row)

1 postgresql.org/docs/14/index.html
2 git.postgresql.org/gitweb/?p=postgresql.git;a=summary
3 commitfest.postgresql.org

17

https://postgresql.org/docs/14/index.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=summary
https://commitfest.postgresql.org

About This Book

If you carefully repeat all the provided commands in Postgre��� ��, you should get exactly

the same results (down to transaction ��s and other inessential details). Anyway, all the

code examples in this book have been generated by the script containing exactly these

commands.

When it is required to illustrate concurrent execution of several transactions, the code run

in another session is indented and marked off by a vertical line.

=> SHOW server_version;

server_version

−−−−−−−−−−−−−−−−

14.7

(1 row)

To try out such commands (which is useful for self-study, just like any experimentation),

it is convenient to open two psql terminals.

The names of commands and various database objects (such as tables and columns, func-

tions, or extensions) are highlighted in the text using a sans-serif font: ������, pg_class.

If a utility is called from the operating system, it is shown with a prompt that ends with $:

postgres$ whoami

postgres

I use Linux, but without any technicalities; having some basic understanding of this op-

erating system will be enough.

Acknowledgments

It is impossible to write a book alone, and now I have an excellent opportunity to thank

good people.

I am very grateful to Pavel Luzanov who found the right moment and offered me to start

doing something really worthwhile.

I am obliged to Postgres Professional for the opportunity to work on this book beyond my

free time. But there are actual people behind the company, so I would like to express my

gratitude to Oleg Bartunov for sharing ideas and infinite energy, and to Ivan Panchenko

for thorough support and LATEX.

I would like to thank my colleagues from the education team for the creative atmosphere

and discussions that shaped the scope and format of our training courses, which also got

18

Acknowledgments

reflected in the book. Special thanks to Pavel Tolmachev for his meticulous review of the

drafts.

Many chapters of this book were first published as articles in the Habr blog,1 and I am

grateful to the readers for their comments and feedback. It showed the importance of this

work, highlighted some gaps in my knowledge, and helped me improve the text.

I would also like to thank Liudmila Mantrova who has put much effort into polishing this

book’s language. If you do not stumble over every other sentence, the credit goes to her.

Besides, Liudmila took the trouble to translate this book into English, for which I am very

grateful too.

I do not provide any names, but each function or feature mentioned in this book has re-

quired years of work done by particular people. I admire Postgre��� developers, and I am

very glad to have the honor of calling many of them my colleagues.

1 habr.com/en/company/postgrespro/blog

19

https://habr.com/en/company/postgrespro/blog

1
Introduction

1.1 Data Organization

Databases

Postgre��� is a program that belongs to the class of databasemanagement systems. When

this program is running, we call it a Postgre��� server, or instance.

Data managed by Postgre��� is stored in databases.1 A single Postgre��� instance can

serve several databases at a time; together they are called a database cluster.

To be able to use the cluster, you must first initialize2 (create) it. The directory that con-

tains all the files related to the cluster is usually called ������, after the name of the

environment variable pointing to this directory.

Installations from pre-built packages can add their own “abstraction layers” over the regular Post-

gre��� mechanism by explicitly setting all the parameters required by utilities. In this case, the

database server runs as an operating system service, and you may never come across the ������

variable directly. But the term itself is well-established, so I am going to use it.

After cluster initialization, ������ contains three identical databases:

template0 is used for cases like restoring data from a logical backup or creating a database

with a different encoding; it must never be modified.

template1 serves as a template for all the other databases that a user can create in the

cluster.

postgres is a regular database that you can use at your discretion.

1 postgresql.org/docs/14/managing-databases.html
2 postgresql.org/docs/14/app-initdb.html

20

https://postgresql.org/docs/14/managing-databases.html
https://postgresql.org/docs/14/app-initdb.html

1.1 Data Organization

postgres template0 template1

CREATE DATABASE

newdb

PostgreSQL instance

database
cluster

System Catalog

Metadata of all cluster objects (such as tables, indexes, data types, or functions) is stored

in tables that belong to the system catalog.1 Each database has its own set of tables (and

views) that describe the objects of this database. Several system catalog tables are com-

mon to the whole cluster; they do not belong to any particular database (technically, a

dummy database with a zero �� is used), but can be accessed from all of them.

The system catalog can be viewed using regular ��� queries, while all modifications in it

are performed by ��� commands. The psql client also offers a whole range of commands

that display the contents of the system catalog.

Names of all system catalog tables beginwith pg_, like in pg_database. Columnnames start

with a three-letter prefix that usually corresponds to the table name, like in datname.

In all system catalog tables, the column declared as the primary key is called oid (object

identifier); its type, which is also called oid, is a ��-bit integer.

The implementation of oid object identifiers is virtually the same as that of sequences, but it

appeared in Postgre��� much earlier. What makes it special is that the generated unique ��s issued

by a common counter are used in different tables of the system catalog. When an assigned ��

exceeds the maximum value, the counter is reset. To ensure that all values in a particular table are

unique, the next issued oid is checked by the unique index; if it is already used in this table, the

counter is incremented, and the check is repeated.2

1 postgresql.org/docs/14/catalogs.html
2 backend/catalog/catalog.c, GetNewOidWithIndex function

21

https://postgresql.org/docs/14/catalogs.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/catalog/catalog.c;hb=REL_14_STABLE

Chapter 1 Introduction

Schemas

Schemas1 are namespaces that store all objects of a database. Apart from user schemas,

Postgre��� offers several predefined ones:

public is the default schema for user objects unless other settings are specified.

pg_catalog is used for system catalog tables.

information_schema provides an alternative view for the system catalog as defined by the

��� standard.

pg_toast is used for objects related to �����p. �� .

pg_temp comprises temporary tables. Although different users create temporary tables

in different schemas called pg_temp_N, everyone refers to their objects using the

pg_temp alias.

Each schema is confined to a particular database, and all database objects belong to this

or that schema.

If the schema is not specified explicitly when an object is accessed, Postgre��� selects the

first suitable schema from the search path. The search path is based on the value of the

search_path parameter, which is implicitly extended with pg_catalog and (if necessary)

pg_temp schemas. It means that different schemas can contain objects with the same

names.

Tablespaces

Unlike databases and schemas, which determine logical distribution of database objects,

tablespaces define physical data layout. A tablespace is virtually a directory in a file system.

You can distribute your data between tablespaces in such a way that archive data is stored

on slow disks, while the data that is being actively updated goes to fast disks.

One tablespace can be used by different databases, and each database can store data in

several tablespaces. Itmeans that logical structure and physical data layout do not depend

on each other.

Each database has the so-called default tablespace. All database objects are created in

this tablespace unless another location is specified. System catalog objects related to this

database are also stored there.

1 postgresql.org/docs/14/ddl-schemas.html

22

https://postgresql.org/docs/14/ddl-schemas.html

1.1 Data Organization

postgres template1

pg_catalog public plugh pg_catalog public

pg_global

pg_default

xyzzy

common cluster objects

During cluster initialization, two tablespaces are created:

pg_default is located in the ������/base directory; it is used as the default tablespace un-

less another tablespace is explicitly selected for this purpose.

pg_global is located in the ������/global directory; it stores system catalog objects that

are common to the whole cluster.

When creating a custom tablespace, you can specify any directory; Postgre��� will create

a symbolic link to this location in the ������/pg_tblspc directory. In fact, all paths used by

Postgre��� are relative to the ������ directory, which allows you to move it to a different

location (provided that you have stopped the server, of course).

The illustration above puts together databases, schemas, and tablespaces. Here the post-

gres database uses tablespace xyzzy as the default one, whereas the template1 database

uses pg_default. Various database objects are shown at the intersections of tablespaces

and schemas.

23

Chapter 1 Introduction

Relations

For all of their differences, tables and indexes—themost important database objects—have

one thing in common: they consist of rows. This point is quite self-evident when we

think of tables, but it is equally true for �-tree nodes, which contain indexed values and

references to other nodes or table rows.

Some other objects also have the same structure; for example, sequences (virtually one-

row tables) and materialized views (which can be thought of as tables that “keep” the cor-

responding queries). Besides, there are regular views, which do not store any data but

otherwise are very similar to tables.

In Postgre���, all these objects are referred to by the generic term relation.

In my opinion, it is not a happy term because it confuses database tables with “genuine” relations

defined in the relational theory. Here we can feel the academic legacy of the project and the

inclination of its founder, Michael Stonebraker, to see everything as a relation. In one of his works,

he even introduced the concept of an “ordered relation” to denote a table in which the order of

rows is defined by an index.

The system catalog table for relations was originally called pg_relation, but following the object

orientation trend, it was soon renamed to pg_class, which we are now used to. Its columns still

have the ��� prefix though.

Files and Forks

All information associated with a relation is stored in several different forks,1 each con-

taining data of a particular type.

At first, a fork is represented by a single file. Its filename consists of a numeric �� (oid),

which can be extended by a suffix that corresponds to the fork’s type.

The file grows over time, and when its size reaches � ��, another file of this fork is created

(such files are sometimes called segments). The sequence number of the segment is added

to the end of its filename.

The file size limit of � �� was historically established to support various file systems that

could not handle large files. You can change this limit when you are building Postgre���

(./configure --with-segsize).

1 postgresql.org/docs/14/storage-file-layout.html

24

https://postgresql.org/docs/14/storage-file-layout.html

1.1 Data Organization

visibility map

free space map

the main fork

12345_vm

12345_fsm.1

12345_fsm

12345.2

12345.1

12345

Thus, a single relation is represented on disk by several files. Even a small table without

indexes will have at least three files, by the number of mandatory forks.

Each tablespace directory (except for pg_global) contains separate subdirectories for par-

ticular databases. All files of the objects belonging to the same tablespace and database

are located in the same subdirectory. Youmust take it into account because toomany files

in a single directory may not be handled well by file systems.

There are several standard types of forks.

The main fork represents actual data: table rows or index rows. This fork is available for

any relations (except for views, which contain no data).

Files of the main fork are named by their numeric ��s, which are stored as relfilenode

values in the pg_class table.

Let’s take a look at the path to a file that belongs to a table created in the pg_default

tablespace:

=> CREATE UNLOGGED TABLE t(

a integer,

b numeric,

c text,

d json

);

=> INSERT INTO t VALUES (1, 2.0, 'foo', '{}');

=> SELECT pg_relation_filepath('t');

pg_relation_filepath

−−−−−−−−−−−−−−−−−−−−−−

base/16384/16385

(1 row)

25

Chapter 1 Introduction

The base directory corresponds to the pg_default tablespace, the next subdirectory is

used for the database, and it is here that we find the file we are looking for:

=> SELECT oid FROM pg_database WHERE datname = 'internals';

oid

−−−−−−−

16384

(1 row)

=> SELECT relfilenode FROM pg_class WHERE relname = 't';

relfilenode

−−−−−−−−−−−−−

16385

(1 row)

Here is the corresponding file in the file system:

=> SELECT size

FROM pg_stat_file('/usr/local/pgsql/data/base/16384/16385');

size

−−−−−−

8192

(1 row)

The initialization fork1 is available only for unlogged tables (created with the ��������

clause) and their indexes. Such objects are the same as regular ones, except that any

actions performed on them are not written into the write-ahead log.p. ��� It makes these

operations considerably faster, but you will not be able to restore consistent data in

case of a failure. Therefore, Postgre��� simply deletes all forks of such objects during

recovery and overwrites the main fork with the initialization fork, thus creating a

dummy file.

The t table is created as unlogged, so the initialization fork is present. It has the same

name as the main fork, but with the _init suffix:

=> SELECT size

FROM pg_stat_file('/usr/local/pgsql/data/base/16384/16385_init');

size

−−−−−−

0

(1 row)

The free space map2 keeps track of available space within pages. Its volume changes

all the time, growing after vacuuming and getting smaller when new row versions

1 postgresql.org/docs/14/storage-init.html
2 postgresql.org/docs/14/storage-fsm.html

backend/storage/freespace/README

26

https://postgresql.org/docs/14/storage-init.html
https://postgresql.org/docs/14/storage-fsm.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/freespace/README;hb=REL_14_STABLE

1.1 Data Organization

appear. The free space map is used to quickly find a page that can accommodate new

data being inserted.

All files related to the free space map have the _fsm suffix. Initially, no such files are

created; they appear only when necessary. The easiest way to get them is to vacuum

a table p. ���:

=> VACUUM t;

=> SELECT size

FROM pg_stat_file('/usr/local/pgsql/data/base/16384/16385_fsm');

size

−−−−−−−

24576

(1 row)

To speed up search, the free space map is organized as a tree; it takes at least three

pages (hence its file size for an almost empty table).

The free space map is provided for both tables and indexes. But since an index row

cannot be added into an arbitrary page (for example, �-trees define the place of in-

sertion by the sort order), Postgre��� tracks only those pages that have been fully

emptied and can be reused in the index structure.

The visibility map1 can quickly show whether a page needs to be vacuumed or frozen. For

this purpose, it provides two bits for each table page.

The first bit is set for pages that contain only up-to-date row versions. Vacuum p. ���skips

such pages because there is nothing to clean up. Besides, when a transaction tries to

read a row from such a page, there is no point in checking its visibility, so an index-

only scan can be used. p. ���

The second bit v. �.�is set for pages that contain only frozen row versions. I will use the

term freeze p. ���map to refer to this part of the fork.

Visibility map files have the _vm suffix. They are usually the smallest ones:

=> SELECT size

FROM pg_stat_file('/usr/local/pgsql/data/base/16384/16385_vm');

size

−−−−−−

8192

(1 row)

The visibility map is provided for tables, but not for indexes. p. ��

1 postgresql.org/docs/14/storage-vm.html

27

https://postgresql.org/docs/14/storage-vm.html

Chapter 1 Introduction

Pages

To facilitate �/�, all files are logically split into pagesp. �� (or blocks), which represent the mini-

mum amount of data that can be read or written. Consequently,many internal Postgre���

algorithms are tuned for page processing.

The page size is usually � k�. It can be configured to some extent (up to �� k�), but only

at build time (./configure --with-blocksize), and nobody usually does it. Once built and

launched, the instance canwork only with pages of the same size; it is impossible to create

tablespaces that support different page sizes.

Regardless of the fork they belong to, all the files are handled by the server in roughly the

same way. Pages are first moved to the bufferp. ��� cache (where they can be read and updated

by processes) and then flushed back to disk as required.

TOAST

Each row must fit a single page: there is no way to continue a row on the next page.

To store long rows, Postgre��� uses a special mechanism called �����1 (The Oversized

Attributes Storage Technique).

T���� implies several strategies. You can move long attribute values into a separate ser-

vice table, having sliced them into smaller “toasts.” Another option is to compress a long

value in such a way that the row fits the page. Or you can do both: first compress the

value, and then slice and move it.

If the main table contains potentially long attributes, a separate ����� table is created for

it right away, one for all the attributes. For example, if a table has a column of the numeric

or text type, a ����� table will be created even if this column will never store any long

values.

For indexes, the ����� mechanism can offer only compression; moving long attributes

into a separate table is not supported. It limits the size of the keys that can be indexed

(the actual implementation depends on a particular operator classp. ���).

By default, the ����� strategy is selected based on the data type of a column. The easiest

way to review the used strategies is to run the \d+ command in psql, but I will query the

system catalog to get an uncluttered output:

1 postgresql.org/docs/14/storage-toast.html

include/access/heaptoast.h

28

https://postgresql.org/docs/14/storage-toast.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/heaptoast.h;hb=REL_14_STABLE

1.1 Data Organization

=> SELECT attname, atttypid::regtype,

CASE attstorage

WHEN 'p' THEN 'plain'

WHEN 'e' THEN 'external'

WHEN 'm' THEN 'main'

WHEN 'x' THEN 'extended'

END AS storage

FROM pg_attribute

WHERE attrelid = 't'::regclass AND attnum > 0;

attname | atttypid | storage

−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−

a | integer | plain

b | numeric | main

c | text | extended

d | json | extended

(4 rows)

Postgre��� supports the following strategies:

plain means that ����� is not used (this strategy is applied to data types that are known

to be “short,” such as the integer type).

extended allows both compressing attributes and storing them in a separate ����� table.

external implies that long attributes are stored in the ����� table in an uncompressed

state.

main requires long attributes to be compressed first; theywill bemoved to the ����� table

only if compression did not help.

In general terms, the algorithm looks as follows.1 Postgre��� aims at having at least four

rows in a page. So if the size of the row exceeds one fourth of the page, excluding the

header (for a standard-size page it is about ���� bytes), we must apply the ����� mech-

anism to some of the values. Following the workflow described below, we stop as soon as

the row length does not exceed the threshold anymore:

1. First of all, we go through attributes with external and extended strategies, starting

from the longest ones. Extended attributes get compressed, and if the resulting value

(on its own, without taking other attributes into account) exceeds one fourth of the

page, it is moved to the ����� table right away. External attributes are handled in the

same way, except that the compression stage is skipped.

2. If the row still does not fit the page after the first pass, we move the remaining at-

tributes that use external or extended strategies into the ����� table, one by one.

1 backend/access/heap/heaptoast.c

29

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/heaptoast.c;hb=REL_14_STABLE

Chapter 1 Introduction

3. If it did not help either, we try to compress the attributes that use the main strategy,

keeping them in the table page.

4. If the row is still not short enough, themain attributes aremoved into the ����� table.

The threshold valuev. �� is ���� bytes, but it can be redefined at the table level using the

toast_tuple_target storage parameter.

It may sometimes be useful to change the default strategy for some of the columns. If it is

known in advance that the data in a particular column cannot be compressed (for example,

the column stores ���� images), you can set the external strategy for this column; it allows

you to avoid futile attempts to compress the data. The strategy can be changed as follows:

=> ALTER TABLE t ALTER COLUMN d SET STORAGE external;

If we repeat the query, we will get the following result:

attname | atttypid | storage

−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−

a | integer | plain

b | numeric | main

c | text | extended

d | json | external

(4 rows)

T���� tables reside in a separate schema called pg_toast; it is not included into the search

path, so ����� tables are usually hidden. For temporary tables, pg_toast_temp_N schemas

are used, by analogy with pg_temp_N.

Let’s take a look at the inner mechanics of the process. Suppose table t contains three

potentially long attributes; itmeans that theremust be a corresponding ����� table. Here

it is:

=> SELECT relnamespace::regnamespace, relname

FROM pg_class

WHERE oid = (

SELECT reltoastrelid

FROM pg_class WHERE relname = 't'

);

relnamespace | relname

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−

pg_toast | pg_toast_16385

(1 row)

=> \d+ pg_toast.pg_toast_16385

30

1.1 Data Organization

TOAST table "pg_toast.pg_toast_16385"

Column | Type | Storage

−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−

chunk_id | oid | plain

chunk_seq | integer | plain

chunk_data | bytea | plain

Owning table: "public.t"

Indexes:

"pg_toast_16385_index" PRIMARY KEY, btree (chunk_id, chunk_seq)

Access method: heap

It is only logical that the resulting chunks of the toasted row use the plain strategy: there

is no second-level �����.

Apart from the ����� table itself, Postgre��� creates the corresponding index in the same

schema. This index is always used to access ����� chunks. The name of the index is

displayed in the output, but you can also view it by running the following query:

=> SELECT indexrelid::regclass FROM pg_index

WHERE indrelid = (

SELECT oid

FROM pg_class WHERE relname = 'pg_toast_16385'

);

indexrelid

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

pg_toast.pg_toast_16385_index

(1 row)

=> \d pg_toast.pg_toast_16385_index

Unlogged index "pg_toast.pg_toast_16385_index"

Column | Type | Key? | Definition

−−−−−−−−−−−+−−−−−−−−−+−−−−−−+−−−−−−−−−−−−

chunk_id | oid | yes | chunk_id

chunk_seq | integer | yes | chunk_seq

primary key, btree, for table "pg_toast.pg_toast_16385"

Thus, a ����� table increases the minimum number of fork files used by the table up to

eight: three for the main table, three for the ����� table, and two for the ����� index.

Column c uses the extended strategy, so its values will be compressed:

=> UPDATE t SET c = repeat('A',5000);

=> SELECT * FROM pg_toast.pg_toast_16385;

chunk_id | chunk_seq | chunk_data

−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−

(0 rows)

The ����� table is empty: repeated symbols have been compressed by the �� algorithm,

so the value fits the table page.

31

Chapter 1 Introduction

And now let’s construct this value of random symbols:

=> UPDATE t SET c = (

SELECT string_agg(chr(trunc(65+random()*26)::integer), '')

FROM generate_series(1,5000)

)

RETURNING left(c,10) || '...' || right(c,10);

?column?

−−−−−−−−−−−−−−−−−−−−−−−−−

YEYNNDTSZR...JPKYUGMLDX

(1 row)

UPDATE 1

This sequence cannot be compressed, so it gets into the ����� table:

=> SELECT chunk_id,

chunk_seq,

length(chunk_data),

left(encode(chunk_data,'escape')::text, 10) || '...' ||

right(encode(chunk_data,'escape')::text, 10)

FROM pg_toast.pg_toast_16385;

chunk_id | chunk_seq | length | ?column?

−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−

16390 | 0 | 1996 | YEYNNDTSZR...TXLNDZOXMY

16390 | 1 | 1996 | EWEACUJGZD...GDBWMUWTJY

16390 | 2 | 1008 | GSGDYSWTKF...JPKYUGMLDX

(3 rows)

We can see that the characters are sliced into chunks. The chunk size is selected in such

a way that the page of the ����� table can accommodate four rows. This value varies a

little from version to version depending on the size of the page header.

When a long attribute is accessed, Postgre��� automatically restores the original value

and returns it to the client; it all happens seamlessly for the application. If long attributes

do not participate in the query, the ����� table will not be read at all. It is one of the

reasons why you should avoid using the asterisk in production solutions.

Ifv. �� the client queries one of the first chunks of a long value, Postgre��� will read the re-

quired chunks only, even if the value has been compressed.

Nevertheless, data compression and slicing require a lot of resources; the same goes for

restoring the original values. That’s why it is not a good idea to keep bulky data in Post-

gre���, especially if this data is being actively used and does not require transactional

logic (like scanned accounting documents). A potentially better alternative is to store

such data in the file system, keeping in the database only the names of the corresponding

files. But then the database system cannot guarantee data consistency.

32

1.2 Processes and Memory

1.2 Processes and Memory

A Postgre��� server instance consists of several interacting processes.

The first process launched at the server start is postgres, which is traditionally called post-

master. It spawns all the other processes (Unix-like systems use the fork system call for

this purpose) and supervises them: if any process fails,postmaster restarts it (or the whole

server if there is a risk that the shared data has been damaged).

Because of its simplicity, the process model has been used in Postgre��� from the very beginning,

and ever since there have been unending discussions about switching over to threads.

The current model has several drawbacks: static shared memory allocation does not allow resizing

structures like buffer cache on the fly; parallel algorithms are hard to implement and less efficient

than they could be; sessions are tightly bound to processes. Using threads sounds promising, even

though it involves some challenges related to isolation, OS compatibility, and resource manage-

ment. However, their implementation would require a radical code overhaul and years of work, so

conservative views prevail for now: no such changes are expected in the near future.

Server operation is maintained by background processes. Here are the main ones:

startup restores the system after a failure.

autovacuum removes p. ���stale data from tables and indexes.

wal writer writes ��� entries to disk p. ���.

checkpointer executes checkpoints p. ���.

writer flushes dirty pages to disk p. ���.

stats collector collects usage statistics for the instance.

wal sender sends ��� entries to a replica.

wal receiver gets ��� entries on a replica.

Some of these processes are terminated once the task is complete, others run in the back-

ground all the time, and some can be switched off.

Each process is managed by configuration parameters, sometimes by dozens of them. To set up

the server in a comprehensive manner, you have to be aware of its inner workings. But general

considerations will only help you select more or less adequate initial values; later on, these settings

have to be fine-tuned based on monitoring data.

33

Chapter 1 Introduction

To enable process interaction, postmaster allocates shared memory, which is available to

all the processes.

Since disks (especially ���, but ��� too) are much slower than ���, Postgre��� uses

caching:p. ��� some part of the shared ��� is reserved for recently read pages, in hope that

they will be needed more than once and the overhead of repeated disk access will be re-

duced. Modified data is also flushed to disk after some delay, not immediately.

Buffer cache takes the greater part of the shared memory, which also contains other

buffers used by the server to speed up disk access.

The operating system has its own cache too. Postgre��� (almost) never bypasses the op-

erating system mechanisms to use direct �/�, so it results in double caching.

backendbackend

postmaster

backend background processes

buffer cache

shared memory

PostgreSQL
instance

client
application

client
application

client
application

cache

operating
system

In case of a failure (such as a power outage or an operating system crash), the data kept

in ��� is lost, including that of the buffer cache. The files that remain on disk have their

pages written at different points in time. To be able to restore data consistency, Post-

gre��� maintains the write-ahead log (���)p. ��� during its operation, which makes it possible

to repeat lost operations when necessary.

1.3 Clients and the Client-Server Protocol

Another task of the postmaster process is to listen for incoming connections. Once a new

client appears, postmaster spawns a separate backend process.1 The client establishes a

1 backend/tcop/postgres.c, PostgresMain function

34

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/tcop/postgres.c;hb=REL_14_STABLE

1.3 Clients and the Client-Server Protocol

connection and starts a session with this backend. The session continues until the client

disconnects or the connection is lost.

The server has to spawn a separate backend for each client. If many clients are trying to

connect, it can turn out to be a problem.

• Each process needs ��� to cache catalog tables, prepared statements p. ���, intermediate

query results p. ���, and other data. The more connections are open, the more memory is

required.

• If connections are short and frequent (a client performs a small query and discon-

nects), the cost of establishing a connection, spawning a new process, and performing

pointless local caching is unreasonably high.

• The more processes are started, the more time is required to scan their list, and this

operation is performed very often. p. ��As a result, performance may decline as the num-

ber of clients grows.

This problem can be resolved by connection pooling, which limits the number of spawned

backends. Postgre��� has no such built-in functionality, so we have to rely on third-party

solutions: poolingmanagers integrated into the application server or external tools (such

as PgBouncer1 or Odyssey2). This approach usually means that each server backend can

execute transactions of different clients, one after another. It imposes some restrictions

on application development since it is only allowed to use resources that are local to a

transaction, not to the whole session.

To understand each other, a client and a server must use the same interfacing protocol.3

It is usually based on the standard libpq library, but there are also other custom imple-

mentations.

Speaking in the most general terms, the protocol allows clients to connect to the server

and execute ��� queries.

A connection is always established to a particular database on behalf of a particular role, or

user. Although the server supports a database cluster, it is required to establish a separate

connection to each database that you would like to use in your application. At this point,

authentication is performed: the backend process verifies the user’s identity (for example,

by asking for the password) and checks whether this user has the right to connect to the

server and to the specified database.

1 pgbouncer.org
2 github.com/yandex/odyssey
3 postgresql.org/docs/14/protocol.html

35

https://pgbouncer.org
https://github.com/yandex/odyssey
https://postgresql.org/docs/14/protocol.html

Chapter 1 Introduction

S�� queries are passed to the backend process as text strings. The process parses the text,

optimizes the query, executes it, and returns the result to the client.

36

Part I

Isolation
and MVCC

2
Isolation

2.1 Consistency

The key feature of relational databases is their ability to ensure data consistency, that is,

data correctness.

It is a known fact that at the database level it is possible to create integrity constraints,

such as ��� ���� or ������. The database system ensures that these constraints are never

broken, so data integrity is never compromised.

If all the required constraints could be formulated at the database level, consistencywould

be guaranteed. But some conditions are too complex for that, for example, they touch

upon several tables at once. And even if a constraint can be defined in the database, but

for some reason it is not, it does not mean that this constraint may be violated.

Thus, data consistency is stricter than integrity, but the database system has no idea what

“consistency” actually means. If an application breaks it without breaking the integrity,

there is noway for the database system to find out. Consequently, it is the application that

must lay down the criteria for data consistency, and we have to believe that it is written

correctly and will never have any errors.

But if the application always executes only correct sequences of operators, where does the

database system come into play?

First of all, a correct sequence of operators can temporarily break data consistency, and—

strange as it may seem—it is perfectly normal.

A hackneyed but clear example is a transfer of funds from one account to another. A con-

sistency rule may sound as follows: a money transfer must never change the total balance

of the affected accounts. It is quite difficult (although possible) to formulate this rule as an

integrity constraint in ���, so let’s assume that it is defined at the application level and

remains opaque to the database system. A transfer consists of two operations: the first

one draws some money from one of the accounts, whereas the second one adds this sum

39

Chapter 2 Isolation

to another account. The first operation breaks data consistency, whereas the second one

restores it.

If the first operation succeeds, but the second one does not (because of some failure), data

consistency will be broken. Such situations are unacceptable, but it takes a great deal of

effort to detect and address them at the application level. Luckily it is not required—the

problem can be completely solved by the database system itself if it knows that these two

operations constitute an indivisible whole, that is, a transaction.

But there is also a more subtle aspect here. Being absolutely correct on their own, trans-

actions can start operating incorrectly when run in parallel. That’s because operations

belonging to different transactions often get intermixed. There would be no such issues

if the database system first completed all operations of one transaction and then moved

on to the next one, but performance of sequential execution would be implausibly low.

A truly simultaneous execution of transactions can only be achieved on systems with suitable

hardware: a multi-core processor, a disk array, and so on. But the same reasoning is also true

for a server that executes commands sequentially in the time-sharing mode. For generalization

purposes, both these situations are sometimes referred to as concurrent execution.

Correct transactions that behave incorrectly when run together result in concurrency

anomalies, or phenomena.

Here is a simple example. To get consistent data from the database, the application must

not see any changes made by other uncommitted transactions, at the very minimum. Oth-

erwise (if some transactions are rolled back), it would see the database state that has never

existed. Such an anomaly is called a dirty read. There are also many other anomalies,

which are more complex.

When running transactions concurrently, the database must guarantee that the result of

such execution will be the same as the outcome of one of the possible sequential execu-

tions. In other words, it must isolate transactions from one another, thus taking care of

any possible anomalies.

To sum it up, a transaction is a set of operations that takes the database from one correct

state to another correct state (consistency), provided that it is executed in full (atomicity)

and without being affected by other transactions (isolation). This definition combines the

requirements implied by the first three letters of the ���� acronym. They are so inter-

twined that it makes sense to discuss them together. In fact, the durabilityp. ��� requirement is

hardly possible to split off either: after a crash, the systemmay still contain some changes

made by uncommitted transactions, and you have to do something about it to restore data

consistency.

40

2.2 Isolation Levels and Anomalies in SQL Standard

Thus, the database system helps the application maintain data consistency by taking

transaction boundaries into account, even though it has no idea about the implied con-

sistency rules.

Unfortunately, full isolation is hard to implement and can negatively affect performance.

Most real-life systems use weaker isolation levels, which prevent some anomalies, but not

all of them. It means that the job of maintaining data consistency partially falls on the

application. And that’s exactly why it is very important to understand which isolation

level is used in the system, what is guaranteed at this level and what is not, and how to

ensure that your code will be correct in such conditions.

2.2 Isolation Levels and Anomalies in SQL Standard

The ��� standard specifies four isolation levels.1 These levels are defined by the list of

anomalies that may or may not occur during concurrent transaction execution. So when

talking about isolation levels, we have to start with anomalies.

We should bear in mind that the standard is a theoretical construct: it affects the prac-

tice, but the practice still diverges from it in lots of ways. That’s why all examples here

are rather hypothetical. Dealing with transactions on bank accounts, these examples are

quite self-explanatory, but I have to admit that they have nothing to do with real banking

operations.

It is interesting that the actual database theory also diverges from the standard: it was

developed after the standard had been adopted, and the practice was already well ahead.

Lost Update

The lost update anomaly occurs when two transactions read the same table row, then one

of the transactions updates this row, and finally the other transaction updates the same

row without taking into account any changes made by the first transaction.

Suppose that two transactions are going to increase the balance of the same account by

$���. The first transaction reads the current value ($�,���), then the second transaction

reads the same value. The first transaction increases the balance (making it $�,���) and

writes the new value into the database. The second transaction does the same: it gets

$�,��� after increasing the balance and writes this value. As a result, the customer loses

$���.

Lost updates are forbidden by the standard at all isolation levels.

1 postgresql.org/docs/14/transaction-iso.html

41

https://postgresql.org/docs/14/transaction-iso.html

Chapter 2 Isolation

Dirty Reads and Read Uncommitted

The dirty read anomaly occurs when a transaction reads uncommitted changes made by

another transaction.

For example, the first transaction transfers $��� to an empty account but does not commit

this change. Another transaction reads the account state (which has been updated but

not committed) and allows the customer to withdraw the money—even though the first

transaction gets interrupted and its changes are rolled back, so the account is empty.

The standard allows dirty reads at the Read Uncommitted level.

Non-Repeatable Reads and Read Committed

The non-repeatable read anomaly occurs when a transaction reads the same row twice,

whereas another transaction updates (or deletes) this row between these reads and com-

mits the change. Consequently, the first transaction gets different results.

For example, suppose there is a consistency rule that forbids having a negative balance in

bank accounts. The first transaction is going to reduce the account balance by $���. It

checks the current value, gets $�,���, and decides that this operation is possible. At the

same time, another transaction withdraws all the money from this account and commits

the changes. If the first transaction checked the balance again at this point, it would get

$� (but the decision to withdraw the money is already taken, and this operation causes an

overdraft).

The standard allows non-repeatable reads at the Read Uncommitted and Read Committed

levels.

Phantom Reads and Repeatable Read

The phantom read anomaly occurs when the same transaction executes two identical

queries returning a set of rows that satisfy a particular condition, while another trans-

action adds some other rows satisfying this condition and commits the changes in the

time interval between these queries. As a result, the first transaction gets two different

sets of rows.

For example, suppose there is a consistency rule that forbids a customer to have more than

three accounts. The first transaction is going to open a new account, so it checks how

many accounts are currently available (let’s say there are two of them) and decides that

this operation is possible. At this very moment, the second transaction also opens a new

42

2.2 Isolation Levels and Anomalies in SQL Standard

account for this client and commits the changes. If the first transaction double-checked

the number of open accounts, it would get three (but it is already opening another account,

and the client ends up having four of them).

The standard allows phantom reads at the Read Uncommitted, Read Committed, and Re-

peatable Read isolation levels.

No Anomalies and Serializable

The standard also defines the Serializable level, which does not allow any anomalies. It is

not the same as the ban on lost updates and dirty, non-repeatable, and phantom reads. In

fact, there is a much higher number of known anomalies than the standard specifies, and

an unknown number of still unknown ones.

The Serializable level must prevent any anomalies. It means that the application devel-

oper does not have to take isolation into account. If transactions execute correct operator

sequences when run on their own, concurrent execution cannot break data consistency

either.

To illustrate this idea, I will use a well-known table provided in the standard; the last

column is added here for clarity:

lost dirty non-repeatable phantom other
update read read read anomalies

Read Uncommitted — yes yes yes yes

Read Committed — — yes yes yes

Repeatable Read — — — yes yes

Serializable — — — — —

Why These Anomalies?

Of all the possible anomalies,why does the standardmentions only some, andwhy exactly

these ones?

No one seems to know it for sure. But it is not unlikely that other anomalies were simply

not considered when the first versions of the standard were adopted, as theory was far

behind practice at that time.

Besides, it was assumed that isolation had to be based on locks. Thewidely used two-phase

locking protocol (���) requires transactions to lock the affected rows during execution and

release the locks upon completion. In simplistic terms, the more locks a transaction ac-

quires, the better it is isolated from other transactions. And consequently, the worse is the

43

Chapter 2 Isolation

system performance, as transactions start queuing to get access to the same rows instead

of running concurrently.

I believe that to a great extent the difference between the standard isolation levels is de-

fined by the number of locks required for their implementation.

If the rows to be updated are locked for writes but not for reads, we get the Read Uncom-

mitted isolation level, which allows reading data before it is committed.

If the rows to be updated are locked for both reads and writes, we get the Read Committed

level: it is forbidden to read uncommitted data, but a query can return different values if

it is run more than once (non-repeatable reads).

Locking the rows to be read and to be updated for all operations gives us the Repeatable

Read level: a repeated query will return the same result.

However, the Serializable level poses a problem: it is impossible to lock a row that does

not exist yet. It leaves an opportunity for phantom reads to occur: a transaction can add a

row that satisfies the condition of the previous query, and this row will appear in the next

query result.

Thus, regular locks cannot provide full isolation: to achieve it, we have to lock conditions

(predicates) rather than rows. Such predicate locks were introduced as early as ���� when

System R was being developed; however, their practical applicability is limited to simple

conditions for which it is clear whether two different predicates may conflict. As far as I

know, predicate locks in their intended formp. ��� have never been implemented in any system.

2.3 Isolation Levels in PostgreSQL

Over time, lock-based protocols for transaction management got replaced with the Snap-

shot Isolation (��) protocol. The idea behind this approach is that each transaction accesses

a consistent snapshot of data as it appeared at a particular point in time. The snapshot

includes all the current changes committed before the snapshot was taken.

Snapshot isolation minimizes the number of required locks.p. ��� In fact, a row will be locked

only by concurrent update attempts. In all other cases, operations can be executed con-

currently: writes never lock reads, and reads never lock anything.

Postgre��� uses amultiversion flavor of the �� protocol. Multiversion concurrency control

implies that at any moment the database system can contain several versions of the same

row, so Postgre��� can include an appropriate version into the snapshot rather than abort

transactions that attempt to read stale data.

44

2.3 Isolation Levels in PostgreSQL

Based on snapshots, Postgre��� isolation differs from the requirements specified in the

standard—in fact, it is even stricter. Dirty reads are forbidden by design. Technically, you

can specify the Read Uncommitted level, but its behavior will be the same as that of Read

Committed, so I am not going to mention this level anymore. Repeatable Read allows p. ���nei-

ther non-repeatable nor phantom reads (even though it does not guarantee full isolation).

But in some cases, there is a risk of losing changes at the Read Committed level.

lost dirty non-repeatable phantom other
updates reads reads reads anomalies

Read Committed yes — yes yes yes

Repeatable Read — — — — yes

Serializable — — — — —

Before exploring the internal mechanisms of isolation, p. ��let’s discuss each of the three iso-

lation levels from the user’s perspective.

For this purpose, we are going to create the accounts table; Alice and Bob will have $�,���

each, but Bob will have two accounts:

=> CREATE TABLE accounts(

id integer PRIMARY KEY GENERATED BY DEFAULT AS IDENTITY,

client text,

amount numeric

);

=> INSERT INTO accounts VALUES

(1, 'alice', 1000.00), (2, 'bob', 100.00), (3, 'bob', 900.00);

Read Committed

No dirty reads. It is easy to check that reading dirty data is not allowed. Let’s start a

transaction. By default, it uses the Read Committed1 isolation level:

=> BEGIN;

=> SHOW transaction_isolation;

transaction_isolation

−−−−−−−−−−−−−−−−−−−−−−−

read committed

(1 row)

To bemore exact, the default level is set by the following parameter,which can be changed

as required:

1 postgresql.org/docs/14/transaction-iso.html#XACT-READ-COMMITTED

45

https://postgresql.org/docs/14/transaction-iso.html#XACT-READ-COMMITTED

Chapter 2 Isolation

=> SHOW default_transaction_isolation;

default_transaction_isolation

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

read committed

(1 row)

The opened transaction withdraws some funds from the customer account but does not

commit these changes yet. It will see its own changes though, as it is always allowed:

=> UPDATE accounts SET amount = amount - 200 WHERE id = 1;

=> SELECT * FROM accounts WHERE client = 'alice';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

1 | alice | 800.00

(1 row)

In the second session,we start another transaction thatwill also run at theRead Committed

level:

=> BEGIN;

=> SELECT * FROM accounts WHERE client = 'alice';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−

1 | alice | 1000.00

(1 row)

Predictably, the second transaction does not see any uncommitted changes—dirty reads

are forbidden.

Non-repeatable reads. Now let the first transaction commit the changes. Then the second

transaction will repeat the same query:

=> COMMIT;

=> SELECT * FROM accounts WHERE client = 'alice';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

1 | alice | 800.00

(1 row)

=> COMMIT;

The query receives an updated version of the data—and it is exactly what is understood

by the non-repeatable read anomaly, which is allowed at the Read Committed level.

A practical insight: in a transaction, you must not take any decisions based on the data

read by the previous operator, as everything can change in between. Here is an example

46

2.3 Isolation Levels in PostgreSQL

whose variations appear in the application code so often that it can be considered a classic

anti-pattern:

IF (SELECT amount FROM accounts WHERE id = 1) >= 1000 THEN

UPDATE accounts SET amount = amount - 1000 WHERE id = 1;

END IF;

During the time that passes between the check and the update, other transactions can

freely change the state of the account, so such a “check” is absolutely useless. For bet-

ter understanding, you can imagine that random operators of other transactions are

“wedged” between the operators of the current transaction. For example, like this:

IF (SELECT amount FROM accounts WHERE id = 1) >= 1000 THEN

UPDATE accounts SET amount = amount - 200 WHERE id = 1;

COMMIT;

UPDATE accounts SET amount = amount - 1000 WHERE id = 1;

END IF;

If everything goes wrong as soon as the operators are rearranged, then the code is incor-

rect. Do not delude yourself that you will never get into this trouble: anything that can

go wrong will go wrong. Such errors are very hard to reproduce, and consequently, fixing

them is a real challenge.

How can you correct this code? There are several options:

• Replace procedural code with declarative one.

For example, in this particular case it is easy to turn an �� statement into a �����

constraint:

ALTER TABLE accounts

ADD CHECK amount >= 0;

Now you do not need any checks in the code: it is enough to simply run the command

and handle the exception that will be raised if an integrity constraint violation is

attempted.

• Use a single ��� operator.

Data consistency can be compromised if a transaction gets committedwithin the time

gap between operators of another transaction, thus changing data visibility. If there

is only one operator, there are no such gaps.

47

Chapter 2 Isolation

Postgre��� has enough capabilities to solve complex tasks with a single ��� state-

ment. In particular, it offers common table expressions (���) that can contain op-

erators like ������, ������, ������, as well as the ������ �� �������� operator that

implements the following logic: insert the row if it does not exist, otherwise perform

an update.

• Apply explicit locks.

The last resort is to manually set an exclusive lock on all the required rowsp. ��� (������

��� ������) or even on the whole table (���� �����)p. ��� . This approach always works,

but it nullifies all the advantages of ����: some operations that could be executed

concurrently will run sequentially.

Read skew. However, it is not all that simple. The Postgre��� implementation allows

other, less known anomalies, which are not regulated by the standard.

Suppose the first transaction has started a money transfer between Bob’s accounts:

=> BEGIN;

=> UPDATE accounts SET amount = amount - 100 WHERE id = 2;

Meanwhile, the other transaction starts looping through all Bob’s accounts to calculate

their total balance. It begins with the first account (seeing its previous state, of course):

=> BEGIN;

=> SELECT amount FROM accounts WHERE id = 2;

amount

−−−−−−−−

100.00

(1 row)

At this moment, the first transaction completes successfully:

=> UPDATE accounts SET amount = amount + 100 WHERE id = 3;

=> COMMIT;

The second transaction reads the state of the second account (and sees the already up-

dated value):

=> SELECT amount FROM accounts WHERE id = 3;

amount

−−−−−−−−−

1000.00

(1 row)

=> COMMIT;

48

2.3 Isolation Levels in PostgreSQL

As a result, the second transaction gets $�,��� because it has read incorrect data. Such an

anomaly is called read skew.

How can you avoid this anomaly at the Read Committed level? The answer is obvious: use

a single operator. For example, like this:

SELECT sum(amount) FROM accounts WHERE client = 'bob';

I have been stating so far that data visibility can change only between operators, but is it

really so? What if the query is running for a long time? Can it see different parts of data

in different states in this case?

Let’s check it out. A convenient way to do it is to add a delay to an operator by calling the

pg_sleep function. Then the first row will be read at once, but the second row will have to

wait for two seconds:

=> SELECT amount, pg_sleep(2) -- two seconds

FROM accounts WHERE client = 'bob';

While this statement is being executed, let’s start another transaction to transfer the

money back:

=> BEGIN;

=> UPDATE accounts SET amount = amount + 100 WHERE id = 2;

=> UPDATE accounts SET amount = amount - 100 WHERE id = 3;

=> COMMIT;

The result shows that the operator has seen all the data in the state that corresponds to

the beginning of its execution, which is certainly correct:

amount | pg_sleep

−−−−−−−−−+−−−−−−−−−−

0.00 |

1000.00 |

(2 rows)

But it is not all that simple either. If the query contains a function that is declared ��������,

and this function executes another query, then the data seen by this nested query will not

be consistent with the result of the main query.

Let’s check the balance in Bob’s accounts using the following function:

=> CREATE FUNCTION get_amount(id integer) RETURNS numeric

AS $$

SELECT amount FROM accounts a WHERE a.id = get_amount.id;

$$ VOLATILE LANGUAGE sql;

=> SELECT get_amount(id), pg_sleep(2)

FROM accounts WHERE client = 'bob';

49

Chapter 2 Isolation

We will transfer the money between the accounts once again while our delayed query is

being executed:

=> BEGIN;

=> UPDATE accounts SET amount = amount + 100 WHERE id = 2;

=> UPDATE accounts SET amount = amount - 100 WHERE id = 3;

=> COMMIT;

In this case, we are going to get inconsistent data—$��� has been lost:

get_amount | pg_sleep

−−−−−−−−−−−−+−−−−−−−−−−

100.00 |

800.00 |

(2 rows)

I would like to emphasize that this effect is possible only at the Read Committed isolation

level, and only if the function is ��������. The trouble is that Postgre��� uses exactly this

isolation level and this volatility category by default. So we have to admit that the trap is

set in a very cunning way.

Read skew instead of lost updates. The read skew anomaly can also occur within a single

operator during an update—even though in a somewhat unexpected way.

Let’s see what happens if two transactions try to modify the same row. Bob currently has

a total of $�,��� in two accounts:

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

2 | bob | 200.00

3 | bob | 800.00

(2 rows)

Start a transaction that will reduce Bob’s balance:

=> BEGIN;

=> UPDATE accounts SET amount = amount - 100 WHERE id = 3;

At the same time, the other transaction will be calculating the interest for all customer

accounts with the total balance of $�,��� or more:

=> UPDATE accounts SET amount = amount * 1.01

WHERE client IN (

SELECT client

FROM accounts

50

2.3 Isolation Levels in PostgreSQL

GROUP BY client

HAVING sum(amount) >= 1000

);

The ������ operator execution virtually consists of two stages. First, the rows to be up-

dated are selected based on the provided condition. Since the first transaction is not com-

mitted yet, the second transaction cannot see its result, so the selection of rows picked for

interest accrual is not affected. Thus, Bob’s accounts satisfy the condition, and his balance

must be increased by $�� once the ������ operation completes.

At the second stage, the selected rows are updated one by one. The second transaction has

to wait because the row with id = 3 is locked: it is being updated by the first transaction.

Meanwhile, the first transaction commits its changes:

=> COMMIT;

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−−

2 | bob | 202.0000

3 | bob | 707.0000

(2 rows)

On the one hand, the ������ command must not see any changes made by the first trans-

action. But on the other hand, it must not lose any committed changes.

Once the lock is released, the ������ operator re-reads p. ���the row to be updated (but only

this row!). As a result, Bob gets $� of interest, based on the total of $���. But if he had

$���, his accounts should not have been included into the query results in the first place.

Thus, our transaction has returned incorrect data: different rows have been read from

different snapshots. Instead of a lost update, we observe the read skew anomaly again.

Lost updates. However, the trick of re-reading the locked row will not help against lost

updates if the data is modified by different ��� operators.

Here is an example that we have already seen. p. ��The application reads and registers (outside

of the database) the current balance of Alice’s account:

=> BEGIN;

=> SELECT amount FROM accounts WHERE id = 1;

amount

−−−−−−−−

800.00

(1 row)

51

Chapter 2 Isolation

Meanwhile, the other transaction does the same:

=> BEGIN;

=> SELECT amount FROM accounts WHERE id = 1;

amount

−−−−−−−−

800.00

(1 row)

The first transaction increases the previously registered value by $��� and commits this

change:

=> UPDATE accounts SET amount = 800.00 + 100 WHERE id = 1

RETURNING amount;

amount

−−−−−−−−

900.00

(1 row)

UPDATE 1

=> COMMIT;

The second transaction does the same:

=> UPDATE accounts SET amount = 800.00 + 100 WHERE id = 1

RETURNING amount;

amount

−−−−−−−−

900.00

(1 row)

UPDATE 1

=> COMMIT;

Unfortunately,Alice has lost $���. The database system does not know that the registered

value of $��� is somehow related to accounts.amount, so it cannot prevent the lost update

anomaly. At the Read Committed isolation level, this code is incorrect.

Repeatable Read

No non-repeatable and phantom reads. As its name suggests, the Repeatable Read1 isola-

tion level must guarantee repeatable reading. Let’s check it and make sure that phantom

reads cannot occur either. For this purpose, we are going to start a transaction that will

revert Bob’s accounts to their previous state and create a new account for Charlie:

1 postgresql.org/docs/14/transaction-iso.html#XACT-REPEATABLE-READ

52

https://postgresql.org/docs/14/transaction-iso.html#XACT-REPEATABLE-READ

2.3 Isolation Levels in PostgreSQL

=> BEGIN;

=> UPDATE accounts SET amount = 200.00 WHERE id = 2;

=> UPDATE accounts SET amount = 800.00 WHERE id = 3;

=> INSERT INTO accounts VALUES

(4, 'charlie', 100.00);

=> SELECT * FROM accounts ORDER BY id;

id | client | amount

−−−−+−−−−−−−−−+−−−−−−−−

1 | alice | 900.00

2 | bob | 200.00

3 | bob | 800.00

4 | charlie | 100.00

(4 rows)

In the second session, let’s start another transaction, with the Repeatable Read level ex-

plicitly specified in the ����� command (the level of the first transaction is not important):

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> SELECT * FROM accounts ORDER BY id;

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−−

1 | alice | 900.00

2 | bob | 202.0000

3 | bob | 707.0000

(3 rows)

Now the first transaction commits its changes, and the second transaction repeats the

same query:

=> COMMIT;

=> SELECT * FROM accounts ORDER BY id;

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−−

1 | alice | 900.00

2 | bob | 202.0000

3 | bob | 707.0000

(3 rows)

=> COMMIT;

The second transaction still sees the same data as before: neither new rows nor row up-

dates are visible. At this isolation level, you do not have to worry that something will

change between operators.

Serialization failures instead of lost updates. As we have already seen p. ��, if two transactions

update the same row at the Read Committed level, it can cause the read skew anomaly:

53

Chapter 2 Isolation

the waiting transaction has to re-read the locked row, so it sees the state of this row at a

different point in time as compared to other rows.

Such an anomaly is not allowed at the Repeatable Read isolation level, and if it does hap-

pen, the transaction can only be aborted with a serialization failure. Let’s check it out by

repeating the scenario with interest accrual:

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

2 | bob | 200.00

3 | bob | 800.00

(2 rows)

=> BEGIN;

=> UPDATE accounts SET amount = amount - 100.00 WHERE id = 3;

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> UPDATE accounts SET amount = amount * 1.01

WHERE client IN (

SELECT client

FROM accounts

GROUP BY client

HAVING sum(amount) >= 1000

);

=> COMMIT;

ERROR: could not serialize access due to concurrent update

=> ROLLBACK;

The data remains consistent:

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

2 | bob | 200.00

3 | bob | 700.00

(2 rows)

The same error will be raised by any concurrent row updates, even if they affect different

columns.

We will also get this error if we try to update the balance based on the previously stored

value:

54

2.3 Isolation Levels in PostgreSQL

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> SELECT amount FROM accounts WHERE id = 1;

amount

−−−−−−−−

900.00

(1 row)

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> SELECT amount FROM accounts WHERE id = 1;

amount

−−−−−−−−

900.00

(1 row)

=> UPDATE accounts SET amount = 900.00 + 100.00 WHERE id = 1

RETURNING amount;

amount

−−−−−−−−−

1000.00

(1 row)

UPDATE 1

=> COMMIT;

=> UPDATE accounts SET amount = 900.00 + 100.00 WHERE id = 1

RETURNING amount;

ERROR: could not serialize access due to concurrent update

=> ROLLBACK;

A practical insight: if your application is using the Repeatable Read isolation level for

write transactions, it must be ready to retry transactions that have been completed with

a serialization failure. For read-only transactions, such an outcome is impossible.

Write skew. As we have seen, the Postgre��� implementation of the Repeatable Read iso-

lation level prevents all the anomalies described in the standard. But not all possible

ones: no one knows how many of them exist. However, one important fact is proved for

sure: snapshot isolation does not prevent only two anomalies, no matter how many other

anomalies are out there.

The first one is write skew.

Let’s define the following consistency rule: it is allowed to have a negative balance in some

of the customer’s accounts as long as the total balance is non-negative.

55

Chapter 2 Isolation

The first transaction gets the total balance of Bob’s accounts:

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> SELECT sum(amount) FROM accounts WHERE client = 'bob';

sum

−−−−−−−−

900.00

(1 row)

The second transaction gets the same sum:

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> SELECT sum(amount) FROM accounts WHERE client = 'bob';

sum

−−−−−−−−

900.00

(1 row)

The first transaction fairly assumes that it can debit one of the accounts by $���:

=> UPDATE accounts SET amount = amount - 600.00 WHERE id = 2;

The second transaction comes to the same conclusion, but debits the other account:

=> UPDATE accounts SET amount = amount - 600.00 WHERE id = 3;

=> COMMIT;

=> COMMIT;

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−

2 | bob | −400.00

3 | bob | 100.00

(2 rows)

Bob’s total balance is now negative, although both transactions would have been correct

if run separately.

Read-only transaction anomaly. The read-only transaction anomaly is the second and the

last one allowed at the Repeatable Read isolation level. To observe this anomaly, we have

to run three transactions: two of them are going to update the data, while the third one

will be read-only.

But first let’s restore Bob’s balance:

56

2.3 Isolation Levels in PostgreSQL

=> UPDATE accounts SET amount = 900.00 WHERE id = 2;

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

3 | bob | 100.00

2 | bob | 900.00

(2 rows)

The first transaction calculates the interest to be accrued on Bob’s total balance and adds

this sum to one of his accounts:

=> BEGIN ISOLATION LEVEL REPEATABLE READ; -- 1

=> UPDATE accounts SET amount = amount + (

SELECT sum(amount) FROM accounts WHERE client = 'bob'

) * 0.01

WHERE id = 2;

Then the second transaction withdraws some money from Bob’s other account and com-

mits this change:

=> BEGIN ISOLATION LEVEL REPEATABLE READ; -- 2

=> UPDATE accounts SET amount = amount - 100.00 WHERE id = 3;

=> COMMIT;

If the first transaction gets committed at this point, there will be no anomalies: we could

assume that the first transaction is committed before the second one (but not vice versa—

the first transaction had seen the state of account with id = 3 before any updates were

made by the second transaction).

But let’s imagine that at this very moment we start a ready-only transaction to query an

account that is not affected by the first two transactions:

=> BEGIN ISOLATION LEVEL REPEATABLE READ; -- 3

=> SELECT * FROM accounts WHERE client = 'alice';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−

1 | alice | 1000.00

(1 row)

And only now will the first transaction get committed:

=> COMMIT;

Which state should the third transaction see at this point? Having started, it could see the

changes made by the second transaction (which had already been committed), but not by

the first one (which had not been committed yet). But as we have already established, the

57

Chapter 2 Isolation

second transaction should be treated as if it were started after the first one. Any state

seen by the third transaction will be inconsistent—this is exactly what is meant by the

read-only transaction anomaly:

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

2 | bob | 900.00

3 | bob | 0.00

(2 rows)

=> COMMIT;

Serializable

The Serializable1 isolation level prevents all possible anomalies. This level is virtually

built on top of snapshot isolation. Those anomalies that do not occur at the Repeatable

Read isolation level (such as dirty, non-repeatable, or phantom reads) cannot occur at the

Serializable level either. And those two anomalies that do occur (write skew and read-only

transaction anomalies) get detected in a special way to abort the transaction, causing an

already familiar serialization failure.

No anomalies. Let’s make sure that our write skew scenariop. �� will eventually end with a

serialization failure:

=> BEGIN ISOLATION LEVEL SERIALIZABLE;

=> SELECT sum(amount) FROM accounts WHERE client = 'bob';

sum

−−−−−−−−−−

910.0000

(1 row)

=> BEGIN ISOLATION LEVEL SERIALIZABLE;

=> SELECT sum(amount) FROM accounts WHERE client = 'bob';

sum

−−−−−−−−−−

910.0000

(1 row)

=> UPDATE accounts SET amount = amount - 600.00 WHERE id = 2;

1 postgresql.org/docs/14/transaction-iso.html#XACT-SERIALIZABLE

58

https://postgresql.org/docs/14/transaction-iso.html#XACT-SERIALIZABLE

2.3 Isolation Levels in PostgreSQL

=> UPDATE accounts SET amount = amount - 600.00 WHERE id = 3;

=> COMMIT;

COMMIT

=> COMMIT;

ERROR: could not serialize access due to read/write dependencies

among transactions

DETAIL: Reason code: Canceled on identification as a pivot, during

commit attempt.

HINT: The transaction might succeed if retried.

The scenario with the read-only transaction anomaly will lead to the same error.

Deferring a read-only transaction. To avoid situations when a read-only transaction can

cause an anomaly that compromises data consistency, Postgre��� offers an interesting

solution: this transaction can be deferred until its execution becomes safe. It is the only

case when a ������ statement can be blocked by row updates.

We are going to check it out by repeating the scenario that demonstrated the read-only

transaction anomaly:

=> UPDATE accounts SET amount = 900.00 WHERE id = 2;

=> UPDATE accounts SET amount = 100.00 WHERE id = 3;

=> SELECT * FROM accounts WHERE client = 'bob' ORDER BY id;

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

2 | bob | 900.00

3 | bob | 100.00

(2 rows)

=> BEGIN ISOLATION LEVEL SERIALIZABLE; -- 1

=> UPDATE accounts SET amount = amount + (

SELECT sum(amount) FROM accounts WHERE client = 'bob'

) * 0.01

WHERE id = 2;

=> BEGIN ISOLATION LEVEL SERIALIZABLE; -- 2

=> UPDATE accounts SET amount = amount - 100.00 WHERE id = 3;

=> COMMIT;

Let’s explicitly declare the third transaction as ���� ���� and ����������:

=> BEGIN ISOLATION LEVEL SERIALIZABLE READ ONLY DEFERRABLE; -- 3

=> SELECT * FROM accounts WHERE client = 'alice';

59

Chapter 2 Isolation

An attempt to run the query blocks the transaction—otherwise, it would have caused an

anomaly.

And only when the first transaction is committed, the third one can continue its execution:

=> COMMIT;

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−

1 | alice | 1000.00

(1 row)

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−−

2 | bob | 910.0000

3 | bob | 0.00

(2 rows)

=> COMMIT;

Thus, if an application uses the Serializable isolation level, it must be ready to retry trans-

actions that have ended with a serialization failure. (The Repeatable Read level requires

the same approach unless the application is limited to read-only transactions.)

The Serializable isolation level brings ease of programming, but the price you pay is the

overhead incurred by anomaly detection and forced termination of a certain fraction of

transactions. You can lower this impact by explicitly using the ���� ���� clause when

declaring read-only transactions. But the main questions is, of course, how big the frac-

tion of aborted transactions is—since these transactions will have to be retried. It would

have been not so bad if Postgre��� aborted only those transactions that result in data con-

flicts and are really incompatible. But such an approach would inevitably be too resource-

intensive, as it would involve tracking operations on each row.

The current implementationp. ��� allows false positives: Postgre��� can abort some absolutely

safe transactions that are simply out of luck. Their “luck” depends on many factors, such

as the presence of appropriate indexes or the amount of ��� available, so the actual be-

havior is hard to predict in advance.

If you use the Serializable level, it must be observed by all transactions of the applica-

tion. When combined with other levels, Serializable behaves as Repeatable Read without

any notice. So if you decide to use the Serializable level, it makes sense to modify the

read

committed

default_transaction_isolation parameter value accordingly—even though someone can still

overwrite it by explicitly setting a different level.

There are also other restrictions;v. �� for example, queries run at the Serializable level cannot

be executed on replicas. And although the functionality of this level is constantly being

improved, the current limitations and overhead make it less attractive.

60

2.4 Which Isolation Level to Use?

2.4 Which Isolation Level to Use?

Read Committed is the default isolation level in Postgre���, and apparently it is this level

that is used in the vast majority of applications. This level can be convenient because it

allows aborting transactions only in case of a failure; it does not abort any transactions to

preserve data consistency. In other words, serialization failures cannot occur, so you do

not have to take care of transaction retries.

The downside of this level is a large number of possible anomalies, which have been dis-

cussed in detail above. A developer has to keep them in mind all the time and write the

code in a way that prevents their occurrence. If it is impossible to define all the needed

actions in a single ��� statement, then you have to resort to explicit locking. The toughest

part is that the code is hard to test for errors related to data inconsistency; such errors can

appear in unpredictable and barely reproducible ways, so they are very hard to fix too.

The Repeatable Read isolation level eliminates some of the inconsistency problems, but

alas, not all of them. Therefore, youmust not only remember about the remaining anoma-

lies, but also modify the application to correctly handle serialization failures, which is

certainly inconvenient. However, for read-only transactions this level is a perfect com-

plement to the Read Committed level; it can be very useful for cases like building reports

that involve multiple ��� queries.

And finally, the Serializable isolation level allows you not to worry about data consistency

at all, which simplifies writing the code to a great extent. The only thing required from

the application is the ability to retry any transaction that is aborted with a serialization

failure. However, the number of aborted transactions and associated overhead can signif-

icantly reduce system throughput. You should also keep inmind that the Serializable level

is not supported on replicas and cannot be combined with other isolation levels.

61

3
Pages and Tuples

3.1 Page Structure

Each page has a certain inner layout that usually consists of the following parts:1

• page header

• an array of item pointers

• free space

• items (row versions)

• special space

Page Header

The page header is located in the lowest addresses and has a fixed size. It stores various

information about the pagep. ��� , such as its checksum and the sizes of all the other parts of

the page.

These sizes can be easily displayed using the pageinspect extension.2 Let’s take a look at

the first page of the table (page numbering is zero-based):

=> CREATE EXTENSION pageinspect;

=> SELECT lower, upper, special, pagesize

FROM page_header(get_raw_page('accounts',0));

lower | upper | special | pagesize

−−−−−−−+−−−−−−−+−−−−−−−−−+−−−−−−−−−−

152 | 6904 | 8192 | 8192

(1 row)

1 postgresql.org/docs/14/storage-page-layout.html

include/storage/bufpage.h
2 postgresql.org/docs/14/pageinspect.html

62

https://postgresql.org/docs/14/storage-page-layout.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/storage/bufpage.h;hb=REL_14_STABLE
https://postgresql.org/docs/14/pageinspect.html

3.1 Page Structure

header

an array of item pointers

free space

items

special space

0

24

lower

upper

special

pagesize

Special Space

The special space is located in the opposite part of the page, taking its highest addresses.

It is used by some indexes to store auxiliary information; in other indexes and table pages

this space is zero-sized.

In general, the layout of index pages is quite diverse; their content largely depends on a

particular index type. Even the same index can have different kinds of pages: for example,

�-trees have a metadata page of a special structure (page zero) and regular pages that are

very similar to table pages.

Tuples

Rows contain the actual data stored in the database, together with some additional infor-

mation. They are located just before the special space.

In the case of tables, we have to deal with row versions rather than rows because multiver-

sion concurrency control implies having several versions of the same row. Indexes do not

use this ���� mechanism; instead, they have to reference all the available row versions,

falling back on visibility rules to select the appropriate ones.

Both table row versions and index entries are often referred to as tuples. This term is borrowed

from the relational theory—it is yet another legacy of Postgre���’s academic past.

Item Pointers

The array of pointers to tuples serves as the page’s table of contents. It is located right

after the header.

63

Chapter 3 Pages and Tuples

Index entries have to refer to particular heap tuples somehow. Postgre��� employs six-

byte tuple identifiers (���s) for this purpose. Each ��� consists of the page number of the

main forkp. �� and a reference to a particular row version located in this page.

In theory, tuples could be referred to by their offset from the start of the page. But then

it would be impossible to move tuples within pages without breaking these references,

which in turn would lead to page fragmentation and other unpleasant consequences.

For this reason, Postgre��� uses indirect addressing: a tuple identifier refers to the corre-

sponding pointer number, and this pointer specifies the current offset of the tuple. If the

tuple is moved within the page, its ��� still remains the same; it is enough to modify the

pointer, which is also located in this page.

Each pointer takes exactly four bytes and contains the following data:

• tuple offset from the start of the page

• tuple length

• several bits defining the tuple status

Free Space

Pages can have some free space left between pointers and tuples (which is reflected in the

free space mapp. ��). There is no page fragmentation: all the free space available is always

aggregated into one chunk.1

3.2 Row Version Layout

Each row version contains a header followed by actual data. The header consists of mul-

tiple fields, including the following:

xmin, xmax represent transaction ��s; they are used to differentiate between this and

other versions of the same row.

infomask provides a set of information bits that define version properties.

ctid is a pointer to the next updated version of the same row.

null bitmap is an array of bits marking the columns that can contain ���� values.

1 backend/storage/page/bufpage.c, PageRepairFragmentation function

64

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/page/bufpage.c;hb=REL_14_STABLE

3.2 Row Version Layout

As a result, the header turns out quite big: it requires at least �� bytes for each tuple, and

this value is often exceeded because of the null bitmap and the mandatory padding used

for data alignment. In a “narrow” table, the size of various metadata can easily beat the

size of the actual data stored.

Data layout on disk fully coincides with data representation in ���. The page along with

its tuples is read into the buffer cache as is, without any transformations. That’s why data

files are incompatible between different platforms.1

One of the sources of incompatibility is the byte order. For example, the x�� architecture

is little-endian, z/�rchitecture is big-endian, and ��� has configurable byte order.

Another reason is data alignment bymachine word boundaries, which is required bymany

architectures. For example, in a ��-bit x�� system, integer numbers (the integer type,

takes four bytes) are aligned by the boundary of four-bytewords, just like double-precision

floating-point numbers (the double precision type, eight bytes). But in a ��-bit system,

double values are aligned by the boundary of eight-byte words.

Data alignment makes the size of a tuple dependent on the order of fields in the table.

This effect is usually negligible, but in some cases it can lead to a significant size increase.

Here is an example:

=> CREATE TABLE padding(

b1 boolean,

i1 integer,

b2 boolean,

i2 integer

);

=> INSERT INTO padding VALUES (true,1,false,2);

=> SELECT lp_len FROM heap_page_items(get_raw_page('padding', 0));

lp_len

−−−−−−−−

40

(1 row)

I have used the heap_page_items function of the pageinspect extension to display some

details about pointers and tuples.

In Postgre���, tables are often referred to as heap. This is yet another obscure term that hints at

the similarity between space allocation for tuples and dynamic memory allocation. Some analogy

can certainly be seen, but tables are managed by completely different algorithms. We can interpret

this term in the sense that “everything is piled up into a heap,” by contrast with ordered indexes.

1 include/access/htup_details.h

65

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/htup_details.h;hb=REL_14_STABLE

Chapter 3 Pages and Tuples

The size of the row is �� bytes. Its header takes �� bytes, a column of the integer type takes

� bytes, and boolean columns take � byte each. It makes �� bytes, and � bytes are wasted

on four-byte alignment of integer columns.

If we rebuild the table, the space will be used more efficiently:

=> DROP TABLE padding;

=> CREATE TABLE padding(

i1 integer,

i2 integer,

b1 boolean,

b2 boolean

);

=> INSERT INTO padding VALUES (1,2,true,false);

=> SELECT lp_len FROM heap_page_items(get_raw_page('padding', 0));

lp_len

−−−−−−−−

34

(1 row)

Another possible micro-optimization is to start the table with the fixed-length columns

that cannot contain ���� values. Access to such columns will be more efficient because it

is possible to cache their offset within the tuple.1

3.3 Operations on Tuples

To identify different versions of the same row, Postgre��� marks each of them with two

values: xmin and xmax. These values define “validity time” of each row version, but in-

stead of the actual time, they rely on ever-increasing transaction ��s.p. ���

When a row is created, its xmin value is set to the transaction �� of the ������ command.

When a row is deleted, the xmax value of its current version is set to the transaction �� of

the ������ command.

With a certain degree of abstraction, the ������ command can be regarded as two separate

operations: ������ and ������. First, the xmax value of the current row version is set to

the transaction �� of the ������ command. Then a new version of this row is created; its

xmin value will be the same as the xmax value of the previous version.

Now let’s get down to some low-level details of different operations on tuples.2

1 backend/access/common/heaptuple.c, heap_deform_tuple function
2 backend/access/transam/README

66

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/common/heaptuple.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/README;hb=REL_14_STABLE

3.3 Operations on Tuples

For these experiments, we will need a two-column table with an index created on one of

the columns:

=> CREATE TABLE t(

id integer GENERATED ALWAYS AS IDENTITY,

s text

);

=> CREATE INDEX ON t(s);

Insert

Start a transaction and insert one row:

=> BEGIN;

=> INSERT INTO t(s) VALUES ('FOO');

Here is the current transaction ��:

=> SELECT pg_current_xact_id(); -- txid_current() before v.13

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

776

(1 row)

To denote the concept of a transaction, Postgre��� uses the term xact, which can be found both in

��� function names and in the source code. Consequently, a transaction �� can be called xact ��,

����, or simply ���. We are going to come across these abbreviations over and over again.

Let’s take a look at the page contents. The heap_page_items function can give us all the

required information, but it shows the data “as is,” so the output format is a bit hard to

comprehend:

=> SELECT * FROM heap_page_items(get_raw_page('t',0)) \gx

−[RECORD 1]−−−−−−−−−−−−−−−−−−−

lp | 1

lp_off | 8160

lp_flags | 1

lp_len | 32

t_xmin | 776

t_xmax | 0

t_field3 | 0

t_ctid | (0,1)

t_infomask2 | 2

t_infomask | 2050

t_hoff | 24

t_bits |

t_oid |

t_data | \x0100000009464f4f

67

Chapter 3 Pages and Tuples

To make it more readable, we can leave out some information and expand a few columns:

=> SELECT '(0,'||lp||')' AS ctid,

CASE lp_flags

WHEN 0 THEN 'unused'

WHEN 1 THEN 'normal'

WHEN 2 THEN 'redirect to '||lp_off

WHEN 3 THEN 'dead'

END AS state,

t_xmin as xmin,

t_xmax as xmax,

(t_infomask & 256) > 0 AS xmin_committed,

(t_infomask & 512) > 0 AS xmin_aborted,

(t_infomask & 1024) > 0 AS xmax_committed,

(t_infomask & 2048) > 0 AS xmax_aborted

FROM heap_page_items(get_raw_page('t',0)) \gx

−[RECORD 1]−−+−−−−−−−

ctid | (0,1)

state | normal

xmin | 776

xmax | 0

xmin_committed | f

xmin_aborted | f

xmax_committed | f

xmax_aborted | t

This is what has been done here:

• The lp pointer is converted to the standard format of a tuple ��: (page number, pointer

number).

• The lp_flags state is spelled out. Here it is set to the normal value, which means that

it really points to a tuple.

• Of all the information bits, we have singled out just two pairs so far. The xmin_com-

mitted and xmin_aborted bits show whether the xmin transaction is committed or

aborted. The xmax_committed and xmax_aborted bits give similar information about

the xmax transaction.

The pageinspectv. �� extension provides the heap_tuple_infomask_flags function that explains all the

information bits, but I am going to retrieve only those that are required at the moment, showing

them in a more concise form.

Let’s get back to our experiment. The ������ command has added pointer � to the heap

page; it refers to the first tuple, which is currently the only one.

The xmin field of the tuple is set to the current transaction ��. This transaction is still

active, so the xmin_committed and xmin_aborted bits are not set yet.

68

3.3 Operations on Tuples

The xmax field contains �, which is a dummy number showing that this tuple has not

been deleted and represents the current version of the row. Transactions will ignore this

number because the xmax_aborted bit is set.

It may seem strange that the bit corresponding to an aborted transaction is set for the transaction

that has not happened yet. But there is no difference between such transactions from the isolation

standpoint: an aborted transaction leaves no trace, hence it has never existed.

We will use this query more than once, so I am going to wrap it into a function. And while

being at it, I will alsomake the outputmore concise by hiding the information bit columns

and displaying the status of transactions together with their ��s.

=> CREATE FUNCTION heap_page(relname text, pageno integer)

RETURNS TABLE(ctid tid, state text, xmin text, xmax text)

AS $$

SELECT (pageno,lp)::text::tid AS ctid,

CASE lp_flags

WHEN 0 THEN 'unused'

WHEN 1 THEN 'normal'

WHEN 2 THEN 'redirect to '||lp_off

WHEN 3 THEN 'dead'

END AS state,

t_xmin || CASE

WHEN (t_infomask & 256) > 0 THEN ' c'

WHEN (t_infomask & 512) > 0 THEN ' a'

ELSE ''

END AS xmin,

t_xmax || CASE

WHEN (t_infomask & 1024) > 0 THEN ' c'

WHEN (t_infomask & 2048) > 0 THEN ' a'

ELSE ''

END AS xmax

FROM heap_page_items(get_raw_page(relname,pageno))

ORDER BY lp;

$$ LANGUAGE sql;

Now it is much clearer what is happening in the tuple header:

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−+−−−−−−

(0,1) | normal | 776 | 0 a

(1 row)

You can get similar but less detailed information from the table itself by querying the xmin

and xmax pseudocolumns:

69

Chapter 3 Pages and Tuples

=> SELECT xmin, xmax, * FROM t;

xmin | xmax | id | s

−−−−−−+−−−−−−+−−−−+−−−−−

776 | 0 | 1 | FOO

(1 row)

Commit

Once a transaction has been completed successfully, its status has to be stored somehow—

it must be registered that the transaction is committed. For this purpose, Postgre��� em-

ploys a special ���� (commit log) structure.1 It is stored as files in the ������/pg_xact

directory rather than as a system catalog table.

Previously, these files were located in ������/pg_clog,but in version �� this directory got renamed:2

it was not uncommon for database administrators unfamiliar with Postgre��� to delete it in search

of free disk space, thinking that a “log” is something unnecessary.

C��� is split into several files solely for convenience.p. ��� These files are accessed page by

page via buffers in the server’s shared memory.3

Just like a tuple header, ���� contains two bits for each transaction: committed and

aborted.

Once committed, a transaction is marked in ���� with the committed bit. When any other

transaction accesses a heap page, it has to answer the question: has the xmin transaction

already finished?

• If not, then the created tuple must not be visible.

To check whether the transaction is still active, Postgre��� uses yet another structure

located in the shared memory of the instance; it is called ProcArray. This structure

contains the list of all the active processes, with the corresponding current (active)

transaction specified for each process.

• If yes,was it committed or aborted? In the latter case, the corresponding tuple cannot

be visible either.

It is this check that requires ����. But even though the most recent ���� pages are

stored in memory buffers, it is still expensive to perform this check every time. Once

1 include/access/clog.h

backend/access/transam/clog.c
2 commitfest.postgresql.org/13/750
3 backend/access/transam/clog.c

70

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/clog.h;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/clog.c;hb=REL_14_STABLE
https://commitfest.postgresql.org/13/750
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/clog.c;hb=REL_14_STABLE

3.3 Operations on Tuples

determined, the transaction status is written into the tuple header—more specifi-

cally, into xmin_committed and xmin_aborted information bits, which are also called

hint bits. If one of these bits is set, then the xmin transaction status is considered

to be already known, and the next transaction will have to access neither ���� nor

ProcArray.

Why aren’t these bits set by the transaction that performs row insertion? The problem is

that it is not known yet at that time whether this transaction will complete successfully.

And when it is committed, it is already unclear which tuples and pages have been changed.

If a transaction affects many pages, it may be too expensive to track them. Besides, some

of these pages may be not in the cache anymore; reading them again to simply update the

hint bits would seriously slow down the commit.

The flip side of this cost reduction is that any transaction (even a read-only ������ com-

mand) can start setting hint bits, thus leaving a trail of dirtied pages in the buffer cache.

Finally, let’s commit the transaction started with the ������ statement:

=> COMMIT;

Nothing has changed in the page (but we know that the transaction status has already

been written into ����):

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−+−−−−−−

(0,1) | normal | 776 | 0 a

(1 row)

Now the first transaction that accesses the page (in a “standard” way, without using

pageinspect) has to determine the status of the xmin transaction and update the hint bits:

=> SELECT * FROM t;

id | s

−−−−+−−−−−

1 | FOO

(1 row)

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−

(0,1) | normal | 776 c | 0 a

(1 row)

71

Chapter 3 Pages and Tuples

Delete

When a row is deleted, the xmax field of its current version is set to the transaction �� that

performs the deletion, and the xmax_aborted bit is unset.

While this transaction is active, the xmaxp. ��� value serves as a row lock. If another transaction is going

to update or delete this row, it will have to wait until the xmax transaction is complete.

Let’s delete a row:

=> BEGIN;

=> DELETE FROM t;

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

777

(1 row)

The transaction �� has already been written into the xmax field, but the information bits

have not been set yet:

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−

(0,1) | normal | 776 c | 777

(1 row)

Abort

The mechanism of aborting a transaction is similar to that of commit and happens just as

fast, but instead of committed it sets the aborted bit in ����. Although the corresponding

command is called ��������, no actual data rollback is happening: all the changes made

by the aborted transaction in data pages remain in place.

=> ROLLBACK;

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−

(0,1) | normal | 776 c | 777

(1 row)

When the page is accessed, the transaction status is checked, and the tuple receives the

xmax_aborted hint bit. The xmax number itself still remains in the page, but no one is

going to pay attention to it anymore:

72

3.3 Operations on Tuples

=> SELECT * FROM t;

id | s

−−−−+−−−−−

1 | FOO

(1 row)

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−

(0,1) | normal | 776 c | 777 a

(1 row)

Update

An update is performed in such a way as if the current tuple is deleted, and then a new

one is inserted:

=> BEGIN;

=> UPDATE t SET s = 'BAR';

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

778

(1 row)

The query returns a single row (its new version):

=> SELECT * FROM t;

id | s

−−−−+−−−−−

1 | BAR

(1 row)

But the page keeps both versions:

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−

(0,1) | normal | 776 c | 778

(0,2) | normal | 778 | 0 a

(2 rows)

The xmax field of the previously deleted version contains the current transaction ��. This

value is written on top of the old one because the previous transaction was aborted. The

xmax_aborted bit is unset since the status of the current transaction is still unknown.

73

Chapter 3 Pages and Tuples

To complete this experiment, let’s commit the transaction.

=> COMMIT;

3.4 Indexes

Regardless of their type, indexes do not use row versioning; each row is represented by

exactly one tuple. In other words, index row headers do not contain xmin and xmax fields.

Index entries point to all the versions of the corresponding table rowp. �� . To figure out which

row version is visible, transactions have to access the table (unless the required page ap-

pears in the visibility map).

For convenience, let’s create a simple function that will use pageinspect to display all the

index entries in the page (�-tree index pages store them as a flat list):

=> CREATE FUNCTION index_page(relname text, pageno integer)

RETURNS TABLE(itemoffset smallint, htid tid)

AS $$

SELECT itemoffset,

htid -- ctid before v.13

FROM bt_page_items(relname,pageno);

$$ LANGUAGE sql;

The page references both heap tuples, the current and the previous one:

=> SELECT * FROM index_page('t_s_idx',1);

itemoffset | htid

−−−−−−−−−−−−+−−−−−−−

1 | (0,2)

2 | (0,1)

(2 rows)

Since ��� < ���, the pointer to the second tuple comes first in the index.

3.5 TOAST

A����� tablep. �� is virtually a regular table, and it has its own versioning that does not depend

on row versions of the main table. However, rows of ����� tables are handled in such a

way that they are never updated; they can be either added or deleted, so their versioning

is somewhat artificial.

Each data modification results in creation of a new tuple in the main table. But if an

update does not affect any long values stored in �����, the new tuple will reference an

74

3.6 Virtual Transactions

existing toasted value. Only when a long value gets updated will Postgre��� create both

a new tuple in the main table and new “toasts.”

3.6 Virtual Transactions

To consume transaction ��s sparingly, Postgre��� offers a special optimization.

If a transaction is read-only, it does not affect row visibility in any way. That’s why such a

transaction is at first given a virtual ���1, p. ���which consists of the backend process �� and a

sequential number. Assigning a virtual ��� does not require any synchronization between

different processes, so it happens very fast. At this point, the transaction does not have a

real �� yet:

=> BEGIN;

=> -- txid_current_if_assigned() before v.13

SELECT pg_current_xact_id_if_assigned();

pg_current_xact_id_if_assigned

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(1 row)

At different points in time, the system can contain some virtual ���s that have already

been used. And it is perfectly normal: virtual ���s exist only in ���, and only while the

corresponding transactions are active; they are never written into data pages and never

get to disk.

Once the transaction starts modifying data, it receives an actual unique ��:

=> UPDATE accounts

SET amount = amount - 1.00;

=> SELECT pg_current_xact_id_if_assigned();

pg_current_xact_id_if_assigned

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

780

(1 row)

=> COMMIT;

1 backend/access/transam/xact.c

75

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/xact.c;hb=REL_14_STABLE

Chapter 3 Pages and Tuples

3.7 Subtransactions

Savepoints

S�� supports savepoints, which enable canceling some of the operations within a trans-

action without aborting this transaction as a whole. But such a scenario does not fit the

course of action described above: the status of a transaction applies to all its operations,

and no physical data rollback is performed.

To implement this functionality, a transaction containing a savepoint is split into several

subtransactions,1 so their status can be managed separately.

Subtransactions have their own ��s (which are bigger than the �� of themain transaction).

The status of a subtransaction is written into ���� in the usual manner; however, com-

mitted subtransactions receive both the committed and the aborted bits at once. The final

decision depends on the status of the main transaction: if it is aborted, all its subtransac-

tions will be considered aborted too.

The information about subtransactions is stored under the ������/pg_subtrans directory.

File access is arranged via buffers that are located in the instance’s shared memory and

have the same structure as ���� buffers.2

Do not confuse subtransactions with autonomous ones. Unlike subtransactions, the latter do not

depend on each other in any way. Vanilla Postgre��� does not support autonomous transactions,

and it is probably for the best: they are required in very rare cases, but their availability in other

database systems often provokes misuse, which can cause a lot of trouble.

Let’s truncate the table, start a new transaction, and insert a row:

=> TRUNCATE TABLE t;

=> BEGIN;

=> INSERT INTO t(s) VALUES ('FOO');

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

782

(1 row)

Now create a savepoint and insert another row:

=> SAVEPOINT sp;

=> INSERT INTO t(s) VALUES ('XYZ');

1 backend/access/transam/subtrans.c
2 backend/access/transam/slru.c

76

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/subtrans.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/slru.c;hb=REL_14_STABLE

3.7 Subtransactions

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

782

(1 row)

Note that the pg_current_xact_id function returns the �� of the main transaction, not that

of a subtransaction.

=> SELECT *

FROM heap_page('t',0) p

LEFT JOIN t ON p.ctid = t.ctid;

ctid | state | xmin | xmax | id | s

−−−−−−−+−−−−−−−−+−−−−−−+−−−−−−+−−−−+−−−−−

(0,1) | normal | 782 | 0 a | 2 | FOO

(0,2) | normal | 783 | 0 a | 3 | XYZ

(2 rows)

Let’s roll back to the savepoint and insert the third row:

=> ROLLBACK TO sp;

=> INSERT INTO t(s) VALUES ('BAR');

=> SELECT *

FROM heap_page('t',0) p

LEFT JOIN t ON p.ctid = t.ctid;

ctid | state | xmin | xmax | id | s

−−−−−−−+−−−−−−−−+−−−−−−+−−−−−−+−−−−+−−−−−

(0,1) | normal | 782 | 0 a | 2 | FOO

(0,2) | normal | 783 | 0 a | |

(0,3) | normal | 784 | 0 a | 4 | BAR

(3 rows)

The page still contains the row added by the aborted subtransaction.

Commit the changes:

=> COMMIT;

=> SELECT * FROM t;

id | s

−−−−+−−−−−

2 | FOO

4 | BAR

(2 rows)

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−

(0,1) | normal | 782 c | 0 a

(0,2) | normal | 783 a | 0 a

(0,3) | normal | 784 c | 0 a

(3 rows)

77

Chapter 3 Pages and Tuples

Now we can clearly see that each subtransaction has its own status.

S�� does not allow using subtransactions directly, that is, you cannot start a new transac-

tion before completing the current one:

=> BEGIN;

BEGIN

=> BEGIN;

WARNING: there is already a transaction in progress

BEGIN

=> COMMIT;

COMMIT

=> COMMIT;

WARNING: there is no transaction in progress

COMMIT

Subtransactions are employed implicitly: to implement savepoints, handle exceptions in

��/pg���, and in some other, more exotic cases.

Errors and Atomicity

What happens if an error occurs during execution of a statement?

=> BEGIN;

=> SELECT * FROM t;

id | s

−−−−+−−−−−

2 | FOO

4 | BAR

(2 rows)

=> UPDATE t SET s = repeat('X', 1/(id-4));

ERROR: division by zero

After a failure, the whole transaction is considered aborted and cannot perform any fur-

ther operations:

=> SELECT * FROM t;

ERROR: current transaction is aborted, commands ignored until end

of transaction block

And even if you try to commit the changes, Postgre��� will report that the transaction is

rolled back:

78

3.7 Subtransactions

=> COMMIT;

ROLLBACK

Why is it forbidden to continue transaction execution after a failure? Since the already

executed operations are never rolled back, we would get access to some changes made

before the error—it would break the atomicity of the statement, and hence that of the

transaction itself.

For example, in our experiment the operator has managed to update one of the two rows

before the failure:

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−

(0,1) | normal | 782 c | 785

(0,2) | normal | 783 a | 0 a

(0,3) | normal | 784 c | 0 a

(0,4) | normal | 785 | 0 a

(4 rows)

On a side note,psql provides a special mode that allows you to continue a transaction after

a failure as if the erroneous statement were rolled back:

=> \set ON_ERROR_ROLLBACK on

=> BEGIN;

=> UPDATE t SET s = repeat('X', 1/(id-4));

ERROR: division by zero

=> SELECT * FROM t;

id | s

−−−−+−−−−−

2 | FOO

4 | BAR

(2 rows)

=> COMMIT;

COMMIT

As you can guess, psql simply adds an implicit savepoint before each command when run

in this mode; in case of a failure, a rollback is initiated. This mode is not used by default

because issuing savepoints (even if they are not rolled back to) incurs significant overhead.

79

4
Snapshots

4.1 What is a Snapshot?

A data page can contain several versions of the same row, although each transaction must

see only one of them at the most. Together, visible versions of all the different rows con-

stitute a snapshotp. �� . A snapshot includes only the current data committed by the time it was

taken, thus providing a consistent (in the ���� sense) view of the data for this particular

moment.

To ensure isolation, each transaction uses its own snapshot. It means that different trans-

actions can see different snapshots taken at different points in time, which are neverthe-

less consistent.

At the Read Committed isolation level, a snapshot is taken at the beginning of each state-

ment, and it remains active only for the duration of this statement.

At the Repeatable Read and Serializable levels, a snapshot is taken at the beginning of

the first statement of a transaction, and it remains active until the whole transaction is

complete.

xid

snapshot1 snapshot2

statement1 statement2

Read Committed
xid

snapshot

statement1 statement2

Repeatable Read,

Serializable

80

4.2 Row Version Visibility

4.2 Row Version Visibility

A snapshot is not a physical copy of all the required tuples. Instead, it is defined by several

numbers, while tuple visibility is determined by certain rules.

Tuple visibility is defined by xmin and xmax fields of the tuple header (that is, ��s of

transactions that perform insertion and deletion) and the corresponding hint bits. Since

xmin–xmax intervals do not intersect, each row is represented in any snapshot by only

one of its versions.

The exact visibility rules are quite complex,1 as they take into account a variety of differ-

ent scenarios and corner cases. Very roughly, we can describe them as follows: a tuple

is visible in a snapshot that includes xmin transaction changes but excludes xmax trans-

action changes (in other words, the tuple has already appeared and has not been deleted

yet).

In their turn, transaction changes are visible in a snapshot if this transaction was com-

mitted before the snapshot creation. As an exception, transactions can see their own

uncommitted changes. If a transaction is aborted, its changes will not be visible in any

snapshot.

Let’s take a look at a simple example. In this illustration line segments represent trans-

actions (from their start time till commit time):

xid
1 2 3

snapshot

Here visibility rules are applied to transactions as follows:

• Transaction � was committed before the snapshot creation, so its changes are visible.

• Transaction � was active at the time of the snapshot creation, so its changes are not

visible.

• Transaction � was started after the snapshot creation, so its changes are not visible

either (it makes no difference whether this transaction is completed or not).

1 backend/access/heap/heapam_visibility.c

81

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/heapam_visibility.c;hb=REL_14_STABLE

Chapter 4 Snapshots

4.3 Snapshot Structure

Unfortunately, the previous illustration has nothing to do with the way Postgre��� actu-

ally sees this picture.1 The problem is that the system does not know when transactions

got committed. It is only known when they were started (this moment is defined by the

transaction ��), while their completion is not registered anywhere.

Commit times can be tracked2 if you enable theoff track_commit_timestamp parameter, but they do

not participate in visibility checks in any way (although it can still be useful to track them for other

purposes, for example, to apply in external replication solutions).

Besides, Postgre��� always logs commit and rollback times in the corresponding ��� entriesp. ��� , but

this information is used only for point-in-time recovery.

It is only the current status of a transaction that we can learn. This information is available

in the server’s shared memory: the ProcArray structure contains the list of all the active

sessions and their transactions. Once a transaction is complete, it is impossible to find

out whether it was active at the time of the snapshot creation.

So to create a snapshot, it is not enough to register the moment when it was taken: it

is also necessary to collect the status of all the transactions at that moment. Otherwise,

later it will be impossible to understand which tuples must be visible in the snapshot, and

which must be excluded.

Take a look at the information available to the system when the snapshot was taken and

some time afterwards (the white circle denotes an active transaction, whereas the black

circles stand for completed ones):

xid
1 2 3

at snapshot creation…

xid
1 2 3

…and some time later

Suppose we did not know that at the time the snapshot was taken the first transaction

was still being executed and the third transaction had not started yet. Then it would seem

that they were just like the second transaction (which was committed at that time), and it

would be impossible to filter them out.

1 include/utils/snapshot.h

backend/utils/time/snapmgr.c
2 backend/access/transam/commit_ts.c

82

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/utils/snapshot.h;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/time/snapmgr.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/commit_ts.c;hb=REL_14_STABLE

4.3 Snapshot Structure

For this reason, Postgre��� cannot create a snapshot that shows a consistent state of data

at some arbitrary point in the past, even if all the required tuples are present in heap pages.

Consequently, it is impossible to implement retrospective queries (which are sometimes

also called temporal or flashback queries).

Intriguingly, such functionality was declared as one of the objectives of Postgres and was imple-

mented at the very start, but it was removed from the database system when the project support

was passed on to the community.1

Thus, a snapshot consists of several values saved at the time of its creation:2

xmin is the snapshot’s lower boundary, which is represented by the �� of the oldest active

transaction.

All the transactions with smaller ��s p. ���are either committed (so their changes are in-

cluded into the snapshot) or aborted (so their changes are ignored).

xmax is the snapshot’s upper boundary, which is represented by the value that exceeds

the �� of the latest committed transaction by one. The upper boundary defines the

moment when the snapshot was taken.

All the transactions whose ��s are equal to or greater than xmax are either still run-

ning or do not exist, so their changes cannot be visible.

xip_list is the list of ��s of all the active transactions except for virtual ones, which do not

affect visibility in any way. p. ��

Snapshots also include several other parameters, but we will ignore them for now.

In a graphical form, a snapshot can be represented as a rectangle that comprises transac-

tions from xmin to xmax:

xid
1 2 3

xmin xmax

xip_list

To understand how visibility rules are defined by the snapshot, we are going to reproduce

the above scenario on the accounts table.

1 Joseph M. Hellerstein, Looking Back at Postgres. https://arxiv.org/pdf/1901.01973.pdf
2 backend/storage/ipc/procarray.c, GetSnapshotData function

83

https://https://arxiv.org/pdf/1901.01973.pdf
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/ipc/procarray.c;hb=REL_14_STABLE

Chapter 4 Snapshots

=> TRUNCATE TABLE accounts;

The first transaction inserts the first row into the table and remains open:

=> BEGIN;

=> INSERT INTO accounts VALUES (1, 'alice', 1000.00);

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

790

(1 row)

The second transaction inserts the second row and commits this change immediately:

=> BEGIN;

=> INSERT INTO accounts VALUES (2, 'bob', 100.00);

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

791

(1 row)

=> COMMIT;

At this point, let’s create a new snapshot in another session. We could simply run any

query for this purpose, but we will use a special function to take a look at this snapshot

right away:

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> -- txid_current_snapshot() before v.13

SELECT pg_current_snapshot();

pg_current_snapshot

−−−−−−−−−−−−−−−−−−−−−

790:792:790

(1 row)

This function displays the following snapshot components, separated by colons: xmin,

xmax, and xip_list (the list of active transactions; in this particular case it consists of a

single item).

Once the snapshot is taken, commit the first transaction:

=> COMMIT;

The third transaction is started after the snapshot creation. It modifies the second row,

so a new tuple appears:

84

4.3 Snapshot Structure

=> BEGIN;

=> UPDATE accounts SET amount = amount + 100 WHERE id = 2;

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

792

(1 row)

=> COMMIT;

Our snapshot sees only one tuple:

=> SELECT ctid, * FROM accounts;

ctid | id | client | amount

−−−−−−−+−−−−+−−−−−−−−+−−−−−−−−

(0,2) | 2 | bob | 100.00

(1 row)

But the table contains three of them:

=> SELECT * FROM heap_page('accounts',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−

(0,1) | normal | 790 c | 0 a

(0,2) | normal | 791 c | 792 c

(0,3) | normal | 792 c | 0 a

(3 rows)

So how does Postgre��� choose which versions to show? By the above rules, changes are

included into a snapshot only if they are made by committed transactions that satisfy the

following criteria:

• If xid < xmin, changes are shown unconditionally (like in the case of the transaction

that created the accounts table).

• If xmin ⩽ xid < xmax, changes are shown only if the corresponding transaction ��s

are not in xip_list.

The first row (�,�) is invisible because it is inserted by a transaction that appears in xip_list

(even though this transaction falls into the snapshot range).

The latest version of the second row (�,�) is invisible because the corresponding transac-

tion �� is above the upper boundary of the snapshot.

But the first version of the second row (�,�) is visible: row insertion was performed by a

transaction that falls into the snapshot range and does not appear in xip_list (the insertion

is visible), while row deletion was performed by a transaction whose �� is above the upper

boundary of the snapshot (the deletion is invisible).

=> COMMIT;

85

Chapter 4 Snapshots

4.4 Visibility of Transactions’ Own Changes

Things get a bit more complicated when it comes to defining visibility rules for transac-

tions’ own changes: in some cases, only part of such changesmust be visible. For example,

a cursor that was opened at a particular point in time must not see any changes that hap-

pened later, regardless of the isolation level.

To address such situations, tuple headers provide a special field (displayed as cmin and

cmax pseudocolumns) that shows the sequence number of the operation within the trans-

action. The cmin column identifies insertion, while cmax is used for deletion operations.

To save space, these values are stored in a single field of the tuple header rather than in

two different ones. It is assumed that a particular row almost never gets both inserted and

deleted within a single transaction. (If it does happen, Postgre��� writes a special combo

identifier into this field, and the actual cmin and cmax values are stored by the backend in

this case.1)

As an illustration, let’s start a transaction and insert a row into the table:

=> BEGIN;

=> INSERT INTO accounts VALUES (3, 'charlie', 100.00);

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

793

(1 row)

Open a cursor to run the query that returns the number of rows in this table:

=> DECLARE c CURSOR FOR SELECT count(*) FROM accounts;

Insert one more row:

=> INSERT INTO accounts VALUES (4, 'charlie', 200.00);

Now extend the output by another column to display the cmin value for the rows inserted

by our transaction (it makes no sense for other rows):

=> SELECT xmin, CASE WHEN xmin = 793 THEN cmin END cmin, *

FROM accounts;

xmin | cmin | id | client | amount

−−−−−−+−−−−−−+−−−−+−−−−−−−−−+−−−−−−−−−

790 | | 1 | alice | 1000.00

792 | | 2 | bob | 200.00

793 | 0 | 3 | charlie | 100.00

793 | 1 | 4 | charlie | 200.00

(4 rows)

1 backend/utils/time/combocid.c

86

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/time/combocid.c;hb=REL_14_STABLE

4.5 Transaction Horizon

The cursor query gets only three rows; the row inserted when the cursor was already open

does not make it into the snapshot because the cmin < 1 condition is not satisfied:

=> FETCH c;

count

−−−−−−−

3

(1 row)

Naturally, this cmin number is also stored in the snapshot, but it is impossible to display

it using any ��� means.

4.5 Transaction Horizon

As mentioned earlier, the lower boundary of the snapshot is represented by xmin, which

is the �� of the oldest transaction that was active at the moment of the snapshot creation.

This value is very important because it defines the horizon of the transaction that uses

this snapshot.

If a transaction has no active snapshot (for example, at the Read Committed isolation level

between statement execution), its horizon is defined by its own �� if it is assigned.

All the transactions that are beyond the horizon (those with xid < xmin) are guranteed to

be committed. It means that a transaction can see only the current row versions beyond

its horizon.

As you can guess, this term is inspired by the concept of event horizon in physics.

Postgre��� tracks the current horizons of all its processes; transactions can see their own

horizons in the pg_stat_activity table:

=> BEGIN;

=> SELECT backend_xmin FROM pg_stat_activity

WHERE pid = pg_backend_pid();

backend_xmin

−−−−−−−−−−−−−−

793

(1 row)

Virtual transactions have no real ��s, but they still use snapshots just like regular transac-

tions, so they have their own horizons. The only exception is virtual transactions without

an active snapshot: the concept of the horizon makes no sense for them, and they are

fully “transparent” to the system when it comes to snapshots and visibility (even though

pg_stat_activity.backend_xminmay still contain an xmin of an old snapshot).

87

Chapter 4 Snapshots

We can also define the database horizon in a similar manner. For this purpose, we should

take the horizons of all the transactions in this database and select the most remote one,

whichhas the oldest xmin.1 Beyond this horizon,outdated heap tupleswill never be visible

to any transaction in this database. Such tuples can be safely cleaned up by vacuum—this is

exactly why the concept of the horizon is so important from a practical standpoint.

xid
1 2 3 4 5 6 7 8 9 10

database
horizon

outdated tuples

that can be vacuumed

Let’s draw some conclusions:

• If a transaction (no matter whether it is real or virtual) at the Repeatable Read or

Serializable isolation level is running for a long time, it thereby holds the database

horizon and defers vacuuming.

• A real transaction at the Read Committed isolation level holds the database horizon

in the same way, even if it is not executing any operators (being in the “idle in trans-

action” state).

• A virtual transaction at the Read Committed isolation level holds the horizon only

while executing operators.

There is only one horizon for the whole database, so if it is being held by a transaction,

it is impossible to vacuum any data within this horizon—even if this data has not been

accessed by this transaction.

Cluster-wide tables of the system catalog have a separate horizon that takes into account all trans-

actions in all databases. Temporary tables, on the contrary, do not have to pay attention to any

transactions except those that are being executed by the current process.

1 backend/storage/ipc/procarray.c, ComputeXidHorizons function

88

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/ipc/procarray.c;hb=REL_14_STABLE

4.6 System Catalog Snapshots

Let’s get back to our current experiment. The active transaction of the first session still

holds the database horizon; we can see it by incrementing the transaction counter:

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

794

(1 row)

=> SELECT backend_xmin FROM pg_stat_activity

WHERE pid = pg_backend_pid();

backend_xmin

−−−−−−−−−−−−−−

793

(1 row)

And only when this transaction is complete, the horizon moves forward, and outdated

tuples can be vacuumed:

=> COMMIT;

=> SELECT backend_xmin FROM pg_stat_activity

WHERE pid = pg_backend_pid();

backend_xmin

−−−−−−−−−−−−−−

795

(1 row)

In a perfect world, you should avoid combining p. ���long transactions with frequent updates

(that spawn new row versions), as it will lead to table and index bloating.

4.6 System Catalog Snapshots

Although the system catalog consists of regular tables, they cannot be accessed via a

snapshot used by a transaction or an operator. The snapshot must be “fresh” enough

to include all the latest changes, otherwise transactions could see outdated definitions of

table columns or miss newly added integrity constraints.

Here is a simple example:

=> BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE READ;

=> SELECT 1; -- a snapshot for the transaction is taken

89

Chapter 4 Snapshots

=> ALTER TABLE accounts

ALTER amount SET NOT NULL;

=> INSERT INTO accounts(client, amount)

VALUES ('alice', NULL);

ERROR: null value in column "amount" of relation "accounts"

violates not−null constraint

DETAIL: Failing row contains (1, alice, null).

=> ROLLBACK;

The integrity constraint that appeared after the snapshot creationwas visible to the ������

command. It may seem that such behavior breaks isolation, but if the inserting transac-

tion had managed to reach the accounts table before the ����� ����� command, the latter

would have been blockedp. ��� until this transaction completed.

In general, the server behaves as if a separate snapshot is created for each system catalog

query. But the implementation is, of course,muchmore complex1 since frequent snapshot

creation would negatively affect performance; besides, many system catalog objects get

cached, and it must also be taken into account.

4.7 Exporting Snapshots

In some situations, concurrent transactionsmust see the same snapshot by all means. For

example, if the pg_dump utility is run in the parallel mode, all its processes must see the

same database state to produce a consistent backup.

We cannot assume that snapshots will be identical simply because transactions were

started “simultaneously.” To ensure that all the transactions see the same data, we must

employ the snapshot export mechanism.

The pg_export_snapshot function returns a snapshot ��, which can be passed to another

transaction (outside of the database system):

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> SELECT count(*) FROM accounts;

count

−−−−−−−

4

(1 row)

1 backend/utils/time/snapmgr.c, GetCatalogSnapshot function

90

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/time/snapmgr.c;hb=REL_14_STABLE

4.7 Exporting Snapshots

=> SELECT pg_export_snapshot();

pg_export_snapshot

−−−−−−−−−−−−−−−−−−−−−

00000004−0000006E−1

(1 row)

Before executing the first statement, the other transaction can import the snapshot by

running the ��� ����������� �������� command. The isolation level must be set to Repeat-

able Read or Serializable because operators use their own snapshots at the Read Committed

level:

=> DELETE FROM accounts;

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> SET TRANSACTION SNAPSHOT '00000004-0000006E-1';

Now the second transaction is going to use the snapshot of the first transaction, and con-

sequently, it will see four rows (instead of zero):

=> SELECT count(*) FROM accounts;

count

−−−−−−−

4

(1 row)

Clearly, the second transactionwill not see any changesmade by the first transaction after

the snapshot export (and vice versa): regular visibility rules still apply.

The exported snapshot’s lifetime is the same as that of the exporting transaction.

=> COMMIT;

=> COMMIT;

91

5
Page Pruning and HOT Updates

5.1 Page Pruning

While a heap page is being read or updated, Postgre��� can perform some quick page

cleanup, or pruning.1 It happens in the following cases:

• The previous ������ operation did not find enough space to place a new tuple into

the same page. This event is reflected in the page header.

• The heap page contains more data than allowed by the100 fillfactor storage parameter.

An ������ operation can add a new row into the page only if this page is filled for less

than fillfactor percent. The rest of the space is kept for ������ operations (no such

space is reserved by default).

Page pruning removes the tuples that cannot be visible in any snapshot anymore (that is,

that are beyond the database horizonp. ��). It never goes beyond a single heap page, but in

return it is performed very fast. Pointers to pruned tuples remain in place since they may

be referenced from an index—which is already a different page.

For the same reason, neither the visibility map nor the free space map is refreshed (so the

recovered space is set aside for updates, not for insertions).

Since a page can be pruned during reads, any ������ statement can cause page modifica-

tions. This is yet another such case in addition to deferred setting of information bits.p. ��

Let’s take a look at how page pruning actually works. We are going to create a two-column

table and build an index on each of the columns:

=> CREATE TABLE hot(id integer, s char(2000)) WITH (fillfactor = 75);

=> CREATE INDEX hot_id ON hot(id);

=> CREATE INDEX hot_s ON hot(s);

1 backend/access/heap/pruneheap.c, heap_page_prune_opt function

92

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/pruneheap.c;hb=REL_14_STABLE

5.1 Page Pruning

If the s column contains only Latin letters, each heap tuple will have a fixed size of ����

bytes, plus �� bytes of the header. The fillfactor storage parameter is set to ��%. It means

that the page has enough free space for four tuples, but we can insert only three.

Let’s insert a new row and update it several times:

=> INSERT INTO hot VALUES (1, 'A');

=> UPDATE hot SET s = 'B';

=> UPDATE hot SET s = 'C';

=> UPDATE hot SET s = 'D';

Now the page contains four tuples:

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−

(0,1) | normal | 801 c | 802 c

(0,2) | normal | 802 c | 803 c

(0,3) | normal | 803 c | 804

(0,4) | normal | 804 | 0 a

(4 rows)

Expectedly, we have just exceeded the fillfactor threshold. You can tell it by the difference

between the pagesize and upper p. ��values—it is bigger than ��% of the page size, which is

���� bytes:

=> SELECT upper, pagesize FROM page_header(get_raw_page('hot',0));

upper | pagesize

−−−−−−−+−−−−−−−−−−

64 | 8192

(1 row)

The next page access triggers page pruning that removes all the outdated tuples. Then a

new tuple (�,�) is added into the freed space:

=> UPDATE hot SET s = 'E';

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−

(0,1) | dead | |

(0,2) | dead | |

(0,3) | dead | |

(0,4) | normal | 804 c | 805

(0,5) | normal | 805 | 0 a

(5 rows)

93

Chapter 5 Page Pruning and HOT Updates

The remaining heap tuples are physically moved towards the highest addresses so that all

the free space is aggregated into a single continuous chunk. The tuple pointers are also

modified accordingly. As a result, there is no free space fragmentation in the page.

The pointers to the pruned tuples cannot be removed yet because they are still referenced

from the indexes; Postgre��� changes their status from normal to dead. Let’s take a look

at the first page of the hot_s index (the zero page is used for metadata):

=> SELECT * FROM index_page('hot_s',1);

itemoffset | htid

−−−−−−−−−−−−+−−−−−−−

1 | (0,1)

2 | (0,2)

3 | (0,3)

4 | (0,4)

5 | (0,5)

(5 rows)

We can see the same picture in the other index too:

=> SELECT * FROM index_page('hot_id',1);

itemoffset | htid

−−−−−−−−−−−−+−−−−−−−

1 | (0,1)

2 | (0,2)

3 | (0,3)

4 | (0,4)

5 | (0,5)

(5 rows)

An index scan can return (�,�), (�,�), and (�,�) as tuple identifiers. The server tries to read

the corresponding heap tuple but sees that the pointer has the dead status; it means that

this tuple does not exist anymore and should be ignored. And while being at it, the server

also changes the pointer status in the index page to avoid repeated heap page access.1

Let’s extend the functionv. �� displaying index pages so that it also shows whether the pointer

is dead:

=> DROP FUNCTION index_page(text, integer);

=> CREATE FUNCTION index_page(relname text, pageno integer)

RETURNS TABLE(itemoffset smallint, htid tid, dead boolean)

AS $$

SELECT itemoffset,

htid,

dead -- starting from v.13

FROM bt_page_items(relname,pageno);

$$ LANGUAGE sql;

1 backend/access/index/indexam.c, index_fetch_heap function

94

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/index/indexam.c;hb=REL_14_STABLE

5.2 HOT Updates

=> SELECT * FROM index_page('hot_id',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,1) | f

2 | (0,2) | f

3 | (0,3) | f

4 | (0,4) | f

5 | (0,5) | f

(5 rows)

All the pointers in the index page are active so far. But as soon as the first index scan

occurs, their status changes:

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT * FROM hot WHERE id = 1;

QUERY PLAN

−−

Index Scan using hot_id on hot (actual rows=1 loops=1)

Index Cond: (id = 1)

(2 rows)

=> SELECT * FROM index_page('hot_id',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,1) | t

2 | (0,2) | t

3 | (0,3) | t

4 | (0,4) | t

5 | (0,5) | f

(5 rows)

Although the heap tuple referenced by the fourth pointer is still unpruned and has the

normal status, it is already beyond the database horizon. That’s why this pointer is also

marked as dead in the index.

5.2 HOT Updates

It would be very inefficient to keep references to all heap tuples in an index.

To begin with, each row modification triggers updates of all the indexes created on the

table: once a new heap tuple appears, each index must include a reference to this tuple,

even if the modified fields are not indexed.

Furthermore, indexes accumulate references to historic heap tuples, so they have to be

pruned together with these tuples. p. ���

95

Chapter 5 Page Pruning and HOT Updates

Things get worse as you create more indexes on a table.

But if the updated column is not a part of any index, there is no point in creating another

index entry that contains the same key value. To avoid such redundancies, Postgre���

provides an optimization called Heap-Only Tuple updates.1

If such an update is performed, an index page contains only one entry for each row. This

entry points to the very first row version; all the subsequent versions located in the same

page are bound into a chain by ctid pointers in the tuple headers.

Row versions that are not referenced from any index are tagged with the Heap-Only Tuple

bit. If a version is included into the ��� chain, it is tagged with the Heap Hot Updated bit.

If an index scan accesses a heap page and finds a row version marked as Heap Hot Up-

dated, it means that the scan should continue, so it goes further along the chain of ���

updates. Obviously, all the fetched row versions are checked for visibility before the result

is returned to the client.

To take a look at how ��� updates are performed, let’s delete one of the indexes and trun-

cate the table.

=> DROP INDEX hot_s;

=> TRUNCATE TABLE hot;

For convenience, we will redefine the heap_page function so that its output includes three

more fields: ctid and the two bits related to ��� updates:

=> DROP FUNCTION heap_page(text,integer);

=> CREATE FUNCTION heap_page(relname text, pageno integer)

RETURNS TABLE(

ctid tid, state text,

xmin text, xmax text,

hhu text, hot text, t_ctid tid

) AS $$

SELECT (pageno,lp)::text::tid AS ctid,

CASE lp_flags

WHEN 0 THEN 'unused'

WHEN 1 THEN 'normal'

WHEN 2 THEN 'redirect to '||lp_off

WHEN 3 THEN 'dead'

END AS state,

t_xmin || CASE

WHEN (t_infomask & 256) > 0 THEN ' c'

WHEN (t_infomask & 512) > 0 THEN ' a'

ELSE ''

END AS xmin,

1 backend/access/heap/README.HOT

96

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/README.HOT;hb=REL_14_STABLE

5.2 HOT Updates

t_xmax || CASE

WHEN (t_infomask & 1024) > 0 THEN ' c'

WHEN (t_infomask & 2048) > 0 THEN ' a'

ELSE ''

END AS xmax,

CASE WHEN (t_infomask2 & 16384) > 0 THEN 't' END AS hhu,

CASE WHEN (t_infomask2 & 32768) > 0 THEN 't' END AS hot,

t_ctid

FROM heap_page_items(get_raw_page(relname,pageno))

ORDER BY lp;

$$ LANGUAGE sql;

Let’s repeat the insert and update operations:

=> INSERT INTO hot VALUES (1, 'A');

=> UPDATE hot SET s = 'B';

The page now contains a chain of ��� updates:

• The Heap Hot Updated bit shows that the executor should follow the ���� chain.

• The Heap Only Tuple bit indicates that this tuple is not referenced from any indexes.

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | normal | 812 c | 813 | t | | (0,2)

(0,2) | normal | 813 | 0 a | | t | (0,2)

(2 rows)

As we make further updates, the chain will grow—but only within the page limits:

=> UPDATE hot SET s = 'C';

=> UPDATE hot SET s = 'D';

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | normal | 812 c | 813 c | t | | (0,2)

(0,2) | normal | 813 c | 814 c | t | t | (0,3)

(0,3) | normal | 814 c | 815 | t | t | (0,4)

(0,4) | normal | 815 | 0 a | | t | (0,4)

(4 rows)

The index still contains only one reference, which points to the head of this chain:

=> SELECT * FROM index_page('hot_id',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,1) | f

(1 row)

97

Chapter 5 Page Pruning and HOT Updates

A��� update is possible if themodified fields are not a part of any index. Otherwise, some

of the indexes would contain a reference to a heap tuple that appears in the middle of the

chain, which contradicts the idea of this optimization. Since a ��� chain can grow only

within a single page, traversing the whole chain never requires access to other pages and

thus does not hamper performance.

5.3 Page Pruning for HOT Updates

A special case of page pruning—which is nevertheless important—is pruning of ��� up-

date chains.

In the example above, the fillfactor threshold is already exceeded, so the next update

should trigger page pruning. But this time the page contains a chain of ��� updates. The

head of this chain must always remain in its place since it is referenced from the index,

but other pointers can be released because they are sure to have no external references.

To avoid moving the head, Postgre��� uses dual addressing: the pointer referenced from

the index (which is (�,�) in this case) receives the redirect status since it points to the tuple

that currently starts the chain:

=> UPDATE hot SET s = 'E';

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | redirect to 4 | | | | |

(0,2) | normal | 816 | 0 a | | t | (0,2)

(0,3) | unused | | | | |

(0,4) | normal | 815 c | 816 | t | t | (0,2)

(4 rows)

The tuples (�,�), (�,�), and (�,�) have been pruned; the head pointer � remains for redirec-

tion purposes, while pointers � and � have been deallocated (received the unused status)

since they are guaranteed to have no references from indexes. The new tuple is written

into the freed space as tuple (�,�).

Let’s perform some more updates:

=> UPDATE hot SET s = 'F';

=> UPDATE hot SET s = 'G';

98

5.4 HOT Chain Splits

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | redirect to 4 | | | | |

(0,2) | normal | 816 c | 817 c | t | t | (0,3)

(0,3) | normal | 817 c | 818 | t | t | (0,5)

(0,4) | normal | 815 c | 816 c | t | t | (0,2)

(0,5) | normal | 818 | 0 a | | t | (0,5)

(5 rows)

The next update is going to trigger page pruning:

=> UPDATE hot SET s = 'H';

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | redirect to 5 | | | | |

(0,2) | normal | 819 | 0 a | | t | (0,2)

(0,3) | unused | | | | |

(0,4) | unused | | | | |

(0,5) | normal | 818 c | 819 | t | t | (0,2)

(5 rows)

Again, some of the tuples are pruned, and the pointer to the head of the chain is shifted

accordingly.

If unindexed columns aremodified frequently, it makes sense to reduce the fillfactor value,

thus reserving some space in the page for updates. Obviously, you have to keep in mind

that the lower the fillfactor value is, the more free space is left in the page, so the physical

size of the table grows.

5.4 HOT Chain Splits

If the page has no more space to accommodate a new tuple, the chain will be cut off. Post-

gre��� will have to add a separate index entry to refer to the tuple located in another

page.

To observe this situation, let’s start a concurrent transaction with a snapshot that blocks

page pruning:

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> SELECT 1;

99

Chapter 5 Page Pruning and HOT Updates

Now we are going to perform some updates in the first session:

=> UPDATE hot SET s = 'I';

=> UPDATE hot SET s = 'J';

=> UPDATE hot SET s = 'K';

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | redirect to 2 | | | | |

(0,2) | normal | 819 c | 820 c | t | t | (0,3)

(0,3) | normal | 820 c | 821 c | t | t | (0,4)

(0,4) | normal | 821 c | 822 | t | t | (0,5)

(0,5) | normal | 822 | 0 a | | t | (0,5)

(5 rows)

When the next update happens, this page will not be able to accommodate another tuple,

and page pruning will not manage to free any space:

=> UPDATE hot SET s = 'L';

=> COMMIT; -- the snapshot is not required anymore

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | redirect to 2 | | | | |

(0,2) | normal | 819 c | 820 c | t | t | (0,3)

(0,3) | normal | 820 c | 821 c | t | t | (0,4)

(0,4) | normal | 821 c | 822 c | t | t | (0,5)

(0,5) | normal | 822 c | 823 | | t | (1,1)

(5 rows)

Tuple (�,�) contains the (�,�) reference that goes to page �:

=> SELECT * FROM heap_page('hot',1);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−+−−−−−−+−−−−−−+−−−−−+−−−−−+−−−−−−−−

(1,1) | normal | 823 | 0 a | | | (1,1)

(1 row)

However, this reference is not used: the Heap Hot Updated bit is not set for tuple (�,�). As

for tuple (�,�), it can be accessed from the index that now has two entries. Each of them

points to the head of their own ��� chain:

100

5.5 Page Pruning for Indexes

=> SELECT * FROM index_page('hot_id',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,1) | f

2 | (1,1) | f

(2 rows)

5.5 Page Pruning for Indexes

I have declared that page pruning is confined to a single heap page and does not affect

indexes. However, indexes have their own pruning,1 which also cleans up a single page—

an index one in this case.

Index pruning happens when an insertion into a �-tree is about to split the page into two,

as the original page does not have enough space anymore. The problem is that even if

some index entries are deleted later, two separate index pages will not be merged into

one. It leads to index bloating, and once bloated, the index cannot shrink even if a large

part of the data is deleted. But if pruning can remove some of the tuples, a page split may

be deferred.

There are two types of tuples that can be pruned from an index.

First of all, Postgre��� prunes those tuples that have been tagged as dead.2 As I have

already said, Postgre��� sets such a tag during an index scan if it detects an index entry

pointing to a tuple that is not visible in any snapshot anymore or simply does not exist.

If no tuples are known to be dead v. ��, Postgre��� checks those index entries that reference

different versions of the same table row.3 Because of ����, update operations may gener-

ate a large number of row versions, and many of them are soon likely to disappear behind

the database horizon. H�� updates cushion this effect, but they are not always applicable:

if the column to update is a part of an index, the corresponding references are propagated

to all the indexes. Before splitting the page, it makes sense to search for the rows that are

not tagged as dead yet but can already be pruned. To achieve this, Postgre��� has to check

visibility of heap tuples. Such checks require table access, so they are performed only for

“promising” index tuples, which have been created as copies of the existing ones for ����

purposes. It is cheaper to perform such a check than to allow an extra page split.

1 postgresql.org/docs/14/btree-implementation.html#BTREE-DELETION
2 backend/access/nbtree/README, Simple deletion section
3 backend/access/nbtree/README, Bottom-Up deletion section

include/access/tableam.h

101

https://postgresql.org/docs/14/btree-implementation.html#BTREE-DELETION
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/nbtree/README;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/nbtree/README;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/tableam.h;hb=REL_14_STABLE

6
Vacuum and Autovacuum

6.1 Vacuum

Page pruning happens very fast, but it frees only part of the space that can be potentially

reclaimed. Operating within a single heap page, it does not touch upon indexes (or vice

versa, it cleans up an index page without affecting the table).

Routine vacuuming,1 which is the main vacuuming procedure, is performed by the ������

command.2 It processes the whole table and eliminates both outdated heap tuples and all

the corresponding index entries.

Vacuuming is performed in parallel with other processes in the database system. While

being vacuumed, tables and indexes can be used in the usual manner, both for read and

write operations (but concurrent execution of such commands as ������ �����, ����� �����,

and some others is not allowedp. ���).

To avoid scanning extra pages, Postgre��� uses a visibility mapp. �� . Pages tracked in this

map are skipped since they are sure to contain only the current tuples, so a page will only

be vacuumed if it does not appear in this map. If all the tuples remaining in a page after

vacuuming are beyond the database horizon, the visibility map is refreshed to include this

page.

The free space map also gets updated to reflect the space that has been cleared.

Let’s create a table with an index on it:

=> CREATE TABLE vac(

id integer,

s char(100)

)

WITH (autovacuum_enabled = off);

=> CREATE INDEX vac_s ON vac(s);

1 postgresql.org/docs/14/routine-vacuuming.html
2 postgresql.org/docs/14/sql-vacuum.html

backend/commands/vacuum.c

102

https://postgresql.org/docs/14/routine-vacuuming.html
https://postgresql.org/docs/14/sql-vacuum.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/commands/vacuum.c;hb=REL_14_STABLE

6.1 Vacuum

The autovacuum_enabled storage parameter turns off autovacuum; we are doing it here

solely for the purpose of experimentation to precisely control vacuuming start time.

Let’s insert a row and make a couple of updates:

=> INSERT INTO vac(id,s) VALUES (1,'A');

=> UPDATE vac SET s = 'B';

=> UPDATE vac SET s = 'C';

Now the table contains three tuples:

=> SELECT * FROM heap_page('vac',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | normal | 826 c | 827 c | | | (0,2)

(0,2) | normal | 827 c | 828 | | | (0,3)

(0,3) | normal | 828 | 0 a | | | (0,3)

(3 rows)

Each tuple is referenced from the index:

=> SELECT * FROM index_page('vac_s',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,1) | f

2 | (0,2) | f

3 | (0,3) | f

(3 rows)

Vacuuming has removed all the dead tuples, leaving only the current one:

=> VACUUM vac;

=> SELECT * FROM heap_page('vac',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | unused | | | | |

(0,2) | unused | | | | |

(0,3) | normal | 828 c | 0 a | | | (0,3)

(3 rows)

In the case of page pruning, the first two pointers would be considered dead, but here they

have the unused status since no index entries are referring to them now:

=> SELECT * FROM index_page('vac_s',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,3) | f

(1 row)

103

Chapter 6 Vacuum and Autovacuum

Pointers with the unused status are treated as free and can be reused by new row versions.

Now the heap page appears in the visibility map; we can check it using the pg_visibility

extension:

=> CREATE EXTENSION pg_visibility;

=> SELECT all_visible

FROM pg_visibility_map('vac',0);

all_visible

−−−−−−−−−−−−−

t

(1 row)

The page header has also received an attribute showing that all its tuples are visible in all

snapshots:

=> SELECT flags & 4 > 0 AS all_visible

FROM page_header(get_raw_page('vac',0));

all_visible

−−−−−−−−−−−−−

t

(1 row)

6.2 Database Horizon Revisited

Vacuuming detects dead tuples based on the database horizon. This concept is so funda-

mental that it makes sense to get back to it once again.

Let’s restart our experiment from the very beginning:

=> TRUNCATE vac;

=> INSERT INTO vac(id,s) VALUES (1,'A');

=> UPDATE vac SET s = 'B';

But this time, before updating the row, we are going to open another transaction that

will hold the database horizon (it can be almost any transactionp. �� , except for a virtual one

executed at the Read Committed isolation level). For example, this transaction can modify

some rows in another table.

=> BEGIN;

=> UPDATE accounts SET amount = 0;

=> UPDATE vac SET s = 'C';

104

6.2 Database Horizon Revisited

Nowour table contains three tuples, and the index contains three references. Let’s vacuum

the table and see what changes:

=> VACUUM vac;

=> SELECT * FROM heap_page('vac',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | unused | | | | |

(0,2) | normal | 833 c | 835 c | | | (0,3)

(0,3) | normal | 835 c | 0 a | | | (0,3)

(3 rows)

=> SELECT * FROM index_page('vac_s',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,2) | f

2 | (0,3) | f

(2 rows)

While the previous run left only one tuple in the page, now we have two of them: ������

has decided that version (�,�) cannot be removed yet. The reason is the database horizon,

which is defined by an unfinished transaction in this case:

=> SELECT backend_xmin FROM pg_stat_activity

WHERE pid = pg_backend_pid();

backend_xmin

−−−−−−−−−−−−−−

834

(1 row)

We can use the ������� clause when calling ������ to observe what is going on:

=> VACUUM VERBOSE vac;

INFO: vacuuming "public.vac"

INFO: table "vac": found 0 removable, 2 nonremovable row versions

in 1 out of 1 pages

DETAIL: 1 dead row versions cannot be removed yet, oldest xmin: 834

Skipped 0 pages due to buffer pins, 0 frozen pages.

CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s.

VACUUM

The output shows the following information:

• ������ has detected no tuples that can be removed (0 removable).

• Two tuples must not be removed (2 nonremovable).

• One of the nonremovable tuples is dead (1 dead), the other is in use.

105

Chapter 6 Vacuum and Autovacuum

• The current horizon respected by ������ (oldest xmin) is the horizon of the active

transaction.

Once the active transaction completes, the database horizon moves forward, and vacu-

uming can continue:

=> COMMIT;

=> VACUUM VERBOSE vac;

INFO: vacuuming "public.vac"

INFO: scanned index "vac_s" to remove 1 row versions

DETAIL: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s

INFO: table "vac": removed 1 dead item identifiers in 1 pages

DETAIL: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s

INFO: index "vac_s" now contains 1 row versions in 2 pages

DETAIL: 1 index row versions were removed.

0 index pages were newly deleted.

0 index pages are currently deleted, of which 0 are currently

reusable.

CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s.

INFO: table "vac": found 1 removable, 1 nonremovable row versions

in 1 out of 1 pages

DETAIL: 0 dead row versions cannot be removed yet, oldest xmin: 836

Skipped 0 pages due to buffer pins, 0 frozen pages.

CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s.

VACUUM

������ has detected and removed a dead tuple beyond the new database horizon.

Now the page does not contain any outdated row versions; the only version remaining is

the current one:

=> SELECT * FROM heap_page('vac',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | unused | | | | |

(0,2) | unused | | | | |

(0,3) | normal | 835 c | 0 a | | | (0,3)

(3 rows)

The index also contains only one entry:

=> SELECT * FROM index_page('vac_s',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,3) | f

(1 row)

106

6.3 Vacuum Phases

6.3 Vacuum Phases

Themechanismof vacuuming seems quite simple, but this impression ismisleading. After

all, both tables and indexes have to be processed concurrently, without blocking other

processes. To enable such operation, vacuuming of each table is carried out in several

phases.1

It all starts with scanning a table in search of dead tuples; if found, they are first removed

from indexes and then from the table itself. If too many dead tuples have to be vacuumed

in one go, this process is repeated. Eventually, heap truncation may be performed.

Heap Scan

In the first phase, a heap scan is performed.2 The scanning process takes the visibilitymap

into account: all pages tracked in this map are skipped because they are sure to contain

no outdated tuples. If a tuple is beyond the horizon and is not required anymore, its �� is

added to a special tid array. Such tuples cannot be removed yet because they may still be

referenced from indexes.

The tid array resides in the local memory of the ������ process; the size of the allocated

memory chunk is defined by the 64MBmaintenance_work_mem parameter. The whole chunk is

allocated at once rather than on demand. However, the allocated memory never exceeds

the volume required in the worst-case scenario, so if the table is small, vacuuming may

use less memory than specified in this parameter.

Index Vacuuming

The first phase can have two outcomes: either the table is scanned in full, or the memory

allocated for the tid array is filled up before this operation completes. In any case, index

vacuuming begins.3 In this phase, each of the indexes created on the table is fully scanned

to find all the entries that refer to the tuples registered in the tid array. These entries are

removed from index pages.

An index can help you quickly get to a heap tuple by its index key, but there is no way to quickly find

an index entry by the corresponding tuple ��. This functionality is currently being implemented for

�-trees,4 but this work is not completed yet.

1 backend/access/heap/vacuumlazy.c, heap_vacuum_rel function
2 backend/access/heap/vacuumlazy.c, lazy_scan_heap function
3 backend/access/heap/vacuumlazy.c, lazy_vacuum_all_indexes function
4 commitfest.postgresql.org/21/1802

107

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/vacuumlazy.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/vacuumlazy.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/vacuumlazy.c;hb=REL_14_STABLE
https://commitfest.postgresql.org/21/1802

Chapter 6 Vacuum and Autovacuum

If there are several indexes bigger than the512kB min_parallel_index_scan_size value, they can be

vacuumedv. �� by background workers running in parallel. Unless the level of parallelism is

explicitly defined by the parallel N clause, ������ launches one worker per suitable index

(within the general limits imposed on the number of background workers).1 One index

cannot be processed by several workers.

During the index vacuuming phase, Postgre��� updates the free spacemap and calculates

statistics on vacuuming. However, this phase is skipped if rows are only inserted (and are

neither deleted nor updated) because the table contains no dead tuples in this case. Then

an index scan will be forced only once at the very end, as part of a separate phase of index

cleanup.2

The index vacuuming phase leaves no references to outdated heap tuples in indexes, but

the tuples themselves are still present in the table. It is perfectly normal: index scans

cannot find any dead tuples, while sequential scans of the table rely on visibility rules to

filter them out.

Heap Vacuuming

Then the heap vacuuming phase begins.3 The table is scanned again to remove the tuples

registered in the tid array and free the corresponding pointers. Now that all the related

index references have been removed, it can be done safely.

The space recovered by ������ is reflected in the free spacemap,while the pages that now

contain only the current tuples visible in all snapshots are tagged in the visibility map.

If the table was not read in full during the heap scan phase, the tid array is cleared, and

the heap scan is resumed from where it left off last time.

Heap Truncation

Vacuumed heap pages contain some free space; occasionally, you may be lucky to clear

the whole page. If you get several empty pages at the end of the file, vacuuming can “bite

off” this tail and return the reclaimed space to the operating system. It happens during

heap truncation,4 which is the final vacuum phase.

1 postgresql.org/docs/14/bgworker.html
2 backend/access/heap/vacuumlazy.c, lazy_cleanup_all_indexes function

backend/access/nbtree/nbtree.c, btvacuumcleanup function
3 backend/access/heap/vacuumlazy.c, lazy_vacuum_heap function
4 backend/access/heap/vacuumlazy.c, lazy_truncate_heap function

108

https://postgresql.org/docs/14/bgworker.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/vacuumlazy.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/nbtree/nbtree.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/vacuumlazy.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/vacuumlazy.c;hb=REL_14_STABLE

6.4 Analysis

Heap truncation requires a short exclusive p. ���lock on the table. To avoid holding other pro-

cesses for too long, attempts to acquire a lock do not exceed five seconds.

Since the table has to be locked, truncation is only performed if the empty tail takes at least
1

16
of the table or has reached the length of �,��� pages. These thresholds are hardcoded

and cannot be configured.

If, despite all these precautions, table locks still cause any issues v. ��, you can disable trunca-

tion altogether using the vacuum_truncate and toast.vacuum_truncate storage parameters.

6.4 Analysis

When talking about vacuuming,we have tomention yet another task that is closely related

to it, even though there is no formal connection between them. It is analysis,1 p. ���or gath-

ering statistical information for the query planner. The collected statistics include the

number of rows (pg_class.reltuples) and pages (pg_class.relpages) in relations, data distri-

bution within columns, and some other information.

You can run the analysis manually using the ������� command,2 or combine it with vac-

uuming by calling ������ �������. However, these two tasks are still performed sequen-

tially, so there is no difference in terms of performance.

Historically, ������ ������� appeared first, in version �.�, while a separate ������� command was

not implemented until version �.�. In earlier versions, statistics were collected by a ��� script.

Automatic vacuum and analysis are set up in a similar way, so it makes sense to discuss

them together.

6.5 Automatic Vacuum and Analysis

Unless the database horizon is held up for a long time, routine vacuuming should cope

with its work. But how often do we need to call the ������ command?

If a frequently updated table is vacuumed too seldom, it will grow bigger than desired.

Besides, it may accumulate too many changes, and then the next ������ run will have to

make several passes over the indexes.

1 postgresql.org/docs/14/routine-vacuuming.html#VACUUM-FOR-STATISTICS
2 backend/commands/analyze.c

109

https://postgresql.org/docs/14/routine-vacuuming.html#VACUUM-FOR-STATISTICS
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/commands/analyze.c;hb=REL_14_STABLE

Chapter 6 Vacuum and Autovacuum

If the table is vacuumed too often, the server will be busy with maintenance instead of

useful work.

Furthermore, typical workloadsmay change over time, so having a fixed vacuuming sched-

ule will not help anyway: the more often the table is updated, the more often it has to be

vacuumed.

This problem is solved by autovacuum,1 which launches vacuum and analysis processes

based on the intensity of table updates.

About the Autovacuum Mechanism

When autovacuum is enabled (on autovacuum configuration parameter is on), the autovac-

uum launcher process is always running in the system. This process defines the autovac-

uum schedule and maintains the list of “active” databases based on usage statistics. Such

statistics are collected if theon track_counts parameter is enabled. Do not switch off these

parameters, otherwise autovacuum will not work.

Once in1min autovacuum_naptime, the autovacuum launcher starts an autovacuum worker2 for

each active database in the list (these workers are spawned by postmaster, as usual). Con-

sequently, if there are N active databases in the cluster, N workers are spawned within

the autovacuum_naptime interval. But the total number of autovacuum workers running

in parallel cannot exceed the threshold defined by the3 autovacuum_max_workers parame-

ter.

Autovacuum workers are very similar to regular background workers, but they appeared much ear-

lier than this general mechanism of task management. It was decided to leave the autovacuum

implementation unchanged, so autovacuum workers do not use max_worker_processes slots.

Once started, the background worker connects to the specified database and builds two

lists:

• the list of all tables, materialized views, and ����� tables to be vacuumed

• the list of all tables and materialized views to be analyzed (����� tables are not ana-

lyzed because they are always accessed via an index)

Then the selected objects are vacuumed or analyzed one by one (or undergo both opera-

tions), and once the job is complete, the worker is terminated.

Automatic vacuuming works similar to the manual one initiated by the ������ command,

but there are some nuances:

1 postgresql.org/docs/14/routine-vacuuming.html#AUTOVACUUM
2 backend/postmaster/autovacuum.c

110

https://postgresql.org/docs/14/routine-vacuuming.html#AUTOVACUUM
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/postmaster/autovacuum.c;hb=REL_14_STABLE

6.5 Automatic Vacuum and Analysis

• When manual vacuuming is performed, tuple ��s are accummulated in a memory

chunk of themaintenance_work_mem size. Using the same limit for autovacuum is un-

desirable, as it can lead to excessivememory consumption: theremay be several auto-

vacuumworkers running in parallel, and each of themwill getmaintenance_work_mem

of memory at once. Instead, Postgre��� provides a separate memory limit for auto-

vacuum processes, which is defined by the autovacuum_work_mem parameter.

By default, the −1autovacuum_work_mem parameter falls back on the regular limit of

maintenance_work_mem, so if the autovacuum_max_workers value is high, you may

have to adjust the autovacuum_work_mem value accordingly.

• Concurrent processing of several indexes created on one table can be performed only

by manual vacuuming; using autovacuum for this purpose would result in a large

number of parallel processes, so it is not allowed.

If a worker fails to complete all the scheduled tasks within the autovacuum_naptime inter-

val, the autovacuum launcher spawns another worker to be run in parallel in that database.

The second worker will build its own lists of objects to be vacuumed and analyzed and will

start processing them. There is no parallelism at the table level; only different tables can

be processed concurrently.

Which Tables Need to be Vacuumed?

You can disable autovacuum at the table level—although it is hard to imagine why it could

be necessary. There are two storage parameters provided for this purpose, one for regular

tables and the other for ����� tables:

• autovacuum_enabled

• toast.autovacuum_enabled

In usual circumstances, autovacuum is triggered either by p. ���accumulation of dead tuples or

by insertion of new rows.

Dead tuple accumulation. Dead tuples are constantly being counted by the statistics col-

lector; their current number is shown in the system catalog table called pg_stat_all_tables.

It is assumed that dead tuples have to be vacuumed if they exceed the threshold defined

by the following two parameters:

• 50autovacuum_vacuum_threshold, which specifies the number of dead tuples (an abso-

lute value)

• 0.2autovacuum_vacuum_scale_factor, which sets the fraction of dead tuples in a table

111

Chapter 6 Vacuum and Autovacuum

Vacuuming is required if the following condition is satisfied:

pg_stat_all_tables.n_dead_tup >

autovacuum_vacuum_threshold +

autovacuum_vacuum_scale_factor × pg_class.reltuples

The main parameter here is of course autovacuum_vacuum_scale_factor: its value is impor-

tant for large tables (and it is large tables that are likely to cause the majority of issues).

The default value of ��% seems too big and may have to be significantly reduced.

For different tables, optimal parameter values may vary: they largely depend on the table

size and workload type. It makes sense to set more or less adequate initial values and then

override them for particular tables using storage parameters:

• autovacuum_vacuum_threshold and toast.autovacuum_vacuum_threshold

• autovacuum_vacuum_scale_factor and toast.autovacuum_vacuum_scale_factor

Row insertions.v. �� If rows are only inserted and are neither deleted nor updated, the table

contains no dead tuples. But such tables should also be vacuumed to freezep. ��� heap tuples

in advance and update the visibility map (thus enabling index-only scansp. ���).

A table will be vacuumed if the number of rows inserted since the previous vacuuming

exceeds the threshold defined by another similar pair of parameters:

•1000 autovacuum_vacuum_insert_threshold

•0.2 autovacuum_vacuum_insert_scale_factor

The formula is as follows:

pg_stat_all_tables.n_ins_since_vacuum >

autovacuum_vacuum_insert_threshold +

autovacuum_vacuum_insert_scale_factor × pg_class.reltuples

Like in the previous example, you can override these values at the table level using storage

parameters:

• autovacuum_vacuum_insert_threshold and its ����� counterpart

• autovacuum_vacuum_insert_scale_factor and its ����� counterpart

112

6.5 Automatic Vacuum and Analysis

Which Tables Need to Be Analyzed?

Automatic analysis needs to process only modified rows, so the calculations are a bit sim-

pler than those for autovacuum.

It is assumed that a table has to be analyzed if the number of rows modified since the

previous analysis exceeds the threshold defined by the following two configuration pa-

rameters:

• 50autovacuum_analyze_threshold

• 0.1autovacuum_analyze_scale_factor

Autoanalysis is triggered if the following condition is met:

pg_stat_all_tables.n_mod_since_analyze >

autovacuum_analyze_threshold +

autovacuum_analyze_scale_factor × pg_class.reltuples

To override autoanalysis settings for particular tables, you can use the same-name storage

parameters:

• autovacuum_analyze_threshold

• autovacuum_analyze_scale_factor

Since ����� tables are not analyzed, they have no corresponding parameters.

Autovacuum in Action

To formalize everything said in this section, let’s create two views that show which tables

currently need to be vacuumed and analyzed.1 The function used in these views returns

the current value of the passed parameter, taking into account that this value can be re-

defined at the table level:

=> CREATE FUNCTION p(param text, c pg_class) RETURNS float

AS $$

SELECT coalesce(

-- use storage parameter if set

(SELECT option_value

FROM pg_options_to_table(c.reloptions)

WHERE option_name = CASE

-- for TOAST tables the parameter name is different

WHEN c.relkind = 't' THEN 'toast.' ELSE ''

END || param

),

1 backend/postmaster/autovacuum.c, relation_needs_vacanalyze function

113

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/postmaster/autovacuum.c;hb=REL_14_STABLE

Chapter 6 Vacuum and Autovacuum

-- else take the configuration parameter value

current_setting(param)

)::float;

$$ LANGUAGE sql;

This is how a vacuum-related view can look like:

=> CREATE VIEW need_vacuum AS

WITH c AS (

SELECT c.oid,

greatest(c.reltuples, 0) reltuples,

p('autovacuum_vacuum_threshold', c) threshold,

p('autovacuum_vacuum_scale_factor', c) scale_factor,

p('autovacuum_vacuum_insert_threshold', c) ins_threshold,

p('autovacuum_vacuum_insert_scale_factor', c) ins_scale_factor

FROM pg_class c

WHERE c.relkind IN ('r','m','t')

)

SELECT st.schemaname || '.' || st.relname AS tablename,

st.n_dead_tup AS dead_tup,

c.threshold + c.scale_factor * c.reltuples AS max_dead_tup,

st.n_ins_since_vacuum AS ins_tup,

c.ins_threshold + c.ins_scale_factor * c.reltuples AS max_ins_tup,

st.last_autovacuum

FROM pg_stat_all_tables st

JOIN c ON c.oid = st.relid;

Themax_dead_tup column shows the number of dead tuples that will trigger autovacuum,

whereas themax_ins_tup column shows the threshold value related to insertion.

Here is a similar view for analysis:

=> CREATE VIEW need_analyze AS

WITH c AS (

SELECT c.oid,

greatest(c.reltuples, 0) reltuples,

p('autovacuum_analyze_threshold', c) threshold,

p('autovacuum_analyze_scale_factor', c) scale_factor

FROM pg_class c

WHERE c.relkind IN ('r','m')

)

SELECT st.schemaname || '.' || st.relname AS tablename,

st.n_mod_since_analyze AS mod_tup,

c.threshold + c.scale_factor * c.reltuples AS max_mod_tup,

st.last_autoanalyze

FROM pg_stat_all_tables st

JOIN c ON c.oid = st.relid;

Themax_mod_tup column shows the threshold value for autoanalysis.

To speed up the experiment, we will be starting autovacuum every second:

114

6.5 Automatic Vacuum and Analysis

=> ALTER SYSTEM SET autovacuum_naptime = '1s';

=> SELECT pg_reload_conf();

Let’s truncate the vac table and then insert �,��� rows. Note that autovacuum is turned

off at the table level.

=> TRUNCATE TABLE vac;

=> INSERT INTO vac(id,s)

SELECT id, 'A' FROM generate_series(1,1000) id;

Here is what our vacuum-related view will show:

=> SELECT * FROM need_vacuum WHERE tablename = 'public.vac' \gx

−[RECORD 1]−−−+−−−−−−−−−−−

tablename | public.vac

dead_tup | 0

max_dead_tup | 50

ins_tup | 1000

max_ins_tup | 1000

last_autovacuum |

The actual threshold value is max_dead_tup = 50, although the formula listed above sug-

gests that it should be 50 + 0.2 × 1000 = 250. The thing is that statistics on this table are

not available yet since the ������ command does not update it:

=> SELECT reltuples FROM pg_class WHERE relname = 'vac';

reltuples

−−−−−−−−−−−

−1

(1 row)

The pg_class.reltuples value v. ��is set to −1; this special constant is used instead of zero to

differentiate between a table without any statistics and a really empty table that has al-

ready been analyzed. For the purpose of calculation, the negative value is taken as zero,

which gives us 50 + 0.2 × 0 = 50.

The value of max_ins_tup = 1000 differs from the projected value of �,��� for the same

reason.

Let’s have a look at the analysis view:

=> SELECT * FROM need_analyze WHERE tablename = 'public.vac' \gx

−[RECORD 1]−−−−+−−−−−−−−−−−

tablename | public.vac

mod_tup | 1006

max_mod_tup | 50

last_autoanalyze |

115

Chapter 6 Vacuum and Autovacuum

We have updated (inserted in this case) �,��� rows; as a result, the threshold is exceeded:

since the table size is unknown, it is currently set to ��. It means that autoanalysis will be

triggered immediately when we turn it on:

=> ALTER TABLE vac SET (autovacuum_enabled = on);

Once the table analysis completes, the threshold is reset to an adequate value of ��� rows.

=> SELECT reltuples FROM pg_class WHERE relname = 'vac';

reltuples

−−−−−−−−−−−

1000

(1 row)

=> SELECT * FROM need_analyze WHERE tablename = 'public.vac' \gx

−[RECORD 1]−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

tablename | public.vac

mod_tup | 0

max_mod_tup | 150

last_autoanalyze | 2023−03−06 14:00:45.533464+03

Let’s get back to autovacuum:

=> SELECT * FROM need_vacuum WHERE tablename = 'public.vac' \gx

−[RECORD 1]−−−+−−−−−−−−−−−

tablename | public.vac

dead_tup | 0

max_dead_tup | 250

ins_tup | 1000

max_ins_tup | 1200

last_autovacuum |

The max_dead_tup and max_ins_tup values have also been updated based on the actual

table size discovered by the analysis.

Vacuuming will be started if at least one of the following conditions is met:

• More than ��� dead tuples are accumulated.

• More than ��� rows are inserted into the table.v. ��

Let’s turn off autovacuum again and update ��� rows so that the threshold value is ex-

ceeded by one:

=> ALTER TABLE vac SET (autovacuum_enabled = off);

=> UPDATE vac SET s = 'B' WHERE id <= 251;

=> SELECT * FROM need_vacuum WHERE tablename = 'public.vac' \gx

116

6.6 Managing the Load

−[RECORD 1]−−−+−−−−−−−−−−−

tablename | public.vac

dead_tup | 251

max_dead_tup | 250

ins_tup | 1000

max_ins_tup | 1200

last_autovacuum |

Now the trigger condition is satisfied. Let’s enable autovacuum; after a while, we will see

that the table has been processed, and its usage statistics has been reset:

=> ALTER TABLE vac SET (autovacuum_enabled = on);

=> SELECT * FROM need_vacuum WHERE tablename = 'public.vac' \gx

−[RECORD 1]−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

tablename | public.vac

dead_tup | 0

max_dead_tup | 250

ins_tup | 0

max_ins_tup | 1200

last_autovacuum | 2023−03−06 14:00:51.736815+03

6.6 Managing the Load

Operating at the page level, vacuuming does not block other processes; but nevertheless,

it increases the system load and can have a noticeable impact on performance.

Vacuum Throttling

To control vacuuming intensity, Postgre��� makes regular pauses in table processing. Af-

ter completing about 200vacuum_cost_limit units of work, the process falls asleep and remains

idle for the 0vacuum_cost_delay time interval.

The default zero value of vacuum_cost_delaymeans that routine vacuuming actually never

sleeps, so the exact vacuum_cost_limit value makes no difference. It is assumed that if ad-

ministrators have to resort to manual vacuuming, they are likely to expect its completion

as soon as possible.

If the sleep time is set, then the process will pause each time it has spent vacuum_cost_limit

units of work on page processing in the buffer cache p. ���. The cost of each page read opera-

tion is estimated at 1vacuum_cost_page_hit units if the page is found in the buffer cache,

117

Chapter 6 Vacuum and Autovacuum

or2 vacuum_cost_page_miss units otherwise.1 If a clean page is dirtied by vacuum, it adds

another20 vacuum_cost_page_dirty units.2

If you keep the default value of the vacuum_cost_limit parameter, ������ can process up

to ��� pages per cycle in the best-case scenario (if all the pages are cached, and no pages

are dirtied by ������) and only nine pages in the worst case (if all the pages are read from

disk and become dirty).

Autovacuum Throttling

Throttling for autovacuum3 is quite similar to ������ throttling. However, autovacuum

can be run with a different intensity as it has its own set of parameters:

•−1 autovacuum_vacuum_cost_limit

•2ms autovacuum_vacuum_cost_delay

If any of these parameters is set to −1, it falls back on the corresponding parameter for

regular ������. It means that the autovacuum_vacuum_cost_limit parameter relies on the

vacuum_cost_limit value by default.

Prior to version ��, the default value of autovacuum_vacuum_cost_delay was �� ms, and it led to

very poor performance on modern hardware.

Autovacuum work units are limited to autovacuum_vacuum_cost_limit per cycle, and since

they are shared between all the workers, the overall impact on the system remains roughly

the same, regardless of their number. So if you need to speed up autovacuum, both the

autovacuum_max_workers and autovacuum_vacuum_cost_limit values should be increased

proportionally.

If required, you can override these settings for particular tables by setting the following

storage parameters:

• autovacuum_vacuum_cost_delay and toast.autovacuum_vacuum_cost_delay

• autovacuum_vacuum_cost_limit and toast.autovacuum_vacuum_cost_limit

1 backend/storage/buffer/bufmgr.c, ReadBuffer_common function
2 backend/storage/buffer/bufmgr.c, MarkBufferDirty function
3 backend/postmaster/autovacuum.c, autovac_balance_cost function

118

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/bufmgr.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/bufmgr.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/postmaster/autovacuum.c;hb=REL_14_STABLE

6.7 Monitoring

6.7 Monitoring

If vacuuming ismonitored, you can detect situations when dead tuples cannot be removed

in one go, as references to them do not fit the maintenance_work_memmemory chunk. In

this case, all the indexes will have to be fully scanned several times. It can take a sub-

stantial amount of time for large tables, thus creating a significant load on the system.

Even though queries will not be blocked, extra �/� operations can seriously limit system

throughput.

Such issues can be corrected either by vacuuming the table more often (so that each run

cleans up fewer tuples) or by allocating more memory.

Monitoring Vacuum

When run with the ������� clause, the ������ command performs the cleanup and dis-

plays the status report, whereas the pg_stat_progress_vacuum v. �.�view shows the current state

of the started process.

There is also a similar view for analysis v. ��(pg_stat_progress_analyze), even though it is usu-

ally performed very fast and is unlikely to cause any issues.

Let’s insert more rows into the table and update them all so that ������ has to run for a

noticeable period of time:

=> TRUNCATE vac;

=> INSERT INTO vac(id,s)

SELECT id, 'A' FROM generate_series(1,500000) id;

=> UPDATE vac SET s = 'B';

For the purpose of this demonstration, we will limit the amount of memory allocated for

the tid array by � ��:

=> ALTER SYSTEM SET maintenance_work_mem = '1MB';

=> SELECT pg_reload_conf();

Launch the ������ command and query the pg_stat_progress_vacuum view several times

while it is running:

=> VACUUM VERBOSE vac;

119

Chapter 6 Vacuum and Autovacuum

=> SELECT * FROM pg_stat_progress_vacuum \gx

−[RECORD 1]−−−−−−+−−−−−−−−−−−−−−−−−−

pid | 14531

datid | 16391

datname | internals

relid | 16479

phase | vacuuming indexes

heap_blks_total | 17242

heap_blks_scanned | 3009

heap_blks_vacuumed | 0

index_vacuum_count | 0

max_dead_tuples | 174761

num_dead_tuples | 174522

=> SELECT * FROM pg_stat_progress_vacuum \gx

−[RECORD 1]−−−−−−+−−−−−−−−−−−−−−−−−−

pid | 14531

datid | 16391

datname | internals

relid | 16479

phase | vacuuming indexes

heap_blks_total | 17242

heap_blks_scanned | 17242

heap_blks_vacuumed | 6017

index_vacuum_count | 2

max_dead_tuples | 174761

num_dead_tuples | 150956

In particular, this view shows:

• phase—the name of the current vacuum phase (I have described the main ones, but

there are actually more of them1)

• heap_blks_total—the total number of pages in a table

• heap_blks_scanned—the number of scanned pages

• heap_blks_vacuumed—the number of vacuumed pages

• index_vacuum_count—the number of index scans

The overall vacuuming progress is defined by the ratio of heap_blks_vacuumed to

heap_blks_total, but you have to keep in mind that it changes in spurts because of in-

dex scans. In fact, it is more important to pay attention to the number of vacuum cycles:

if this value is greater than one, it means that the allocated memory was not enough to

complete vacuuming in one go.

1 postgresql.org/docs/14/progress-reporting.html#VACUUM-PHASES

120

https://postgresql.org/docs/14/progress-reporting.html#VACUUM-PHASES

6.7 Monitoring

You can see the whole picture in the output of the ������ ������� command, which has

already finished by this time:

INFO: vacuuming "public.vac"

INFO: scanned index "vac_s" to remove 174522 row versions

DETAIL: CPU: user: 0.02 s, system: 0.00 s, elapsed: 0.05 s

INFO: table "vac": removed 174522 dead item identifiers in

3009 pages

DETAIL: CPU: user: 0.00 s, system: 0.01 s, elapsed: 0.07 s

INFO: scanned index "vac_s" to remove 174522 row versions

DETAIL: CPU: user: 0.02 s, system: 0.00 s, elapsed: 0.05 s

INFO: table "vac": removed 174522 dead item identifiers in

3009 pages

DETAIL: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.01 s

INFO: scanned index "vac_s" to remove 150956 row versions

DETAIL: CPU: user: 0.02 s, system: 0.00 s, elapsed: 0.04 s

INFO: table "vac": removed 150956 dead item identifiers in

2603 pages

DETAIL: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s

INFO: index "vac_s" now contains 500000 row versions in

932 pages

DETAIL: 500000 index row versions were removed.

433 index pages were newly deleted.

433 index pages are currently deleted, of which 0 are

currently reusable.

CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s.

INFO: table "vac": found 500000 removable, 500000

nonremovable row versions in 17242 out of 17242 pages

DETAIL: 0 dead row versions cannot be removed yet, oldest

xmin: 851

Skipped 0 pages due to buffer pins, 0 frozen pages.

CPU: user: 0.20 s, system: 0.03 s, elapsed: 0.53 s.

VACUUM

index
vacuum

table
vacuum

index
vacuum

table
vacuum

index
vacuum

table
vacuum

All in all, there have been three index scans; each scan has removed ���,��� pointers to

dead tuples at the most. This value is defined by the number of tid pointers (each of them

takes � bytes) that can fit into an array of themaintenance_work_mem size. The maximum

size possible is shown by pg_stat_progress_vacuum.max_dead_tuples, but the actually used

space is always a bit smaller. It guarantees that when the next page is read, all its pointers

to dead tuples, no matter how many of them are located in this page, will fit into the

remaining memory.

Monitoring Autovacuum

The main approach to monitoring autovacuum is to print its status information (which

is similar to the output of the ������ ������� command) into the server log for further

121

Chapter 6 Vacuum and Autovacuum

analysis. If the−1 log_autovacuum_min_durationparameter is set to zero, all autovacuum runs

are logged:

=> ALTER SYSTEM SET log_autovacuum_min_duration = 0;

=> SELECT pg_reload_conf();

=> UPDATE vac SET s = 'C';

UPDATE 500000

postgres$ tail -n 13 /home/postgres/logfile

2023−03−06 14:01:13.727 MSK [17351] LOG: automatic vacuum of table

"internals.public.vac": index scans: 3

pages: 0 removed, 17242 remain, 0 skipped due to pins, 0

skipped frozen

tuples: 500000 removed, 500000 remain, 0 are dead but not

yet removable, oldest xmin: 853

index scan needed: 8622 pages from table (50.01% of total)

had 500000 dead item identifiers removed

index "vac_s": pages: 1428 in total, 496 newly deleted, 929

currently deleted, 433 reusable

avg read rate: 12.404 MB/s, avg write rate: 14.810 MB/s

buffer usage: 46038 hits, 5670 misses, 6770 dirtied

WAL usage: 40390 records, 15062 full page images, 89188595

bytes

system usage: CPU: user: 0.31 s, system: 0.33 s, elapsed:

3.57 s

2023−03−06 14:01:14.117 MSK [17351] LOG: automatic analyze of table

"internals.public.vac"

avg read rate: 41.081 MB/s, avg write rate: 0.020 MB/s

buffer usage: 15355 hits, 2035 misses, 1 dirtied

system usage: CPU: user: 0.14 s, system: 0.00 s, elapsed:

0.38 s

To track the list of tables to be vacuumed and analyzed, you can use the need_vacuum

and need_analyze views, which we have already reviewed. If this list grows, it means that

autovacuum does not cope with the load and has to be sped up by either reducing the gap

(autovacuum_vacuum_cost_delay) or increasing the amount of work done between the gaps

(autovacuum_vacuum_cost_limit). It is not unlikely that the degree of parallelism will also

have to be increased (autovacuum_max_workers).

122

7
Freezing

7.1 Transaction ID Wraparound

In Postgre���, a transaction �� takes �� bits. Four billions seems to be quite a big number,

but it can be exhausted very fast if the system is being actively used. For example, for an

average load of �,��� transactions per second (excluding virtual ones), it will happen in

about six weeks of continuous operation.

Once all the numbers are used up, the counter has to be reset to start the next round

(this situation is called a “wraparound”). But a transaction with a smaller �� can only be

considered older than another transaction with a bigger �� if the assigned numbers are

always increasing. So the counter cannot simply start using the same numbers anew after

being reset.

Allocating �� bits for transaction ��s would have eliminated this problem altogether, so

why doesn’t Postgre��� take advantage of it? The thing is that each tuple header has to

store ��s for two transactions: xmin and xmax. p. ��The header is quite big already (at least

�� bytes if data alignment is taken into account), and adding more bits would have given

another � bytes.

Postgre��� does implement ��-bit transaction ��s1 that extend a regular �� by a ��-bit epoch, but

they are used only internally and never get into data pages.

To correctly handle wraparound, Postgre��� has to compare the age of transactions (de-

fined as the number of subsequent transactions that have appeared since the start of this

transaction) rather than transaction ��s. Thus, instead of the terms less than and greater

than we should use the concepts of older (precedes) and younger (follows).

In the code, this comparison is implemented by simply using the ��-bit arithmetic: first

the difference between ��-bit transaction ��s is found, and then this result is compared

to zero.2

1 include/access/transam.h, FullTransactionId type
2 backend/access/transam/transam.c, TransactionIdPrecedes function

123

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/transam.h;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/transam.c;hb=REL_14_STABLE

Chapter 7 Freezing

fu
tu
re

p
a
st

T1 T1

T2

T1T1

T2

T3

To better visualize this idea, you can imagine a sequence of transaction ��s as a clock face.

For each transaction,half of the circle in the clockwise directionwill be in the future,while

the other half will be in the past.

However, this visualization has an unpleasant catch. An old transaction (��) is in the re-

mote past as compared to more recent transactions. But sooner or later a new transaction

will see it in the half of the circle related to the future. If it were really so, it would have

a catastrophic impact: from now on, all newer transactions would not see the changes

made by transaction ��.

7.2 Tuple Freezing and Visibility Rules

To prevent such “time travel,” vacuuming performs one more task (in addition to page

cleanup):1 it searches for tuples that are beyond the database horizon (so they are visible

in all snapshots) and tags them in a special way, that is, freezesp. ��� them.

For frozen tuples, visibility rules do not have to take xmin into account since such tuples

are known to be visible in all snapshots, so this transaction �� can be safely reused.

You can imagine that the xmin transaction �� is replaced in frozen tuples by a hypothetical

“minus infinity” (pictured as a snowflake below); it is a sign that this tuple is created by a

transaction that is so far in the past that its actual �� does not matter anymore. Yet in re-

ality xmin remains unchanged, whereas the freezing attribute is defined by a combination

of two hint bits: committed and aborted.

1 postgresql.org/docs/14/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND

124

https://postgresql.org/docs/14/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND

7.2 Tuple Freezing and Visibility Rules

T1̂

T2

T3

T4

^

^

T3

T4T1

T1̂

^

^

T4T1

T2

Many sources (including the documentation) mention FrozenTransactionId = 2. It is the “minus

infinity” that I have already referred to—this value used to replace xmin in versions prior to �.�, but

now hint bits are employed instead. As a result, the original transaction �� remains in the tuple,

which is convenient for both debugging and support. Old systems can still contain the obsolete

FrozenTransactionId, even if they have been upgraded to higher versions.

The xmax transaction �� does not participate in freezing in any way. It is only present in

outdated tuples, and once such tuples stop being visible in all snapshots (which means

that the xmax �� is beyond the database horizon), they will be vacuumed away.

Let’s create a new table for our experiments. The fillfactor parameter should be set to the

lowest value so that each page can accommodate only two tuples—it will be easier to track

the progress this way. We will also disable autovacuum to make sure that the table is only

cleaned up on demand.

=> CREATE TABLE tfreeze(

id integer,

s char(300)

)

WITH (fillfactor = 10, autovacuum_enabled = off);

We are going to create yet another flavor of the function that displays heap pages using

pageinspect. Dealing with a range of pages, it will show the values of the freezing at-

tribute (f) and the xmin transaction age for each tuple (it will have to call the age system

function—the age itself is not stored in heap pages, of course):

=> CREATE FUNCTION heap_page(

relname text, pageno_from integer, pageno_to integer

)

RETURNS TABLE(

ctid tid,

state text,

xmin text,

xmin_age integer,

xmax text

) AS $$

125

Chapter 7 Freezing

SELECT (pageno,lp)::text::tid AS ctid,

CASE lp_flags

WHEN 0 THEN 'unused'

WHEN 1 THEN 'normal'

WHEN 2 THEN 'redirect to '||lp_off

WHEN 3 THEN 'dead'

END AS state,

t_xmin || CASE

WHEN (t_infomask & 256+512) = 256+512 THEN ' f'

WHEN (t_infomask & 256) > 0 THEN ' c'

WHEN (t_infomask & 512) > 0 THEN ' a'

ELSE ''

END AS xmin,

age(t_xmin) AS xmin_age,

t_xmax || CASE

WHEN (t_infomask & 1024) > 0 THEN ' c'

WHEN (t_infomask & 2048) > 0 THEN ' a'

ELSE ''

END AS xmax

FROM generate_series(pageno_from, pageno_to) p(pageno),

heap_page_items(get_raw_page(relname, pageno))

ORDER BY pageno, lp;

$$ LANGUAGE sql;

Now let’s insert some rows into the table and run the ������ command that will immedi-

ately create the visibility map.

=> CREATE EXTENSION IF NOT EXISTS pg_visibility;

=> INSERT INTO tfreeze(id, s)

SELECT id, 'FOO'||id FROM generate_series(1,100) id;

INSERT 0 100

We are going to observe the first two heap pages using the pg_visibility extension. When

vacuuming completes, both pages get tagged in the visibility map (all_visible) but not in

the freeze map (all_frozenv. �.�), as they still contain some unfrozen tuples:

=> VACUUM tfreeze;

=> SELECT *

FROM generate_series(0,1) g(blkno),

pg_visibility_map('tfreeze',g.blkno)

ORDER BY g.blkno;

blkno | all_visible | all_frozen

−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−

0 | t | f

1 | t | f

(2 rows)

The xmin_age of the transaction that has created the rows equals 1 because it is the latest

transaction performed in the system:

126

7.3 Managing Freezing

=> SELECT * FROM heap_page('tfreeze',0,1);

ctid | state | xmin | xmin_age | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−−−−+−−−−−−

(0,1) | normal | 856 c | 1 | 0 a

(0,2) | normal | 856 c | 1 | 0 a

(1,1) | normal | 856 c | 1 | 0 a

(1,2) | normal | 856 c | 1 | 0 a

(4 rows)

7.3 Managing Freezing

There are four main parameters that control freezing. All of them represent transaction

age and define when the following events happen:

• Freezing starts (vacuum_freeze_min_age).

• Aggressive freezing is performed (vacuum_freeze_table_age).

• Freezing is forced (autovacuum_freeze_max_age).

• Freezing receives priority v. ��(vacuum_failsafe_age).

Minimal Freezing Age

The 50 millionvacuum_freeze_min_age parameter defines the minimal freezing age of xmin transac-

tions. The lower its value, the higher the overhead: if a row is “hot” and is actively being

changed, then freezing all its newly created versions will be a wasted effort. Setting this

parameter to a relatively high value allows you to wait for a while.

To observe the freezing process, let’s reduce this parameter value to one:

=> ALTER SYSTEM SET vacuum_freeze_min_age = 1;

=> SELECT pg_reload_conf();

Now update one row in the zero page. The new row version will get into the same page

because the fillfactor value is quite small:

=> UPDATE tfreeze SET s = 'BAR' WHERE id = 1;

The age of all transactions has been increased by one, and the heap pages now look as

follows:

127

Chapter 7 Freezing

=> SELECT * FROM heap_page('tfreeze',0,1);

ctid | state | xmin | xmin_age | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−−−−+−−−−−−

(0,1) | normal | 856 c | 2 | 857

(0,2) | normal | 856 c | 2 | 0 a

(0,3) | normal | 857 | 1 | 0 a

(1,1) | normal | 856 c | 2 | 0 a

(1,2) | normal | 856 c | 2 | 0 a

(5 rows)

At this point, the tuples that are older than vacuum_freeze_min_age = 1 are subject to

freezing. But vacuum will not process any pages tagged in the visibility mapp. ��� :

=> SELECT * FROM generate_series(0,1) g(blkno),

pg_visibility_map('tfreeze',g.blkno)

ORDER BY g.blkno;

blkno | all_visible | all_frozen

−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−

0 | f | f

1 | t | f

(2 rows)

The previous ������ command has removed the visibility bit of the zero page, so the tuple

that has an appropriate xmin age in this page will be frozen. But the first page will be

skipped altogether:

=> VACUUM tfreeze;

=> SELECT * FROM heap_page('tfreeze',0,1);

ctid | state | xmin | xmin_age | xmax

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−−−−−+−−−−−−

(0,1) | redirect to 3 | | |

(0,2) | normal | 856 f | 2 | 0 a

(0,3) | normal | 857 c | 1 | 0 a

(1,1) | normal | 856 c | 2 | 0 a

(1,2) | normal | 856 c | 2 | 0 a

(5 rows)

Now the zero page appears in the visibility map again, and if nothing changes in it, vacu-

uming will not return to this page anymore:

=> SELECT * FROM generate_series(0,1) g(blkno),

pg_visibility_map('tfreeze',g.blkno)

ORDER BY g.blkno;

128

7.3 Managing Freezing

blkno | all_visible | all_frozen

−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−

0 | t | f

1 | t | f

(2 rows)

Age for Aggressive Freezing

As we have just seen, if a page contains only the current tuples that are visible in all snap-

shots, vacuuming will not freeze them. To overcome this constraint, Postgre��� provides

the 150

million

vacuum_freeze_table_age parameter. It defines the transaction age that allows vacu-

uming to ignore the visibility map, so any heap page can be frozen.

For each table, the system catalog keeps a transaction �� for which it is known that all the

older transactions are sure to be frozen. It is stored as relfrozenxid:

=> SELECT relfrozenxid, age(relfrozenxid)

FROM pg_class

WHERE relname = 'tfreeze';

relfrozenxid | age

−−−−−−−−−−−−−−+−−−−−

854 | 4

(1 row)

It is the age of this transaction that is compared to the vacuum_freeze_table_age value to

decide whether the time has come for aggressive freezing.

Thanks to the freeze map v. �.�, there is no need to perform a full table scan during vacuuming:

it is enough to check only those pages that do not appear in the map. Apart from this

important optimization, the freeze map also brings fault tolerance: if vacuuming is inter-

rupted, its next run will not have to get back to the pages that have already been processed

and are tagged in the map.

Postgre��� performs aggressive freezing of all pages in a table each timewhen the number

of transactions in the system reaches the vacuum_freeze_table_age−vacuum_freeze_min_age

limit (if the default values are used, it happens after each ��� million transactions). Thus,

if the vacuum_freeze_min_age value is too big, it can lead to excessive freezing and in-

creased overhead.

To freeze the whole table, let’s reduce the vacuum_freeze_table_age value to four; then the

condition for aggressive freezing will be satisfied:

=> ALTER SYSTEM SET vacuum_freeze_table_age = 4;

129

Chapter 7 Freezing

=> SELECT pg_reload_conf();

Run the ������ command:

=> VACUUM VERBOSE tfreeze;

INFO: aggressively vacuuming "public.tfreeze"

INFO: table "tfreeze": found 0 removable, 100 nonremovable row

versions in 50 out of 50 pages

DETAIL: 0 dead row versions cannot be removed yet, oldest xmin: 858

Skipped 0 pages due to buffer pins, 0 frozen pages.

CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s.

VACUUM

Now that the whole table has been analyzed, the relfrozenxid value can be advanced—heap

pages are guaranteed to have no older unfrozen xmin transactions:

=> SELECT relfrozenxid, age(relfrozenxid)

FROM pg_class

WHERE relname = 'tfreeze';

relfrozenxid | age

−−−−−−−−−−−−−−+−−−−−

857 | 1

(1 row)

The first page now contains only frozen tuples:

=> SELECT * FROM heap_page('tfreeze',0,1);

ctid | state | xmin | xmin_age | xmax

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−−−−−+−−−−−−

(0,1) | redirect to 3 | | |

(0,2) | normal | 856 f | 2 | 0 a

(0,3) | normal | 857 c | 1 | 0 a

(1,1) | normal | 856 f | 2 | 0 a

(1,2) | normal | 856 f | 2 | 0 a

(5 rows)

Besides, this page is tagged in the freeze map:

=> SELECT * FROM generate_series(0,1) g(blkno),

pg_visibility_map('tfreeze',g.blkno)

ORDER BY g.blkno;

blkno | all_visible | all_frozen

−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−

0 | t | f

1 | t | t

(2 rows)

130

7.3 Managing Freezing

Age for Forced Autovacuum

Sometimes it is not enough to configure the two parameters discussed above to timely

freeze tuples. Autovacuummight be switched off,while regular ������ is not being called

at all (it is a very bad idea, but technically it is possible). Besides, some inactive databases

(like template0) may not be vacuumed p. ���. Postgre��� can handle such situations by forcing

autovacuum in the aggressive mode.

Autovacuum is forced1 (even if it is switched off) when there is a risk that the age of

some unfrozen transaction ��s in the database will exceed the 200

million

autovacuum_freeze_max_age

value. The decision is taken based on the age of the oldest pg_class.relfrozenxid transac-

tion in all the tables, as all the older transactions are guaranteed to be frozen. The �� of

this transaction is stored in the system catalog:

=> SELECT datname, datfrozenxid, age(datfrozenxid) FROM pg_database;

datname | datfrozenxid | age

−−−−−−−−−−−+−−−−−−−−−−−−−−+−−−−−

postgres | 726 | 132

template1 | 726 | 132

template0 | 726 | 132

internals | 726 | 132

(4 rows)

xid

datfrozenxid

relfrozenxid

of table 1

relfrozenxid

of table 3

relfrozenxid

of table 2

all row versions
in the database are

guaranteed to be frozen

The autovacuum_freeze_max_age limit is set to � billion transactions (a bit less than half

of the circle), while the default value is �� times smaller. It is done for good reason: a big

1 backend/access/transam/varsup.c, SetTransactionIdLimit function

131

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/varsup.c;hb=REL_14_STABLE

Chapter 7 Freezing

value increases the risk of transaction �� wraparound, as Postgre��� may fail to timely

freeze all the required tuples. In this case, the server must stop immediately to prevent

possible issues and will have to be restarted by an administrator.

The autovacuum_freeze_max_age value also affects the size of ����.p. �� There is no need to

keep the status of frozen transactions, and all the transactions that precede the one with

the oldest datfrozenxid in the cluster are sure to be frozen. Those ���� files that are not

required anymore are removed by autovacuum.1

Changing the autovacuum_freeze_max_age parameter requires a server restart. However,

all the freezing settings discussed above can also be adjusted at the table level via the

corresponding storage parameters. Note that the names of all these parameters start with

“auto”:

• autovacuum_freeze_min_age and toast.autovacuum_freeze_min_age

• autovacuum_freeze_table_age and toast.autovacuum_freeze_table_age

• autovacuum_freeze_max_age and toast.autovacuum_freeze_max_age

Age for Failsafe Freezingv. ��

If autovacuum is already struggling to prevent transaction �� wraparound and it is clearly

a race against time, a safety switch is pulled: autovacuum will ignore the value of the

autovacuum_vacuum_cost_delay (vacuum_cost_delay) parameter and will stop vacuuming

indexes to freeze heap tuples as soon as possible.

A failsafe freezingmode2 is enabled if there is a risk that the age of an unfrozen transaction

in the database will exceed the1.6 billion vacuum_failsafe_age value. It is assumed that this value

must be higher than autovacuum_freeze_max_age.

7.4 Manual Freezing

It is sometimes more convenient to manage freezing manually rather than rely on auto-

vacuum.

1 backend/commands/vacuum.c, vac_truncate_clog function
2 backend/access/heap/vacuumlazy.c, lazy_check_wraparound_failsafe function

132

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/commands/vacuum.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/vacuumlazy.c;hb=REL_14_STABLE

7.4 Manual Freezing

Freezing by Vacuum

You can initiate freezing by calling the ������ ������ command. It will freeze all the heap

tuples regardless of their transaction age, as if vacuum_freeze_min_age = 0.

If the purpose v. ��of such a call is to freeze heap tuples as soon as possible, it makes sense

to disable index vacuuming altogether, like it is done in the failsafe mode. You can do it

either explicitly, by running the ������ (freeze, index_cleanup false) command, or via the

vacuum_index_cleanup storage parameter. It is rather obvious that it should not be done

on a regular basis since in this case ������ will not be coping well with its main task of

page cleanup.

Freezing Data at the Initial Loading

The data that is not expected to change can be frozen at once, while it is being loaded into

the database. It is done by running the ���� command with the ������ option.

Tuples can be frozen during the initial loading only if the resulting table has been created

or truncated within the same transaction, as both these operations acquire an exclusive

lock p. ���on the table. This restriction is necessary because frozen tuples are expected to be

visible in all snapshots, regardless of the isolation level; otherwise, transactions would

suddenly see freshly-frozen tuples right as they are being uploaded. But if the lock is

acquired, other transactions will not be able to get access to this table.

Nevertheless, it is still technically possible to break isolation. Let’s start a new transaction

at the Repeatable Read isolation level in a separate session:

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> SELECT 1; -- the snapshot is built

Truncate the tfreeze table and insert new rows into this table within the same transaction.

(If the read-only transaction had already accessed the tfreeze table, the �������� command

will be blocked.)

=> BEGIN;

=> TRUNCATE tfreeze;

=> COPY tfreeze FROM stdin WITH FREEZE;

1 FOO

2 BAR

3 BAZ

\.

=> COMMIT;

133

Chapter 7 Freezing

Now the reading transaction sees the new data as well:

=> SELECT count(*) FROM tfreeze;

count

−−−−−−−

3

(1 row)

=> COMMIT;

It does break isolation, but since data loading is unlikely to happen regularly, inmost cases

it will not cause any issues.

If you load data with freezingv. �� , the visibility map is created at once, and page headers

receive the visibility attribute:p. ���

=> SELECT * FROM pg_visibility_map('tfreeze',0);

all_visible | all_frozen

−−−−−−−−−−−−−+−−−−−−−−−−−−

t | t

(1 row)

=> SELECT flags & 4 > 0 AS all_visible

FROM page_header(get_raw_page('tfreeze',0));

all_visible

−−−−−−−−−−−−−

t

(1 row)

Thus,v. �� if the data has been loaded with freezing, the table will not be processed by vacuum

(as long as the data remains unchanged). Unfortunately, this functionality is not sup-

ported for ����� tables yet: if an oversized value is loaded, vacuum will have to rewrite

the whole ����� table to set visibility attributes in all page headers.

134

8
Rebuilding Tables and Indexes

8.1 Full Vacuuming

Why is Routine Vacuuming not Enough?

Routine vacuuming can free more space than page pruning, but sometimes it may still be

not enough.

If table or index files have grown in size, ������ can clean up some space within pages,

but it can rarely reduce the number of pages. The reclaimed space can only be returned to

the operating system if several empty pages appear at the very end of the file, which does

not happen too often.

An excessive size can lead to unpleasant consequences:

• Full table (or index) scan will take longer.

• A bigger buffer cache may be required (pages are cached as a whole, so data density

decreases).

• B-trees can get an extra level, which slows down index access.

• Files take up extra space on disk and in backups.

If the fraction of useful data in a file has dropped below some reasonable level, an admin-

istrator can perform full vacuuming by running the ������ ���� command.1 In this case,

the table and all its indexes are rebuilt from scratch, and the data is packed as densely as

possible (taking the fillfactor p. ��parameter into account).

When full vacuuming is performed, Postgre��� first fully rebuilds the table and then each

of its indexes. While an object is being rebuilt, both old and new files have to be stored on

disk,2 so this process may require a lot of free space.

You should also keep in mind that this operation fully blocks access to the table, both for

reads and writes.

1 postgresql.org/docs/14/routine-vacuuming.html#VACUUM-FOR-SPACE-RECOVERY
2 backend/commands/cluster.c

135

https://postgresql.org/docs/14/routine-vacuuming.html#VACUUM-FOR-SPACE-RECOVERY
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/commands/cluster.c;hb=REL_14_STABLE

Chapter 8 Rebuilding Tables and Indexes

Estimating Data Density

For the purpose of illustration, let’s insert some rows into the table:

=> TRUNCATE vac;

=> INSERT INTO vac(id,s)

SELECT id, id::text FROM generate_series(1,500000) id;

Storage density can be estimated using the pgstattuple extension:

=> CREATE EXTENSION pgstattuple;

=> SELECT * FROM pgstattuple('vac') \gx

−[RECORD 1]−−−−−−+−−−−−−−−−

table_len | 70623232

tuple_count | 500000

tuple_len | 64500000

tuple_percent | 91.33

dead_tuple_count | 0

dead_tuple_len | 0

dead_tuple_percent | 0

free_space | 381844

free_percent | 0.54

The function reads the whole table and displays statistics on space distribution in its files.

The tuple_percent field shows the percentage of space taken up by useful data (heap tu-

ples). This value is inevitably less than ���% because of various metadata within pages,

but in this example it is still quite high.

For indexes, the displayed information differs a bit, but the avg_leaf_density field has the

same meaning: it shows the percentage of useful data (in �-tree leaf pages).

=> SELECT * FROM pgstatindex('vac_s') \gx

−[RECORD 1]−−−−−−+−−−−−−−−−−

version | 4

tree_level | 3

index_size | 114302976

root_block_no | 2825

internal_pages | 376

leaf_pages | 13576

empty_pages | 0

deleted_pages | 0

avg_leaf_density | 53.88

leaf_fragmentation | 10.59

The previously used pgstattuple functions read the table or index in full to get the precise

statistics. For large objects, it can turn out to be too expensive, so the extension also

136

8.1 Full Vacuuming

provides another function called pgstattuple_approx, which skips the pages tracked in the

visibility map to show approximate figures.

A faster but even less accurate method is to roughly estimate the ratio between the data

volume and the file size using the system catalog.1

Here are the current sizes of the table and its index:

=> SELECT pg_size_pretty(pg_table_size('vac')) AS table_size,

pg_size_pretty(pg_indexes_size('vac')) AS index_size;

table_size | index_size

−−−−−−−−−−−−+−−−−−−−−−−−−

67 MB | 109 MB

(1 row)

Now let’s delete ��% of all the rows:

=> DELETE FROM vac WHERE id % 10 != 0;

DELETE 450000

Routine vacuuming does not affect the file size because there are no empty pages at the

end of the file:

=> VACUUM vac;

=> SELECT pg_size_pretty(pg_table_size('vac')) AS table_size,

pg_size_pretty(pg_indexes_size('vac')) AS index_size;

table_size | index_size

−−−−−−−−−−−−+−−−−−−−−−−−−

67 MB | 109 MB

(1 row)

However, data density has dropped about �� times:

=> SELECT vac.tuple_percent, vac_s.avg_leaf_density

FROM pgstattuple('vac') vac, pgstatindex('vac_s') vac_s;

tuple_percent | avg_leaf_density

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−

9.13 | 6.71

(1 row)

The table and the index are currently located in the following files:

=> SELECT pg_relation_filepath('vac') AS vac_filepath,

pg_relation_filepath('vac_s') AS vac_s_filepath \gx

−[RECORD 1]−−+−−−−−−−−−−−−−−−−−

vac_filepath | base/16391/16514

vac_s_filepath | base/16391/16515

1 wiki.postgresql.org/wiki/Show_database_bloat

137

https://wiki.postgresql.org/wiki/Show_database_bloat

Chapter 8 Rebuilding Tables and Indexes

Let’s check what we will get after ������ ����. While the command is running,v. �� its

progress can be tracked in the pg_stat_progress_cluster view (which is similar to the

pg_stat_progress_vacuum view provided for ������):

=> VACUUM FULL vac;

=> SELECT * FROM pg_stat_progress_cluster \gx

−[RECORD 1]−−−−−−−+−−−−−−−−−−−−−−−−−

pid | 19488

datid | 16391

datname | internals

relid | 16479

command | VACUUM FULL

phase | rebuilding index

cluster_index_relid | 0

heap_tuples_scanned | 50000

heap_tuples_written | 50000

heap_blks_total | 8621

heap_blks_scanned | 8621

index_rebuild_count | 0

Expectedly, ������ ���� phases1 differ from those of routine vacuuming.

Full vacuuming has replaced old files with new ones:

=> SELECT pg_relation_filepath('vac') AS vac_filepath,

pg_relation_filepath('vac_s') AS vac_s_filepath \gx

−[RECORD 1]−−+−−−−−−−−−−−−−−−−−

vac_filepath | base/16391/16526

vac_s_filepath | base/16391/16529

Both index and table sizes are much smaller now:

=> SELECT pg_size_pretty(pg_table_size('vac')) AS table_size,

pg_size_pretty(pg_indexes_size('vac')) AS index_size;

table_size | index_size

−−−−−−−−−−−−+−−−−−−−−−−−−

6904 kB | 6504 kB

(1 row)

As a result, data density has increased. For the index, it is even higher than the original

one: it is more efficient to create a �-tree from scratch based on the available data than

to insert entries row by row into an already existing index:

=> SELECT vac.tuple_percent,

vac_s.avg_leaf_density

FROM pgstattuple('vac') vac,

pgstatindex('vac_s') vac_s;

1 postgresql.org/docs/14/progress-reporting.html#CLUSTER-PHASES

138

https://postgresql.org/docs/14/progress-reporting.html#CLUSTER-PHASES

8.1 Full Vacuuming

tuple_percent | avg_leaf_density

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−

91.23 | 91.08

(1 row)

Freezing

When the table is being rebuilt, Postgre��� freezes its tuples because this operation costs

almost nothing compared to the rest of the work:

=> SELECT * FROM heap_page('vac',0,0) LIMIT 5;

ctid | state | xmin | xmin_age | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−−−−+−−−−−−

(0,1) | normal | 861 f | 5 | 0 a

(0,2) | normal | 861 f | 5 | 0 a

(0,3) | normal | 861 f | 5 | 0 a

(0,4) | normal | 861 f | 5 | 0 a

(0,5) | normal | 861 f | 5 | 0 a

(5 rows)

But pages are registered neither in the visibility map nor in the freeze map, and the page

header does not receive the visibility attribute (as it happens when the ���� command is

executed with the ������ option p. ���):

=> SELECT * FROM pg_visibility_map('vac',0);

all_visible | all_frozen

−−−−−−−−−−−−−+−−−−−−−−−−−−

f | f

(1 row)

=> SELECT flags & 4 > 0 all_visible

FROM page_header(get_raw_page('vac',0));

all_visible

−−−−−−−−−−−−−

f

(1 row)

The situation improves only after ������ is called (or autovacuum is triggered):

=> VACUUM vac;

=> SELECT * FROM pg_visibility_map('vac',0);

all_visible | all_frozen

−−−−−−−−−−−−−+−−−−−−−−−−−−

t | t

(1 row)

=> SELECT flags & 4 > 0 AS all_visible

FROM page_header(get_raw_page('vac',0));

139

Chapter 8 Rebuilding Tables and Indexes

all_visible

−−−−−−−−−−−−−

t

(1 row)

It essentially means that even if all tuples in a page are beyond the database horizon, such

a page will still have to be rewritten.

8.2 Other Rebuilding Methods

Alternatives to Full Vacuuming

In addition to ������ ����, there are several other commands that can fully rebuild tables

and indexes. All of them exclusively lock the table, all of them delete old data files and

recreate them anew.

The �������p. ��� command is fully analogous to ������ ����, but it also reorders tuples in files

based on one of the available indexes. In some cases, it can help the planner use index

scans more efficientlyp. ��� . But you should bear in mind that clusterization is not supported:

all further table updates will be breaking the physical order of tuples.

Programmatically, ������ ���� is simply a special instance of the ������� command that

does not require tuple reordering.1

The ������� command rebuilds one or more indexes.2 In fact, ������ ���� and �������

use this command under the hood when rebuilding indexes.

The �������� command3 deletes all table rows; it is a logical equivalent of ������ run

without the ����� clause. But while ������p. �� simply marks heap tuples as deleted (so they

still have to be vacuumed), �������� creates a new empty file, which is usually faster.

Reducing Downtime During Rebuilding

������ ���� is not meant to be run regularly, as it exclusively locksp. ��� the table (even for

queries) for the whole duration of its operation. This is usually not an option for highly

available systems.

1 backend/commands/cluster.c
2 backend/commands/indexcmds.c
3 backend/commands/tablecmds.c, ExecuteTruncate function

140

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/commands/cluster.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/commands/indexcmds.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/commands/tablecmds.c;hb=REL_14_STABLE

8.3 Precautions

There are several extensions (such as pg_repack1) that can rebuild tables and indexes with

almost zero downtime. An exclusive lock is still required, but only at the beginning and

at the end of this process, and only for a short time. It is achieved by a more complex

implementation: all the changes made on the original table while it is being rebuilt are

saved by a trigger and then applied to the new table. To complete the operation, the utility

replaces one table with the other in the system catalog.

An unconventional solution is offered by the pgcompacttable utility.2 It performsmultiple

fake row updates (that do not change any data) so that current row versions gradually

move towards the start of the file.

Between these update series, vacuuming removes outdated tuples and truncates p. ���the file

little by little. This approach takes muchmore time and resources, but it requires no extra

space for rebuilding the table and does not lead to load spikes. Short-time exclusive locks

are still acquired while the table is being truncated, but vacuuming handles them rather

smoothly.

8.3 Precautions

Read-Only Queries

One of the reasons for file bloating is executing long-running transactions that hold the

database horizon p. ��alongside intensive data updates.

As such, long-running (read-only) transactions do not cause any issues. So a common

approach is to split the load between different systems: keep fast ���� queries on the

primary server anddirect all ���� transactions to a replica. Although itmakes the solution

more expensive and complicated, such measures may turn out to be indispensable.

In some cases, long transactions are the result of application or driver bugs rather than a

necessity. If an issue cannot be resolved in a civilized way, the administrator can resort to

the following two parameters:

• The old_snapshot_threshold v. �.�parameter defines the maximum lifetime of a snapshot.

Once this time is up, the server has the right to remove outdated tuples; if a long-

running transaction still requires them, it will get an error (“snapshot too old”).

• The idle_in_transaction_session_timeout v. �.�parameter limits the lifetime of an idle trans-

action. The transaction is aborted upon reaching this threshold.

1 github.com/reorg/pg_repack
2 github.com/dataegret/pgcompacttable

141

https://github.com/reorg/pg_repack
https://github.com/dataegret/pgcompacttable

Chapter 8 Rebuilding Tables and Indexes

Data Updates

Another reason for bloating is simultaneous modification of a large number of tuples.

If all table rows get updated, the number of tuples can double, and vacuuming will not

have enough time to interfere. Page pruning can reduce this problem, but not resolve it

entirely.

Let’s extend the output with another column to keep track of the processed rows:

=> ALTER TABLE vac ADD processed boolean DEFAULT false;

=> SELECT pg_size_pretty(pg_table_size('vac'));

pg_size_pretty

−−−−−−−−−−−−−−−−

6936 kB

(1 row)

Once all the rows are updated, the table gets almost two times bigger:

=> UPDATE vac SET processed = true;

UPDATE 50000

=> SELECT pg_size_pretty(pg_table_size('vac'));

pg_size_pretty

−−−−−−−−−−−−−−−−

14 MB

(1 row)

To address this situation, you can reduce the number of changes performed by a single

transaction, spreading them out over time; then vacuuming can delete outdated tuples

and free some space for new ones within the already existing pages. Assuming that each

row update can be committed separately, we can use the following query that selects a

batch of rows of the specified size as a template:

SELECT ID

FROM table

WHERE filtering the already processed rows

LIMIT batch size

FOR UPDATE SKIP LOCKED

This code snippet selects and immediately locks a set of rows that does not exceed the

specified size. The rows that are already locked by other transactions are skippedp. ��� : they

will get into another batch next time. It is a rather flexible and convenient solution that

allows you to easily change the batch size and restart the operation in case of a failure.

Let’s unset the processed attribute and perform full vacuuming to restore the original size

of the table:

142

8.3 Precautions

=> UPDATE vac SET processed = false;

=> VACUUM FULL vac;

Once the first batch is updated, the table size grows a bit:

=> WITH batch AS (

SELECT id FROM vac WHERE NOT processed LIMIT 1000

FOR UPDATE SKIP LOCKED

)

UPDATE vac SET processed = true

WHERE id IN (SELECT id FROM batch);

UPDATE 1000

=> SELECT pg_size_pretty(pg_table_size('vac'));

pg_size_pretty

−−−−−−−−−−−−−−−−

7064 kB

(1 row)

But from now on, the size remains almost the same because new tuples replace the re-

moved ones:

=> VACUUM vac;

=> WITH batch AS (

SELECT id FROM vac WHERE NOT processed LIMIT 1000

FOR UPDATE SKIP LOCKED

)

UPDATE vac SET processed = true

WHERE id IN (SELECT id FROM batch);

UPDATE 1000

=> SELECT pg_size_pretty(pg_table_size('vac'));

pg_size_pretty

−−−−−−−−−−−−−−−−

7072 kB

(1 row)

143

Part II

Buffer Cache
and WAL

9
Buffer Cache

9.1 Caching

In modern computing systems, caching is omnipresent—both at the hardware and at the

software level. The processor alone can have up to three or four levels of cache. R���

controllers and disks add their own cache too.

Caching is used to even out performance difference between fast and slow types of mem-

ory. Fast memory is expensive and has smaller volume, while slow memory is bigger and

cheaper. Therefore, fast memory cannot accommodate all the data stored in slowmemory.

But in most cases only a small portion of data is being actively used at each particular mo-

ment, so allocating some fast memory for cache to keep hot data can significantly reduce

the overhead incurred by slow memory access.

In Postgre���, buffer cache1 holds relation pages, thus balancing access times to disks

(milliseconds) and ��� (nanoseconds).

The operating system has its own cache that serves the same purpose. For this reason,

database systems are usually designed to avoid double caching: the data stored on disk

is usually queried directly, bypassing the �� cache. But Postgre��� uses a different ap-

proach: it reads and writes all data via buffered file operations.

Double caching can be avoided if you apply direct �/�. It will reduce the overhead, as Postgre���

will use direct memory access (���) instead of copying buffered pages into the �� address space;

besides, you will gain immediate control over physical writes on disk. However, direct �/� does

not support data prefetching enabled by bufferization, so you have to implement it separately

via asynchronous �/� p. ���, which requires massive code modifications in Postgre��� core, as well as

handling �� incompatibilities when it comes to direct and asynchronous �/� support. But once the

asynchronous communication is set up, you can enjoy additional benefits of no-wait disk access.

The Postgre��� community has already started this major effort,2 but it will take a long time for

the actual results to appear.

1 backend/storage/buffer/README
2 www.postgresql.org/message-id/flat/20210223100344.llw5an2aklengrmn%40alap3.anarazel.de

147

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/README;hb=REL_14_STABLE
https://www.postgresql.org/message-id/flat/20210223100344.llw5an2aklengrmn%40alap3.anarazel.de

Chapter 9 Buffer Cache

9.2 Buffer Cache Design

Buffer cache is located in the server’s shared memory, where it is accessible to all the

processes. It takes the major part of the shared memory and is surely one of the most

important and complex data structures in Postgre���. Understanding how cache works is

important in its own right, but evenmore so as many other structures (such as subtransac-

tions, ���� transaction status, and ��� entries) use a similar caching mechanism, albeit

a simpler one.

The name of this cache is inspired by its inner structure, as it consists of an array of buffers.

Each buffer reserves a memory chuck that can accommodate a single data page together

with its header.1

header

page

buffer cache

A header contains some information about the buffer and the page in it, such as:

• physical location of the page (file ��, fork, and block number in the fork)

• the attribute showing that the data in the page has been modified and sooner or later

has to be written back to disk (such a page is called dirty)

• buffer usage count

• pin count (or reference count)

To get access to a relation’s data page, a process requests it from the buffer manager2 and

receives the �� of the buffer that contains this page. Then it reads the cached data and

modifies it right in the cache if needed. While the page is in use, its buffer is pinned. Pins

forbid eviction of the cached page and can be applied together with other locksp. ��� . Each pin

increments the usage count as well.

As long as the page is cached, its usage does not incur any file operations.

We can explore the buffer cache using the pg_buffercache extension:

=> CREATE EXTENSION pg_buffercache;

1 include/storage/buf_internals.h
2 backend/storage/buffer/bufmgr.c

148

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/storage/buf_internals.h;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/bufmgr.c;hb=REL_14_STABLE

9.3 Cache Hits

Let’s create a table and insert a row:

=> CREATE TABLE cacheme(

id integer

) WITH (autovacuum_enabled = off);

=> INSERT INTO cacheme VALUES (1);

Now the buffer cache contains a heap page with the newly inserted row. You can see it for

yourself by selecting all the buffers related to a particular table. We will need such a query

again, so let’s wrap it into a function:

=> CREATE FUNCTION buffercache(rel regclass)

RETURNS TABLE(

bufferid integer, relfork text, relblk bigint,

isdirty boolean, usagecount smallint, pins integer

) AS $$

SELECT bufferid,

CASE relforknumber

WHEN 0 THEN 'main'

WHEN 1 THEN 'fsm'

WHEN 2 THEN 'vm'

END,

relblocknumber,

isdirty,

usagecount,

pinning_backends

FROM pg_buffercache

WHERE relfilenode = pg_relation_filenode(rel)

ORDER BY relforknumber, relblocknumber;

$$ LANGUAGE sql;

=> SELECT * FROM buffercache('cacheme');

bufferid | relfork | relblk | isdirty | usagecount | pins

−−−−−−−−−−+−−−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−+−−−−−−

268 | main | 0 | t | 1 | 0

(1 row)

The page is dirty: it has been modified, but is not written to disk yet. Its usage count is

set to one.

9.3 Cache Hits

When the buffer manager has to read a page,1 it first checks the buffer cache.

All buffer ��s are stored in a hash table,2 which is used to speed up their search.

1 backend/storage/buffer/bufmgr.c, ReadBuffer_common function
2 backend/storage/buffer/buf_table.c

149

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/bufmgr.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/buf_table.c;hb=REL_14_STABLE

Chapter 9 Buffer Cache

Many modern programming languages include hash tables as one of the basic data types. Hash

tables are often called associative arrays, and indeed, from the user’s perspective they do look like

an array; however, their index (a hash key) can be of any data type, for example, a text string rather

than an integer.

While the range of possible key values can be quite large, hash tables never contain that many

different values at a time. The idea of hashing is to convert a key value into an integer number

using a hash function. This number (or some of its bits) is used as an index of a regular array. The

elements of this array are called hash table buckets.

A good hash function distributes hash keys between buckets more or less uniformly, but it can still

assign the same number to different keys, thus placing them into the same bucket; it is called a

collision. For this reason, values are stored in buckets together with hash keys; to access a hashed

value by its key, Postgre��� has to check all the keys in the bucket.

There are multiple implementations of hash tables; of all the possible options, the buffer

cache uses the extendible table that resolves hash collisions by chaining.1

Ahash key consists of the �� of the relation file, the type of the fork, and the �� of the page

within this fork’s file. Thus, knowing the page, Postgre��� can quickly find the buffer

containing this page or make sure that the page is not currently cached.

3501, 0, 3

2610, 0, 7

hash table

1 backend/utils/hash/dynahash.c

150

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/hash/dynahash.c;hb=REL_14_STABLE

9.3 Cache Hits

The buffer cache implementation has long been criticized for relying on a hash table: this structure

is of no use when it comes to finding all the buffers taken by pages of a particular relation,which is

required to remove pages from cache when running ���� and �������� commands or truncating

a table during vacuuming.1 Yet no one has suggested an adequate alternative so far.

If the hash table contains the required buffer ��, the buffer manager pins this buffer and

returns its �� to the process. Then this process can start using the cached page without

incurring any �/� traffic.

To pin a buffer, Postgre��� has to increment the pin counter in its header; a buffer can be

pinned by several processes at a time. While its pin counter is greater than zero, the buffer

is assumed to be in use, and no radical changes in its contents are allowed. For example, a

new tuple can appear (it will be invisible following the visibility rules), but the page itself

cannot be replaced.

When run with the analyze and buffers options, the ������� command executes the dis-

played query plan and shows the number of used buffers:

=> EXPLAIN (analyze, buffers, costs off, timing off, summary off)

SELECT * FROM cacheme;

QUERY PLAN

−−−

Seq Scan on cacheme (actual rows=1 loops=1)

Buffers: shared hit=1

Planning:

Buffers: shared hit=12 read=7

(4 rows)

Here hit=1means that the only page that had to be read was found in the cache.

Buffer pinning increases the usage count by one:

=> SELECT * FROM buffercache('cacheme');

bufferid | relfork | relblk | isdirty | usagecount | pins

−−−−−−−−−−+−−−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−+−−−−−−

268 | main | 0 | t | 2 | 0

(1 row)

To observe pinning in action during query execution, let’s open a cursor—it will hold the

buffer pin, as it has to provide quick access to the next row in the result set:

1 backend/storage/buffer/bufmgr.c, DropRelFileNodeBuffers function

151

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/bufmgr.c;hb=REL_14_STABLE

Chapter 9 Buffer Cache

=> BEGIN;

=> DECLARE c CURSOR FOR SELECT * FROM cacheme;

=> FETCH c;

id

−−−−

1

(1 row)

=> SELECT * FROM buffercache('cacheme');

bufferid | relfork | relblk | isdirty | usagecount | pins

−−−−−−−−−−+−−−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−+−−−−−−

268 | main | 0 | t | 3 | 1

(1 row)

If a process cannot use a pinned buffer, it usually skips it and simply chooses another one.

We can see it during table vacuuming:

=> VACUUM VERBOSE cacheme;

INFO: vacuuming "public.cacheme"

INFO: table "cacheme": found 0 removable, 0 nonremovable row

versions in 1 out of 1 pages

DETAIL: 0 dead row versions cannot be removed yet, oldest xmin:

877

Skipped 1 page due to buffer pins, 0 frozen pages.

CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s.

VACUUM

The page was skipped because its tuples could not be physically removed from the pinned

buffer.

But if it is exactly this buffer that is required, the process joins the queue and waits for

getting exclusive access to this buffer. An example of such an operation is vacuuming

with freezing.1p. ���

Once the cursor closes or moves on to another page, the buffer gets unpinned. In this

example, it happens at the end of the transaction:

=> COMMIT;

=> SELECT * FROM buffercache('cacheme');

bufferid | relfork | relblk | isdirty | usagecount | pins

−−−−−−−−−−+−−−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−+−−−−−−

268 | main | 0 | t | 3 | 0

310 | vm | 0 | f | 2 | 0

(2 rows)

1 backend/storage/buffer/bufmgr.c, LockBufferForCleanup function

152

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/bufmgr.c;hb=REL_14_STABLE

9.4 Cache Misses

Page modifications are protected by the same pinning mechanism. For example, let’s in-

sert another row into the table (it will get into the same page):

=> INSERT INTO cacheme VALUES (2);

=> SELECT * FROM buffercache('cacheme');

bufferid | relfork | relblk | isdirty | usagecount | pins

−−−−−−−−−−+−−−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−+−−−−−−

268 | main | 0 | t | 4 | 0

310 | vm | 0 | f | 2 | 0

(2 rows)

Postgre��� does not perform any immediate writes to disk: a page remains dirty in the

buffer cache for a while, providing some performance gains for both reads and writes.

9.4 Cache Misses

If the hash table has no entry related to the queried page, it means that this page is not

cached. In this case, a new buffer is assigned (and immediately pinned), the page is read

into this buffer, and the hash table references are modified accordingly.

Let’s restart the instance to clear its buffer cache:

postgres$ pg_ctl restart -l /home/postgres/logfile

An attempt to read a page will result in a cache miss, and the page will be loaded into a

new buffer:

=> EXPLAIN (analyze, buffers, costs off, timing off, summary off)

SELECT * FROM cacheme;

QUERY PLAN

−−−

Seq Scan on cacheme (actual rows=2 loops=1)

Buffers: shared read=1 dirtied=1

Planning:

Buffers: shared hit=15 read=7

(4 rows)

Instead of hit, the plan now shows the read status, which denotes a cache miss. Besides,

this page has become dirty, as the query has modified some hint bits p. ��.

A buffer cache query shows that the usage count for the newly added page is set to one:

153

Chapter 9 Buffer Cache

=> SELECT * FROM buffercache('cacheme');

bufferid | relfork | relblk | isdirty | usagecount | pins

−−−−−−−−−−+−−−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−+−−−−−−

98 | main | 0 | t | 1 | 0

(1 row)

The pg_statio_all_tables view contains the complete statistics on buffer cache usage by

tables:

=> SELECT heap_blks_read, heap_blks_hit

FROM pg_statio_all_tables

WHERE relname = 'cacheme';

heap_blks_read | heap_blks_hit

−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−

2 | 5

(1 row)

Postgre��� provides similar views for indexes and sequences. They can also display statis-

tics on �/� operations, but only ifoff track_io_timing is enabled.

Buffer Search and Eviction

Choosing a buffer for a page is not so trivial.1 There are two possible scenarios:

1. Right after the server start all the buffers are empty and are bound into a list.

While some buffers are still free, the next page read from disk will occupy the first

buffer, and it will be removed from the list.

A buffer can return to the list2 only if its page disappears, without being replaced by

another page. It can happen if you call ���� or �������� commands, or if the table is

truncated during vacuuming.

2. Sooner or later no free buffers will be left (since the size of the database is usually

bigger than the memory chunk allocated for cache). Then the buffer manager will

have to select one of the buffers that is already in use and evict the cached page from

this buffer. It is performed using the clock sweep algorithm, which is well illustrated

by the clock metaphor. Pointing to one of the buffers, the clock hand starts going

around the buffer cache and reduces the usage count for each cached page by one as

it passes. The first unpinned buffer with the zero count found by the clock hand will

be cleared.

1 backend/storage/buffer/freelist.c, StrategyGetBuffer function
2 backend/storage/buffer/freelist.c, StrategyFreeBuffer function

154

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/freelist.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/freelist.c;hb=REL_14_STABLE

9.4 Cache Misses

Thus, the usage count is incremented each time the buffer is accessed (that is,

pinned), and reduced when the buffer manager is searching for pages to evict. As

a result, the least recently used pages are evicted first, while those that have been

accessed more often will remain in the cache longer.

As you can guess, if all the buffers have a non-zero usage count, the clock hand has to

complete more than one full circle before any of them finally reaches the zero value.

To avoid running multiple laps, Postgre��� limits the usage count by �.

Once the buffer to evict is found, the reference to the page that is still in this buffer

must be removed from the hash table.

But if this buffer is dirty, p. ���that is, it contains some modified data, the old page cannot

be simply thrown away—the buffer manager has to write it to disk first.

free buffers

clock hand

Then the buffer manager reads a new page into the found buffer—nomatter if it had to be

cleared or was still free. It uses buffered �/� for this purpose, so the page will be read from

disk only if the operating system cannot find it in its own cache.

Those database systems that use direct �/� and do not depend on the �� cache differentiate be-

tween logical reads (from ���, that is, from the buffer cache) and physical reads (from disk). From

the standpoint of Postgre���, a page can be either read from the buffer cache or requested from

the operating system, but there is no way to tell whether it was found in ��� or read from disk in

the latter case.

155

Chapter 9 Buffer Cache

The hash table is updated to refer to the new page, and the buffer gets pinned. Its usage

count is incremented and is now set to one, which gives this buffer some time to increase

this value while the clock hand is traversing the buffer cache.

9.5 Bulk Eviction

If bulk reads or writes are performed, there is a risk that one-time data can quickly oust

useful pages from the buffer cache.

As a precaution, bulk operations use rather small buffer rings, and eviction is performed

within their boundaries, without affecting other buffers.

Alongside the “buffer ring,” the code also uses the term “ring buffer”. However, this synonym is

rather ambiguous because the ring buffer itself consists of several buffers (that belong to the

buffer cache). The term “buffer ring” is more accurate in this respect.

A buffer ring of a particular size consists of an array of buffers that are used one after

another. At first, the buffer ring is empty, and individual buffers join it one by one, after

being selected from the buffer cache in the usual manner. Then eviction comes into play,

but only within the ring limits.1

Buffers added into a ring are not excluded from the buffer cache and can still be used by

other operations. So if the buffer to be reused turns out to be pinned, or its usage count is

higher than one, it will be simply detached from the ring and replaced by another buffer.

Postgre��� supports three eviction strategies.

Bulk reads strategy is used for sequential scansp. ��� of large tables if their size exceeds 1

4
of the

buffer cache. The ring buffer takes ��� k� (�� standard pages).

This strategy does not allow writing dirty pages to disk to free a buffer; instead, the

buffer is excluded from the ring and replaced by another one. As a result, reading

does not have to wait for writing to complete, so it is performed faster.

If it turns out that the table is already being scanned, the process that starts another

scan joins the existing buffer ring and gets access to the currently available data,

without incurring extra �/� operations.2 When the first process completes the scan,

the second one gets back to the skipped part of the table.

1 backend/storage/buffer/freelist.c, GetBufferFromRing function
2 backend/access/common/syncscan.c

156

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/freelist.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/common/syncscan.c;hb=REL_14_STABLE

9.5 Bulk Eviction

Bulk writes strategy is applied by ���� ����, ������ ����� �� ������, and ������ ��������-

���� ���� commands, as well as by those ����� ����� flavors that cause table rewrites.

The allocated ring is quite big, its default size being �� �� (���� standard pages), but

it never exceeds 1

8
of the total size of the buffer cache.

Vacuuming strategy is used by the process of vacuuming when it performs a full table scan

without taking the visibility map into account. The ring buffer is assigned ��� k� of

��� (�� standard pages).

Buffer rings donot always prevent undesired eviction. If������ or������ commands affect

a lot of rows, the performed table scan applies the bulk reads strategy, but since the pages

are constantly being modified, buffer rings virtually become useless.

Another example worth mentioning is storing oversized data in ����� p. ��tables. In spite of

a potentially large volume of data that has to be read, toasted values are always accessed

via an index, so they bypass buffer rings.

Let’s take a closer look at the bulk reads strategy. For simplicity, we will create a table in

such a way that an inserted row takes the whole page. By default, the buffer cache size is

��,��� pages, � k� each. So the table must take more than ���� pages for the scan to use

a buffer ring.

=> CREATE TABLE big(

id integer PRIMARY KEY GENERATED ALWAYS AS IDENTITY,

s char(1000)

) WITH (fillfactor = 10);

=> INSERT INTO big(s)

SELECT 'FOO' FROM generate_series(1,4096+1);

Let’s analyze the table:

=> ANALYZE big;

=> SELECT relname, relfilenode, relpages

FROM pg_class

WHERE relname IN ('big', 'big_pkey');

relname | relfilenode | relpages

−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−

big | 16546 | 4097

big_pkey | 16551 | 14

(2 rows)

Restart the server to clear the cache, as now it contains some heap pages that have been

read during analysis.

postgres$ pg_ctl restart -l /home/postgres/logfile

157

Chapter 9 Buffer Cache

Once the server is restarted, let’s read the whole table:

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT id FROM big;

QUERY PLAN

−−

Seq Scan on big (actual rows=4097 loops=1)

(1 row)

Heap pages take only �� buffers, which make up the buffer ring for this operation:

=> SELECT count(*) FROM pg_buffercache

WHERE relfilenode = pg_relation_filenode('big'::regclass);

count

−−−−−−−

32

(1 row)

But in the case of an index scan the buffer ring is not used:

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT * FROM big ORDER BY id;

QUERY PLAN

−−−

Index Scan using big_pkey on big (actual rows=4097 loops=1)

(1 row)

As a result, the buffer cache ends up containing the whole table and the whole index:

=> SELECT relfilenode, count(*)

FROM pg_buffercache

WHERE relfilenode IN (

pg_relation_filenode('big'),

pg_relation_filenode('big_pkey')

)

GROUP BY relfilenode;

relfilenode | count

−−−−−−−−−−−−−+−−−−−−−

16546 | 4097

16551 | 14

(2 rows)

9.6 Choosing the Buffer Cache Size

The size of the buffer cache is defined by the128MB shared_buffers parameter. Its default value is

known to be low, so it makes sense to increase it right after the Postgre��� installation.

158

9.6 Choosing the Buffer Cache Size

You will have to reload the server in this case because shared memory is allocated for

cache at the server start.

But how can we determine an appropriate value?

Even a very large database has a limited set of hot data that is being used simultaneously.

In the perfect world, it is this set that must fit the buffer cache (with some space being

reserved for one-time data). If the cache size is smaller, the actively used pages will be

evicting each other all the time, thus leading to excessive �/� operations. But thoughtless

increase of the cache size is not a good idea either: ��� is a scarce resource, and besides,

larger cache incurs higher maintenance costs.

The optimal buffer cache size differs from system to system: it depends on things like the

total size of the available memory, data profiles, and workload types. Unfortunately, there

is no magic value or formula to suit everyone equally well.

You should also keep inmind that a cachemiss in Postgre��� does not necessarily trigger a

physical �/� operation. If the buffer cache is quite small, the �� cache uses the remaining

free memory and can smooth things out to some extent. But unlike the database, the

operating system knows nothing about the read data, so it applies a different eviction

strategy.

A typical recommendation is to start with 1

4
of ��� and then adjust this setting as required.

The best approach is experimentation: you can increase or decrease the cache size and

compare the system performance. Naturally, it requires having a test system that is fully

analogous to the production one, and you must be able to reproduce typical workloads.

You can also run some analysis using the pg_buffercache extension. For example, explore

buffer distribution depending on their usage:

=> SELECT usagecount, count(*)

FROM pg_buffercache

GROUP BY usagecount

ORDER BY usagecount;

usagecount | count

−−−−−−−−−−−−+−−−−−−−

1 | 4128

2 | 50

3 | 4

4 | 4

5 | 73

| 12125

(6 rows)

N��� usage count values correspond to free buffers. They are quite expected in this case

because the server was restarted and remained idle most of the time. The majority of

159

Chapter 9 Buffer Cache

the used buffers contain pages of the system catalog tables read by the backend to fill its

system catalog cache and to perform queries.

We can check what fraction of each relation is cached, and whether this data is hot (a page

is considered hot here if its usage count is bigger than one):

=> SELECT c.relname,

count(*) blocks,

round(100.0 * 8192 * count(*) /

pg_table_size(c.oid)) AS "% of rel",

round(100.0 * 8192 * count(*) FILTER (WHERE b.usagecount > 1) /

pg_table_size(c.oid)) AS "% hot"

FROM pg_buffercache b

JOIN pg_class c ON pg_relation_filenode(c.oid) = b.relfilenode

WHERE b.reldatabase IN (

0, -- cluster-wide objects

(SELECT oid FROM pg_database WHERE datname = current_database())

)

AND b.usagecount IS NOT NULL

GROUP BY c.relname, c.oid

ORDER BY 2 DESC

LIMIT 10;

relname | blocks | % of rel | % hot

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−+−−−−−−−

big | 4097 | 100 | 1

pg_attribute | 30 | 48 | 47

big_pkey | 14 | 100 | 0

pg_proc | 13 | 12 | 6

pg_operator | 11 | 61 | 50

pg_class | 10 | 59 | 59

pg_proc_oid_index | 9 | 82 | 45

pg_attribute_relid_attnum_index | 8 | 73 | 64

pg_proc_proname_args_nsp_index | 6 | 18 | 6

pg_amproc | 5 | 56 | 56

(10 rows)

This example shows that the big table and its index are fully cached, but their pages are

not being actively used.

Analyzing data from different angles, you can gain some useful insights. However, make

sure to follow these simple rules when running pg_buffercache queries:

• Repeat such queries several times since the returned figures will vary to some extent.

• Do not run such queries non-stop because the pg_buffercache extension locks the

viewed buffers, even if only briefly.

160

9.7 Cache Warming

9.7 Cache Warming

After a server restart, the cache requires some time to warm up, that is, to accumulate the

actively used data. It may be helpful to cache certain tables right away, and the pg_pre-

warm extension serves exactly this purpose:

=> CREATE EXTENSION pg_prewarm;

Apart from v. ��loading tables into the buffer cache (or into the �� cache only), this extension

can write the current cache state to disk and then restore it after the server restart. To en-

able this functionality, you have to add this extension’s library to shared_preload_libraries

and restart the server:

=> ALTER SYSTEM SET shared_preload_libraries = 'pg_prewarm';

postgres$ pg_ctl restart -l /home/postgres/logfile

If the onpg_prewarm.autoprewarm setting has not changed, a process called autoprewarm

leader will be started automatically after the server is reloaded; this process will flush

the list of cached pages to disk once in 300spg_prewarm.autoprewarm_interval seconds (using

one of the max_parallel_processes slots).

postgres$ ps -o pid,command \

--ppid `head -n 1 /usr/local/pgsql/data/postmaster.pid` | \

grep prewarm

23124 postgres: autoprewarm leader

Now that the server has been restarted, the big table is not cached anymore:

=> SELECT count(*)

FROM pg_buffercache

WHERE relfilenode = pg_relation_filenode('big'::regclass);

count

−−−−−−−

0

(1 row)

If you have well-grounded assumptions that the whole table is going to be actively used

and disk access will make response times unacceptably high, you can load this table into

the buffer cache in advance:

=> SELECT pg_prewarm('big');

pg_prewarm

−−−−−−−−−−−−

4097

(1 row)

161

Chapter 9 Buffer Cache

=> SELECT count(*)

FROM pg_buffercache

WHERE relfilenode = pg_relation_filenode('big'::regclass);

count

−−−−−−−

4097

(1 row)

The list of pages is dumped into the ������/autoprewarm.blocks file. You can wait until the

autoprewarm leader completes for the first time, but we will initiate the dump manually:

=> SELECT autoprewarm_dump_now();

autoprewarm_dump_now

−−−−−−−−−−−−−−−−−−−−−−

4224

(1 row)

The number of flushed pages is bigger than ���� because all the used buffers are taken into

account. The file is written in a text format; it contains the ��s of the database, tablespace,

and file, as well as the fork and segment numbers:

postgres$ head -n 10 /usr/local/pgsql/data/autoprewarm.blocks

<<4224>>

0,1664,1262,0,0

0,1664,1260,0,0

16391,1663,1259,0,0

16391,1663,1259,0,1

16391,1663,1259,0,2

16391,1663,1259,0,3

16391,1663,1249,0,0

16391,1663,1249,0,1

16391,1663,1249,0,2

Let’s restart the server again.

postgres$ pg_ctl restart -l /home/postgres/logfile

The table appears in the cache right away:

=> SELECT count(*)

FROM pg_buffercache

WHERE relfilenode = pg_relation_filenode('big'::regclass);

count

−−−−−−−

4097

(1 row)

162

9.8 Local Cache

It is again the autoprewarm leader that does all the preliminary work: it reads the file, sorts

the pages by databases, reorders them (so that disk reads happen sequentially if possible),

and then passes them to the autoprewarm worker for processing.

9.8 Local Cache

Temporary tables do not follow the workflow described above. Since temporary data is

visible to a single process only, there is no point in loading it into the shared buffer cache.

Therefore, temporary data uses the local cache of the process that owns the table.1

In general, local buffer cache works similar to the shared one:

• Page search is performed via a hash table.

• Eviction follows the standard algorithm (except that buffer rings are not used).

• Pages can be pinned to avoid eviction.

However, local cache implementation is much simpler because it has to handle neither

locks on memory structures p. ���(buffers can be accessed by a single process only) nor fault

tolerance p. ���(temporary data exists till the end of the session at the most).

Since only few sessions typically use temporary tables, local cache memory is assigned

on demand. The maximum size of the local cache available to a session is limited by the

8MBtemp_buffers parameter.

Despite a similar name, the temp_file_limit parameter has nothing to do with temporary tables; it is

related to files that may be created during query execution to temporarily store intermediate data.

In the ������� command output, all calls to the local buffer cache are tagged as local in-

stead of shared:

=> CREATE TEMPORARY TABLE tmp AS SELECT 1;

=> EXPLAIN (analyze, buffers, costs off, timing off, summary off)

SELECT * FROM tmp;

QUERY PLAN

−−−

Seq Scan on tmp (actual rows=1 loops=1)

Buffers: local hit=1

Planning:

Buffers: shared hit=12 read=7

(4 rows)

1 backend/storage/buffer/localbuf.c

163

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/localbuf.c;hb=REL_14_STABLE

10
Write-Ahead Log

10.1 Logging

In case of a failure, such as a power outage, an �� error, or a database server crash, all the

contents of ��� will be lost; only the data written to disk will persist. To start the server

after a failure, you have to restore data consistency. If the disk itself has been damaged,

the same issue has to be resolved by backup recovery.

In theory, you could maintain data consistency on disk at all times. But in practice it

means that the server has to constantly write random pages to disk (even though sequen-

tial writing is cheaper), and the order of such writes must guarantee that consistency is

not compromised at any particular moment (which is hard to achieve, especially if you

deal with complex index structures).

Just like the majority of database systems, Postgre��� uses a different approach.

While the server is running, some of the current data is available only in ���, its writing

to permanent storage being deferred. Therefore, the data stored on disk is always incon-

sistent during server operation, as pages are never flushed all at once. But each change

that happens in ��� (such as a page update performed in the buffer cache) is logged: Post-

gre��� creates a log entry that contains all the essential information required to repeat

this operation if the need arises.1

A log entry related to a page modification must be written to disk ahead of the modified

page itself. Hence the name of the log: write-ahead log, or ���. This requirement guaran-

tees that in case of a failure Postgre��� can read ��� entries from disk and replay them to

repeat the already completed operations whose results were still in ��� and did not make

it to disk before the crash.

Keeping a write-ahead log is usually more efficient than writing random pages to disk.

W�� entries constitute a continuous stream of data, which can be handled even by ���s.

Besides, ��� entries are often smaller than the page size.

1 postgresql.org/docs/14/wal-intro.html

164

https://postgresql.org/docs/14/wal-intro.html

10.2 WAL Structure

It is required to log all operations that can potentially break data consistency in case of a

failure. In particular, the following actions are recorded in ���:

• page modifications performed in the buffer cache—since writes are deferred

• transaction commits and rollbacks—since the status change happens in ���� buffers

and does not make it to disk right away

• file operations (like creation and deletion of files and directories when tables get

added or removed)—since such operations must be in sync with data changes

The following actions are not logged:

• operations on �������� tables

• operations on temporary tables—since their lifetime is anyway limited by the session

that spawns them

Prior to Postgre��� ��, hash indexes were not logged either. Their only purpose was to match hash

functions to different data types.

Apart from crash recovery, ��� can also be used for point-in-time recovery from a backup

and replication.

10.2 WAL Structure

Logical Structure

Speaking about its logical structure, we can describe ���1 as a stream of log entries of

variable length. Each entry contains some data about a particular operation preceded by

a standard header.2 Among other things, the header provides the following information:

• transaction �� related to the entry

• the resource manager that interprets the entry3

• the checksum to detect data corruption

• entry length

• a reference to the previous ��� entry

W�� is usually read in the forward direction,but some utilities like pg_rewindmay scan it backwards.

1 postgresql.org/docs/14/wal-internals.html

backend/access/transam/README
2 include/access/xlogrecord.h
3 include/access/rmgrlist.h

165

https://postgresql.org/docs/14/wal-internals.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/README;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/xlogrecord.h;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/rmgrlist.h;hb=REL_14_STABLE

Chapter 10 Write-Ahead Log

W�� data itself can have different formats andmeaning. For example, it can be a page frag-

ment that has to replace some part of the page at the specified offset. The corresponding

resource manager must know how to interpret and replay a particular entry. There are

separate managers for tables, various index types, transaction status, and other entities.

W�� files take up special buffers in the server’s sharedmemory. The size of the cache used

by ��� is defined by the−1 wal_buffers parameter. By default, this size is chosen automati-

cally as 1

32
of the total buffer cache size.

W�� cache is quite similar to buffer cache, but it usually operates in the ring buffer mode:

new entries are added to its head, while older entries are saved to disk starting at the

tail. If ��� cache is too small, disk synchronization will be performed more often than

necessary.

Under low load, the insert position (the buffer’s head) is almost always the same as the

position of the entries that have already been saved to disk (the buffer’s tail):

=> SELECT pg_current_wal_lsn(), pg_current_wal_insert_lsn();

pg_current_wal_lsn | pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/3DF56000 | 0/3DF57968

(1 row)

Prior to Postgre��� ��, all function names contained the ���� acronym instead of ���.

To refer to a particular entry, Postgre��� uses a special data type: pg_lsn (log sequence

number, ���). It represents a ��-bit offset in bytes from the start of the ��� to an entry.

An ��� is displayed as two ��-bit numbers in the hexadecimal notation separated by a

slash.

Let’s create a table:

=> CREATE TABLE wal(id integer);

=> INSERT INTO wal VALUES (1);

Start a transaction and note the ��� of the ��� insert position:

=> BEGIN;

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/3DF708D8

(1 row)

166

10.2 WAL Structure

Now run some arbitrary command, for example, update a row:

=> UPDATE wal SET id = id + 1;

The page modification is performed in the buffer cache in ���. This change is logged in

a ��� page, also in ���. As a result, the insert ��� is advanced:

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/3DF70920

(1 row)

To ensure that the modified data page is flushed to disk strictly after the corresponding

��� entry, the page header stores the ��� of the latest ��� entry related to this page. You

can view this ��� using pageinspect:

=> SELECT lsn FROM page_header(get_raw_page('wal',0));

lsn

−−−−−−−−−−−−

0/3DF70920

(1 row)

There is only one ��� for the whole database cluster, and new entries constantly get ap-

pended to it. For this reason, the ��� stored in the page may turn out to be smaller than

the one returned by the pg_current_wal_insert_lsn function some time ago. But if nothing

has happened in the system, these numbers will be the same.

Now let’s commit the transaction:

=> COMMIT;

The commit operation is also logged, and the insert ��� changes again:

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/3DF70948

(1 row)

A commit updates transaction status in ���� pages p. ��, which are kept in their own cache.1

The ���� cache usually takes ��� pages in the shared memory.2 Tomake sure that a ����

page is not flushed to disk before the corresponding ��� entry, the ��� of the latest ���

1 backend/access/transam/slru.c
2 backend/access/transam/clog.c, CLOGShmemBuffers function

167

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/slru.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/clog.c;hb=REL_14_STABLE

Chapter 10 Write-Ahead Log

entry has to be tracked for ���� pages too. But this information is stored in ���, not in

the page itself.

At some pointp. ��� ��� entries will make it to disk; then it will be possible to evict ���� and

data pages from the cache. If they had to be evicted earlier, it would have been discovered,

and ��� entries would have been forced to disk first.1

If you know two ��� positions, you can calculate the size of ��� entries between them (in

bytes) by simply subtracting one position from the other. You just have to cast them to

the pg_lsn type:

=> SELECT '0/3DF70948'::pg_lsn - '0/3DF708D8'::pg_lsn;

?column?

−−−−−−−−−−

112

(1 row)

In this particular case, ��� entries related to ������ and ������ operations took about

a hundred of bytes.

You can use the same approach to estimate the volume of ��� entries generated by a

particular workload per unit of time. This information will be required for the checkpoint

setup.

Physical Structure

On disk, the ��� is stored in the ������/pg_wal directory as separate files, or segments.

Their size is shown by the read-only16MB wal_segment_size parameter.

For high-load systems, it makes sense to increase the segment sizev. �� since it may reduce

the overhead, but this setting can be modified only during cluster initialization (initdb

--wal-segsize).

W�� entries get into the current file until it runs out of space; then Postgre��� starts a

new file.

We can learn in which file a particular entry is located, and at what offset from the start

of the file:

1 backend/storage/buffer/bufmgr.c, FlushBuffer function

168

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/bufmgr.c;hb=REL_14_STABLE

10.2 WAL Structure

=> SELECT file_name, upper(to_hex(file_offset)) file_offset

FROM pg_walfile_name_offset('0/3DF708D8');

file_name | file_offset

−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−

00000001000000000000003D | F708D8

(1 row)

timeline log sequence number

The name of the file consists of two parts. The highest eight hexadecimal digits define

the timeline used for recovery from a backup, while the rest represent the highest ��� bits

(the lowest ��� bits are shown in the file_offset field).

To view the current ��� files v. ��, you can call the following function:

=> SELECT *

FROM pg_ls_waldir()

WHERE name = '00000001000000000000003D';

name | size | modification

−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−

00000001000000000000003D | 16777216 | 2023−03−06 14:01:48+03

(1 row)

Now let’s take a look at the headers of the newly created��� entries using the pg_waldump

utility, which can filter ��� entries both by the ��� range (like in this example) and by a

particular transaction ��.

The pg_waldump utility should be started on behalf of the postgres �� user, as it needs

access to ��� files on disk.

postgres$ /usr/local/pgsql/bin/pg_waldump \

-p /usr/local/pgsql/data/pg_wal -s 0/3DF708D8 -e 0/3DF70948#

rmgr: Heap len (rec/tot): 69/ 69, tx: 886, lsn:

0/3DF708D8, prev 0/3DF708B0, desc: HOT_UPDATE off 1 xmax 886 flags

0x40 ; new off 2 xmax 0, blkref #0: rel 1663/16391/16562 blk 0

rmgr: Transaction len (rec/tot): 34/ 34, tx: 886, lsn:

0/3DF70920, prev 0/3DF708D8, desc: COMMIT 2023−03−06 14:01:48.875861

MSK

Here we can see the headers of two entries.

The first one is the ���_������ p. ��operation handled by the Heap resource manager. The

blkref field shows the filename and the page �� of the updated heap page:

=> SELECT pg_relation_filepath('wal');

169

Chapter 10 Write-Ahead Log

pg_relation_filepath

−−−−−−−−−−−−−−−−−−−−−−

base/16391/16562

(1 row)

The second entry is the ������ operation supervised by the Transaction resource manager.

10.3 Checkpoint

To restore data consistency after a failure (that is, to perform recovery), Postgre��� has to

replay the ��� in the forward direction and apply the entries that represent lost changes

to the corresponding pages. To find out what has been lost, the ��� of the page stored

on disk is compared to the ��� of the ��� entry. But at which point should we start the

recovery? If we start too late, the pages written to disk before this point will fail to receive

all the changes, which will lead to irreversible data corruption. Starting from the very

beginning is unrealistic: it is impossible to store such a potentially huge volume of data,

and neither is it possible to accept such a long recovery time. We need a checkpoint that

is gradually moving forward, thus making it safe to start the recovery from this point and

remove all the previous ��� entries.

The most straightforward way to create a checkpoint is to periodically suspend all system

operations and force all dirty pages to disk. This approach is of course unacceptable, as

the system will hang for an indefinite but quite significant time.

For this reason, the checkpoint is spread out over time, virtually constituting an interval.

Checkpoint execution is performed by a special background process called checkpointer.1

Checkpoint start. The checkpointer process flushes to disk everything that can be written

instantaneously: ���� transaction status, subtransactions’metadata, and a fewother

structures.

Checkpoint execution. Most of the checkpoint execution time is spent on flushing dirty

pages to disk.2

First, a special tag is set in the headers of all the buffers that were dirty at the check-

point start. It happens very fast since no �/� operations are involved.

1 backend/postmaster/checkpointer.c

backend/access/transam/xlog.c, CreateCheckPoint function
2 backend/storage/buffer/bufmgr.c, BufferSync function

170

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/postmaster/checkpointer.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/xlog.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/bufmgr.c;hb=REL_14_STABLE

10.3 Checkpoint

Then checkpointer traverses all the buffers and writes the tagged ones to disk. Their

pages are not evicted from the cache: they are simply written down, so usage and pin

counts can be ignored.

Pages v. �.�are processed in the order of their ��s to avoid random writing if possible. For

better load balancing, Postgre��� alternates between different tablespaces (as they

may be located on different physical devices).

Backends can also write tagged buffers to disk—if they get to them first. In any case,

buffer tags are removed at this stage, so for the purpose of the checkpoint each buffer

will be written only once.

Naturally, pages can still be modified in the buffer cache while the checkpoint is in

progress. But since new dirty buffers are not tagged, checkpointer will ignore them.

Checkpoint completion. When all the buffers that were dirty at the start of the checkpoint

are written to disk, the checkpoint is considered complete. From now on (but not

earlier!), the start of the checkpoint will be used as a new starting point of recovery.

All the ��� entries written before this point are not required anymore.

time
checkpoint

failure

start of
recovery

required WAL files

time
checkpoint checkpoint

failure

start of
recovery

required WAL files

Finally, checkpointer creates a ��� entry that corresponds to the checkpoint comple-

tion, specifying the checkpoint’s start ���. Since the checkpoint logs nothing when

it starts, this ��� can belong to a ��� entry of any type.

The ������/global/pg_control file also gets updated to refer to the latest completed

checkpoint. (Until this process is over, pg_control keeps the previous checkpoint.)

171

Chapter 10 Write-Ahead Log

checkpoint
start

CHECKPOINT

checkpoint
finish

Latest checkpoint location: 0/3E7EF818

Latest checkpoint's REDO location: 0/3E7EF7E0

PGDATA/global/pg_control

To figure out once and for all what points where, let’s take a look at a simple example. We

will make several cached pages dirty:

=> UPDATE big SET s = 'FOO';

=> SELECT count(*) FROM pg_buffercache WHERE isdirty;

count

−−−−−−−

4119

(1 row)

Note the current ��� position:

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/3E7EF7E0

(1 row)

Now let’s complete the checkpoint manually. All the dirty pages will be flushed to disk;

since nothing happens in the system, new dirty pages will not appear:

=> CHECKPOINT;

=> SELECT count(*) FROM pg_buffercache WHERE isdirty;

count

−−−−−−−

0

(1 row)

Let’s see how the checkpoint is reflected in the ���:

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/3E7EF890

(1 row)

172

10.4 Recovery

postgres$ /usr/local/pgsql/bin/pg_waldump \

-p /usr/local/pgsql/data/pg_wal -s 0/3E7EF7E0 -e 0/3E7EF890

rmgr: Standby len (rec/tot): 50/ 50, tx: 0, lsn:

0/3E7EF7E0, prev 0/3E7EF7B8, desc: RUNNING_XACTS nextXid 888

latestCompletedXid 887 oldestRunningXid 888

rmgr: XLOG len (rec/tot): 114/ 114, tx: 0, lsn:

0/3E7EF818, prev 0/3E7EF7E0, desc: CHECKPOINT_ONLINE redo

0/3E7EF7E0; tli 1; prev tli 1; fpw true; xid 0:888; oid 24754; multi

1; offset 0; oldest xid 726 in DB 1; oldest multi 1 in DB 1;

oldest/newest commit timestamp xid: 0/0; oldest running xid 888;

online

The latest ��� entry is related to the checkpoint completion (����������_������). The

start ��� of this checkpoint is specified after the word redo; this position corresponds to

the latest inserted ��� entry at the time of the checkpoint start.

The same information can also be found in the pg_control file:

postgres$ /usr/local/pgsql/bin/pg_controldata \

-D /usr/local/pgsql/data | egrep 'Latest.*location'

Latest checkpoint location: 0/3E7EF818

Latest checkpoint's REDO location: 0/3E7EF7E0

10.4 Recovery

The first process launched at the server start is postmaster. In its turn, postmaster spawns

the startup process,1 which takes care of data recovery in case of a failure.

To determine whether recovery is needed, the startup process reads the pg_control file and

checks the cluster status. The pg_controldata utility enables us to view the content of this

file:

postgres$ /usr/local/pgsql/bin/pg_controldata \

-D /usr/local/pgsql/data | grep state

Database cluster state: in production

A properly stopped server has the “shut down” status; the “in production” status of a

non-running server indicates a failure. In this case, the startup process will automatically

initiate recovery from the start ��� of the latest completed checkpoint found in the same

pg_control file.

1 backend/postmaster/startup.c

backend/access/transam/xlog.c, StartupXLOG function

173

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/postmaster/startup.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/xlog.c;hb=REL_14_STABLE

Chapter 10 Write-Ahead Log

If the ������ directory contains a backup_label file related to a backup, the start ��� position is

taken from that file.

The startup process reads ��� entries one by one, starting from the defined position, and

applies them to data pages if the ��� of the page is smaller than the ��� of the ��� entry.

If the page contains a bigger ���, ��� should not be applied; in fact, itmust not be applied

because its entries are designed to be replayed strictly sequentially.

However, some ��� entries constitute a full page image, or ���. Entries of this type can

be applied to any state of the page since all the page contents will be erased anyway.

Such modifications are called idempotent. Another example of an idempotent operation

is registering transaction status changes: each transaction status is defined in ���� by

certain bits that are set regardless of their previous values, so there is no need to keep the

��� of the latest change in ���� pages.

W�� entries are applied to pages in the buffer cache, just like regular page updates during

normal operation.

Files get restored from ��� in a similar manner: for example, if a ��� entry shows that

the file must exit, but it is missing for some reason, it will be created anew.

Once the recovery is over, all unlogged relations are overwritten by the corresponding

initialization forks.p. ��

Finally, the checkpoint is executed to secure the recovered state on disk.

The job of the startup process is now complete.

In its classic form, the recovery process consists of two phases. In the roll-forward phase, ���

entries are replayed, repeating the lost operations. In the roll-back phase, the server aborts the

transactions that were not yet committed at the time of the failure.

In Postgre���, the second phase is not required. After the recovery, the ���� will contain neither

commit nor abort bits for an unfinished transaction (which technically denotes an active transac-

tion), but since it is known for sure that the transaction is not running anymore, it will be considered

aborted.1

We can simulate a failure by forcing the server to stop in the immediate mode:

postgres$ pg_ctl stop -m immediate

1 backend/access/heap/heapam_visibility.c, HeapTupleSatisfiesMVCC function

174

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/heapam_visibility.c;hb=REL_14_STABLE

10.4 Recovery

Here is the new cluster state:

postgres$ /usr/local/pgsql/bin/pg_controldata \

-D /usr/local/pgsql/data | grep 'state'

Database cluster state: in production

When we launch the server, the startup process sees that a failure has occurred and enters

the recovery mode:

postgres$ pg_ctl start -l /home/postgres/logfile

postgres$ tail -n 6 /home/postgres/logfile

LOG: database system was interrupted; last known up at 2023−03−06

14:01:49 MSK

LOG: database system was not properly shut down; automatic recovery

in progress

LOG: redo starts at 0/3E7EF7E0

LOG: invalid record length at 0/3E7EF890: wanted 24, got 0

LOG: redo done at 0/3E7EF818 system usage: CPU: user: 0.00 s,

system: 0.00 s, elapsed: 0.00 s

LOG: database system is ready to accept connections

If the server is being stopped normally, postmaster disconnects all clients and then exe-

cutes the final checkpoint to flush all dirty pages to disk.

Note the current ��� position:

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/3E7EF908

(1 row)

Now let’s stop the server properly:

postgres$ pg_ctl stop

Here is the new cluster state:

postgres$ /usr/local/pgsql/bin/pg_controldata \

-D /usr/local/pgsql/data | grep state

Database cluster state: shut down

At the end of the ���, we can see the ����������_�������� entry, which denotes the final

checkpoint:

175

Chapter 10 Write-Ahead Log

postgres$ /usr/local/pgsql/bin/pg_waldump \

-p /usr/local/pgsql/data/pg_wal -s 0/3E7EF908

rmgr: XLOG len (rec/tot): 114/ 114, tx: 0, lsn:

0/3E7EF908, prev 0/3E7EF890, desc: CHECKPOINT_SHUTDOWN redo

0/3E7EF908; tli 1; prev tli 1; fpw true; xid 0:888; oid 24754; multi

1; offset 0; oldest xid 726 in DB 1; oldest multi 1 in DB 1;

oldest/newest commit timestamp xid: 0/0; oldest running xid 0;

shutdown

pg_waldump: fatal: error in WAL record at 0/3E7EF908: invalid record

length at 0/3E7EF980: wanted 24, got 0

The latest pg_waldumpmessage shows that the utility has read the ��� to the end.

Let’s start the instance again:

postgres$ pg_ctl start -l /home/postgres/logfile

10.5 Background Writing

If the backend needs to evict a dirty page from a buffer, it has to write this page to disk.

Such a situation is undesired because it leads towaits—it ismuch better to performwriting

asynchronously in the background.

This job is partially handled by checkpointer, but it is still not enough.

Therefore, Postgre��� provides another process called bgwriter,1 specifically for back-

ground writing. It relies on the same buffer search algorithm as eviction, except for the

two main differences:

• The bgwriter process uses its own clock hand that never lags behind that of eviction

and typically overtakes it.

• As the buffers are being traversed, the usage count is not reduced.

A dirty page is flushed to disk if the buffer is not pinned and has zero usage count. Thus,

bgwriter runs before eviction and proactively writes to disk those pages that are highly

likely to be evicted soon.

It raises the odds of the buffers selected for eviction being clean.

1 backend/postmaster/bgwriter.c

176

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/postmaster/bgwriter.c;hb=REL_14_STABLE

10.6 WAL Setup

10.6 WAL Setup

Configuring Checkpoints

The checkpoint duration (to be more exact, the duration of writing dirty buffers to disk) is

defined by the 0.9checkpoint_completion_target parameter. Its value specifies the fraction of

time between the starts of two v. ��neighboring checkpoints that is allotted to writing. Avoid

setting this parameter to one: as a result, the next checkpoint may be due before the

previous one is complete. No disaster will happen, as it is impossible to execute more

than one checkpoint at a time, but normal operation may still be disrupted.

When configuring other parameters, we can use the following approach. First, we define

an appropriate volume of ��� files to be stored between two neighboring checkpoints.

The bigger the volume, the smaller the overhead, but this value will anyway be limited by

the available free space and the acceptable recovery time.

To estimate the time required to generate this volume by normal load, you need to note the

initial insert ��� and check the difference between this and the current insert positions

from time to time.

The received figure is assumed to be a typical interval between checkpoints, so we will use

it as the 5mincheckpoint_timeout parameter value. The default setting is likely to be too small;

it is usually increased, for example, to p. ����� minutes.

However, it is quite possible (and even probable) that the load will sometimes be higher,

so the size of ��� files generated during this interval will be too big. In this case, the

checkpoint must be executed more often. To set up such a trigger, we will limit the size

of ��� files required for recovery by the 1GBmax_wal_size parameter. When this threshold is

exceeded, the server invokes an extra checkpoint.1

W�� files v. ��required for recovery contain all the entries both for the latest completed

checkpoint and for the current one, which is not completed yet. Therefore, to estimate

their total volume you should multiply the calculated ��� size between checkpoints by

1 + checkpoint_completion_target.

Prior to version ��, Postgre��� kept ��� files for two completed checkpoints, so the multiplier was

2 + checkpoint_completion_target.

Following this approach, most checkpoints are executed on schedule, once per the check-

point_timeout interval; but should the load increase, the checkpoint is triggered when���

size exceeds the max_wal_size value.

1 backend/access/transam/xlog.c, LogCheckpointNeeded & CalculateCheckpointSegments functions

177

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/xlog.c;hb=REL_14_STABLE

Chapter 10 Write-Ahead Log

The actual progress is periodically checked against the expected figures:1

The actual progress is defined by the fraction of cached pages that have already been pro-

cessed.

The expected progress (by time) is defined by the fraction of time that has already

elapsed, proceeding from the assumption that the checkpoint must be completed

within the checkpoint_timeout × checkpoint_completion_target interval.

The expected progress (by size) is defined by the fraction of ��� files that are filled

already, their expected number being estimated based on the max_wal_size ×
checkpoint_completion_target value.

If dirty pages get written to disk ahead of schedule, checkpointer is paused for a while; if

there is any delay by either of the parameters, it catches up as soon as possible.2 Since

both time and data size are taken into account, Postgre��� can manage scheduled and

on-demand checkpoints using the same approach.

Once the checkpoint has been completed, ��� files that are not required for recovery any-

more are deleted;3 however, several files (up to80MB min_wal_size in total) are kept for reuse and

are simply renamed.

Such renamingv. �� reduces the overhead incurred by constant file creation and deletion, but

you can turn off this feature using theon wal_recycle parameter if you do not need it.

The following figure shows how the size of ��� files stored on disk changes under normal

conditions.

time

WAL size

checkpoint_timeout

m
ax

_w
al
_s
iz
e

the size of WAL generated between
the starts of two checkpoints

1 backend/postmaster/checkpointer.c, IsCheckpointOnSchedule function
2 backend/postmaster/checkpointer.c, CheckpointWriteDelay function
3 backend/access/transam/xlog.c, RemoveOldXlogFiles function

178

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/postmaster/checkpointer.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/postmaster/checkpointer.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/xlog.c;hb=REL_14_STABLE

10.6 WAL Setup

It is important to keep in mind that the actual size of ��� files on disk may exceed the

max_wal_size value:

• Themax_wal_size parameter specifies the desired target value rather than a hard limit.

If the load spikes, writing may lag behind the schedule.

• The server has no right to delete ��� files that are yet to be replicated or handled by

continuous archiving. If enabled, this functionality must be constantly monitored, as

it can easily cause a disk overflow.

• You can reserve a certain amount of space v. ��for storing ��� files by configuring the

0MBwal_keep_size parameter.

Configuring Background Writing

Once checkpointer is configured, you should also set up bgwriter. Together, these processes

must be able to cope with writing dirty buffers to disk before backends need to reuse them.

During its operation, bgwritermakes periodic pauses, sleeping for 200msbgwriter_delay units of

time.

The number of pages written between two pauses depends on the average number of

buffers accessed by backends since the previous run (Postgre��� uses a moving average to

level out possible spikes and avoid depending on very old data at the same time). The cal-

culated number is then multiplied by 2bgwriter_lru_multiplier. But in any case, the number

of pages written in a single run cannot exceed the 100bgwriter_lru_maxpages value.

If no dirty buffers are detected (that is, nothing happens in the system), bgwriter sleeps

until one of the backends accesses a buffer. Then it wakes up and continues its regular

operation.

Monitoring

Checkpoint settings can and should be tuned based on monitoring data.

If size-triggered checkpoints have to be performed more often than defined by the value

of the 30scheckpoint_warning parameter, Postgre��� issues a warning. This setting should be

brought in line with the expected peak load.

The offlog_checkpoints parameter enables printing checkpoint-related information into the

server log. Let’s turn it on:

179

Chapter 10 Write-Ahead Log

=> ALTER SYSTEM SET log_checkpoints = on;

=> SELECT pg_reload_conf();

Now we will modify some data and execute a checkpoint:

=> UPDATE big SET s = 'BAR';

=> CHECKPOINT;

The server log shows the number of written buffers, some statistics on ��� file changes

after the checkpoint, the duration of the checkpoint, and the distance (in bytes) between

the starts of two neighboring checkpoints:

postgres$ tail -n 2 /home/postgres/logfile

LOG: checkpoint starting: immediate force wait

LOG: checkpoint complete: wrote 4100 buffers (25.0%); 0 WAL file(s)

added, 1 removed, 0 recycled; write=0.076 s, sync=0.009 s,

total=0.099 s; sync files=3, longest=0.007 s, average=0.003 s;

distance=9213 kB, estimate=9213 kB

The most useful data that can affect your configuration decisions is statistics on back-

ground writing and checkpoint execution provided in the pg_stat_bgwriter view.

Prior to version 9.2, both tasks were performed by bgwriter; then a separate checkpointer process

was introduced, but the common view remained unchanged.

=> SELECT * FROM pg_stat_bgwriter \gx

−[RECORD 1]−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

checkpoints_timed | 0

checkpoints_req | 14

checkpoint_write_time | 33111

checkpoint_sync_time | 221

buffers_checkpoint | 14253

buffers_clean | 13066

maxwritten_clean | 122

buffers_backend | 84226

buffers_backend_fsync | 0

buffers_alloc | 86700

stats_reset | 2023−03−06 14:00:07.369124+03

Among other things, this view displays the number of completed checkpoints:

• The checkpoints_timed field shows scheduled checkpoints (which are triggered when

the checkpoint_timeout interval is reached).

• The checkpoints_req field shows on-demand checkpoints (including those triggered

when the max_wal_size size is reached).

180

10.6 WAL Setup

A large checkpoint_req value (as compared to checkpoints_timed) indicates that check-

points are performed more often than expected.

The following statistics on the number of written pages are also very important:

• buffers_checkpoint pages written by checkpointer

• buffers_backend pages written by backends

• buffers_clean pages written by bgwriter

In a well-configured system, the buffers_backend value must be considerably lower than

the sum of buffers_checkpoint and buffers_clean.

When setting up background writing, pay attention to the maxwritten_clean value: it

shows how many times bgwriter had to stop because of exceeding the threshold defined

by bgwriter_lru_maxpages.

The following call will drop the collected statistics:

=> SELECT pg_stat_reset_shared('bgwriter');

181

11
WAL Modes

11.1 Performance

While the server is running normally, ��� files are being constantly written to disk. How-

ever, these writes are sequential: there is almost no random access, so even ���s can

cope with this task. Since this type of load is very different from a typical data file ac-

cess, it may be worth setting up a separate physical storage for ��� files and replacing the

������/pg_wal catalog by a symbolic link to a directory in a mounted file system.

There are a couple of situations when ��� files have to be both written and read. The first one is

the obvious case of crash recovery; the second one is stream replication. The walsender1 process

reads ��� entries directly from files.2 So if a replica does not receive ��� entries while the required

pages are still in the �� buffers of the primary server, the data has to be read from disk. But the

access will still be sequential rather than random.

��� entries can be written in one of the following modes:

• The synchronous mode forbids any further operations until a transaction commit

saves all the related ��� entries to disk.

• The asynchronousmode implies instant transaction commits,with��� entries being

written to disk later in the background.

The current mode is defined by theon synchronous_commit parameter.

Synchronous mode. To reliably register the fact of a commit, it is not enough to simply pass

��� entries to the operating system; you have to make sure that disk synchroniza-

tion has completed successfully. Since synchronization implies actual �/� operations

(which are quite slow), it is beneficial to perform it as seldom as possible.

1 backend/replication/walsender.c
2 backend/access/transam/xlogreader.c

182

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/replication/walsender.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/xlogreader.c;hb=REL_14_STABLE

11.1 Performance

For this purpose, the backend that completes the transaction and writes ��� entries

to disk can make a small pause as defined by the 0scommit_delay parameter. However,

it will only happen if there are at least 5commit_siblings active transactions in the sys-

tem:1 during this pause, some of them may finish, and the server will manage to

synchronize all the ��� entries in one go. It is a lot like holding doors of an elevator

for someone to rush in.

By default, there is no pause. It makes sense to modify the commit_delay parameter

only for systems that perform a lot of short ���� transactions.

After a potential pause, the process that completes the transaction flushes all the

accumulated ��� entries to disk and performs synchronization (it is important to

save the commit entry and all the previous entries related to this transaction; the

rest is written just because it does not increase the cost).

From this time on, the ����’s durability requirement is guaranteed—the transaction

is considered to be reliably committed.2 That’s why the synchronous mode is the

default one.

The downside of the synchronous commit is longer latencies (the ������ command

does not return control until the end of synchronization) and lower system through-

put, especially for ���� loads.

Asynchronous mode. You have to turn off the synchronous_commit parameter to enable

asynchronous commits.3

In the asynchronous mode, ��� entries are written to disk by the walwriter4 process,

which alternates between work and sleep. The duration of pauses is defined by the

200mswal_writer_delay value.

Waking up from a pause, the process checks the cache for new completely filled ���

pages. If any such pages have appeared, the process writes them to disk, skipping the

current page. Otherwise, it writes the current half-empty page since it has woken up

anyway.5

The purpose of this algorithm is to avoid flushing the same page several times, which

brings noticeable performance gains for workloads with intensive data changes.

Although ��� cache is used as a ring buffer, walwriter stops when it reaches the last

page of the cache; after a pause, the next writing cycle starts from the first page. So

1 backend/access/transam/xlog.c, XLogFlush function
2 backend/access/transam/xlog.c, RecordTransactionCommit function
3 postgresql.org/docs/14/wal-async-commit.html
4 backend/postmaster/walwriter.c
5 backend/access/transam/xlog.c, XLogBackgroundFlush function

183

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/xlog.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/xlog.c;hb=REL_14_STABLE
https://postgresql.org/docs/14/wal-async-commit.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/postmaster/walwriter.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/xlog.c;hb=REL_14_STABLE

Chapter 11 WAL Modes

in the worst case walwriter needs three runs to get to a particular ��� entry: first, it

will write all full pages located at the end of the cache, then it will get back to the

beginning, and finally, it will handle the underfilled page containing the entry. But

in most cases it takes one or two cycles.

Synchronization is performed each time the1MB wal_writer_flush_after amount of data is

written, and once again at the end of the writing cycle.

Asynchronous commits are faster than synchronous ones since they do not have to

wait for physical writes to disk. But reliability suffers: you can lose the data commit-

ted within the 3 × wal_writer_delay timeframe before a failure (which is 0.6 seconds

by default).

In the real world, these two modes complement each other. In the synchronous mode,

��� entries related to a long transaction can still be written asynchronously to free ���

buffers. And vice versa, a ��� entry related to a page that is about to be evicted from

the buffer cache will be immediately flushed to disk even in the asynchronous mode—

otherwise, it is impossible to continue operation.

In most cases, a hard choice between performance and durability has to be made by the

system designer.

The synchronous_commit parameter can also be set for particular transactions. If it is pos-

sible to classify all transactions at the application level as either absolutely critical (such

as handling financial data) or less important, you can boost performance while risking to

lose only non-critical transactions.

To get some idea of potential performance gains of the asynchronous commit, let’s com-

pare latency and throughput in the two modes using a pgbench test.1

First, initialize the required tables:

postgres$ /usr/local/pgsql/bin/pgbench -i internals

Start a ��-second test in the synchronous mode:

postgres$ /usr/local/pgsql/bin/pgbench -T 30 internals

1 postgresql.org/docs/14/pgbench.html

184

https://postgresql.org/docs/14/pgbench.html

11.2 Fault Tolerance

pgbench (14.7)

starting vacuum...end.

transaction type: <builtin: TPC−B (sort of)>

scaling factor: 1

query mode: simple

number of clients: 1

number of threads: 1

duration: 30 s

number of transactions actually processed: 20123

latency average = 1.491 ms

initial connection time = 2.507 ms

tps = 670.809688 (without initial connection time)

And now run the same test in the asynchronous mode:

=> ALTER SYSTEM SET synchronous_commit = off;

=> SELECT pg_reload_conf();

postgres$ /usr/local/pgsql/bin/pgbench -T 30 internals

pgbench (14.7)

starting vacuum...end.

transaction type: <builtin: TPC−B (sort of)>

scaling factor: 1

query mode: simple

number of clients: 1

number of threads: 1

duration: 30 s

number of transactions actually processed: 61809

latency average = 0.485 ms

initial connection time = 1.915 ms

tps = 2060.399861 (without initial connection time)

In the asynchronous mode, this simple benchmark shows a significantly lower latency

and higher throughput (���). Naturally, each particular system will have its own figures

depending on the current load, but it is clear that the impact on short ���� transactions

can be quite tangible.

Let’s restore the default settings:

=> ALTER SYSTEM RESET synchronous_commit;

=> SELECT pg_reload_conf();

11.2 Fault Tolerance

It is self-evident that write-ahead logging must guarantee crash recovery under any cir-

cumstances (unless the persistent storage itself is broken). There are many factors that

185

Chapter 11 WAL Modes

can affect data consistency, but I will cover only the most important ones: caching, data

corruption, and non-atomic writes.1

Caching

Before reaching a non-volatile storage (such as a hard disk), data can pass through various

caches.

A disk write simply instructs the operating system to place the data into its cache (which

is also prone to crashes, just like any other part of ���). The actual writing is performed

asynchronously, as defined by the settings of the �/� scheduler of the operating system.

Once the scheduler decides to flush the accumulated data, this data is moved to the cache

of a storage device (like an ���). Storage devices can also defer writing, for example, to

group of adjacent pages together. A ���� controller adds one more caching level between

the disk and the operating system.

Unless special measures are taken, the moment when the data is reliably stored on disk

remains unknown. It is usually not so important because we have the ���, but ��� en-

tries themselves must be reliably saved on disk right away.2 It is equally true for the

asynchronous mode—otherwise, it is impossible to guarantee that ��� entries get do disk

ahead of the modified data.

The checkpointer process must also save the data in a reliable way, ensuring that dirty

pages make it to disk from the �� cache. Besides, it has to synchronize all the file opera-

tions that have been performed by other processes (such as page writes or file deletions):

when the checkpoint completes, the results of all these actions must be already saved on

disk.3

There are also some other situations that demand fail-safe writing, such as executing un-

logged operations at theminimal��� level.

Operating systems provide various means to guarantee immediate writing of data into a

non-volatile storage. All of them boil down to the following two main approaches: either

a separate synchronization command is called after writing (such as fsync or fdatasync),

or the requirement to perform synchronization (or even direct writing that bypasses ��

cache) is specified when the file is being opened or written into.

The pg_test_fsync utility can help you determine the best way to synchronize the ��� de-

pending on the particular �� and file system; the preferred method can be specified in

1 postgresql.org/docs/14/wal-reliability.html
2 backend/access/transam/xlog.c, issue_xlog_fsync function
3 backend/storage/sync/sync.c

186

https://postgresql.org/docs/14/wal-reliability.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/xlog.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/sync/sync.c;hb=REL_14_STABLE

11.2 Fault Tolerance

the wal_sync_method parameter. For other operations, an appropriate synchronization

method is selected automatically and cannot be configured.1

A subtle aspect here is that in each particular case the most suitable method depends on

the hardware. For example, if you use a controller with a backup battery, you can take

advantage of its cache, as the battery will protect the data in case of a power outage.

You should keep in mind that the asynchronous commit and lack of synchronization are

two totally different stories. Turning off synchronization (by the onfsync parameter) boosts

system performance, yet any failure will lead to fatal data loss. The asynchronous mode

guarantees crash recovery up to a consistent state, but some of the latest data updates

may be missing.

Data Corruption

Technical equipment is imperfect, and data can get damaged both in memory and on disk,

or while it is being transferred via interface cables. Such errors are usually handled at the

hardware level, yet some can escape.

To catch issues in good time, Postgre��� always protects ��� entries by checksums.

Checksums can be calculated for data pages as well.2 It is done either during cluster ini-

tialization or by running the v. ��pg_checksums3 utility when the server is stopped.4

In production systems, checksums must always be enabled, despite some (minor) calcu-

lation and verification overhead. It raises the chance of timely corruption discovery, even

though some corner cases still remain:

• Checksum verification is performed only when the page is accessed, so data corrup-

tion can go unnoticed for a long time, up to the point when it gets into all backups

and leaves no source of correct data.

• A zeroed page is considered correct, so if the file system zeroes out a page by mistake,

this issue will not be discovered.

• Checksums are calculated only for the main fork of relations; other forks and files

(such as transaction status in ����) remain unprotected.

1 backend/storage/file/fd.c, pg_fsync function
2 backend/storage/page/README
3 postgresql.org/docs/14/app-pgchecksums.html
4 commitfest.postgresql.org/27/2260

187

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/file/fd.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/page/README;hb=REL_14_STABLE
https://postgresql.org/docs/14/app-pgchecksums.html
https://commitfest.postgresql.org/27/2260

Chapter 11 WAL Modes

Let’s take a look at the read-only data_checksums parameter to make sure that checksums

are enabled:

=> SHOW data_checksums;

data_checksums

−−−−−−−−−−−−−−−−

on

(1 row)

Now stop the server and zero out several bytes in the zero page of the main fork of the

table:

=> SELECT pg_relation_filepath('wal');

pg_relation_filepath

−−−−−−−−−−−−−−−−−−−−−−

base/16391/16562

(1 row)

postgres$ pg_ctl stop

postgres$ dd if=/dev/zero of=/usr/local/pgsql/data/base/16391/16562 \

oflag=dsync conv=notrunc bs=1 count=8

8+0 records in

8+0 records out

8 bytes copied, 0,00776573 s, 1,0 kB/s

Start the server again:

postgres$ pg_ctl start -l /home/postgres/logfile

In fact, we could have left the server running—it is enough to write the page to disk and

evict it from cache (otherwise, the server will continue using its cached version). But such

a workflow is harder to reproduce.

Now let’s attempt to read the table:

=> SELECT * FROM wal LIMIT 1;

WARNING: page verification failed, calculated checksum 20397 but

expected 28733

ERROR: invalid page in block 0 of relation base/16391/16562

If the data cannot be restored from a backup, it makes sense to at least try to read the

damaged page (risking to get garbled output). For this purpose, you have to enable the

off ignore_checksum_failure parameter:

=> SET ignore_checksum_failure = on;

=> SELECT * FROM wal LIMIT 1;

WARNING: page verification failed, calculated checksum 20397 but

expected 28733

188

11.2 Fault Tolerance

id

−−−−

2

(1 row)

Everything went fine in this case because we have damaged a non-critical part of the page

header (the ��� of the latest ��� entry), not the data itself.

Non-Atomic Writes

A database page usually takes � k�, but at the low level writing is performed by blocks,

which are often smaller (typically ��� bytes or � k�). Thus, if a failure occurs, a page may

be written only partially. It makes no sense to apply regular ��� entries to such a page

during recovery.

To avoid partial writes, Postgre��� saves a full page image p. ���(���) in the ��� when this page

is modified for the first time after the checkpoint start. This behavior is controlled by the

onfull_page_writes parameter, but turning it off can lead to fatal data corruption.

If the recovery process comes across an ��� in the ���, it will unconditionally write it to

disk (without checking its ���); just like any ��� entry, ���s are protected by checksums,

so their damage cannot go unnoticed. Regular ��� entries will then be applied to this

state, which is guaranteed to be correct.

There is no separate ��� entry type for setting hint bits p. ��: this operation is considered non-

critical because any query that accesses a page will set the required bits anew. However,

any hint bit change will affect the page’s checksum. So if checksums are enabled (or if the

offwal_log_hints parameter is on), hint bit modifications are logged as ���s.1

Even though the logging mechanism excludes empty space from an ���,2 the size of the

generated ��� files still significantly increases. The situation can be greatly improved if

you enable ��� compression via the offwal_compression parameter.

Let’s run a simple experiment using the pgbench utility. We will perform a checkpoint and

immediately start a benchmark test with a hard-set number of transactions:

=> CHECKPOINT;

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/42CE5DA8

(1 row)

1 backend/storage/buffer/bufmgr.c, MarkBufferDirtyHint function
2 backend/access/transam/xloginsert.c, XLogRecordAssemble function

189

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/bufmgr.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/xloginsert.c;hb=REL_14_STABLE

Chapter 11 WAL Modes

postgres$ /usr/local/pgsql/bin/pgbench -t 20000 internals

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/449113E0

(1 row)

Here is the size of the generated ��� entries:

=> SELECT pg_size_pretty('0/449755C0'::pg_lsn - '0/42CE5DA8'::pg_lsn);

pg_size_pretty

−−−−−−−−−−−−−−−−

29 MB

(1 row)

In this example, ���s takemore than half of the total��� size. You can see it for yourself in

the collected statistics that show the number of ��� entries (N), the size of regular entries

(Record size), and the ��� size for each resource type (Type):

postgres$ /usr/local/pgsql/bin/pg_waldump --stats \

-p /usr/local/pgsql/data/pg_wal -s 0/42CE5DA8 -e 0/449755C0

Type N (%) Record size (%) FPI size (%)

−−−− − −−− −−−−−−−−−−− −−− −−−−−−−− −−−

XLOG 4294 (3,31) 210406 (2,50) 19820068 (93,78)

Transaction 20004 (15,41) 680536 (8,10) 0 (0,00)

Storage 1 (0,00) 42 (0,00) 0 (0,00)

CLOG 1 (0,00) 30 (0,00) 0 (0,00)

Standby 6 (0,00) 416 (0,00) 0 (0,00)

Heap2 24774 (19,09) 1536253 (18,27) 24576 (0,12)

Heap 80234 (61,81) 5946242 (70,73) 295664 (1,40)

Btree 494 (0,38) 32747 (0,39) 993860 (4,70)

−−−−−− −−−−−−−− −−−−−−−−

Total 129808 8406672 [28,46%] 21134168 [71,54%]

This ratio will be smaller if data pages get modified between checkpoints several times. It

is yet another reason to perform checkpoints less often.

We will repeat the same experiment to see if compression can help.

=> ALTER SYSTEM SET wal_compression = on;

=> SELECT pg_reload_conf();

=> CHECKPOINT;

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/44D4C228

(1 row)

190

11.3 WAL Levels

postgres$ /usr/local/pgsql/bin/pgbench -t 20000 internals

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/457653B0

(1 row)

Here is the ��� size with compression enabled:

=> SELECT pg_size_pretty('0/457653B0'::pg_lsn - '0/44D4C228'::pg_lsn);

pg_size_pretty

−−−−−−−−−−−−−−−−

10 MB

(1 row)

postgres$ /usr/local/pgsql/bin/pg_waldump --stats \

-p /usr/local/pgsql/data/pg_wal -s 0/44D4C228 -e 0/457653B0

Type N (%) Record size (%) FPI size (%)

−−−− − −−− −−−−−−−−−−− −−− −−−−−−−− −−−

XLOG 344 (0,29) 17530 (0,22) 435492 (17,75)

Transaction 20001 (16,73) 680114 (8,68) 0 (0,00)

Storage 1 (0,00) 42 (0,00) 0 (0,00)

Standby 5 (0,00) 330 (0,00) 0 (0,00)

Heap2 18946 (15,84) 1207425 (15,42) 101601 (4,14)

Heap 80141 (67,02) 5918020 (75,56) 1627008 (66,31)

Btree 143 (0,12) 8443 (0,11) 289654 (11,80)

−−−−−− −−−−−−−− −−−−−−−−

Total 119581 7831904 [76,14%] 2453755 [23,86%]

To sum it up, when there is a large number of ���s caused by enabled checksums or

full_page_writes (that is, almost always), it makes sense to use compression despite some

additional ��� overhead.

11.3 WAL Levels

The main objective of write-ahead logging is to enable crash recovery. But if you extend

the scope of logged information, a ��� can be used for other purposes too. Postgre���

providesminimal, replica, and logical logging levels. Each level includes everything that is

logged on the previous one and adds some more information.

The level in use is defined by the replicawal_level parameter; its modification requires a server

restart.

191

Chapter 11 WAL Modes

Minimal

The minimal level guarantees only crash recovery. To save space, the operations on rela-

tions that have been created or truncated within the current transaction are not logged if

they incur insertion of large volumes of data (like in the case of ������ ����� �� ������ and

������ ����� commands).1 Instead of being logged, all the required data is immediately

flushed to disk, and system catalog changes become visible right after the transaction

commit.

If such an operation is interrupted by a failure, the data that has already made it to disk

remains invisible and does not affect consistency. If a failure occurs when the operation

is complete, all the data required for applying the subsequent ��� entries is already saved

to disk.

The volume of datav. �� that has to be written into a newly created relation for this optimiza-

tion to take effect is defined by the2MB wal_skip_threshold parameter.

Let’s see what gets logged at theminimal level.

By default,v. �� a higher replica level is used, which supports data replication. If you choose

theminimal level, you also have to set the allowed number of walsender processes to zero

in the10 max_wal_senders parameter:

=> ALTER SYSTEM SET wal_level = minimal;

=> ALTER SYSTEM SET max_wal_senders = 0;

The server has to be restarted for these changes to take effect:

postgres$ pg_ctl restart -l /home/postgres/logfile

Note the current ��� position:

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/45767698

(1 row)

Truncate the table and keep inserting new rows within the same transaction until the

wal_skip_threshold is exceeded:

=> BEGIN;

=> TRUNCATE TABLE wal;

1 include/utils/rel.h, RelationNeedsWAL macro

192

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/utils/rel.h;hb=REL_14_STABLE

11.3 WAL Levels

=> INSERT INTO wal

SELECT id FROM generate_series(1,100000) id;

=> COMMIT;

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/45767840

(1 row)

Instead of creating a new table, I run the �������� command as it generates fewer ��� entries.

Let’s examine the generated ��� using the already familiar pg_waldump utility.

postgres$ /usr/local/pgsql/bin/pg_waldump \

-p /usr/local/pgsql/data/pg_wal -s 0/45767698 -e 0/45767840#

rmgr: Storage len (rec/tot): 42/ 42, tx: 0, lsn:

0/45767698, prev 0/45767660, desc: CREATE base/16391/24784

rmgr: Heap len (rec/tot): 123/ 123, tx: 122844, lsn:

0/457676C8, prev 0/45767698, desc: UPDATE off 45 xmax 122844 flags

0x60 ; new off 48 xmax 0, blkref #0: rel 1663/16391/1259 blk 0

rmgr: Btree len (rec/tot): 64/ 64, tx: 122844, lsn:

0/45767748, prev 0/457676C8, desc: INSERT_LEAF off 176, blkref #0:

rel 1663/16391/2662 blk 2

rmgr: Btree len (rec/tot): 64/ 64, tx: 122844, lsn:

0/45767788, prev 0/45767748, desc: INSERT_LEAF off 147, blkref #0:

rel 1663/16391/2663 blk 2

rmgr: Btree len (rec/tot): 64/ 64, tx: 122844, lsn:

0/457677C8, prev 0/45767788, desc: INSERT_LEAF off 254, blkref #0:

rel 1663/16391/3455 blk 4

rmgr: Transaction len (rec/tot): 54/ 54, tx: 122844, lsn:

0/45767808, prev 0/457677C8, desc: COMMIT 2023−03−06 14:03:58.395214

MSK; rels: base/16391/24783

The first entry logs creation of a new file for the relation (since �������� p. ���virtually rewrites

the table).

The next four entries are associated with system catalog operations. They reflect the

changes in the pg_class table and its three indexes.

Finally, there is a commit-related entry. Data insertion is not logged.

Replica

During crash recovery, ��� entries are replayed to restore the data on disk up to a con-

sistent state. Backup recovery works in a similar way, but it can also restore the database

state up to the specified recovery target point using a��� archive. The number of archived

193

Chapter 11 WAL Modes

��� entries can be quite high (for example, they can span several days), so the recovery

period will include multiple checkpoints. Therefore, theminimal��� level is not enough:

it is impossible to repeat an operation if it is unlogged. For backup recovery, ��� files

must include all the operations.

The same is true for replication: unlogged commands will not be sent to a replica and will

not be replayed on it.

Things get even more complicated if a replica is used for executing queries. First of all,

it needs to have the information on exclusive locksp. ��� acquired on the primary server since

theymay conflict with queries on the replica. Second, itmust be able to capture snapshotsp. �� ,

which requires the information on active transactions. When we deal with a replica, both

local transactions and those running on the primary server have to be taken into account.

The only way to send this data to a replica is to periodically write it into ��� files.1 It is

done by the bgwriter2 process, once in �� seconds (the interval is hard-coded).

The ability to perform data recovery from a backup and use physical replication is guar-

anteed at the replica level.

The replica levelv. �� is used by default, sowe can simply reset the parameters configured above

and restart the server:

=> ALTER SYSTEM RESET wal_level;

=> ALTER SYSTEM RESET max_wal_senders;

postgres$ pg_ctl restart -l /home/postgres/logfile

Let’s repeat the same workflow as before (but now we will insert only one row to get a

neater output):

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/45D88E48

(1 row)

=> BEGIN;

=> TRUNCATE TABLE wal;

=> INSERT INTO wal VALUES (42);

=> COMMIT;

1 backend/storage/ipc/standby, LogStandbySnapshot function
2 backend/postmaster/bgwriter.c

194

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/ipc/standby;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/postmaster/bgwriter.c;hb=REL_14_STABLE

11.3 WAL Levels

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/45D89108

(1 row)

Check out the generated ��� entries.

Apart from what we have seen at theminimal level, we have also got the following entries:

• replication-related entries of the Standby resource manager: �������_����� (active

transactions) and ����

• the entry that logs the ������+���� operation, which initializes a new page and inserts

a new row into this page

postgres$ /usr/local/pgsql/bin/pg_waldump \

-p /usr/local/pgsql/data/pg_wal -s 0/45D88E48 -e 0/45D89108

rmgr: Standby len (rec/tot): 42/ 42, tx: 122846, lsn:

0/45D88E48, prev 0/45D88DD0, desc: LOCK xid 122846 db 16391 rel 16562

rmgr: Storage len (rec/tot): 42/ 42, tx: 122846, lsn:

0/45D88E78, prev 0/45D88E48, desc: CREATE base/16391/24786

rmgr: Heap len (rec/tot): 123/ 123, tx: 122846, lsn:

0/45D88EA8, prev 0/45D88E78, desc: UPDATE off 49 xmax 122846 flags

0x60 ; new off 50 xmax 0, blkref #0: rel 1663/16391/1259 blk 0

rmgr: Btree len (rec/tot): 64/ 64, tx: 122846, lsn:

0/45D88F28, prev 0/45D88EA8, desc: INSERT_LEAF off 178, blkref #0:

rel 1663/16391/2662 blk 2

rmgr: Btree len (rec/tot): 64/ 64, tx: 122846, lsn:

0/45D88F68, prev 0/45D88F28, desc: INSERT_LEAF off 149, blkref #0:

rel 1663/16391/2663 blk 2

rmgr: Btree len (rec/tot): 64/ 64, tx: 122846, lsn:

0/45D88FA8, prev 0/45D88F68, desc: INSERT_LEAF off 256, blkref #0:

rel 1663/16391/3455 blk 4

rmgr: Heap len (rec/tot): 59/ 59, tx: 122846, lsn:

0/45D88FE8, prev 0/45D88FA8, desc: INSERT+INIT off 1 flags 0x00,

blkref #0: rel 1663/16391/24786 blk 0

rmgr: Standby len (rec/tot): 42/ 42, tx: 0, lsn:

0/45D89028, prev 0/45D88FE8, desc: LOCK xid 122846 db 16391 rel 16562

rmgr: Standby len (rec/tot): 54/ 54, tx: 0, lsn:

0/45D89058, prev 0/45D89028, desc: RUNNING_XACTS nextXid 122847

latestCompletedXid 122845 oldestRunningXid 122846; 1 xacts: 122846

rmgr: Transaction len (rec/tot): 114/ 114, tx: 122846, lsn:

0/45D89090, prev 0/45D89058, desc: COMMIT 2023−03−06 14:04:14.538399

MSK; rels: base/16391/24785; inval msgs: catcache 51 catcache 50

relcache 16562

195

Chapter 11 WAL Modes

Logical

Last but not least, the logical level enables logical decoding and logical replication. It has

to be activated on the publishing server.

If we take a look at ��� entries, we will see that this level is almost the same as replica: it

adds the entries related to replication sources and some arbitrary logical entries that may

be generated by applications. For themost part, logical decoding depends on the informa-

tion about active transactions (�������_�����) because it requires capturing a snapshot to

track system catalog changes.

196

Part III

Locks

12
Relation-Level Locks

12.1 About Locks

Locks control concurrent access to shared resources.

Concurrent access implies that several processes try to get the same resource at the same

time. It makes no difference whether these processes are executed in parallel (if the hard-

ware permits) or sequentially in the time-sharing mode. If there is no concurrent access,

there is no need to acquire locks (for example, shared buffer cache requires locking, while

local cache can do without it).

Before accessing a resource, the process must acquire a lock on it; when the operation is

complete, this lock must be released for the resource to become available to other pro-

cesses. If locks are managed by the database system, the established order of operations

is maintained automatically; if locks are controlled by the application, the protocol must

be enforced by the application itself.

At a low level, a lock is simply a chunk of shared memory that defines the lock status

(whether it is acquired or not); it can also provide some additional information, such as

the process number or acquisition time.

As you can guess, a sharedmemory segment is a resource in its own right. Concurrent access to such

resources is regulated by synchronization primitives (such as semaphores or mutexes) provided by

the operating system. They guarantee strictly consecutive execution of the code that accesses a

shared resource. At the lowest level, these primitives are based on atomic ��� instructions (such

as test-and-set or compare-and-swap).

In general, we can use locks to protect any resource as long as it can be unambiguously

identified and assigned a particular lock address.

For example, we can lock a database object, such as a table (identified by oid in the system

catalog), a data page (identified by a filename and a position within this file), a row version

(identified by a page and an offset within this page). We can also lock a memory structure,

199

Chapter 12 Relation-Level Locks

such as a hash table or a buffer (identified by an assigned ��). We can even lock an abstract

resource that has no physical representation.

But it is not always possible to acquire a lock at once: a resource can be already locked by

someone else. Then the process either joins the queue (if it is allowed for this particular

lock type) or tries again some time later. Either way, it has to wait for the lock to be

released.

I would like to single out two factors that can greatly affect locking efficiency.

Granularity, or the “grain size” of a lock. Granularity is important if resources form a hi-

erarchy.

For example, a table consists of pages,which, in their turn, consist of tuples. All these

objects can be protected by locks. Table-level locks are coarse-grained; they forbid

concurrent access even if the processes need to get to different pages or rows.

Row-level locks are fine-grained, so they do not have this drawback; however, the

number of locks grows. To avoid using too much memory for lock-related metadata,

Postgre��� can apply various methods, one of them being lock escalation: if the num-

ber of fine-grained locks exceeds a certain threshold, they are replaced by a single lock

of coarser granularity.

A set of modes in which a lock can be acquired.

As a rule, only two modes are applied. The exclusive mode is incompatible with all

the other modes, including itself. The shared mode allows a resource to be locked

by several processes at a time. The shared mode can be used for reading, while the

exclusive mode is applied for writing.

In general, there may be other modes too. Names of modes are unimportant, it is

their compatibility matrix that matters.

Finer granularity and support for multiple compatible modes give more opportunities for

concurrent execution.

All locks can be classified by their duration.

Long-term locks are acquired for a potentially long time (in most cases, till the end of the

transaction); they typically protect such resources as relations and rows. These locks

are usually managed by Postgre��� automatically, but a user still has some control

over this process.

Long-term locks offer multiple modes that enable various concurrent operations on

data. They usually have extensive infrastructure (including such features as wait

200

12.2 Heavyweight Locks

queues, deadlock detection, and instrumentation) since its maintenance is anyway

much cheaper than operations on protected data.

Short-term locks are acquired for fractions of a second and rarely last longer than several

��� instructions; they usually protect data structures in the shared memory. Post-

gre��� manages such locks in a fully automated way.

Short-term locks typically offer very few modes and only basic infrastructure, which

may have no instrumentation at all.

Postgre��� supports various types of locks.1 Heavyweight locks (which are acquired on

relations andother objects) and row-level p. ���locks are considered long-term. Short-term locks

comprise various locks on memory structures p. ���. Besides, there is also a distinct group of

predicate locks p. ���, which, despite their name, are not locks at all.

12.2 Heavyweight Locks

Heavyweight locks are long-term ones. Acquired at the object level, they are mainly used

for relations, but can also be applied to some other types of objects. Heavyweight locks

typically protect objects from concurrent updates or forbid their usage during restructur-

ing, but they can address other needs too. Such a vague definition is deliberate: locks of

this type are used for all kinds of purposes. The only thing they have in common is their

internal structure.

Unless explicitly specified otherwise, the term lock usually implies a heavyweight lock.

Heavyweight locks are located in the server’s shared memory2 and can be displayed in

the pg_locks view. Their total number is limited by the 64max_locks_per_transaction value

multiplied by 100max_connections.

All transactions use a common pool of locks, so one transaction can acquire more than

max_locks_per_transaction locks. What really matters is that the total number of locks in

the system does not exceed the defined limit. Since the pool is initialized when the server

is launched, changing any of these two parameters requires a server restart.

If a resource is already locked in an incompatible mode, the process trying to acquire an-

other lock joins the queue. Waiting processes do not waste ��� time: they fall asleep until

the lock is released and the operating system wakes them up.

1 backend/storage/lmgr/README
2 backend/storage/lmgr/lock.c

201

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/README;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/lock.c;hb=REL_14_STABLE

Chapter 12 Relation-Level Locks

Two transactions can find themselves in a deadlockp. ��� if the first transaction is unable to

continue its operation until it gets a resource locked by the other transaction,which, in its

turn,needs a resource locked by the first transaction. This case is rather simple; a deadlock

can also involve more than two transactions. Since deadlocks cause infinite waits, Post-

gre��� detects them automatically and aborts one of the affected transactions to ensure

that normal operation can continue.

Different types of heavyweight locks serve different purposes, protect different resources,

and support different modes, so we will consider them separately.

The following list provides the names of lock types as they appear in the locktype column

of the pg_locks view:

transactionid and virtualxid —a lockp. ��� on a transaction ��

relation —a relation-level lockp. ���

tuple —a lock acquired on a tuplep. ���

object —a lock on an objectp. ��� that is not a relation

extend —a relation extension lockp. ���

page —a page-level lockp. ��� used by some index types

advisory —an advisory lockp. ���

Almost all heavyweight locks are acquired automatically as needed and are released au-

tomatically when the corresponding transaction completes. There are some exceptions

though: for example, a relation-level lock can be set explicitly, while advisory locks are

always managed by users.

12.3 Locks on Transaction IDs

Each transaction always holds an exclusive lock on its own �� (both virtualp. �� and real, if

available).

Postgre��� offers two lockingmodes for this purpose, exclusive and shared. Their compat-

ibilitymatrix is very simple: the sharedmode is compatible with itself, while the exclusive

mode cannot be combined with any mode.

202

12.3 Locks on Transaction IDs

Shared Exclusive

Shared ×

Exclusive × ×

To track completion of a particular transaction, a process can request a lock on this trans-

action’s ��, in any mode. Since the transaction itself is already holding an exclusive lock

on its own ��, another lock is impossible to acquire. The process requesting this lock joins

the queue and falls asleep. Once the transaction completes, the lock is released, and the

queued process wakes up. Clearly, it will not manage to acquire the lock because the cor-

responding resource has already disappeared, but this lock is not what is actually needed

anyway.

Let’s start a transaction in a separate session and get the process �� (���) of the backend:

=> BEGIN;

=> SELECT pg_backend_pid();

pg_backend_pid

−−−−−−−−−−−−−−−−

28980

(1 row)

The started transaction holds an exclusive lock on its own virtual ��:

=> SELECT locktype, virtualxid, mode, granted

FROM pg_locks WHERE pid = 28980;

locktype | virtualxid | mode | granted

−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−

virtualxid | 5/2 | ExclusiveLock | t

(1 row)

Here locktype is the type of the lock, virtualxid is the virtual transaction �� (which identifies

the locked resource), and mode is the locking mode (exclusive in this case). The granted

flag shows whether the requested lock has been acquired.

Once the transaction gets a real ��, the corresponding lock is added to this list:

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

122849

(1 row)

=> SELECT locktype, virtualxid, transactionid AS xid, mode, granted

FROM pg_locks WHERE pid = 28980;

203

Chapter 12 Relation-Level Locks

locktype | virtualxid | xid | mode | granted

−−−−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−

virtualxid | 5/2 | | ExclusiveLock | t

transactionid | | 122849 | ExclusiveLock | t

(2 rows)

Now this transaction holds exclusive locks on both its ��s.

12.4 Relation-Level Locks

Postgre��� provides as many as eight modes in which a relation (a table, an index, or

any other object) can be locked.1 Such a variety allows you to maximize the number of

concurrent commands that can be run on a relation.

The next page shows the compatibility matrix extended with examples of commands that

require the corresponding lockingmodes. There is nopoint inmemorizing all thesemodes

or trying to find the logic behind their naming, but it is definitely useful to look through

this data, draw some general conclusions, and refer to this table as required.

AS RS RE SUE S SRE E AE

Access Share × SELECT

Row Share × × SELECT FOR UPDATE/SHARE

Row Exclusive × × × × INSERT, UPDATE, DELETE

Share Update Exclusive × × × × × VACUUM, CREATE INDEX CONCURRENTLY

Share × × × × × CREATE INDEX

Share Row Exclusive × × × × × × CREATE TRIGGER

Exclusive × × × × × × × REFRESH MAT. VIEW CONCURRENTLY

Access Exclusive × × × × × × × × DROP, TRUNCATE, VACUUM FULL,

LOCK TABLE, REFRESH MAT. VIEW

The Access Share mode is the weakest one; it can be used with any other mode except

Access Exclusive, which is incompatible with all the modes. Thus, a ������ command can

be run in parallel with almost any operation, but it does not let you drop a table that is

being queried.

The first four modes allow concurrent heap modifications, while the other four do not.

For example, the ������ ����� command uses the Share mode, which is compatible with

1 postgresql.org/docs/14/explicit-locking.html#LOCKING-TABLES

204

https://postgresql.org/docs/14/explicit-locking.html#LOCKING-TABLES

12.4 Relation-Level Locks

itself (so you can create several indexes on a table concurrently) and with the modes used

by read-only operations. As a result, ������ commands can run in parallel with index

creation, while ������, ������, and ������ commands will be blocked.

Conversely, unfinished transactions that modify heap data block the ������ ����� com-

mand. Instead, you can call ������ ����� ������������, which uses a weaker Share Update

Exclusive mode: it takes longer to create an index (and this operation can even fail), but

in return, concurrent data updates are allowed.

The ����� ����� command has multiple flavors that use different locking modes (Share

Update Exclusive, Share Row Exclusive, Access Exclusive). All of them are described in the

documentation.1

Examples in this part of the book rely on the accounts table again:

=> TRUNCATE accounts;

=> INSERT INTO accounts(id, client, amount)

VALUES

(1, 'alice', 100.00),

(2, 'bob', 200.00),

(3, 'charlie', 300.00);

We will have to access the pg_locks table more than once, so let’s create a view that shows

all ��s in a single column, thus making the output more concise:

=> CREATE VIEW locks AS

SELECT pid,

locktype,

CASE locktype

WHEN 'relation' THEN relation::regclass::text

WHEN 'transactionid' THEN transactionid::text

WHEN 'virtualxid' THEN virtualxid

END AS lockid,

mode,

granted

FROM pg_locks

ORDER BY 1, 2, 3;

The transaction that is still running in the first session updates a row. This operation locks

the accounts table and all its indexes, which results in two new locks of the relation type

acquired in the Row Exclusivemode:

=> UPDATE accounts SET amount = amount + 100.00 WHERE id = 1;

1 postgresql.org/docs/14/sql-altertable.html

205

https://postgresql.org/docs/14/sql-altertable.html

Chapter 12 Relation-Level Locks

=> SELECT locktype, lockid, mode, granted

FROM locks WHERE pid = 28980;

locktype | lockid | mode | granted

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−

relation | accounts | RowExclusiveLock | t

relation | accounts_pkey | RowExclusiveLock | t

transactionid | 122849 | ExclusiveLock | t

virtualxid | 5/2 | ExclusiveLock | t

(4 rows)

12.5 Wait Queue

Heavyweight locks form a fair wait queue.1 A process joins the queue if it attempts to

acquire a lock that is incompatible either with the current lock or with the locks requested

by other processes already in the queue.

While the first session is working on an update, let’s try to create an index on this table in

another session:

=> SELECT pg_backend_pid();

pg_backend_pid

−−−−−−−−−−−−−−−−

29459

(1 row)

=> CREATE INDEX ON accounts(client);

The command hangs, waiting for the resource to be released. The transaction tries to lock

the table in the Sharemode but cannot do it:

=> SELECT locktype, lockid, mode, granted

FROM locks WHERE pid = 29459;

locktype | lockid | mode | granted

−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−

relation | accounts | ShareLock | f

virtualxid | 6/3 | ExclusiveLock | t

(2 rows)

Now let the third session start the ������ ���� command. It will also join the queue be-

cause it requires the Access Exclusivemode, which conflicts with all the other modes:

=> SELECT pg_backend_pid();

pg_backend_pid

−−−−−−−−−−−−−−−−

29662

(1 row)

1 backend/storage/lmgr/lock.c, LockAcquire function

206

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/lock.c;hb=REL_14_STABLE

12.5 Wait Queue

=> VACUUM FULL accounts;

=> SELECT locktype, lockid, mode, granted

FROM locks WHERE pid = 29662;

locktype | lockid | mode | granted

−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−

relation | accounts | AccessExclusiveLock | f

transactionid | 122853 | ExclusiveLock | t

virtualxid | 7/4 | ExclusiveLock | t

(3 rows)

All the subsequent contenders will now have to join the queue, regardless of their locking

mode. Even simple ������ queries will honestly follow ������ ����, although they are

compatible with the Row Exclusive lock held by the first session performing the update.

=> SELECT pg_backend_pid();

pg_backend_pid

−−−−−−−−−−−−−−−−

29872

(1 row)

=> SELECT * FROM accounts;

=> SELECT locktype, lockid, mode, granted

FROM locks WHERE pid = 29872;

locktype | lockid | mode | granted

−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−−−

relation | accounts | AccessShareLock | f

virtualxid | 8/3 | ExclusiveLock | t

(2 rows)

T1

UPDATE

relationT2

CREATE INDEX
T3

VACUUM FULL
T4

SELECT

The v. �.�pg_blocking_pids function gives a high-level overview of all waits. It shows the ��s

of all processes queued before the specified one that are already holding or would like to

acquire an incompatible lock:

207

Chapter 12 Relation-Level Locks

=> SELECT pid,

pg_blocking_pids(pid),

wait_event_type,

state,

left(query,50) AS query

FROM pg_stat_activity

WHERE pid IN (28980,29459,29662,29872) \gx

−[RECORD 1]−−−−+−−−

pid | 28980

pg_blocking_pids | {}

wait_event_type | Client

state | idle in transaction

query | UPDATE accounts SET amount = amount + 100.00 WHERE

−[RECORD 2]−−−−+−−−

pid | 29459

pg_blocking_pids | {28980}

wait_event_type | Lock

state | active

query | CREATE INDEX ON accounts(client);

−[RECORD 3]−−−−+−−−

pid | 29662

pg_blocking_pids | {28980,29459}

wait_event_type | Lock

state | active

query | VACUUM FULL accounts;

−[RECORD 4]−−−−+−−−

pid | 29872

pg_blocking_pids | {29662}

wait_event_type | Lock

state | active

query | SELECT * FROM accounts;

To get more details, you can review the information provided in the pg_locks table.1

Once the transaction is completed (either committed or aborted), all its locks are re-

leased.2 The first process in the queue gets the requested lock and wakes up.

Here the transaction commit in the first session leads to sequential execution of all the

queued processes:

=> ROLLBACK;

ROLLBACK

CREATE INDEX

VACUUM

1 wiki.postgresql.org/wiki/Lock_dependency_information
2 backend/storage/lmgr/lock.c, LockReleaseAll & LockRelease functions

208

https://wiki.postgresql.org/wiki/Lock_dependency_information
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/lock.c;hb=REL_14_STABLE

12.5 Wait Queue

id | client | amount

−−−−+−−−−−−−−−+−−−−−−−−

1 | alice | 100.00

2 | bob | 200.00

3 | charlie | 300.00

(3 rows)

209

13
Row-Level Locks

13.1 Lock Design

Thanks to snapshot isolation, heap tuples do not have to be locked for reading. However,

two write transactions must not be allowed to modify the same row at the same time.

Rows must be locked in this case, but heavyweight locks are not a very good choice for

this purpose: each of them takes space in the server’s shared memory (hundreds of bytes,

not to mention all the supporting infrastructure), and Postgre��� internal mechanisms

are not designed to handle a huge number of concurrent heavyweight locks.

Some database systems solve this problem by lock escalation: if row-level locks are too

many, they are replaced by a single lock of finer granularity (for example, by a page-level or

table-level lock). It simplifies the implementation, but can greatly limit system through-

put at the same time.

In Postgre���, the information on whether a particular row is locked is kept only in the

header of its current heap tuple. Row-level locks are virtually attributes in heap pages

rather than actual locks, and they are not reflected in ��� in any way.

A row is typically locked when it is being updated or deleted.p. �� In both cases, the current

version of the row is marked as deleted. The attribute used for this purpose is the current

transaction’s �� specified in the xmaxfield, and it is the same �� (combinedwith additional

hint bits) that indicates that the row is locked. If a transaction wants to modify a row but

sees an active transaction �� in the xmax field of its current version, it has to wait for

this transaction to complete. Once it is over, all the locks are released, and the waiting

transaction can proceed.

This mechanism allows locking as many rows as required at no extra cost.

The downside of this solution is that other processes cannot form a queue, as ��� con-

tains no information about such locks. Therefore, heavyweight locks are still required:

a process waiting for a row to be released requests a lock on the �� of the transaction

currently busy with this row. Once the transaction completes, the row becomes available

210

13.2 Row-Level Locking Modes

again. Thus, the number of heavyweight locks is proportional to the number of concurrent

processes rather than rows being modified.

13.2 Row-Level Locking Modes

Row-level locks support four modes.1 Two of them implement exclusive locks that can be

acquired by only one transaction at a time, while the other two provide shared locks that

can be held by several transactions simultaneously.

Here is the compatibility matrix of these modes:

Key Share Share
No Key

Update
Update

Key Share ×

Share × ×

No Key Update × × ×

Update × × × ×

Exclusive Modes

The Update mode allows modifying any tuple fields and even deleting the whole tuple,

while the No Key Update mode permits only those changes that do not involve any fields

related to unique indexes (in other words, foreign keys must not be affected).

The ������ command automatically chooses the weakest lockingmode possible; keys usu-

ally remain unchanged, so rows are typically locked in the No Key Updatemode.

Let’s create a function that uses pageinspect to display some tuple metadata that we are

interested in, namely the xmax field and several hint bits:

=> CREATE FUNCTION row_locks(relname text, pageno integer)

RETURNS TABLE(

ctid tid,

xmax text,

lock_only text,

is_multi text,

keys_upd text,

keyshr text,

shr text

)

1 postgresql.org/docs/14/explicit-locking.html#LOCKING-ROWS

211

https://postgresql.org/docs/14/explicit-locking.html#LOCKING-ROWS

Chapter 13 Row-Level Locks

AS $$

SELECT (pageno,lp)::text::tid,

t_xmax,

CASE WHEN t_infomask & 128 = 128 THEN 't' END,

CASE WHEN t_infomask & 4096 = 4096 THEN 't' END,

CASE WHEN t_infomask2 & 8192 = 8192 THEN 't' END,

CASE WHEN t_infomask & 16 = 16 THEN 't' END,

CASE WHEN t_infomask & 16+64 = 16+64 THEN 't' END

FROM heap_page_items(get_raw_page(relname,pageno))

ORDER BY lp;

$$ LANGUAGE sql;

Now start a transaction on the accounts table to update the balance of the first account

(the key remains the same) and the �� of the second account (the key gets updated):

=> BEGIN;

=> UPDATE accounts SET amount = amount + 100.00 WHERE id = 1;

=> UPDATE accounts SET id = 20 WHERE id = 2;

The page now contains the following metadata:

=> SELECT * FROM row_locks('accounts',0) LIMIT 2;

ctid | xmax | lock_only | is_multi | keys_upd | keyshr | shr

−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−

(0,1) | 122858 | | | | |

(0,2) | 122858 | | | t | |

(2 rows)

The locking mode is defined by the keys_updated hint bit.

=> ROLLBACK;

The ������ ��� command uses the same xmax field as a locking attribute, but in this case

the xmax_lock_only hint bit must also be set. This bit indicates that the tuple is locked but

not deleted, which means that it is still current:

=> BEGIN;

=> SELECT * FROM accounts WHERE id = 1 FOR NO KEY UPDATE;

=> SELECT * FROM accounts WHERE id = 2 FOR UPDATE;

=> SELECT * FROM row_locks('accounts',0) LIMIT 2;

ctid | xmax | lock_only | is_multi | keys_upd | keyshr | shr

−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−

(0,1) | 122859 | t | | | |

(0,2) | 122859 | t | | t | |

(2 rows)

=> ROLLBACK;

212

13.3 Multitransactions

Shared Modes

The Share mode can be applied when a row needs to be read, but its modification by an-

other transactionmust be forbidden. The Key Sharemode allows updating any tuple fields

except key attributes.

Of all the shared modes, the Postgre��� core uses only Key Share, which is applied when

foreign keys are being checked. Since it is compatible with the No Key Update exclusive

mode, foreign key checks do not interfere with concurrent updates of non-key attributes.

As for applications, they can use any shared modes they like.

Let me stress once again that simple ������ commands never use row-level locks.

=> BEGIN;

=> SELECT * FROM accounts WHERE id = 1 FOR KEY SHARE;

=> SELECT * FROM accounts WHERE id = 2 FOR SHARE;

Here is what we see in the heap tuples:

=> SELECT * FROM row_locks('accounts',0) LIMIT 2;

ctid | xmax | lock_only | is_multi | keys_upd | keyshr | shr

−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−

(0,1) | 122860 | t | | | t |

(0,2) | 122860 | t | | | t | t

(2 rows)

The xmax_keyshr_lock bit is set for both operations, but you can recognize the Sharemode

by other hint bits.1

13.3 Multitransactions

As we have seen, the locking attribute is represented by the xmax field, which is set to the

�� of the transaction that has acquired the lock. So how is this attribute set for a shared

lock held by several transactions at a time?

When dealing with shared locks, Postgre��� applies so-called multitransactions (multix-

acts).2 A multitransaction is a group of transactions that is assigned a separate ��. De-

tailed information on group members and their locking modes is stored in files under the

������/pg_multixact directory. For faster access, locked pages are cached in the shared

memory of the server;3 all changes are logged to ensure fault tolerance.

1 include/access/htup_details.h
2 backend/access/transam/multixact.c
3 backend/access/transam/slru.c

213

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/htup_details.h;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/multixact.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/slru.c;hb=REL_14_STABLE

Chapter 13 Row-Level Locks

Multixact ��s have the same ��-bit length as regular transaction ��s, but they are issued

independently. It means that transactions and multitransactions can potentially have

the same ��s. To differentiate between the two, Postgre��� uses an additional hint bit:

xmax_is_multi.

Let’s add one more exclusive lock acquired by another transaction (Key Share and No Key

Updatemodes are compatible):

=> BEGIN;

=> UPDATE accounts SET amount = amount + 100.00 WHERE id = 1;

=> SELECT * FROM row_locks('accounts',0) LIMIT 2;

ctid | xmax | lock_only | is_multi | keys_upd | keyshr | shr

−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−

(0,1) | 1 | | t | | |

(0,2) | 122860 | t | | | t | t

(2 rows)

The xmax_is_multi bit shows that the first row uses a multitransaction �� instead of a reg-

ular one.

Without going into further implementation details, let’s display the information on all

the possible row-level locks using the pgrowlocks extension:

=> CREATE EXTENSION pgrowlocks;

=> SELECT * FROM pgrowlocks('accounts') \gx

−[RECORD 1]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

locked_row | (0,1)

locker | 1

multi | t

xids | {122860,122861}

modes | {"Key Share","No Key Update"}

pids | {30423,30723}

−[RECORD 2]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

locked_row | (0,2)

locker | 122860

multi | f

xids | {122860}

modes | {"For Share"}

pids | {30423}

It looks a lot like querying the pg_locks view, but the pgrowlocks function has to access

heap pages, as ��� contains no information on row-level locks.

=> COMMIT;

=> ROLLBACK;

214

13.4 Wait Queue

Since multixact ��s are ��-bit, they are subject to wraparound p. ���because of counter limits,

just like regular transaction ��s. Therefore, Postgre��� has to process multixact ��s in a

way similar to freezing: old multixact ��s are replaced with new ones (or with a regular

transaction �� if only one transaction is holding the lock by that time).1

But while regular transaction ��s are frozen only in the xmin field (as a non-empty xmax

indicates that the tuple is outdated and will soon be removed), it is the xmax field that has

to be frozen for multitransactions: the current row version may be repeatedly locked by

new transactions in a shared mode.

Freezing of multitransactions can be managed via configuration parameters, which are

quite similar to those provided for regular freezing: vacuum_multixact_freeze_min_age,

vacuum_multixact_freeze_table_age, autovacuum_multixact_freeze_max_age, and the newly

added vacuum_multixact_failsafe_age v. ��parameter.

13.4 Wait Queue

Exclusive Modes

Since a row-level lock is just an attribute, the queue is arranged in a not-so-trivial way.

When a transaction is about to modify a row, it has to follow these steps:2

� If the xmax field and the hint bits indicate that the row is locked in an incompatible

mode, acquire an exclusive heavyweight lock on the tuple that is being modified.

� If necessary, wait until all the incompatible locks are released by requesting a lock on

the �� of the xmax transaction (or several transactions if xmax contains a mutixact

��).

� Write its own �� into xmax in the tuple header and set the required hint bits.

� Release the tuple lock if it was acquired in the first step.

A tuple lock is yet another kind of heavyweight locks, which has the tuple type (not to be

confused with a regular row-level lock).

It may seem that steps � and � are redundant and it is enough to simply wait until all the

locking transactions are over. However, if several transactions are trying to update the

same row, all of them will be waiting on the transaction currently processing this row.

Once it completes, they will find themselves in a race condition for the right to lock the

1 backend/access/heap/heapam.c, FreezeMultiXactId function
2 backend/access/heap/README.tuplock

215

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/heapam.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/README.tuplock;hb=REL_14_STABLE

Chapter 13 Row-Level Locks

row, and some“unlucky” transactionsmay have to wait for an indefinitely long time. Such

a situation is called resource starvation.

A tuple lock identifies the first transaction in the queue and guarantees that it will be the

next one to get the lock.

But you can see it for yourself. Since Postgre��� acquires many different locks during

its operation, and each of them is reflected in a separate row in the pg_locks table, I am

going to create yet another view on top of pg_locks. It will show this information in a

more concise form, keeping only those locks that we are currently interested in (the ones

related to the accounts table and to the transaction itself, except for any locks on virtual

��s):

=> CREATE VIEW locks_accounts AS

SELECT pid,

locktype,

CASE locktype

WHEN 'relation' THEN relation::regclass::text

WHEN 'transactionid' THEN transactionid::text

WHEN 'tuple' THEN relation::regclass||'('||page||','||tuple||')'

END AS lockid,

mode,

granted

FROM pg_locks

WHERE locktype in ('relation','transactionid','tuple')

AND (locktype != 'relation' OR relation = 'accounts'::regclass)

ORDER BY 1, 2, 3;

Let’s start the first transaction and update a row:

=> BEGIN;

=> SELECT txid_current(), pg_backend_pid();

txid_current | pg_backend_pid

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−

122863 | 30723

(1 row)

=> UPDATE accounts SET amount = amount + 100.00 WHERE id = 1;

The transaction has completed all the four steps of the workflow and is now holding a lock

on the table:

=> SELECT * FROM locks_accounts WHERE pid = 30723;

pid | locktype | lockid | mode | granted

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−

30723 | relation | accounts | RowExclusiveLock | t

30723 | transactionid | 122863 | ExclusiveLock | t

(2 rows)

216

13.4 Wait Queue

Start the second transaction and try to update the same row. The transaction will hang,

waiting on a lock:

=> BEGIN;

=> SELECT txid_current(), pg_backend_pid();

txid_current | pg_backend_pid

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−

122864 | 30794

(1 row)

=> UPDATE accounts SET amount = amount + 100.00 WHERE id = 1;

T1

No Key Update

T2

tuple (0,1)

ctid xmin xmax data(0,1)
T1

The second transaction only gets as far as the second step. For this reason, apart from

locking the table and its own ��, it adds two more locks, which are also reflected in the

pg_locks view: the tuple lock acquired at the first step and the lock of the �� of the second

transaction requested at the second step:

=> SELECT * FROM locks_accounts WHERE pid = 30794;

pid | locktype | lockid | mode | granted

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−

30794 | relation | accounts | RowExclusiveLock | t

30794 | transactionid | 122863 | ShareLock | f

30794 | transactionid | 122864 | ExclusiveLock | t

30794 | tuple | accounts(0,1) | ExclusiveLock | t

(4 rows)

The third transaction will get stuck on the first step. It will try to acquire a lock on the

tuple and will stop at this point:

=> BEGIN;

=> SELECT txid_current(), pg_backend_pid();

txid_current | pg_backend_pid

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−

122865 | 30865

(1 row)

=> UPDATE accounts SET amount = amount + 100.00 WHERE id = 1;

217

Chapter 13 Row-Level Locks

=> SELECT * FROM locks_accounts WHERE pid = 30865;

pid | locktype | lockid | mode | granted

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−

30865 | relation | accounts | RowExclusiveLock | t

30865 | transactionid | 122865 | ExclusiveLock | t

30865 | tuple | accounts(0,1) | ExclusiveLock | f

(3 rows)

The fourth and all the subsequent transactions trying to update this row will not differ

from the third transaction in this respect: all of them will be waiting on the same tuple

lock.

=> BEGIN;

=> SELECT txid_current(), pg_backend_pid();

txid_current | pg_backend_pid

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−

122866 | 30936

(1 row)

=> UPDATE accounts SET amount = amount + 100.00 WHERE id = 1;

=> SELECT * FROM locks_accounts WHERE pid = 30865;

pid | locktype | lockid | mode | granted

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−

30865 | relation | accounts | RowExclusiveLock | t

30865 | transactionid | 122865 | ExclusiveLock | t

30865 | tuple | accounts(0,1) | ExclusiveLock | f

(3 rows)

T1

No Key Update

T2

tuple (0,1)T3

T4

ctid xmin xmax data(0,1)
T1

To get the full picture of the current waits, you can extend the pg_stat_activity view with

the information on locking processes:

=> SELECT pid,

wait_event_type,

wait_event,

pg_blocking_pids(pid)

218

13.4 Wait Queue

FROM pg_stat_activity

WHERE pid IN (30723,30794,30865,30936);

pid | wait_event_type | wait_event | pg_blocking_pids

−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−

30723 | Client | ClientRead | {}

30794 | Lock | transactionid | {30723}

30865 | Lock | tuple | {30794}

30936 | Lock | tuple | {30794,30865}

(4 rows)

If the first transaction is aborted, everything will work as expected: all the subsequent

transactions will move one step further without jumping the queue.

And yet it is more likely that the first transaction will be committed. At the Repeatable

Read or Serializable isolation levels, it would result in a serialization failure, so the second

transaction would have to be aborted1 (and all the subsequent transactions in the queue

would get aborted too). But at the Read Committed isolation level the modified row will be

re-read, and its update will be retried.

So, the first transaction is committed:

=> COMMIT;

The second transactionwakes up and successfully completes the third and the fourth steps

of the workflow:

UPDATE 1

=> SELECT * FROM locks_accounts WHERE pid = 30794;

pid | locktype | lockid | mode | granted

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−

30794 | relation | accounts | RowExclusiveLock | t

30794 | transactionid | 122864 | ExclusiveLock | t

(2 rows)

As soon as the second transaction releases the tuple lock, the third one also wakes up, but

it sees that the xmax field of the new tuple contains a different �� already. At this point,

the above workflow is over. At the Read Committed isolation level, one more attempt to

lock the row is performed,2 but it does not follow the outlined steps. The third transaction

is now waiting for the second one to complete without trying to acquire a tuple lock:

1 backend/executor/nodeModifyTable.c, ExecUpdate function
2 backend/access/heap/heapam_handler.c, heapam_tuple_lock function

219

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeModifyTable.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/heapam_handler.c;hb=REL_14_STABLE

Chapter 13 Row-Level Locks

=> SELECT * FROM locks_accounts WHERE pid = 30865;

pid | locktype | lockid | mode | granted

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−

30865 | relation | accounts | RowExclusiveLock | t

30865 | transactionid | 122864 | ShareLock | f

30865 | transactionid | 122865 | ExclusiveLock | t

(3 rows)

The fourth transaction does the same:

=> SELECT * FROM locks_accounts WHERE pid = 30936;

pid | locktype | lockid | mode | granted

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−

30936 | relation | accounts | RowExclusiveLock | t

30936 | transactionid | 122864 | ShareLock | f

30936 | transactionid | 122866 | ExclusiveLock | t

(3 rows)

Now both the third and the fourth transactions are waiting for the second one to complete,

risking to get into a race condition. The queue has virtually fallen apart.

T2

No Key Update

T3
T4

ctid xmin xmax data(0,1)
T1

(0,2) T1 T2

If other transactions had joined the queue while it still existed, all of them would have

been dragged into this race.

Conclusion: it is not a good idea to update the same table row in multiple concurrent

processes. Under high load, this hotspot can quickly turn into a bottleneck that causes

performance issues.

Let’s commit all the started transactions.

=> COMMIT;

UPDATE 1

=> COMMIT;

220

13.4 Wait Queue

UPDATE 1

=> COMMIT;

Shared Modes

Postgre��� acquires shared locks only for referential integrity checks. Using them in a

high-load application can lead to resource starvation, and a two-level locking model can-

not prevent such an outcome.

Let’s recall the steps a transaction should take to lock a row:

� If the xmax field and hint bits indicate that the row is locked in the exclusive mode,

acquire an exclusive heavyweight tuple lock.

� If required, wait for all the incompatible locks to be released by requesting a lock on

the �� of the xmax transaction (or several transactions if xmax contains a multixact

��).

� Write its own �� into xmax in the tuple header and set the required hint bits.

� Release the tuple lock if it was acquired in the first step.

The first two steps imply that if the locking modes are compatible, the transaction will

jump the queue.

Let’s repeat our experiment from the very beginning.

=> TRUNCATE accounts;

=> INSERT INTO accounts(id, client, amount)

VALUES

(1,'alice',100.00),

(2,'bob',200.00),

(3,'charlie',300.00);

Start the first transaction:

=> BEGIN;

=> SELECT txid_current(), pg_backend_pid();

txid_current | pg_backend_pid

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−

122869 | 30723

(1 row)

The row is now locked in a shared mode:

=> SELECT * FROM accounts WHERE id = 1 FOR SHARE;

221

Chapter 13 Row-Level Locks

The second transaction tries to update the same row, but it is not allowed: Share and No

Key Updatemodes are incompatible:

=> BEGIN;

=> SELECT txid_current(), pg_backend_pid();

txid_current | pg_backend_pid

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−

122870 | 30794

(1 row)

=> UPDATE accounts SET amount = amount + 100.00 WHERE id = 1;

Waiting for the first transaction to complete, the second transaction is holding the tuple

lock, just like in the previous example:

=> SELECT * FROM locks_accounts WHERE pid = 30794;

pid | locktype | lockid | mode | granted

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−

30794 | relation | accounts | RowExclusiveLock | t

30794 | transactionid | 122869 | ShareLock | f

30794 | transactionid | 122870 | ExclusiveLock | t

30794 | tuple | accounts(0,1) | ExclusiveLock | t

(4 rows)

T1

Share

T2

tuple (0,1)

ctid xmin xmax data(0,1)
T1

Now let the third transaction lock the row in a shared mode. Such a lock is compatible

with the already acquired lock, so this transaction jumps the queue:

=> BEGIN;

=> SELECT txid_current(), pg_backend_pid();

txid_current | pg_backend_pid

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−

122871 | 30865

(1 row)

=> SELECT * FROM accounts WHERE id = 1 FOR SHARE;

222

13.4 Wait Queue

We have got two transactions locking the same row:

=> SELECT * FROM pgrowlocks('accounts') \gx

−[RECORD 1]−−−−−−−−−−−−−−−

locked_row | (0,1)

locker | 2

multi | t

xids | {122869,122871}

modes | {Share,Share}

pids | {30723,30865}

T1
T3

Share

T2

tuple (0,1)

ctid xmin xmax data(0,1)
multi

If the first transaction completes at this point, the second one will wake up to see that the

row is still locked and will get back to the queue—but this time it will find itself behind

the third transaction:

=> COMMIT;

=> SELECT * FROM locks_accounts WHERE pid = 30794;

pid | locktype | lockid | mode | granted

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−

30794 | relation | accounts | RowExclusiveLock | t

30794 | transactionid | 122870 | ExclusiveLock | t

30794 | transactionid | 122871 | ShareLock | f

30794 | tuple | accounts(0,1) | ExclusiveLock | t

(4 rows)

And only when the third transaction completes will the second one be able to perform an

update (unless other shared locks appear within this time interval).

=> COMMIT;

UPDATE 1

=> COMMIT;

Foreign key checks are unlikely to cause any issues, as key attributes usually remain un-

changed and Key Share can be used together with No Key Update. But in most cases, you

should avoid shared row-level locks in applications.

223

Chapter 13 Row-Level Locks

13.5 No-Wait Locks

S�� commands usually wait for the requested resources to be freed. But sometimes it

makes sense to cancel the operation if the lock cannot be acquired immediately. For this

purpose, commands like ������, ����, and ����� offer the ������ clause.

Let’s lock a row:

=> BEGIN;

=> UPDATE accounts SET amount = amount + 100.00 WHERE id = 1;

The command with the ������ clause immediately completes with an error if the re-

quested resource is locked:

=> SELECT * FROM accounts

FOR UPDATE NOWAIT;

ERROR: could not obtain lock on row in relation "accounts"

Such an error can be captured and handled by the application code.

The ������ and ������ commands do not have the ������ clause. Instead, you can try to

lock the row using the ������ ��� ������ ������ command and then update or delete it if

the attempt is successful.

In some rare cases, it may be convenient to skip the already locked rows and start process-

ing the available ones right away. This is exactly what ������ ��� does when run with the

���� ������ clause:

=> SELECT * FROM accounts

ORDER BY id

FOR UPDATE SKIP LOCKED

LIMIT 1;

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

2 | bob | 200.00

(1 row)

In this example, the first (already locked) row was skipped, and the query locked and re-

turned the second row.

This approach enables us to process rows in batchesp. ��� or set up parallel processing of event

queues. However, avoid inventing other use cases for this command—most tasks can be

addressed using much simpler methods.

Last but not least, you can avoid long waits by setting a timeout:

224

13.6 Deadlocks

=> SET lock_timeout = '1s';

=> ALTER TABLE accounts DROP COLUMN amount;

ERROR: canceling statement due to lock timeout

The command completes with an error because it has failed to acquire a lock within one

second. A timeout can be set not only at the session level, but also at lower levels, for

example, for a particular transaction.

This method prevents long waits during table processing when the command requiring

an exclusive lock is executed under load. If an error occurs, this command can be retried

after a while.

While statement_timeout limits the total time of operator execution, the lock_timeout parameter

defines the maximum time that can be spent waiting on a lock.

=> ROLLBACK;

13.6 Deadlocks

A transaction may sometimes require a resource that is currently being used by another

transaction, which, in its turn, may be waiting on a resource locked by the third transac-

tion, and so on. Such transactions get queued using heavyweight locks.

But occasionally a transaction already in the queue may need yet another resource, so it

has to join the same queue again and wait for this resource to be released. A deadlock1

occurs: the queue now has a circular dependency that cannot resolve on its own.

For better visualization, let’s draw a wait-for graph. Its nodes represent active processes,

while the edges shownas arrows point from the processeswaiting on locks to the processes

holding these locks. If the graph has a cycle, that is, a node can reach itself following the

arrows, it means that a deadlock has occurred.

The illustrations here show transactions rather than processes. This substitution is usually accept-

able because one transaction is executed by one process, and locks can only be acquired within a

transaction. But in general, it is more correct to talk about processes, as some locks may not be

released right away when the transaction is complete.

If a deadlock has occurred, and none of its participants has set a timeout, transactions

will be waiting on each other forever. That’s why the lock manager2 performs automatic

deadlock detection.

1 postgresql.org/docs/14/explicit-locking.html#LOCKING-DEADLOCKS
2 backend/storage/lmgr/README

225

https://postgresql.org/docs/14/explicit-locking.html#LOCKING-DEADLOCKS
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/README;hb=REL_14_STABLE

Chapter 13 Row-Level Locks

T1

resource 1

T2

resource 2

T3

resource 3

However, this check requires some effort, which should not be wasted each time a lock is

requested (after all, deadlocks do not happen too often). So if the process makes an un-

successful attempt to acquire a lock and falls asleep after joining the queue, Postgre���

automatically sets a timeout as defined by the1s deadlock_timeout parameter.1 If the re-

source becomes available earlier—great, then the extra cost of the check will be avoided.

But if the wait continues after the deadlock_timeout units of time, the waiting process

wakes up and initiates the check.2

This check effectively consists in building a wait-for graph and searching it for cycles.3 To

“freeze” the current state of the graph, Postgre��� stops any processing of heavyweight

locks for the whole duration of the check.

If no deadlocks are detected, the process falls asleep again; sooner or later its turn will

come.

If a deadlock is detected, one of the transactions will be forced to terminate, thus releas-

ing its locks and enabling other transactions to continue their execution. In most cases,

it is the transaction initiating the check that gets interrupted, but if the cycle includes

an autovacuum process that is not currently freezing tuples to prevent wraparound, the

server terminates autovacuum as having lower priority.

Deadlocks usually indicate bad application design. To discover such situations, you have

two things to watch out for: the corresponding messages in the server log and an increas-

ing deadlocks value in the pg_stat_database table.

1 backend/storage/lmgr/proc.c, ProcSleep function
2 backend/storage/lmgr/proc.c, CheckDeadLock function
3 backend/storage/lmgr/deadlock.c

226

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/proc.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/proc.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/deadlock.c;hb=REL_14_STABLE

13.6 Deadlocks

Deadlocks by Row Updates

Although deadlocks are ultimately caused by heavyweight locks, it is mostly row-level

locks acquired in different order that lead to them.

Suppose a transaction is going to transfer $��� between two accounts. It starts by drawing

this sum from the first account:

=> BEGIN;

=> UPDATE accounts SET amount = amount - 100.00 WHERE id = 1;

UPDATE 1

At the same time, another transaction is going to transfer $�� from the second account to

the first one. It begins by drawing this sum from the second account:

=> BEGIN;

=> UPDATE accounts SET amount = amount - 10.00 WHERE id = 2;

UPDATE 1

Now the first transaction attempts to increase the amount in the second account but sees

that the corresponding row is locked:

=> UPDATE accounts SET amount = amount + 100.00 WHERE id = 2;

Then the second transaction tries to update the first account but also gets locked:

=> UPDATE accounts SET amount = amount + 10.00 WHERE id = 1;

This circular wait will never resolve on its own. Unable to obtain the resource within one

second, the first transaction initiates a deadlock check and gets aborted by the server:

ERROR: deadlock detected

DETAIL: Process 30423 waits for ShareLock on transaction 122877;

blocked by process 30723.

Process 30723 waits for ShareLock on transaction 122876; blocked by

process 30423.

HINT: See server log for query details.

CONTEXT: while updating tuple (0,2) in relation "accounts"

Now the second transaction can continue. It wakes up and performs an update:

UPDATE 1

Let’s complete the transactions.

=> ROLLBACK;

=> ROLLBACK;

227

Chapter 13 Row-Level Locks

The right way to perform such operations is to lock resources in the same order. For exam-

ple, in this particular case the accounts could have been locked in ascending order based

on their numbers.

Deadlocks Between Two UPDATE Statements

In some cases deadlocks seem impossible, and yet they do occur.

We usually assume that ��� commands are atomic, but are they really? Let’s take a closer

look at ������: this command locks rows as they are being updated rather than all at once,

and it does not happen simultaneously. So if one ������ command modifies several rows

in one order while the other is doing the same in a different order, a deadlock can occur.

Let’s reproduce this scenario. First, we are going to build an index on the amount column,

in descending order:

=> CREATE INDEX ON accounts(amount DESC);

To be able to observe the process, we can write a function that slows things down:

=> CREATE FUNCTION inc_slow(n numeric)

RETURNS numeric

AS $$

SELECT pg_sleep(1);

SELECT n + 100.00;

$$ LANGUAGE sql;

The first ������ command is going to update all the tuples. The execution plan relies on

a sequential scan of the whole table.

=> EXPLAIN (costs off)

UPDATE accounts SET amount = inc_slow(amount);

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−

Update on accounts

−> Seq Scan on accounts

(2 rows)

To make sure that the heap page stores the rows in ascending order based on the amount

column, we have to truncate the table and insert the rows anew:

=> TRUNCATE accounts;

=> INSERT INTO accounts(id, client, amount)

VALUES

(1,'alice',100.00),

(2,'bob',200.00),

(3,'charlie',300.00);

228

13.6 Deadlocks

=> ANALYZE accounts;

=> SELECT ctid, * FROM accounts;

ctid | id | client | amount

−−−−−−−+−−−−+−−−−−−−−−+−−−−−−−−

(0,1) | 1 | alice | 100.00

(0,2) | 2 | bob | 200.00

(0,3) | 3 | charlie | 300.00

(3 rows)

The sequential scan will update the rows in the same order (it is not always true for large

tables p. ���though).

Let’s start the update:

=> UPDATE accounts SET amount = inc_slow(amount);

Meanwhile, we are going to forbid sequential scans in another session:

=> SET enable_seqscan = off;

As a result, the planner chooses an index scan for the next ������ command.

=> EXPLAIN (costs off)

UPDATE accounts SET amount = inc_slow(amount)

WHERE amount > 100.00;

QUERY PLAN

−−−

Update on accounts

−> Index Scan using accounts_amount_idx on accounts

Index Cond: (amount > 100.00)

(3 rows)

The second and third rows satisfy the condition; since the index is descending, the rows

will get updated in the reverse order.

Let’s start the next update:

=> UPDATE accounts SET amount = inc_slow(amount)

WHERE amount > 100.00;

The pgrowlocks extension shows that the first operator has already updated the first row

(�,�), while the second one has managed to update the last row (�,�):

=> SELECT locked_row, locker, modes FROM pgrowlocks('accounts');

locked_row | locker | modes

−−−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−−−−−−−−

(0,1) | 122883 | {"No Key Update"}

(0,3) | 122884 | {"No Key Update"}

(2 rows)

first
second

229

Chapter 13 Row-Level Locks

Another second passes. The first operator has updated the second row, and the other one

would like to do it too, but it is not allowed.

=> SELECT locked_row, locker, modes FROM pgrowlocks('accounts');

locked_row | locker | modes

−−−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−−−−−−−−

(0,1) | 122883 | {"No Key Update"}

(0,2) | 122883 | {"No Key Update"}

(0,3) | 122884 | {"No Key Update"}

(3 rows)

the first one wins

Now the first operator would like to update the last table row, but it is already locked by

the second operator. A deadlock has occurred.

One of the transactions is aborted:

ERROR: deadlock detected

DETAIL: Process 30794 waits for ShareLock on transaction 122883;

blocked by process 30723.

Process 30723 waits for ShareLock on transaction 122884; blocked by

process 30794.

HINT: See server log for query details.

CONTEXT: while updating tuple (0,2) in relation "accounts"

And the other completes its execution:

UPDATE 3

Although such situations seem impossible, they do occur in high-load systemswhen batch

row updates are performed.

230

14
Miscellaneous Locks

14.1 Non-Object Locks

To lock a resource that is not considered a relation, Postgre��� uses heavyweight locks

of the object type.1 You can lock almost anything that is stored in the system catalog:

tablespaces, subscriptions, schemas, roles, policies, enumerated data types, and so on.

Let’s start a transaction that creates a table:

=> BEGIN;

=> CREATE TABLE example(n integer);

Now take a look at non-relation locks in the pg_locks table:

=> SELECT database,

(

SELECT datname FROM pg_database WHERE oid = database

) AS dbname,

classid,

(

SELECT relname FROM pg_class WHERE oid = classid

) AS classname,

objid,

mode,

granted

FROM pg_locks

WHERE locktype = 'object'

AND pid = pg_backend_pid() \gx

−[RECORD 1]−−−−−−−−−−−−−−

database | 16391

dbname | internals

classid | 2615

classname | pg_namespace

objid | 2200

mode | AccessShareLock

granted | t

1 backend/storage/lmgr/lmgr.c, LockDatabaseObject & LockSharedObject functions

231

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/lmgr.c;hb=REL_14_STABLE

Chapter 14 Miscellaneous Locks

The locked resource is defined here by three values:

database — the oid of the database that contains the object being locked (or zero if this

object is common to the whole cluster)

classid — the oid listed in pg_class that corresponds to the name of the system catalog

table defining the type of the resource

objid — the oid listed in the system catalog table referenced by classid

The database value points to the internals database; it is the database to which the current

session is connected. The classid column points to the pg_namespace table, which lists

schemas.

Now we can decipher the objid:

=> SELECT nspname FROM pg_namespace WHERE oid = 2200;

nspname

−−−−−−−−−

public

(1 row)

Thus, Postgre��� has locked the public schema to make sure that no one can delete it

while the transaction is still running.

Similarly, object deletion requires exclusive locks on both the object itself and all the re-

sources it depends on.1

=> ROLLBACK;

14.2 Relation Extension Locks

As the number of tuples in a relation grows, Postgre��� inserts new tuples into free space

in the already available pages whenever possible. But it is clear that at some point it will

have to add new pages, that is, to extend the relation. In terms of the physical layout, new

pages get added to the end of the corresponding file (which, in turn, can lead to creation

of a new file).

For new pages to be added by only one process at a time, this operation is protected by a

special heavyweight lock of the extend type.2 Such a lock is also used by index vacuuming

to forbid adding new pages during an index scan.

1 backend/catalog/dependency.c, performDeletion function
2 backend/storage/lmgr/lmgr.c, LockRelationForExtension function

232

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/catalog/dependency.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/lmgr.c;hb=REL_14_STABLE

14.3 Page Locks

Relation extension locks behave a bit differently from what we have seen so far:

• They are released as soon as the extension is created, without waiting for the trans-

action to complete.

• They cannot cause a deadlock, so they are not included into the wait-for graph.

However, a deadlock check will still be performed if the procedure of extending a relation is taking

longer than deadlock_timeout. It is not a typical situation, but it can happen if a large number of

processes perform multiple insertions concurrently. In this case, the check can be called multiple

times, virtually paralyzing normal system operation.

To minimize this risk, heap files v. �.�are extended by several pages at once (in proportion to the number

of processes awaiting the lock, but by not more than ��� pages per operation).1 An exception to

this rule is �-tree index files, which are extended by one page at a time.2

14.3 Page Locks

A page-level heavyweight lock of the page type3 is applied only by ��� indexes, and only

in the following case.

G�� indexes can speed up search of elements in compound values, such as words in text

documents. They canbe roughly described as �-trees that store separatewords rather than

the whole documents. When a new document is added, the index has to be thoroughly

updated to include each word that appears in this document.

To improve performance, ��� indexes allow deferred insertion, which is controlled by the

onfastupdate storage parameter. Newwords are first quickly added into anunorderedpending

list, and after a while all the accumulated entries are moved into the main index structure.

Since different documents are likely to contain duplicate words, this approach proves to

be quite cost-effective.

To avoid concurrent transfer of words by several processes, the index metapage is locked

in the exclusive mode until all the words are moved from the pending list to the main

index. This lock does not interfere with regular index usage.

Just like relation extension locks, page locks are released immediately when the task is

complete, without waiting for the end of the transaction, so they never cause deadlocks.

1 backend/access/heap/hio.c, RelationAddExtraBlocks function
2 backend/access/nbtree/nbtpage.c, _bt_getbuf function
3 backend/storage/lmgr/lmgr.c, LockPage function

233

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/hio.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/nbtree/nbtpage.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/lmgr.c;hb=REL_14_STABLE

Chapter 14 Miscellaneous Locks

14.4 Advisory Locks

Unlike other heavyweight locks (such as relation locks), advisory locks1 are never acquired

automatically: they are controlled by the application developer. These locks are conve-

nient to use if the application requires dedicated locking logic for some particular purpose.

Supposeweneed to lock a resource that does not correspond to any database object (which

we could lock using ������ ��� or ���� ����� commands). In this case, the resource needs

to be assigned a numeric ��. If the resource has a unique name, the easiest way to do it is

to generate a hash code for this name:

=> SELECT hashtext('resource1');

hashtext

−−−−−−−−−−−

991601810

(1 row)

Postgre��� provides a whole class of functions formanaging advisory locks.2 Their names

begin with the pg_advisory prefix and can contain the following words that hint at the

function purpose:

lock —acquire a lock

try —acquire a lock if it can be done without waits

unlock — release the lock

share —use a shared locking mode (by default, the exclusive mode is used)

xact — acquire and hold a lock till the end of the transaction (by default, the lock is held

till the end of the session)

Let’s acquire an exclusive lock until the end of the session:

=> BEGIN;

=> SELECT pg_advisory_lock(hashtext('resource1'));

=> SELECT locktype, objid, mode, granted

FROM pg_locks WHERE locktype = 'advisory' AND pid = pg_backend_pid();

locktype | objid | mode | granted

−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−

advisory | 991601810 | ExclusiveLock | t

(1 row)

1 postgresql.org/docs/14/explicit-locking.html#ADVISORY-LOCKS
2 postgresql.org/docs/14/functions-admin.html#FUNCTIONS-ADVISORY-LOCKS

234

https://postgresql.org/docs/14/explicit-locking.html#ADVISORY-LOCKS
https://postgresql.org/docs/14/functions-admin.html#FUNCTIONS-ADVISORY-LOCKS

14.5 Predicate Locks

For advisory locks to actually work, other processes must also observe the established

order when accessing the resource; it must be guaranteed by the application.

The acquired lock will be held even after the transaction is complete:

=> COMMIT;

=> SELECT locktype, objid, mode, granted

FROM pg_locks WHERE locktype = 'advisory' AND pid = pg_backend_pid();

locktype | objid | mode | granted

−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−

advisory | 991601810 | ExclusiveLock | t

(1 row)

Once the operation on the resource is over, the lock has to be explicitly released:

=> SELECT pg_advisory_unlock(hashtext('resource1'));

14.5 Predicate Locks

The term predicate lock appeared as early as the first attempts to implement full isolation

based on locks.1 The problem confronted at that time was that locking all the rows to be

read and updated still could not guarantee full isolation. Indeed, if new rows that satisfy

the filter condition get inserted into the table, they will become phantoms. p. ��

For this reason, it was suggested to lock conditions (predicates) rather than rows. If you

run a query with the a > 10 predicate, locking this predicate will not allow adding new

rows into the table if they satisfy this condition, so phantoms will be avoided. The trouble

is that if a query with a different predicate appears, such as a < 20, you have to find out

whether these predicates overlap. In theory, this problem is algorithmically unsolvable;

in practice, it can be solved only for a very simple class of predicates (like in this example).

In Postgre���, the Serializable isolation level is implemented in a different way: it uses

the Serializable Snapshot Isolation (���) protocol.2 The term predicate lock still remains,

but its sense has radically changed. In fact, such “locks” do not lock anything: they are

used to track data dependencies between different transactions.

It is proved that p. ��snapshot isolation at theRepeatable Read level allowsno anomalies except

for the write skew and the read-only transaction anomaly. These two anomalies result in

1 K. P. Eswaran, J. N. Gray, R. A. Lorie, I. L. Traiger. The notions of consistency and predicate locks in a database

system
2 backend/storage/lmgr/README-SSI

backend/storage/lmgr/predicate.c

235

https://jimgray.azurewebsites.net/papers/on%20the%20notions%20of%20consistency%20and%20predicate%20locks%20in%20a%20database%20system%20cacm.pdf
https://jimgray.azurewebsites.net/papers/on%20the%20notions%20of%20consistency%20and%20predicate%20locks%20in%20a%20database%20system%20cacm.pdf
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/README-SSI;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/predicate.c;hb=REL_14_STABLE

Chapter 14 Miscellaneous Locks

certain patterns in the data dependence graph that can be discovered at a relatively low

cost.

The problem is that we must differentiate between two types of dependencies:

• The first transaction reads a row that is later updated by the second transaction (��

dependency).

• The first transaction modifies a row that is later read by the second transaction (��

dependency).

W� dependencies can be detected using regular locks, but �� dependencies have to be

tracked via predicate locks. Such tracking is turned on automatically at the Serializable

isolation level, and that’s exactly why it is important to use this level for all transactions

(or at least all the interconnected ones). If any transaction is running at a different level,

it will not set (or check) predicate locks, so the Serializable level will be downgraded to

Repeatable Read.

I would like to stress once again that despite their name, predicate locks do not lock any-

thing. Instead, a transaction is checked for “dangerous” dependencies when it is about to

be committed, and if Postgre��� suspects an anomaly, this transaction will be aborted.

Let’s create a table with an index that will span several pages (it can be achieved by using

a low fillfactor value):

=> CREATE TABLE pred(n numeric, s text);

=> INSERT INTO pred(n) SELECT n FROM generate_series(1,10000) n;

=> CREATE INDEX ON pred(n) WITH (fillfactor = 10);

=> ANALYZE pred;

If the query performs a sequential scan, a predicate lock is acquired on the whole table

(even if some of the rows do not satisfy the provided filter conditions).

=> SELECT pg_backend_pid();

pg_backend_pid

−−−−−−−−−−−−−−−−

34753

(1 row)

=> BEGIN ISOLATION LEVEL SERIALIZABLE;

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT * FROM pred WHERE n > 100;

236

14.5 Predicate Locks

QUERY PLAN

−−−

Seq Scan on pred (actual rows=9900 loops=1)

Filter: (n > '100'::numeric)

Rows Removed by Filter: 100

(3 rows)

Although predicate locks have their own infrastructure, the pg_locks view displays them

together with heavyweight locks. All predicate locks are always acquired in the SIRead

mode, which stands for Serializable Isolation Read:

=> SELECT relation::regclass, locktype, page, tuple

FROM pg_locks WHERE mode = 'SIReadLock' AND pid = 34753

ORDER BY 1, 2, 3, 4;

relation | locktype | page | tuple

−−−−−−−−−−+−−−−−−−−−−+−−−−−−+−−−−−−−

pred | relation | |

(1 row)

=> ROLLBACK;

Note that predicate locks may be held longer than the transaction duration, as they are

used to track dependencies between transactions. But anyway, they are managed auto-

matically.

If the query performs an index scan, the situation improves. For a �-tree index, it is enough

to set a predicate lock on the read heap tuples and on the scanned leaf pages of the index.

It will “lock” the whole range that has been read, not only the exact values.

=> BEGIN ISOLATION LEVEL SERIALIZABLE;

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT * FROM pred WHERE n BETWEEN 1000 AND 1001;

QUERY PLAN

−−−

Index Scan using pred_n_idx on pred (actual rows=2 loops=1)

Index Cond: ((n >= '1000'::numeric) AND (n <= '1001'::numeric))

(2 rows)

=> SELECT relation::regclass, locktype, page, tuple

FROM pg_locks WHERE mode = 'SIReadLock' AND pid = 34753

ORDER BY 1, 2, 3, 4;

relation | locktype | page | tuple

−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−+−−−−−−−

pred | tuple | 4 | 96

pred | tuple | 4 | 97

pred_n_idx | page | 28 |

(3 rows)

237

Chapter 14 Miscellaneous Locks

The number of leaf pages corresponding to the already scanned tuples can change: for

example, an index page can be split when new rows get inserted into the table. However,

Postgre��� takes it into account and locks newly appeared pages too:

=> INSERT INTO pred

SELECT 1000+(n/1000.0) FROM generate_series(1,999) n;

=> SELECT relation::regclass, locktype, page, tuple

FROM pg_locks WHERE mode = 'SIReadLock' AND pid = 34753

ORDER BY 1, 2, 3, 4;

relation | locktype | page | tuple

−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−+−−−−−−−

pred | tuple | 4 | 96

pred | tuple | 4 | 97

pred_n_idx | page | 28 |

pred_n_idx | page | 266 |

pred_n_idx | page | 267 |

pred_n_idx | page | 268 |

pred_n_idx | page | 269 |

(7 rows)

Each read tuple is locked separately, and there may be quite a few of such tuples. Predi-

cate locks use their own pool allocated at the server start. The total number of predicate

locks is limited by the value of64 max_pred_locks_per_transaction parameter multiplied by

100 max_connections (despite the parameter names, predicate locks are not being counted per

separate transactions).

Here we get the same problem as with row-level locks, but it is solved in a different way:

lock escalation is applied.1

As soon as the number of tuple locks related to one page exceedsv. �� the value of the

2 max_pred_locks_per_page parameter, they are replaced by a single page-level lock.

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT * FROM pred WHERE n BETWEEN 1000 AND 1002;

QUERY PLAN

−−−

Index Scan using pred_n_idx on pred (actual rows=3 loops=1)

Index Cond: ((n >= '1000'::numeric) AND (n <= '1002'::numeric))

(2 rows)

Instead of three locks of the tuple type we now have one lock of the page type:

1 backend/storage/lmgr/predicate.c, PredicateLockAcquire function

238

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/predicate.c;hb=REL_14_STABLE

14.5 Predicate Locks

=> SELECT relation::regclass, locktype, page, tuple

FROM pg_locks WHERE mode = 'SIReadLock' AND pid = 34753

ORDER BY 1, 2, 3, 4;

relation | locktype | page | tuple

−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−+−−−−−−−

pred | page | 4 |

pred_n_idx | page | 28 |

pred_n_idx | page | 266 |

pred_n_idx | page | 267 |

pred_n_idx | page | 268 |

pred_n_idx | page | 269 |

(6 rows)

=> ROLLBACK;

Escalation of page-level locks follows the same principle v. ��. If the number of such locks

for a particular relation exceeds the −2max_pred_locks_per_relation value, they get replaced

by a single relation-level lock. (If this parameter is set to a negative value, the thresh-

old is calculated as 64max_pred_locks_per_transaction divided by the absolute value of

max_pred_locks_per_relation; thus, the default threshold is ��).

Lock escalation is sure to lead to multiple false-positive serialization errors, which neg-

atively affects system throughput. So you have to find an appropriate balance between

performance and spending the available ��� on locks.

Predicate locks support the following index types:

• �-trees

• hash indexes, �i��, and ��� v. ��

If an index scan is performed, but the index does not support predicate locks, the whole

index will be locked. It is only to be expected that the number of transactions aborted for

no good reason will also increase in this case.

For more efficient operation at the Serializable level, it makes sense to explicitly declare

read-only transactions as such using the ���� ���� clause. If the lock manager sees that a

read-only transaction will not conflict with other transactions,1 it can release the already

set predicate locks and refrain from acquiring new ones. And if such a transaction is also

declared ����������, the read-only transaction p. ��anomaly will be avoided too.

1 backend/storage/lmgr/predicate.c, SxactIsROSafe macro

239

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/predicate.c;hb=REL_14_STABLE

15
Locks on Memory Structures

15.1 Spinlocks

To protect data structures in shared memory, Postgre��� uses several types of lighter and

less expensive locks rather than regular heavyweight ones.

The simplest locks are spinlocks. They are usually acquired for a very short time interval

(no longer than several ��� cycles) to protect particular memory cells from concurrent

updates.

Spinlocks are based on atomic ��� instructions, such as compare-and-swap.1 They only

support the exclusive lockingmode. If the required resource is already locked, the process

busy-waits, repeating the command (it “spins” in the loop, hence the name). If the lock

cannot be acquired within the specified time interval, the process pauses for a while and

then starts another loop.

This strategy makes sense if the probability of a conflict is estimated as very low, so after

an unsuccessful attempt the lock is likely to be acquired within several instructions.

Spinlocks have neither deadlock detection nor instrumentation. From the practical stand-

point, we should simply know about their existence; the whole responsibility for their

correct implementation lies with Postgre��� developers.

15.2 Lightweight Locks

Next, there are so-called lightweight locks, or lwlocks.2 Acquired for the time needed to

process a data structure (for example, a hash table or a list of pointers), lightweight locks

are typically short; however, they can take longer when used to protect �/� operations.

1 backend/storage/lmgr/s_lock.c
2 backend/storage/lmgr/lwlock.c

240

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/s_lock.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/lmgr/lwlock.c;hb=REL_14_STABLE

15.3 Examples

Lightweight locks support two modes: exclusive (for data modification) and shared (for

read-only operations). There is no queue as such: if several processes are waiting on a

lock, one of them will get access to the resource in a more or less random fashion. In

high-load systems with multiple concurrent processes, it can lead to some unpleasant

effects.

Deadlock checks are not provided; wehave to trust Postgre��� developers that lightweight

locks are implemented correctly. However, these locks do have instrumentation, so, unlike

spinlocks, they can be observed.

15.3 Examples

To get some idea of how and where spinlocks and lightweight locks can be used, let’s take

a look at two shared memory structures: buffer cache and ��� buffers. I will name only

some of the locks; the full picture is too complex and is likely to interest only Postgre���

core developers.

Buffer Cache

To access a hash table p. ���used to locate a particular buffer in the cache, the process must

acquire a BufferMapping lightweight lock either in the sharedmode for reading or in the

exclusive mode if any modifications are expected.

hash table

BufferMapping ×128

free buffers

clock hand

buffer strategy

BufferIO

BufferContent

buffer header

buffer
pin

241

Chapter 15 Locks on Memory Structures

The hash table is accessed very frequently, so this lock often becomes a bottleneck. To

maximize granularity, it is structured as a tranche of ��� individual lightweight locks, each

protecting a separate part of the hash table.1

A hash table lock was converted into a tranche of �� locks as early as ����, in Postgre��� �.�; ten

years later, when version �.� was released, the size of the tranche was increased to ���, but it may

still be not enough for modern multi-core systems.

To get access to the buffer header, the process acquires a buffer header spinlock2 (the

name is arbitrary, as spinlocks have no user-visible names). Some operations, such as

incrementing the usage counter, do not require explicit locks and can be performed using

atomic ��� instructions.

To read a page in a buffer, the process acquires a BufferContent lock in the header of this

buffer.3 It is usually held only while tuple pointers are being read; later on, the protection

provided by buffer pinningp. ��� will be enough. If the buffer content has to be modified, the

BufferContent lock must be acquired in the exclusive mode.

When a buffer is read from disk (or written to disk), Postgre��� also acquires a BufferIO

lock in the buffer header; it is virtually an attribute used as a lock rather than an actual

lock.4 It signals other processes requesting access to this page that they have to wait until

the �/� operation is complete.

The pointer to free buffers and the clock hand of the eviction mechanism are protected by

a single common buffer strategy spinlock.5

WAL Buffers

W�� cache also uses a hash table to map pages to buffers. Unlike the buffer cache hash

table, it is protected by a single WALBufMapping lightweight lock because ��� cache is

smaller (it usually takes 1

32
of the buffer cache size) and buffer access is more ordered.6

1 backend/storage/buffer/bufmgr.c

include/storage/buf_internals.h, BufMappingPartitionLock function
2 backend/storage/buffer/bufmgr.c, LockBufHdr function
3 include/storage/buf_internals.h
4 backend/storage/buffer/bufmgr.c, StartBufferIO function
5 backend/storage/buffer/freelist.c
6 backend/access/transam/xlog.c, AdvanceXLInsertBuffer function

242

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/bufmgr.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/storage/buf_internals.h;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/bufmgr.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/storage/buf_internals.h;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/bufmgr.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/buffer/freelist.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/xlog.c;hb=REL_14_STABLE

15.4 Monitoring Waits

WALWrite

PrevBytePos

CurBytePos

insert position WALInsert ×8

WALBufMapping

hash table

Writing of ��� pages to disk is protected by a WALWrite lightweight lock, which ensures

that this operation is performed by one process at a time.

To create a ��� entry, the process first reserves some space within the ��� page and then

fills it with data. Space reservation is strictly ordered; the process must acquire an in-

sert position spinlock that protects the insertion pointer.1 But once the space is reserved, it

can be filled by several concurrent processes. For this purpose, each process must acquire

any of the eight lightweight locks constituting the WALInsert tranche.2

15.4 Monitoring Waits

Without doubt, locks are indispensable for correct Postgre��� operation, but they can lead

to undesirable waits. It is useful to track such waits to understand their origin.

The easiest way to get an overview of long-term locks is to turn the offlog_lock_waits pa-

rameter on; it enables extensive logging of all the locks that cause a transaction to wait

for more than 1sdeadlock_timeout. This data is displayed when a deadlock check completes,

hence the parameter name. p. ���

However, the pg_stat_activity view v. �.�provides much more useful and complete informa-

tion. Whenever a process—either a system process or a backend—cannot proceed with

its task because it is waiting for something, this wait is reflected in the wait_event_type

and wait_event fields, which show the type and name of the wait, respectively.

All waits can be classified as follows.3

1 backend/access/transam/xlog.c, ReserveXLogInsertLocation function
2 backend/access/transam/xlog.c, WALInsertLockAcquire function
3 postgresql.org/docs/14/monitoring-stats.html#WAIT-EVENT-TABLE

243

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/xlog.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/xlog.c;hb=REL_14_STABLE
https://postgresql.org/docs/14/monitoring-stats.html#WAIT-EVENT-TABLE

Chapter 15 Locks on Memory Structures

Waits on various locks constitute quite a large group:

Lock —heavyweight locks

LWLock — lightweight locks

BufferPin —pinned buffers

But processes can be waiting for other events too:

IO — input/output, when it is required to read or write some data

Client —data sent by the client (psql spends in this state most of the time)

IPC —data sent by another process

Extension —a specific event registered by an extension

Sometimes a process simply does not perform any useful work. Such waits are usually

“normal,” meaning that they do not indicate any issues. This group comprises the follow-

ing waits:

Activity —background processes in their main cycle

Timeout — timer

Locks of each wait type are further classified by wait names. For example, waits on

lightweight locks get the name of the lock or the corresponding tranche.1

You should bear in mind that the pg_stat_activity view displays only those waits that are

handled in the source code in an appropriate way.2 Unless the name of the wait appears

in this view, the process is not in the state of wait of any known type. Such time should be

considered unaccounted for; it does not necessarily mean that the process is not waiting

on anything—we simply do not know what is happening at the moment.

=> SELECT backend_type, wait_event_type AS event_type, wait_event

FROM pg_stat_activity;

backend_type | event_type | wait_event

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−

logical replication launcher | Activity | LogicalLauncherMain

autovacuum launcher | Activity | AutoVacuumMain

client backend | |

background writer | Activity | BgWriterMain

checkpointer | Activity | CheckpointerMain

walwriter | Activity | WalWriterMain

(6 rows)

1 postgresql.org/docs/14/monitoring-stats.html#WAIT-EVENT-LWLOCK-TABLE
2 include/utils/wait_event.h

244

https://postgresql.org/docs/14/monitoring-stats.html#WAIT-EVENT-LWLOCK-TABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/utils/wait_event.h;hb=REL_14_STABLE

15.5 Sampling

Here all the background processes were idle when the view was sampled, while the client

backend was busy executing the query and was not waiting on anything.

15.5 Sampling

Unfortunately, the pg_stat_activity view shows only the current information on waits;

statistics are not accumulated. The only way to collect wait data over time is to sample

the view at regular intervals.

We have to take into account the stochastic nature of sampling. The shorter the wait as

compared to the sampling interval, the lower the chance to detect this wait. Thus, longer

sampling intervals require more samples to reflect the actual state of things (but as you

increase the sampling rate, the overhead also rises). For the same reason, sampling is

virtually useless for analyzing short-lived sessions.

Postgre��� provides no built-in tools for sampling; however, we can still try it out us-

ing the pg_wait_sampling1 extension. To do so, we have to specify its library in the

shared_preload_libraries parameter and restart the server:

=> ALTER SYSTEM SET shared_preload_libraries = 'pg_wait_sampling';

postgres$ pg_ctl restart -l /home/postgres/logfile

Now let’s install the extension into the database:

=> CREATE EXTENSION pg_wait_sampling;

This extension can display the history of waits, which is saved in its ring buffer. However,

it is much more interesting to get the waiting profile—the accumulated statistics for the

whole duration of the session.

For example, let’s take a look at the waits during benchmarking. We have to start the

pgbench utility and determine its process �� while it is running:

postgres$ /usr/local/pgsql/bin/pgbench -T 60 internals

=> SELECT pid FROM pg_stat_activity

WHERE application_name = 'pgbench';

pid

−−−−−−−

36367

(1 row)

1 github.com/postgrespro/pg_wait_sampling

245

https://github.com/postgrespro/pg_wait_sampling

Chapter 15 Locks on Memory Structures

Once the test is complete, the waits profile will look as follows:

=> SELECT pid, event_type, event, count

FROM pg_wait_sampling_profile WHERE pid = 36367

ORDER BY count DESC LIMIT 4;

pid | event_type | event | count

−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−−+−−−−−−−

36367 | IO | WALSync | 3478

36367 | IO | WALWrite | 52

36367 | Client | ClientRead | 30

36367 | IO | DataFileRead | 2

(4 rows)

By default (set by the10ms pg_wait_sampling.profile_period parameter) samples are taken

��� times per second. So to estimate the duration of waits in seconds, you have to di-

vide the count value by ���.

In this particular case,v. �� most of the waits are related to flushing ��� entries to disk. It is

a good illustration of the unaccounted-for wait time: the WALSync event was not instru-

mented until Postgre��� ��; for lower versions, a waits profile would not contain the first

row, although the wait itself would still be there.

And here is how the profile will look like if we artificially slow down the file system for

each �/� operation to take �.� seconds (I use slowfs1 for this purpose) :

postgres$ /usr/local/pgsql/bin/pgbench -T 60 internals

=> SELECT pid FROM pg_stat_activity

WHERE application_name = 'pgbench';

pid

−−−−−−−

36747

(1 row)

=> SELECT pid, event_type, event, count

FROM pg_wait_sampling_profile WHERE pid = 36747

ORDER BY count DESC LIMIT 4;

pid | event_type | event | count

−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−

36747 | IO | WALWrite | 3603

36747 | LWLock | WALWrite | 2095

36747 | IO | WALSync | 22

36747 | IO | DataFileExtend | 19

(4 rows)

Now �/� operations are the slowest ones—mainly those that are related towriting���files

to disk in the synchronousmode. Since���writing is protected by aWALWrite lightweight

lock, the corresponding row also appears in the profile.

1 github.com/nirs/slowfs

246

https://github.com/nirs/slowfs

15.5 Sampling

Clearly, the same lock is acquired in the previous example too, but since the wait is shorter

than the sampling interval, it either is sampled very few times or does not make it into

the profile at all. It illustrates once again that to analyze short waits you have to sample

them for quite a long time.

247

Part IV

Query Execution

16
Query Execution Stages

16.1 Demo Database

The examples in the previous parts of the book were based on simple tables with only

a handful of rows. This and subsequent parts deal with query execution, which is more

demanding in this respect: we need related tables that have amuch larger number of rows.

Instead of inventing a new data set for each example, I took an existing demo database

that illustrates passenger air traffic in Russia.1 It has several versions; we will use the

bigger one created on August 15, 2017. To install this version, you have to extract the file

containing the database copy from the archive2 and run this file in psql.

When developing this demo database, we tried to make its schema simple enough to be

understood without extra explanations; at the same time, we wanted it to be complex

enough to allow writing meaningful queries. The database is filled with true-to-life data,

which makes the examples more comprehensive and should be interesting to work with.

Here I will cover the main database objects only briefly; if you would like to review the

whole schema, you can take a look at its full description referenced in the footnote.

The main entity is a booking (mapped to the bookings table). One booking can include

several passengers, each with a separate electronic ticket (tickets). A passenger does not

constitute a separate entity; for the purpose of our experiments, we will assume that all

passengers are unique.

Each ticket includes one or more flight segments (mapped to the ticket_flights table).

A single ticket can have several flight segments in two cases: either it is a round-trip

ticket, or it is issued for connecting flights. Although there is no corresponding constraint

in the schema, all tickets in a booking are assumed to have the same flight segments.

1 postgrespro.com/community/demodb
2 edu.postgrespro.com/demo-big-en-20170815.zip

251

https://postgrespro.com/community/demodb
https://edu.postgrespro.com/demo-big-en-20170815.zip

Chapter 16 Query Execution Stages

Each flight (flights) goes from one airport (airports) to another. Flights with the same

flight number have the same points of departure and destination but different departure

dates.

The routes view is based on the flights table; it displays the information on routes that

does not depend on particular flight dates.

At check-in, each passenger is issued a boarding pass (boarding_passes) with a seat num-

ber. A passenger can check in for a flight only if this flight is included into the ticket.

Flight-seat combinations must be unique, so it is impossible to issue two boarding passes

for the same seat.

The number of seats (seats) in an aircraft and their distribution between different travel

classes depend on the particular model of the aircraft (aircrafts) that performs the flight.

It is assumed that each aircraft model can have only one cabin configuration.

Some tables have surrogate primary keys, while others use natural ones (some of them

being composite). It is done solely for demonstration purposes and is by no means an

example to follow.

The demo database can be thought of as a dump of a real system: it contains a snap-

shot of data taken at a particular time in the past. To display this time, you can call the

bookings.now() function. Use this function in demo queries that would demand the now()

function in real life.

The names of airports, cities, and aircraft models are stored in the airports_data and air-

crafts_data tables; they are provided in two languages, English and Russian. To construct

examples for this chapter, I will typically query the airports and aircrafts views shown in

the entity-relationship diagram; these views choose the output language based on the

en bookings.lang parameter value. The names of some base tables can still appear in query

plans though.

16.2 Simple Query Protocol

A simple version of the client-server protocol1 enables ��� query execution: it sends the

text of a query to the server and gets the full execution result in response, no matter how

many rows it contains.2 A query sent to the server passes several stages: it is parsed,

transformed, planned, and then executed.

1 postgresql.org/docs/14/protocol.html
2 backend/tcop/postgres.c, exec_simple_query function

252

https://postgresql.org/docs/14/protocol.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/tcop/postgres.c;hb=REL_14_STABLE

16.2 Simple Query Protocol

B
o
o
k
in
g
s

#
b
o
o
k
_r
e
f

∗
b
o
o
k
_d
a
te

∗
to
ta
l_
a
m
o
u
n
t

A
ir
p
o
rt
s

#
a
ir
p
o
rt
_c
o
d
e

∗
a
ir
p
o
rt
_n
a
m
e

∗
ci
ty

∗
co

o
rd
in
a
te
s

∗
ti
m
e
zo

n
e

T
ic
k
e
ts

#
ti
ck
e
t_
n
o

∗
b
o
o
k
_r
e
f

∗
p
a
ss
e
n
g
e
r_
id

∗
p
a
ss
e
n
g
e
r_
n
a
m
e

∗
co

n
ta
ct
_d
a
ta

T
ic
k
e
t_
fl
ig
h
ts

#
ti
ck
e
t_
n
o

#
fl
ig
h
t_
id

∗
fa
re
_c
o
n
d
it
io
n
s

∗
a
m
o
u
n
t

F
li
g
h
ts

#
fl
ig
h
t_
id

∗
fl
ig
h
t_
n
o

∗
sc
h
e
d
u
le
d
_d
e
p
a
rt
u
re

∗
sc
h
e
d
u
le
d
_a
rr
iv
a
l

∗
d
e
p
a
rt
u
re
_a
ir
p
o
rt

∗
a
rr
iv
a
l_
a
ir
p
o
rt

∗
st
a
tu
s

∗
a
ir
cr
a
ft
_c
o
d
e

∘
a
ct
u
a
l_
d
e
p
a
rt
u
re

∘
a
ct
u
a
l_
a
rr
iv
a
l

A
ir
cr
a
ft
s

#
a
ir
cr
a
ft
_c
o
d
e

∗
m
o
d
e
l

∗
ra
n
g
e

B
o
a
rd
in
g
_p

a
ss
e
s

#
ti
ck
e
t_
n
o

#
fl
ig
h
t_
id

∗
b
o
a
rd
in
g
_n
o

∗
se
a
t_
n
o

S
e
a
ts

#
a
ir
cr
a
ft
_c
o
d
e

#
se
a
t_
n
o

∗
fa
re
_c
o
n
d
it
io
n
s

1

253

Chapter 16 Query Execution Stages

Parsing

First of all, Postgre��� has to parse1 the query text to understand what needs to be exe-

cuted.

Lexical and syntactic analysis. The lexer splits the query text into a set of lexemes2 (such as

keywords, string literals, and numeric literals), while the parser validates this set against

the ��� language grammar.3 Postgre��� relies on standard parsing tools, namely Flex and

Bison utilities.

The parsed query is reflected in the backend’s memory as an abstract syntax tree.

For example, let’s take a look at the following query:

SELECT schemaname, tablename

FROM pg_tables

WHERE tableowner = 'postgres'

ORDER BY tablename;

The lexer singles out five keywords, five identifiers, a string literal, and three single-letter

lexemes (a comma, an equals sign, and a semicolon). The parser uses these lexemes to

build the parse tree, which is shown in the illustration below in a very simplified form.

The captions next to the tree nodes specify the corresponding parts of the query:

QUERY

TARGETENTRY FROMEXPR

RTE

pg_tables

OPEXPR

tableowner = 'postgres'

SORTGROUPCLAUSE

SELECT

schemaname, tablename FROM ORDER BY tablename

pg_table WHERE tableowner = 'postgres'

A rather obscure ��� abbreviation stands for Range Table Entry. Postgre��� source code

uses the term range table to refer to tables, subqueries, join results—in other words, to any

sets of rows that can be processed by ��� operators.4

1 postgresql.org/docs/14/parser-stage.html

backend/parser/README
2 backend/parser/scan.l
3 backend/parser/gram.y
4 include/nodes/parsenodes.h

254

https://postgresql.org/docs/14/parser-stage.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/parser/README;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/parser/scan.l;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/parser/gram.y;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/nodes/parsenodes.h;hb=REL_14_STABLE

16.2 Simple Query Protocol

Semantic analysis. The purpose of semantic analysis1 is to find out whether the database

contains any tables or other objects that this query refers to by name, and whether the

user has permission to access these objects. All the information required for semantic

analysis is stored p. ��in the system catalog.

Having received the parse tree, the semantic analyzer performs its further restructuring,

which includes adding references to specific database objects, data types, and other infor-

mation.

If you enable the debug_print_parse parameter, you can view the full parse tree in the server

log, but it has little practical sense.

Transformation

At the next stage, the query can be transformed (rewritten).2

Postgre��� core uses transformations for several purposes. One of them is to replace the

name of the view in the parse tree with the subtree corresponding to the base query of

this view.

Another case of using transformations is row-level security implementation.3

The ������ and ����� clauses of recursive queries v. ��also get transformed during this stage.4

In the example above, pg_tables is a view; if we placed its definition into the query text, it

would look as follows:

SELECT schemaname, tablename

FROM (

-- pg_tables

SELECT n.nspname AS schemaname,

c.relname AS tablename,

pg_get_userbyid(c.relowner) AS tableowner,

...

FROM pg_class c

LEFT JOIN pg_namespace n ON n.oid = c.relnamespace

LEFT JOIN pg_tablespace t ON t.oid = c.reltablespace

WHERE c.relkind = ANY (ARRAY['r'::char, 'p'::char])

)

WHERE tableowner = 'postgres'

ORDER BY tablename;

1 backend/parser/analyze.c
2 postgresql.org/docs/14/rule-system.html
3 backend/rewrite/rowsecurity.c
4 backend/rewrite/rewriteSearchCycle.c

255

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/parser/analyze.c;hb=REL_14_STABLE
https://postgresql.org/docs/14/rule-system.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/rewrite/rowsecurity.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/rewrite/rewriteSearchCycle.c;hb=REL_14_STABLE

Chapter 16 Query Execution Stages

However, the server does not process the text representation of the query; all manip-

ulations are performed on the parse tree. The illustration shows a reduced version of

the transformed tree (you can view its full version in the server log if you enable the

debug_print_rewritten parameter).

The parse tree reflects the syntactic structure of the query, but it says nothing about the

order in which the operations should be performed.

Postgre��� also supports custom transformations, which the user can implement via the

rewrite rule system.1

QUERY

TARGETENTRY FROMEXPR

RTE

pg_tables

QUERY

TARGETENTRY FROMEXPR

JOINEXPR

JOINEXPR

RTE

pg_class

RTE

pg_namespace

OPEXPR

n.oid = c.relnamespace

RTE

pg_tablespace

OPEXPR

t.oid = c.reltablespace

OPEXPR

c.relkind = ANY (ARRAY[...])

OPEXPR

tableowner = 'postgres'

SORTGROUPCLAUSE

The rule system support was proclaimed as one of the main objectives of Postgres development;2

it was still an academic project when the rules were first implemented, but since then they have

1 postgresql.org/docs/14/rules.html
2 M. Stonebraker, L. A. Rowe. The Design of Postgres

256

https://postgresql.org/docs/14/rules.html
https://dsf.berkeley.edu/papers/ERL-M85-95.pdf

16.2 Simple Query Protocol

been redesigned multiple times. The rule system is a very powerful mechanism,but it is rather hard

to comprehend and debug. It was even proposed to remove the rules from Postgre��� altogether,

but the idea did not find unanimous support. In most cases, it is safer and easier to use triggers

instead of rules.

Planning

S�� is a declarative language: queries specify what data to fetch, but not how to fetch it.

Any query has several execution paths. Each operation shown in the parse tree can be

completed in a number of ways: for example, the result can be retrieved by reading the

whole table (and filtering out redundancies), or by finding the required rows via an index

scan. Data sets are always joined in pairs, so there is a huge number of options that differ

in the order of joins. Besides, there are various join algorithms: for example, the executor

can scan the rows of the first data set and search for the matching rows in the other set, or

both data sets can be first sorted and then merged together. For each algorithm, we can

find a use case where it performs better than others.

The execution times of optimal and non-optimal plans can differ by orders of magnitude,

so the planner1 that optimizes the parsed query is one of the most complex components

of the system.

Plan tree. The execution plan is also represented as a tree, but its nodes deal with phys-

ical operations on data rather than logical ones.

If you would like to explore full plan trees, you can dump them into the server log by

enabling the debug_print_plan parameter. But in practice it is usually enough to view the

text representation of the plan displayed by the ������� command.2

The following illustration highlights the main nodes of the tree. It is exactly these nodes

that are shown in the output of the ������� command provided below.

For now, let’s pay attention to the following two points:

• The tree contains only two queried tables out of three: the planner saw that one of

the tables is not required for retrieving the result and removed it from the plan tree.

• For each node of the tree, the planner provides the estimated cost and the number of

rows expected to be processed.

1 postgresql.org/docs/14/planner-optimizer.html
2 postgresql.org/docs/14/using-explain.html

257

https://postgresql.org/docs/14/planner-optimizer.html
https://postgresql.org/docs/14/using-explain.html

Chapter 16 Query Execution Stages

=> EXPLAIN SELECT schemaname, tablename

FROM pg_tables

WHERE tableowner = 'postgres'

ORDER BY tablename;

QUERY PLAN

−−−

Sort (cost=21.03..21.04 rows=1 width=128)

Sort Key: c.relname

−> Nested Loop Left Join (cost=0.00..21.02 rows=1 width=128)

Join Filter: (n.oid = c.relnamespace)

−> Seq Scan on pg_class c (cost=0.00..19.93 rows=1 width=72)

Filter: ((relkind = ANY ('{r,p}'::"char"[])) AND (pg_g...

−> Seq Scan on pg_namespace n (cost=0.00..1.04 rows=4 wid...

(7 rows)

Seq Scanp. ��� nodes shown in the query plan correspond to reading the table, while the Nested

Loopp. ��� node represents the join operation.

PLANNEDSTMT

SORT

TARGETENTRY NESTLOOP

TARGETENTRY
SEQSCAN

pg_class

OPEXPR

relkind = ANY ('r,p'::"char"[]) AND pg_get_userbyid(relowner) = 'postgres'::name

SEQSCAN

pg_namespace

OPEXPR

n.oid = c.relnamespace

Plan search. Postgre��� uses a cost-based optimizer;1 it goes over potential plans and

estimates the resources required for their execution (such as �/� operations or ��� cycles).

Normalized to a numeric value, this estimation is called the cost of the plan. Of all the

considered plans, the one with the lowest cost is selected.

The problem is that the number of potentially available plans grows exponentially with

the number of joined tables, so it is impossible to consider them all—even for relatively

1 backend/optimizer/README

258

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/README;hb=REL_14_STABLE

16.2 Simple Query Protocol

simple queries. The search is typically narrowed down using the dynamic programming

algorithm combined with some heuristics. It allows the planner to find a mathematically

accurate solution for queries with a larger number of tables within acceptable time.

An accurate solution does not guarantee that the selected plan is really the optimal one, as the

planner uses simplified mathematical models and may lack reliable input data.

Managing the order of joins. A query can be structured in a way that limits the search

scope to some extent (at a risk of missing the optimal plan).

• Common table expressions v. ��and the main query can be optimized separately; to guar-

antee such behavior, you can specify the ������������ clause.1

• Subqueries run within non-��� functions are always optimized separately. (S�� func-

tions can sometimes be inlined into the main query.2)

• If you set the join_collapse_limit parameter and use explicit ���� clauses in the query,

the order of some joins will be defined by the syntax structure of the query; the

from_collapse_limit parameter has the same effect on subqueries.3

The latter point may have to be explained. Let’s take a look at the query that does not

specify any explicit joins for tables listed in the ���� clause:

SELECT ...

FROM a, b, c, d, e

WHERE ...

Here the planner will have to consider all the possible pairs of joins. The query is repre-

sented by the following part of the parse tree (shown schematically):

FROMEXPR

A B C D E

In the next example, joins have a certain structure defined by the ���� clause:

SELECT ...

FROM a, b JOIN c ON ..., d, e

WHERE ...

1 postgresql.org/docs/14/queries-with.html
2 wiki.postgresql.org/wiki/Inlining_of_SQL_functions
3 postgresql.org/docs/14/explicit-joins.html

259

https://postgresql.org/docs/14/queries-with.html
https://wiki.postgresql.org/wiki/Inlining_of_SQL_functions
https://postgresql.org/docs/14/explicit-joins.html

Chapter 16 Query Execution Stages

The parse tree reflects this structure:

FROMEXPR

A JOINEXPR

B C

D E

The planner typically flattens the join tree, so that it looks like the one in the first example.

The algorithm recursively traverses the tree and replaces each �������� node with a flat

list of its elements.1

However, such collapsing is performed only if the resulting flat list has no more than

8 join_collapse_limit elements. In this particular case, the �������� node would not be col-

lapsed if the join_collapse_limit value were less than five.

For the planner, it means the following:

• Table � must be joined with table � (or vice versa, � must be joined with �; the order

of joins within a pair is not restricted).

• Tables �, �, � and the result of joining � and � can be joined in any order.

If the join_collapse_limit parameter is set to one, the order defined by explicit ���� clauses

is preserved.

As for ���� ����� ���� operands, they are never collapsed, regardless of the value of the

join_collapse_limit parameter.

The8 from_collapse_limit parameter controls subquery flattening in a similar way. Although

subqueries do not look like ���� clauses, the similarity becomes apparent at the parse tree

level.

Here is a sample query:

SELECT ...

FROM a,

(

SELECT ... FROM b, c WHERE ...

) bc,

d, e

WHERE ...

1 backend/optimizer/plan/initsplan.c, deconstruct_jointree function

260

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/plan/initsplan.c;hb=REL_14_STABLE

16.2 Simple Query Protocol

The corresponding join tree is shown below. The only difference here is that this tree

contains the �������� node instead of �������� (hence the parameter name).

FROMEXPR

A FROMEXPR

B C

D E

Genetic query optimization. Once flattened, the tree may contain too many elements at

one level—either tables or join results, which have to be optimized separately. Planning

time depends exponentially on the number of data sets that have to be joined, so it can

grow beyond all reasonable limits.

If the ongeqo parameter is enabled and the number of elements at one level exceeds the

12geqo_threshold value, the planner will use the genetic algorithm to optimize the query.1

This algorithm is much faster than its dynamic programming counterpart, but it cannot

guarantee that the found plan will be optimal. So the rule of thumb is to avoid using the

genetic algorithm by reducing the number of elements that have to be optimized.

The genetic algorithm has several configurable parameters,2 but I am not going to cover

them here.

Choosing the best plan. Whether the plan can be considered optimal or not depends on

how a particular client is going to use the query result. If the client needs the full result at

once (for example, to create a report), the plan should optimize retrieval of all the rows.

But if the priority is to return the first rows as soon as possible (for example, to display

them on screen), the optimal plan might be completely different.

To make this choice, Postgre��� calculates two components of the cost:

=> EXPLAIN

SELECT schemaname, tablename

FROM pg_tables

WHERE tableowner = 'postgres'

ORDER BY tablename;

1 postgresql.org/docs/14/geqo.html

backend/optimizer/geqo/geqo_main.c
2 postgresql.org/docs/14/runtime-config-query.html#RUNTIME-CONFIG-QUERY-GEQO

261

https://postgresql.org/docs/14/geqo.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/geqo/geqo_main.c;hb=REL_14_STABLE
https://postgresql.org/docs/14/runtime-config-query.html#RUNTIME-CONFIG-QUERY-GEQO

Chapter 16 Query Execution Stages

QUERY PLAN

−−−

Sort (cost=21.03..21.04 rows=1 width=128)

Sort Key: c.relname

−> Nested Loop Left Join (cost=0.00..21.02 rows=1 width=128)

Join Filter: (n.oid = c.relnamespace)

−> Seq Scan on pg_class c (cost=0.00..19.93 rows=1 width=72)

Filter: ((relkind = ANY ('{r,p}'::"char"[])) AND (pg_g...

−> Seq Scan on pg_namespace n (cost=0.00..1.04 rows=4 wid...

(7 rows)

The first component (the startup cost) represents the price you pay to prepare for node ex-

ecution, while the second component (the total cost) comprises all the expenses incurred

by fetching the result.

It is sometimes stated that the startup cost is the cost of retrieving the first row of the result set,

but it is not quite accurate.

To single out the preferred plans, the optimizer checks whether the query uses a cursor

(either via the ������� command provided in ��� or declared explicitly in ��/pg���).1 If

not, the client is assumed to need the whole result at once, and the optimizer chooses the

plan with the least total cost.

If the query is executed with a cursor, the selected plan must optimize retrieval of only

0.1 cursor_tuple_fraction of all rows. To be more exact, Postgre��� chooses the plan with the

smallest value of the following expression:2

startup cost + cursor_tuple_fraction (total cost − startup cost)

An outline of cost estimation. To estimate the total cost of a plan, we have to get cost

estimations for all its nodes. The cost of a node depends on its type (it is obvious that the

cost of reading heap data is not the same as the sorting cost) and on the amount of data

processed by this node (larger data volumes typically incur higher costs). While node types

are known, the amount of data can only be projected based on the estimated cardinality

of input sets (the number of rows the node takes as input) and the selectivity of the node

(the fraction of rows remaining at the output). These calculations rely on the collected

statisticsp. ��� , such as table sizes and data distribution in table columns.

1 backend/optimizer/plan/planner.c, standard_planner function
2 backend/optimizer/util/pathnode.c, compare_fractional_path_costs function

262

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/plan/planner.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/util/pathnode.c;hb=REL_14_STABLE

16.2 Simple Query Protocol

Thus, the performed optimization depends on correctness of statistical data that is gath-

ered and updated by autovacuum.

If cardinality estimation is accurate for each node, the calculated cost is likely to ade-

quately reflect the actual cost. The main planning flaws usually result from incorrect

estimation of cardinality and selectivity, which can be caused by inaccurate or outdated

statistics, inability to use it, or—to a lesser extent—by imperfect planning models.

Cardinality estimation. To calculate the cardinality of a node, the planner has to recur-

sively complete the following steps:

� Estimate the cardinality of each child node and assess the number of input rows that

the node will receive from them.

� Estimate the selectivity of the node, that is, the fraction of input rows that will remain

at the output.

The cardinality of the node is the product of these two values.

Selectivity is represented by a number from � to �. The smaller the number, the higher the selectiv-

ity, and vice versa, a number that is close to one denotes low selectivity. It may seem illogical, but

the idea is that a highly selective condition rejects almost all the rows,while the one that dismisses

only a few has low selectivity.

First, the planner estimates cardinalities of leaf nodes that define data access methods.

These calculations rely on the collected statistics, such as the total size of the table.

Selectivity of filter conditions depends on their types. In the most trivial case, it can be

assumed to be a constant value, although the planner tries to use all the available infor-

mation to refine the estimation. In general, it is enough to know how to estimate simple

filter conditions; if a condition includes logical operations, its selectivity is calculated by

the following formulas:1

selx and y = selx sely

selx or y = 1 − (1 − selx)(1 − sely) = selx + sely − selx sely

Unfortunately, these formulas assume that p. ���predicates x and y do not depend on each other.

For correlated predicates, such estimations will be inaccurate.

To estimate the cardinality of joins, the planner has to get the cardinality of the Cartesian

product (that is, the product of cardinalities of two data sets) and estimate the selectivity

of join conditions, which is again dependent on condition types.

1 backend/optimizer/path/clausesel.c, clauselist_selectivity_ext & clauselist_selectivity_or functions

263

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/clausesel.c;hb=REL_14_STABLE

Chapter 16 Query Execution Stages

Cardinality of other nodes (such as sorting or aggregation) is estimated in a similar way.

It is important to note that incorrect cardinality estimation for lower plan nodes affects all

the subsequent calculations, leading to inaccurate total cost estimation and a poor plan

choice. To make things worse, the planner has no statistics on join results, only on tables.

Cost estimation. The process of estimating the cost is also recursive. To calculate the cost

of a subtree, it is required to calculate and sum up the costs of all its child nodes and then

add the cost of the parent node itself.

To estimate the cost of a node, Postgre��� applies the mathematical model of the oper-

ation performed by this node, using the already estimated node cardinality as input. For

each node, both startup and total costs are calculated.

Some operations have no prerequisites, so their execution starts immediately; such nodes

have zero startup cost.

Other operations, on the contrary, need to wait for some preliminary actions to complete.

For example, a sort node usually has to wait for all the data from its child nodes before it

can proceed to its own tasks. The startup cost of such nodes is usually higher than zero:

this price has to be paid even if the above node (or the client) needs only one row of the

whole output.

All calculations performed by the planner are simply estimations, which may have noth-

ing to do with the actual execution time. Their only purpose is to enable comparison of

different plans for the same query in the same conditions. In other cases, it makes no sense

to compare queries (especially different ones) in terms of their cost. For example, the cost

could have been underestimated because of outdated statistics; once the statistics are re-

freshed, the calculated figure may rise, but since the estimation becomes more accurate,

the server will choose a better plan.

Execution

The plan built during query optimization now has to be executed.1

The executor opens a portal in the backend’s memory;2 it is an object that keeps the state

of the query currently being executed. This state is represented as a tree that repeats the

1 postgresql.org/docs/14/executor.html

backend/executor/README
2 backend/utils/mmgr/portalmem.c

264

https://postgresql.org/docs/14/executor.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/README;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/mmgr/portalmem.c;hb=REL_14_STABLE

16.2 Simple Query Protocol

structure of the plan tree. The nodes of this tree operate like an assembly line, requesting

and sending rows from one another.

SORT

NESTLOOP

SEQSCAN

pg_class

SEQSCAN

pg_namespace

Query execution starts at the root. The root node (which represents the ���� operation

in this example) pulls the data from its child node. Having received all the rows, it sorts

them and passes them on to the client.

Some nodes (like the �������� node shown in this illustration) join data sets received from

different sources. Such a node pulls the data from two child nodes, and, having received

a pair of rows that satisfy the join condition, passes the resulting row upwards right away

(unlike sorting, which has to get all the rows first). At this point, the execution of the node

is interrupted until its parent requests the next row. If only a partial result is required (for

example, there is a ����� clause in the query), the operation will not be performed in full.

The two ������� leaf nodes of the tree are responsible for table scans. When the parent

node requests the data from these nodes, they fetch the subsequent row from the corre-

sponding table.

Thus, some nodes do not store any rows, passing them upwards immediately, but others

(such as ����) have to keep potentially large volumes of data. For this purpose, a 4MBwork_mem

chunk is allocated in the backend’s memory; if it is not enough, the remaining data is

spilled into temporary files on disk.1

Aplan can have several nodes that need a data storage, so Postgre���may allocate several

memory chunks, each of the work_mem size. The total size of ��� that a query can use is

not limited in any way.

1 backend/utils/sort/tuplestore.c

265

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/sort/tuplestore.c;hb=REL_14_STABLE

Chapter 16 Query Execution Stages

16.3 Extended Query Protocol

When using the simple query protocol, each command (even if it is being repeated multi-

ple times) has to go through all the aforementioned stages:

� parsing

� transformation

� planning

� execution

However, there is no point in parsing the same query time and again. Repeated parsing

of queries that differ only in constants does not make much sense either—the parse tree

structure still remains the same.

Another downside of the simple query protocol is that the client receives the whole result

at once, regardless of the number of rows it may contain.

In general, it is possible to get over these limitations using ��� commands. To deal with

the first one, you can ������� the query before running the ������� command; the second

concern can be addressed by creating a cursor with ������� and returning rows via �����.

But in this case, naming of these newly created objects must be handled by the client,

while the server gets additional overhead of parsing extra commands.

The extended client-server protocol provides an alternative solution, enabling precise

control over separate operator execution stages at the command level of the protocol it-

self.

Preparation

During the preparation stage, the query is parsed and transformed as usual, but the result-

ing parse tree is kept in the backend’s memory.

Postgre��� has no global cache for queries. The disadvantage of this architecture is obvi-

ous: each backend has to parse all the incoming queries, even if the same query has been

already parsed by another backend. But there are some benefits too. Global cache can

easily become a bottleneck because of locks.p. ��� A client running multiple small but different

queries (like the ones varying only in constants) generates much traffic and can nega-

tively affect performance of the whole instance. In Postgre���, queries are parsed locally,

so there is no impact on other processes.

266

16.3 Extended Query Protocol

A prepared query can be parameterized. Here is a simple example using ��� commands

(although it is not the same as preparation at the protocol level, the ultimate effect is the

same):

=> PREPARE plane(text) AS

SELECT * FROM aircrafts WHERE aircraft_code = $1;

All the named prepared statements are shown in the pg_prepared_statements view:

=> SELECT name, statement, parameter_types

FROM pg_prepared_statements \gx

−[RECORD 1]−−−+−−

name | plane

statement | PREPARE plane(text) AS +

| SELECT * FROM aircrafts WHERE aircraft_code = $1;

parameter_types | {text}

You will not find any unnamed statements here (the ones that use the extended query pro-

tocol or ��/pg���). The statements prepared by other backends are not displayed either:

it is impossible to access the other session’s memory.

Parameter Binding

Before a prepared statement gets executed, the actual parameter values have to be bound.

=> EXECUTE plane('733');

aircraft_code | model | range

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−

733 | Boeing 737−300 | 4200

(1 row)

The advantage of binding parameters in prepared statements over concatenating literals

with query strings is that it makes ��� injections absolutely impossible: a bound parame-

ter value cannotmodify the already built parse tree in any way. To reach the same security

level without prepared statements, youwould have to carefully escape each value received

from an untrusted source.

Planning and Execution

When it comes to prepared statement execution, query planning is performed based on

the actual parameter values; then the plan is passed on to the executor.

267

Chapter 16 Query Execution Stages

Different parameter values may imply different optimal plans, so it is important to take

the exact values into account. For example, when looking for expensive bookings, the

planner assumes that there are not so many matching rows and uses an index scan:

=> CREATE INDEX ON bookings(total_amount);

=> EXPLAIN SELECT *

FROM bookings

WHERE total_amount > 1000000;

QUERY PLAN

−−−

Bitmap Heap Scan on bookings (cost=86.49..9245.82 rows=4395 wid...

Recheck Cond: (total_amount > '1000000'::numeric)

−> Bitmap Index Scan on bookings_total_amount_idx (cost=0.00....

Index Cond: (total_amount > '1000000'::numeric)

(4 rows)

But if the provided condition is satisfied by all the bookings, there is no point in using an

index, as the whole table has to be scanned:

=> EXPLAIN SELECT *

FROM bookings

WHERE total_amount > 100;

QUERY PLAN

−−−

Seq Scan on bookings (cost=0.00..39835.88 rows=2111110 width=21)

Filter: (total_amount > '100'::numeric)

(2 rows)

In some cases, the planner may keep both the parse tree and the query plan to avoid re-

peated planning. Such a plan does not take parameter values into account, so it is called

a generic plan (as compared to custom plans based on the actual values).1

An obvious case when the server can use a generic plan without compromising perfor-

mance is a query with no parameters.

The first five optimizations of parameterized prepared statements always rely on the ac-

tual parameter values; the planner calculates the average cost of custom plans based on

these values. Starting from the sixth execution, if the generic plan turns out to be more

efficient than custom plans on average (taking into account that custom plans have to

be built anew every time),2 the planner keeps the generic plan and continues using it,

skipping the optimization stage.

1 backend/utils/cache/plancache.c, choose_custom_plan function
2 backend/utils/cache/plancache.c, cached_plan_cost function

268

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/cache/plancache.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/cache/plancache.c;hb=REL_14_STABLE

16.3 Extended Query Protocol

The plane prepared statement has already been executed once. After the next three ex-

ecutions, the server still uses custom plans—you can tell by the parameter value in the

query plan:

=> EXECUTE plane('763');

=> EXECUTE plane('773');

=> EXPLAIN EXECUTE plane('319');

QUERY PLAN

−−

Seq Scan on aircrafts_data ml (cost=0.00..1.39 rows=1 width=52)

Filter: ((aircraft_code)::text = '319'::text)

(2 rows)

After the fifth execution, the planner switches to the generic plan: it does not differ from

the custom ones and has the same cost, but the backend can build it once and skip the

optimization stage, thus reducing planning overhead. The ������� command now shows

that the parameter is referred to by position rather than by its value:

=> EXECUTE plane('320');

=> EXPLAIN EXECUTE plane('321');

QUERY PLAN

−−

Seq Scan on aircrafts_data ml (cost=0.00..1.39 rows=1 width=52)

Filter: ((aircraft_code)::text = $1)

(2 rows)

We can easily imagine an unhappy turn of events when the first several custom plans are

more expensive than the generic plan; subsequent plans could have been more efficient,

but the planner will not consider them at all. Besides, it compares estimations rather than

actual costs, which can also lead to miscalculations.

However, v. ��if the planner makes a mistake, you can override the automatic decision and

select either the generic or a custom plan by setting the autoplan_cache_mode parameter ac-

cordingly:

=> SET plan_cache_mode = 'force_custom_plan';

=> EXPLAIN EXECUTE plane('CN1');

QUERY PLAN

−−

Seq Scan on aircrafts_data ml (cost=0.00..1.39 rows=1 width=52)

Filter: ((aircraft_code)::text = 'CN1'::text)

(2 rows)

269

Chapter 16 Query Execution Stages

Among other things, the pg_prepared_statements viewv. �� shows statistics on chosen plans:

=> SELECT name, generic_plans, custom_plans

FROM pg_prepared_statements;

name | generic_plans | custom_plans

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−

plane | 1 | 6

(1 row)

Getting the Results

The extended query protocol allows retrieving data in batches rather than all at once. ���

cursors have almost the same effect (except that there is some extra work for the server,

and the planner optimizes fetching of the first cursor_tuple_fraction rows, not the whole

result set):

=> BEGIN;

=> DECLARE cur CURSOR FOR

SELECT *

FROM aircrafts

ORDER BY aircraft_code;

=> FETCH 3 FROM cur;

aircraft_code | model | range

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−

319 | Airbus A319−100 | 6700

320 | Airbus A320−200 | 5700

321 | Airbus A321−200 | 5600

(3 rows)

=> FETCH 2 FROM cur;

aircraft_code | model | range

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−

733 | Boeing 737−300 | 4200

763 | Boeing 767−300 | 7900

(2 rows)

=> COMMIT;

If the query returns many rows and the client needs them all, the system throughput

highly depends on the batch size. The more rows in a batch, the less communication

overhead is incurred by accessing the server and getting the response. But as the batch

size grows, these benefits become less tangible: while the difference between fetching

rows one by one and in batches of ten rows can be enormous, it is much less noticeable if

you compare batches of ��� and ���� rows.

270

17
Statistics

17.1 Basic Statistics

Basic relation-level statistics1 are stored in the pg_class table of the system catalog and

include the following data:

• number of tuples in a relation (reltuples)

• relation size, in pages (relpages)

• number of pages tagged in the visibility map (relallvisible) p. ��

Here are these values for the flights table:

=> SELECT reltuples, relpages, relallvisible

FROM pg_class WHERE relname = 'flights';

reltuples | relpages | relallvisible

−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−

214867 | 2624 | 2624

(1 row)

If the query does not impose any filter conditions, the reltuples value serves as the cardi-

nality estimation:

=> EXPLAIN SELECT * FROM flights;

QUERY PLAN

−−

Seq Scan on flights (cost=0.00..4772.67 rows=214867 width=63)

(1 row)

Statistics are collected during table analysis p. ���, both manual and automatic.2 Furthermore,

since basic statistics are of paramount importance, this data is calculated during some

1 postgresql.org/docs/14/planner-stats.html
2 backend/commands/analyze.c, do_analyze_rel function

271

https://postgresql.org/docs/14/planner-stats.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/commands/analyze.c;hb=REL_14_STABLE

Chapter 17 Statistics

other operations as well (������ ���� and �������,1 ������ ����� and �������2) and is

refined during vacuuming.3

For analysis purposes, 300×100 default_statistics_target random rows are sampled. The sample

size required to build statistics of a particular accuracy has low dependency on the volume

of analyzed data, so the size of the table is not taken into account.4

Sampled rows are picked from the same number (300×default_statistics_target) of random

pages.5 Obviously, if the table itself is smaller, fewer pages may be read, and fewer rows

will be selected for analysis.

In large tables, statistics collection does not include all the rows, so estimations can di-

verge from actual values. It is perfectly normal: if the data is changing, statistics cannot

be accurate all the time anyway. Accuracy of up to an order ofmagnitude is usually enough

to choose an adequate plan.

Let’s create a copy of the flights table with autovacuum disabled, so that we can control

the autoanalysis start time:

=> CREATE TABLE flights_copy(LIKE flights)

WITH (autovacuum_enabled = false);

There is no statistics for the new table yet:

=> SELECT reltuples, relpages, relallvisible

FROM pg_class WHERE relname = 'flights_copy';

reltuples | relpages | relallvisible

−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−

−1 | 0 | 0

(1 row)

The value reltuples = −1v. �� is used to differentiate between a table that has not been ana-

lyzed yet and a really empty table without any rows.

It is highly likely that some rows will get inserted into the table right after its creation. So

being unaware of the current state of things, the planner assumes that the table contains

�� pages:

=> EXPLAIN SELECT * FROM flights_copy;

1 backend/commands/cluster.c, copy_table_data function
2 backend/catalog/heap.c, index_update_stats function
3 backend/access/heap/vacuumlazy.c, heap_vacuum_rel function
4 backend/commands/analyze.c, std_typanalyze function
5 backend/commands/analyze.c, acquire_sample_rows function

backend/utils/misc/sampling.c

272

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/commands/cluster.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/catalog/heap.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/vacuumlazy.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/commands/analyze.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/commands/analyze.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/misc/sampling.c;hb=REL_14_STABLE

17.1 Basic Statistics

QUERY PLAN

−−−

Seq Scan on flights_copy (cost=0.00..14.10 rows=410 width=170)

(1 row)

The number of rows is estimated based on the size of a single row, which is shown in the

plan aswidth. Rowwidth is typically an average value calculated during analysis, but since

no statistics have been collected yet, here it is just an approximation based on the column

data types.1

Now let’s copy the data from the flights table and perform the analysis:

=> INSERT INTO flights_copy SELECT * FROM flights;

INSERT 0 214867

=> ANALYZE flights_copy;

The collected statistics reflects the actual number of rows (the table size is small enough

for the analyzer to gather statistics on all the data):

=> SELECT reltuples, relpages, relallvisible

FROM pg_class WHERE relname = 'flights_copy';

reltuples | relpages | relallvisible

−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−

214867 | 2624 | 0

(1 row)

The relallvisible value is used to estimate the cost p. ���of an index-only scan. This value is

updated by ������:

=> VACUUM flights_copy;

=> SELECT relallvisible FROM pg_class WHERE relname = 'flights_copy';

relallvisible

−−−−−−−−−−−−−−−

2624

(1 row)

Now let’s double the number of rows without updating statistics and check the cardinality

estimation in the query plan:

=> INSERT INTO flights_copy SELECT * FROM flights;

=> SELECT count(*) FROM flights_copy;

count

−−−−−−−−

429734

(1 row)

1 backend/access/table/tableam.c, table_block_relation_estimate_size function

273

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/table/tableam.c;hb=REL_14_STABLE

Chapter 17 Statistics

=> EXPLAIN SELECT * FROM flights_copy;

QUERY PLAN

−−−

Seq Scan on flights_copy (cost=0.00..9545.34 rows=429734 width=63)

(1 row)

Despite the outdated pg_class data, the estimation turns out to be accurate:

=> SELECT reltuples, relpages

FROM pg_class WHERE relname = 'flights_copy';

reltuples | relpages

−−−−−−−−−−−+−−−−−−−−−−

214867 | 2624

(1 row)

The thing is that if the planner sees a gap between relpages and the actual file size, it can

scale the reltuples value to improve estimation accuracy.1 Since the file size has doubled

as compared to relpages, the planner adjusts the estimated number of rows, assuming that

data density remains the same:

=> SELECT reltuples *

(pg_relation_size('flights_copy') / 8192) / relpages AS tuples

FROM pg_class WHERE relname = 'flights_copy';

tuples

−−−−−−−−

429734

(1 row)

Naturally, such an adjustment may not always work (for example, if we delete some rows,

the estimation will remain the same), but in some cases it allows the planner to hold on

until significant changes trigger the next analysis run.

17.2 NULL Values

Frowned upon by theoreticians,2 ���� values still play an important role in relational

databases: they provide a convenient way to reflect the fact that a value is either unknown

or does not exist.

However, a special value demands special treatment. Apart from theoretical inconsis-

tencies, there are also multiple practical challenges that have to be taken into account.

Regular Boolean logic is replaced by the three-valued one, so ��� �� behaves unexpectedly.

1 backend/access/table/tableam.c, table_block_relation_estimate_size function
2 sigmodrecord.org/publications/sigmodRecord/0809/p20.date.pdf

274

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/table/tableam.c;hb=REL_14_STABLE
https://sigmodrecord.org/publications/sigmodRecord/0809/p20.date.pdf

17.2 NULL Values

It is unclear whether ���� values should be treated as greater than or less than regular

values (hence the ����� ����� and ����� ���� clauses for sorting). It is not quite obvious

whether ���� values must be taken into account by aggregate functions. Strictly speak-

ing, ���� values are not values at all, so the planner requires additional information to

process them.

Apart from the simplest basic statistics collected at the relation level, the analyzer also

gathers statistics for each column of the relation. This data is stored in the pg_statistic

table of the system catalog,1 but you can also access it via the pg_stats view,which provides

this information in a more convenient format.

The fraction of ���� values belongs to column-level statistics; calculated during the anal-

ysis, it is shown as the null_frac attribute.

For example, when searching for the flights that have not departed yet, we can rely on

their departure times being undefined:

=> EXPLAIN SELECT * FROM flights WHERE actual_departure IS NULL;

QUERY PLAN

−−−

Seq Scan on flights (cost=0.00..4772.67 rows=16702 width=63)

Filter: (actual_departure IS NULL)

(2 rows)

To estimate the result, the planner multiplies the total number of rows by the fraction of

���� values:

=> SELECT round(reltuples * s.null_frac) AS rows

FROM pg_class

JOIN pg_stats s ON s.tablename = relname

WHERE s.tablename = 'flights'

AND s.attname = 'actual_departure';

rows

−−−−−−−

16702

(1 row)

And here is the actual row count:

=> SELECT count(*) FROM flights WHERE actual_departure IS NULL;

count

−−−−−−−

16348

(1 row)

1 include/catalog/pg_statistic.h

275

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/catalog/pg_statistic.h;hb=REL_14_STABLE

Chapter 17 Statistics

17.3 Distinct Values

The n_distinct field of the pg_stats view shows the number of distinct values in a column.

If n_distinct is negative, its absolute value denotes the fraction of distinct values in a col-

umn rather than their actual count. For example, −1 indicates that all column values are

unique, while −3 means that each value appears in three rows on average. The analyzer

uses fractions if the estimated number of distinct values exceeds 10% of the total row

count; in this case, further data updates are unlikely to change this ratio.1

If uniform data distribution is expected, the number of distinct values is used instead.

For example, when estimating the cardinality of the “column = expression” condition, the

planner assumes that the expression can take any column value with equal probability if

its exact value is unknown at the planning stage:2

=> EXPLAIN SELECT *

FROM flights

WHERE departure_airport = (

SELECT airport_code

FROM airports

WHERE city = 'Saint Petersburg'

);

QUERY PLAN

−−−

Seq Scan on flights (cost=30.56..5340.40 rows=2066 width=63)

Filter: (departure_airport = $0)

InitPlan 1 (returns $0)

−> Seq Scan on airports_data ml (cost=0.00..30.56 rows=1 wi...

Filter: ((city −>> lang()) = 'Saint Petersburg'::text)

(5 rows)

Here the InitPlan node is executed only once, and the calculated value is used in the main

plan.

=> SELECT round(reltuples / s.n_distinct) AS rows

FROM pg_class

JOIN pg_stats s ON s.tablename = relname

WHERE s.tablename = 'flights'

AND s.attname = 'departure_airport';

rows

−−−−−−

2066

(1 row)

1 backend/commands/analyze.c, compute_distinct_stats function
2 backend/utils/adt/selfuncs.c, var_eq_non_const function

276

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/commands/analyze.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/selfuncs.c;hb=REL_14_STABLE

17.4 Most Common Values

values

fr
eq

ue
nc
y

null_frac

n_distinct

If the estimated number of distinct values is incorrect (because a limited number of rows

have been analyzed), it can be overridden at the column level:

ALTER TABLE ...

ALTER COLUMN ...

SET (n_distinct = ...);

If all data always had uniform distribution, this information (coupled with minimal and

maximal values) would be sufficient. However, for non-uniform distribution (which is

much more common in practice), such estimation is inaccurate:

=> SELECT min(cnt), round(avg(cnt)) avg, max(cnt)

FROM (

SELECT departure_airport, count(*) cnt

FROM flights

GROUP BY departure_airport

) t;

min | avg | max

−−−−−+−−−−−−+−−−−−−−

113 | 2066 | 20875

(1 row)

17.4 Most Common Values

If data distribution is non-uniform, the estimation is fine-tuned based on statistics on

most common values (���) and their frequencies. The pg_stats view displays these arrays

in themost_common_vals andmost_common_freqs fields, respectively.

277

Chapter 17 Statistics

values

fr
eq

ue
nc
y

null_frac

[most_common_vals]

[m
os
t_
co
m
m
on

_f
re
qs

]

Here is an example of such statistics on various types of aircraft:

=> SELECT most_common_vals AS mcv,

left(most_common_freqs::text,60) || '...' AS mcf

FROM pg_stats

WHERE tablename = 'flights' AND attname = 'aircraft_code' \gx

−[RECORD 1]−−

mcv | {CN1,CR2,SU9,321,733,763,319,773}

mcf | {0.27886668,0.27266666,0.26176667,0.057166666,0.037666667,0....

To estimate the selectivity of the “column= value” condition, it is enough to find this value

in the most_common_vals array and take its frequency from the most_common_freqs array

element with the same index:1

=> EXPLAIN SELECT * FROM flights WHERE aircraft_code = '733';

QUERY PLAN

−−

Seq Scan on flights (cost=0.00..5309.84 rows=8093 width=63)

Filter: (aircraft_code = '733'::bpchar)

(2 rows)

=> SELECT round(reltuples * s.most_common_freqs[

array_position((s.most_common_vals::text::text[]),'733')

])

FROM pg_class

JOIN pg_stats s ON s.tablename = relname

WHERE s.tablename = 'flights'

AND s.attname = 'aircraft_code';

1 backend/utils/adt/selfuncs.c, var_eq_const function

278

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/selfuncs.c;hb=REL_14_STABLE

17.5 Histogram

round

−−−−−−−

8093

(1 row)

It is obvious that such estimation will be close to the actual value:

=> SELECT count(*) FROM flights WHERE aircraft_code = '733';

count

−−−−−−−

8263

(1 row)

The ��� list is also used to estimate selectivity of inequality conditions. For example, a

condition like “column < value” requires the analyzer to search throughmost_common_vals

for all the values that are smaller than the target one and sum up the corresponding fre-

quencies listed inmost_common_freqs.1

M�� statistics work best when distinct values are not too many. The maximum size of

arrays is defined by the 100default_statistics_target parameter, which also limits the number

of rows to be randomly sampled for the purpose of analysis.

In some cases, it makes sense to increase the default parameter value, thus expanding the

��� list and improving the accuracy of estimations. You can do it at the column level:

ALTER TABLE ...

ALTER COLUMN ...

SET STATISTICS ...;

The sample size will also grow, but only for the specified table.

Since the ��� array stores actual values, it may take quite a lot of space. To keep the

pg_statistic size under control and avoid loading the planner with useless work, values

that are larger than � k� are excluded from analysis and statistics. But since such large

values are likely to be unique, they would probably not make it into most_common_vals

anyway.

17.5 Histogram

If distinct values are too many to be stored in an array, Postgre��� employs a histogram.

In this case, values are distributed between several buckets of the histogram. The number

of buckets is also limited by the default_statistics_target parameter.

1 backend/utils/adt/selfuncs.c, scalarineqsel function

279

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/selfuncs.c;hb=REL_14_STABLE

Chapter 17 Statistics

values

fr
eq

ue
nc
y

null_frac

[mcv]

[m
cf
]

[histogram_bounds]

The bucket width is selected in such a way that each bucket gets approximately the same

number of values (this property is reflected in the diagram by the equality of areas of big

hatched rectangles). The values included into ��� lists are not taken into account. As a

result, the cumulative frequency of values in each bucket equals 1

number of buckets
.

The histogram is stored in the histogram_bounds field of the pg_stats view as an array of

buckets’ boundary values:

=> SELECT left(histogram_bounds::text,60) || '...' AS hist_bounds

FROM pg_stats s

WHERE s.tablename = 'boarding_passes'

AND s.attname = 'seat_no';

hist_bounds

−−−

{10B,10E,10F,10F,11H,12B,13B,14B,14H,15G,16B,17B,17H,19B,19B...

(1 row)

Combined with the ��� list, the histogram is used for operations like estimating the se-

lectivity of greater than and less than conditions.1

For example, let’s take a look at the number of boarding passes issued for back rows:

1 backend/utils/adt/selfuncs.c, ineq_histogram_selectivity function

280

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/selfuncs.c;hb=REL_14_STABLE

17.5 Histogram

values

fr
eq

ue
nc
y

null_frac

x

=> EXPLAIN SELECT *

FROM boarding_passes

WHERE seat_no > '30B';

QUERY PLAN

−−−

Seq Scan on boarding_passes (cost=0.00..157350.10 rows=2983242 ...

Filter: ((seat_no)::text > '30B'::text)

(2 rows)

I have intentionally selected the seat number that lies right on the boundary between two

histogram buckets.

The selectivity of this condition will be estimated at N

number of buckets
, whereN is the number

of buckets holding the values that satisfy the condition (that is, the ones located to the

right of the specified value). It must also be taken into account that ���s are not included

into the histogram.

Incidentally, ���� values do not appear in the histogram either, but the seat_no column

contains no such values anyway:

=> SELECT s.null_frac FROM pg_stats s

WHERE s.tablename = 'boarding_passes'

AND s.attname = 'seat_no';

null_frac

−−−−−−−−−−−

0

(1 row)

281

Chapter 17 Statistics

First, let’s find the fraction of ���s that satisfy the condition:

=> SELECT sum(s.most_common_freqs[

array_position((s.most_common_vals::text::text[]),v)

])

FROM pg_stats s, unnest(s.most_common_vals::text::text[]) v

WHERE s.tablename = 'boarding_passes' AND s.attname = 'seat_no'

AND v > '30B';

sum

−−−−−−−−−−−−

0.21226665

(1 row)

The overall ��� share (ignored by the histogram) is:

=> SELECT sum(s.most_common_freqs[

array_position((s.most_common_vals::text::text[]),v)

])

FROM pg_stats s, unnest(s.most_common_vals::text::text[]) v

WHERE s.tablename = 'boarding_passes' AND s.attname = 'seat_no';

sum

−−−−−−−−−−−−

0.67816657

(1 row)

Since the values that conform to the specified condition take exactly 𝑁 buckets (out of

��� buckets possible), we get the following estimation:

=> SELECT round(reltuples * (

0.21226665 -- MCV share

+ (1 - 0.67816657 - 0) * (51 / 100.0) -- histogram share

))

FROM pg_class

WHERE relname = 'boarding_passes';

round

−−−−−−−−−

2983242

(1 row)

In the generic case of non-boundary values, the planner applies linear interpolation to

take into account the fraction of the bucket that contains the target value.

Here is the actual number of back seats:

=> SELECT count(*) FROM boarding_passes WHERE seat_no > '30B';

count

−−−−−−−−−

2993735

(1 row)

282

17.6 Statistics for Non-Scalar Data Types

As you increase the default_statistics_target value, estimation accuracy may improve, but

as our example shows, the histogramcombinedwith the��� list usually gives good results

even if the column contains many unique values:

=> SELECT n_distinct FROM pg_stats

WHERE tablename = 'boarding_passes' AND attname = 'seat_no';

n_distinct

−−−−−−−−−−−−

461

(1 row)

It makes sense to improve estimation accuracy only if it leads to better planning. In-

creasing the default_statistics_target value without giving it much thought may slow down

planning and analysis without bringing any benefits in return. That said, reducing this

parameter value (down to zero) can lead to a bad plan choice, even though it does speed

up planning and analysis. Such savings are usually unjustified.

17.6 Statistics for Non-Scalar Data Types

For non-scalar data types, Postgre��� can gather statistics not only on the distribution of

values, but also on the distribution of elements used to construct these values. It improves

planning accuracy when you query columns that do not conform to the first normal form.

• The most_common_elems and most_common_elem_freqs arrays show the list of the

most common elements and the frequency of their usage.

These statistics are collected and used to estimate selectivity of operations on arrays1

and tsvector2 data types.

• The elem_count_histogram array shows the histogram of the number of distinct ele-

ments in a value.

This data is collected and used for estimating selectivity of operations on arrays only.

1 postgresql.org/docs/14/arrays.html

backend/utils/adt/array_typanalyze.c

backend/utils/adt/array_selfuncs.c
2 postgresql.org/docs/14/datatype-textsearch.html

backend/tsearch/ts_typanalyze.c

backend/tsearch/ts_selfuncs.c

283

https://postgresql.org/docs/14/arrays.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/array_typanalyze.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/array_selfuncs.c;hb=REL_14_STABLE
https://postgresql.org/docs/14/datatype-textsearch.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/tsearch/ts_typanalyze.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/tsearch/ts_selfuncs.c;hb=REL_14_STABLE

Chapter 17 Statistics

• For range types, Postgre��� builds distribution histograms for range length and lower

and upper boundaries of the range. These histograms are used for estimating selec-

tivity of various operations on these types,1 but the pg_stats view does not display

them.

Similar statistics are also collected for multirangev. �� data types.2

17.7 Average Field Width

The avg_width field of the pg_stats view shows the average size of values stored in a col-

umn. Naturally, for types like integer or char(3) this size is always the same, but for data

types of variable length, such as text, it can vary a lot from column to column:

=> SELECT attname, avg_width FROM pg_stats

WHERE (tablename, attname) IN (VALUES

('tickets', 'passenger_name'), ('ticket_flights','fare_conditions')

);

attname | avg_width

−−−−−−−−−−−−−−−−−+−−−−−−−−−−−

fare_conditions | 8

passenger_name | 16

(2 rows)

This statistic is used to estimate the amount of memory required for operations like sort-

ing or hashing.

17.8 Correlation

The correlation field of the pg_stats view shows the correlation between the physical order

of data and the logical order defined by comparison operations. If values are stored strictly

in ascending order, their correlation will be close to 1; if they are arranged in descending

order, their correlation will be close to −1. The more chaotic is data distribution on disk,

the closer is the correlation to zero.

=> SELECT attname, correlation

FROM pg_stats WHERE tablename = 'airports_data'

ORDER BY abs(correlation) DESC;

1 postgresql.org/docs/14/rangetypes.html

backend/utils/adt/rangetypes_typanalyze.c

backend/utils/adt/rangetypes_selfuncs.c
2 backend/utils/adt/multirangetypes_selfuncs.c

284

https://postgresql.org/docs/14/rangetypes.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/rangetypes_typanalyze.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/rangetypes_selfuncs.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/multirangetypes_selfuncs.c;hb=REL_14_STABLE

17.9 Expression Statistics

attname | correlation

−−−−−−−−−−−−−−+−−−−−−−−−−−−−

coordinates |

airport_code | −0.21120238

city | −0.1970127

airport_name | −0.18223621

timezone | 0.17961165

(5 rows)

Note that this statistic is not gathered for the coordinates column: less than and greater

than operators are not defined for the point type.

Correlation is used for cost estimation of index scans p. ���.

17.9 Expression Statistics

Column-level statistics can be used only if either the left or the right part of the com-

parison operation refers to the column itself and does not contain any expressions. For

example, the planner cannot predict how computing a function of a column will affect

statistics, so for conditions like “function-call = constant” the selectivity is always esti-

mated at �.�%:1

=> EXPLAIN SELECT * FROM flights

WHERE extract(

month FROM scheduled_departure AT TIME ZONE 'Europe/Moscow'

) = 1;

QUERY PLAN

−−−

Seq Scan on flights (cost=0.00..6384.17 rows=1074 width=63)

Filter: (EXTRACT(month FROM (scheduled_departure AT TIME ZONE ...

(2 rows)

=> SELECT round(reltuples * 0.005)

FROM pg_class WHERE relname = 'flights';

round

−−−−−−−

1074

(1 row)

The planner knows nothing about semantics of functions, even of standard ones. Our

general knowledge suggests that the flights performed in January will make roughly 1

12
of

the total number of flights, which exceeds the projected value by one order of magnitude.

1 backend/utils/adt/selfuncs.c, eqsel function

285

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/selfuncs.c;hb=REL_14_STABLE

Chapter 17 Statistics

To improve the estimation, we have to collect expression statistics rather than rely on the

column-level one. There are two ways to do it.

Extended Expression Statisticsv. ��

The first option is to use extended expression statistics.1 Such statistics are not collected

by default; you have to manually create the corresponding database object by running the

������ ���������� command:

=> CREATE STATISTICS flights_expr ON (extract(

month FROM scheduled_departure AT TIME ZONE 'Europe/Moscow'

))

FROM flights;

Once the data is gathered, the estimation accuracy improves:

=> ANALYZE flights;

=> EXPLAIN SELECT * FROM flights

WHERE extract(

month FROM scheduled_departure AT TIME ZONE 'Europe/Moscow'

) = 1;

QUERY PLAN

−−−

Seq Scan on flights (cost=0.00..6384.17 rows=16667 width=63)

Filter: (EXTRACT(month FROM (scheduled_departure AT TIME ZONE ...

(2 rows)

For the collected statistics to be applied, the query must specify the expression in exactly

the same form that was used by the ������ ���������� command.

The size limit for extended statisticsv. �� can be adjusted separately, by running the �����

���������� command. For example:

=> ALTER STATISTICS flights_expr SET STATISTICS 42;

All the metadata related to extended statistics is stored in the pg_statistic_ext table of the

system catalog, while the collected data itself resides in a separate table called pg_statis-

tic_ext_datav. �� . This separation is used to implement access control for sensitive informa-

tion.

Extended expression statistics available to a particular user can be displayed in a more

convenient format in a separate view:

1 postgresql.org/docs/14/planner-stats#PLANNER-STATS-EXTENDED.html

backend/statistics/README

286

https://postgresql.org/docs/14/planner-stats#PLANNER-STATS-EXTENDED.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/statistics/README;hb=REL_14_STABLE

17.9 Expression Statistics

=> SELECT left(expr,50) || '...' AS expr,

null_frac, avg_width, n_distinct,

most_common_vals AS mcv,

left(most_common_freqs::text,50) || '...' AS mcf,

correlation

FROM pg_stats_ext_exprs

WHERE statistics_name = 'flights_expr' \gx

−[RECORD 1]−−

expr | EXTRACT(month FROM (scheduled_departure AT TIME ZO...

null_frac | 0

avg_width | 8

n_distinct | 12

mcv | {8,9,12,3,1,5,6,7,11,10,4,2}

mcf | {0.12053333,0.11326667,0.0802,0.07976667,0.0775666...

correlation | 0.08355749

Statistics for Expression Indexes

Another way to improve cardinality estimation is to use special statistics collected for

expression indexes p. ���; these statistics are gathered automatically when such an index is cre-

ated, just like it is done for a table. If the index is really needed, this approach turns out

to be very convenient.

=> DROP STATISTICS flights_expr;

=> CREATE INDEX ON flights(extract(

month FROM scheduled_departure AT TIME ZONE 'Europe/Moscow'

));

=> ANALYZE flights;

=> EXPLAIN SELECT * FROM flights

WHERE extract(

month FROM scheduled_departure AT TIME ZONE 'Europe/Moscow'

) = 1;

QUERY PLAN

−−−

Bitmap Heap Scan on flights (cost=324.86..3247.92 rows=17089 wi...

Recheck Cond: (EXTRACT(month FROM (scheduled_departure AT TIME...

−> Bitmap Index Scan on flights_extract_idx (cost=0.00..320.5...

Index Cond: (EXTRACT(month FROM (scheduled_departure AT TI...

(4 rows)

Statistics on expression indexes are stored in the same way as statistics on tables. For

example, you can get the number of distinct values by specifying the index name as table-

name when querying pg_stats:

287

Chapter 17 Statistics

=> SELECT n_distinct FROM pg_stats

WHERE tablename = 'flights_extract_idx';

n_distinct

−−−−−−−−−−−−

12

(1 row)

You can adjust the accuracyv. �� of index-related statistics using the ����� ����� command. If

you do not know the column name that corresponds to the indexed expression, you have

to first find it out.

For example:

=> SELECT attname FROM pg_attribute

WHERE attrelid = 'flights_extract_idx'::regclass;

attname

−−−−−−−−−

extract

(1 row)

=> ALTER INDEX flights_extract_idx

ALTER COLUMN extract SET STATISTICS 42;

17.10 Multivariate Statistics

It is also possible to collect multivariate statistics, which span several table columns. As a

prerequisite, you have to manually create the corresponding extended statistics using the

������ ���������� command.

Postgre��� implements three types of multivariate statistics.

Functional Dependencies Between Columnsv. ��

If values in one column depend (fully or partially) on values in another column and the

filter conditions include both these columns, cardinality will be underestimated.

Let’s consider a query with two filter conditions:

=> SELECT count(*) FROM flights

WHERE flight_no = 'PG0007' AND departure_airport = 'VKO';

count

−−−−−−−

396

(1 row)

288

17.10 Multivariate Statistics

The value is hugely underestimated:

=> EXPLAIN SELECT * FROM flights

WHERE flight_no = 'PG0007' AND departure_airport = 'VKO';

QUERY PLAN

−−−

Bitmap Heap Scan on flights (cost=10.49..816.84 rows=15 width=63)

Recheck Cond: (flight_no = 'PG0007'::bpchar)

Filter: (departure_airport = 'VKO'::bpchar)

−> Bitmap Index Scan on flights_flight_no_scheduled_departure_key

(cost=0.00..10.49 rows=276 width=0)

Index Cond: (flight_no = 'PG0007'::bpchar)

(6 rows)

It is a well-known problem of correlated predicates. The planner assumes that predicates

do not depend on each other, so the overall selectivity is estimated at the product of selec-

tivities of filter conditions combined by logical ��� p. ���. The plan above clearly illustrates this

issue: the value estimated by the Bitmap Index Scan node for the condition on the flight_no

column is significantly reduced once the Bitmap Heap Scan node filters the results by the

condition on the departure_airport column.

However, we do understand that airports are unambiguously defined by flight numbers:

the second condition is virtually redundant (unless there is a mistake in the airport name,

of course). In such cases, we can improve the estimation by applying extended statistics

on functional dependencies.

Let’s create an extended statistic on the functional dependency between the two columns:

=> CREATE STATISTICS flights_dep(dependencies)

ON flight_no, departure_airport FROM flights;

The next analysis run gathers this statistic, and the estimation improves:

=> ANALYZE flights;

=> EXPLAIN SELECT * FROM flights

WHERE flight_no = 'PG0007'

AND departure_airport = 'VKO';

QUERY PLAN

−−−

Bitmap Heap Scan on flights (cost=10.57..819.51 rows=277 width=63)

Recheck Cond: (flight_no = 'PG0007'::bpchar)

Filter: (departure_airport = 'VKO'::bpchar)

−> Bitmap Index Scan on flights_flight_no_scheduled_departure_key

(cost=0.00..10.50 rows=277 width=0)

Index Cond: (flight_no = 'PG0007'::bpchar)

(6 rows)

289

Chapter 17 Statistics

The collected statistics is stored in the system catalog and can be accessed like this:

=> SELECT dependencies

FROM pg_stats_ext

WHERE statistics_name = 'flights_dep';

dependencies

−−

{"2 => 5": 1.000000, "5 => 2": 0.010200}

(1 row)

Here � and � are column numbers stored in the pg_attribute table, whereas the corre-

sponding values define the degree of functional dependency: from � (no dependency)

to � (values in the second columns fully depend on values in the first column).

Multivariate Number of Distinct Valuesv. ��

Statistics on the number of unique combinations of values stored in different columns

improves cardinality estimation of a ����� �� operation performed on several columns.

For example, here the estimated number of possible pairs of departure and arrival airports

is the square of the total number of airports; however, the actual value is much smaller,

as not all the pairs are connected by direct flights:

=> SELECT count(*)

FROM (

SELECT DISTINCT departure_airport, arrival_airport FROM flights

) t;

count

−−−−−−−

618

(1 row)

=> EXPLAIN SELECT DISTINCT departure_airport, arrival_airport

FROM flights;

QUERY PLAN

−−

HashAggregate (cost=5847.01..5955.16 rows=10816 width=8)

Group Key: departure_airport, arrival_airport

−> Seq Scan on flights (cost=0.00..4772.67 rows=214867 width=8)

(3 rows)

Let’s define and collect an extended statistic on distinct values:

=> CREATE STATISTICS flights_nd(ndistinct)

ON departure_airport, arrival_airport FROM flights;

=> ANALYZE flights;

290

17.10 Multivariate Statistics

The cardinality estimation has improved:

=> EXPLAIN SELECT DISTINCT departure_airport, arrival_airport

FROM flights;

QUERY PLAN

−−

HashAggregate (cost=5847.01..5853.19 rows=618 width=8)

Group Key: departure_airport, arrival_airport

−> Seq Scan on flights (cost=0.00..4772.67 rows=214867 width=8)

(3 rows)

You can view the collected statistic in the system catalog:

=> SELECT n_distinct

FROM pg_stats_ext

WHERE statistics_name = 'flights_nd';

n_distinct

−−−−−−−−−−−−−−−

{"5, 6": 618}

(1 row)

Multivariate MCV Lists v. ��

If the distribution of values is non-uniform, it may be not enough to rely on the func-

tional dependency alone, as the estimation accuracy will highly depend on a particular

pair of values. For example, the planner underestimates the number of flights performed

by Boeing ��� from Sheremetyevo airport:

=> SELECT count(*)

FROM flights

WHERE departure_airport = 'SVO' AND aircraft_code = '733';

count

−−−−−−−

2037

(1 row)

=> EXPLAIN SELECT *

FROM flights

WHERE departure_airport = 'SVO' AND aircraft_code = '733';

QUERY PLAN

−−−

Seq Scan on flights (cost=0.00..5847.00 rows=736 width=63)

Filter: ((departure_airport = 'SVO'::bpchar) AND (aircraft_cod...

(2 rows)

291

Chapter 17 Statistics

In this case, you can improve the estimation by collecting statistics on multivariate ���

lists:1

=> CREATE STATISTICS flights_mcv(mcv)

ON departure_airport, aircraft_code FROM flights;

=> ANALYZE flights;

The new cardinality estimation is much more accurate:

=> EXPLAIN SELECT *

FROM flights

WHERE departure_airport = 'SVO' AND aircraft_code = '733';

QUERY PLAN

−−−

Seq Scan on flights (cost=0.00..5847.00 rows=1927 width=63)

Filter: ((departure_airport = 'SVO'::bpchar) AND (aircraft_cod...

(2 rows)

To get this estimation, the planner relies on the frequency values stored in the system

catalog:

=> SELECT values, frequency

FROM pg_statistic_ext stx

JOIN pg_statistic_ext_data stxd ON stx.oid = stxd.stxoid,

pg_mcv_list_items(stxdmcv) m

WHERE stxname = 'flights_mcv'

AND values = '{SVO,773}';

values | frequency

−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−

{SVO,773} | 0.005266666666666667

(1 row)

Just like a regular ��� list, a multivariate list holds100 default_statistics_target values (if this

parameter is also set at the column level, the largest of its values is used).

If required, you can also change the size of the list,v. �� like it is done for extended expression

statistics:

ALTER STATISTICS ... SET STATISTICS ...;

In all these examples, I have used only two columns, but you can collect multivariate

statistics on a larger number of columns too.

1 backend/statistics/README.mcv

backend/statistics/mcv.c

292

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/statistics/README.mcv;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/statistics/mcv.c;hb=REL_14_STABLE

17.10 Multivariate Statistics

To combine statistics of several types in one object, you can provide a comma-separated

list of these types in its definition. If no type is specified, Postgre��� will collect statistics

of all the possible types for the specified columns.

Apart from the actual column names, v. ��multivariate statistics can also use arbitrary expres-

sions, just like expression statistics.

293

18
Table Access Methods

18.1 Pluggable Storage Engines

The data layout used by Postgre��� is neither the only possible nor the best one for all

load types. Following the idea of extensibility, Postgre��� allowsv. �� you to create and plug

in various table access methods (pluggable storage engines), but there is only one available

out of the box at the moment:

=> SELECT amname, amhandler FROM pg_am WHERE amtype = 't';

amname | amhandler

−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−

heap | heap_tableam_handler

(1 row)

You can specify the engine to use when creating a table (������ ����� ... �����); otherwise,

the default engine listed in theheap default_table_access_method parameter will be applied.

For the Postgre��� core to work with various engines in the same way, table access meth-

ods must implement a special interface.1 The function specified in the amhandler column

returns the interface structure2 that contains all the information required by the core.

The following core components can be used by all table access methods:

• transaction manager, including ���� and snapshot isolation support

• buffer manager

• �/� subsystem

• �����

• optimizer and executor

• index support

1 postgresql.org/docs/14/tableam.html
2 include/access/tableam.h

294

https://postgresql.org/docs/14/tableam.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/tableam.h;hb=REL_14_STABLE

18.1 Pluggable Storage Engines

These components always remain at the disposal of the engine, even if it does not use

them all.

In their turn, engines define:

• tuple format and data structure

• table scan implementation and cost estimation

• implementation of insert, delete, update, and lock operations

• visibility rules

• vacuum and analysis procedures

Historically, Postgre��� used a single built-in data storage without any proper program-

ming interface, so now it is very hard to come up with a good design that takes all the

specifics of the standard engine into account and does not interfere with other methods.

For example, it is still unclear how to deal with the ���. New access methods may need to log their

own operations that the core is unaware of. The existing generic ��� mechanism1 is usually a bad

choice, as it incurs too much overhead. You can add yet another interface for handling new types

of ��� entries, but then crash recovery will depend on external code, which is highly undesirable.

The only plausible solution so far is patching the core for each particular engine.

For this reason, I did not strive to provide any strict distinction between table accessmeth-

ods and the core. Many features described in the previous parts of the book formally

belong to the heap access method rather than to the core itself. This method is likely

to always remain the ultimate standard engine for Postgre���, while other methods will

fill separate niches to address challenges of specific load types.

Of all the new engines that are currently being developed, I would like to mention the

following:

Zheap is aimed at fighting table bloating.2 It implements in-place row updates andmoves

historic����-related data into a separate undo storage. Such an enginewill be useful

for loads that involve frequent data updates.

Zheap architecture will seem familiar to Oracle users, although it does have some

nuances (for example, the interface of index access methods p. ���does not allow creating

indexes with their own versioning).

1 postgresql.org/docs/14/generic-wal.html
2 github.com/EnterpriseDB/zheap

295

https://postgresql.org/docs/14/generic-wal.html
https://github.com/EnterpriseDB/zheap

Chapter 18 Table Access Methods

Zedstore implements columnar storage,1 which is likely to be most efficient with ����

queries.

The stored data is structured as a �-tree of tuple ��s; each column is stored in its

own �-tree associated with the main one. In the future, it might be possible to store

several columns in one �-tree, thus getting a hybrid storage.

18.2 Sequential Scans

The storage engine defines the physical layout of table data and provides an accessmethod

to it. The only supported method is a sequential scan, which reads the file (or files) of the

table’s main fork in full. In each read page, the visibilityp. �� of each tuple is checked; those

tuples that do not satisfy the query are filtered out.

table page

a tuple
to be filtered out

A scanning process goes through the buffer cache;p. ��� to ensure that large tables do not oust

useful data, a small-sized buffer ring is employed. Other processes scanning the same ta-

ble join this buffer ring, thus avoiding extra disk reads; such scans are called synchronized.

Thus, scanning does not always have to begin at the start of the file.

Sequential scanning is the most efficient way to read the whole table or the best part of it.

In other words, sequential scans bring the most value when the selectivity is low. (If the

selectivity is high,meaning that the query has to select only a few rows, it is preferable to

use an indexp. ��� .)

Cost Estimation

In the query execution plan, a sequential scan is represented by the Seq Scan node:

1 github.com/greenplum-db/postgres/tree/zedstore

296

https://github.com/greenplum-db/postgres/tree/zedstore

18.2 Sequential Scans

=> EXPLAIN SELECT *

FROM flights;

QUERY PLAN

−−

Seq Scan on flights (cost=0.00..4772.67 rows=214867 width=63)

(1 row)

The estimated number of rows is provided as part of the basic statistics:

=> SELECT reltuples FROM pg_class WHERE relname = 'flights';

reltuples

−−−−−−−−−−−

214867

(1 row)

When estimating the cost, the optimizer takes the following two components into ac-

count: disk �/� and ��� resources.1

I/� cost is calculated bymultiplying the number of pages in a table and the cost of reading

a single page assuming that pages are being read sequentially. When the buffermanager

requests a page, the operating system actually reads more data from disk, so several

subsequent pages are highly likely to be found in the operating system cache. For

this reason, the cost of reading a single page using sequential scanning (which the

planner estimates at 1seq_page_cost) is lower than the random access cost (defined by

the 4random_page_cost value).

The default settings work well for ���s; if you are using ���s, it makes sense to sig-

nificantly reduce the random_page_cost value (the seq_page_cost parameter is usually

left as is, serving as a reference value). Since the optimal ratio between these pa-

rameters depends on the hardware, they are usually set at the tablespace level (�����

���������� ... ���).

=> SELECT relpages,

current_setting('seq_page_cost') AS seq_page_cost,

relpages * current_setting('seq_page_cost')::real AS total

FROM pg_class WHERE relname = 'flights';

relpages | seq_page_cost | total

−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−

2624 | 1 | 2624

(1 row)

These calculations clearly show the consequences p. ���of table bloating caused by un-

timely vacuuming: the larger the main fork of the table, the more pages have to be

scanned, regardless of the number of live tuples they contain.

1 backend/optimizer/path/costsize.c, cost_seqscan function

297

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

Chapter 18 Table Access Methods

C�� resource estimation comprises the costs of processing each tuple (which the planner

estimates at0.01 cpu_tuple_cost):

=> SELECT reltuples,

current_setting('cpu_tuple_cost') AS cpu_tuple_cost,

reltuples * current_setting('cpu_tuple_cost')::real AS total

FROM pg_class WHERE relname = 'flights';

reltuples | cpu_tuple_cost | total

−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−

214867 | 0.01 | 2148.67

(1 row)

The sum of these two estimates represents the total cost of the plan. The startup cost

is zero because sequential scans have no prerequisites.

If the scanned table needs to be filtered, the applied filter conditions appear in the plan

under the Filter section of the Seq Scan node. The estimatedp. ��� row count depends on the

selectivity of these conditions,while the cost estimation includes the related computation

expenses.

The ������� ������� command displays both the actual number of returned rows and the

number of rows that have been filtered out:

=> EXPLAIN (analyze, timing off, summary off)

SELECT * FROM flights

WHERE status = 'Scheduled';

QUERY PLAN

−−

Seq Scan on flights

(cost=0.00..5309.84 rows=15383 width=63)

(actual rows=15383 loops=1)

Filter: ((status)::text = 'Scheduled'::text)

Rows Removed by Filter: 199484

(5 rows)

Let’s take a look at a more complex execution plan that uses aggregation:

=> EXPLAIN SELECT count(*) FROM seats;

QUERY PLAN

−−

Aggregate (cost=24.74..24.75 rows=1 width=8)

−> Seq Scan on seats (cost=0.00..21.39 rows=1339 width=0)

(2 rows)

The plan consists of two nodes: the upper node (Aggregate), which computes the count

function, pulls the data from the lower node (Seq Scan), which scans the table.

298

18.2 Sequential Scans

The startup cost of the Aggregate node includes the aggregation itself: it is impossible

to return the first row (which is the only one in this case) without getting all the rows

from the lower node. The aggregation cost is estimated based on the execution cost of a

conditional operation (estimated at 0.0025cpu_operator_cost) for each input row:1

=> SELECT reltuples,

current_setting('cpu_operator_cost') AS cpu_operator_cost,

round((

reltuples * current_setting('cpu_operator_cost')::real

)::numeric, 2) AS cpu_cost

FROM pg_class WHERE relname = 'seats';

reltuples | cpu_operator_cost | cpu_cost

−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−

1339 | 0.0025 | 3.35

(1 row)

The received estimate is added to the total cost of the Seq Scan node.

The total cost of the Aggregate node also includes the cost of processing a row to be re-

turned, which is estimated at 0.01cpu_tuple_cost:

=> WITH t(cpu_cost) AS (

SELECT round((

reltuples * current_setting('cpu_operator_cost')::real

)::numeric, 2)

FROM pg_class WHERE relname = 'seats'

)

SELECT 21.39 + t.cpu_cost AS startup_cost,

round((

21.39 + t.cpu_cost +

1 * current_setting('cpu_tuple_cost')::real

)::numeric, 2) AS total_cost

FROM t;

startup_cost | total_cost

−−−−−−−−−−−−−−+−−−−−−−−−−−−

24.74 | 24.75

(1 row)

Thus, cost estimation dependencies can be pictured as follows:

QUERY PLAN

−−

Aggregate

(cost=24.74..24.75 rows=1 width=8)

−> Seq Scan on seats

(cost=0.00..21.39 rows=1339 width=0)

(4 rows)

1 backend/optimizer/path/costsize.c, cost_agg function

299

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

Chapter 18 Table Access Methods

18.3 Parallel Plans

Postgre��� supportsv. �.� parallel query execution.1 The leading process that performs the

query spawns (via postmaster) several worker processes that execute the same parallel part

of the plan simultaneously. The results are passed to the leader,which puts them together

in the Gather2 node. When not accepting the data, the leader may also participate in the

execution of the parallel part of the plan.

If required,v. �� you can forbid the leader’s contributions to the parallel plan execution by

turning off theon parallel_leader_participation parameter.

parallel
part of the plan

parallel
part of the plan

Gather

sequential
part of the plan

parallel
part of the plan

worker workerleader

Naturally, starting these processes and sending data between them is not free, so not all

queries by far should be parallelized.

Besides, not all parts of the plan can be processed concurrently, even if parallel execution

is allowed. Some of the operations are performed by the leader alone, in the sequential

mode.

Postgre��� does not support the other approach to parallel plan execution, which consists in per-

forming data processing by several workers that virtually form an assembly line (roughly speaking,

each plan node is performed by a separate process); this mechanism was deemed inefficient by

Postgre��� developers.

1 postgresql.org/docs/14/parallel-query.html

backend/access/transam/README.parallel
2 backend/executor/nodeGather.c

300

https://postgresql.org/docs/14/parallel-query.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/README.parallel;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeGather.c;hb=REL_14_STABLE

18.4 Parallel Sequential Scans

18.4 Parallel Sequential Scans

One of the nodes designed for parallel processing is the Parallel Seq Scan node, which

performs a parallel sequential scan.

The name sounds a bit controversial (is the scan sequential or parallel after all?), but nev-

ertheless, it reflects the essence of the operation. If we take a look at the file access, table

pages are read sequentially, following the order in which they would have been read by a

simple sequential scan. However, this operation is performed by several concurrent pro-

cesses. To avoid scanning the same page twice, the executor synchronizes these processes

via shared memory.

A subtle aspect here is v. ��that the operating system does not get the big picture typical of

sequential scanning; instead, it sees several processes that perform random reads. There-

fore, data prefetching that usually speeds up sequential scans becomes virtually useless.

To minimize this unpleasant effect, Postgre��� assigns each process not just one but sev-

eral consecutive pages to read.1

As such, parallel scanning does not make much sense because the usual read costs are

further increased by the overhead incurred by data transfer from process to process. How-

ever, if workers perform any post-processing on the fetched rows (such as aggregation),

the total execution time may turn out to be much shorter.

Cost Estimation

Let’s take a look at a simple query that performs aggregation on a large table. The execu-

tion plan is parallelized:

=> EXPLAIN SELECT count(*) FROM bookings;

QUERY PLAN

−−

Finalize Aggregate (cost=25442.58..25442.59 rows=1 width=8)

−> Gather (cost=25442.36..25442.57 rows=2 width=8)

Workers Planned: 2

−> Partial Aggregate

(cost=24442.36..24442.37 rows=1 width=8)

−> Parallel Seq Scan on bookings

(cost=0.00..22243.29 rows=879629 width=0)

(7 rows)

All the nodes below Gather belong to the parallel part of the plan. They are executed

by each of the workers (two of them are planned here) and possibly by the leader process

1 backend/access/heap/heapam.c, table_block_parallelscan_startblock_init & table_block_parallelscan_next-

page functions

301

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/heapam.c;hb=REL_14_STABLE

Chapter 18 Table Access Methods

(unless this functionality is turned off by the parallel_leader_participation parameter). The

Gather node itself and all the nodes above it make the sequential part of the plan and are

executed by the leader process alone.

Let’s take a look at this query plan once again:

=> EXPLAIN SELECT count(*) FROM bookings;

QUERY PLAN

−−

Finalize Aggregate (cost=25442.58..25442.59 rows=1 width=8)

−> Gather (cost=25442.36..25442.57 rows=2 width=8)

Workers Planned: 2

−> Partial Aggregate

(cost=24442.36..24442.37 rows=1 width=8)

−> Parallel Seq Scan on bookings

(cost=0.00..22243.29 rows=879629 width=0)

(7 rows)

The Parallel Seq Scan node represents a parallel heap scan. The rows field shows the esti-

mated average number of rows to be processed by a single process. All in all, the execution

must be performed by three processes (one leader and twoworkers), but the leader process

will handle fewer rows: its share gets smaller as the number of workers grows.1 In this

particular case, the factor is �.�.

=> SELECT reltuples::numeric, round(reltuples / 2.4) AS per_process

FROM pg_class WHERE relname = 'bookings';

reltuples | per_process

−−−−−−−−−−−+−−−−−−−−−−−−−

2111110 | 879629

(1 row)

The Parallel Seq Scan cost is calculated similar to that of a sequential scan. The received

value is smaller, as each process handles fewer rows; the �/� part is included in full since

the whole table still has to be read, page by page:

=> SELECT round((

relpages * current_setting('seq_page_cost')::real +

reltuples / 2.4 * current_setting('cpu_tuple_cost')::real

)::numeric, 2)

FROM pg_class WHERE relname = 'bookings';

round

−−−−−−−−−−

22243.29

(1 row)

1 backend/optimizer/path/costsize.c, get_parallel_divisor function

302

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

18.4 Parallel Sequential Scans

Next, the Partial Aggregate node performs aggregation of the fetched data; in this partic-

ular case, it counts the number of rows.

The aggregation cost is estimated in the usual manner and is added to the cost estimation

of the table scan:

=> WITH t(startup_cost)

AS (

SELECT 22243.29 + round((

reltuples / 2.4 * current_setting('cpu_operator_cost')::real

)::numeric, 2)

FROM pg_class

WHERE relname = 'bookings'

)

SELECT startup_cost,

startup_cost + round((

1 * current_setting('cpu_tuple_cost')::real

)::numeric, 2) AS total_cost

FROM t;

startup_cost | total_cost

−−−−−−−−−−−−−−+−−−−−−−−−−−−

24442.36 | 24442.37

(1 row)

The next node (Gather) is executed by the leader process. This node is responsible for

launching workers and gathering the data they return.

For the purpose of planning, the cost estimation of starting processes (regardless of their

number) is defined by the 1000parallel_setup_cost parameter,while the cost of each row transfer

between the processes is estimated at 0.1parallel_tuple_cost.

In this example, the startup cost (spent on starting the processes) prevails; this value is

added to the startup cost of the Partial Aggregate node. The total cost also includes the

cost of transferring two rows; this value is added to the total cost of the Partial Aggregate

node:1

=> SELECT

24442.36 + round(

current_setting('parallel_setup_cost')::numeric,

2) AS setup_cost,

24442.37 + round(

current_setting('parallel_setup_cost')::numeric +

2 * current_setting('parallel_tuple_cost')::numeric,

2) AS total_cost;

setup_cost | total_cost

−−−−−−−−−−−−+−−−−−−−−−−−−

25442.36 | 25442.57

(1 row)

1 backend/optimizer/path/costsize.c, cost_gather function

303

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

Chapter 18 Table Access Methods

Last but not least, the Finalize Aggregate node aggregates all the partial results received

by the Gather node from the parallel processes.

The final aggregation is estimated just like any other. Its startup cost is based on the cost

of aggregating three rows; this value is added to the total cost of Gather (since all the rows

are needed to compute the result). The total cost of Finalize Aggregate also includes the

cost of returning one row.

=> WITH t(startup_cost) AS (

SELECT 25442.57 + round((

3 * current_setting('cpu_operator_cost')::real

)::numeric, 2)

FROM pg_class WHERE relname = 'bookings'

)

SELECT startup_cost,

startup_cost + round((

1 * current_setting('cpu_tuple_cost')::real

)::numeric, 2) AS total_cost

FROM t;

startup_cost | total_cost

−−−−−−−−−−−−−−+−−−−−−−−−−−−

25442.58 | 25442.59

(1 row)

Dependencies between cost estimations are determined by whether the node has to accu-

mulate the data before passing the result to its parent node. Aggregation cannot return

the result until it gets all the input rows, so its startup cost is based on the total cost of

the lower node. The Gather node, on the contrary, starts sending rows upstream as soon

as they are fetched. Therefore, the startup cost of this operation depends on the startup

cost of the lower node, while its total cost is based on the lower node’s total cost.

Here is the dependency graph:

QUERY PLAN

−−−

Finalize Aggregate

(cost=25442.58..25442.59 rows=1 width=8)

−> Gather

(cost=25442.36..25442.57 rows=2 width=8)

Workers Planned: 2

−> Partial Aggregate

(cost=24442.36..24442.37 rows=1 width=8)

−> Parallel Seq Scan on bookings

(cost=0.00..22243.29 rows=879629 width=0)

(9 rows)

304

18.5 Parallel Execution Limitations

18.5 Parallel Execution Limitations

Number of Background Workers

The number of processes is controlled by a hierarchy of three parameters. The maximal

number of background workers running concurrently is defined by the 8max_worker_pro-

cesses value.

However, parallel query execution is not the only operation that needs background work-

ers. For example, they also participate in logical replication and can be used by extensions.

The number of processes allocated specifically for parallel plan execution is limited to the

8max_parallel_workers value.

Out of this number, up to 2max_parallel_workers_per_gather processes can serve one leader.

The choice of these parameter values depends on the following factors:

• Hardware capabilities: the system must have free cores dedicated to parallel execu-

tion.

• Table sizes: the database must contain large tables.

• A typical load: there must be queries that potentially benefit from parallel execution.

These criteria are typically met by ���� systems rather than ���� ones.

The planner will not consider parallel execution at all if the estimated volume of heap

data to be read does not exceed the 8MBmin_parallel_table_scan_size value.

Unless the parallel_workers storage parameter is set to explicitly specify the number of

processes for a particular table, this value will be calculated by the following formula:

1 + ⌊log3 (
table size

min_parallel_table_scan_size)⌋

It means that each time a table grows three times, Postgre��� assigns one more parallel

worker for its processing. The default settings give us these figures:

305

Chapter 18 Table Access Methods

table,
��

number of
processes

8 �

�� �

�� �

��� �

��� �

���� �

In any case, the number of parallel workers cannot exceed the limit defined by the

max_parallel_workers_per_gather parameter.

If we query a small table of �� ��, only one worker will be planned and launched:

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT count(*) FROM flights;

QUERY PLAN

−−−

Finalize Aggregate (actual rows=1 loops=1)

−> Gather (actual rows=2 loops=1)

Workers Planned: 1

Workers Launched: 1

−> Partial Aggregate (actual rows=1 loops=2)

−> Parallel Seq Scan on flights (actual rows=107434 lo...

(6 rows)

A query on a table of ��� �� gets only two processes because it hits the limit of2 max_par-

allel_workers_per_gather workers:

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT count(*) FROM bookings;

QUERY PLAN

−−−

Finalize Aggregate (actual rows=1 loops=1)

−> Gather (actual rows=3 loops=1)

Workers Planned: 2

Workers Launched: 2

−> Partial Aggregate (actual rows=1 loops=3)

−> Parallel Seq Scan on bookings (actual rows=703703 l...

(6 rows)

If we remove this limit, we will get the estimated three processes:

=> ALTER SYSTEM SET max_parallel_workers_per_gather = 4;

=> SELECT pg_reload_conf();

306

18.5 Parallel Execution Limitations

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT count(*) FROM bookings;

QUERY PLAN

−−−

Finalize Aggregate (actual rows=1 loops=1)

−> Gather (actual rows=4 loops=1)

Workers Planned: 3

Workers Launched: 3

−> Partial Aggregate (actual rows=1 loops=4)

−> Parallel Seq Scan on bookings (actual rows=527778 l...

(6 rows)

If the number of slots that are free during query execution turns out to be smaller than

the planned value, only the available number of workers will be launched.

Let’s limit the total number of parallel processes to five and run two queries simultane-

ously:

=> ALTER SYSTEM SET max_parallel_workers = 5;

=> SELECT pg_reload_conf();

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT count(*) FROM bookings;

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT count(*) FROM bookings;

QUERY PLAN

−−−

Finalize Aggregate (actual rows=1 loops=1)

−> Gather (actual rows=3 loops=1)

Workers Planned: 3

Workers Launched: 2

−> Partial Aggregate (actual rows=1 loops=3)

−> Parallel Seq Scan on bookings (actual rows=7037...

(6 rows)

QUERY PLAN

−−−

Finalize Aggregate (actual rows=1 loops=1)

−> Gather (actual rows=4 loops=1)

Workers Planned: 3

Workers Launched: 3

−> Partial Aggregate (actual rows=1 loops=4)

−> Parallel Seq Scan on bookings (actual rows=527778 l...

(6 rows)

Although three processes were expected in both cases, one of the queries managed to get

only two slots.

307

Chapter 18 Table Access Methods

Let’s restore the default settings:

=> ALTER SYSTEM RESET ALL;

=> SELECT pg_reload_conf();

Non-Parallelizable Queries

Not all queries can be parallelized.1 In particular, parallel plans cannot be used for the

following query types:

• Queries that modify or lock data (������, ������, ������ ��� ������, and the like).

This restriction does not apply to subqueries within the following commands:

– ������ ����� ��,v. �� ������ ����, ������ ������������ ����

– ������� ������������ ����v. ��

However, row insertion is still performed sequentially in all these cases.

• Queries that can be paused. It applies to queries run within cursors, including ���

loops in ��/pg���.

• Queries that call �������� ������ functions. By default, these are all user-defined

functions and a few standard ones. You can get the full list of unsafe functions by

querying the system catalog:

SELECT * FROM pg_proc WHERE proparallel = 'u';

• Queries within functions if these functions are called from a parallelized query (to

avoid recursive growth of the number of workers).

Some of these limitations may be removed in the future versions of Postgre���. For ex-

ample,v. �� the ability to parallelize queries at the Serializable isolation level is already there.

Parallel insertion of rows using such commands as ������ and ���� is currently under develop-

ment.2

A query may remain unparallelized for several reasons:

• This type of a query does not support parallelization at all.

• Parallel plan usage is forbidden by the server configuration (for example, because of

the imposed table size limit).

1 postgresql.org/docs/14/when-can-parallel-query-be-used.html
2 commitfest.postgresql.org/32/2844

commitfest.postgresql.org/32/2841

commitfest.postgresql.org/32/2610

308

https://postgresql.org/docs/14/when-can-parallel-query-be-used.html
https://commitfest.postgresql.org/32/2844
https://commitfest.postgresql.org/32/2841
https://commitfest.postgresql.org/32/2610

18.5 Parallel Execution Limitations

• A parallel plan is more expensive than a sequential one.

To check whether a query can be parallelized at all, you can temporarily switch on the

offforce_parallel_mode parameter. Then the planner will build parallel plans whenever pos-

sible:

=> EXPLAIN SELECT * FROM flights;

QUERY PLAN

−−

Seq Scan on flights (cost=0.00..4772.67 rows=214867 width=63)

(1 row)

=> SET force_parallel_mode = on;

=> EXPLAIN SELECT * FROM flights;

QUERY PLAN

−−−

Gather (cost=1000.00..27259.37 rows=214867 width=63)

Workers Planned: 1

Single Copy: true

−> Seq Scan on flights (cost=0.00..4772.67 rows=214867 width=63)

(4 rows)

Parallel Restricted Queries

The bigger is the parallel part of the plan, the more performance gains can be potentially

achieved. However, certain operations are executed strictly sequentially by the leader pro-

cess alone,1 even though they do not interfere with parallelization as such. In other words,

they cannot appear in the plan tree below the Gather node.

Non-expandable subqueries. The most obvious example of a non-expandable subquery2

is scanning a ��� result (represented in the plan by the CTE Scan node):

=> EXPLAIN (costs off)

WITH t AS MATERIALIZED (

SELECT * FROM flights

)

SELECT count(*) FROM t;

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Aggregate

CTE t

−> Seq Scan on flights

−> CTE Scan on t

(4 rows)

1 postgresql.org/docs/14/parallel-safety.html
2 backend/optimizer/plan/subselect.c

309

https://postgresql.org/docs/14/parallel-safety.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/plan/subselect.c;hb=REL_14_STABLE

Chapter 18 Table Access Methods

Ifv. �� a ��� is notmaterialized, the plan does not contain the CTE Scan node, so this limitation

does not apply.

Note, however, that a ��� itself can be computed in the parallel mode if it turns out to be

less expensive:

=> EXPLAIN (costs off)

WITH t AS MATERIALIZED (

SELECT count(*) FROM flights

)

SELECT * FROM t;

QUERY PLAN

−−−

CTE Scan on t

CTE t

−> Finalize Aggregate

−> Gather

Workers Planned: 1

−> Partial Aggregate

−> Parallel Seq Scan on flights

(7 rows)

Another example of a non-expandable subquery is shown under by the SubPlan node in

the plan below:

=> EXPLAIN (costs off)

SELECT * FROM flights f

WHERE f.scheduled_departure > (-- SubPlan

SELECT min(f2.scheduled_departure)

FROM flights f2

WHERE f2.aircraft_code = f.aircraft_code

);

QUERY PLAN

−−−

Seq Scan on flights f

Filter: (scheduled_departure > (SubPlan 1))

SubPlan 1

−> Aggregate

−> Seq Scan on flights f2

Filter: (aircraft_code = f.aircraft_code)

(6 rows)

The first two rows represent the plan of the main query: the flights table is scanned se-

quentially, and each of its rows is checked against the provided filter. The filter condition

includes a subquery; the plan of this subquery starts on the third row. So the SubPlan node

is executed several times, once for each row fetched by sequential scanning in this case.

The upper Seq Scan node of this plan cannot participate in parallel execution because it

relies on the data returned by the SubPlan node.

310

18.5 Parallel Execution Limitations

Last but not least, here is one more non-expandable subquery represented by the InitPlan

node:

=> EXPLAIN (costs off)

SELECT * FROM flights f

WHERE f.scheduled_departure > (-- SubPlan

SELECT min(f2.scheduled_departure)

FROM flights f2

WHERE EXISTS (-- InitPlan

SELECT *

FROM ticket_flights tf

WHERE tf.flight_id = f.flight_id

)

);

QUERY PLAN

−−

Seq Scan on flights f

Filter: (scheduled_departure > (SubPlan 2))

SubPlan 2

−> Finalize Aggregate

InitPlan 1 (returns $1)

−> Seq Scan on ticket_flights tf

Filter: (flight_id = f.flight_id)

−> Gather

Workers Planned: 1

Params Evaluated: $1

−> Partial Aggregate

−> Result

One−Time Filter: $1

−> Parallel Seq Scan on flights f2

(14 rows)

Unlike the SubPlan node, InitPlan is evaluated only once (in this particular example, once

per each execution of the SubPlan 2 node).

The parent node of InitPlan cannot participate in parallel execution (but those nodes that

receive the result of the InitPlan evaluation can, like in this example).

Temporary tables. Temporary tables do not support parallel scanning, as they can be ac-

cessed exclusively by the process that has created them. Their pages are processed in the

local p. ���buffer cache. Making the local cache accessible to several processes would require

a locking mechanism p. ���like in the shared cache, which would make its other benefits less

prominent.

=> CREATE TEMPORARY TABLE flights_tmp AS SELECT * FROM flights;

=> EXPLAIN (costs off)

SELECT count(*) FROM flights_tmp;

311

Chapter 18 Table Access Methods

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Aggregate

−> Seq Scan on flights_tmp

(2 rows)

Parallel restricted functions. Functions defined as �������� ���������� are allowed only in

the sequential part of the plan. You can get the list of such functions from the system

catalog by running the following query:

SELECT * FROM pg_proc WHERE proparallel = 'r';

Only label your functions as �������� ���������� (to say nothing of �������� ����) if you are

fully aware of all the implications and have carefully studied all the imposed restrictions.1

1 postgresql.org/docs/14/parallel-safety.html#PARALLEL-LABELING

312

https://postgresql.org/docs/14/parallel-safety.html#PARALLEL-LABELING

19
Index Access Methods

19.1 Indexes and Extensibility

Indexes are database objects that mainly serve the purpose of accelerating data access.

These are auxiliary structures: any index can be deleted and recreated based on heap

data. In addition to data access speedup, indexes are also used to enforce some integrity

constraints.

The Postgre��� core provides six built-in index access methods (index types):

=> SELECT amname FROM pg_am WHERE amtype = 'i';

amname

−−−−−−−−

btree

hash

gist

gin

spgist

brin

(6 rows)

Postgre���’s extensibility implies v. �.�that new access methods can be added without modi-

fying the core. One such extension (the bloom method) is included into the standard set

of modules.

Despite all the differences between various index types, all of them eventuallymatch a key

(such as a value of an indexed column) against heap tuples p. ���that contain this key. Tuples

are referred to by six-byte tuple ��s, or ���s. Knowing the key or some information about

the key, it is possible to quickly read the tuples that are likely to contain the required data

without scanning the whole table.

To ensure that a new accessmethod can be added as an extension, Postgre��� implements

a common indexing engine. Its main objective is to retrieve and process ���s returned by a

particular access method:

313

Chapter 19 Index Access Methods

• read data from the corresponding heap tuples

• check tuple visibilityp. �� against a particular snapshot

• recheck conditions if their evaluation by the method is indecisive

The indexing engine also participates in execution of plans built at the optimization stage.

When assessing various execution paths, the optimizer needs to know the properties of

all potentially applicable access methods: can the method return the data in the required

order, or do we need a separate sorting stage? is it possible to return several first values

right away, or do we have to wait for the whole result set to be fetched? and so on.

It is not only the optimizer that needs to know specifics of the access method. Index

creation poses more questions to answer: does the access method support multicolumn

indexes? can this index guarantee uniqueness?

The indexing engine allows using a variety of access methods; in order to be supported,

an access method must implement a particular interface to declare its features and prop-

erties.

Access methods are used to address the following tasks:

• implement algorithms for building indexes, as well as inserting and deleting index

entries

• distribute index entries between pages (to be further handled by the buffer cache

managerp. ���)

• implement the algorithm of vacuumingp. ���

• acquire locksp. ��� to ensure correct concurrent operation

• generate ��� entriesp. ���

• search indexed data by the key

• estimate index scan costs

Extensibility also manifests itself as the ability to add new data types, which the access

method knows nothing of in advance. Therefore, access methods have to define their own

interfaces for plugging in arbitrary data types.

To enable usage of a newdata typewith a particular accessmethod, you have to implement

the corresponding interface—that is, provide operators that can be usedwith an index, and

possibly some auxiliary support functions. Such a set of operators and functions is called

an operator class.

314

19.2 Operator Classes and Families

The indexing logic is partially implemented by the access method itself, but some of it is

outsourced to operator classes. This distribution is rather arbitrary: while �-trees have all

the logic wired into the access method, some other methods may provide only the main

framework, leaving all the implementation details at the discretion of particular operator

classes. One and the same data type is often supported by several operator classes, and

the user can select the one with the most suitable behavior.

Here is a small fraction of the overall picture:

Indexing
engine

btree

bool_ops boolean

int4_ops integer

text_ops

text

text_pattern_ops

gist

gist_int4_ops

gist_text_ops

point_ops point

access methods operator classes data types

19.2 Operator Classes and Families

Operator Classes

An access method interface1 is implemented by an operator class,2 which is a set of oper-

ators and support functions applied by the access method to a particular data type.

Classes of operators are stored in the pg_opclass table in the system catalog. The following

query returns the complete data for the above illustration:

1 postgresql.org/docs/14/xindex.html
2 postgresql.org/docs/14/indexes-opclass.html

315

https://postgresql.org/docs/14/xindex.html
https://postgresql.org/docs/14/indexes-opclass.html

Chapter 19 Index Access Methods

=> SELECT amname, opcname, opcintype::regtype

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid;

amname | opcname | opcintype

−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

btree | array_ops | anyarray

hash | array_ops | anyarray

btree | bit_ops | bit

btree | bool_ops | boolean

...

brin | pg_lsn_minmax_multi_ops | pg_lsn

brin | pg_lsn_bloom_ops | pg_lsn

brin | box_inclusion_ops | box

(177 rows)

In most cases, we do not have to know anything about operator classes. We simply create

an index that uses some operator class by default.

For example, here are �-tree operator classes that support the text type. One of the classes

is always marked as the default one:

=> SELECT opcname, opcdefault

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

WHERE amname = 'btree'

AND opcintype = 'text'::regtype;

opcname | opcdefault

−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−

text_ops | t

varchar_ops | f

text_pattern_ops | f

varchar_pattern_ops | f

(4 rows)

A typical command for index creation looks as follows:

CREATE INDEX ON aircrafts(model, range);

But it is just a shorthand notation that expands to the following syntax:

CREATE INDEX ON aircrafts

USING btree -- the default access method

(

model text_ops, -- the default operator class for text

range int4_ops -- the default operator class for integer

);

If you would like to use an index of a different type or achieve some custom behavior, you

have to specify the desired access method or operator class explicitly.

316

19.2 Operator Classes and Families

Each operator class defined for a particular access method and data type must contain a

set of operators that take parameters of this type and implement the semantics of this

access method.

For example, the btree access method defines five mandatory comparison operators. Any

btree operator class must contain all the five:

=> SELECT opcname, amopstrategy, amopopr::regoperator

FROM pg_am am

JOIN pg_opfamily opf ON opfmethod = am.oid

JOIN pg_opclass opc ON opcfamily = opf.oid

JOIN pg_amop amop ON amopfamily = opcfamily

WHERE amname = 'btree'

AND opcname IN ('text_ops', 'text_pattern_ops')

AND amoplefttype = 'text'::regtype

AND amoprighttype = 'text'::regtype

ORDER BY opcname, amopstrategy;

opcname | amopstrategy | amopopr

−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−

text_ops | 1 | <(text,text)

text_ops | 2 | <=(text,text)

text_ops | 3 | =(text,text)

text_ops | 4 | >=(text,text)

text_ops | 5 | >(text,text)

text_pattern_ops | 1 | ~<~(text,text)

text_pattern_ops | 2 | ~<=~(text,text)

text_pattern_ops | 3 | =(text,text)

text_pattern_ops | 4 | ~>=~(text,text)

text_pattern_ops | 5 | ~>~(text,text)

(10 rows)

The semantics of an operator implied by the access method is reflected by the strategy

number shown as amopstrategy.1 For example, strategy � for btree means less than, � de-

notes less than or equal to, and so on. Operators themselves can have arbitrary names.

The example above shows two kinds of operators. The difference between regular opera-

tors and those with a tilde is that the latter do not take collation2 into account and perform

bitwise comparison of strings. Nevertheless, both flavors implement the same logical op-

erations of comparison.

The text_pattern_ops operator class is designed to address the limitation in support of the

~~ operator (which corresponds to the ���� operator). In a database using any collation

other than C, this operator cannot use a regular index on a text field:

1 postgresql.org/docs/14/xindex.html#XINDEX-STRATEGIES
2 postgresql.org/docs/14/collation.html

postgresql.org/docs/14/indexes-collations.html

317

https://postgresql.org/docs/14/xindex.html#XINDEX-STRATEGIES
https://postgresql.org/docs/14/collation.html
https://postgresql.org/docs/14/indexes-collations.html

Chapter 19 Index Access Methods

=> SHOW lc_collate;

lc_collate

−−−−−−−−−−−−−

en_US.UTF−8

(1 row)

=> CREATE INDEX ON tickets(passenger_name);

=> EXPLAIN (costs off)

SELECT * FROM tickets WHERE passenger_name LIKE 'ELENA%';

QUERY PLAN

−−

Seq Scan on tickets

Filter: (passenger_name ~~ 'ELENA%'::text)

(2 rows)

An index with the text_pattern_ops operator class behaves differently:

=> CREATE INDEX tickets_passenger_name_pattern_idx

ON tickets(passenger_name text_pattern_ops);

=> EXPLAIN (costs off)

SELECT * FROM tickets WHERE passenger_name LIKE 'ELENA%';

QUERY PLAN

−−

Bitmap Heap Scan on tickets

Filter: (passenger_name ~~ 'ELENA%'::text)

−> Bitmap Index Scan on tickets_passenger_name_pattern_idx

Index Cond: ((passenger_name ~>=~ 'ELENA'::text) AND

(passenger_name ~<~ 'ELENB'::text))

(5 rows)

Note how the filter expression has changed in the Index Cond condition. The search now

uses only the template’s prefix before %, while false-positive hits are filtered out during

a recheck based on the Filter condition. The operator class for the btree access method

provides no operator for comparing templates, and the onlyway to apply a �-tree here is to

rewrite this condition using comparison operators. The operators of the text_pattern_ops

class do not take collation into account,which gives us an opportunity to use an equivalent

condition instead.1

An index can be used to speed up access by a filter condition if the following two prereq-

uisites are met:

� the condition is written as “indexed-column operator expression” (if the operator has

a commuting counterpart specified,2 the condition can also have the form of “expres-

sion operator indexed-column”)3

1 backend/utils/adt/like_support.c
2 postgresql.org/docs/14/xoper-optimization.html#id-1.8.3.18.6
3 backend/optimizer/path/indxpath.c, match_clause_to_indexcol function

318

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/like_support.c;hb=REL_14_STABLE
https://postgresql.org/docs/14/xoper-optimization.html#id-1.8.3.18.6
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/indxpath.c;hb=REL_14_STABLE

19.2 Operator Classes and Families

� and the operator belongs to the operator class specified for the indexed-column in the

index declaration.

For example, the following query can use an index:

=> EXPLAIN (costs off)

SELECT * FROM tickets WHERE 'ELENA BELOVA' = passenger_name;

QUERY PLAN

−−

Index Scan using tickets_passenger_name_idx on tickets

Index Cond: (passenger_name = 'ELENA BELOVA'::text)

(2 rows)

Note the position of arguments in the Index Cond condition: at the execution stage, the

indexed field must be on the left. When the arguments are permuted, the operator is

replaced by a commuting one; in this particular case, it is the same operator because the

equality relation is commutative.

In the next query, it is technically impossible to use a regular index because the column

name in the condition is replaced by a function call:

=> EXPLAIN (costs off)

SELECT * FROM tickets WHERE initcap(passenger_name) = 'Elena Belova';

QUERY PLAN

−−

Seq Scan on tickets

Filter: (initcap(passenger_name) = 'Elena Belova'::text)

(2 rows)

Here you can use an expression index,1 which has an arbitrary expression specified in its

declaration instead of a column:

=> CREATE INDEX ON tickets((initcap(passenger_name)));

=> EXPLAIN (costs off)

SELECT * FROM tickets WHERE initcap(passenger_name) = 'Elena Belova';

QUERY PLAN

−−

Bitmap Heap Scan on tickets

Recheck Cond: (initcap(passenger_name) = 'Elena Belova'::text)

−> Bitmap Index Scan on tickets_initcap_idx

Index Cond: (initcap(passenger_name) = 'Elena Belova'::text)

(4 rows)

An index expression can depend only on heap tuple values andmust be affected by neither

other data stored in the database nor configuration parameters (such as locale settings).

1 postgresql.org/docs/14/indexes-expressional.html

319

https://postgresql.org/docs/14/indexes-expressional.html

Chapter 19 Index Access Methods

In other words, if the expression contains any function calls, these functions must be ��-

�������,1 and they must observe this volatility category. Otherwise, an index scan and a

heap scan may return different results for the same query.

Apart from regular operators, an operator class can provide support functions2 required by

the access method. For example, the btree access method defines five support functions;3

the first one (which compares two values) is mandatory, while all the rest can be absent:

=> SELECT amprocnum, amproc::regproc

FROM pg_am am

JOIN pg_opfamily opf ON opfmethod = am.oid

JOIN pg_opclass opc ON opcfamily = opf.oid

JOIN pg_amproc amproc ON amprocfamily = opcfamily

WHERE amname = 'btree'

AND opcname = 'text_ops'

AND amproclefttype = 'text'::regtype

AND amprocrighttype = 'text'::regtype

ORDER BY amprocnum;

amprocnum | amproc

−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−

1 | bttextcmp

2 | bttextsortsupport

4 | btvarstrequalimage

(3 rows)

Operator Families

Each operator class always belongs to some operator family4 (listed in the system catalog

in the pg_opfamily table). A family can comprise several classes that handle similar data

types in the same way.

For example, the integer_ops family includes several classes for integral data types that

have the same semantics but differ in size:

=> SELECT opcname, opcintype::regtype

FROM pg_am am

JOIN pg_opfamily opf ON opfmethod = am.oid

JOIN pg_opclass opc ON opcfamily = opf.oid

WHERE amname = 'btree'

AND opfname = 'integer_ops';

1 postgresql.org/docs/14/xfunc-volatility.html
2 postgresql.org/docs/14/xindex.html#XINDEX-SUPPORT
3 postgresql.org/docs/14/btree-support-funcs.html
4 postgresql.org/docs/14/xindex.html#XINDEX-OPFAMILY

320

https://postgresql.org/docs/14/xfunc-volatility.html
https://postgresql.org/docs/14/xindex.html#XINDEX-SUPPORT
https://postgresql.org/docs/14/btree-support-funcs.html
https://postgresql.org/docs/14/xindex.html#XINDEX-OPFAMILY

19.2 Operator Classes and Families

opcname | opcintype

−−−−−−−−−−+−−−−−−−−−−−

int2_ops | smallint

int4_ops | integer

int8_ops | bigint

(3 rows)

The datetime_ops family comprises operator classes that process dates:

=> SELECT opcname, opcintype::regtype

FROM pg_am am

JOIN pg_opfamily opf ON opfmethod = am.oid

JOIN pg_opclass opc ON opcfamily = opf.oid

WHERE amname = 'btree'

AND opfname = 'datetime_ops';

opcname | opcintype

−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

date_ops | date

timestamptz_ops | timestamp with time zone

timestamp_ops | timestamp without time zone

(3 rows)

While each operator class supports a single data type, a family can comprise operator

classes for different data types:

=> SELECT opcname, amopopr::regoperator

FROM pg_am am

JOIN pg_opfamily opf ON opfmethod = am.oid

JOIN pg_opclass opc ON opcfamily = opf.oid

JOIN pg_amop amop ON amopfamily = opcfamily

WHERE amname = 'btree'

AND opfname = 'integer_ops'

AND amoplefttype = 'integer'::regtype

AND amopstrategy = 1

ORDER BY opcname;

opcname | amopopr

−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−

int2_ops | <(integer,bigint)

int2_ops | <(integer,smallint)

int2_ops | <(integer,integer)

int4_ops | <(integer,bigint)

int4_ops | <(integer,smallint)

int4_ops | <(integer,integer)

int8_ops | <(integer,bigint)

int8_ops | <(integer,smallint)

int8_ops | <(integer,integer)

(9 rows)

Thanks to such grouping of various operators into a single family, the planner can do

without type casting when an index is used for conditions involving values of different

types.

321

Chapter 19 Index Access Methods

19.3 Indexing Engine Interface

Just likev. �.� for table access methods, the amhandler column of the pg_am table contains the

name of the function that implements the interface:1

=> SELECT amname, amhandler

FROM pg_am

WHERE amtype = 'i';

amname | amhandler

−−−−−−−−+−−−−−−−−−−−−−

btree | bthandler

hash | hashhandler

gist | gisthandler

gin | ginhandler

spgist | spghandler

brin | brinhandler

(6 rows)

This function fills placeholders in the interface structure2 with actual values. Some of

them are functions responsible for separate tasks related to index access (for example,

they can perform an index scan and return heap tuple ��s), while others are index method

properties that the indexing engine must be aware of.

All properties are grouped into three categories:3

• access method properties

• properties of a particular index

• column-level properties of an index

The distinction between access method and index-level properties is provided with a view

to the future: right now, all the indexes based on a particular access method always have

the same properties at these two levels.

Access Method Properties

The following five propertiesv. �� are defined at the access method level (shown for the �-tree

method here):

1 postgresql.org/docs/14/indexam.html
2 include/access/amapi.h
3 backend/utils/adt/amutils.c, indexam_property function

322

https://postgresql.org/docs/14/indexam.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/amapi.h;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/amutils.c;hb=REL_14_STABLE

19.3 Indexing Engine Interface

=> SELECT a.amname, p.name, pg_indexam_has_property(a.oid, p.name)

FROM pg_am a, unnest(array[

'can_order', 'can_unique', 'can_multi_col',

'can_exclude', 'can_include'

]) p(name)

WHERE a.amname = 'btree';

amname | name | pg_indexam_has_property

−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−

btree | can_order | t

btree | can_unique | t

btree | can_multi_col | t

btree | can_exclude | t

btree | can_include | t

(5 rows)

C�� O���� The ability to receive sorted data.1 This property is currently supported only

by �-trees.

To get the results in the required order, you can always scan the table and then sort

the fetched data:

=> EXPLAIN (costs off)

SELECT * FROM seats ORDER BY seat_no;

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−

Sort

Sort Key: seat_no

−> Seq Scan on seats

(3 rows)

But if there is an index that supports this property, the data can be returned in the

desired order at once:

=> EXPLAIN (costs off)

SELECT * FROM seats ORDER BY aircraft_code;

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Index Scan using seats_pkey on seats

(1 row)

C�� U����� Support for unique and primary key constraints.2 This property applies only

to �-trees.

Each time a unique or primary key constraint is declared, Postgre��� automatically

creates a unique index to support this constraint.

1 postgresql.org/docs/14/indexes-ordering.html
2 postgresql.org/docs/14/indexes-unique.html

323

https://postgresql.org/docs/14/indexes-ordering.html
https://postgresql.org/docs/14/indexes-unique.html

Chapter 19 Index Access Methods

=> INSERT INTO bookings(book_ref, book_date, total_amount)

VALUES ('000004', now(), 100.00);

ERROR: duplicate key value violates unique constraint

"bookings_pkey"

DETAIL: Key (book_ref)=(000004) already exists.

That said, if you simply create a unique index without explicitly declaring an integrity

constraint, the effect will seem to be exactly the same: the indexed column will not

allow duplicates. So what is the difference?

An integrity constraint defines the property that must never be violated, while an

index is just a mechanism to guarantee it. In theory, a constraint could be imposed

using other means.

For example, Postgre��� does not support global indexes for partitioned tables, but

nevertheless, you can create a unique constraint on such tables (if it includes the

partition key). In this case, the global uniqueness is ensured by local unique indexes

of each partition, as different partitions cannot have the same partition keys.

C�� M���� C�� The ability to build a multicolumn index.1

Amulticolumn index can speed up search by several conditions imposed on different

table columns. For example, the ticket_flights table has a composite primary key, so

the corresponding index is built on more than one column:

=> \d ticket_flights_pkey

Index "bookings.ticket_flights_pkey"

Column | Type | Key? | Definition

−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−+−−−−−−−−−−−−

ticket_no | character(13) | yes | ticket_no

flight_id | integer | yes | flight_id

primary key, btree, for table "bookings.ticket_flights"

A flight search by a ticket number and a flight �� is performed using an index:

=> EXPLAIN (costs off)

SELECT * FROM ticket_flights

WHERE ticket_no = '0005432001355'

AND flight_id = 51618;

QUERY PLAN

−−

Index Scan using ticket_flights_pkey on ticket_flights

Index Cond: ((ticket_no = '0005432001355'::bpchar) AND

(flight_id = 51618))

(3 rows)

1 postgresql.org/docs/14/indexes-multicolumn.html

324

https://postgresql.org/docs/14/indexes-multicolumn.html

19.3 Indexing Engine Interface

As a rule, a multicolumn index can speed up search even if filter conditions involve

only some of its columns. In the case of a �-tree, the search will be efficient if the

filter condition spans a range of columns that appear first in the index declaration:

=> EXPLAIN (costs off)

SELECT *

FROM ticket_flights

WHERE ticket_no = '0005432001355';

QUERY PLAN

−−

Index Scan using ticket_flights_pkey on ticket_flights

Index Cond: (ticket_no = '0005432001355'::bpchar)

(2 rows)

In all other cases (for example, if the condition includes only flights_id), search will

be virtually limited to the initial columns (if the query includes the corresponding

conditions), while other conditions will only be used to filter out the returned results.

Indexes of other types may behave differently though.

C�� E������ Support for ������� constraints.1

An ������� constraint guarantees that a condition defined by an operator will not be

satisfied for any pair of table rows. To impose this constraint, Postgre��� automat-

ically creates an index; there must be an operator class that contains the operator

used in the constraint’s condition.

It is the intersection operator&& that usually serves this purpose. For instance, you

can use it to explicitly declare that a conference room cannot be booked twice for the

same time, or that buildings on a map cannot overlap.

With the equality operator, the exclusion constraint takes on the meaning of unique-

ness: the table is forbidden to have two rows with the same key values. Nevertheless,

it is not the same as a ������ constraint: in particular, the exclusion constraint key

cannot be referred to from foreign keys, and neither can it be used in the �� ��������

clause.

C�� I������ The ability v. ��to add non-key columns to an index, which make this index cov-

ering. p. ���

Using this property, you can extend a unique index with additional columns. Such an

index still guarantees that all the key column values are unique, while data retrieval

from the included columns incurs no heap access:

1 postgresql.org/docs/14/ddl-constraints.html#DDL-CONSTRAINTS-EXCLUSION

325

https://postgresql.org/docs/14/ddl-constraints.html#DDL-CONSTRAINTS-EXCLUSION

Chapter 19 Index Access Methods

=> CREATE UNIQUE INDEX ON flights(flight_id) INCLUDE (status);

=> EXPLAIN (costs off)

SELECT status FROM flights

WHERE flight_id = 51618;

QUERY PLAN

−−−

Index Only Scan using flights_flight_id_status_idx on flights

Index Cond: (flight_id = 51618)

(2 rows)

Index-Level Properties

Here are the properties related to an index (shown for an existing one):

=> SELECT p.name, pg_index_has_property('seats_pkey', p.name)

FROM unnest(array[

'clusterable', 'index_scan', 'bitmap_scan', 'backward_scan'

]) p(name);

name | pg_index_has_property

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−

clusterable | t

index_scan | t

bitmap_scan | t

backward_scan | t

(4 rows)

C���������� The ability to physically move heap tuples in accordance with the order in

which their ��s are returned by an index scan.p. ���

This property shows whether the ������� command is supported.

I���� S��� Index scan support.p. ���

This property implies that the access method can return ���s one by one. Strange as

it may seem, some indexes do not provide this functionality.

B����� S��� Bitmap scan support.p. ���

This property defines whether the access method can build and return a bitmap of all

���s at once.

B������� S��� The ability to return results in reverse order as compared to the one spec-

ified at index creation.

This property makes sense only if the access method supports index scans.

326

19.3 Indexing Engine Interface

Column-Level Properties

And finally, let’s take a look at the column properties:

=> SELECT p.name,

pg_index_column_has_property('seats_pkey', 1, p.name)

FROM unnest(array[

'asc', 'desc', 'nulls_first', 'nulls_last', 'orderable',

'distance_orderable', 'returnable', 'search_array', 'search_nulls'

]) p(name);

name | pg_index_column_has_property

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

asc | t

desc | f

nulls_first | f

nulls_last | t

orderable | t

distance_orderable | f

returnable | t

search_array | t

search_nulls | t

(9 rows)

A��, D���, N���� F����, N���� L��� Ordering column values.

These properties define whether column values should be stored in ascending or de-

scending order, and whether ���� values p. ���should appear before or after regular values.

All these properties are applicable only to �-trees.

O�������� The ability to sort column values using the ����� �� clause.

This property is applicable only to �-trees.

D������� O�������� Support for ordering operators.1 p. ���

Unlike regular indexing operators that return logical values, ordering operators re-

turn a real number that denotes the “distance” from one argument to another. In-

dexes support such operators specified in the ����� �� clause of a query.

For example, the ordering operator <-> can find the airports located at the shortest

distance to the specified point:

=> CREATE INDEX ON airports_data USING gist(coordinates);

1 postgresql.org/docs/14/xindex.html#XINDEX-ORDERING-OPS

327

https://postgresql.org/docs/14/xindex.html#XINDEX-ORDERING-OPS

Chapter 19 Index Access Methods

=> EXPLAIN (costs off)

SELECT * FROM airports

ORDER BY coordinates <-> point (43.578,57.593)

LIMIT 3;

QUERY PLAN

−−−

Limit

−> Index Scan using airports_data_coordinates_idx on airpo...

Order By: (coordinates <−> '(43.578,57.593)'::point)

(3 rows)

R��������� The ability to return data without accessing the table (index-only scanp. ��� sup-

port).

This property defines whether an index structure allows retrieving indexed values. It

is not always possible: for example, some indexes may store hash codes rather than

actual values. In this case, the C�� I������ property will not be available either.

S����� A���� Support for searching several elements in an array.

An explicit use of arrays is not the only case when it might be necessary. For example,

the planner transforms the �� (list) expression into an array scan:

=> EXPLAIN (costs off)

SELECT * FROM bookings

WHERE book_ref IN ('C7C821', 'A5D060', 'DDE1BB');

QUERY PLAN

−−

Index Scan using bookings_pkey on bookings

Index Cond: (book_ref = ANY

('{C7C821,A5D060,DDE1BB}'::bpchar[]))

(3 rows)

If the index method does not support such operators, the executor may have to per-

form several iterations to find particular values (which can make the index scan less

efficient).

S����� N���� Search for �� ���� and �� ��� ���� conditions.

Should we index ���� values? On the one hand, it allows us to perform index scans

for conditions like �� [���] ����, as well as use the index as a covering one if no filter

conditions are provided (in this case, the index has to return the data of all the heap

tuples, including those that contain ���� values). But on the other hand, skipping

���� values can reduce the index size.

The decision remains at the discretion of access method developers, but more often

than not ���� values do get indexed.

328

19.3 Indexing Engine Interface

If you do not need ���� values in an index, you can exclude them by building a partial

index1 that covers only those rows that are required. For example:

=> CREATE INDEX ON flights(actual_arrival)

WHERE actual_arrival IS NOT NULL;

=> EXPLAIN (costs off)

SELECT * FROM flights

WHERE actual_arrival = '2017-06-13 10:33:00+03';

QUERY PLAN

−−−

Index Scan using flights_actual_arrival_idx on flights

Index Cond: (actual_arrival = '2017−06−13 10:33:00+03'::ti...

(2 rows)

A partial index is smaller than the full one, and it gets updated only if the modified

row is indexed, which can sometimes lead to tangible performance gains. Obviously,

apart from ���� checks, the����� clause can provide any condition (that can be used

with immutable functions).

The ability to build partial indexes is provided by the indexing engine, so it does not

depend on the access method.

Naturally, the interface includes only those properties of index methods that must be

known in advance for a correct decision to be taken. For example, it does not list any

properties that enable such features as support for predicate locks or non-blocking index

creation (������������). Such properties are defined in the code of the functions that

implement the interface.

1 postgresql.org/docs/14/indexes-partial.html

329

https://postgresql.org/docs/14/indexes-partial.html

20
Index Scans

20.1 Regular Index Scans

There are two basic ways of accessing ���s provided by an index. The first one is to perform

an index scan. Most of the index access methods (but not all of them) have the I���� S���p. ���

property to support this operation.

Index scans are represented in the plan by the Index Scan1 node:

=> EXPLAIN SELECT * FROM bookings

WHERE book_ref = '9AC0C6' AND total_amount = 48500.00;

QUERY PLAN

−−−

Index Scan using bookings_pkey on bookings

(cost=0.43..8.45 rows=1 width=21)

Index Cond: (book_ref = '9AC0C6'::bpchar)

Filter: (total_amount = 48500.00)

(4 rows)

During an index scan, the access method returns ���s one by one.2 Upon receiving a ���,

the indexing engine accesses the heap page this ��� refers to, gets the corresponding tuple,

and, if the visibility rules are met, returns the requested set of fields of this tuple. This

process continues until the access method runs out of ���s that matches the query.

The Index Cond line includes only those filter conditions that can be checked using an

index. Other conditions that have to be rechecked against the heap are listed separately

in the Filter line.

As this example shows, both index and heap access operations are handled by a common

Index Scan node rather by two different ones. But there is also a separate Tid Scan node,3

which fetches tuples from the heap if their ��s are known in advance:

1 backend/executor/nodeIndexscan.c
2 backend/access/index/indexam.c, index_getnext_tid function
3 backend/executor/nodeTidscan.c

330

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeIndexscan.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/index/indexam.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeTidscan.c;hb=REL_14_STABLE

20.1 Regular Index Scans

=> EXPLAIN SELECT * FROM bookings WHERE ctid = '(0,1)'::tid;

QUERY PLAN

−−−

Tid Scan on bookings (cost=0.00..4.01 rows=1 width=21)

TID Cond: (ctid = '(0,1)'::tid)

(2 rows)

Cost Estimation

Cost estimation of an index scan comprises the estimated costs of index access operations

and heap page reads.

Obviously, the index-related part of the estimation fully depends on the particular access

method. For �-trees, the cost is mostly incurred by fetching index pages and processing

their entries. The number of pages and rows to be read can be determined by the total vol-

ume of data and the selectivity of the applied filters p. ���. Index pages are accessed at random

(pages that follow each other in the logical structure are physically scattered on disk). The

estimation is further increased by ��� resources spent on getting from the root to the leaf

node and computing all the required expressions.1

The heap-related part of the estimation includes the cost of heap page access and the ���

time required to process all the fetched tuples. It is important to note that �/� estimation

depends on both the index scan selectivity and the correlation between the physical order

of tuples on disk and the order in which the access method returns their ��s.

Good Scenario: High Correlation

If the physical order of tuples on disk has a perfect correlationwith the logical order of ���s

in the index, each page will be accessed only once: the Index Scan node will sequentially go

from one page to another, reading the tuples one by one.

heap
page a tuple

matching
filter conditions

1 backend/utils/adt/selfuncs.c, btcostestimate function

postgresql.org/docs/14/index-cost-estimation.html

331

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/selfuncs.c;hb=REL_14_STABLE
https://postgresql.org/docs/14/index-cost-estimation.html

Chapter 20 Index Scans

Postgre��� collects statistics on correlationp. ��� :

=> SELECT attname, correlation

FROM pg_stats WHERE tablename = 'bookings'

ORDER BY abs(correlation) DESC;

attname | correlation

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−

book_ref | 1

total_amount | 0.0026738467

book_date | 8.02188e−05

(3 rows)

The correlation is high if the corresponding absolute value is close to one (like in the case

of book_ref); values that are close to zero are a sign of chaotic data distribution.

In this particular case, high correlation in the book_ref column is of course due to the fact that the

data has been loaded into the table in ascending order based on this column, and there have been

no updates yet. We would see the same picture if we executed the ������� command for the index

created on this column.

However, the perfect correlation does not guarantee that all queries will be returning results in

ascending order of book_ref values. First of all, any row update moves the resulting tuple to the

end of the table. Second, the plan that relies on an index scan based on some other column returns

the results in a different order. And even a sequential scan may not start at the beginning of the

tablep. ��� . So if you need a particular order, you should explicitly define it in the ����� �� clause.

Here is an example of an index scan that processes a large number of rows:

=> EXPLAIN SELECT * FROM bookings WHERE book_ref < '100000';

QUERY PLAN

−−−

Index Scan using bookings_pkey on bookings

(cost=0.43..4638.91 rows=132999 width=21)

Index Cond: (book_ref < '100000'::bpchar)

(3 rows)

The condition’s selectivity is estimated as follows:

=> SELECT round(132999::numeric/reltuples::numeric, 4)

FROM pg_class WHERE relname = 'bookings';

round

−−−−−−−−

0.0630

(1 row)

This value is closep. ��� to 1

16
, which we could have guessed knowing that book_ref values range

from ������ to ������.

332

20.1 Regular Index Scans

For �-trees, the index-related part of the �/� cost estimation includes the cost of reading

all the required pages. Index entries that satisfy any condition supported by �-trees are

stored in pages bound into an ordered list, so the number of index pages to be read is

estimated at the index size multiplied by the selectivity. But since these pages are not

physically ordered, reading happens in a random fashion.

C�� resources are spent on processing all the index entries that are read (the cost of pro-

cessing a single entry is estimated at the 0.005cpu_index_tuple_cost value) and computing the

condition for each of these entries (in this case, the condition contains a single operator;

its cost is estimated at the 0.0025cpu_operator_cost value).

Table access is regarded as sequential reading of the required number of pages. In the case

of a perfect correlation, heap tuples will follow each other on disk, so the number of pages

is estimated at the size of the table multiplied by the selectivity.

The �/� cost is further extended by the expenses incurred by tuple processing; they are

estimated at the 0.01cpu_tuple_cost value per tuple.

=> WITH costs(idx_cost, tbl_cost) AS (

SELECT

(

SELECT round(

current_setting('random_page_cost')::real * pages +

current_setting('cpu_index_tuple_cost')::real * tuples +

current_setting('cpu_operator_cost')::real * tuples

)

FROM (

SELECT relpages * 0.0630 AS pages, reltuples * 0.0630 AS tuples

FROM pg_class WHERE relname = 'bookings_pkey'

) c

),

(

SELECT round(

current_setting('seq_page_cost')::real * pages +

current_setting('cpu_tuple_cost')::real * tuples

)

FROM (

SELECT relpages * 0.0630 AS pages, reltuples * 0.0630 AS tuples

FROM pg_class WHERE relname = 'bookings'

) c

)

)

SELECT idx_cost, tbl_cost, idx_cost + tbl_cost AS total

FROM costs;

idx_cost | tbl_cost | total

−−−−−−−−−−+−−−−−−−−−−+−−−−−−−

2457 | 2177 | 4634

(1 row)

333

Chapter 20 Index Scans

These calculations illustrate the logic behind the cost estimation, so the result is aligned

with the estimation provided by the planner, even if it is approximated. Getting the exact

value would require taking other details into account, which we are not going to discuss

here.

Bad Scenario: Low Correlation

Everything changes if the correlation is low. Let’s create an index on the book_date col-

umn, which has almost zero correlation with this index, and then take a look at the query

that selects almost the same fraction of rows as in the previous example. Index access

turns out to be so expensive that the planner chooses it only if all the other alternatives

are explicitly forbidden:

=> CREATE INDEX ON bookings(book_date);

=> SET enable_seqscan = off;

=> SET enable_bitmapscan = off;

=> EXPLAIN SELECT * FROM bookings

WHERE book_date < '2016-08-23 12:00:00+03';

QUERY PLAN

−−−

Index Scan using bookings_book_date_idx on bookings

(cost=0.43..56957.48 rows=132403 width=21)

Index Cond: (book_date < '2016−08−23 12:00:00+03'::timestamp w...

(3 rows)

The thing is that low correlation increases the chances of the next tuple returned by the

access method to be located in a different page. Therefore, the Index Scan node has to

hop between pages instead of reading them sequentially; in the worst-case scenario, the

number of page accesses can reach the number of fetched tuples.

However,we cannot simply replace seq_page_costwith random_page_cost and relpageswith

reltuples in the good-scenario calculations. The cost that we see in the plan is much lower

than the value we would have estimated this way:

334

20.1 Regular Index Scans

=> WITH costs(idx_cost, tbl_cost) AS (

SELECT

(SELECT round(

current_setting('random_page_cost')::real * pages +

current_setting('cpu_index_tuple_cost')::real * tuples +

current_setting('cpu_operator_cost')::real * tuples

)

FROM (

SELECT relpages * 0.0630 AS pages, reltuples * 0.0630 AS tuples

FROM pg_class WHERE relname = 'bookings_pkey'

) c

),

(SELECT round(

current_setting('random_page_cost')::real * tuples +

current_setting('cpu_tuple_cost')::real * tuples

)

FROM (

SELECT relpages * 0.0630 AS pages, reltuples * 0.0630 AS tuples

FROM pg_class WHERE relname = 'bookings'

) c

)

)

SELECT idx_cost, tbl_cost, idx_cost + tbl_cost AS total FROM costs;

idx_cost | tbl_cost | total

−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−

2457 | 533330 | 535787

(1 row)

The reason is that the model takes caching into account. Frequently used pages are kept

in the buffer cache (and in the �� cache), so the bigger the cache size, the more chances

to find the required page in it, thus avoiding an extra disk access operation. For planning

purposes, the cache size is defined by the 4GBeffective_cache_size parameter. The smaller its

value, the more pages are expected to be read.

The graph that follows shows the dependency between the estimation of the number of

pages to be read and the table size (for the selectivity of 1

2
and the page containing ��

rows).1 The dashed lines show the access count in the best scenario possible (half of the

page count if the correlation is perfect) and in the worst scenario (half of the row count if

there is zero correlation and no cache).

It is assumed that the effective_cache_size value indicates the total volume of memory that

can be used for caching (including both the Postgre��� buffer cache and �� cache). But

since this parameter is used solely for estimation purposes and does not affect memory

allocation itself, you do not have to take actual figures into account when changing this

setting.

1 backend/optimizer/path/costsize.c, index_pages_fetched function

335

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

Chapter 20 Index Scans

table size

page
access
count

effective_cache_size

0.
5
of
ro
w
co
un
t

se
l =

0.
5

page
count

0.5 of page co
unt

If you reduce effective_cache_size to the minimum, the plan estimation will be close to the

low-end value shown above for the no-caching case:

=> SET effective_cache_size = '8kB';

=> EXPLAIN SELECT * FROM bookings

WHERE book_date < '2016-08-23 12:00:00+03';

QUERY PLAN

−−−

Index Scan using bookings_book_date_idx on bookings

(cost=0.43..532745.48 rows=132403 width=21)

Index Cond: (book_date < '2016−08−23 12:00:00+03'::timestamp w...

(3 rows)

=> RESET effective_cache_size;

=> RESET enable_seqscan;

=> RESET enable_bitmapscan;

The planner calculates the table �/� cost for both worst-case and best-case scenarios and

then takes an intermediate value based on the actual correlation.1

Thus, an index scan can be a good choice if only a fraction of rows has to be read. If

heap tuples are correlated with the order in which the access method returns their ��s,

this fraction can be quite substantial. However, if the correlation is low, index scanning

becomes much less attractive for queries with low selectivity.

1 backend/optimizer/path/costsize.c, cost_index function

336

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

20.2 Index-Only Scans

20.2 Index-Only Scans

If an index contains all the heap data required by the query, it is called a covering index

for this particular query. If such an index is available, extra table access can be avoided:

instead of ���s, the access method can return the actual data directly. Such a type of

an index scan is called an index-only scan.1 It can be used by those access methods that

support the R��������� p. ���property.

In the plan, this operation is represented by the Index Only Scan2 node:

=> EXPLAIN SELECT book_ref FROM bookings

WHERE book_ref < '100000';

QUERY PLAN

−−−

Index Only Scan using bookings_pkey on bookings

(cost=0.43..3791.91 rows=132999 width=7)

Index Cond: (book_ref < '100000'::bpchar)

(3 rows)

The name suggests that this node never has to access the heap, but it is not so. In Post-

gre���, indexes contain no information on tuple visibility p. ��, so the access method returns

the data of all the heap tuples that satisfy the filter condition, even if the current transac-

tion cannot see them. Their visibility is then checked by the indexing engine.

However, if this method had to access the table to check visibility of each tuple, it would

not be any different from a regular index scan. Instead, it employs the visibility map p. ��pro-

vided for tables, in which the vacuumprocessmarks the pages that contain only all-visible

tuples (that is, those tuples that are accessible to all transactions, regardless of the snap-

shot used). If the ��� returned by the index access method belongs to such a page, there

is no need to check its visibility.

The cost estimation of an index-only scan depends on the fraction of all-visible pages in

the heap. Postgre��� collects such statistics:

=> SELECT relpages, relallvisible

FROM pg_class WHERE relname = 'bookings';

relpages | relallvisible

−−−−−−−−−−+−−−−−−−−−−−−−−−

13447 | 13446

(1 row)

1 postgresql.org/docs/14/indexes-index-only-scans.html
2 backend/executor/nodeIndexonlyscan.c

337

https://postgresql.org/docs/14/indexes-index-only-scans.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeIndexonlyscan.c;hb=REL_14_STABLE

Chapter 20 Index Scans

The cost estimation of an index-only scan differs from that of a regular index scan: its

�/� cost related to table access is taken in proportion to the fraction of pages that do not

appear in the visibility map. (The cost estimation of tuple processing is the same.)

Since in this particular example all pages contain only all-visible tuples, the cost of heap

�/� is in fact excluded from the cost estimation:

=> WITH costs(idx_cost, tbl_cost) AS (

SELECT

(

SELECT round(

current_setting('random_page_cost')::real * pages +

current_setting('cpu_index_tuple_cost')::real * tuples +

current_setting('cpu_operator_cost')::real * tuples

)

FROM (

SELECT relpages * 0.0630 AS pages,

reltuples * 0.0630 AS tuples

FROM pg_class WHERE relname = 'bookings_pkey'

) c

) AS idx_cost,

(

SELECT round(

(1 - frac_visible) * -- fraction of non-all-visible pages

current_setting('seq_page_cost')::real * pages +

current_setting('cpu_tuple_cost')::real * tuples

)

FROM (

SELECT relpages * 0.0630 AS pages,

reltuples * 0.0630 AS tuples,

relallvisible::real/relpages::real AS frac_visible

FROM pg_class WHERE relname = 'bookings'

) c

) AS tbl_cost

)

SELECT idx_cost, tbl_cost, idx_cost + tbl_cost AS total

FROM costs;

idx_cost | tbl_cost | total

−−−−−−−−−−+−−−−−−−−−−+−−−−−−−

2457 | 1330 | 3787

(1 row)

Any unvacuumed changes that have not disappeared behind the database horizonp. �� yet in-

crease the estimated cost of the plan (and, consequently, make this plan less attractive to

the optimizer). The ������� ������� command can show the actual heap access count.

In a newly created table, Postgre��� has to check visibility of all the tuples:

=> CREATE TEMP TABLE bookings_tmp WITH (autovacuum_enabled = off) AS

SELECT * FROM bookings

ORDER BY book_ref;

338

20.2 Index-Only Scans

=> ALTER TABLE bookings_tmp ADD PRIMARY KEY(book_ref);

=> ANALYZE bookings_tmp;

=> EXPLAIN (analyze, timing off, summary off)

SELECT book_ref FROM bookings_tmp WHERE book_ref < '100000';

QUERY PLAN

−−−

Index Only Scan using bookings_tmp_pkey on bookings_tmp

(cost=0.43..4638.91 rows=132999 width=7) (actual rows=132109 l...

Index Cond: (book_ref < '100000'::bpchar)

Heap Fetches: 132109

(4 rows)

But once the table has been vacuumed, such a check becomes redundant and is not per-

formed as long as all the pages remain all-visible.

=> VACUUM bookings_tmp;

=> EXPLAIN (analyze, timing off, summary off)

SELECT book_ref FROM bookings_tmp WHERE book_ref < '100000';

QUERY PLAN

−−−

Index Only Scan using bookings_tmp_pkey on bookings_tmp

(cost=0.43..3787.91 rows=132999 width=7) (actual rows=132109 l...

Index Cond: (book_ref < '100000'::bpchar)

Heap Fetches: 0

(4 rows)

Indexes with the Include Clause

It is not always possible to extend an index with all the columns required by a query:

• For a unique index, adding a new column would compromise the uniqueness of the

original key columns.

• The index access method may not provide an operator class for the data type of the

column to be added.

In this case, v. ��you can still include columns into an index withoutmaking them a part of the

index key. It will of course be impossible to perform an index scan based on the included

columns, but if a query references these columns, the index will function as a covering

one.

The following example shows how to replace an automatically created primary key index

by another index with an included column:

339

Chapter 20 Index Scans

=> CREATE UNIQUE INDEX ON bookings(book_ref) INCLUDE (book_date);

=> BEGIN;

=> ALTER TABLE bookings

DROP CONSTRAINT bookings_pkey CASCADE;

NOTICE: drop cascades to constraint tickets_book_ref_fkey on table

tickets

ALTER TABLE

=> ALTER TABLE bookings ADD CONSTRAINT bookings_pkey PRIMARY KEY

USING INDEX bookings_book_ref_book_date_idx; -- a new index

NOTICE: ALTER TABLE / ADD CONSTRAINT USING INDEX will rename index

"bookings_book_ref_book_date_idx" to "bookings_pkey"

ALTER TABLE

=> ALTER TABLE tickets

ADD FOREIGN KEY (book_ref) REFERENCES bookings(book_ref);

=> COMMIT;

=> EXPLAIN SELECT book_ref, book_date

FROM bookings WHERE book_ref < '100000';

QUERY PLAN

−−−

Index Only Scan using bookings_pkey on bookings (cost=0.43..437...

Index Cond: (book_ref < '100000'::bpchar)

(2 rows)

Such indexes are often called covering, but it is not quite correct. An index is considered covering

if the set of its columns covers all the columns required by a particular query. It does not matter

whether it involves any columns added by the ������� clause, or only key columns are being used.

Moreover, an index can be covering for one query but not for the other.

20.3 Bitmap Scans

The efficiency of an index scan is limited: as the correlation decreases, the number of

accesses to heap pages rises, and scanning becomes random rather than sequential. To

overcome this limitation, Postgre��� can fetch all the ���s before accessing the table and

sort them in ascending order based on their page numbers.1 This is exactly how bitmap

scanning works, which is yet another common approach to processing ���s. It can be used

by those access methods that support the B����� S���p. ��� property.

Unlike a regular index scan, this operation is represented in the query plan by two nodes:

=> CREATE INDEX ON bookings(total_amount);

1 backend/access/index/indexam.c, index_getbitmap function

340

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/index/indexam.c;hb=REL_14_STABLE

20.3 Bitmap Scans

=> EXPLAIN SELECT *

FROM bookings WHERE total_amount = 48500.00;

QUERY PLAN

−−−

Bitmap Heap Scan on bookings (cost=54.63..7040.42 rows=2865 wid...

Recheck Cond: (total_amount = 48500.00)

−> Bitmap Index Scan on bookings_total_amount_idx

(cost=0.00..53.92 rows=2865 width=0)

Index Cond: (total_amount = 48500.00)

(5 rows)

The Bitmap Index Scan1 node gets the bitmap of all ���s2 from the access method.

The bitmap consists of separate segments, each corresponding to a single heap page. All

these segments have the same size, which is enough for all the page tuples, nomatter how

many of them are present. This number is limited because a tuple header is quite large; a

standard-size page can accommodate ��� tuples at the most, which fit �� bytes.3

Then the Bitmap Heap Scan4 traverses the bitmap segment by segment, reads the corre-

sponding pages, and checks all their tuples that are marked all-visible. Thus, pages are

read in ascending order based on their numbers, and each of them is read exactly once.

That said, this process is not the same as sequential scanning since the accessed pages

rarely follow each other. Regular prefetching performed by the operating system does

not help in this case, so the Bitmap Heap Scan node implements its own prefetching by

asynchronously reading 1effective_io_concurrency pages—and it is the only node that does

it. This mechanism relies on the posix_fadvise function implemented by some operating

systems. If your system happens to support this function, it makes sense to configure the

effective_io_concurrency parameter at the tablespace level in accordance with the hardware

capabilities.

Asynchronous prefetching is also used by some other internal processes:

• for index pages when heap rows are being deleted5 v. ��

• for heap pages during analysis (�������)6 v. ��

The prefetch depth is defined by the 10maintenance_io_concurrency .

1 backend/executor/nodeBitmapIndexscan.c
2 backend/access/index/indexam.c, index_getbitmap function
3 backend/nodes/tidbitmap.c
4 backend/executor/nodeBitmapHeapscan.c
5 backend/access/heap/heapam.c, index_delete_prefetch_buffer function
6 backend/commands/analyze.c, acquire_sample_rows function

341

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeBitmapIndexscan.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/index/indexam.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/nodes/tidbitmap.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeBitmapHeapscan.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/heapam.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/commands/analyze.c;hb=REL_14_STABLE

Chapter 20 Index Scans

Bitmap Accuracy

The more pages contain the tuples that satisfy the filter condition of the query, the bigger

is the bitmap. It is built in the local memory of the backend, and its size is limited by the

4MB work_mem parameter. Once the maximum allowed size is reached, some bitmap segments

become lossy: each bit of a lossy segment corresponds to a whole page,while the segment

itself comprises a range of pages.1 As a result, the size of the bitmap becomes smaller at

the expense of its accuracy.

The ������� ������� command shows the accuracy of the built bitmap:

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT * FROM bookings WHERE total_amount > 150000.00;

QUERY PLAN

−−−

Bitmap Heap Scan on bookings (actual rows=242691 loops=1)

Recheck Cond: (total_amount > 150000.00)

Heap Blocks: exact=13447

−> Bitmap Index Scan on bookings_total_amount_idx (actual rows...

Index Cond: (total_amount > 150000.00)

(5 rows)

Here we have enough memory for an exact bitmap.

If we decrease the work_mem value, some of the bitmap segments become lossy:

=> SET work_mem = '512kB';

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT * FROM bookings WHERE total_amount > 150000.00;

QUERY PLAN

−−−

Bitmap Heap Scan on bookings (actual rows=242691 loops=1)

Recheck Cond: (total_amount > 150000.00)

Rows Removed by Index Recheck: 1145721

Heap Blocks: exact=5178 lossy=8269

−> Bitmap Index Scan on bookings_total_amount_idx (actual rows...

Index Cond: (total_amount > 150000.00)

(6 rows)

=> RESET work_mem;

When reading a heap page that corresponds to a lossy bitmap segment, Postgre��� has to

recheck the filter condition for each tuple in the page. The condition to be rechecked is

always displayed in the plan as Recheck Cond, even if this recheck is not performed. The

number of tuples filtered out during a recheck is displayed separately (as Rows Removed

by Index Recheck).

1 backend/nodes/tidbitmap.c, tbm_lossify function

342

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/nodes/tidbitmap.c;hb=REL_14_STABLE

20.3 Bitmap Scans

If the size of the result set is too big, the bitmap may not fit the work_mem memory chunk, even

if all its segments are lossy. Then this limit is ignored, and the bitmap takes as much space as

required. Postgre��� neither further reduces the bitmap accuracy nor flushes any of its segments

to disk.

Operations on Bitmaps

If the query applies conditions to several table columns that have separate indexes created

on them,a bitmap scan can use several indexes together.1 All these indexes have their own

bitmaps built on the fly; the bitmaps are then combined together bit by bit, using either

logical conjunction (if the expressions are connected by ���) or logical disjunction (if the

expressions are connected by ��). For example:

=> EXPLAIN (costs off)

SELECT * FROM bookings

WHERE book_date < '2016-08-28'

AND total_amount > 250000;

QUERY PLAN

−−−

Bitmap Heap Scan on bookings

Recheck Cond: ((total_amount > '250000'::numeric) AND (book_da...

−> BitmapAnd

−> Bitmap Index Scan on bookings_total_amount_idx

Index Cond: (total_amount > '250000'::numeric)

−> Bitmap Index Scan on bookings_book_date_idx

Index Cond: (book_date < '2016−08−28 00:00:00+03'::tim...

(7 rows)

Here the BitmapAnd node combines two bitmaps using the bitwise ��� operation.

As two bitmaps are being merged into one,2 exact segments remain exact when merged

together (if the new bitmap fits the work_mem memory chunk), but if any segment in a

pair is lossy, the resulting segment will be lossy too.

Cost Estimation

Let’s take a look at the query that uses a bitmap scan:

=> EXPLAIN

SELECT * FROM bookings

WHERE total_amount = 28000.00;

1 postgresql.org/docs/14/indexes-ordering.html
2 backend/nodes/tidbitmap.c, tbm_union & tbm_intersect functions

343

https://postgresql.org/docs/14/indexes-ordering.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/nodes/tidbitmap.c;hb=REL_14_STABLE

Chapter 20 Index Scans

QUERY PLAN

−−−

Bitmap Heap Scan on bookings (cost=599.48..14444.96 rows=31878 ...

Recheck Cond: (total_amount = 28000.00)

−> Bitmap Index Scan on bookings_total_amount_idx

(cost=0.00..591.51 rows=31878 width=0)

Index Cond: (total_amount = 28000.00)

(5 rows)

The approximate selectivity of the condition used by the planner equals

=> SELECT round(31878::numeric/reltuples::numeric, 4)

FROM pg_class WHERE relname = 'bookings';

round

−−−−−−−−

0.0151

(1 row)

The total cost of the Bitmap Index Scan node is estimated in the same way as the cost of a

regular index scan that does not take heap access into account:

=> SELECT round(

current_setting('random_page_cost')::real * pages +

current_setting('cpu_index_tuple_cost')::real * tuples +

current_setting('cpu_operator_cost')::real * tuples

)

FROM (

SELECT relpages * 0.0151 AS pages, reltuples * 0.0151 AS tuples

FROM pg_class WHERE relname = 'bookings_total_amount_idx'

) c;

round

−−−−−−−

589

(1 row)

The �/� cost estimation for the Bitmap Heap Scan node differs from that for a perfect-

correlation case of a regular index scan. A bitmap allows reading heap pages in ascending

order based on their numbers, without getting back to the same page, but the tuples that

satisfy the filter condition do not follow each other anymore. Instead of reading a strictly

sequential page range that is quite compact, Postgre��� is likely to access far more pages.

344

20.3 Bitmap Scans

The number of pages to be read is estimated by the following formula:1

min(
2 relpages ⋅ reltuples ⋅ sel
2 relpages + reltuples ⋅ sel

, relpages)

The estimated cost of reading a single page falls between seq_page_cost and ran-

dom_page_cost, depending on the ratio of the fraction of fetched pages to the total number

of pages in the table:

=> WITH t AS (

SELECT relpages,

least(

(2 * relpages * reltuples * 0.0151) /

(2 * relpages + reltuples * 0.0151),

relpages

) AS pages_fetched,

round(reltuples * 0.0151) AS tuples_fetched,

current_setting('random_page_cost')::real AS rnd_cost,

current_setting('seq_page_cost')::real AS seq_cost

FROM pg_class WHERE relname = 'bookings'

)

SELECT pages_fetched,

rnd_cost - (rnd_cost - seq_cost) *

sqrt(pages_fetched / relpages) AS cost_per_page,

tuples_fetched

FROM t;

pages_fetched | cost_per_page | tuples_fetched

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−

13447 | 1 | 31878

(1 row)

As usual, the �/� estimation is increased by the cost of processing each fetched tuple. If

an exact bitmap is used, the number of tuples is estimated at the total number of tuples

in the table multiplied by the selectivity of filter conditions. But if any bitmap segments

are lossy, Postgre��� has to access the corresponding pages to recheck all their tuples.

a lossy bitmap segment an exact segment

Thus, the estimation v. ��takes into account the expected fraction of lossy bitmap segments

(which can be calculated based on the total number of selected rows and the bitmap size

limit defined by work_mem).2

1 backend/optimizer/path/costsize.c, compute_bitmap_pages function
2 backend/optimizer/path/costsize.c, compute_bitmap_pages function

345

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

Chapter 20 Index Scans

The total cost of condition rechecks also increases the estimation (regardless of the

bitmap accuracy).

The startup cost estimation of the Bitmap Heap Scan node is based on the total cost of the

Bitmap Index Scan node, which is extended by the cost of bitmap processing:

QUERY PLAN

−−−

Bitmap Heap Scan on bookings

(cost=599.48..14444.96 rows=31878 width=21)

Recheck Cond: (total_amount = 28000.00)

−> Bitmap Index Scan on bookings_total_amount_idx

(cost=0.00..591.51 rows=31878 width=0)

Index Cond: (total_amount = 28000.00)

(6 rows)

Here the bitmap is exact, and the cost is estimated roughly as follows:1

=> WITH t AS (

SELECT 1 AS cost_per_page,

13447 AS pages_fetched,

31878 AS tuples_fetched

),

costs(startup_cost, run_cost) AS (

SELECT

(SELECT round(

589 /* cost estimation for the child node */ +

0.1 * current_setting('cpu_operator_cost')::real *

reltuples * 0.0151

)

FROM pg_class WHERE relname = 'bookings_total_amount_idx'

),

(SELECT round(

cost_per_page * pages_fetched +

current_setting('cpu_tuple_cost')::real * tuples_fetched +

current_setting('cpu_operator_cost')::real * tuples_fetched

)

FROM t

)

)

SELECT startup_cost, run_cost,

startup_cost + run_cost AS total_cost

FROM costs;

startup_cost | run_cost | total_cost

−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−

597 | 13845 | 14442

(1 row)

1 backend/optimizer/path/costsize.c, cost_bitmap_heap_scan function

346

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

20.4 Parallel Index Scans

If the query plan combines several bitmaps, the sum of the costs of separate index scans

is increased by a (small) cost of merging them together.1

20.4 Parallel Index Scans

All the index scanning modes v. �.�—a regular index scan, an index-only scan, and a bitmap

scan—have their own flavors for parallel p. ���plans.

The cost of parallel execution is estimated in the same way as that of sequential one, but

(just like in the case of a parallel sequential scan) ��� resources are distributed between

all parallel processes, thus reducing the total cost. The �/� component of the cost is not

distributed because processes are synchronized to perform page access sequentially.

Now let me show you several examples of parallel plans without breaking down their cost

estimation.

A parallel index scan:

=> EXPLAIN SELECT sum(total_amount)

FROM bookings WHERE book_ref < '400000';

QUERY PLAN

−−−

Finalize Aggregate (cost=19192.81..19192.82 rows=1 width=32)

−> Gather (cost=19192.59..19192.80 rows=2 width=32)

Workers Planned: 2

−> Partial Aggregate (cost=18192.59..18192.60 rows=1 widt...

−> Parallel Index Scan using bookings_pkey on bookings

(cost=0.43..17642.82 rows=219907 width=6)

Index Cond: (book_ref < '400000'::bpchar)

(7 rows)

While a parallel scan of a �-tree is in progress, the �� of the current index page is kept in

the server’s shared memory. The initial value is set by the process that starts the scan: it

traverses the tree from the root to the first suitable leaf page and saves its ��. Workers ac-

cess subsequent index pages as needed, replacing the saved ��. Having fetched a page, the

worker iterates through all its suitable entries and reads the corresponding heap tuples.

The scanning completes when the worker has read the whole range of values that satisfy

the query filter.

1 backend/optimizer/path/costsize.c, cost_bitmap_and_node & cost_bitmap_or_node functions

347

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

Chapter 20 Index Scans

A parallel index-only scan:

=> EXPLAIN SELECT sum(total_amount)

FROM bookings WHERE total_amount < 50000.00;

QUERY PLAN

−−−

Finalize Aggregate (cost=23370.60..23370.61 rows=1 width=32)

−> Gather (cost=23370.38..23370.59 rows=2 width=32)

Workers Planned: 2

−> Partial Aggregate (cost=22370.38..22370.39 rows=1 widt...

−> Parallel Index Only Scan using bookings_total_amoun...

(cost=0.43..21387.27 rows=393244 width=6)

Index Cond: (total_amount < 50000.00)

(7 rows)

A parallel index-only scan skips heap access for all-visible pages; it is the only difference

it has from a parallel index scan.

A parallel bitmap scan:

=> EXPLAIN SELECT sum(total_amount)

FROM bookings WHERE book_date < '2016-10-01';

QUERY PLAN

−−−

Finalize Aggregate (cost=21492.21..21492.22 rows=1 width=32)

−> Gather (cost=21491.99..21492.20 rows=2 width=32)

Workers Planned: 2

−> Partial Aggregate (cost=20491.99..20492.00 rows=1 widt...

−> Parallel Bitmap Heap Scan on bookings

(cost=4891.17..20133.01 rows=143588 width=6)

Recheck Cond: (book_date < '2016−10−01 00:00:00+03...

−> Bitmap Index Scan on bookings_book_date_idx

(cost=0.00..4805.01 rows=344611 width=0)

Index Cond: (book_date < '2016−10−01 00:00:00+...

(10 rows)

Abitmap scan implies that a bitmap is always built sequentially, by a single leader process;

for this reason, the name of the Bitmap Index Scan node does not contain the word Parallel.

When the bitmap is ready, the Parallel Bitmap Heap Scan node starts a parallel heap scan.

Workers access subsequent heap pages and process them concurrently.

20.5 Comparison of Various Access Methods

The following illustration shows how costs of various access methods depend on selectiv-

ity of filter conditions:

348

20.5 Comparison of Various Access Methods

selectivity

cost

0 1

index-
only s

can

bitm
ap in

dex s
can

inde
x sc

an

seq scan

It is a qualitative diagram; the actual figures are of course dependent on the particular

table and server configuration.

Sequential scanning does not depend on selectivity, and starting from a certain fraction

of selected rows, it is usually more efficient than other methods.

The cost of an index scan is affected by the correlation between the physical order of tuples

and the order in which their ��s are returned by the access method. If the correlation is

perfect, an index scan can be quite efficient even if the fraction of selected rows is rather

high. However, for low correlation (which is much more common) it can quickly become

even more expensive than a sequential scan. That said, index scanning is still an absolute

leader when it comes to selecting a single row using an index (typically a unique one).

If applicable, index-only scans can showgreat performance and beat sequential scans even

if all the rows are selected. However, their performance is highly dependent on the visibil-

ity map, and in the worst-case scenario an index-only scan can degrade to a regular index

scan.

The cost of a bitmap scan is affected by the size of available memory, but to a much lesser

extent than an index scan cost depends on correlation. If the correlation is low, the bitmap

scan turns out to be much cheaper.

Each access method has its own perfect usage scenarios; there is no such method that

always outperforms other methods. The planner has to do extensive calculations to esti-

mate the efficiency of each method in each particular case. Clearly, the accuracy of these

estimations highly depends on the accuracy of the collected statistics.

349

21
Nested Loop

21.1 Join Types and Methods

Joins are a key feature of the ��� language; they serve as the foundation for its power and

flexibility. Sets of rows (either retrieved from tables directly or received as the result of

some other operations) are always joined pairwise.

There are several types of joins:

Inner joins. An inner join (specified as ����� ����, or simply ����) comprises those pairs of

rows of two sets that satisfy a particular join condition. The join condition combines

some columns of one set of rows with some columns of the other set; all the columns

involved constitute the join key.

If the join condition demands that join keys of two sets be equal, such a join is called

an equi-join; this is the most common join type.

A Cartesian product (����� ����) of two sets comprises all the possible pairs of rows of

these sets—it is a special case of an inner join with a true condition.

Outer joins. A left outer join (specified as ���� ����� ����, or simply ���� ����) extends the

result of an inner join by those rows of the left set that have no match in the right set

(the corresponding right-side columns are filled with ���� values).

The same is also true for a right outer join (����� ����), down to the permutation of

sets.

A full outer join (specified as ���� ����) comprises left and right outer joins, adding

both right-side and left-side rows for which no match has been found.

Anti-Joins and Semi-Joins. A semi-join looks a lot like an inner join, but it includes only

those rows of the left set that have a match in the right set (a row is included only

once even if there are several matches).

An anti-join includes those rows of a set that have no match in the other set.

350

21.2 Nested Loop Joins

The ��� language has no explicit semi- and anti-joins, but the same outcome can be

achieved using predicates like ������ and ��� ������.

All these joins are logical operations. For example, an inner join is often described as a

Cartesian product that has been cleared of the rows that do not satisfy the join condition.

But at the physical level, an inner join is typically achieved via less expensive means.

Postgre��� provides several join methods:

• a nested loop join

• a hash join

• a merge join

Join methods are algorithms that implement logical operations of ��� joins. These basic

algorithms often have special flavors tailored for particular join types, even though they

may support only some of them. For example, a nested loop supports an inner join (rep-

resented in the plan by a Nested Loop node) and a left outer join (represented by a Nested

Loop Left Join node), but it cannot be used for full joins.

Some flavors of the same algorithms can also be used by other operations, such as aggre-

gation.

Different join methods perform best in different conditions; it is the job of the planner to

choose the most cost-effective one.

21.2 Nested Loop Joins

The basic algorithm of the nested loop join functions as follows. The outer loop traverses

all the rows of the first set (called the outer set). For each of these rows, the nested loop

goes through the rows of the second set (called the inner set) to find the ones that satisfy

the join condition. Each found pair is returned immediately as part of the query result.1

The algorithm accesses the inner set as many times as there are rows in the outer set.

Therefore, the efficiency of nested loop joins depends on several factors:

• cardinality of the outer set of rows

• availability of an access method that can efficiently fetch the rows of the inner set

• recurrent access to the same rows of the inner set

1 backend/executor/nodeNestloop.c

351

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeNestloop.c;hb=REL_14_STABLE

Chapter 21 Nested Loop

Cartesian Product

A nested loop join is the most efficient way to find a Cartesian product, regardless of the

number of rows in the sets:

=> EXPLAIN SELECT * FROM aircrafts_data a1

CROSS JOIN aircrafts_data a2

WHERE a2.range > 5000;

QUERY PLAN

−−−

Nested Loop (cost=0.00..2.78 rows=45 width=144)

−> Seq Scan on aircrafts_data a1

(cost=0.00..1.09 rows=9 width=72)

−> Materialize (cost=0.00..1.14 rows=5 width=72)

−> Seq Scan on aircrafts_data a2

(cost=0.00..1.11 rows=5 width=72)

Filter: (range > 5000)

(7 rows)

inner set

outer set

The Nested Loop node performs a join using the algorithm described above. It always has

two child nodes: the one that is displayed higher in the plan corresponds to the outer set

of rows, while the lower one represents the inner set.

In this example, the inner set is represented by the Materialize node.1 This node returns

the rows received from its child node, having saved them for future use (the rows are

accumulated in memory until their total size reaches4MB work_mem; then Postgre��� starts

spilling them into a temporary file on disk). If accessed again, the node reads the accu-

mulated rows without calling the child node. Thus, the executor can avoid scanning the

full table again and read only those rows that satisfy the condition.

A similar plan can also be built for a query that uses a regular equi-join:

=> EXPLAIN SELECT * FROM tickets t

JOIN ticket_flights tf ON tf.ticket_no = t.ticket_no

WHERE t.ticket_no = '0005432000284';

QUERY PLAN

−−

Nested Loop (cost=0.99..25.05 rows=3 width=136)

−> Index Scan using tickets_pkey on tickets t

(cost=0.43..8.45 rows=1 width=104)

Index Cond: (ticket_no = '0005432000284'::bpchar)

−> Index Scan using ticket_flights_pkey on ticket_flights tf

(cost=0.56..16.58 rows=3 width=32)

Index Cond: (ticket_no = '0005432000284'::bpchar)

(7 rows)

1 backend/executor/nodeMaterial.c

352

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeMaterial.c;hb=REL_14_STABLE

21.2 Nested Loop Joins

Having recognized the equality of the two values, the planner replaces the join condition

tf.ticket_no = t.ticket_no by the tf.ticket_no = constant condition, virtually reducing an equi-

join to a Cartesian product.1

Cardinality estimation. The cardinality of a Cartesian product is estimated at the product

of cardinalities of the joined data sets: 3 = 1 × 3.

Cost estimation. The startup cost of the join operation combines the startup costs of all

child nodes.

The full cost of the join includes the following components:

• the cost of fetching all the rows of the outer set

• the cost of a single retrieval of all the rows of the inner set (since the cardinality

estimation of the outer set equals one)

• the cost of processing each row to be returned

Here is a dependency graph for the cost estimation:

QUERY PLAN

−−

Nested Loop (cost=0.99..25.05 rows=3 width=136)

−> Index Scan using tickets_pkey on tickets t

(cost=0.43..8.45 rows=1 width=104)

Index Cond: (ticket_no = '0005432000284'::bpchar)

−> Index Scan using ticket_flights_pkey on ticket_flights tf

(cost=0.56..16.58 rows=3 width=32)

Index Cond: (ticket_no = '0005432000284'::bpchar)

(7 rows)

× 1

The cost of the join is calculated as follows:

=> SELECT 0.43 + 0.56 AS startup_cost,

round((

8.45 + 16.57 +

3 * current_setting('cpu_tuple_cost')::real

)::numeric, 2) AS total_cost;

startup_cost | total_cost

−−−−−−−−−−−−−−+−−−−−−−−−−−−

0.99 | 25.05

(1 row)

1 backend/optimizer/path/equivclass.c

353

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/equivclass.c;hb=REL_14_STABLE

Chapter 21 Nested Loop

Now let’s get back to the previous example:

=> EXPLAIN SELECT *

FROM aircrafts_data a1

CROSS JOIN aircrafts_data a2

WHERE a2.range > 5000;

QUERY PLAN

−−−

Nested Loop (cost=0.00..2.78 rows=45 width=144)

−> Seq Scan on aircrafts_data a1

(cost=0.00..1.09 rows=9 width=72)

−> Materialize (cost=0.00..1.14 rows=5 width=72)

−> Seq Scan on aircrafts_data a2

(cost=0.00..1.11 rows=5 width=72)

Filter: (range > 5000)

(7 rows)

The plan now contains the Materialize node; having once accumulated the rows received

from its child node,Materialize returns them much faster for all the subsequent calls.

In general, the total cost of a join comprises the following expenses:1

• the cost of fetching all the rows of the outer set

• the cost of the initial fetch of all the rows of the inner set (during which materializa-

tion is performed)

• (N − 1)-fold cost of repeat fetches of rows of the inner set (here N is the number of

rows in the outer set)

• the cost of processing each row to be returned

The dependency graph here is as follows:

QUERY PLAN

−−

Nested Loop (cost=0.00..2.78 rows=45 width=144)

−> Seq Scan on aircrafts_data a1

(cost=0.00..1.09 rows=9 width=72)

−> Materialize

(cost=0.00..1.14 rows=5 width=72)

−> Seq Scan on aircrafts_data a2

(cost=0.00..1.11 rows=5 width=72)

Filter: (range > 5000)

(8 rows)

× 9

1 backend/optimizer/path/costsize.c, initial_cost_nestloop andfinal_cost_nestloop function

354

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

21.2 Nested Loop Joins

In this example, materialization reduces the cost of repeat data fetches. The cost of the

first Materialize call is shown in the plan, but all the subsequent calls are not listed. I will

not provide any calculations here,1 but in this particular case the estimation is �.����.

Thus, the cost of the join performed in this example is calculated as follows:

=> SELECT 0.00 + 0.00 AS startup_cost,

round((

1.09 + (1.14 + 8 * 0.0125) +

45 * current_setting('cpu_tuple_cost')::real

)::numeric, 2) AS total_cost;

startup_cost | total_cost

−−−−−−−−−−−−−−+−−−−−−−−−−−−

0.00 | 2.78

(1 row)

Parameterized Joins

Now let’s consider a more common example that does not boil down to a Cartesian prod-

uct:

=> CREATE INDEX ON tickets(book_ref);

=> EXPLAIN SELECT *

FROM tickets t

JOIN ticket_flights tf ON tf.ticket_no = t.ticket_no

WHERE t.book_ref = '03A76D';

QUERY PLAN

−−

Nested Loop (cost=0.99..45.68 rows=6 width=136)

−> Index Scan using tickets_book_ref_idx on tickets t

(cost=0.43..12.46 rows=2 width=104)

Index Cond: (book_ref = '03A76D'::bpchar)

−> Index Scan using ticket_flights_pkey on ticket_flights tf

(cost=0.56..16.58 rows=3 width=32)

Index Cond: (ticket_no = t.ticket_no)

(7 rows)

Here the Nested Loop node traverses the rows of the outer set (tickets), and for each of

these rows it searches for the corresponding rows of the inner set (flights), passing the

ticket number (t.ticket_no) to the condition as a parameter. When the inner node (Index

Scan) is called, it has to deal with the condition ticket_no = constant.

1 backend/optimizer/path/costsize.c, cost_rescan function

355

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

Chapter 21 Nested Loop

Cardinality estimation. The planner estimates that the filter condition by a booking num-

ber is satisfied by two rows of the outer set (rows=2), and each of these rowsmatches three

rows of the inner set on average (rows=3).

Join selectivity is a fraction of the Cartesian product of the two sets that remains after the

join. It is obvious that we must exclude those rows of both sets that contain ���� values

in the join key since the equality condition will never be satisfied for them.

The estimated cardinality equals the cardinality of the Cartesian product (that is, the

product of cardinalities of the two sets) multiplied by the selectivity.1

Here the estimated cardinality of the first (outer) set is two rows. Since no conditions are

applied to the second (inner) set except for the join condition itself, the cardinality of the

second set is taken as the cardinality of the ticket_flights table.

Since the joined tables are connected by a foreign key, the selectivity estimation relies on

the fact that each row of the child table has exactly one matching row in the parent table.

So the selectivity is taken as the inverse of the size of the table referred to by the foreign

key.2

Thus, for the case when the ticket_no columns contain no ���� values, the estimation is

as follows:

=> SELECT round(2 * tf.reltuples * (1.0 / t.reltuples)) AS rows

FROM pg_class t, pg_class tf

WHERE t.relname = 'tickets'

AND tf.relname = 'ticket_flights';

rows

−−−−−−

6

(1 row)

Clearly, tables can be also joined without using foreign keys. Then the selectivity will be

taken as the estimated selectivities of the particular join conditions.3

For the equi-join in this example, the generic formula for selectivity estimation that as-

sumes uniform distribution of values looks as follows: min(
1

nd1
, 1

nd2), where nd1 and nd2

represent the number of distinctp. ��� values of the join key in the first and second set, respec-

tively.4

1 backend/optimizer/path/costsize.c, calc_joinrel_size_estimate function
2 backend/optimizer/path/costsize.c, get_foreign_key_join_selectivity function
3 backend/optimizer/path/clausesel.c, clauselist_selectivity function
4 backend/utils/adt/selfuncs.c, eqjoinsel function

356

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/clausesel.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/selfuncs.c;hb=REL_14_STABLE

21.2 Nested Loop Joins

Statistics on distinct values show that ticket numbers in the tickets table are unique (which

is only to be expected, as the ticket_no column is the primary key), and the ticket_flights

has about three matching rows for each ticket:

=> SELECT t.n_distinct, tf.n_distinct

FROM pg_stats t, pg_stats tf

WHERE t.tablename = 'tickets' AND t.attname = 'ticket_no'

AND tf.tablename = 'ticket_flights' AND tf.attname = 'ticket_no';

n_distinct | n_distinct

−−−−−−−−−−−−+−−−−−−−−−−−−−

−1 | −0.30362356

(1 row)

The result would match the estimation for the join with the foreign key:

=> SELECT round(2 * tf.reltuples *

least(1.0/t.reltuples, 1.0/tf.reltuples/0.30362356)

) AS rows

FROM pg_class t, pg_class tf

WHERE t.relname = 'tickets' AND tf.relname = 'ticket_flights';

rows

−−−−−−

6

(1 row)

The planner tries to refine this baseline estimation whenever possible. It cannot use his-

tograms at the moment, but it takes ��� lists p. ���into account if such statistics have been

collected on the join key for both tables.1 The selectivity of the rows that appear in the

list can be estimated more accurately, and only the remaining rows will have to rely on

calculations that are based on uniform distribution.

In general, join selectivity estimation is likely to be more accurate if the foreign key is

defined. It is especially true for composite join keys, as the selectivity is often largely

underestimated in this case.

Using the ������� ������� command, you can view not only the actual number of rows, but

also the number of times the inner loop has been executed:

=> EXPLAIN (analyze, timing off, summary off) SELECT *

FROM tickets t

JOIN ticket_flights tf ON tf.ticket_no = t.ticket_no

WHERE t.book_ref = '03A76D';

1 backend/utils/adt/selfuncs.c, eqjoinsel function

357

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/selfuncs.c;hb=REL_14_STABLE

Chapter 21 Nested Loop

QUERY PLAN

−−−

Nested Loop (cost=0.99..45.68 rows=6 width=136)

(actual rows=8 loops=1)

−> Index Scan using tickets_book_ref_idx on tickets t

(cost=0.43..12.46 rows=2 width=104) (actual rows=2 loops=1)

Index Cond: (book_ref = '03A76D'::bpchar)

−> Index Scan using ticket_flights_pkey on ticket_flights tf

(cost=0.56..16.58 rows=3 width=32) (actual rows=4 loops=2)

Index Cond: (ticket_no = t.ticket_no)

(8 rows)

The outer set contains two rows (actual rows=2); the estimation has been correct. So the

Index Scan node was executed twice (loops=2), and each time it selected four rows on av-

erage (actual rows=4). Hence the total number of found rows: actual rows=8.

I do not show the execution time of each stage of the plan (������ ���) for the output to fit the

limited width of the page; besides, on some platforms an output with timing enabled can signif-

icantly slow down query execution. But if we did include it, Postgre��� would display an average

value, just like for the row count. To get the total execution time, you should multiply this value by

the number of iterations (loops).

Cost estimation. The cost estimation formula here is the same as in the previous exam-

ples.

Let’s recall our query plan:

=> EXPLAIN SELECT *

FROM tickets t

JOIN ticket_flights tf ON tf.ticket_no = t.ticket_no

WHERE t.book_ref = '03A76D';

QUERY PLAN

−−

Nested Loop (cost=0.99..45.68 rows=6 width=136)

−> Index Scan using tickets_book_ref_idx on tickets t

(cost=0.43..12.46 rows=2 width=104)

Index Cond: (book_ref = '03A76D'::bpchar)

−> Index Scan using ticket_flights_pkey on ticket_flights tf

(cost=0.56..16.58 rows=3 width=32)

Index Cond: (ticket_no = t.ticket_no)

(7 rows)

In this case, the cost of each subsequent scan of the inner set is the same as that of the

first scan. So we ultimately get the following figures:

358

21.2 Nested Loop Joins

=> SELECT 0.43 + 0.56 AS startup_cost,

round((

12.46 + 2 * 16.57 +

6 * current_setting('cpu_tuple_cost')::real

)::numeric, 2) AS total_cost;

startup_cost | total_cost

−−−−−−−−−−−−−−+−−−−−−−−−−−−

0.99 | 45.66

(1 row)

Caching Rows (Memoization) v. ��

If the inner set is repeatedly scanned with the same parameter values (thus giving the

same results), it may turn out to be beneficial to cache the rows of this set.

Such caching is performed by theMemoize1 node. Being similar to theMaterialize node, it

is designed to handle parameterized joins and has amuchmore complex implementation:

• TheMaterialize node simplymaterializes all the rows returned by its child node,while

Memoize ensures that the rows returned for different parameter values are kept sep-

arately.

• In the event of an overflow, the Materialize storage starts spilling rows to disk, while

Memoize keeps all the rows inmemory (there would otherwise be no point in caching).

Here is an example of a query that uses Memoize:

=> EXPLAIN SELECT * FROM flights f

JOIN aircrafts_data a ON f.aircraft_code = a.aircraft_code

WHERE f.flight_no = 'PG0003';

QUERY PLAN

−−−

Nested Loop (cost=5.44..387.10 rows=113 width=135)

−> Bitmap Heap Scan on flights f

(cost=5.30..382.22 rows=113 width=63)

Recheck Cond: (flight_no = 'PG0003'::bpchar)

−> Bitmap Index Scan on flights_flight_no_scheduled_depart...

(cost=0.00..5.27 rows=113 width=0)

Index Cond: (flight_no = 'PG0003'::bpchar)

−> Memoize (cost=0.15..0.27 rows=1 width=72)

Cache Key: f.aircraft_code

Cache Mode: logical

−> Index Scan using aircrafts_pkey on aircrafts_data a

(cost=0.14..0.26 rows=1 width=72)

Index Cond: (aircraft_code = f.aircraft_code)

(13 rows)

1 backend/executor/nodeMemoize.c

359

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeMemoize.c;hb=REL_14_STABLE

Chapter 21 Nested Loop

The size of the memory chunk that is used to store cached rows equals4MB work_mem ×
1.0 hash_mem_multiplier. As implied by the second parameter’s name, cached rows are stored

in a hash table (with open addressing).1 The hash key (shown as Cache Key in the plan) is

the parameter value (or several values if there are more than one parameter).

All the hash keys are bound into a list; one of its ends is considered cold (since it contains

the keys that have not been used for a long time), while the other is hot (it stores recently

used keys).

If a call on the Memoize node shows that the passed parameter values correspond to the

already cached rows, these rowswill be passed on to the parent node (Nested Loop) without

checking the child node. The used hash key is then moved to the hot end of the list.

If the cache does not contain the required rows, the Memoize node pulls them from its

child node, caches them, and passes them on to the node above. The corresponding hash

key also becomes hot.

As new data is being cached, it can fill all the available memory. To free some space, the

rows that correspond to cold keys get evicted. This eviction algorithm differs from the one

used in the bufferp. ��� cache but serves the same purpose.

Some parameter values may turn out to have so many matching rows that they do not

fit into the allocated memory chunk, even if all the other rows are already evicted. Such

parameters are skipped—it makes no sense to cache only some of the rows since the next

call will still have to get all the rows from the child node.

Cost and cardinality estimations. These calculations are quite similar to what we have

already seen above. We just have to bear in mind that the cost of theMemoize node shown

in the plan has nothing to do with its actual cost: it is simply the cost of its child node

increased by the0.01 cpu_tuple_cost value.2

We have already come across a similar situation for the Materialize node: its cost is only

calculated for subsequent scans3 and is not reflected in the plan.

Clearly, it only makes sense to use Memoize if it is cheaper than its child node. The cost

of each subsequent Memoize scan depends on the expected cache access profile and the

size of the memory chunk that can be used for caching. The calculated value is highly

dependent on the accurate estimation of the number of distinct parameter values to be

1 include/lib/simplehash.h
2 backend/optimizer/util/pathnode.c, create_memoize_path function
3 backend/optimizer/path/costsize.c, cost_memoize_rescan function

360

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/lib/simplehash.h;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/util/pathnode.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

21.2 Nested Loop Joins

used in the scans of the inner set of rows.1 Based on this number, you can weigh the

probabilities of the rows to be cached and to be evicted from the cache. The expected hits

reduce the estimated cost, while potential evictions increase it. We will skip the details of

these calculations here.

To figure out what is actually going on during query execution, we will use the �������

������� command, as usual:

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT * FROM flights f

JOIN aircrafts_data a ON f.aircraft_code = a.aircraft_code

WHERE f.flight_no = 'PG0003';

QUERY PLAN

−−−

Nested Loop (actual rows=113 loops=1)

−> Bitmap Heap Scan on flights f

(actual rows=113 loops=1)

Recheck Cond: (flight_no = 'PG0003'::bpchar)

Heap Blocks: exact=2

−> Bitmap Index Scan on flights_flight_no_scheduled_depart...

(actual rows=113 loops=1)

Index Cond: (flight_no = 'PG0003'::bpchar)

−> Memoize (actual rows=1 loops=113)

Cache Key: f.aircraft_code

Cache Mode: logical

Hits: 112 Misses: 1 Evictions: 0 Overflows: 0 Memory

Usage: 1kB

−> Index Scan using aircrafts_pkey on aircrafts_data a

(actual rows=1 loops=1)

Index Cond: (aircraft_code = f.aircraft_code)

(16 rows)

This query selects the flights that follow the same route and are performed by aircraft of a

particular type, so all the calls on the Memoize node use the same hash key. The first row

has to be fetched from the table (Misses: 1), but all the subsequent rows are found in the

cache (Hits: 112). The whole operation takes just � k� of memory.

The other two displayed values are zero: they represent the number of evictions and the

number of cache overflows when it was impossible to cache all the rows related to a partic-

ular set of parameters. Large figures would indicate that the allocated cache is too small,

which might be caused by inaccurate estimation of the number of distinct parameter val-

ues. Then the use of theMemoize node can turn out to be quite expensive. In the extreme

case, you can forbid the planner to use caching by turning off the onenable_memoize param-

eter.

1 backend/utils/adt/selfuncs.c, estimate_num_groups function

361

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/selfuncs.c;hb=REL_14_STABLE

Chapter 21 Nested Loop

Outer Joins

The nested loop join can be used to perform the left outer join:

=> EXPLAIN SELECT *

FROM ticket_flights tf

LEFT JOIN boarding_passes bp ON bp.ticket_no = tf.ticket_no

AND bp.flight_id = tf.flight_id

WHERE tf.ticket_no = '0005434026720';

QUERY PLAN

−−−

Nested Loop Left Join (cost=1.12..33.35 rows=3 width=57)

Join Filter: ((bp.ticket_no = tf.ticket_no) AND (bp.flight_id =

tf.flight_id))

−> Index Scan using ticket_flights_pkey on ticket_flights tf

(cost=0.56..16.58 rows=3 width=32)

Index Cond: (ticket_no = '0005434026720'::bpchar)

−> Materialize (cost=0.56..16.62 rows=3 width=25)

−> Index Scan using boarding_passes_pkey on boarding_passe...

(cost=0.56..16.61 rows=3 width=25)

Index Cond: (ticket_no = '0005434026720'::bpchar)

(10 rows)

Here the join operation is represented by the Nested Loop Left Join node. The planner has

chosen a non-parameterized join with a filter: it performs identical scans of the inner set

of rows (so this set is hidden behind theMaterialize node) and returns the rows that satisfy

the filter condition (Join Filter).

The cardinality of the outer join is estimated just like the one of the inner join, except that

the calculated estimation is compared with the cardinality of the outer set of rows, and

the bigger value is taken as the final result.1 In other words, the outer join never reduces

the number of rows (but can increase it).

The cost estimation is similar to that of the inner join.

We must also keep in mind that the planner can select different plans for inner and outer

joins. Even this simple example will have a different Join Filter if the planner is forced to

use a nested loop join:

=> SET enable_mergejoin = off;

=> EXPLAIN SELECT *

FROM ticket_flights tf

JOIN boarding_passes bp ON bp.ticket_no = tf.ticket_no

AND bp.flight_id = tf.flight_id

WHERE tf.ticket_no = '0005434026720';

1 backend/optimizer/path/costsize.c, calc_joinrel_size_estimate function

362

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

21.2 Nested Loop Joins

QUERY PLAN

−−−

Nested Loop (cost=1.12..33.33 rows=3 width=57)

Join Filter: (tf.flight_id = bp.flight_id)

−> Index Scan using ticket_flights_pkey on ticket_flights tf

(cost=0.56..16.58 rows=3 width=32)

Index Cond: (ticket_no = '0005434026720'::bpchar)

−> Materialize (cost=0.56..16.62 rows=3 width=25)

−> Index Scan using boarding_passes_pkey on boarding_passe...

(cost=0.56..16.61 rows=3 width=25)

Index Cond: (ticket_no = '0005434026720'::bpchar)

(9 rows)

=> RESET enable_mergejoin;

A slight difference in the total cost is caused by the fact that the outer joinmust also check

ticket numbers to get the correct result if there is no match in the outer set of rows.

Right joins are not supported,1 as the nested loop algorithm treats the inner and outer sets

differently. The outer set is scanned in full; as for the inner set, the index access allows

reading only those rows that satisfy the join condition, so some of its rowsmay be skipped

altogether.

A full join is not supported for the same reason.

Anti- and Semi-joins

Anti-joins and semi-joins are similar in the sense that for each row of the first (outer) set

it is enough to find only onematching row in the second (inner) set.

An anti-join returns the rows of the first set only if they have nomatch in the second set: as

soon as the executor finds the first matching row in the second set, it can exit the current

loop: the corresponding row of the first set must be excluded from the result.

Anti-joins can be used to compute the ��� ������ predicate.

For example, let’s find aircraft models with undefined cabin configuration. The corre-

sponding plan contains the Nested Loop Anti Join node:

=> EXPLAIN SELECT *

FROM aircrafts a

WHERE NOT EXISTS (

SELECT * FROM seats s WHERE s.aircraft_code = a.aircraft_code

);

1 backend/optimizer/path/joinpath.c, match_unsorted_outer function

363

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/joinpath.c;hb=REL_14_STABLE

Chapter 21 Nested Loop

QUERY PLAN

−−−

Nested Loop Anti Join (cost=0.28..4.65 rows=1 width=40)

−> Seq Scan on aircrafts_data ml (cost=0.00..1.09 rows=9 widt...

−> Index Only Scan using seats_pkey on seats s

(cost=0.28..5.55 rows=149 width=4)

Index Cond: (aircraft_code = ml.aircraft_code)

(5 rows)

An alternative query without the ��� ������ predicate will have the same plan:

=> EXPLAIN SELECT a.*

FROM aircrafts a

LEFT JOIN seats s ON a.aircraft_code = s.aircraft_code

WHERE s.aircraft_code IS NULL;

QUERY PLAN

−−−

Nested Loop Anti Join (cost=0.28..4.65 rows=1 width=40)

−> Seq Scan on aircrafts_data ml (cost=0.00..1.09 rows=9 widt...

−> Index Only Scan using seats_pkey on seats s

(cost=0.28..5.55 rows=149 width=4)

Index Cond: (aircraft_code = ml.aircraft_code)

(5 rows)

A semi-join returns those rows of the first set that have at least onematch in the second set

(again, there is no need to check the set for other matches—the result is already known).

A semi-join can be used to compute the ������ predicate. Let’s find the aircraft models

with seats installed in the cabin:

=> EXPLAIN SELECT *

FROM aircrafts a

WHERE EXISTS (

SELECT * FROM seats s

WHERE s.aircraft_code = a.aircraft_code

);

QUERY PLAN

−−−

Nested Loop Semi Join (cost=0.28..6.67 rows=9 width=40)

−> Seq Scan on aircrafts_data ml (cost=0.00..1.09 rows=9 widt...

−> Index Only Scan using seats_pkey on seats s

(cost=0.28..5.55 rows=149 width=4)

Index Cond: (aircraft_code = ml.aircraft_code)

(5 rows)

The Nested Loop Semi Join node represents the same-name join method. This plan (just

like the anti-join plans above) provides the basic estimation of the number of rows in the

seats table (rows=149), although it is enough to retrieve only one of them. The actual

query execution stops after fetching the first row, of course:

364

21.2 Nested Loop Joins

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT * FROM aircrafts a

WHERE EXISTS (

SELECT * FROM seats s

WHERE s.aircraft_code = a.aircraft_code

);

QUERY PLAN

−−

Nested Loop Semi Join (actual rows=9 loops=1)

−> Seq Scan on aircrafts_data ml (actual rows=9 loops=1)

−> Index Only Scan using seats_pkey on seats s

(actual rows=1 loops=9)

Index Cond: (aircraft_code = ml.aircraft_code)

Heap Fetches: 0

(6 rows)

Cardinality estimation. The selectivity of a semi-join is estimated in the usual manner,

except that the cardinality of the inner set is taken as one. For anti-joins, the estimated

selectivity is subtracted from one, just like for negation.1

Cost estimation. For anti- and semi-joins, the cost estimation reflects the fact that the

scan of the second set stops as soon as the first matching row is found.2

Non-Equi-joins

The nested loop algorithm allows joining sets of rows based on any join condition.

Obviously, if the inner set is a base table with an index created on it, and the join condition

uses an operator that belongs to an operator class p. ���of this index, the access to the inner

set can be quite efficient. But it is always possible to perform the join by calculating a

Cartesian product of rows filtered by some condition—which can be absolutely arbitrary

in this case. Like in the following query, which selects pairs of airports that are located

close to each other:

=> CREATE EXTENSION earthdistance CASCADE;

=> EXPLAIN (costs off) SELECT *

FROM airports a1

JOIN airports a2 ON a1.airport_code != a2.airport_code

AND a1.coordinates <@> a2.coordinates < 100;

1 backend/optimizer/path/costsize.c, calc_joinrel_size_estimate function
2 backend/optimizer/path/costsize.c, final_cost_nestloop function

365

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

Chapter 21 Nested Loop

QUERY PLAN

−−−

Nested Loop

Join Filter: ((ml.airport_code <> ml_1.airport_code) AND

((ml.coordinates <@> ml_1.coordinates) < '100'::double precisi...

−> Seq Scan on airports_data ml

−> Materialize

−> Seq Scan on airports_data ml_1

(6 rows)

Parallel Modev. �.�

A nested loop join can participate in parallelp. ��� plan execution.1

It is only the outer set that can be processed in parallel, as it can be scanned by several

workers simultaneously. Having fetched an outer row, each worker then has to search for

the matching rows in the inner set, which is done sequentially.

The query shown below includes several joins; it searches for passengers that have tickets

for a particular flight:

=> EXPLAIN (costs off) SELECT t.passenger_name

FROM tickets t

JOIN ticket_flights tf ON tf.ticket_no = t.ticket_no

JOIN flights f ON f.flight_id = tf.flight_id

WHERE f.flight_id = 12345;

QUERY PLAN

−−−

Nested Loop

−> Index Only Scan using flights_flight_id_status_idx on fligh...

Index Cond: (flight_id = 12345)

−> Gather

Workers Planned: 2

−> Nested Loop

−> Parallel Seq Scan on ticket_flights tf

Filter: (flight_id = 12345)

−> Index Scan using tickets_pkey on tickets t

Index Cond: (ticket_no = tf.ticket_no)

(10 rows)

At the upper level, the nested loop join is performed sequentially. The outer set consists

of a single row of the flights table fetched by a unique key, so the use of a nested loop is

justified even for a large number of inner rows.

The inner set is retrieved using a parallel plan. Each of the workers scansp. ��� its own share of

rows of the ticket_flights table and joins themwith tickets using the nested loop algorithm.

1 backend/optimizer/path/joinpath.c, consider_parallel_nestloop function

366

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/joinpath.c;hb=REL_14_STABLE

22
Hashing

22.1 Hash Joins

One-Pass Hash Joins

A hash join searches for matching rows using a pre-built hash table. Here is an example

of a plan with such a join:

=> EXPLAIN (costs off) SELECT *

FROM tickets t

JOIN ticket_flights tf ON tf.ticket_no = t.ticket_no;

QUERY PLAN

−−−

Hash Join

Hash Cond: (tf.ticket_no = t.ticket_no)

−> Seq Scan on ticket_flights tf

−> Hash

−> Seq Scan on tickets t

(5 rows)

At the first stage, the Hash Join node1 calls the Hash node,2 which pulls the whole inner

set of rows from its child node and places it into a hash table.

Storing pairs of hash keys and values, the hash table enables fast access to a value by its key;

the search time does not depend on the size of the hash table, as hash keys are distributed

more or less uniformly between a limited number of buckets. The bucket to which a given

key goes is determined by the hash function of the hash key; since the number of buckets

is always a power of two, it is enough to take the required number of bits of the computed

value.

Just like the buffer p. ���cache, this implementation uses a dynamically extendible hash table

that resolves hash collisions by chaining.3

1 backend/executor/nodeHashjoin.c
2 backend/executor/nodeHash.c
3 backend/utils/hash/dynahash.c

367

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHashjoin.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHash.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/hash/dynahash.c;hb=REL_14_STABLE

Chapter 22 Hashing

At the first stage of a join operation, the inner set is scanned, and the hash function is

computed for each of its rows. The columns that are referenced in the join condition (Hash

Cond) serve as the hash key, while the hash table itself stores all the queried fields of the

inner set.

A hash join is most efficientv. �� in the case when the whole hash table can be accommodated

in ���, as the executor manages to process the data in one batch in this case. The size

of the memory chunk allocated for this purpose is limited by the value of4MB work_mem ×
1.0 hash_mem_multiplier.

outer
set

inner
set

work_mem × hash_mem_multiplier

Let’s run ������� ������� to take a look at statistics on memory usage of a query:

=> SET work_mem = '256MB';

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT * FROM bookings b

JOIN tickets t ON b.book_ref = t.book_ref;

QUERY PLAN

−−−

Hash Join (actual rows=2949857 loops=1)

Hash Cond: (t.book_ref = b.book_ref)

−> Seq Scan on tickets t (actual rows=2949857 loops=1)

−> Hash (actual rows=2111110 loops=1)

Buckets: 4194304 Batches: 1 Memory Usage: 145986kB

−> Seq Scan on bookings b (actual rows=2111110 loops=1)

(6 rows)

Unlike a nested loop join, which treats inner and outer sets differently, a hash join can

swap them around. The smaller set is usually used as the inner one, as it results in a

smaller hash table.

In this example, the whole table fits into the allocated cache: it takes about ��� ��

(Memory Usage) and contains � � = ��� buckets. So the join is performed in one pass

(Batches).

But if the query referred to only one column, the hash table would fit ��� ��:

368

22.1 Hash Joins

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT b.book_ref

FROM bookings b

JOIN tickets t ON b.book_ref = t.book_ref;

QUERY PLAN

−−−

Hash Join (actual rows=2949857 loops=1)

Hash Cond: (t.book_ref = b.book_ref)

−> Index Only Scan using tickets_book_ref_idx on tickets t

(actual rows=2949857 loops=1)

Heap Fetches: 0

−> Hash (actual rows=2111110 loops=1)

Buckets: 4194304 Batches: 1 Memory Usage: 113172kB

−> Seq Scan on bookings b (actual rows=2111110 loops=1)

(8 rows)

=> RESET work_mem;

It is yet another reason to avoid referring to superfluous fields in a query (which can hap-

pen if you are using an asterisk, to give one example).

The chosen number of buckets should guarantee that each bucket holds only one row on

average when the hash table is completely filled with data. Higher density would increase

the rate of hash collisions,making the search less efficient,while a less compact hash table

would take up too much memory. The estimated number of buckets is increased up to the

nearest power of two.1

(If the estimated hash table size exceeds the memory limit based on the average width of

a single row, two-pass hashing will be applied.)

A hash join cannot start returning results until the hash table is fully built.

At the second stage (the hash table is already built by this time), the Hash Join node calls

on its second child node to get the outer set of rows. For each scanned row, the hash table

is searched for a match. It requires calculating the hash key for the columns of the outer

set that are included into the join condition.

outer
set

The found matches are returned to the parent node.

1 backend/executor/nodeHash.c, ExecChooseHashTableSize function

369

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHash.c;hb=REL_14_STABLE

Chapter 22 Hashing

Cost estimation. Wehave already covered cardinality estimationp. ��� ; since it does not depend

on the join method, I will now focus on cost estimation.

The cost of the Hash node is represented by the total cost of its child node. It is a dummy

number that simply fills the slot in the plan.1 All the actual estimations are included into

the cost of the Hash Join node.2

Here is an example:

=> EXPLAIN (analyze, timing off, summary off)

SELECT * FROM flights f

JOIN seats s ON s.aircraft_code = f.aircraft_code;

QUERY PLAN

−−−

Hash Join (cost=38.13..278507.28 rows=16518865 width=78)

(actual rows=16518865 loops=1)

Hash Cond: (f.aircraft_code = s.aircraft_code)

−> Seq Scan on flights f (cost=0.00..4772.67 rows=214867 widt...

(actual rows=214867 loops=1)

−> Hash (cost=21.39..21.39 rows=1339 width=15)

(actual rows=1339 loops=1)

Buckets: 2048 Batches: 1 Memory Usage: 79kB

−> Seq Scan on seats s (cost=0.00..21.39 rows=1339 width=15)

(actual rows=1339 loops=1)

(10 rows)

The startup cost of the join reflects primarily the cost of hash table creation and includes

the following components:

• the total cost of fetching the inner set, which is required to build the hash table

• the cost of calculating the hash function of all the columns included into the join key,

for each row of the inner set (estimated at0.0025 cpu_operator_cost per operation)

• the cost of insertion of all the inner rows into the hash table (which is estimated at

0.01 cpu_tuple_cost per inserted row)

• the startup cost of fetching the outer set of rows, which is required to start the join

operation

The total cost comprises the startup cost and the cost of the join itself, namely:

• the cost of computing the hash function of all the columns included into the join key,

for each row of the outer set (cpu_operator_cost)

• the cost of join condition rechecks, which are required to address possible hash col-

lisions (estimated at cpu_operator_cost per each checked operator)

1 backend/optimizer/plan/createplan.c, create_hashjoin_plan function
2 backend/optimizer/path/costsize.c, initial_cost_hashjoin & final_cost_hashjoin functions

370

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/plan/createplan.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

22.1 Hash Joins

• the processing cost for each resulting row (cpu_tuple_cost)

The number of required rechecks is the hardest to estimate. It is calculated bymultiplying

the number of rows of the outer set by some fraction of the inner set (stored in the hash

table). To estimate this fraction, the planner has to take into account that data distribution

may be non-uniform. I will spare you the details of these computations;1 in this particular

case, this fraction is estimated at �.������.

Thus, the cost of our query is estimated as follows:

=> WITH cost(startup) AS (

SELECT round((

21.39 +

current_setting('cpu_operator_cost')::real * 1339 +

current_setting('cpu_tuple_cost')::real * 1339 +

0.00

)::numeric, 2)

)

SELECT startup,

startup + round((

4772.67 +

current_setting('cpu_operator_cost')::real * 214867 +

current_setting('cpu_operator_cost')::real * 214867 * 1339 *

0.150112 +

current_setting('cpu_tuple_cost')::real * 16518865

)::numeric, 2) AS total

FROM cost;

startup | total

−−−−−−−−−+−−−−−−−−−−−

38.13 | 278507.26

(1 row)

And here is the dependency graph:

QUERY PLAN

−−

Hash Join

(cost=38.13..278507.28 rows=16518865 width=78)

Hash Cond: (f.aircraft_code = s.aircraft_code)

−> Seq Scan on flights f

(cost=0.00..4772.67 rows=214867 width=63)

−> Hash

(cost=21.39..21.39 rows=1339 width=15)

−> Seq Scan on seats s

(cost=0.00..21.39 rows=1339 width=15)

(9 rows)

1 backend/utils/adt/selfuncs.c, estimate_hash_bucket_stats function

371

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/selfuncs.c;hb=REL_14_STABLE

Chapter 22 Hashing

Two-Pass Hash Joins

If the planner’s estimations show that the hash table will not fit the allocatedmemory, the

inner set of rows is split into batches to be processed separately. The number of batches

(just like the number of buckets) is always a power of two; the batch to use is determined

by the corresponding number of bits of the hash key.1

Any two matching rows belong to the same batch: rows placed into different batches can-

not have the same hash code.

All batches hold an equal number of hash keys. If the data is distributed uniformly, batch

sizes will also be roughly the same. The planner can control memory consumption by

choosing an appropriate number of batches.2

At the first stage, the executor scans the inner set of rows to build the hash table. If

the scanned row belongs to the first batch, it is added to the hash table and kept in ���.

Otherwise, it is written into a temporary file (there is a separate file for each batch).3

The total volume of temporary files that a session can store on disk is limited by the−1 temp_file_limit

parameter (temporary tables are not included into this limit). As soon as the session reaches this

value, the query is aborted.

outer
set

inner
set

At the second stage, the outer set is scanned. If the row belongs to the first batch, it is

matched against the hash table, which contains the first batch of rows of the inner set

(there can be no matches in other batches anyway).

If the rowbelongs to a different batch, it is stored in a temporary file,which is again created

separately for each batch. Thus, N batches can use 2(N − 1) files (or fewer if some of the

batches turn out to be empty).

1 backend/executor/nodeHash.c, ExecHashGetBucketAndBatch function
2 backend/executor/nodeHash.c, ExecChooseHashTableSize function
3 backend/executor/nodeHash.c, ExecHashTableInsert function

372

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHash.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHash.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHash.c;hb=REL_14_STABLE

22.1 Hash Joins

Once the second stage is complete, the memory allocated for the hash table is freed. At

this point, we already have the result of the join for one of the batches.

outer
set

inner
set

Both stages are repeated for each of the batches saved on disk: the rows of the inner set

are transferred from the temporary file to the hash table; then the rows of the outer set

related to the same batch are read from another temporary file and matched against this

hash table. Once processed, temporary files get deleted.

outer
set

Unlike a similar output for a one-pass join, the output of the ������� command for a two-

pass join contains more than one batch. If run with the ������� option, this command

also displays statistics on disk access:

=> EXPLAIN (analyze, buffers, costs off, timing off, summary off)

SELECT *

FROM bookings b

JOIN tickets t ON b.book_ref = t.book_ref;

373

Chapter 22 Hashing

QUERY PLAN

−−−

Hash Join (actual rows=2949857 loops=1)

Hash Cond: (t.book_ref = b.book_ref)

Buffers: shared hit=7236 read=55626, temp read=55126

written=55126

−> Seq Scan on tickets t (actual rows=2949857 loops=1)

Buffers: shared read=49415

−> Hash (actual rows=2111110 loops=1)

Buckets: 65536 Batches: 64 Memory Usage: 2277kB

Buffers: shared hit=7236 read=6211, temp written=10858

−> Seq Scan on bookings b (actual rows=2111110 loops=1)

Buffers: shared hit=7236 read=6211

(11 rows)

I have already shown this query above with an increased work_mem setting. The default

value of � �� is too small for the whole hash table to fit ���; in this example, the data is

split into �� batches, and the hash table uses �� � = ��� buckets. As the hash table is being

built (the Hash node), the data is written into temporary files (temp written); at the join

stage (the Hash Join node), temporary files are both read and written (temp read, written).

To collect more statistics on temporary files, you can set the−1 log_temp_files parameter to

zero. Then the server log will list all the temporary files and their sizes (as they appeared

at the time of deletion).

Dynamic Adjustments

The planned course of events may be disrupted by two issues: inaccurate statistics and

non-uniform data distribution.

If the distribution of values in the join key columns is non-uniform, different batches will

have different sizes.

If some batch (except for the very first one) turns out to be too large, all its rows will have

to be written to disk and then read from disk. It is the outer set that causes most of the

trouble, as it is typically bigger. So if there are regular, non-multivariatep. ��� statistics on���s

of the outer set (that is, the outer set is represented by a table, and the join is performed by

a single column), rows with hash codes corresponding to ���s are considered to be a part

of the first batch.1 This technique (called skew optimization) can reduce the �/� overhead

of a two-pass join to some extent.

1 backend/executor/nodeHash.c, ExecHashBuildSkewHash function

374

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHash.c;hb=REL_14_STABLE

22.1 Hash Joins

Because of these two factors, the size of some (or all) batches may exceed the estima-

tion. Then the corresponding hash table will not fit the allocated memory chunk and will

surpass the defined limits.

So if the hash table being built turns out too big, the number of batches is increased (dou-

bled) on the fly. Each batch is virtually split into two new ones: about half of the rows

(assuming that the distribution is uniform) is left in the hash table, while the other half is

saved into a new temporary file.1

Such a split can happen even if a one-pass join has been originally planned. In fact, one-

and two-pass joins use the same algorithm implemented by the same code; I single them

out here solely for smoother narration.

The number of batches cannot be reduced. If it turns out that the planner has overesti-

mated the data size, batches will not be merged together.

In the case of non-uniform distribution, increasing the number of batches may not help.

For example, if the key column contains the same value in all its rows, they will be placed

into the same batch since the hash function will be returning the same value over and over

again. Unfortunately, the hash table will continue growing in this case, regardless of the

imposed restrictions.

In theory, this issue could be addressed by a multi-pass join, which would perform partial scans of

the batch, but it is not supported.

To demonstrate a dynamic increase in the number of batches, we first have to perform

some manipulations p. ���:

=> CREATE TABLE bookings_copy (LIKE bookings INCLUDING INDEXES)

WITH (autovacuum_enabled = off);

=> INSERT INTO bookings_copy SELECT * FROM bookings;

INSERT 0 2111110

=> DELETE FROM bookings_copy WHERE random() < 0.9;

DELETE 1899232

=> ANALYZE bookings_copy;

=> INSERT INTO bookings_copy SELECT * FROM bookings

ON CONFLICT DO NOTHING;

INSERT 0 1899232

=> SELECT reltuples FROM pg_class WHERE relname = 'bookings_copy';

reltuples

−−−−−−−−−−−

211878

(1 row)

1 backend/executor/nodeHash.c, ExecHashIncreaseNumBatches function

375

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHash.c;hb=REL_14_STABLE

Chapter 22 Hashing

As a result, we get a new table called bookings_copy. It is an exact copy of the bookings

table, but the planner underestimates the number of rows in it by ten times. A similar

situation may occur if the hash table is generated for a set of rows produced by another

join operation, so there is no reliable statistics available.

This miscalculationmakes the planner think that � buckets are enough, but while the join

is being performed, this number grows to ��:

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT *

FROM bookings_copy b

JOIN tickets t ON b.book_ref = t.book_ref;

QUERY PLAN

−−−

Hash Join (actual rows=2949857 loops=1)

Hash Cond: (t.book_ref = b.book_ref)

−> Seq Scan on tickets t (actual rows=2949857 loops=1)

−> Hash (actual rows=2111110 loops=1)

Buckets: 65536 (originally 65536) Batches: 32 (originally 8)

Memory Usage: 4040kB

−> Seq Scan on bookings_copy b (actual rows=2111110 loops=1)

(7 rows)

Cost estimation. I have already used this example to demonstrate cost estimation for a

one-pass join, but now I am going to reduce the size of available memory to theminimum,

so the planner will have to use two batches. It increases the cost of the join:

=> SET work_mem = '64kB';

=> EXPLAIN (analyze, timing off, summary off)

SELECT * FROM flights f

JOIN seats s ON s.aircraft_code = f.aircraft_code;

QUERY PLAN

−−−

Hash Join (cost=45.13..283139.28 rows=16518865 width=78)

(actual rows=16518865 loops=1)

Hash Cond: (f.aircraft_code = s.aircraft_code)

−> Seq Scan on flights f (cost=0.00..4772.67 rows=214867 widt...

(actual rows=214867 loops=1)

−> Hash (cost=21.39..21.39 rows=1339 width=15)

(actual rows=1339 loops=1)

Buckets: 2048 Batches: 2 Memory Usage: 55kB

−> Seq Scan on seats s (cost=0.00..21.39 rows=1339 width=15)

(actual rows=1339 loops=1)

(10 rows)

=> RESET work_mem;

The cost of the second pass is incurred by spilling rows into temporary files and reading

them from these files.

376

22.1 Hash Joins

The startup cost of a two-pass join is based on that of a one-pass join, which is increased

by the estimated cost of writing as many pages as required to store all the necessary fields

of all the rows of the inner set.1 Although the first batch is not written to disk when the

hash table is being built, the estimation does not take it into account and hence does not

depend on the number of batches.

In its turn, the total cost comprises the total cost of a one-pass join and the estimated

costs of reading the rows of the inner set previously stored on disk, as well as reading and

writing the rows of the outer set.

Both writing and reading are estimated at seq_page_cost per page, as �/� operations are

assumed to be sequential.

In this particular case, the number of pages required for the inner set is estimated at �,

while the data of the outer set is expected to fit ���� pages. Having added these estima-

tions to the one-pass join cost calculated above, we get the same figures as shown in the

query plan:

=> SELECT 38.13 + -- startup cost of a one-pass join

current_setting('seq_page_cost')::real * 7

AS startup,

278507.28 + -- total cost of a one-pass join

current_setting('seq_page_cost')::real * 2 * (7 + 2309)

AS total;

startup | total

−−−−−−−−−+−−−−−−−−−−−

45.13 | 283139.28

(1 row)

Thus, if there is not enoughmemory, the join is performed in two passes and becomes less

efficient. Therefore, it is important to observe the following points:

• The query must be composed in a way that excludes redundant fields from the hash

table.

• The planner must choose the smaller of the two sets of rows when building the hash

table.

Using Hash Joins in Parallel Plans v. �.�

The hash join algorithm described above can also be used in parallel plans. First, sev-

eral parallel processes build their own (absolutely identical) hash tables for the inner set,

1 backend/optimizer/path/costsize.c, page_size function

377

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

Chapter 22 Hashing

independently of each other; then they start processing the outer set concurrently. The

performance gain here is due to each process scanning only its own share of outer rows.

The following plan uses a regular one-pass hash join:

=> SET work_mem = '128MB';

=> SET enable_parallel_hash = off;

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT count(*)

FROM bookings b

JOIN tickets t ON t.book_ref = b.book_ref;

QUERY PLAN

−−−

Finalize Aggregate (actual rows=1 loops=1)

−> Gather (actual rows=3 loops=1)

Workers Planned: 2

Workers Launched: 2

−> Partial Aggregate (actual rows=1 loops=3)

−> Hash Join (actual rows=983286 loops=3)

Hash Cond: (t.book_ref = b.book_ref)

−> Parallel Index Only Scan using tickets_book_ref...

Heap Fetches: 0

−> Hash (actual rows=2111110 loops=3)

Buckets: 4194304 Batches: 1 Memory Usage:

113172kB

−> Seq Scan on bookings b (actual rows=2111110...

(13 rows)

=> RESET enable_parallel_hash;

Here each process hashes the bookings table, then retrieves its own share of outer rows

via the Parallel Index Only Scan node, and matches these rows against the resulting hash

table.

The hash table memory limit is applied to each parallel process separately, so the total

size of memory allocated for this purpose will be three times bigger than indicated in the

plan (Memory Usage).

Parallel One-Pass Hash Joinsv. ��

Even though a regular hash join can be quite efficient in parallel plans (especially for small

inner sets, for which parallel processing does not make much sense), larger data sets are

better handled by a special parallel hash join algorithm.

An important distinction of the parallel version of the algorithm is that the hash table is

created in the shared memory, which is allocated dynamically and can be accessed by all

378

22.1 Hash Joins

parallel processes that contribute to the join operation. Instead of several separate hash

tables, a single common one is built, which uses the total amount of memory dedicated to

all the participating processes. It increases the chance of completing the join in one pass.

At the first stage (which is represented in the plan by the Parallel Hash node), all the

parallel processes build a common hash table, taking advantage of the parallel access to

the inner set of rows.1

outer
set

inner
set

work_mem × hash_mem_multiplier × number of processes

To move on from here, each parallel process must complete its share of first-stage pro-

cessing.2

At the second stage (the Parallel Hash Join node), the processes are again run in parallel

to match their shares of rows of the outer set against the hash table, which is already built

by this time.3

outer
set

Here is an example of such a plan:

=> SET work_mem = '64MB';

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT count(*)

FROM bookings b

JOIN tickets t ON t.book_ref = b.book_ref;

1 backend/executor/nodeHash.c, MultiExecParallelHash function
2 backend/storage/ipc/barrier.c
3 backend/executor/nodeHashjoin.c, ExecParallelHashJoin function

379

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHash.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/ipc/barrier.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHashjoin.c;hb=REL_14_STABLE

Chapter 22 Hashing

QUERY PLAN

−−−

Finalize Aggregate (actual rows=1 loops=1)

−> Gather (actual rows=3 loops=1)

Workers Planned: 2

Workers Launched: 2

−> Partial Aggregate (actual rows=1 loops=3)

−> Parallel Hash Join (actual rows=983286 loops=3)

Hash Cond: (t.book_ref = b.book_ref)

−> Parallel Index Only Scan using tickets_book_ref...

Heap Fetches: 0

−> Parallel Hash (actual rows=703703 loops=3)

Buckets: 4194304 Batches: 1 Memory Usage:

115392kB

−> Parallel Seq Scan on bookings b (actual row...

(13 rows)

=> RESET work_mem;

It is the same query that I showed in the previous section, but the parallel hash join was

turned off by theon enable_parallel_hash parameter at that time.

Although the available memory is down by half as compared to a regular hash join demon-

strated before, the operation still completes in one pass because it uses the memory allo-

cated for all the parallel processes (Memory Usage). The hash table gets a bit bigger, but

since it is the only one we have now, the total memory usage has decreased.

Parallel Two-Pass Hash Joinsv. ��

The consolidated memory of all the parallel processes may still be not enough to accom-

modate the whole hash table. It can become clear either at the planning stage or later,

during query execution. The two-pass algorithm applied in this case is quite different

from what we have seen so far.

The key distinction of this algorithm is that it creates several smaller hash tables instead

of a single big one. Each process gets its own table and processes its own batches indepen-

dently. (But since separate hash tables are still located in the shared memory, any process

can get access to any of these tables.) If planning shows that more than one batch will

be required,1 a separate hash table is built for each process right away. If the decision is

taken at the execution stage, the hash table is rebuilt.2

Thus, at the first stage processes scan the inner set in parallel, splitting it into batches

and writing them into temporary files.3 Since each process reads only its own share of the

1 backend/executor/nodeHash.c, ExecChooseHashTableSize function
2 backend/executor/nodeHash.c, ExecParallelHashIncreaseNumBatches function
3 backend/executor/nodeHash.c, MultiExecParallelHash function

380

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHash.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHash.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHash.c;hb=REL_14_STABLE

22.1 Hash Joins

inner set, none of them builds a full hash table for any of the batches (even for the first

one). The full set of rows of any batch is only accumulated in the file written by all the

parallel processes in a synchronized manner.1 So unlike the non-parallel and one-pass

parallel versions of the algorithm, the parallel two-pass hash join writes all the batches to

disk, including the first one.

outer
set

inner
set

Once all the processes have completed hashing of the inner set, the second stage begins.2

If the non-parallel version of the algorithm were employed, the rows of the outer set that

belong to the first batch would be matched against the hash table right away. But in the

case of the parallel version, thememory does not contain the hash table yet, so theworkers

process the batches independently. Therefore, the second stage starts by a parallel scan of

the outer set to distribute its rows into batches, and each batch is written into a separate

temporary file.3 The scanned rows are not inserted into the hash table (as it happens at

the first stage), so the number of batches never rises.

Once all the processes have completed the scan of the outer set, we get 2N temporary files

on disk; they contain the batches of the inner and outer sets.

outer
set

inner
set

1 backend/utils/sort/sharedtuplestore.c
2 backend/executor/nodeHashjoin.c, ExecParallelHashJoin function
3 backend/executor/nodeHashjoin.c, ExecParallelHashJoinPartitionOuter function

381

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/sort/sharedtuplestore.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHashjoin.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHashjoin.c;hb=REL_14_STABLE

Chapter 22 Hashing

Then each process chooses one of the batches and performs the join: it loads the inner set

of rows into a hash table in memory, scans the rows of the outer set, and matches them

against the hash table. When the batch join is complete, the process chooses the next

batch that has not been processed yet.1

outer
set

inner
set

If no more unprocessed batches are left, the process that has completed its own batch

starts processing one of the batches that is currently being handled by another process;

such concurrent processing is possible because all the hash tables are located in the shared

memory.

outer
set

This approach is more efficient than using a single big hash table for all the processes: it

is easier to set up parallel processing, and synchronization is cheaper.

Modifications

The hash join algorithm supports any types of joins: apart from the inner join, it can also

handle left, right, and full outer joins, as well as semi- and anti-joins. But as I have already

mentioned, the join condition is limited to the equality operator.

We have already observed some of these operationsp. ��� when dealing with the nested loop

join. Here is an example of the right outer join:

1 backend/executor/nodeHashjoin.c, ExecParallelHashJoinNewBatch function

382

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeHashjoin.c;hb=REL_14_STABLE

22.1 Hash Joins

=> EXPLAIN (costs off)

SELECT *

FROM bookings b

LEFT OUTER JOIN tickets t ON t.book_ref = b.book_ref;

QUERY PLAN

−−

Hash Right Join

Hash Cond: (t.book_ref = b.book_ref)

−> Seq Scan on tickets t

−> Hash

−> Seq Scan on bookings b

(5 rows)

Note that the logical left join specified in the ��� query got transformed into a physical

operation of the right join in the execution plan.

At the logical level, bookings is the outer table (constituting the left side of the join oper-

ation), while the tickets table is the inner one. Therefore, bookings with no tickets must

also be included into the join result.

At the physical level, inner and outer sets are assigned based on the cost of the join rather

than their location in the query text. It usually means that the set with a smaller hash

table will be used as the inner one. This is exactly what is happening here: the bookings

table is used as the inner set, and the left join is changed to the right one.

And vice versa, if the query specifies the right outer join (to display the tickets that are

not related to any bookings), the execution plan uses the left join:

=> EXPLAIN (costs off)

SELECT *

FROM bookings b

RIGHT OUTER JOIN tickets t ON t.book_ref = b.book_ref;

QUERY PLAN

−−

Hash Left Join

Hash Cond: (t.book_ref = b.book_ref)

−> Seq Scan on tickets t

−> Hash

−> Seq Scan on bookings b

(5 rows)

To complete the picture, I will provide an example of a query plan with the full outer join:

=> EXPLAIN (costs off)

SELECT *

FROM bookings b

FULL OUTER JOIN tickets t ON t.book_ref = b.book_ref;

383

Chapter 22 Hashing

QUERY PLAN

−−

Hash Full Join

Hash Cond: (t.book_ref = b.book_ref)

−> Seq Scan on tickets t

−> Hash

−> Seq Scan on bookings b

(5 rows)

Parallel hash joins are currently not supported for right and full joins.1

Note that the next example uses the bookings table as the outer set, but the planner would

have preferred the right join if it were supported:

=> EXPLAIN (costs off)

SELECT sum(b.total_amount)

FROM bookings b

LEFT OUTER JOIN tickets t ON t.book_ref = b.book_ref;

QUERY PLAN

−−−

Finalize Aggregate

−> Gather

Workers Planned: 2

−> Partial Aggregate

−> Parallel Hash Left Join

Hash Cond: (b.book_ref = t.book_ref)

−> Parallel Seq Scan on bookings b

−> Parallel Hash

−> Parallel Index Only Scan using tickets_book...

(9 rows)

22.2 Distinct Values and Grouping

Algorithms that group values for aggregation and remove duplicates are very similar to

join algorithms. One of the approaches they can use consists in building a hash table on

the required columns. Values are included into the hash table only if it contains no such

values yet. As a result, the hash table accumulates all the distinct values.

The node that performs hash aggregation is called HashAggregate.2

Let’s consider some situations that may require this node.

1 commitfest.postgresql.org/33/2903
2 backend/executor/nodeAgg.c

384

https://commitfest.postgresql.org/33/2903
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeAgg.c;hb=REL_14_STABLE

22.2 Distinct Values and Grouping

The number of seats in each travel class (����� ��):

=> EXPLAIN (costs off) SELECT fare_conditions, count(*)

FROM seats

GROUP BY fare_conditions;

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

HashAggregate

Group Key: fare_conditions

−> Seq Scan on seats

(3 rows)

The list of travel classes (��������):

=> EXPLAIN (costs off) SELECT DISTINCT fare_conditions

FROM seats;

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

HashAggregate

Group Key: fare_conditions

−> Seq Scan on seats

(3 rows)

Travel classes combined with one more value (�����):

=> EXPLAIN (costs off) SELECT fare_conditions

FROM seats

UNION

SELECT NULL;

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

HashAggregate

Group Key: seats.fare_conditions

−> Append

−> Seq Scan on seats

−> Result

(5 rows)

The Append node combines both sets but does not get rid of any duplicates, which must

not appear in the ����� result. They have to be removed separately by the HashAggregate

node.

The memory chunk allocated for the hash table is limited by the value of 4MBwork_mem ×
1.0hash_mem_multiplier, just like in the case of a hash join.

If the hash table fits the allocated memory, aggregation uses a single batch:

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT DISTINCT amount FROM ticket_flights;

385

Chapter 22 Hashing

QUERY PLAN

−−−

HashAggregate (actual rows=338 loops=1)

Group Key: amount

Batches: 1 Memory Usage: 61kB

−> Seq Scan on ticket_flights (actual rows=8391852 loops=1)

(4 rows)

There are not so many distinct values in the amounts field, so the hash table takes only

�� k� (Memory Usage).

As soon asv. �� the hash table fills up the allocated memory, all the further values are spilled

into temporary files and grouped into partitions based on several bits of their hash val-

ues. The number of partitions is a power of two and is chosen in such a way that each of

their hash tables fits the allocated memory. The accuracy of the estimation is of course

dependent on the quality of the collected statistics, so the received number is multiplied

by �.� to further reduce partition sizes and raise the chances of processing each partition

in one pass.1

Once the whole set is scanned, the node returns aggregation results for those values that

have made it into the hash table.

Then the hash table is cleared, and each of the partitions saved into temporary files at the

previous stage is scanned and processed just like any other set of rows. If the hash table

still exceeds the allocatedmemory, the rows that are subject to overflowwill be partitioned

again and written to disk for further processing.

To avoid excessive �/�, the two-pass hash join algorithm moves ���s into the first batch.

Aggregation, however, does not require this optimization: those rows that fit the allocated

memory will not be split into partitions, and ���s are likely to occur early enough to get

into ���.

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT DISTINCT flight_id FROM ticket_flights;

QUERY PLAN

−−−

HashAggregate (actual rows=150588 loops=1)

Group Key: flight_id

Batches: 5 Memory Usage: 4145kB Disk Usage: 98184kB

−> Seq Scan on ticket_flights (actual rows=8391852 loops=1)

(4 rows)

In this example, the number of distinct ��s is relatively high, so the hash table does not fit

the allocated memory. It takes five batches to perform the query: one for the initial data

set and four for the partitions written to disk.

1 backend/executor/nodeAgg.c, hash_choose_num_partitions function

386

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeAgg.c;hb=REL_14_STABLE

23
Sorting and Merging

23.1 Merge Joins

Amerge join processes data sets sorted by the join key and returns the result that is sorted

in a similar way. Input sets may come pre-sorted following an index scan; otherwise, the

executor has to sort them before the actual merge begins.1

Merging Sorted Sets

Let’s take a look at an example of a merge join; it is represented in the execution plan by

the Merge Join node:2

=> EXPLAIN (costs off) SELECT *

FROM tickets t

JOIN ticket_flights tf ON tf.ticket_no = t.ticket_no

ORDER BY t.ticket_no;

QUERY PLAN

−−

Merge Join

Merge Cond: (t.ticket_no = tf.ticket_no)

−> Index Scan using tickets_pkey on tickets t

−> Index Scan using ticket_flights_pkey on ticket_flights tf

(4 rows)

The optimizer prefers this join method because it returns a sorted result, as defined by

the ����� �� clause. When choosing a plan, the optimizer notes the sort order of the data

sets and does not perform any sorting unless it is really required. For example, if the data

set produced by a merge join already has an appropriate sort order, it can be used in the

subsequent merge join as is:

1 backend/optimizer/path/joinpath.c, generate_mergejoin_paths function
2 backend/executor/nodeMergejoin.c

387

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/joinpath.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeMergejoin.c;hb=REL_14_STABLE

Chapter 23 Sorting and Merging

=> EXPLAIN (costs off) SELECT *

FROM tickets t

JOIN ticket_flights tf ON t.ticket_no = tf.ticket_no

JOIN boarding_passes bp ON bp.ticket_no = tf.ticket_no

AND bp.flight_id = tf.flight_id

ORDER BY t.ticket_no;

QUERY PLAN

−−−

Merge Join

Merge Cond: (tf.ticket_no = t.ticket_no)

−> Merge Join

Merge Cond: ((tf.ticket_no = bp.ticket_no) AND (tf.flight_...

−> Index Scan using ticket_flights_pkey on ticket_flights tf

−> Index Scan using boarding_passes_pkey on boarding_passe...

−> Index Scan using tickets_pkey on tickets t

(7 rows)

The first tables to be joined are ticket_flights and boarding_passes; both of them have a

composite primary key (ticket_no, flight_id), and the result is sorted by these two columns.

The produced set of rows is then joined with the tickets table, which is sorted by the

ticket_no column.

The join requires only one pass over both data sets and does not take any additional mem-

ory. It uses two pointers to the current rows (which are originally the first ones) of the

inner and outer sets.

If the keys of the current rows do not match, one of the pointers (that references the row

with the smaller key) is going to be advanced to the next row until it finds a match. The

joined rows are returned to the upper node, and the pointer of the inner set is advanced

by one place. The operation continues until one of the sets is over.

This algorithm copes with duplicates of the inner set, but the outer set can contain them

too. To address this issue, the algorithm has to be improved: if the key remains the same

after the outer pointer is advanced, the inner pointer gets back to the first matching row.

Thus, each row of the outer set will be matched to all the rows of the inner set with the

same key.1

For the outer join, the algorithm is further tweaked a bit, but it is still based on the same

principle.

Merge join conditions can use only the equality operator, which means that only equi-

joins are supported (although support for other condition types is currently being imple-

mented as well).2

1 backend/executor/nodeMergejoin.c, ExecMergeJoin function
2 For example, see commitfest.postgresql.org/33/3160

388

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeMergejoin.c;hb=REL_14_STABLE
https://commitfest.postgresql.org/33/3160

23.1 Merge Joins

Cost estimation. Let’s take a closer look at the previous example:

=> EXPLAIN SELECT *

FROM tickets t

JOIN ticket_flights tf ON tf.ticket_no = t.ticket_no

ORDER BY t.ticket_no;

QUERY PLAN

−−

Merge Join (cost=0.99..822355.54 rows=8391852 width=136)

Merge Cond: (t.ticket_no = tf.ticket_no)

−> Index Scan using tickets_pkey on tickets t

(cost=0.43..139110.29 rows=2949857 width=104)

−> Index Scan using ticket_flights_pkey on ticket_flights tf

(cost=0.56..570972.46 rows=8391852 width=32)

(6 rows)

The startup cost of the join includes at least the startup costs of all the child nodes.

In general, it may be required to scan some fraction of the outer or inner set before the

first match is found. It is possible to estimate this fraction by comparing (based on the

histogram p. ���) the smallest join keys in the two sets.1 But in this particular case, the range of

ticket numbers is the same in both tables.

The total cost comprises the cost of fetching the data from the child nodes and the com-

putation cost.

Since the join algorithm stops as soon as one of the sets is over (unless the outer join is

performed, of course), the other set may be scanned only partially. To estimate the size of

the scanned part, we can compare themaximal key values in the two sets. In this example,

both sets will be read in full, so the total cost of the join includes the sum of the total costs

of both child nodes.

Moreover, if there are any duplicates, some of the rows of the inner set may be scanned

several times. The estimated number of repeat scans equals the difference between the

cardinalities of the join result and the inner set.2 In this query, these cardinalities are the

same, which means that the sets contain no duplicates.

The algorithm compares join keys of the two sets. The cost of one comparison is esti-

mated at the 0.0025cpu_operator_cost value, while the estimated number of comparisons can be

taken as the sum of rows of both sets (increased by the number of repeat reads caused by

duplicates). The processing cost of each row included into the result is estimated at the

0.01cpu_tuple_cost value, as usual.

1 backend/utils/adt/selfuncs.c, mergejoinscansel function
2 backend/optimizer/path/costsize.c, final_cost_mergejoin function

389

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/selfuncs.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

Chapter 23 Sorting and Merging

Thus, in this example the cost of the join is estimated as follows:1

=> SELECT 0.43 + 0.56 AS startup,

round((

139110.29 + 570972.46 +

current_setting('cpu_tuple_cost')::real * 8391852 +

current_setting('cpu_operator_cost')::real * (2949857 + 8391852)

)::numeric, 2) AS total;

startup | total

−−−−−−−−−+−−−−−−−−−−−

0.99 | 822355.54

(1 row)

Parallel Modev. �.�

Although the merge join has no parallel flavor, it can still be used in parallel plans.2

The outer set can be scanned by several workers in parallel, but the inner set is always

scanned by each worker in full.

Since the parallel hash joinp. ��� is almost always cheaper, I will turn it off for a while:

=> SET enable_hashjoin = off;

Here is an example of a parallel plan that uses a merge join:

=> EXPLAIN (costs off)

SELECT count(*), sum(tf.amount)

FROM tickets t

JOIN ticket_flights tf ON tf.ticket_no = t.ticket_no;

QUERY PLAN

−−−

Finalize Aggregate

−> Gather

Workers Planned: 2

−> Partial Aggregate

−> Merge Join

Merge Cond: (tf.ticket_no = t.ticket_no)

−> Parallel Index Scan using ticket_flights_pkey o...

−> Index Only Scan using tickets_pkey on tickets t

(8 rows)

Full and right outer merge joins are not allowed in parallel plans.

1 backend/optimizer/path/costsize.c, initial_cost_mergejoin & final_cost_mergejoin functions
2 backend/optimizer/path/joinpath.c, consider_parallel_mergejoin function

390

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/joinpath.c;hb=REL_14_STABLE

23.1 Merge Joins

Modifications

The merge join algorithm can be used with any types of joins. The only restriction is that

join conditions of full and right outer joins must contain merge-compatible expressions

(“outer-column equals inner-column” or “column equals constant”).1 Inner and left outer

joins simply filter the join result by irrelevant conditions, but for full and right joins such

filtering is inapplicable.

Here is an example of a full join that uses the merge algorithm:

=> EXPLAIN (costs off) SELECT *

FROM tickets t

FULL JOIN ticket_flights tf ON tf.ticket_no = t.ticket_no

ORDER BY t.ticket_no;

QUERY PLAN

−−

Sort

Sort Key: t.ticket_no

−> Merge Full Join

Merge Cond: (t.ticket_no = tf.ticket_no)

−> Index Scan using tickets_pkey on tickets t

−> Index Scan using ticket_flights_pkey on ticket_flights tf

(6 rows)

Inner and left merge joins preserve the sort order. Full and right outer joins, however,

cannot guarantee it because ���� values can be wedged in between the ordered values

of the outer set, which breaks the sort order.2 To restore the required order, the planner

introduces the Sort node here. Naturally, it increases the cost of the plan, making the

hash join more attractive, so the planner has selected this plan only because hash joins

are currently disabled.

But the next example cannot do without a hash join: the nested loop does not allow full

joins at all, while merging cannot be used because of an unsupported join condition. So

the hash join is used regardless of the enable_hashjoin parameter value:

=> EXPLAIN (costs off) SELECT *

FROM tickets t

FULL JOIN ticket_flights tf ON tf.ticket_no = t.ticket_no

AND tf.amount > 0

ORDER BY t.ticket_no;

1 backend/optimizer/path/joinpath.c, select_mergejoin_clauses function
2 backend/optimizer/path/pathkeys.c, build_join_pathkeys function

391

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/joinpath.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/pathkeys.c;hb=REL_14_STABLE

Chapter 23 Sorting and Merging

QUERY PLAN

−−−

Sort

Sort Key: t.ticket_no

−> Hash Full Join

Hash Cond: (tf.ticket_no = t.ticket_no)

Join Filter: (tf.amount > '0'::numeric)

−> Seq Scan on ticket_flights tf

−> Hash

−> Seq Scan on tickets t

(8 rows)

Let’s restore the ability to use hash joins that we have previously disabled:

=> RESET enable_hashjoin;

23.2 Sorting

If one of the sets (or possibly both of them) is not sorted by the join key, it must be re-

ordered before the join operation begins. This sorting operation is represented in the plan

by the Sort node:1

=> EXPLAIN (costs off)

SELECT * FROM flights f

JOIN airports_data dep ON f.departure_airport = dep.airport_code

ORDER BY dep.airport_code;

QUERY PLAN

−−

Merge Join

Merge Cond: (f.departure_airport = dep.airport_code)

−> Sort

Sort Key: f.departure_airport

−> Seq Scan on flights f

−> Sort

Sort Key: dep.airport_code

−> Seq Scan on airports_data dep

(8 rows)

Such sorting can also be applied outside the context of joins if the ����� �� clause is

specified, both in a regular query and within a window function:

=> EXPLAIN (costs off)

SELECT flight_id,

row_number() OVER (PARTITION BY flight_no ORDER BY flight_id)

FROM flights f;

1 backend/executor/nodeSort.c

392

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeSort.c;hb=REL_14_STABLE

23.2 Sorting

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

WindowAgg

−> Sort

Sort Key: flight_no, flight_id

−> Seq Scan on flights f

(4 rows)

Here the WindowAgg node1 computes a window function on the data set that has been

pre-sorted by the Sort node.

The planner has several sort methods in its toolbox. The example that I have already

shown uses two of them (Sort Method). These details can be displayed by the �������

������� command, as usual:

=> EXPLAIN (analyze,costs off,timing off,summary off)

SELECT * FROM flights f

JOIN airports_data dep ON f.departure_airport = dep.airport_code

ORDER BY dep.airport_code;

QUERY PLAN

−−

Merge Join (actual rows=214867 loops=1)

Merge Cond: (f.departure_airport = dep.airport_code)

−> Sort (actual rows=214867 loops=1)

Sort Key: f.departure_airport

Sort Method: external merge Disk: 17136kB

−> Seq Scan on flights f (actual rows=214867 loops=1)

−> Sort (actual rows=104 loops=1)

Sort Key: dep.airport_code

Sort Method: quicksort Memory: 52kB

−> Seq Scan on airports_data dep (actual rows=104 loops=1)

(10 rows)

Quicksort

If the data set to be sorted fits the 4MBwork_mem chunk, the classic quicksortmethod is applied.

This algorithm is described in all textbooks, so I am not going to explain it here.

As for the implementation, sorting is performed by a dedicated component2 that chooses

the most suitable algorithm depending on the amount of available memory and some

other factors.

Cost estimation. Let’s take a look at how a small table is sorted. In this case, sorting is

performed in memory using the quicksort algorithm:

1 backend/executor/nodeWindowAgg.c
2 backend/utils/sort/tuplesort.c

393

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeWindowAgg.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/sort/tuplesort.c;hb=REL_14_STABLE

Chapter 23 Sorting and Merging

=> EXPLAIN SELECT *

FROM airports_data

ORDER BY airport_code;

QUERY PLAN

−−−

Sort (cost=7.52..7.78 rows=104 width=145)

Sort Key: airport_code

−> Seq Scan on airports_data (cost=0.00..4.04 rows=104 width=...

(3 rows)

The computational complexity of sorting n values is known to beO(n log2 n). A single com-

parison operation is estimated at the doubled0.0025 cpu_operator_cost value. Since the whole

data set must be scanned and sorted before the result can be retrieved, the startup cost of

sorting includes the total cost of the child node and all the expenses incurred by compar-

ison operations.

The total cost of sorting also includes the cost of processing each row to be returned,

which is estimated at cpu_operator_cost (and not at the usual cpu_tuple_cost value, as the

overhead incurred by the Sort node is insignificant).1

For this example, the costs are calculated as follows:

=> WITH costs(startup) AS (

SELECT 4.04 + round((

current_setting('cpu_operator_cost')::real * 2 *

104 * log(2, 104)

)::numeric, 2)

)

SELECT startup,

startup + round((

current_setting('cpu_operator_cost')::real * 104

)::numeric, 2) AS total

FROM costs;

startup | total

−−−−−−−−−+−−−−−−−

7.52 | 7.78

(1 row)

Top-N Heapsort

If a data set needs to be sorted only partially (as defined by the ����� clause), the heapsort

method can be applied (it is represented in the plan as top-N heapsort). To be more ex-

act, this algorithm is used if sorting reduces the number of rows at least by half, or if the

allocated memory cannot accommodate the whole input set (while the output set fits it).

1 backend/optimizer/path/costsize.c, cost_sort function

394

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

23.2 Sorting

=> EXPLAIN (analyze, timing off, summary off)

SELECT * FROM seats

ORDER BY seat_no

LIMIT 100;

QUERY PLAN

−−−

Limit (cost=72.57..72.82 rows=100 width=15)

(actual rows=100 loops=1)

−> Sort (cost=72.57..75.91 rows=1339 width=15)

(actual rows=100 loops=1)

Sort Key: seat_no

Sort Method: top−N heapsort Memory: 33kB

−> Seq Scan on seats (cost=0.00..21.39 rows=1339 width=15)

(actual rows=1339 loops=1)

(8 rows)

To find k highest (or lowest) values out of n, the executor adds the first k rows into a data

structure called heap. Then the rest of the rows get added one by one, and the smallest

(or largest) value is removed from the heap after each iteration. Once all the rows are

processed, the heap contains k sought-after values.

The heap term here denotes a well-known data structure and has nothing to do with database

tables, which are often referred to by the same name.

Cost estimation. The computational complexity of the algorithm is estimated at

O(n log2 k), but each particular operation is more expensive as compared to the quicksort

algorithm. Therefore, the formula uses n log2 2k.
1

=> WITH costs(startup)

AS (

SELECT 21.39 + round((

current_setting('cpu_operator_cost')::real * 2 *

1339 * log(2, 2 * 100)

)::numeric, 2)

)

SELECT startup,

startup + round((

current_setting('cpu_operator_cost')::real * 100

)::numeric, 2) AS total

FROM costs;

startup | total

−−−−−−−−−+−−−−−−−

72.57 | 72.82

(1 row)

1 backend/optimizer/path/costsize.c, cost_sort function

395

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

Chapter 23 Sorting and Merging

External Sorting

If the scan shows that the data set is too big to be sorted in memory, the sorting node

switches over to external merge sorting (labeled as external merge in the plan).

The rows that are already scanned are sorted in memory by the quicksort algorithm and

written into a temporary file.

1 2 3 4 5 1

Subsequent rows are then read into the freedmemory, and this procedure is repeated until

all the data is written into several pre-sorted files.

2 3 4 5 1 2

Next, these files are merged into one. This operation is performed by roughly the same

algorithm that is used formerge joins; themain difference is that it can processmore than

two files at a time.

Amerge operation does not need too muchmemory. In fact, it is enough to have room for

one row per file. The first rows are read from each file, the row with the lowest value (or

the highest one, depending on the sort order) is returned as a partial result, and the freed

memory is filled with the next row fetched from the same file.

In practice, rows are read in batches of �� pages rather than one by one, which reduces

the number of �/� operations. The number of files that are merged in a single iteration

depends on the available memory, but it is never smaller than six. The upper boundary is

also limited (by ���) since efficiency suffers when there are too many files.1

1 backend/utils/sort/tuplesort.c, tuplesort_merge_order function

396

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/sort/tuplesort.c;hb=REL_14_STABLE

23.2 Sorting

Sorting algorithms have long-established terminology. External sorting was originally performed

using magnetic tapes, and Postgre��� keeps a similar name for the component that controls tem-

porary files.1 Partially sorted data sets are called “runs.”2 The number of runs participating in the

merge is referred to as the “merge order.” I did not use these terms, but they are worth knowing if

you want to understand Postgre��� code and comments.

If the sorted temporary files cannot be merged all at once, they have to be processed in

several passes, their partial results being written into new temporary files. Each iteration

increases the volume of data to be read and written, so the more ��� is available, the

faster the external sorting completes.

1 2 3 4 5 1+2+3

4 5 1+2+3 4+5

The next iteration merges newly created temporary files.

1+2+3 4+5

The final merge is typically deferred and performed on the fly when the upper node pulls

the data.

1 backend/utils/sort/logtape.c
2 Donald E. Knuth. The Art of Computer Programming. Volume III. Sorting and Searching

397

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/sort/logtape.c;hb=REL_14_STABLE

Chapter 23 Sorting and Merging

Let’s run the ������� ������� command to see howmuch disk space has been used by exter-

nal sorting. The ������� option displays buffer usage statistics for temporary files (temp

read andwritten). The number of written buffers will be (roughly) the same as the number

of read ones; converted to kilobytes, this value is shown as Disk in the plan:

=> EXPLAIN (analyze, buffers, costs off, timing off, summary off)

SELECT * FROM flights

ORDER BY scheduled_departure;

QUERY PLAN

−−−

Sort (actual rows=214867 loops=1)

Sort Key: scheduled_departure

Sort Method: external merge Disk: 17136kB

Buffers: shared hit=2627, temp read=2142 written=2150

−> Seq Scan on flights (actual rows=214867 loops=1)

Buffers: shared hit=2624

(6 rows)

To print more details on using temporary files into the server log, you can enable the

log_temp_files parameter.

Cost estimation. Let’s take the same plan with external sorting as an example:

=> EXPLAIN SELECT *

FROM flights

ORDER BY scheduled_departure;

QUERY PLAN

−−−

Sort (cost=31883.96..32421.12 rows=214867 width=63)

Sort Key: scheduled_departure

−> Seq Scan on flights (cost=0.00..4772.67 rows=214867 width=63)

(3 rows)

Here the regular cost of comparisons (their number is the same as in the case of a quicksort

operation inmemory) is extended by the �/� cost.1 All the input data has to be first written

into temporary files on disk and then read from disk during the merge operation (possibly

more than once if all the created files cannot be merged in one iteration).

It is assumed that three quarters of disk operations (both reads and writes) are sequential,

while one quarter is random.

The volume of data written to disk depends on the number of rows to be sorted and the

number of columns used in the query.2 In this example, the query displays all the columns

1 backend/optimizer/path/costsize.c, cost_sort function
2 backend/optimizer/path/costsize.c, relation_byte_size function

398

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

23.2 Sorting

of the flights table, so the size of the data spilled to disk is almost the same as the size of

the whole table if its tuple and page metadata are not taken into account (���� pages

instead of ����).

Here sorting is completed in one iteration.

Therefore, the sorting cost is estimated in this plan as follows:

=> WITH costs(startup) AS (

SELECT 4772.67 + round((

current_setting('cpu_operator_cost')::real * 2 *

214867 * log(2, 214867) +

(current_setting('seq_page_cost')::real * 0.75 +

current_setting('random_page_cost')::real * 0.25) *

2 * 2309 * 1 -- one iteration

)::numeric, 2)

)

SELECT startup,

startup + round((

current_setting('cpu_operator_cost')::real * 214867

)::numeric, 2) AS total

FROM costs;

startup | total

−−−−−−−−−−+−−−−−−−−−−

31883.96 | 32421.13

(1 row)

Incremental Sorting v. ��

If a data set has to be sorted by keys K1 …Km …Kn, and this data set is known to be already

sorted by the first m keys, you do not have to re-sort it from scratch. Instead, you can

split this set into groups by the same first keys K1 …Km (values in these groups already

follow the defined order), and then sort each of these groups separately by the remaining

Km+1 …Kn keys. This method is called the incremental sort.

Incremental sorting is less memory-intensive than other sorting algorithms, as it splits

the set into several smaller groups; besides, it allows the executor to start returning results

after the first group is processed, without waiting for the whole set to be sorted.

In Postgre���, the implementation is a bit more subtle:1 while relatively big groups of

rows are processed separately, smaller groups are combined together and are sorted in

full. It reduces the overhead incurred by invoking the sorting procedure.2

1 backend/executor/nodeIncrementalSort.c
2 backend/utils/sort/tuplesort.c

399

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeIncrementalSort.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/sort/tuplesort.c;hb=REL_14_STABLE

Chapter 23 Sorting and Merging

The execution plan represents incremental sorting by the Incremental Sort node:

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT * FROM bookings

ORDER BY total_amount, book_date;

QUERY PLAN

−−

Incremental Sort (actual rows=2111110 loops=1)

Sort Key: total_amount, book_date

Presorted Key: total_amount

Full−sort Groups: 2823 Sort Method: quicksort Average

Memory: 30kB Peak Memory: 30kB

Pre−sorted Groups: 2624 Sort Method: quicksort Average

Memory: 3152kB Peak Memory: 3259kB

−> Index Scan using bookings_total_amount_idx on bookings (ac...

(8 rows)

As the plan shows, the data set is pre-sorted by the total_amount field, as it is the result

of an index scan run on this column (Presorted Key). The ������� ������� command also

displays run-time statistics. The Full-sort Groups row is related to small groups that were

united to be sorted in full,while the Presorted Groups row displays the data on large groups

with partially ordered data, which required incremental sorting by the book_date column

only. In both cases, the in-memory quicksortmethodwas applied. The difference in group

sizes is due to non-uniform distribution of booking costs.

Incremental sortingv. �� can be used to compute window functions too:

=> EXPLAIN (costs off)

SELECT row_number() OVER (ORDER BY total_amount, book_date)

FROM bookings;

QUERY PLAN

−−−

WindowAgg

−> Incremental Sort

Sort Key: total_amount, book_date

Presorted Key: total_amount

−> Index Scan using bookings_total_amount_idx on bookings

(5 rows)

Cost estimation. Cost calculations for incremental sorting1 are based on the expected

number of groups2 and the estimated sorting cost of an average-sized group (which we

have already reviewed).

1 backend/optimizer/path/costsize.c, cost_incremental_sort function
2 backend/utils/adt/selfuncs.c, estimate_num_groups function

400

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/selfuncs.c;hb=REL_14_STABLE

23.2 Sorting

The startup cost reflects the cost estimation of sorting the first group, which allows the

node to start returning sorted rows; the total cost includes the sorting cost of all groups.

We are not going to explore these calculations any further here.

Parallel Mode v. ��

Sorting can also be performed concurrently. But although parallel workers do presort their

data shares, theGathernode knowsnothing about their sort order and canonly accumulate

themon afirst-come,first-serve basis. To preserve the sort order, the executor has to apply

the Gather Merge node.1

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT *

FROM flights

ORDER BY scheduled_departure

LIMIT 10;

QUERY PLAN

−−−

Limit (actual rows=10 loops=1)

−> Gather Merge (actual rows=10 loops=1)

Workers Planned: 1

Workers Launched: 1

−> Sort (actual rows=7 loops=2)

Sort Key: scheduled_departure

Sort Method: top−N heapsort Memory: 27kB

Worker 0: Sort Method: top−N heapsort Memory: 27kB

−> Parallel Seq Scan on flights (actual rows=107434 lo...

(9 rows)

The Gather Merge node uses a binary heap2 to adjust the order of rows fetched by several

workers. It virtually merges several sorted sets of rows, just like external sorting would

do, but is designed for a different use case: Gather Merge typically handles a small fixed

number of data sources and fetches rows one by one rather than block by block.

Cost estimation. The startup cost of the Gather Merge node is based on the startup cost of

its child node. Just like for the Gather node p. ���, this value is increased by the cost of launching

parallel processes (estimated at 1000parallel_setup_cost).

The received value is then further extended by the cost of building a binary heap, which

requires sorting n values, where n is the number of parallel workers (that is, n log2 n).

1 backend/executor/nodeGatherMerge.c
2 backend/lib/binaryheap.c

401

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeGatherMerge.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/lib/binaryheap.c;hb=REL_14_STABLE

Chapter 23 Sorting and Merging

A single comparison operation is estimated at doubled0.0025 cpu_operator_cost, and total share

of such operations is typically negligible since n is quite small.

The total cost includes the expenses incurred by fetching all the data by several processes

that perform the parallel part of the plan, and the cost of transferring this data to the

leader. A single row transfer is estimated at0.1 parallel_tuple_cost increased by �%, to com-

pensate for possible waits on getting the next values.

The expenses incurred by binary heap updatesmust also be taken into account in total cost

calculations: each input row requires log2 n comparison operations and certain additional

actions (they are estimated at cpu_operator_cost).1

Let’s take a look at yet another plan that uses theGather Mergenode. Note that theworkers

here first performpartial aggregation by hashingp. ��� , and then the Sortnode sorts the received

results (it is cheap because few rows are left after aggregation) to be passed further to the

leader process, which gathers the full result in the Gather Merge node. As for the final

aggregation, it is performed on the sorted list of values:

=> EXPLAIN SELECT amount, count(*)

FROM ticket_flights

GROUP BY amount;

QUERY PLAN

−−−

Finalize GroupAggregate (cost=123399.62..123485.00 rows=337 wid...

Group Key: amount

−> Gather Merge (cost=123399.62..123478.26 rows=674 width=14)

Workers Planned: 2

−> Sort (cost=122399.59..122400.44 rows=337 width=14)

Sort Key: amount

−> Partial HashAggregate (cost=122382.07..122385.44 r...

Group Key: amount

−> Parallel Seq Scan on ticket_flights (cost=0.00...

(9 rows)

Here we have three parallel processes (including the leader), and the cost of the Gather

Merge node is calculated as follows:

=> WITH costs(startup, run) AS (

SELECT round((

-- launching processes

current_setting('parallel_setup_cost')::real +

-- building the heap

current_setting('cpu_operator_cost')::real * 2 * 3 * log(2, 3)

)::numeric, 2),

1 backend/optimizer/path/costsize.c, cost_gather_merge function

402

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/optimizer/path/costsize.c;hb=REL_14_STABLE

23.3 Distinct Values and Grouping

round((

-- passing rows

current_setting('parallel_tuple_cost')::real * 1.05 * 674 +

-- updating the heap

current_setting('cpu_operator_cost')::real * 2 * 674 * log(2, 3) +

current_setting('cpu_operator_cost')::real * 674

)::numeric, 2)

)

SELECT 122399.59 + startup AS startup,

122400.44 + startup + run AS total

FROM costs;

startup | total

−−−−−−−−−−−+−−−−−−−−−−−

123399.61 | 123478.26

(1 row)

23.3 Distinct Values and Grouping

Aswehave just seen, grouping values to perform aggregation (and to eliminate duplicates)

can be performed not only by hashing, but also by sorting. In a sorted list, groups of

duplicate values can be singled out in one pass.

Retrieval of distinct values from a sorted list is represented in the plan by a very simple

node called Unique1:

=> EXPLAIN (costs off)

SELECT DISTINCT book_ref

FROM bookings

ORDER BY book_ref;

QUERY PLAN

−−

Result

−> Unique

−> Index Only Scan using bookings_pkey on bookings

(3 rows)

Aggregation is performed in the GroupAggregate node:2

=> EXPLAIN (costs off) SELECT book_ref, count(*)

FROM bookings

GROUP BY book_ref

ORDER BY book_ref;

1 backend/executor/nodeUnique.c
2 backend/executor/nodeAgg.c, agg_retrieve_direct function

403

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeUnique.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/executor/nodeAgg.c;hb=REL_14_STABLE

Chapter 23 Sorting and Merging

QUERY PLAN

−−

GroupAggregate

Group Key: book_ref

−> Index Only Scan using bookings_pkey on bookings

(3 rows)

In parallel plans, this node is called Partial GroupAggregate, while the node that completes

aggregation is called Finalize GroupAggregate.

Both hashing and sorting strategiesv. �� can be combined in a single node if grouping is per-

formed by several column sets (specified in the �������� ����, ����, or ������ clauses).

Without getting into rather complex details of this algorithm, I will simply provide an ex-

ample that performs grouping by three different columns in conditions of scarce memory:

=> SET work_mem = '64kB';

=> EXPLAIN (costs off) SELECT count(*)

FROM flights

GROUP BY GROUPING SETS (aircraft_code, flight_no, departure_airport);

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

MixedAggregate

Hash Key: departure_airport

Group Key: aircraft_code

Sort Key: flight_no

Group Key: flight_no

−> Sort

Sort Key: aircraft_code

−> Seq Scan on flights

(8 rows)

=> RESET work_mem;

Here is what happens while this query is being executed. The aggregation node, which

is shown in the plan as MixedAggregate, receives the data set sorted by the aircraft_code

column.

First, this set is scanned, and the values are grouped by the aircraft_code column (Group

Key). As the scan progresses, the rows are reordered by the flight_no column (like it is

done by a regular Sort node: either via the quicksort method if the memory is sufficient,

or using external sorting on disk); at the same time, the executor places these rows into a

hash table that uses departure_airport as its key (like it is done by hash aggregation: either

in memory, or using temporary files).

At the second stage, the executor scans the data set that has just been sorted by the

flight_no column and groups the values by the same column (Sort Key and the nested Group

404

23.4 Comparison of Join Methods

Key node). If the rows had to be grouped by yet another column, they would be resorted

again as required.

Finally, the hash table prepared at the first stage is scanned, and the values are grouped

by the departure_airport column (Hash Key).

23.4 Comparison of Join Methods

As we have seen, two data sets can be joined using three different methods, and each of

them has its own pros and cons.

The nested loop join does not have any prerequisites and can start returning the first rows

of the result set right away. It is the only join method that does not have to fully scan

the inner set (as long as index access is available for it). These properties make the nested

loop algorithm (combined with indexes) an ideal choice for short ���� queries, which deal

with rather small sets of rows.

The weak point of the nested loop becomes apparent as the data volume grows. For a

Cartesian product, this algorithm has quadratic complexity—the cost is proportionate to

the product of sizes of the data sets being joined. However, the Cartesian product is not

so common in practice; for each row of the outer set, the executor typically accesses a

certain number of rows of the inner set using an index, and this average number does not

depend on the total size of the data set (for example, an average number of tickets in a

booking does not change as the number of bookings and bought tickets grows). Thus, the

complexity of the nested loop algorithm often shows linear growth rather than quadratic

one, even if with a high linear coefficient.

An important distinction of the nested loop algorithm is its universal applicability: it sup-

ports all join conditions, whereas other methods can only deal with equi-joins. It allows

running queries with any types of conditions (except for the full join, which cannot be

used with the nested loop), but youmust keep inmind that a non-equi-join of a large data

set is highly likely to be performed slower than desired.

A hash join works best on large data sets. If ��� is sufficient, it requires only one pass

over two data sets, so its complexity is linear. Combined with sequential table scans, this

algorithm is typically used for ���� queries, which compute the result based on a large

volume of data.

However, if the response time is more important than throughput, a hash join is not the

best choice: it will not start returning the resulting rows until the whole hash table is

built.

405

Chapter 23 Sorting and Merging

The hash join algorithm is only applicable to equi-joins. Another restriction is that the

data type of the join key must support hashing (but almost all of them do).

The nested loop joinv. �� can sometimes beat the hash join, taking advantage of caching the

rows of the inner set in theMemoize node (which is also based on a hash table). While the

hash join always scans the inner set in full, the nested loop algorithm does not have to,

which may result in some cost reduction.

Amerge join can perfectly handle both short ���� queries and long ���� ones. It has linear

complexity (the sets to be joined have to be scanned only once), does not require much

memory, and returns the results without any preprocessing; however, the data sets must

already have the required sort order. The most cost-effective way to do it is to fetch the

data via an index scan. It is a natural choice if the row count is low; for larger data sets,

index scans can still be efficient, but only if the heap access is minimal or does not happen

at all.

If no suitable indexes are available, the sets have to be sorted, but this operation is

memory-intensive, and its complexity is higher than linear: O(n log2 n). In this case, a

hash join is almost always cheaper than a merge join—unless the result has to be sorted.

An added bonus of a merge join is the equivalence of the inner and outer sets. The effi-

ciency of both nested loop and hash joins is highly dependent on whether the planner can

assign inner and outer sets correctly.

Merge joins are limited to equi-joins. Besides, the data type must have a �-tree operator

class.

The following graph illustrates approximate dependencies between the costs of various

join methods and the fraction of rows to be joined.

If the selectivity is high, the nested loop join uses index access for both tables; then the

planner switches to the full scan of the outer table, which is reflected by the linear part of

the graph.

Here the hash join is using a full scan for both tables. The “step” on the graph corresponds

to the moment when the hash table fills the whole memory and the batches start getting

spilled to disk.

If an index scan is used, the cost of a merge join shows small linear growth. If the

work_mem size is big enough, a hash join is usually more efficient, but a merge join beats

it when it comes to temporary files.

406

23.4 Comparison of Join Methods

selectivity

cost

0 1

nest
ed l

oop

merge joi
n + sort

hash join

merge join + index

The upper graph of the sort-merge join shows that the costs rise when indexes are un-

available and the data has to be sorted. Just like in the case of a hash join, the “step” on

the graph is caused by insufficient memory, as it leads to using temporary files for sorting.

It is merely an example; the ratio between the costs will differ for each particular case.

407

Part V

Types of Indexes

24
Hash

24.1 Overview

A hash index1 provides the ability to quickly find a tuple �� (���) by a particular index key.

Roughly speaking, it is simply a hash table stored on disk. The only operation supported

by a hash index is search by the equality condition.

When a value is inserted into an index,2 the hash function of the index key is computed.

In Postgre���, hash functions return ��-bit or ��-bit integers; several lowest bits of these

values are used as the number of the corresponding bucket. The ��� and the hash code of

the key are added into the chosen bucket. The key itself is not stored in the index because

it is more convenient to deal with small fixed-length values.

The hash table of an index is expanded dynamically.3 The minimal number of buckets

is two. As the number of indexed tuples grows, one of the buckets gets split into two.

This operation uses one more bit of the hash code, so the elements are redistributed only

between the two buckets resulting from the split; the composition of other buckets of the

hash table remains the same.4

The index search operation5 calculates the hash function of the index key and the cor-

responding bucket number. Of all the bucket contents, the search will return only those

���s that correspond to the hash code of the key. As bucket elements are ordered by the

keys’ hash codes, binary search can return matching ���s quite efficiently.

Since keys are not stored in the hash table, the index accessmethodmay return redundant

���s because of hash collisions. Therefore, the indexing engine has to recheck p. ���all the

results fetched by the access method. An index-only scan is not supported for the same

reason.

1 postgresql.org/docs/14/hash-index.html

backend/access/hash/README
2 backend/access/hash/hashinsert.c
3 backend/access/hash/hashpage.c, _hash_expandtable function
4 backend/access/hash/hashpage.c, _hash_getbucketbuf_from_hashkey function
5 backend/access/hash/hashsearch.c

411

https://postgresql.org/docs/14/hash-index.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/hash/README;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/hash/hashinsert.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/hash/hashpage.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/hash/hashpage.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/hash/hashsearch.c;hb=REL_14_STABLE

Chapter 24 Hash

24.2 Page Layout

Unlike a regular hash table, the hash index is stored on disk. Therefore, all the data has to

be arranged into pages, preferably in such a way that index operations (search, insertion,

deletion) require access to as few pages as possible.

A hash index uses four types of pages:

• metapage—page zero that provides the “table of contents” of an index

• bucket pages—the main pages of an index, one per bucket

• overflow pages—additional pages that are used when the main bucket page cannot

accommodate all the elements

• bitmap pages—pages containing the bit array used to track overflow pages that have

been freed and can be reused

We can peek into index pagesv. �� using the pageinspect extension.

Let’s begin with an empty table:

=> CREATE EXTENSION pageinspect;

=> CREATE TABLE t(n integer);

=> ANALYZE t;

=> CREATE INDEX ON t USING hash(n);

I have analyzed the table,v. �� so the created index will have the minimal size possible; other-

wise, the number of buckets would have been selected based on the assumption that the

table contains ten pages.1

The index contains four pages: the metapage, two bucket pages, and one bitmap page

(created at once for future use):

=> SELECT page, hash_page_type(get_raw_page('t_n_idx', page))

FROM generate_series(0,3) page;

page | hash_page_type

−−−−−−+−−−−−−−−−−−−−−−−

0 | metapage

1 | bucket

2 | bucket

3 | bitmap

(4 rows)

1 backend/access/table/tableam.c, table_block_relation_estimate_size function

412

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/table/tableam.c;hb=REL_14_STABLE

24.2 Page Layout

bucket 0bucket 0 bucket 1bucket 1meta-
page bitmap

The metapage contains all the control information about the index. We are interested

only in a few values at the moment:

=> SELECT ntuples, ffactor, maxbucket

FROM hash_metapage_info(get_raw_page('t_n_idx', 0));

ntuples | ffactor | maxbucket

−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−

0 | 307 | 1

(1 row)

The estimated number of rows per bucket is shown in the ffactor field. This value is cal-

culated based on the block size and the 75fillfactor storage parameter value. By absolutely

uniform data distribution and no hash collisions you could use a higher fillfactor value,

but in real-life databases it increases the risk of page overflows.

The worst scenario for a hash index is a large skew in data distribution, when a key is

repeated multiple times. Since the hash function will be returning the same value, all the

data will be placed into the same bucket, and increasing the number of buckets will not

help.

Now the index is empty, as shown by the ntuples field. Let’s cause a bucket page overflow

by inserting v. ��multiple rowswith the same value of the index key. An overflow page appears

in the index:

=> INSERT INTO t(n)

SELECT 0 FROM generate_series(1,500); -- the same value

=> SELECT page, hash_page_type(get_raw_page('t_n_idx', page))

FROM generate_series(0,4) page;

page | hash_page_type

−−−−−−+−−−−−−−−−−−−−−−−

0 | metapage

1 | bucket

2 | bucket

3 | bitmap

4 | overflow

(5 rows)

bucket 0bucket 0 bucket 1bucket 1meta-
page bitmap bucket 1bucket 1bucket 1bucket 1

overflow

413

Chapter 24 Hash

The combined statistics on all the pages shows that bucket � is empty, while all the values

have been placed into bucket �: some of them are located in the main page, and those

that did not fit it can be found in the overflow page.

=> SELECT page, live_items, free_size, hasho_bucket

FROM (VALUES (1), (2), (4)) p(page),

hash_page_stats(get_raw_page('t_n_idx', page));

page | live_items | free_size | hasho_bucket

−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−

1 | 0 | 8148 | 0

2 | 407 | 8 | 1

4 | 93 | 6288 | 1

(3 rows)

It is clear that if the elements of the bucket are spread over several pages, performance

will suffer. A hash index shows best results if data distribution is uniform.

Now let’s take a look at how a bucket can be split. It happens when the number of rows in

the index exceeds the estimated ffactor value for the available buckets. Here we have two

buckets, and the ffactor is ���, so it will happen when the ���th row is inserted into the

index:

=> SELECT ntuples, ffactor, maxbucket, ovflpoint

FROM hash_metapage_info(get_raw_page('t_n_idx', 0));

ntuples | ffactor | maxbucket | ovflpoint

−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−

500 | 307 | 1 | 1

(1 row)

=> INSERT INTO t(n)

SELECT n FROM generate_series(1,115) n; -- now values are different

=> SELECT ntuples, ffactor, maxbucket, ovflpoint

FROM hash_metapage_info(get_raw_page('t_n_idx', 0));

ntuples | ffactor | maxbucket | ovflpoint

−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−

615 | 307 | 2 | 2

(1 row)

The maxbucket value has been increased to two: now we have three buckets, numbered

from � to �. But even though we have added only one bucket, the number of pages has

doubled:

bucket 0bucket 0 bucket 1bucket 1meta-
page bitmap bucket 1bucket 1 bucket 2bucket 2bucket 1bucket 1

414

24.2 Page Layout

=> SELECT page, hash_page_type(get_raw_page('t_n_idx', page))

FROM generate_series(0,6) page;

page | hash_page_type

−−−−−−+−−−−−−−−−−−−−−−−

0 | metapage

1 | bucket

2 | bucket

3 | bitmap

4 | overflow

5 | bucket

6 | unused

(7 rows)

One of the new pages is used by bucket �, while the other one remains free and will be

used by bucket � as soon as it appears.

=> SELECT page, live_items, free_size, hasho_bucket

FROM (

VALUES (1), (2), (4), (5)

) p(page),

hash_page_stats(get_raw_page('t_n_idx', page));

page | live_items | free_size | hasho_bucket

−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−

1 | 27 | 7608 | 0

2 | 407 | 8 | 1

4 | 158 | 4988 | 1

5 | 23 | 7688 | 2

(4 rows)

Thus, from the point of view of the operating system, the hash index grows in spurts,

although from the logical standpoint the hash table shows gradual growth.

To level out v. ��this growth to some extent and avoid allocating too many pages at a time,

starting from the tenth increase pages get allocated in four equal batches rather than all

at once.

Two more fields of the metapage, which are virtually bit masks, provide the details on

bucket addresses:

=> SELECT maxbucket, highmask::bit(4), lowmask::bit(4)

FROM hash_metapage_info(get_raw_page('t_n_idx', 0));

maxbucket | highmask | lowmask

−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−

2 | 0011 | 0001

(1 row)

415

Chapter 24 Hash

A bucket number is defined by the hash code bits that correspond to the highmask. But

if the received bucket number does not exist (exceeds maxbucket), the lowmask bits are

taken.1 In this particular case, we take two lowest bits, which gives us the values from �

to �; but if we got �, we would take only one lowest bit, that is, use bucket � instead of

bucket �.

Each time the size is doubled,newbucket pages are allocated as a single continuous chunk,

while overflow and bitmap pages get inserted between these fragments as required. The

metapage keeps the number of pages inserted into each of the chunks in the spares ar-

ray, which gives us an opportunity to calculate the number of its main page based on the

bucket number using simple arithmetic.2

In this particular case, the first increase was followed by insertion of two pages (a bitmap

page and an overflow page), but no additions have happened after the second increase yet:

=> SELECT spares[2], spares[3]

FROM hash_metapage_info(get_raw_page('t_n_idx', 0));

spares | spares

−−−−−−−−+−−−−−−−−

2 | 2

(1 row)

The metapage also stores an array of pointers to bitmap pages:

=> SELECT mapp[1]

FROM hash_metapage_info(get_raw_page('t_n_idx', 0));

mapp

−−−−−−

3

(1 row)

bucket 0bucket 0 bucket 1bucket 1meta-
page bitmap bucket 1bucket 1 bucket 2bucket 2

spares

mmap

The space within index pages is freed when pointers to dead tuples are removed. It hap-

pens during page pruning (which is triggered by an attempt to insert an element into a

completely filled page)3 or when routine vacuuming is performed.

1 backend/access/hash/hashutil.c, _hash_hashkey2bucket function
2 include/access/hash.h, BUCKET_TO_BLKNO macro
3 backend/access/hash/hashinsert.c, _hash_vacuum_one_page function

416

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/hash/hashutil.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/hash.h;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/hash/hashinsert.c;hb=REL_14_STABLE

24.3 Operator Class

However, a hash index cannot shrink: once allocated, index pages will not be returned to

the operating system. The main pages are permanently assigned to their buckets, even if

they contain no elements at all; the cleared overflow pages are tracked in the bitmap and

can be reused (possibly by another bucket). The only way to reduce the physical size of an

index is to rebuild it using the ������� or ������ ���� p. ���commands.

The query plan has no indication of the index type:

=> CREATE INDEX ON flights USING hash(flight_no);

=> EXPLAIN (costs off)

SELECT *

FROM flights

WHERE flight_no = 'PG0001';

QUERY PLAN

−−

Bitmap Heap Scan on flights

Recheck Cond: (flight_no = 'PG0001'::bpchar)

−> Bitmap Index Scan on flights_flight_no_idx

Index Cond: (flight_no = 'PG0001'::bpchar)

(4 rows)

24.3 Operator Class

Prior to Postgre��� ��, hash indexes were not logged, that is, they were neither protected

against failures nor replicated, and consequently, it was not recommended to use them.

But even then they had their own value. The thing is that the hashing algorithm is widely

used (in particular, to perform hash joins p. ���and grouping), and the systemmust knowwhich

hash function can be used for a certain data type. However, this correspondence is not

static: it cannot be defined once and for all since Postgre��� allows adding new data types

on the fly. Therefore, it is maintained by the p. ���operator class of the hash index and a par-

ticular data type. The hash function itself is represented by the support function of the

class:

=> SELECT opfname AS opfamily_name,

amproc::regproc AS opfamily_procedure

FROM pg_am am

JOIN pg_opfamily opf ON opfmethod = am.oid

JOIN pg_amproc amproc ON amprocfamily = opf.oid

WHERE amname = 'hash'

AND amprocnum = 1

ORDER BY opfamily_name, opfamily_procedure;

417

Chapter 24 Hash

opfamily_name | opfamily_procedure

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−

aclitem_ops | hash_aclitem

array_ops | hash_array

bool_ops | hashchar

bpchar_ops | hashbpchar

...

timetz_ops | timetz_hash

uuid_ops | uuid_hash

xid8_ops | hashint8

xid_ops | hashint4

(38 rows)

These functions return ��-bit integers. Although they are not documented, they can be

used to calculate the hash code for a value of the corresponding type.

For example, the text_ops family uses the hashtext function:

=> SELECT hashtext('one'), hashtext('two');

hashtext | hashtext

−−−−−−−−−−−−+−−−−−−−−−−−−

1793019229 | 1590507854

(1 row)

The operator class of the hash index provides only the equal to operator:

=> SELECT opfname AS opfamily_name,

left(amopopr::regoperator::text, 20) AS opfamily_operator

FROM pg_am am

JOIN pg_opfamily opf ON opfmethod = am.oid

JOIN pg_amop amop ON amopfamily = opf.oid

WHERE amname = 'hash'

ORDER BY opfamily_name, opfamily_operator;

opfamily_name | opfamily_operator

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−

aclitem_ops | =(aclitem,aclitem)

array_ops | =(anyarray,anyarray)

bool_ops | =(boolean,boolean)

bpchar_ops | =(character,character)

...

uuid_ops | =(uuid,uuid)

xid8_ops | =(xid8,xid8)

xid_ops | =(xid,xid)

(48 rows)

24.4 Properties

Let’s take a look at the index-level propertiesp. ��� that the hash access method imparts to the

system.

418

24.4 Properties

Access Method Properties

=> SELECT a.amname, p.name, pg_indexam_has_property(a.oid, p.name)

FROM pg_am a, unnest(array[

'can_order', 'can_unique', 'can_multi_col',

'can_exclude', 'can_include'

]) p(name)

WHERE a.amname = 'hash';

amname | name | pg_indexam_has_property

−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−

hash | can_order | f

hash | can_unique | f

hash | can_multi_col | f

hash | can_exclude | t

hash | can_include | f

(5 rows)

It is clear that hash indexes cannot be used for row ordering: the hash function mixes the

data more or less randomly.

Unique constraints are not supported either. However, hash indexes can enforce exclusion p. ���

constraints, and since the only supported function is equal to, this exclusion attains the

meaning of uniqueness:

=> ALTER TABLE aircrafts_data

ADD CONSTRAINT unique_range EXCLUDE USING hash(range WITH =);

=> INSERT INTO aircrafts_data

VALUES ('744','{"ru": "Boeing 747-400"}',11100);

ERROR: conflicting key value violates exclusion constraint

"unique_range"

DETAIL: Key (range)=(11100) conflicts with existing key

(range)=(11100).

Multicolumn indexes and additional ������� columns are not supported either.

Index-Level Properties

=> SELECT p.name, pg_index_has_property('flights_flight_no_idx', p.name)

FROM unnest(array[

'clusterable', 'index_scan', 'bitmap_scan', 'backward_scan'

]) p(name);

name | pg_index_has_property

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−

clusterable | f

index_scan | t

bitmap_scan | t

backward_scan | t

(4 rows)

419

Chapter 24 Hash

The hash index supports both a regular index scan and a bitmap scan.

Table clusterization by the hash index is not supported. It is quite logical, as it is hard to

imagine why it may be necessary to physically order heap data based on the hash function

value.

Column-Level Properties

Column-level properties are virtually defined by the index access method and always take

the same values.

=> SELECT p.name,

pg_index_column_has_property('flights_flight_no_idx', 1, p.name)

FROM unnest(array[

'asc', 'desc', 'nulls_first', 'nulls_last', 'orderable',

'distance_orderable', 'returnable', 'search_array', 'search_nulls'

]) p(name);

name | pg_index_column_has_property

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

asc | f

desc | f

nulls_first | f

nulls_last | f

orderable | f

distance_orderable | f

returnable | f

search_array | f

search_nulls | f

(9 rows)

Since the hash function does not preserve the order of values, all the properties related to

ordering are inapplicable to the hash index.

The hash index cannot participate in an index-only scan, as it does not store the index key

and requires heap access.

The hash index does not support ���� values, since the equal to operation is inapplicable

to them.

Search for elements in an array is not implemented either.

420

25
B-tree

25.1 Overview

A �-tree (implemented as the btree access method) is a data structure that enables you to

quickly find the required element in leaf nodes of the tree by going down from its root.1

For the search path to be unambiguously identified, all tree elements must be ordered.

B-trees are designed for ordinal data types, whose values can be compared and sorted.

The following schematic diagram of an index build over airport codes shows inner nodes

as horizontal rectangles; leaf nodes are aligned vertically.

AER OVBAER OVB

AER DME KZNAER DME KZN OVB ROV SVOOVB ROV SVO

AER

BZK

AER

BZK

DME

HMA

KJA

DME

HMA

KJA

KZN

LED

NUX

KZN

LED

NUX

OVB

OVS

PEE

OVB

OVS

PEE

ROV

SGC

ROV

SGC

SVO

SVX

VKO

SVO

SVX

VKO

Each tree node contains several elements, which consist of an index key and a pointer.

Inner node elements reference nodes of the next level; leaf node elements reference heap

tuples (the illustration does not show these references).

1 postgresql.org/docs/14/btree.html

backend/access/nbtree/README

421

https://postgresql.org/docs/14/btree.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/nbtree/README;hb=REL_14_STABLE

Chapter 25 B-tree

B-trees have the following important properties:

• They are balanced, which means that all leaf nodes of a tree are located at the same

depth. Therefore, they guarantee equal search time for all values.

• They have plenty of branches, that is, each node contains many elements, often hun-

dreds of them (the illustration shows three-element nodes solely for clarity). As a

result, �-tree depth is always small, even for very large tables.

We cannot say with absolute certainty what the letter � in the name of this structure stands

for. Both balanced and bushy fit equally well. Surprisingly, you can often see it interpreted as

binary, which is certainly incorrect.

• Data in an index is sorted either in ascending or in descending order, bothwithin each

node and across all nodes of the same level. Peer nodes are bound into a bidirectional

list, so it is possible to get an ordered set of data by simply scanning the list one way

or the other, without having to start at the root each time.

25.2 Search and Insertions

Search by Equality

Let’s take a look at how we can search for a value in a tree by condition “indexed-column =

expression”.1 We will try to find the ��� airport (Krasnoyarsk).

The search starts at the root node, and the access method must determine which child

node to descend to. It chooses the Ki key, for which Ki ⩽ expression < Ki+1 is satisfied.

The root node contains the keys ��� and ���. The condition ��� ⩽ ��� < ��� holds true,

so we need to descend into the child node referenced by the element with the ��� key.

This procedure is repeated recursively until we get to the leaf node that contains the re-

quired tuple ��. In this case, the child node satisfies the condition ��� ⩽ ��� < ���, so we

have to descend into the leaf node referenced by the element with the ��� key.

As you cannotice, the leftmost keys in the inner nodes of the tree are redundant: to choose

the child node of the root, it is enough to have condition ���<��� satisfied. B-trees do not

store such keys, so in the illustrations that follow I will leave the corresponding elements

empty.

1 backend/access/nbtree/nbtsearch.c, _bt_search function

422

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/nbtree/nbtsearch.c;hb=REL_14_STABLE

25.2 Search and Insertions

AER OVBAER OVB

AER DME KZNAER DME KZN OVB ROV SVOOVB ROV SVO

AER

BZK

AER

BZK

DME

HMA

KJA

DME

HMA

KJA

KZN

LED

NUX

KZN

LED

NUX

OVB

OVS

PEE

OVB

OVS

PEE

ROV

SGC

ROV

SGC

SVO

SVX

VKO

SVO

SVX

VKO

The required element in the leaf node can be quickly found by binary search.

However, the search procedure is not as trivial as it seems. It must be taken into account

that the sort order of data in an index can be either ascending, like shown above, or de-

scending. Even a unique index p. ���can have several matching values, and all of themmust be

returned. Moreover, there may be so many duplicates that they do not fit a single node,

so the neighboring leaf node will have to be processed too.

Since an index can contain non-unique values, it would be more accurate to call its order non-

descending rather than ascending (and non-ascending rather than descending). But I will stick to

a simpler term. Besides, the tuple �� is a part of an index key v. ��, which lets us consider index entries

to be unique even if the values are actually the same.

On top of that, while the search is in progress, other processes maymodify the data, pages

may get split into two, and the tree structure may change. All the algorithms are de-

signed to minimize contention between these concurrent operations whenever possible

and avoid excessive locks, but we are not going to get into these technicalities here.

Search by Inequality

If the search is performed by condition “indexed-column ⩽ expression” (or “indexed-col-

umn ⩾ expression”), we must first search the index for the value that satisfies the equality

condition and then traverse its leaf nodes in the required direction until the end of the

tree is reached.

423

Chapter 25 B-tree

This diagram illustrates the search for airport codes that are less than or equal to ���

(Domodedovo).

AER OVBAER OVB

AER DME KZNAER DME KZN OVB ROV SVOOVB ROV SVO

AER

BZK

AER

BZK

DME

HMA

KJA

DME

HMA

KJA

KZN

LED

NUX

KZN

LED

NUX

OVB

OVS

PEE

OVB

OVS

PEE

ROV

SGC

ROV

SGC

SVO

SVX

VKO

SVO

SVX

VKO

For less than and greater than operators, the procedure is the same, except that the first

found value must be excluded.

Search by Range

When searching by range “expression1 ⩽ indexed-column ⩽ expression2”, we must first find

expression1 and then traverse the leaf nodes in the right direction until we get to expres-

sion2. This diagram illustrates the process of searching for airport codes in the range

between ��� (Saint Petersburg) and ��� (Rostov-on-Don), inclusive.

AER OVBAER OVB

AER DME KZNAER DME KZN OVB ROV SVOOVB ROV SVO

AER

BZK

AER

BZK

DME

HMA

KJA

DME

HMA

KJA

KZN

LED

NUX

KZN

LED

NUX

OVB

OVS

PEE

OVB

OVS

PEE

ROV

SGC

ROV

SGC

SVO

SVX

VKO

SVO

SVX

VKO

424

25.2 Search and Insertions

Insertions

The insert position of a new element is unambiguously defined by the order of keys. For

example, if you insert the ��� airport code (Saratov) into the table, the new element will

appear in the last but one leaf node, between ��� and ���.

But what if the leaf node does not have enough space for a new element? For example

(assuming that a node can accommodate three elements at the most), if we insert the

��� airport code (Tyumen), the last leaf node will be overfilled. In this case, the node is

split into two, some of the elements of the old node are moved into the new node, and a

pointer to the new child node is added into the parent node. Obviously, the parent can

get overfilled too. Then it is also split into two nodes, and so on. If it comes to splitting

the root, one more node is created above the resulting nodes to become the new root of

the tree. The tree depth is increased by one level in this case.

In this example, the insertion of the ��� airport led to two node splits; the resulting new

nodes are highlighted in the diagram below. To make sure that any node can be split, a

bidirectional list binds the nodes at all levels, not only those at the lowest level.

AER OVB SVOAER OVB SVO

AER DME KZNAER DME KZN OVB ROVOVB ROV SVO TJMSVO TJM

AER

BZK

AER

BZK

DME

HMA

KJA

DME

HMA

KJA

KZN

LED

NUX

KZN

LED

NUX

OVB

OVS

PEE

OVB

OVS

PEE

ROV

RTW

SGC

ROV

RTW

SGC

SVO

SVX

SVO

SVX

TJM

VKO

TJM

VKO

The described procedure of insertions and splits guarantees that the tree remains bal-

anced, and since the number of elements that a node can accommodate is typically quite

large, the tree depth rarely increases.

The problem is that once split, nodes can never be merged together, even if they contain

very few elements after vacuuming. This limitation pertains not to the �-tree data struc-

ture as such, but rather to its Postgre��� implementation. So if the node turns out to be

full when an insertion is attempted, the access method first tries to prune p. ���redundant data

in order to clear some space and avoid an extra split.

425

Chapter 25 B-tree

25.3 Page Layout

Each node of a �-tree takes one page. The page’s size defines the node’s capacity.

Because of page splits, the root of the tree can be represented by different pages at dif-

ferent times. But the search algorithm must always start the scan at the root. It finds

the �� of the current root page in the zero index page (which is called a metapage). The

metapage also contains some other metadata.

metapage

AER OVB SVOAER OVB SVO

AER DME KZN OVBAER DME KZN OVB OVB ROV SVOOVB ROV SVO SVO TJMSVO TJM

AER

BZK

DME

AER

BZK

DME

DME

HMA

KJA

KZN

DME

HMA

KJA

KZN

KZN

LED

NUX

OVB

KZN

LED

NUX

OVB

OVB

OVS

PEE

ROV

OVB

OVS

PEE

ROV

ROV

RTW

SGC

SVO

ROV

RTW

SGC

SVO

SVO

SVX

TJM

SVO

SVX

TJM

TJM

VKO

TJM

VKO0

1

2

Data layout in index pages is a bit different from what we have seen so far. All the pages,

except the rightmost ones at each level, contain an additional “high key,” which is guar-

anteed to be not smaller than any key in this page. In the above diagram high keys are

highlighted.

Let’s use the pageinspect extension to take a look at a page of a real index built upon six-

digit booking references. The metapage lists the root page �� and the depth of the tree

(level numbering starts from leaf nodes and is zero-based):

426

25.3 Page Layout

=> SELECT root, level

FROM bt_metap('bookings_pkey');

root | level

−−−−−−+−−−−−−−

290 | 2

(1 row)

The keys stored in index entries are displayed as sequences of bytes, which is not really

convenient:

=> SELECT data

FROM bt_page_items('bookings_pkey',290)

WHERE itemoffset = 2;

data

−−−−−−−−−−−−−−−−−−−−−−−−−

0f 30 43 39 41 42 31 00

(1 row)

To decipher these values, we will have to write an adhoc function. It will not support all

platforms and may not work for some particular scenarios, but it will do for the examples

in this chapter:

=> CREATE FUNCTION data_to_text(data text)

RETURNS text

AS $$

DECLARE

raw bytea := ('\x'||replace(data,' ',''))::bytea;

pos integer := 0;

len integer;

res text := '';

BEGIN

WHILE (octet_length(raw) > pos)

LOOP

len := (get_byte(raw,pos) - 3) / 2;

EXIT WHEN len <= 0;

IF pos > 0 THEN

res := res || ', ';

END IF;

res := res || (

SELECT string_agg(chr(get_byte(raw, i)),'')

FROM generate_series(pos+1,pos+len) i

);

pos := pos + len + 1;

END LOOP;

RETURN res;

END;

$$ LANGUAGE plpgsql;

Now we can take a look at the contents of the root page:

427

Chapter 25 B-tree

=> SELECT itemoffset, ctid, data_to_text(data)

FROM bt_page_items('bookings_pkey',290);

itemoffset | ctid | data_to_text

−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−

1 | (3,0) |

2 | (289,1) | 0C9AB1

3 | (575,1) | 192F03

4 | (860,1) | 25D715

5 | (1145,1) | 32785C

...

17 | (4565,1) | C993F6

18 | (4850,1) | D63931

19 | (5135,1) | E2CB14

20 | (5420,1) | EF6FEA

21 | (5705,1) | FC147D

(21 rows)

As I have said, the first entry contains no key. The ctid column provides links to child

pages.

Supposewe are looking for booking ������. In this case,we have to choose entry �� (since

������ ⩽ ������ < ������) and go down to page ����.

=> SELECT itemoffset, ctid, data_to_text(data)

FROM bt_page_items('bookings_pkey',5135);

itemoffset | ctid | data_to_text

−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−

1 | (5417,1) | EF6FEA

2 | (5132,0) |

3 | (5133,1) | E2D71D

4 | (5134,1) | E2E2F4

5 | (5136,1) | E2EDE7

...

282 | (5413,1) | EF41BE

283 | (5414,1) | EF4D69

284 | (5415,1) | EF58D4

285 | (5416,1) | EF6410

(285 rows)

high key

The first entry in this page contains the high key, which may seem a bit unexpected. Log-

ically, it should have been placed at the end of the page, but from the implementation

standpoint it is more convenient to have it at the beginning to avoid moving it each time

the page content changes.

Here we choose entry � (since ������ ⩽ ������ < ������) and go down to page �����.

428

25.3 Page Layout

=> SELECT itemoffset, ctid, data_to_text(data)

FROM bt_page_items('bookings_pkey',5133);

itemoffset | ctid | data_to_text

−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−−−

1 | (11921,1) | E2E2F4

2 | (11919,76) | E2D71D

3 | (11919,77) | E2D725

4 | (11919,78) | E2D72D

5 | (11919,79) | E2D733

...

363 | (11921,123) | E2E2C9

364 | (11921,124) | E2E2DB

365 | (11921,125) | E2E2DF

366 | (11921,126) | E2E2E5

367 | (11921,127) | E2E2ED

(367 rows)

It is a leaf page of the index. The first entry is the high key; all the other entries point to

heap tuples.

And here is our booking:

=> SELECT * FROM bookings

WHERE ctid = '(11919,77)';

book_ref | book_date | total_amount

−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−

E2D725 | 2017−01−25 04:10:00+03 | 28000.00

(1 row)

This is roughly what happens at the low level when we search for a booking by its code:

=> EXPLAIN (costs off)

SELECT * FROM bookings

WHERE book_ref = 'E2D725';

QUERY PLAN

−−−

Index Scan using bookings_pkey on bookings

Index Cond: (book_ref = 'E2D725'::bpchar)

(2 rows)

Deduplication v. ��

Non-unique indexes can contain a lot of duplicate keys that point to different heap tuples.

Since non-unique keys appear more than once and hence take much space, duplicates

429

Chapter 25 B-tree

are collapsed into a single index entry, which contains the key and the list of the cor-

responding tuple ��s.1 In some cases, this procedure (which is called deduplication) can

significantly reduce the index size.

However, unique indexes can also contain duplicates because of ����: an index keeps

references to all versions of table rows. The mechanism of ��� updatesp. �� can help you fight

index bloating caused by referencing outdated and typically short-lived row versions, but

sometimes it may be inapplicable. In this case, deduplication can buy some time required

to vacuum redundant heap tuples and avert extra page splits.

To avoid wasting resources on deduplication when it brings no immediate benefits, col-

lapsing is only performed if the leaf page does not have enough space to accommodate

one more tuple.2 Then page pruning and deduplication3 can free some space and prevent

an undesired page split. However, if duplicates are rare, you can disable the deduplication

feature by turning off the deduplicate_items storage parameter.

Some indexes do not support deduplication. The main limitation is that the equality of

keys must be checked by simple binary comparison of their inner representation. Not all

data types by far can be compared thisway. For instance,floating-point numbers (float and

double precision) have twodifferent representations for zero. Arbitrary-precisionnumbers

(numeric) can represent the same number in different scales, while the jsonb type can use

such numbers. Neither is deduplication possible for text types if you use nondeterministic

collations,4 which allow the same symbols to be represented by different byte sequences

(standard collations are deterministic).

Besides, deduplication is currently not supported for composite types, ranges, and arrays,

as well as for indexes declared with the ������� clause.

To check whether a particular index can use deduplication, you can take a look at the

allequalimage field in its metapage:

=> CREATE INDEX ON tickets(book_ref);

=> SELECT allequalimage FROM bt_metap('tickets_book_ref_idx');

allequalimage

−−−−−−−−−−−−−−−

t

(1 row)

In this case, deduplication is supported. And indeed, we can see that one of the leaf pages

contains both index entries with a single tuple �� (htid) and those with a list of ��s (tids):

1 postgresql.org/docs/14/btree-implementation.html#BTREE-DEDUPLICATION
2 backend/access/nbtree/nbtinsert.c, _bt_delete_or_dedup_one_page function
3 backend/access/nbtree/nbtdedup.c, _bt_dedup_pass function
4 postgresql.org/docs/14/collation.html

430

https://postgresql.org/docs/14/btree-implementation.html#BTREE-DEDUPLICATION
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/nbtree/nbtinsert.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/nbtree/nbtdedup.c;hb=REL_14_STABLE
https://postgresql.org/docs/14/collation.html

25.3 Page Layout

=> SELECT itemoffset, htid, left(tids::text,27) tids,

data_to_text(data) AS data

FROM bt_page_items('tickets_book_ref_idx',1)

WHERE itemoffset > 1;

itemoffset | htid | tids | data

−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−

2 | (32965,40) | | 000004

3 | (47429,51) | | 00000F

4 | (3648,56) | {"(3648,56)","(3648,57)"} | 000010

5 | (6498,47) | | 000012

...

271 | (21492,46) | | 000890

272 | (26601,57) | {"(26601,57)","(26601,58)"} | 0008AC

273 | (25669,37) | | 0008B6

(272 rows)

Compact Storage of Inner Index Entries v. ��

Deduplication enables accommodating more entries in leaf pages of an index. But even

though leaf pagesmake up the bulk of an index, data compaction performed in inner pages

to prevent extra splits is just as important, as search efficiency is directly dependent on

tree depth.

Inner index entries contain index keys, but their values are only used to determine the

subtree to descend into during search. In multicolumn indexes, it is often enough to take

the first key attribute (or several first ones). Other attributes can be truncated to save

space in the page.

Such suffix truncation happens when a leaf page is being split and the inner page has to

accommodate a new pointer.1

In theory,we could even go one step further and keep only the meaningful part of the attribute, for

example, the first few symbols of a row that are enough to differentiate between subtrees. But it is

not implemented yet: an index entry either contains the whole attribute or excludes this attribute

altogether.

For instance, here are several entries of the root page of an index built over the tickets

table on the columns containing booking references and passenger names:

=> CREATE INDEX tickets_bref_name_idx

ON tickets(book_ref, passenger_name);

=> SELECT itemoffset, ctid, data_to_text(data)

FROM bt_page_items('tickets_bref_name_idx',229)

WHERE itemoffset BETWEEN 8 AND 13;

1 backend/access/nbtree/nbtinsert.c, _bt_split function

431

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/nbtree/nbtinsert.c;hb=REL_14_STABLE

Chapter 25 B-tree

itemoffset | ctid | data_to_text

−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−

8 | (1607,1) | 1A98A0

9 | (1833,2) | 1E57D1, SVETLANA MAKSIMOVA

10 | (2054,1) | 220797

11 | (2282,1) | 25DB06

12 | (2509,2) | 299FE4, YURIY AFANASEV

13 | (2736,1) | 2D62C9

(6 rows)

We can see that some index entries do not have the second attribute.

Naturally, leaf pages must keep all key attributes and ������� column values, if any. Oth-

erwise, it would be impossible to perform index-only scans. The only exception is high

keys; they can be kept partially.

25.4 Operator Class

Comparison Semantics

Apart from hashing values, the system must also know how to order values of various

types, including custom ones. It is indispensable for sorting, grouping, merge joins, and

some other operations. And just like in the case of hashing, comparison operators for a

particular data type are defined by an operator class.1

An operator class allows us to abstract from names (such as >, <, =) and can even provide

several ways to order values of the same type.

Here are the mandatory comparison operators that must be defined in any operator class

of the btreemethod (shown for the bool_ops family):

=> SELECT amopopr::regoperator AS opfamily_operator,

amopstrategy

FROM pg_am am

JOIN pg_opfamily opf ON opfmethod = am.oid

JOIN pg_amop amop ON amopfamily = opf.oid

WHERE amname = 'btree'

AND opfname = 'bool_ops'

ORDER BY amopstrategy;

opfamily_operator | amopstrategy

−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−

<(boolean,boolean) | 1

<=(boolean,boolean) | 2

=(boolean,boolean) | 3

1 postgresql.org/docs/14/btree-behavior.html

432

https://postgresql.org/docs/14/btree-behavior.html

25.4 Operator Class

>=(boolean,boolean) | 4

>(boolean,boolean) | 5

(5 rows)

Each of these five comparison operators corresponds to one of the strategies,1 which de-

fines their semantics:

� less than

� less than or equal to

� equal to

� greater than or equal to

� greater than

A �-tree operator class also includes several support functions.2 The first onemust return

1 if its first argument is greater than the second one, −1 if it is less than the second one,

and 0 if the arguments are equal.

Other support functions are optional, but they improve performance of the accessmethod.

To better understand this mechanism, we can define a new data type with a non-default

collation. The documentation gives an example for complex numbers,3 but it is written in

C. Fortunately, a �-tree operator class can be implemented using interpreted languages

too, so I will take advantage of it and make an example that is as simple as possible (even

if knowingly inefficient).

Let’s define a new composite type for information units:

=> CREATE TYPE capacity_units AS ENUM (

'B', 'kB', 'MB', 'GB', 'TB', 'PB'

);

=> CREATE TYPE capacity AS (

amount integer,

unit capacity_units

);

Now create a table with a column of the new type and fill it with random values:

=> CREATE TABLE test AS

SELECT ((random()*1023)::integer, u.unit)::capacity AS cap

FROM generate_series(1,100),

unnest(enum_range(NULL::capacity_units)) AS u(unit);

1 postgresql.org/docs/14/xindex.html#XINDEX-STRATEGIES
2 postgresql.org/docs/14/btree-support-funcs.html
3 postgresql.org/docs/14/xindex.html#XINDEX-EXAMPLE

433

https://postgresql.org/docs/14/xindex.html#XINDEX-STRATEGIES
https://postgresql.org/docs/14/btree-support-funcs.html
https://postgresql.org/docs/14/xindex.html#XINDEX-EXAMPLE

Chapter 25 B-tree

By default, values of composite types are sorted in lexicographical order, which is not the

same as the natural order in this particular case:

=> SELECT * FROM test ORDER BY cap;

cap

−−−−−−−−−−−

(1,B)

(3,GB)

(4,MB)

(9,kB)

...

(1017,kB)

(1017,GB)

(1018,PB)

(1020,MB)

(600 rows)

Now let’s get down to creating our operator class. We will start with defining a function

that converts the volume into bytes:

=> CREATE FUNCTION capacity_to_bytes(a capacity) RETURNS numeric

AS $$

SELECT a.amount::numeric *

1024::numeric ^ (array_position(enum_range(a.unit), a.unit) - 1);

$$ LANGUAGE sql STRICT IMMUTABLE;

=> SELECT capacity_to_bytes('(1,kB)'::capacity);

capacity_to_bytes

−−−−−−−−−−−−−−−−−−−−−−−

1024.0000000000000000

(1 row)

Create a support function for the future operator class:

=> CREATE FUNCTION capacity_cmp(a capacity, b capacity)

RETURNS integer

AS $$

SELECT sign(capacity_to_bytes(a) - capacity_to_bytes(b));

$$ LANGUAGE sql STRICT IMMUTABLE;

Now it is easy to define comparison operators using this support function. I deliberately

use peculiar names to demonstrate that they can be arbitrary:

=> CREATE FUNCTION capacity_lt(a capacity, b capacity) RETURNS boolean

AS $$

BEGIN

RETURN capacity_cmp(a,b) < 0;

END;

$$ LANGUAGE plpgsql IMMUTABLE STRICT;

434

25.4 Operator Class

=> CREATE OPERATOR #<# (

LEFTARG = capacity,

RIGHTARG = capacity,

FUNCTION = capacity_lt

);

The other four operators are defined in a similar way.

=> CREATE FUNCTION capacity_le(a capacity, b capacity) RETURNS boolean

AS $$

BEGIN

RETURN capacity_cmp(a,b) <= 0;

END;

$$ LANGUAGE plpgsql IMMUTABLE STRICT;

=> CREATE OPERATOR #<=# (

LEFTARG = capacity,

RIGHTARG = capacity,

FUNCTION = capacity_le

);

=> CREATE FUNCTION capacity_eq(a capacity, b capacity) RETURNS boolean

AS $$

BEGIN

RETURN capacity_cmp(a,b) = 0;

END;

$$ LANGUAGE plpgsql IMMUTABLE STRICT;

=> CREATE OPERATOR #=# (

LEFTARG = capacity,

RIGHTARG = capacity,

FUNCTION = capacity_eq,

MERGES -- can be used in merge joins

);

=> CREATE FUNCTION capacity_ge(a capacity, b capacity) RETURNS boolean

AS $$

BEGIN

RETURN capacity_cmp(a,b) >= 0;

END;

$$ LANGUAGE plpgsql IMMUTABLE STRICT;

=> CREATE OPERATOR #>=# (

LEFTARG = capacity,

RIGHTARG = capacity,

FUNCTION = capacity_ge

);

=> CREATE FUNCTION capacity_gt(a capacity, b capacity) RETURNS boolean

AS $$

BEGIN

RETURN capacity_cmp(a,b) > 0;

END;

$$ LANGUAGE plpgsql IMMUTABLE STRICT;

435

Chapter 25 B-tree

=> CREATE OPERATOR #># (

LEFTARG = capacity,

RIGHTARG = capacity,

FUNCTION = capacity_gt

);

At this stage, we can already compare capacities:

=> SELECT (1,'MB')::capacity #># (512, 'kB')::capacity;

?column?

−−−−−−−−−−

t

(1 row)

Once the operator class is created, sorting will also start working as expected:

=> CREATE OPERATOR CLASS capacity_ops

DEFAULT FOR TYPE capacity -- to be used by default

USING btree AS

OPERATOR 1 #<#,

OPERATOR 2 #<=#,

OPERATOR 3 #=#,

OPERATOR 4 #>=#,

OPERATOR 5 #>#,

FUNCTION 1 capacity_cmp(capacity,capacity);

=> SELECT * FROM test ORDER BY cap;

cap

−−−−−−−−−−−

(1,B)

(21,B)

(27,B)

(35,B)

(46,B)

(57,B)

(68,B)

(70,B)

...

(1002,PB)

(1013,PB)

(1014,PB)

(1014,PB)

(1018,PB)

(600 rows)

Our operator class is used by default when a new index is created, and this index returns

the results in the correct order:

=> CREATE INDEX ON test(cap);

=> SELECT * FROM test WHERE cap #<# (100,'B')::capacity ORDER BY cap;

436

25.4 Operator Class

cap

−−−−−−−−

(1,B)

(21,B)

(27,B)

(35,B)

(46,B)

(57,B)

(68,B)

(70,B)

(72,B)

(76,B)

(78,B)

(94,B)

(12 rows)

=> EXPLAIN (costs off) SELECT *

FROM test

WHERE cap #<# (100,'B')::capacity

ORDER BY cap;

QUERY PLAN

−−−

Index Only Scan using test_cap_idx on test

Index Cond: (cap #<# '(100,B)'::capacity)

(2 rows)

The ������ clause p. ���specified in the equality operator declaration enables merge joins for

this data type.

Multicolumn Indexes and Sorting

Let’s take a closer look at sorting multicolumn indexes.

First and foremost, it is very important to choose the optimal order of columns when

declaring an index: data sorting within pages will begin with the first column, then move

on to the second one, and so on. Multicolumn indexes can guarantee efficient search only

if the provided filter condition spans a continuous sequence of columns starting from the

very first one: the first column, the first two columns, the range between the first and

the third columns, etc. Other types of conditions can only be used to filter out redundant

values that have been fetched based on other criteria.

Here is the order of index entries in the first leaf page of the index that has been created

on the tickets table and includes booking references and passenger names:

=> SELECT itemoffset, data_to_text(data)

FROM bt_page_items('tickets_bref_name_idx',1)

WHERE itemoffset > 1;

437

Chapter 25 B-tree

itemoffset | data_to_text

−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 | 000004, PETR MAKAROV

3 | 00000F, ANNA ANTONOVA

4 | 000010, ALEKSANDR SOKOLOV

5 | 000010, LYUDMILA BOGDANOVA

6 | 000012, TAMARA ZAYCEVA

7 | 000026, IRINA PETROVA

8 | 00002D, ALEKSANDR SMIRNOV

...

188 | 00040C, ANTONINA KOROLEVA

189 | 00040C, DMITRIY FEDOROV

190 | 00041E, EGOR FEDOROV

191 | 00041E, ILYA STEPANOV

192 | 000447, VIKTOR VASILEV

193 | 00044D, NADEZHDA KULIKOVA

(192 rows)

In this case, an efficient search for tickets is only possible either by the booking reference

and the passenger name, or by the booking reference alone.

=> EXPLAIN (costs off) SELECT *

FROM tickets

WHERE book_ref = '000010';

QUERY PLAN

−−

Index Scan using tickets_book_ref_idx on tickets

Index Cond: (book_ref = '000010'::bpchar)

(2 rows)

=> EXPLAIN (costs off) SELECT *

FROM tickets

WHERE book_ref = '000010' AND passenger_name = 'LYUDMILA BOGDANOVA';

QUERY PLAN

−−−

Index Scan using tickets_bref_name_idx on tickets

Index Cond: ((book_ref = '000010'::bpchar) AND (passenger_name...

(2 rows)

But if we decide to look for a passenger name, we have to scan all the rows:

=> EXPLAIN (costs off) SELECT *

FROM tickets

WHERE passenger_name = 'LYUDMILA BOGDANOVA';

QUERY PLAN

−−−

Gather

Workers Planned: 2

−> Parallel Seq Scan on tickets

Filter: (passenger_name = 'LYUDMILA BOGDANOVA'::text)

(4 rows)

438

25.4 Operator Class

Even if the planner chooses to perform an index scan, all index entries will still have to be

traversed.1 Unfortunately, the plan will not show that the condition is actually used only

for filtering the result.

If the first column does not have too many distinct values v1, v2, … , vn, it could be beneficial to

perform several passes over the corresponding subtrees, virtually replacing a single search by

condition “col2 = value” with a series of searches by the following conditions:

col1 = v1 ��� col2 = value

col1 = v2 ��� col2 = value

⋯
col1 = vn ��� col2 = value

This type of an index access is called a Skip Scan, but it is not implemented yet.2

And vice versa, if an index is created on passenger names and booking numbers, it will

better suit queries by either the passenger name alone or both the passenger name and

booking reference:

=> CREATE INDEX tickets_name_bref_idx

ON tickets(passenger_name, book_ref);

=> SELECT itemoffset, data_to_text(data)

FROM bt_page_items('tickets_name_bref_idx',1)

WHERE itemoffset > 1;

itemoffset | data_to_text

−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 | ADELINA ABRAMOVA, E37EDB

3 | ADELINA AFANASEVA, 1133B7

4 | ADELINA AFANASEVA, 4F3370

5 | ADELINA AKIMOVA, 7D2881

6 | ADELINA ALEKSANDROVA, 3C3ADD

7 | ADELINA ALEKSANDROVA, 52801E

...

185 | ADELINA LEBEDEVA, 0A00E3

186 | ADELINA LEBEDEVA, DAEADE

187 | ADELINA LEBEDEVA, DFD7E5

188 | ADELINA LOGINOVA, 8022F3

189 | ADELINA LOGINOVA, EE67B9

190 | ADELINA LUKYANOVA, 292786

191 | ADELINA LUKYANOVA, 54D3F9

(190 rows)

=> EXPLAIN (costs off) SELECT *

FROM tickets

WHERE passenger_name = 'LYUDMILA BOGDANOVA';

1 backend/access/nbtree/nbtsearch.c, _bt_first function
2 commitfest.postgresql.org/34/1741

439

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/nbtree/nbtsearch.c;hb=REL_14_STABLE
https://commitfest.postgresql.org/34/1741

Chapter 25 B-tree

QUERY PLAN

−−−

Bitmap Heap Scan on tickets

Recheck Cond: (passenger_name = 'LYUDMILA BOGDANOVA'::text)

−> Bitmap Index Scan on tickets_name_bref_idx

Index Cond: (passenger_name = 'LYUDMILA BOGDANOVA'::text)

(4 rows)

In addition to the column order, you should also pay attention to the sort order when

creating a new index. By default, values are sorted in ascending order (���), but you can

reverse it (����) if required. It does not matter much if an index is built over a single col-

umn, as it can be scanned in any direction. But in a multicolumn index the order becomes

important.

Our newly created index can be used to retrieve the data sorted by both columns either in

ascending or in descending order:

=> EXPLAIN (costs off) SELECT *

FROM tickets

ORDER BY passenger_name, book_ref;

QUERY PLAN

−−−

Index Scan using tickets_name_bref_idx on tickets

(1 row)

=> EXPLAIN (costs off) SELECT *

FROM tickets

ORDER BY passenger_name DESC, book_ref DESC;

QUERY PLAN

−−

Index Scan Backward using tickets_name_bref_idx on tickets

(1 row)

But this index cannot return the data right away if it needs to be sorted in ascending order

by one column and in descending order by the other column at the same time. In this

case, the index provides partially ordered data that has to be further sortedp. ��� by the second

attribute:

=> EXPLAIN (costs off) SELECT *

FROM tickets

ORDER BY passenger_name ASC, book_ref DESC;

QUERY PLAN

−−

Incremental Sort

Sort Key: passenger_name, book_ref DESC

Presorted Key: passenger_name

−> Index Scan using tickets_name_bref_idx on tickets

(4 rows)

440

25.5 Properties

The location of ���� values also affects the ability to use index for sorting. By default,

���� values are considered “greater” than regular values for the purpose of sorting, that

is, they are located in the right side of the tree if the sort order is ascending and in the left

side if the sort order is descending. The location of ���� values can be changed using the

����� ���� and ����� ����� clauses.

In the next example, the index does not satisfy the ����� ��clause, so the result has to be

sorted:

=> EXPLAIN (costs off) SELECT *

FROM tickets

ORDER BY passenger_name NULLS FIRST, book_ref DESC;

QUERY PLAN

−−−

Gather Merge

Workers Planned: 2

−> Sort

Sort Key: passenger_name NULLS FIRST, book_ref DESC

−> Parallel Seq Scan on tickets

(5 rows)

But if we create an index that follows the desired order, it will be used:

=> CREATE INDEX tickets_name_bref_idx2

ON tickets(passenger_name NULLS FIRST, book_ref DESC);

=> EXPLAIN (costs off) SELECT *

FROM tickets

ORDER BY passenger_name NULLS FIRST, book_ref DESC;

QUERY PLAN

−−

Index Scan using tickets_name_bref_idx2 on tickets

(1 row)

25.5 Properties

Let’s take a look at the interface properties of �-trees. p. ���

Access Method Properties

=> SELECT a.amname, p.name, pg_indexam_has_property(a.oid, p.name)

FROM pg_am a, unnest(array[

'can_order', 'can_unique', 'can_multi_col',

'can_exclude', 'can_include'

]) p(name)

WHERE a.amname = 'btree';

441

Chapter 25 B-tree

amname | name | pg_indexam_has_property

−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−

btree | can_order | t

btree | can_unique | t

btree | can_multi_col | t

btree | can_exclude | t

btree | can_include | t

(5 rows)

B-trees can order data and ensure its uniqueness. It is the only access method with such

properties.

Many access methods support multicolumn indexes, but since values in �-trees are or-

dered, you have to pay close attention to the order of columns in an index.

Formally, exclusion constraints are supported, but they are limited to equality conditions,

which makes them analogous to unique constraints. It is much more preferable to use a

full-fledged unique constraint instead.

B-tree indexes can also be extended with additional ������� columns that do not partici-

pate in search.

Index-Level Properties

=> SELECT p.name, pg_index_has_property('flights_pkey', p.name)

FROM unnest(array[

'clusterable', 'index_scan', 'bitmap_scan', 'backward_scan'

]) p(name);

name | pg_index_has_property

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−

clusterable | t

index_scan | t

bitmap_scan | t

backward_scan | t

(4 rows)

B-tree indexes can be used for clusterization.

Both index scans and bitmap scans are supported. Since leaf pages are bound into a bidi-

rectional list, an index can also be traversed backwards, which results in the reverse sort

order:

442

25.5 Properties

=> EXPLAIN (costs off) SELECT *

FROM bookings ORDER BY book_ref DESC;

QUERY PLAN

−−−

Index Scan Backward using bookings_pkey on bookings

(1 row)

Column-Level Properties

=> SELECT p.name,

pg_index_column_has_property('flights_pkey', 1, p.name)

FROM unnest(array[

'asc', 'desc', 'nulls_first', 'nulls_last', 'orderable',

'distance_orderable', 'returnable', 'search_array', 'search_nulls'

]) p(name);

name | pg_index_column_has_property

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

asc | t

desc | f

nulls_first | f

nulls_last | t

orderable | t

distance_orderable | f

returnable | t

search_array | t

search_nulls | t

(9 rows)

The O�������� property indicates that the data stored in a �-tree is ordered, while the

first four properties (A�� and D���, N���� F���� and N���� L���) define the actual order in

a particular column. In this example, column values are sorted in ascending order with

���� values listed last.

The S����� N���� property indicates whether ���� values can be searched.

B-trees do not support ordering operators (D������� O��������), even though it has been

attempted to implement them.1

B-trees support searching for multiple elements in an array (the S����� A���� property)

and can return the resulting data without heap access (R���������).

1 commitfest.postgresql.org/27/1804

443

https://commitfest.postgresql.org/27/1804

26
GiST

26.1 Overview

Gi�� (Generalized Search Tree)1 is an access method that is virtually a generalization of

a balanced search tree for data types that support relative positioning of values. B-tree

applicability is limited to ordinal types that allow comparison operations (but the sup-

port provided for such types is extremely efficient). As for �i��, its operator class allows

defining arbitrary criteria for data distribution in the tree. A �i�� index can accommo-

date an �-tree for spatial data, an ��-tree for sets, and a signature tree for any data types

(including texts and images).

Thanks to extensibility, you can create a new access method in Postgre��� from scratch

by implementing the interface of the indexing engine. However, apart from designing the

indexing logic, you have to define the page layout, an efficient locking strategy, and ���

support. It all takes strong programming skills and much implementation efforts. Gi��

simplifies this task, addressing all the low-level technicalities and providing the basis for

the search algorithm. To use the �i�� method with a new data type, you just need to add

a new operator class that includes a dozen support functions. Unlike the trivial operator

class provided for �-trees, such a class contains most of the indexing logic. Gi�� can be

regarded as a framework for building new access methods in this respect.

Speaking in the most general terms, each entry that belongs to a leaf node (a leaf entry)

contains a predicate (a logical condition) and a heap tuple ��. The index key must satisfy

the predicate; it does not matter whether the key itself is a part of this entry or not.

Each entry in an inner leaf (an inner entry) also contains a predicate and a reference to a

child node; all the indexed data of the child subtree must satisfy this predicate. In other

words, the predicate of an inner entry is the union of all the predicates of its child entries.

This important property of �i�� serves the purpose of simple ranking used by �-trees.

1 postgresql.org/docs/14/gist.html

backend/access/gist/README

444

https://postgresql.org/docs/14/gist.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gist/README;hb=REL_14_STABLE

26.2 R-Trees for Points

Gi�� tree search relies on the consistency function, which is one of the support functions

defined by the operator class.

The consistency function is called on an index entry to determine whether the predicate

of this entry is “consistent” with the search condition (“indexed-column operator expres-

sion”). For an inner entry, it shows whether we have to descend into the corresponding

subtree; for a leaf entry, it checks whether its index key satisfies the condition.

The search starts at the root node,1 which is typical of a tree search. The consistency

function determines which child nodesmust be traversed andwhich can be skipped. Then

this procedure is repeated for each of the found child nodes; unlike a �-tree, a �i�� index

may have several such nodes. Leaf node entries selected by the consistency function are

returned as results.

The search is always depth-first: the algorithm tries to get to a leaf page as soon as possi-

ble. Therefore, it can start returning results right away, which makes a lot of sense if the

user needs to get only the first few rows.

To insert a new value into a �i�� tree, it is impossible to use the consistency function, since

we need to choose exactly one node to descend to.2 This node must have the minimal

insert cost; it is determined by the penalty function of the operator class.

Just like in the case of a �-tree, the selected nodemay turn out to have no free space,which

leads to a split.3 This operation needs two more functions. One of them distributes the

entries between the old and new nodes; the other forms the union of the two predicates

to update the predicate of the parent node.

As new values are being added, the existing predicates expand, and they are typically nar-

rowed down only if the page is split or the whole index is rebuilt. Thus, frequent updates

of a �i�� index can lead to its performance degradation.

Since all these theoretical discussions may seem too vague, and the exact logic mostly

depends on a particular operator class anyway, I will provide several specific examples.

26.2 R-Trees for Points

The first example deals with indexing points (or other geometries) on a plane. A regular

�-tree cannot be used for this data type, as there are no comparison operators defined for

points. Clearly, we could have implemented such operators on our own, but geometries

1 backend/access/gist/gistget.c, gistgettuple function
2 backend/access/gist/gistutil.c, gistchoose function
3 backend/access/gist/gistsplit.c, gistSplitByKey function

445

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gist/gistget.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gist/gistutil.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gist/gistsplit.c;hb=REL_14_STABLE

Chapter 26 GiST

need index support for totally different operations. I will go over just two of them: search

for objects contained within a particular area and nearest neighbor search.

An �-tree draws rectangles on a plane; taken together, they must cover all the indexed

points. An index entry stores the bounding box, and the predicate can be defined as fol-

lows: the point lies within this bounding box.

The root of an �-tree contains several large rectangles (thatmay also overlap). Child nodes

hold smaller rectangles that fit their parent nodes; together, they cover all the underlying

points.

Leaf nodes should contain the indexed points themselves, but �i�� requires that all entries

have the same data type; therefore, leaf entries are also represented by rectangles, which

are simply reduced to points.

To better visualize this structure, let’s take a look at three levels of an �-tree built over air-

port coordinates. For this example, I have extended the airports table of the demodatabase

up to five thousand rows.1 I have also reduced the fillfactor90 value to make the tree deeper;

the default value would have given us a single-level tree.

=> CREATE TABLE airports_big AS

SELECT * FROM airports_data;

=> COPY airports_big FROM

'/home/student/internals/airports/extra_airports.copy';

=> CREATE INDEX airports_gist_idx ON airports_big

USING gist(coordinates) WITH (fillfactor=10);

At the upper level, all the points are included into several (partially overlapping) bounding

boxes:

1 You can download the corresponding file at edu.postgrespro.ru/internals-14/extra_airports.copy (I have used

the data available at the openflights.org website).

446

https://edu.postgrespro.ru/internals-14/extra_airports.copy
https://openflights.org

26.2 R-Trees for Points

At the next level, big rectangles are split into smaller ones:

Finally, at the inner level of the tree each bounding box contains asmany points as a single

page can accommodate:

This index uses the point_ops operator class, which is the only one available for points.

Rectangles and any other geometries can be indexed in the same manner, but instead of

the object itself the index has to store its bounding box.

Page Layout

You can study v. ���i�� pages using the pageinspect extension.

447

Chapter 26 GiST

Unlike �-tree indexes, �i�� has no metapage, and the zero page is always the root of the

tree. If the root page gets split, the old root is moved into a separate page, and the new

root takes its place.

Here is the contents of the root page:

=> SELECT ctid, keys

FROM gist_page_items(

get_raw_page('airports_gist_idx', 0), 'airports_gist_idx'

);

ctid | keys

−−−−−−−−−−−−−+−−−

(207,65535) | (coordinates)=((50.84510040283203,78.246101379395))

(400,65535) | (coordinates)=((179.951004028,73.51780700683594))

(206,65535) | (coordinates)=((−1.5908199548721313,40.63980103))

(466,65535) | (coordinates)=((−1.0334999561309814,82.51779937740001))

(4 rows)

These four rows correspond to the four rectangles of the upper level shown in the first

picture. Unfortunately, the keys are displayed here as points (which makes sense for leaf

pages), not as rectangles (which would bemore logical for inner pages). But we can always

get raw data and interpret it on our own.

To extract more detailed information, you can use the gevel extension,1 which is not included into

the standard Postgre��� distribution.

Operator Class

The following query returns the list of support functions that implement the logic of

search and insert operations for trees:2

=> SELECT amprocnum, amproc::regproc

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amproc amop ON amprocfamily = opcfamily

WHERE amname = 'gist'

AND opcname = 'point_ops'

ORDER BY amprocnum;

amprocnum | amproc

−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−

1 | gist_point_consistent

2 | gist_box_union

3 | gist_point_compress

5 | gist_box_penalty

1 sigaev.ru/git/gitweb.cgi?p=gevel.git
2 postgresql.org/docs/14/gist-extensibility.html

448

http://sigaev.ru/git/gitweb.cgi?p=gevel.git
https://postgresql.org/docs/14/gist-extensibility.html

26.2 R-Trees for Points

6 | gist_box_picksplit

7 | gist_box_same

8 | gist_point_distance

9 | gist_point_fetch

11 | gist_point_sortsupport

(9 rows)

I have already listed the mandatory functions above:

� consistency function used to traverse the tree during search

� union function that merges rectangles

� penalty function used to choose the subtree to descend to when inserting an entry

� picksplit function that distributes entries between new pages after a page split

� same function that checks two keys for equality

The point_ops operator class includes the following operators:

=> SELECT amopopr::regoperator, amopstrategy AS st, oprcode::regproc,

left(obj_description(opr.oid, 'pg_operator'), 19) description

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amop amop ON amopfamily = opcfamily

JOIN pg_operator opr ON opr.oid = amopopr

WHERE amname = 'gist'

AND opcname = 'point_ops'

ORDER BY amopstrategy;

amopopr | st | oprcode | description

−−−−−−−−−−−−−−−−−−−+−−−−+−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−

<<(point,point) | 1 | point_left | is left of

>>(point,point) | 5 | point_right | is right of

~=(point,point) | 6 | point_eq | same as

<<|(point,point) | 10 | point_below | is below

|>>(point,point) | 11 | point_above | is above

<−>(point,point) | 15 | point_distance | distance between

<@(point,box) | 28 | on_pb | point inside box

<^(point,point) | 29 | point_below | deprecated, use <<|

>^(point,point) | 30 | point_above | deprecated, use |>>

<@(point,polygon) | 48 | pt_contained_poly | is contained by

<@(point,circle) | 68 | pt_contained_circle | is contained by

(11 rows)

Operator names do not usually tell us much about operator semantics, so this query also

displays the names of the underlying functions and their descriptions. One way or an-

other, all the operators deal with relative positioning of geometries (left of, right of, above,

below, contains, is contained) and the distance between them.

449

Chapter 26 GiST

As compared to �-trees, �i�� offers more strategies. Some of the strategy numbers are

common to several types of indexes,1 while others are calculated by formulas (for example,

��, ��, and �� virtually represent the same strategy: is contained for rectangles, polygons,

and circles). Besides, �i�� supports some obsolete operator names (<<| and |>>).

Operator classes may implement only some of the available strategies. For example, the

contains strategy is not supported by the operator class for points, but it is available in

classes defined for geometries with measurable area (box_ops, poly_ops, and circle_ops).

Search for Contained Elements

A typical query that can be sped up by an index returns all points of the specified area.

For example, let’s find all the airports located within one degree from the centre of

Moscow:

=> SELECT airport_code, airport_name->>'en'

FROM airports_big

WHERE coordinates <@ '<(37.622513,55.753220),1.0>'::circle;

airport_code | ?column?

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SVO | Sheremetyevo International Airport

VKO | Vnukovo International Airport

DME | Domodedovo International Airport

BKA | Bykovo Airport

ZIA | Zhukovsky International Airport

CKL | Chkalovskiy Air Base

OSF | Ostafyevo International Airport

(7 rows)

=> EXPLAIN (costs off) SELECT airport_code

FROM airports_big

WHERE coordinates <@ '<(37.622513,55.753220),1.0>'::circle;

QUERY PLAN

−−−

Bitmap Heap Scan on airports_big

Recheck Cond: (coordinates <@ '<(37.622513,55.75322),1>'::circle)

−> Bitmap Index Scan on airports_gist_idx

Index Cond: (coordinates <@ '<(37.622513,55.75322),1>'::ci...

(4 rows)

1 include/access/stratnum.h

450

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/stratnum.h;hb=REL_14_STABLE

26.2 R-Trees for Points

We can take a closer look at this operator using a trivial example shown in the figure below:

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

If bounding boxes are selected this way, the index structure will be as follows:

0,0–3,4 5,3–9,90,0–3,4 5,3–9,9

0,0–3,2 0,3–3,40,0–3,2 0,3–3,4 5,3–8,5 6,6–9,95,3–8,5 6,6–9,9

0,0 1,2 3,10,0 1,2 3,1 0,4 3,30,4 3,3 5,3 8,55,3 8,5 6,6 8,9 9,76,6 8,9 9,7

The contains operator <@ determines whether a particular point is located within the

specified rectangle. The consistency function for this operator1 returns “yes” if the rect-

angle of the index entry has any common points with this rectangle. It means that for leaf

node entries, which store rectangles reduced to points, this function determines whether

the point is contained within the specified rectangle.

For example, let’s find the inner points of rectangle (�,�)–(�,�), which is hatched in the

figure below:

1 backend/access/gist/gistproc.c, gist_point_consistent function

451

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gist/gistproc.c;hb=REL_14_STABLE

Chapter 26 GiST

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

The search starts at the root node. The bounding box overlaps with (�,�)–(�,�), but does

not overlap with (�,�)–(�,�). It means that we do not have to descend into the second

subtree.

At the next level, the bounding box overlaps with (�,�)–(�,�) and touches (�,�)–(�,�), so we

have to check both subtrees.

Once we get to leaf nodes, we just have to go through all the points that they contain and

return those that satisfy the consistency function.

0,0–3,4 5,3–9,90,0–3,4 5,3–9,9

0,0–3,2 0,3–3,40,0–3,2 0,3–3,4 5,3–8,5 6,6–9,95,3–8,5 6,6–9,9

0,0 1,2 3,10,0 1,2 3,1 0,4 3,30,4 3,3 5,3 8,55,3 8,5 6,6 8,9 9,76,6 8,9 9,7

A �-tree search always selects exactly one child node. A �i�� search, however, may have

to scan several subtrees, especially if their bounding boxes overlap.

Nearest Neighbor Search

Most of the operators supported by indexes (such as = or <@ shown in the previous ex-

ample) are typically called search operators, as they define search conditions in queries.

452

26.2 R-Trees for Points

Such operators are predicates, that is, they return a logical value.

But there is also a group of ordering operators, which return the distance between argu-

ments. Such operators are used in the ����� �� clause and are typically supported by

indexes that have the D������� O�������� p. ���property, which enables you to quickly find the

specified number of nearest neighbors. This type of search is known as k-��, or k-nearest

neighbor search.

For example, we can find �� airports closest to Kostroma:

=> SELECT airport_code, airport_name->>'en'

FROM airports_big

ORDER BY coordinates <-> '(40.926780,57.767943)'::point

LIMIT 10;

airport_code | ?column?

−−−−−−−−−−−−−−+−−

KMW | Kostroma Sokerkino Airport

IAR | Tunoshna Airport

IWA | Ivanovo South Airport

VGD | Vologda Airport

RYB | Staroselye Airport

GOJ | Nizhny Novgorod Strigino International Airport

CEE | Cherepovets Airport

CKL | Chkalovskiy Air Base

ZIA | Zhukovsky International Airport

BKA | Bykovo Airport

(10 rows)

=> EXPLAIN (costs off) SELECT airport_code

FROM airports_big

ORDER BY coordinates <-> '(40.926780,57.767943)'::point

LIMIT 5;

QUERY PLAN

−−−

Limit

−> Index Scan using airports_gist_idx on airports_big

Order By: (coordinates <−> '(40.92678,57.767943)'::point)

(3 rows)

Since an index scan returns the results one by one and can be stopped any time, several

first values can be found very quickly.

It would be very hard to achieve efficient search without index support. We would have to find all

the points that appear in a particular area and then gradually expand this area until the requested

number of results is returned. It would require several index scans, not to mention the problem of

choosing the size of the original area and its increments.

You can see the operator type in the system catalog (“s” stands for search, “o” denotes

ordering operators):

453

Chapter 26 GiST

=> SELECT amopopr::regoperator, amoppurpose, amopstrategy

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amop amop ON amopfamily = opcfamily

WHERE amname = 'gist'

AND opcname = 'point_ops'

ORDER BY amopstrategy;

amopopr | amoppurpose | amopstrategy

−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−−−

<<(point,point) | s | 1

>>(point,point) | s | 5

~=(point,point) | s | 6

<<|(point,point) | s | 10

|>>(point,point) | s | 11

<−>(point,point) | o | 15

<@(point,box) | s | 28

<^(point,point) | s | 29

>^(point,point) | s | 30

<@(point,polygon) | s | 48

<@(point,circle) | s | 68

(11 rows)

To support such queries, an operator class must define an additional support function: it

is the distance function, which is called on the index entry to calculate the distance from

the value stored in this entry to some other value.

For a leaf element representing an indexed value, this function must return the distance

to this value. In the case of points,1 it is a regular Euclidean distance, which equals

√(x2 − x1)2 + (y2 − y1)2.

For an inner element, the function must return the minimal of all the possible distances

from its child leaf elements. Since it is quite costly to scan all the child entries, the

function can optimistically underestimate the distance (sacrificing efficiency), but it must

never return a bigger value—it would compromise search correctness.

Therefore, for an inner element represented by a bounding box, the distance to the point

is understood in the regular mathematical sense: it is either the minimal distance be-

tween the point and the rectangle or zero if the point is inside the rectangle.2 This value

can be easily calculated without traversing all the child points of the rectangle, and it is

guaranteed to be not greater than the distance to any of these points.

Let’s consider the algorithm of searching for three nearest neighbors of point (�,�):

1 backend/utils/adt/geo_ops.c, point_distance function
2 backend/utils/adt/geo_ops.c, box_closest_point function

454

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/geo_ops.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/geo_ops.c;hb=REL_14_STABLE

26.2 R-Trees for Points

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

The search starts at the root node, which holds two bounding boxes. The distance from

the specified point to rectangle (�,�)–(�,�) is taken as the distance to the rectangle’s corner

(�,�), which equals �.�. The distance to (�,�)–(�,�) is �.�. (I am going to round all the values

here to the first decimal place; such accuracy will be enough for this example.)

Child nodes get traversed in the order of distance increase. Thus, we first descend into the

right child node, which contains two rectangles: (�,�)–(�,�) and (�,�)–(�,�). The distance

to the first one is �.�; the distance to the second one is �.�.

Once again,we choose the right subtree and get into the leaf node containing three points:

(�,�) at the distance of �.�, (�,�) at the distance of �.�, and (�,�) at the distance of �.�.

0,0–3,4 5,3–9,90,0–3,4 5,3–9,9

0,0–3,2 0,3–3,40,0–3,2 0,3–3,4 5,3–8,5 6,6–9,95,3–8,5 6,6–9,9

0,0 1,2 3,10,0 1,2 3,1 0,4 3,30,4 3,3 5,3 8,55,3 8,5 6,6 8,9 9,76,6 8,9 9,7

5.0 0.0

3.0 0.0

2.0 2.2 3.2

Thus, we have received the first two points: (�,�) and (�,�). But the distance to the third

point of this node is greater than the distance to rectangle (�,�)–(�,�).

So now we have to descend into the left child node, which contains two points. The dis-

tance to point (�,�) is �.�, while the distance to (�,�) is �.�. It turns out that point (�,�) in

455

Chapter 26 GiST

the previous child node is closer to point (�,�) than any of the nodes of the left subtree, so

we can return it as the third result.

0,0–3,4 5,3–9,90,0–3,4 5,3–9,9

0,0–3,2 0,3–3,40,0–3,2 0,3–3,4 5,3–8,5 6,6–9,95,3–8,5 6,6–9,9

0,0 1,2 3,10,0 1,2 3,1 0,4 3,30,4 3,3 5,3 8,55,3 8,5 6,6 8,9 9,76,6 8,9 9,7

5.0 0.0

3.0 0.0

2.0 2.2 3.25.1 3.6

This example illustrates the requirements that must be satisfied by the distance func-

tion for inner entries. Because of the reduced distance (�.� instead of �.�) to rectangle

(�,�)–(�,�), an extra node had to be scanned, so search efficiency has declined; however,

the algorithm itself remained correct.

Insertion

When a new key is getting inserted into an �-tree, the node to be used for this key is

determined by the penalty function: the size of the bounding box must be increased as

little as possible.1

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

1 backend/access/gist/gistproc.c, gist_box_penalty function

456

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gist/gistproc.c;hb=REL_14_STABLE

26.2 R-Trees for Points

For example, point (�,�)will be added to rectangle (�,�)–(�,�) because its area will increase

by only � units, while rectangle (�,�)–(�,�) would have to be increased by �� units. At the

next (leaf) level, the point will be added to rectangle (�,�)–(�,�), following the same logic.

Assuming that a page holds three elements at the most, it has to be split in two, and

the elements have to be distributed between the new pages. In this example, the result

seems obvious, but in the general case the data distribution task is not so trivial. First and

foremost, the picksplit function attempts to minimize overlaps between bounding boxes,

aiming at getting smaller rectangles and uniform distribution of points between pages.1

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Exclusion Constraints

Gi�� indexes can also be used in exclusion constraints.

An exclusion constraint guarantees that the specified fields of any two heap tuples do

not match each other in the sense of some operator. The following conditions must be

satisfied:

• The exclusion constraintmust be supported by the indexingmethod (the C�� E������

property).

• The operator must belong to the operator class of this indexing method.

• The operator must be commutative: the condition “a operator b = b operator a”must

hold true.

For the hash and btree accessmethods considered above, the only suitable operator is equal

to. It virtually turns an exclusion constraint p. ���into a unique one, which is not particularly

useful.

1 backend/access/gist/gistproc.c, gist_box_picksplit function

457

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gist/gistproc.c;hb=REL_14_STABLE

Chapter 26 GiST

The gistmethod has two more applicable strategies:

• overlapping: the&& operator

• adjacency: the -|- operator (defined for intervals)

To try it out, let’s create a constraint that forbids placing airports too close to each other.

This condition can be formulated as follows: circles of a particular radius with centers

lying at the airports’ coordinates must not overlap:

=> ALTER TABLE airports_data ADD EXCLUDE

USING gist (circle(coordinates,0.2) WITH &&);

=> INSERT INTO airports_data(

airport_code, airport_name, city, coordinates, timezone

) VALUES (

'ZIA', '{}', '{"en": "Moscow"}', point(38.1517, 55.5533),

'Europe/Moscow'

);

ERROR: conflicting key value violates exclusion constraint

"airports_data_circle_excl"

DETAIL: Key (circle(coordinates, 0.2::double

precision))=(<(38.1517,55.5533),0.2>) conflicts with existing key

(circle(coordinates, 0.2::double

precision))=(<(37.90629959106445,55.40879821777344),0.2>).

When an exclusion constraint is defined, an index to enforce it is added automatically.

Here it is a �i�� index built over an expression.

Let’s take a look at a more complex example. Suppose we need to allow close proximity

of airports, but only if they belong to the same city. A possible solution is to define a

new integrity constraint that can be formulated as follows: it is forbidden to have pairs of

rows with intersections (&&) of circles if their centers lie at the airports’ coordinates and

the corresponding cities have different names (!=).

An attempt to create such a constraint results in an error because there is no operator

class for the text data type:

=> ALTER TABLE airports_data

DROP CONSTRAINT airports_data_circle_excl; -- delete old data

=> ALTER TABLE airports_data ADD EXCLUDE USING gist (

circle(coordinates,0.2) WITH &&,

(city->>'en') WITH !=

);

ERROR: data type text has no default operator class for access

method "gist"

HINT: You must specify an operator class for the index or define a

default operator class for the data type.

458

26.2 R-Trees for Points

However, �i�� does provide strategies like strictly left of, strictly right of, and same, which

can also be applied to regular ordinal data types, such as numbers or text strings. The

btree_gist extension is specifically intended to implement �i�� support for operations that

are typically used with �-trees:

=> CREATE EXTENSION btree_gist;

=> ALTER TABLE airports_data ADD EXCLUDE USING gist (

circle(coordinates,0.2) WITH &&,

(city->>'en') WITH !=

);

ALTER TABLE

The constraint is created. Nowwe cannot add Zhukovsky airport belonging to a town with

the same name because Moscow airports are too close:

=> INSERT INTO airports_data(

airport_code, airport_name, city, coordinates, timezone

) VALUES (

'ZIA', '{}', '{"en": "Zhukovsky"}', point(38.1517, 55.5533),

'Europe/Moscow'

);

ERROR: conflicting key value violates exclusion constraint

"airports_data_circle_expr_excl"

DETAIL: Key (circle(coordinates, 0.2::double precision), (city −>>

'en'::text))=(<(38.1517,55.5533),0.2>, Zhukovsky) conflicts with

existing key (circle(coordinates, 0.2::double precision), (city −>>

'en'::text))=(<(37.90629959106445,55.40879821777344),0.2>, Moscow).

But we can do it if we specify Moscow as this airport’s city:

=> INSERT INTO airports_data(

airport_code, airport_name, city, coordinates, timezone

) VALUES (

'ZIA', '{}', '{"en": "Moscow"}', point(38.1517, 55.5533),

'Europe/Moscow'

);

INSERT 0 1

It is important to remember that even though GiST supports greater than, less than, and

equal to operations, �-trees are much more efficient in this respect, especially when ac-

cessing a range of values. So it makes sense to use the trick with the btree_gist extension

shown above only if the �i�� index is really needed for other legitimate reasons.

Properties

Access method properties. Here are the properties of the gistmethod:

459

Chapter 26 GiST

=> SELECT a.amname, p.name, pg_indexam_has_property(a.oid, p.name)

FROM pg_am a, unnest(array[

'can_order', 'can_unique', 'can_multi_col',

'can_exclude', 'can_include'

]) p(name)

WHERE a.amname = 'gist';

amname | name | pg_indexam_has_property

−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−

gist | can_order | f

gist | can_unique | f

gist | can_multi_col | t

gist | can_exclude | t

gist | can_include | t

(5 rows)

Unique constraints and sorting are not supported.

A �i�� index can be createdv. �� with additional ������� columns.

As we know, we can build an index over several columns, as well as use it in integrity

constraints.

Index-level properties. These properties are defined at the index level:

=> SELECT p.name, pg_index_has_property('airports_gist_idx', p.name)

FROM unnest(array[

'clusterable', 'index_scan', 'bitmap_scan', 'backward_scan'

]) p(name);

name | pg_index_has_property

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−

clusterable | t

index_scan | t

bitmap_scan | t

backward_scan | f

(4 rows)

A �i�� index can be used for clusterization.

As for data retrieval methods, both regular (row-by-row) index scans and bitmap scans are

supported. However, backward scanning of �i�� indexes is not allowed.

Column-level properties. Most of the column properties are defined at the access method

level, and they remain the same:

=> SELECT p.name,

pg_index_column_has_property('airports_gist_idx', 1, p.name)

FROM unnest(array[

'orderable', 'search_array', 'search_nulls'

]) p(name);

460

26.2 R-Trees for Points

name | pg_index_column_has_property

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

orderable | f

search_array | f

search_nulls | t

(3 rows)

All sort-related properties are disabled.

N��� values are allowed, but �i�� is not really efficient at handling them. It is assumed

that a ���� value does not increase the bounding box; such values get inserted into ran-

dom subtrees, so they have to be searched for in the whole tree.

However, a couple of column-level properties do depend on the particular operator class:

=> SELECT p.name,

pg_index_column_has_property('airports_gist_idx', 1, p.name)

FROM unnest(array[

'returnable', 'distance_orderable'

]) p(name);

name | pg_index_column_has_property

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

returnable | t

distance_orderable | t

(2 rows)

Index-only scans are allowed, since leaf nodes keep full index keys.

As we have seen above, this operator class provides the distance operator for nearest

neighbor search. The distance to a ���� value is considered to be ����; such values are

returned last (similar to the ����� ���� clause in �-trees).

However, there is no distance operator for range types (which represent segments, that is,

linear geometries rather than areal ones), so this property is different for an index built

for such types:

=> CREATE TABLE reservations(during tsrange);

=> CREATE INDEX ON reservations USING gist(during);

=> SELECT p.name,

pg_index_column_has_property('reservations_during_idx', 1, p.name)

FROM unnest(array[

'returnable', 'distance_orderable'

]) p(name);

461

Chapter 26 GiST

name | pg_index_column_has_property

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

returnable | t

distance_orderable | f

(2 rows)

26.3 RD-Trees for Full-Text Search

About Full-Text Search

The objective of full-text search1 is to select those documents from the provided set that

match the search query.

To be searched, the document is cast to the tsvector type,which contains lexemes and their

positions in the document. Lexemes are words converted into a format that is suitable for

search. By default, all words are normalized to lowercase, and their endings are cut off:

=> SET default_text_search_config = english;

=> SELECT to_tsvector(

'No one can tell me, nobody knows, ' ||

'Where the wind comes from, where the wind goes.'

);

to_tsvector

−−

'come':11 'goe':16 'know':7 'nobodi':6 'one':2 'tell':4 'wind':10,15

(1 row)

The so-called stop words (like “the” or “from”) are filtered out: they are assumed to occur

too often for the search to return any meaningful results for them. Naturally, all these

transformations are configurable.

A search query is represented by another type: tsquery. Any query includes one or more

lexemes bound by logical connectives: & (���), | (��), ! (���). You can also use paren-

theses to define operator precedence.

=> SELECT to_tsquery('wind & (comes | goes)');

to_tsquery

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

'wind' & ('come' | 'goe')

(1 row)

1 postgresql.org/docs/14/textsearch.html

462

https://postgresql.org/docs/14/textsearch.html

26.3 RD-Trees for Full-Text Search

The only operator used for full-text search is the match operator @@:

=> SELECT amopopr::regoperator, oprcode::regproc, amopstrategy

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amop amop ON amopfamily = opcfamily

JOIN pg_operator opr ON opr.oid = amopopr

WHERE amname = 'gist'

AND opcname = 'tsvector_ops'

ORDER BY amopstrategy;

amopopr | oprcode | amopstrategy

−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−−−

@@(tsvector,tsquery) | ts_match_vq | 1

(1 row)

This operator determines whether the document satisfies the query. Here is an example:

=> SELECT to_tsvector('Where the wind comes from, where the wind goes')

@@ to_tsquery('wind & coming');

?column?

−−−−−−−−−−

t

(1 row)

It is by nomeans an exhaustive p. ���description of full-text search, but this information should

be sufficient for understanding indexing fundamentals.

Indexing tsvector Data

To work fast, full-text search has to be supported by an index.1 p. ���Since it is not documents

themselves but tsvector values that get indexed, you have two options here: either build

an index on an expression and perform a type cast, or add a separate column of the tsvector

type and index this column. The benefit of the first approach is that it does not waste any

space on storing tsvector values, which are actually not needed as such. But it is slower

than the second option, as the indexing engine has to recheck all the heap tuples returned

by the access method. It means that the tsvector value has to be calculated again for each

rechecked row, and as we soon will see, �i�� rechecks all rows.

Let’s construct a simple example. We are going to create a two-column table: the first

column will store the document, while the second one will hold the tsvector value. We can

use a trigger to update the second column,2 but it is more convenient to simply declare

this column as generated: v. ��3

1 postgresql.org/docs/14/textsearch-indexes.html
2 postgresql.org/docs/14/textsearch-features.html#TEXTSEARCH-UPDATE-TRIGGERS
3 postgresql.org/docs/14/ddl-generated-columns.html

463

https://postgresql.org/docs/14/textsearch-indexes.html
https://postgresql.org/docs/14/textsearch-features.html#TEXTSEARCH-UPDATE-TRIGGERS
https://postgresql.org/docs/14/ddl-generated-columns.html

Chapter 26 GiST

=> CREATE TABLE ts(

doc text,

doc_tsv tsvector GENERATED ALWAYS AS (

to_tsvector('pg_catalog.english', doc)

) STORED

);

=> CREATE INDEX ts_gist_idx ON ts

USING gist(doc_tsv);

In the examples above, I used the to_tsvector function with a single argument, having set the

english default_text_search_config parameter to define the full-text search configuration. The volatility cat-

egory of this function flavor is ������, since it is implicitly dependent on the parameter value. But

here I apply another flavor that defines the configuration explicitly; this flavor is ��������� and

can be used in generation expressions.

Let’s insert several rows:

=> INSERT INTO ts(doc) VALUES

('Old MacDonald had a farm'), ('And on his farm he had some cows'),

('Here a moo, there a moo'), ('Everywhere a moo moo'),

('Old MacDonald had a farm'), ('And on his farm he had some chicks'),

('Here a cluck, there a cluck'), ('Everywhere a cluck cluck'),

('Old MacDonald had a farm'), ('And on his farm he had some pigs'),

('Here an oink, there an oink'), ('Everywhere an oink oink')

RETURNING doc_tsv;

doc_tsv

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

'farm':5 'macdonald':2 'old':1

'cow':8 'farm':4

'moo':3,6

'everywher':1 'moo':3,4

'farm':5 'macdonald':2 'old':1

'chick':8 'farm':4

'cluck':3,6

'cluck':3,4 'everywher':1

'farm':5 'macdonald':2 'old':1

'farm':4 'pig':8

'oink':3,6

'everywher':1 'oink':3,4

(12 rows)

INSERT 0 12

As such, an �-tree is of no good for indexing documents, since the concept of bounding

boxes makes no sense for them. Therefore, its ��-tree (Russian Doll) modification is used.

Instead of a bounding box, such a tree uses a bounding set, that is, a set that contains all

the elements of its child sets. For full-text search, such a set contains lexemes of the

document, but in the general case a bounding set can be arbitrary.

There are several ways to represent bounding sets in index entries. The simplest one is to

enumerate all the elements of the set.

464

26.3 RD-Trees for Full-Text Search

Here is how it might look like:

cow, everywher,
farm,macdonald,

moo, old

chick, cluck,
everywher, farm,

oink, pig

cow, everywher,
farm,macdonald,

moo, old

chick, cluck,
everywher, farm,

oink, pig

farm,
macdonald, old

cow, everywher,
farm,moo

farm,
macdonald, old

cow, everywher,
farm,moo

chick, cluck,
everywher, farm

everywher, farm,
oink, pig

chick, cluck,
everywher, farm

everywher, farm,
oink, pig

farm,macdonald, old

farm,macdonald, old

farm,macdonald, old

farm,macdonald, old

farm,macdonald, old

farm,macdonald, old

cow, farm

moo

everywher, moo

cow, farm

moo

everywher, moo

chick, farm

cluck

cluck, everywher

chick, farm

cluck

cluck, everywher

farm, pig

oink

everywher, oink

farm, pig

oink

everywher, oink

To find the documents that satisfy the ���_��� @@ ��_�������(’���’) condition, we need

to descend into the nodes whose child entries are known to contain the “cow” lexeme.

cow, everywher,
farm,macdonald,

moo, old

chick, cluck,
everywher, farm,

oink, pig

cow, everywher,
farm,macdonald,

moo, old

chick, cluck,
everywher, farm,

oink, pig

farm,
macdonald, old

cow, everywher,
farm,moo

farm,
macdonald, old

cow, everywher,
farm,moo

chick, cluck,
everywher, farm

everywher, farm,
oink, pig

chick, cluck,
everywher, farm

everywher, farm,
oink, pig

farm,macdonald, old

farm,macdonald, old

farm,macdonald, old

farm,macdonald, old

farm,macdonald, old

farm,macdonald, old

cow, farm

moo

everywher, moo

cow, farm

moo

everywher, moo

chick, farm

cluck

cluck, everywher

chick, farm

cluck

cluck, everywher

farm, pig

oink

everywher, oink

farm, pig

oink

everywher, oink

465

Chapter 26 GiST

The problems of such representation are obvious. The number of lexemes in a document

can be enormous,while the page size is limited. Even if each particular document does not

have too many distinct lexemes when taken separately, their united sets at upper levels

of the tree may still turn out too big.

Full-text search uses another solution, namely a more compact signature tree. It should

be well familiar to anyone who had to deal with the Bloom filter.p. ���

Each lexeme can be represented by its signature: a bit string of a particular length in which

only one of the bits is set to 1. The bit that should be set is determined by the hash function

of the lexeme.

A document’s signature is the result of a bitwise �� operation on signatures of all the

lexemes in this document.

Suppose we have chick 1000000

assigned the following cluck 0001000

signatures to our cow 0000010

lexemes: everywher 0010000

farm 0000100

macdonald 0100000

moo 0000100

oink 0000010

old 0000001

pig 0010000

Then the documents’ Old MacDonald had a farm 0100101

signatures will be as And on his farm he had some cows 0000110

follows: Here a moo, there a moo 0000100

Everywhere a moo moo 0010100

And on his farm he had some chicks 1000100

Here a cluck, there a cluck 0001000

Everywhere a cluck cluck 0011000

And on his farm he had some pigs 0010100

Here an oink, there an oink 0000010

Everywhere an oink oink 0010010

The advantages of this approach are obvious: index entries have the same size, which is

quite small, so the index turns out quite compact. But there are certain disadvantages too.

To begin with, it is impossible to perform an index-only scan because the index does not

store index keys anymore, and each returned ��� has to be rechecked by the table. The

accuracy also suffers: the index may return many false positives, which have to be filtered

out during a recheck.

466

26.3 RD-Trees for Full-Text Search

0110111 10111100110111 1011110

0100101 00101100100101 0010110 1011100 00101101011100 0010110

0100101

0100101

0100101

0100101

0100101

0100101

0000110

0000100

0010100

0000110

0000100

0010100

1000100

0001000

0011000

1000100

0001000

0011000

0010100

0000010

0010010

0010100

0000010

0010010

Let’s take another look at the ���_��� @@ ��_�������(’����’) condition. The signature

of a query is calculated in the same way as that of a document; in this particular case it

equals 0000010. The consistency function1 must find all the child nodes that have the

same bits set in their signatures:

0110111 10111100110111 1011110

0100101 00101100100101 0010110 1011100 00101101011100 0010110

0100101

0100101

0100101

0100101

0100101

0100101

0000110

0000100

0010100

0000110

0000100

0010100

1000100

0001000

0011000

1000100

0001000

0011000

0010100

0000010

0010010

0010100

0000010

0010010

As compared with the previous example, more nodes have to be scanned here because of

false-positive hits. Since the signature’s capacity is limited, some of the lexemes in a large

set are bound to have the same signatures. In this example, such lexemes are “cow” and

1 backend/utils/adt/tsgistidx.c, gtsvector_consistent function

467

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/tsgistidx.c;hb=REL_14_STABLE

Chapter 26 GiST

“oink.” It means that a signature can match different documents; here the signature of

the query corresponds to three of them.

False positives reduce index efficiency but do not affect its correctness in any way: since

false negatives are guaranteed to be ruled out, the required value cannot be missed.

Clearly, the signature size is actually bigger. By default, it takes ��� bytes (��� bits), so the

probability of collisions is much lower than in this example. If required,v. �� you can further

increase the signature size up to about ���� bytes using the operator class parameter:

CREATE INDEX ... USING gist(column tsvector_ops(siglen = 1024));

Besides, if values are small enough (a bit smaller than 1

16
of the page, which takes about

��� bytes for a standard page),1 it is tsvector values themselves rather than their signatures

that the tsvector_ops operator class keeps in leaf pages of an index.

To see how indexing works on real data, we can take the pgsql-hackers mailing list

archive.2 It contains ���,��� emails together with their send dates, subjects, author

names, and body texts.

Let’s add a column of the tsvector type and build an index. Here I combine three values

(subject, author, and body text) into a single vector to show that documents can be gen-

erated dynamically and do not have to be stored in a single column.

=> ALTER TABLE mail_messages ADD COLUMN tsv tsvector

GENERATED ALWAYS AS (to_tsvector(

'pg_catalog.english', subject||' '||author||' '||body_plain

)) STORED;

NOTICE: word is too long to be indexed

DETAIL: Words longer than 2047 characters are ignored.

...

NOTICE: word is too long to be indexed

DETAIL: Words longer than 2047 characters are ignored.

ALTER TABLE

=> CREATE INDEX mail_gist_idx ON mail_messages USING gist(tsv);

=> SELECT pg_size_pretty(pg_relation_size('mail_gist_idx'));

pg_size_pretty

−−−−−−−−−−−−−−−−

127 MB

(1 row)

As the columnwas being filled, a certain number of largest words were filtered out because

of their size. But once the index is ready, it can be used in search queries:

1 backend/utils/adt/tsgistidx.c, gtsvector_compress function
2 edu.postgrespro.ru/mail_messages.sql.gz

468

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/tsgistidx.c;hb=REL_14_STABLE
https://edu.postgrespro.ru/mail_messages.sql.gz

26.3 RD-Trees for Full-Text Search

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT *

FROM mail_messages

WHERE tsv @@ to_tsquery('magic & value');

QUERY PLAN

−−

Index Scan using mail_gist_idx on mail_messages

(actual rows=898 loops=1)

Index Cond: (tsv @@ to_tsquery('magic & value'::text))

Rows Removed by Index Recheck: 7859

(4 rows)

Together with ��� rows that satisfy the condition, the access method also returned ����

rows to be later filtered out by a recheck. If we increase the signature capacity, the accuracy

(and, consequently, the index efficiency) will be improved, but the index size will grow:

=> DROP INDEX mail_messages_tsv_idx;

=> CREATE INDEX ON mail_messages

USING gist(tsv tsvector_ops(siglen=248));

=> SELECT pg_size_pretty(pg_relation_size('mail_messages_tsv_idx'));

pg_size_pretty

−−−−−−−−−−−−−−−−

139 MB

(1 row)

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT *

FROM mail_messages

WHERE tsv @@ to_tsquery('magic & value');

QUERY PLAN

−−

Index Scan using mail_messages_tsv_idx on mail_messages

(actual rows=898 loops=1)

Index Cond: (tsv @@ to_tsquery('magic & value'::text))

Rows Removed by Index Recheck: 2060

(4 rows)

Properties

I have already shown the access method properties p. ���, and most of them are the same for all

operator classes. But the following two column-level properties are worth mentioning:

=> SELECT p.name,

pg_index_column_has_property('mail_messages_tsv_idx', 1, p.name)

FROM unnest(array[

'returnable', 'distance_orderable'

]) p(name);

469

Chapter 26 GiST

name | pg_index_column_has_property

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

returnable | f

distance_orderable | f

(2 rows)

Index-only scans are now impossible, as the original value cannot be restored from its

signature. It is perfectly fine in this particular case: the tsvector value is only used for

search, while we need to retrieve the document itself.

The ordering operator for the tsvector_ops class is not defined either.

26.4 Other Data Types

I have considered only two most prominent examples. They show that even though the

�i�� method is based on a balanced tree, it can be used for various data types thanks to

different support function implementations in different operator classes. When we speak

about a �i�� index, we must always specify the operator class, since it is crucial for index

properties.

Here are several more data types currently supported by the �i�� access method.

Geometric data types. Apart from points, �i�� can index other geometric objects: rectan-

gles, circles, polygons. All these objects are represented by their bounding boxes for

this purpose.

The cube extension adds the same-name data type that represents multidimensional

cubes. They are indexed using �-trees with bounding boxes of the corresponding

dimension.

Range types. Postgre��� provides several built-in numeric and temporal range types, such

as int4range and tstzrange.1 Custom range types can be defined using the ������ ����

�� ����� command.

Any range types, both standard and custom, are supported by �i�� via the range_ops

operator class.2 For indexing, a one-dimensional �-tree is applied: bounding boxes

are transformed to bounding segments in this case.

Multirange typesv. �� are supported as well; they rely on the multirange_ops class.

A bounding range comprises all the ranges that are part of a multirange value.

1 postgresql.org/docs/14/rangetypes.html
2 backend/utils/adt/rangetypes_gist.c

470

https://postgresql.org/docs/14/rangetypes.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/rangetypes_gist.c;hb=REL_14_STABLE

26.4 Other Data Types

The seg extension provides the same-name data type for intervals with bounds de-

fined with particular accuracy. It is not considered to be a range type, but it virtually

is, so it is indexed in exactly the same manner.

Ordinal types. Let’s recall the btree_gist extension once again: it provides operator classes

for the �i��method to support various ordinal data types,which are typically indexed

by a �-tree. Such operator classes can be used to build a multicolumn index when the

data type in one of the columns is not supported by �-trees.

Network address types. The inet data type has built-in �i�� support,which is implemented

via the inet_ops1 operator class.

Integer arrays. The intarray extension expands the functionality of integer arrays to add

�i�� support for them. There are two classes of operators. For small arrays, you can

use gist__int_ops, which implements the ��-tree with full representation of keys in

index entries. Large arrayswill benefit fromamore compact but less precise signature

��-tree based on the gist__bigint_ops operator class.

Extra underscores in the names of operator classes belong to the names of arrays of basic

types. For instance, alongside the more common int4[] notation, an integer array can be

denoted as _int4. There are no _int and _bigint types though.

Ltree. The ltree extension adds the same-name data type for tree-like structures with la-

bels. Gi�� support is provided via signature ��-trees that use the gist_ltree_ops oper-

ator class for ltree values and the gist__ltree_ops operator class for arrays of the ltree

type.

Key–value storage. The hstore extension provides the hstore data type for storing key–

value pairs. The gist_hstore_ops operator class implements index support based on a

signature ��-tree.

Trigrams. The pg_trgm p. ���extension adds the gist_trgm_ops class, which implements index

support for comparing text strings and wildcard search.

1 backend/utils/adt/network_gist.c

471

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/network_gist.c;hb=REL_14_STABLE

27
SP-GiST

27.1 Overview

The first letters in the ��-�i�� name stand for Space Partitioning. The space here is under-

stood as an arbitrary set of values on which the search is performed; it is not necessarily

the space in the conventional sense of the word (such as a two-dimensional plane). The

�i�� part of the name hints at certain similarity between �i�� and ��-�i�� methods: both

of them are generalized search trees and serve as frameworks for indexing various data

types.

The idea behind the ��-�i�� method1 is to split the search space into several non-

overlapping regions, which are in turn can be recursively split into sub-regions. Such

partitioning produces non-balanced trees (which differ from �-trees and �i�� trees) and

can be used to implement such well-known structures as quadtrees, k-� trees, and radix

trees (tries).

Non-balanced trees typically have few branches and, consequently, large depth. For ex-

ample, a quadtree node has four child nodes at the most, while a node of a k-� tree can

have only two. It does not pose any problems if the tree is kept in memory; but when

stored on disk, tree nodes have to be packed into pages as densely as possible to minimize

�/�, and this task is not so trivial. B-tree and �i�� indexes do not have to take care of it

because each of their tree nodes takes the whole page.

An inner node of an ��-�i�� tree contains a value that satisfies the condition that holds

true for all its child nodes. Such a value is often called a prefix; it plays the same role as

the predicate in �i�� indexes. Pointers to ��-�i�� child nodes may have labels.

Leaf node elements contain an indexed value (or its part) and the corresponding ���.

Just like �i��, ��-�i�� implements only themain algorithms, taking care of such low-level

details as concurrent access, locks, and logging. New data types and algorithms of space

partitioning can be added via the operator class interface. The operator class provides

most of the logic and defines many aspects of indexing functionality.

1 postgresql.org/docs/14/spgist.html

backend/access/spgist/README

472

https://postgresql.org/docs/14/spgist.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/spgist/README;hb=REL_14_STABLE

27.2 Quadtrees for Points

In ��-�i��, the search is depth-first, starting at the root node.1 The nodes that are worth

descending into are chosen by the consistency function, similar to the one used in �i��.

For an inner node of the tree, this function returns a set of child nodes whose values

do not contradict the search predicate. The consistency function does not descend into

these nodes: it merely assesses the corresponding labels and prefixes. For leaf nodes, it

determines whether the indexed value of this node matches the search predicate.

In a non-balanced tree, search time can vary depending on the branch depth.

There are two support functions that participate in insertion of values into an ��-�i�� in-

dex. As the tree is being traversed from the root node, the choose function takes one of the

following decisions: send the new value into an existing child node, create a new child

node for this value, or split the current node (if the value does not match this node’s pre-

fix). If the chosen leaf page does not have enough space, the picksplit function determines

which nodes should be moved to a new page.

Now I will provide some examples to illustrate these algorithms.

27.2 Quadtrees for Points

Quadtrees are used for indexing points on a two-dimensional plane. The plane is recur-

sively split into four regions (quadrants) with respect to the selected point. This point is

called a centroid; it serves as the node prefix, that is, the condition that defines the location

of child values.

The root node splits the plane into four quadrants.

1 backend/access/spgist/spgscan.c, spgWalk function

473

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/spgist/spgscan.c;hb=REL_14_STABLE

Chapter 27 SP-GiST

Then each of them is further split into its own quadrants.

This procedure goes on until the desired number of partitions is reached.

This example uses an index built on an extended airports tablep. ��� . The illustrations show

that branch depth depends on point density in the corresponding quadrants. For visual

clarity, I set a small value of the fillfactor80 storage parameter, which makes the tree deeper:

=> CREATE INDEX airports_quad_idx ON airports_big

USING spgist(coordinates) WITH (fillfactor = 10);

The default operator class for points is quad_point_ops.

474

27.2 Quadtrees for Points

Operator Class

I have alreadymentioned ��-�i�� support functions:1 the consistency function for search

and the picksplit function for insertions.

Now let’s take a look at the list of support functions of the quad_point_ops operator class.2

All of them are mandatory.

=> SELECT amprocnum, amproc::regproc

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amproc amop ON amprocfamily = opcfamily

WHERE amname = 'spgist'

AND opcname = 'quad_point_ops'

ORDER BY amprocnum;

amprocnum | amproc

−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 | spg_quad_config

2 | spg_quad_choose

3 | spg_quad_picksplit

4 | spg_quad_inner_consistent

5 | spg_quad_leaf_consistent

(5 rows)

These functions perform the following tasks:

� The config function reports basic information about the operator class to the access

method.

� The choose function select the node for insertions.

� The picksplit function distributes nodes between pages after a page split.

� The inner_consistent function checks whether the value of the inner node satisfies the

search predicate.

� The leaf_consistent function determines whether the value stored in the leaf node

satisfies the search predicate.

There are also several optional functions.

The quad_point_ops operator class supports the same strategies as �i��: p. ���3

1 postgresql.org/docs/14/spgist-extensibility.html
2 backend/access/spgist/spgquadtreeproc.c
3 include/access/stratnum.h

475

https://postgresql.org/docs/14/spgist-extensibility.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/spgist/spgquadtreeproc.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/stratnum.h;hb=REL_14_STABLE

Chapter 27 SP-GiST

=> SELECT amopopr::regoperator, oprcode::regproc, amopstrategy

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amop amop ON amopfamily = opcfamily

JOIN pg_operator opr ON opr.oid = amopopr

WHERE amname = 'spgist'

AND opcname = 'quad_point_ops'

ORDER BY amopstrategy;

amopopr | oprcode | amopstrategy

−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−

<<(point,point) | point_left | 1

>>(point,point) | point_right | 5

~=(point,point) | point_eq | 6

<@(point,box) | on_pb | 8

<<|(point,point) | point_below | 10

|>>(point,point) | point_above | 11

<−>(point,point) | point_distance | 15

<^(point,point) | point_below | 29

>^(point,point) | point_above | 30

(9 rows)

For example, you can use the above operator >^ to find the airports located to the North

of Dikson:

=> SELECT airport_code, airport_name->>'en'

FROM airports_big

WHERE coordinates >^ '(80.3817,73.5167)'::point;

airport_code | ?column?

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−

THU | Thule Air Base

YEU | Eureka Airport

YLT | Alert Airport

YRB | Resolute Bay Airport

LYR | Svalbard Airport, Longyear

NAQ | Qaanaaq Airport

YGZ | Grise Fiord Airport

DKS | Dikson Airport

(8 rows)

=> EXPLAIN (costs off) SELECT airport_code

FROM airports_big

WHERE coordinates >^ '(80.3817,73.5167)'::point;

QUERY PLAN

−−−

Bitmap Heap Scan on airports_big

Recheck Cond: (coordinates >^ '(80.3817,73.5167)'::point)

−> Bitmap Index Scan on airports_quad_idx

Index Cond: (coordinates >^ '(80.3817,73.5167)'::point)

(4 rows)

Let’s take a closer look at the structure and inner workings of a quadtree. We will use the

same simple example with several points that we discussed in the chapter related to �i��.p. ���

476

27.2 Quadtrees for Points

Here is how the plane can be partitioned in this case:

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

�

�����

��

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

The left illustration shows quadrant numbering at one of the tree levels; in the illustra-

tions that follow, I will place child nodes from left to right in the same order for the sake of

clarity. Points that lie on the boundaries are included into the quadrant with the smaller

number. The right illustration shows the final partitioning.

You can see a possible structure of this index below. Each inner node references four child

nodes at the most, and each of these pointers is labeled with the quadrant number:

5,5

7,7 5,3 3,2

8,9 8,5 6,6 3,3 3,1 0,0 0,4

9,7 1,2

�
��

���

�

��

��� �

�� ���

��

Page Layout

Unlike �-tree and �i�� indexes, ��-�i�� has no one-to-one correspondence between tree

nodes and pages. Since inner nodes usually do not have too many children, several nodes

have to be packed into a single page. Different types of nodes are stored in different pages:

inner nodes are stored in inner pages, while leaf nodes go to leaf pages.

477

Chapter 27 SP-GiST

Index entries stored in inner pages hold the value used as a prefix, as well as a set of

pointers to child nodes; each pointer may be accompanied by a label.

Leaf page entries consist of a value and a ���.

All leaf nodes related to a particular inner node are stored together in a single page and

are bound into a list. If the page cannot accommodate another node, this list can bemoved

to a different page,1 or the page can be split; one way or the other, a list never stretches

over several pages.

To save space, the algorithm tries to add new nodes into the same pages until these pages

are completely filled. The numbers of the last pages used are cached by backends and are

periodically saved in the zero page, which is called ametapage. The metapage contains no

reference to the root node, which we would have seen in a �-tree; the root of an ��-�i��

index is always located in the first page.

Unfortunately, the pageinspect extension does not provide any functions for exploring ��-�i��, but

we can use an external extension called gevel.2 It was attempted to integrate its functionality into

pageinspect, but with no success.3

Let’s get back to our example. The illustration below shows how tree nodes can be dis-

tributed between pages. The quad_point_ops operator class does not actually use labels.

Since a node can have four child nodes at the most, the index keeps a fixed-size array of

four pointers, some of which may be empty.

5,55,5

7,7 3,27,7 3,2

8,9 9,7 8,58,9 9,7 8,5 6,6 5,3 3,36,6 5,3 3,3 3,1 0,0 1,23,1 0,0 1,2 0,40,4
leaf
pages

inner
pages

root
page

1 backend/access/spgist/spgdoinsert.c, moveLeafs function
2 sigaev.ru/git/gitweb.cgi?p=gevel.git
3 commitfest.postgresql.org/15/1207

478

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/spgist/spgdoinsert.c;hb=REL_14_STABLE
http://sigaev.ru/git/gitweb.cgi?p=gevel.git
https://commitfest.postgresql.org/15/1207

27.2 Quadtrees for Points

Search

Let’s use the same example to take a look at the algorithm of searching for points located

above point (�,�).

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

The search starts at the root. The inner consistency function1 determines the child nodes

to be descended into. Point (�,�) is compared with the root node’s centroid (�,�) to choose

the quadrants that may contain the sought-after points; in this example, these are quad-

rants � and ��.

Once inside the node with centroid (�,�), we again have to choose the child nodes to de-

scend into. They belong to quadrants � and ��, but since quadrant �� is empty, we only

need to check one leaf node. The leaf consistency function2 compares the points of this

node with point (�,�) specified in the query. The above condition is satisfied only for (�,�).

5,5

7,7 5,3 3,2

8,9 8,5 6,6 3,3 3,1 0,0 0,4

9,7 1,2

�

��
���

�

��

��� �

�� ���

��

1 backend/access/spgist/spgquadtreeproc.c, spg_quad_inner_consistent function
2 backend/access/spgist/spgquadtreeproc.c, spg_quad_leaf_consistent function

479

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/spgist/spgquadtreeproc.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/spgist/spgquadtreeproc.c;hb=REL_14_STABLE

Chapter 27 SP-GiST

Now we just have to go back one level and check the node that corresponds to quadrant

�� of the root node. It is empty, so the search is complete.

Insertion

When a value gets inserted into an ��-�i�� tree,1 each action that follows is determined

by the choice function.2 In this particular case, it simply directs the point to one of the

existing nodes that corresponds to its quadrant.

For example, let’s add value (�,�):

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

The value belongs to quadrant �� and will be added to the corresponding tree node:

5,5

7,7 5,3 3,2

8,9 8,5 6,6 3,3 3,1 0,0 0,4

9,7 1,2

7,1

�
��

���

�

��

��� �

�� ���

��

1 backend/access/spgist/spgdoinsert.c, spgdoinsert function
2 backend/access/spgist/spgquadtreeproc.c, spg_quad_choose function

480

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/spgist/spgdoinsert.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/spgist/spgquadtreeproc.c;hb=REL_14_STABLE

27.2 Quadtrees for Points

If the list of leaf nodes in the selected quadrant becomes too big after insertion (it must

fit a single page), the page is split. The picksplit function1 determines the new centroid by

calculating the average value of all points’ coordinates, thus distributing the child nodes

between new quadrants more or less uniformly.

The following picture illustrates the page overflow caused by point (�,�) insertion:

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

A new inner node with centroid (�,�) is added into the tree, while points (�,�), (�,�), and

(�,�) get redistributed between the new quadrants:

5,5

7,7 5,3 3,2

8,9 8,5 6,6 3,3 3,1 1,1 0,4

1,2 0,0

9,7

2,1

7,1

�
��

���

�

��

��� �

�� ���

��

� ���

1 backend/access/spgist/spgquadtreeproc.c, spg_quad_picksplit function

481

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/spgist/spgquadtreeproc.c;hb=REL_14_STABLE

Chapter 27 SP-GiST

Properties

Access method properties. The spgistmethod reports the following properties:

=> SELECT a.amname, p.name, pg_indexam_has_property(a.oid, p.name)

FROM pg_am a, unnest(array[

'can_order', 'can_unique', 'can_multi_col',

'can_exclude', 'can_include'

]) p(name)

WHERE a.amname = 'spgist';

amname | name | pg_indexam_has_property

−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−

spgist | can_order | f

spgist | can_unique | f

spgist | can_multi_col | f

spgist | can_exclude | t

spgist | can_include | t

(5 rows)

No support is provided for sorting and uniqueness properties. Multicolumn indexes are

not supported either.

Exclusion constraints are supported, just like in �i��.

An ��-�i�� index canv. �� be created with additional ������� columns.

Index-level properties. Unlike �i��, ��-�i�� indexes do not support clusterization:

=> SELECT p.name, pg_index_has_property('airports_quad_idx', p.name)

FROM unnest(array[

'clusterable', 'index_scan', 'bitmap_scan', 'backward_scan'

]) p(name);

name | pg_index_has_property

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−

clusterable | f

index_scan | t

bitmap_scan | t

backward_scan | f

(4 rows)

Both ways of getting ���s (either one by one or as a bitmap) are supported. Backward

scanning is unavailable, as it does not make any sense for ��-�i��.

Column-level properties. For the most part, column-level properties are the same:

=> SELECT p.name,

pg_index_column_has_property('airports_quad_idx', 1, p.name)

FROM unnest(array[

'orderable', 'search_array', 'search_nulls'

]) p(name);

482

27.3 K-Dimensional Trees for Points

name | pg_index_column_has_property

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

orderable | f

search_array | f

search_nulls | t

(3 rows)

Sorting is not supported, so all the related properties do not make any sense and are dis-

abled.

I have not said anything about ���� values so far, but as we can see in the index properties,

they are supported. Unlike �i��, ��-�i�� indexes do not store ���� values in themain tree.

Instead, a separate tree is created; its root is located in the second index page. Thus, the

first three pages always have the same meaning: the metapage, the root of the main tree,

and the root of the tree for ���� values.

Some column-level properties may depend on the particular operator class:

=> SELECT p.name,

pg_index_column_has_property('airports_quad_idx', 1, p.name)

FROM unnest(array[

'returnable', 'distance_orderable'

]) p(name);

name | pg_index_column_has_property

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

returnable | t

distance_orderable | t

(2 rows)

Like in all the other examples in this chapter, this index can be used for index-only scans.

But v. ��in general, an operator class does not necessarily store full values in leaf pages, as

it can recheck them by the table instead. It allows using ��-�i�� indexes in Post��� for

potentially large geometry values, to give one example.

Nearest neighbor search is supported v. ��; we have seen the ordering operator <-> in the op-

erator class.

27.3 K-Dimensional Trees for Points

Points on a plane can also be indexed using another approach to partitioning: we can split

the plane into two sub-regions instead of four. Such partitioning is implemented by the

kd_point_ops1 operator class:

1 backend/access/spgist/spgkdtreeproc.c

483

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/spgist/spgkdtreeproc.c;hb=REL_14_STABLE

Chapter 27 SP-GiST

=> CREATE INDEX airports_kd_idx ON airports_big

USING spgist(coordinates kd_point_ops);

Note that indexed values, prefixes, and labels may have different data types. For this op-

erator class, values are represented as points, prefixes are real numbers, while labels are

not provided (as in quad_point_ops).

Let’s select some coordinate on the Y-axis (it defines the latitude in the example with

airports). This coordinate splits the plane into two sub-regions, the upper and the lower

one:

For each of these sub-regions, select coordinates on the X-axis (longitude) that split them

into two sub-regions, left and right:

484

27.4 Radix Trees for Strings

We will continue splitting each of the resulting sub-regions, taking turns between hori-

zontal and vertical partitioning, until the points in each part fit a single index page:

All inner leaf nodes of the tree built this way will have only two child nodes. The method

can be easily generalized for space with arbitrary dimensions, so such trees are often re-

ferred to as k-dimensional (k-� trees).

27.4 Radix Trees for Strings

The text_ops operator class for ��-�i�� implements a radix tree for strings.1 Here the prefix

of an inner node is really a prefix, which is common to all the strings in the child nodes.

Pointers to child nodes are marked by the first byte of the values that follow the prefix.

For clarity, I use a single character to denote a prefix, but it is true only for �-byte encodings. In

general, the operator class processes a string as a sequence of bytes. Besides, a prefix can take

several other values with special semantics, so there are actually two bytes allocated per prefix.

Child nodes store parts of values that follow the prefix and the label. Leaf nodes keep only

suffixes.

To reconstruct the full value of an index key in a leaf page, we can concatenate all prefixes

and labels, starting from the root node.

Here is an example of a radix tree built over several names:

1 backend/access/spgist/spgtextproc.c

485

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/spgist/spgtextproc.c;hb=REL_14_STABLE

Chapter 27 SP-GiST

V

ADI

IM E ILISA IR LAV

TIN IY

TINA

A L

D

L

S M S

N R

Operator Class

The text_ops operator class supports comparison operators typically used with ordinal

data types, including text strings:

=> SELECT oprname, oprcode::regproc, amopstrategy

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amop amop ON amopfamily = opcfamily

JOIN pg_operator opr ON opr.oid = amopopr

WHERE amname = 'spgist'

AND opcname = 'text_ops'

ORDER BY amopstrategy;

oprname | oprcode | amopstrategy

−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−

~<~ | text_pattern_lt | 1

~<=~ | text_pattern_le | 2

= | texteq | 3

~>=~ | text_pattern_ge | 4

~>~ | text_pattern_gt | 5

< | text_lt | 11

<= | text_le | 12

>= | text_ge | 14

> | text_gt | 15

^@ | starts_with | 28

(10 rows)

486

27.4 Radix Trees for Strings

Regular operators process characters, while operators with tildes deal with bytes. They do

not take collation into account (just like the text_pattern_ops p. ���operator class for �-tree), so

they can be used to speed up search by the ���� condition:

=> CREATE INDEX tickets_spgist_idx ON tickets

USING spgist(passenger_name);

=> EXPLAIN (costs off) SELECT *

FROM tickets

WHERE passenger_name LIKE 'IVAN%';

QUERY PLAN

−−−

Bitmap Heap Scan on tickets

Filter: (passenger_name ~~ 'IVAN%'::text)

−> Bitmap Index Scan on tickets_spgist_idx

Index Cond: ((passenger_name ~>=~ 'IVAN'::text) AND

(passenger_name ~<~ 'IVAO'::text))

(5 rows)

If you use regular operators >= and < together with a collation other than “C,” the index becomes

virtually useless, as it deals with bytes rather than characters.

For such cases of v. ��prefix search, the operator class provides the ^@ operator, which is more

suitable:

=> EXPLAIN (costs off) SELECT *

FROM tickets

WHERE passenger_name ^@ 'IVAN';

QUERY PLAN

−−

Bitmap Heap Scan on tickets

Recheck Cond: (passenger_name ^@ 'IVAN'::text)

−> Bitmap Index Scan on tickets_spgist_idx

Index Cond: (passenger_name ^@ 'IVAN'::text)

(4 rows)

A radix tree representation can sometimes turn out to be much more compact than that

of a �-tree, as it does not keep full values: it reconstructs them as required while the tree

is being traversed.

Search

Let’s run the following query on the names table:

SELECT * FROM names

WHERE name ~>=~ 'VALERIY'

AND name ~<~ 'VLADISLAV';

487

Chapter 27 SP-GiST

First, the inner consistency function1 is called on the root to determine the child nodes to

descend into. This function concatenates prefix � and labels � and �. The received value ��

goes into the query condition; string literals are truncated there, so that their length does

not exceed the length of the value being checked: �� ~>=~ '��'��� �� ~<~ '��'. The condition

is satisfied, so the child node with label � needs to be checked. The �� value is checked in

the same way. It is also a match, so the node with label �must be checked too.

Now let’s take the node that corresponds to value ��. Its prefix is empty, so for the three

child nodes the inner consistency function reconstructs values ���, ���, and ��� by con-

catenating �� received at the previous step and the label. The condition ��� ~>=~ '���' ���

��� ~<~ '���' is not true, but the other two values are suitable.

As the tree is being traversed this way, the algorithm filters out non-matching branches

and gets to leaf nodes. The leaf consistency function2 checks whether the value recon-

structed during the tree traversal satisfies the query condition. Matching values are re-

turned as the result of an index scan.

V

ADI

IM E ILISA IR LAV

TIN IY

TINA

A L

D

L

S M S

N R

Note that although the query uses greater than and less than operators, which are com-

mon to �-trees, range search by ��-�i�� is much less efficient. In a �-tree, it is enough to

descend into a single boundary value of the range and then scan the list of leaf pages.

1 backend/access/spgist/spgtextproc.c, spg_text_inner_consistent function
2 backend/access/spgist/spgtextproc.c, spg_text_leaf_consistent function

488

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/spgist/spgtextproc.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/spgist/spgtextproc.c;hb=REL_14_STABLE

27.4 Radix Trees for Strings

Insertion

The choice function of operator classes for points can always direct a new value into one

of the existing sub-regions (a quadrant or one of the halves). But it is not true for radix

trees: a new value may not match any of the existing prefixes, and the inner node has to

be split in this case.

ADI

IR LAV

M S

AD

IR LAV

I

M S

Let’s add the name ����� to an already built tree.

The choice function1 manages to descend from the root to

the next node (�+ �), but the remaining part of the value ���

does notmatch the ��� prefix. The node has to be split in two:

one of the resulting nodes will contain the common part of

the prefix (��), while the rest of the prefix will be moved one

level down:

Then the choice function is called again on the same node.

The prefix now corresponds to the value, but there is no child

node with a suitable label (�), so the function decides to cre-

ate such a node. The final result is shown in the illustration

below; the nodes that have been added or modified during

the insertion are highlighted.

V

AD

IM E ILISA

TIN IY IR LAV

TINA

A L

D

L

S A I

M SN R

1 backend/access/spgist/spgtextproc.c, spg_text_choose function

489

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/spgist/spgtextproc.c;hb=REL_14_STABLE

Chapter 27 SP-GiST

Properties

I have already described the access method and index-level properties above; they are

common to all the classes. Most of the column-level properties also remain the same.

=> SELECT p.name,

pg_index_column_has_property('tickets_spgist_idx', 1, p.name)

FROM unnest(array[

'returnable', 'distance_orderable'

]) p(name);

name | pg_index_column_has_property

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

returnable | t

distance_orderable | f

(2 rows)

Even though indexed values are not explicitly stored in the tree, index-only scans are sup-

ported, since values are reconstructed as the tree is being traversed from the root to leaf

nodes.

As for the distance operator, it is not defined for strings, so nearest neighbor search is not

provided by this operator class.

It does not mean that the concept of distance cannot be implemented for strings. For example,

the pg_trgm extension adds a distance operator based on trigrams: the fewer common trigrams

are found in two strings, the farther they are assumed to be located from each other. Then there

is the Levenshtein distance, which is defined as the minimal number of single-character edits

required to convert one string into another. A function that calculates such a distance is provided

in the fuzzystrmatch extension. But none of the extensions provides an operator class with ��-�i��

support.

27.5 Other Data Types

S�-�i�� operator classes are not limited to indexing points and text strings that we have

discussed above.

Geometric types. The box_ops1 operator class implements a quadtree for rectangles. Rect-

angles are represented by points in a four-dimensional space, so the area is split into

sixteen partitions.

1 backend/utils/adt/geo_spgist.c

490

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/geo_spgist.c;hb=REL_14_STABLE

27.5 Other Data Types

The poly_ops v. ��class can be used to index polygons. It is a fuzzy operator class: it ac-

tually uses bounding boxes instead of polygons, just like box_ops, and then rechecks

the result by the table.

Whether to choose �i�� or ��-�i�� largely depends on the nature of data to be in-

dexed. For example, Post��� documentation recommends ��-�i�� for objects with

large overlaps (also known as “spaghetti data”).1

Range types. The quadtree for ranges offers the range_ops operator class.2 An interval is

defined by a two-dimensional point: the X-axis represents the lower boundary, while

the Y-axis represents the upper boundary.

Network address types. For the inet data type, the inet_ops3 operator class implements a

radix tree.

1 postgis.net/docs/using_postgis_dbmanagement.html#spgist_indexes
2 backend/utils/adt/rangetypes_spgist.c
3 backend/utils/adt/network_spgist.c

491

https://postgis.net/docs/using_postgis_dbmanagement.html#spgist_indexes
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/rangetypes_spgist.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/network_spgist.c;hb=REL_14_STABLE

28
GIN

28.1 Overview

According to its authors, ��� stands for a potent and undaunted spirit, not for an alcoholic

beverage.1 But there is also a formal interpretation: this acronym is expanded as Gener-

alized Inverted Index.

The ��� accessmethod is designed for data types representing non-atomic valuesmade up

of separate elements (for example, documents consist of lexemes in the context of full-text

search). Unlike �i��, which indexes values as a whole, ��� indexes only their elements;

each element is mapped to all the values that contain it.

We can compare this method to a book’s index, which comprises all the important terms

and lists all the pages where these terms are mentioned. To be convenient to use, it must

be compiled in alphabetical order, otherwise it would be impossible to navigate through

quickly. In a similar way, ��� relies on the fact that all elements of compound values can

be sorted; its main data structure is �-tree.p. ���

The implementation of the ��� tree of elements is less complex than that of a regular

�-tree: it has been designed to contain rather small sets of elements repeated multiple

times.

This assumption leads to two important conclusions:

• An element must be stored in an index only once.

Each element is mapped to a list of ���s, which is called a posting list. If this list

is rather short, it is stored together with the element; longer lists are moved into a

separate posting tree, which is actually a �-tree. Just like element trees, posting lists

are sorted; it does not matter much from the user’s perspective but helps to speed up

data access and reduce index size.

1 postgresql.org/docs/14/gin.html

backend/access/gin/README

492

https://postgresql.org/docs/14/gin.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gin/README;hb=REL_14_STABLE

28.2 Index for Full-Text Search

• There is no point in removing elements from a tree.

Even if the list of ���s for a particular element is empty, the same element is likely to

appear again as part of some other value.

Thus, an index is a tree of elements whose leaf entries are bound to either flat lists or trees

of ���s.

Just like �i�� and ��-�i�� access methods, ��� can be used to index a whole variety of

data types via a simplified interface of operator classes. Operators of such classes usually

check whether the indexed composite valuematches a particular set of elements (just like

the@@ operator checks whether a document satisfies a full-text search query).

To index a particular data type, the ��� method must be able to split composite values

into elements, sort these elements, and check whether the found value satisfies the query.

These operations are implemented by support functions of the operator class.

28.2 Index for Full-Text Search

G�� is mainly applied to speed up full-text search, so I will go on with the example used to

illustrate �i�� indexing. p. ���As you can guess, compound values in this case are documents,

while elements of these values are lexemes.

Let’s build a ��� index on the “Old MacDonald” table: p. ���

=> CREATE INDEX ts_gin_idx ON ts USING gin(doc_tsv);

Apossible structure of this index is shown below. Unlike in the previous illustrations, here

I provide actual ��� values (shown with a grey background), as they are important for un-

derstanding the algorithms. These values suggest that heap tuples have the following ��s:

=> SELECT ctid, * FROM ts;

ctid | doc | doc_tsv

−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(0,1) | Old MacDonald had a farm | 'farm':5 'macdonald':2 'old':1

(0,2) | And on his farm he had some cows | 'cow':8 'farm':4

(0,3) | Here a moo, there a moo | 'moo':3,6

(0,4) | Everywhere a moo moo | 'everywher':1 'moo':3,4

(1,1) | Old MacDonald had a farm | 'farm':5 'macdonald':2 'old':1

(1,2) | And on his farm he had some chicks | 'chick':8 'farm':4

(1,3) | Here a cluck, there a cluck | 'cluck':3,6

(1,4) | Everywhere a cluck cluck | 'cluck':3,4 'everywher':1

(2,1) | Old MacDonald had a farm | 'farm':5 'macdonald':2 'old':1

(2,2) | And on his farm he had some pigs | 'farm':4 'pig':8

(2,3) | Here an oink, there an oink | 'oink':3,6

(2,4) | Everywhere an oink oink | 'everywher':1 'oink':3,4

(12 rows)

493

Chapter 28 GIN

metapage

everywher oinkeverywher oink

chick cluck cow everywher farm macdonald moo oink old pig

1,2 1,3

1,4

0,2 0,4

1,4

2,4

0,1

1,1

2,1

0,3

0,4

2,3

2,4

0,1

1,1

2,1

2,2

1,2

0,1 0,2 1,1 1,2 2,1 2,2

Note some differences from a regular �-tree indexp. ��� here. The leftmost keys in inner �-tree

nodes are empty, as they are actually redundant; in a ��� index, they are not stored at all.

For this reason, references to child nodes are shifted too. The high key is used in both

indexes, but in ��� it takes its legitimate rightmost position. Same-level nodes in a �-tree

are bound into a bidirectional list; ��� uses a unidirectional list, since the tree is always

traversed in only one direction.

In this theoretical example, all posting lists fit regular pages, except the one for the “farm”

lexeme. This lexeme occurred in as many as six documents, so its ��s were moved into a

separate posting tree.

Page Layout

G�� page layout is very similar to that of a �-tree. We can peek into an index using the

pageinspect extension. Let’s create a ��� index on the table that stores emails of the pgsql-

hackersp. ��� mailing list:

494

28.2 Index for Full-Text Search

=> CREATE INDEX mail_gin_idx ON mail_messages USING gin(tsv);

The zero page (themetapage) contains the basic statistics, such as the number of elements

and pages of other types:

=> SELECT *

FROM gin_metapage_info(get_raw_page('mail_gin_idx',0)) \gx

−[RECORD 1]−−−−+−−−−−−−−−−−

pending_head | 4294967295

pending_tail | 4294967295

tail_free_size | 0

n_pending_pages | 0

n_pending_tuples | 0

n_total_pages | 22957

n_entry_pages | 13522

n_data_pages | 9434

n_entries | 999109

version | 2

G�� uses the special space p. ��of index pages; for example, this space stores the bits that

define the page type:

=> SELECT flags, count(*)

FROM generate_series(0,22956) AS p, -- n_total_pages

gin_page_opaque_info(get_raw_page('mail_gin_idx',p))

GROUP BY flags

ORDER BY 2;

flags | count

−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−

{meta} | 1

{} | 137

{data} | 1525

{data,leaf,compressed} | 7909

{leaf} | 13385

(5 rows)

The page with themeta attribute is of course the metapage. Pages with the data attribute

belong to posting lists, while pages without this attribute are related to element trees.

Leaf pages have the leaf attribute.

In the next example, another pageinspect function returns the information on ���s that

are stored in trees’ leaf pages. Each entry of such a tree is virtually a small list of ���s

rather than a single ���:

=> SELECT left(tids::text,60)||'...' tids

FROM gin_leafpage_items(get_raw_page('mail_gin_idx',24));

495

Chapter 28 GIN

tids

−−−

{"(4771,4)","(4775,2)","(4775,5)","(4777,4)","(4779,1)","(47...

{"(5004,2)","(5011,2)","(5013,1)","(5013,2)","(5013,3)","(50...

{"(5435,6)","(5438,3)","(5439,3)","(5439,4)","(5439,5)","(54...

...

{"(9789,4)","(9791,6)","(9792,4)","(9794,4)","(9794,5)","(97...

{"(9937,4)","(9937,6)","(9938,4)","(9939,1)","(9939,5)","(99...

{"(10116,5)","(10118,1)","(10118,4)","(10119,2)","(10121,2)"...

(27 rows)

Posting lists are ordered, which allows them to be compressed (hence the same-name

attribute). Instead of a six-byte ���, they store its difference with the previous value,

which is represented by a variable number of bytes:1 the smaller this difference, the less

space the data takes.

Operator Class

Here is the list of support functions for ��� operator classes:2

=> SELECT amprocnum, amproc::regproc

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amproc amop ON amprocfamily = opcfamily

WHERE amname = 'gin'

AND opcname = 'tsvector_ops'

ORDER BY amprocnum;

amprocnum | amproc

−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 | gin_cmp_tslexeme

2 | pg_catalog.gin_extract_tsvector

3 | pg_catalog.gin_extract_tsquery

4 | pg_catalog.gin_tsquery_consistent

5 | gin_cmp_prefix

6 | gin_tsquery_triconsistent

(6 rows)

The first support function compares two elements (two lexemes in this case). If the lex-

emeswere represented by a regular ��� type supported by �-tree, ���would automatically

use comparison operators defined in the �-tree operator class.

The fifth (optional) function is used in partial search to check whether an index element

partially matches the search key. In this particular case, partial search consists in search-

1 backend/access/gin/ginpostinglist.c
2 postgresql.org/docs/14/gin-extensibility.html

backend/utils/adt/tsginidx.c

496

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gin/ginpostinglist.c;hb=REL_14_STABLE
https://postgresql.org/docs/14/gin-extensibility.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/tsginidx.c;hb=REL_14_STABLE

28.2 Index for Full-Text Search

ing lexemes by a prefix. For example, the query “c:*” corresponds to all lexemes starting

with letter “c.”

The second function extracts lexemes from the document, while the third one extracts

lexemes from the search query. The use of different functions is justified because, at the

very least, the document and the query are represented by different data types, namely

tsvector and tsquery. Besides, the function for the search query determines how the search

will be performed. If the query requires the document to contain a particular lexeme,

the search will be limited to the documents that contain at least one lexeme specified in

the query. If there is no such condition (for example, if you need documents that do not

contain a particular lexeme), all the documents have to be scanned—which is of course

much more expensive.

If the query contains any other search keys, v. ��the index is first scanned by these keys, and then these

intermediate results are rechecked. Thus, there is no need to scan the index in full.

The fourth and sixth functions are consistency functions, which determine whether the

found document satisfies the search query. As input, the fourth function gets the exact

information on which lexemes specified in the query appear in the document. The sixth

function operates in the context of uncertainty and can be called when it is not yet clear

whether some of the lexemes are present in the document or not. An operator class does

not have to implement both functions: it is enough to provide only one of them,but search

efficiency may suffer in this case.

The tsvector_ops operator class supports only one operator that matches the document

against the search query: @@,1 which is also included into the �i�� operator class.

Search

Let’s take a look at the search algorithm for the “everywhere | oink” query, where two

lexemes are connected by the �� operator. First, a support function2 extracts lexemes

“everywher” and “oink” (search keys) from the search string of the tsquery type.

Since the query demands particular lexemes to be present, ���s of the documents that

contain at least one key specified in the query are bound into a list. For this purpose, the

���s that correspond to each search key are searched in the tree of lexemes and are added

into a common list. All the ���s stored in an index are ordered, which allows merging p. ���

several sorted streams of ���s into one.3

1 backend/utils/adt/tsvector_op.c, ts_match_vq function
2 backend/utils/adt/tsginidx.c, gin_extract_tsquery function
3 backend/access/gin/ginget.c, keyGetItem function

497

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/tsvector_op.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/tsginidx.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gin/ginget.c;hb=REL_14_STABLE

Chapter 28 GIN

Note that at this point it does not matter yet whether the keys were combined by ���, ��,

or any other operator: the search engine deals with the list of keys and knows nothing

about the search query semantics.

everywher oinkeverywher oink

chick cluck cow everywher farm macdonald moo oink old pig

1,2 1,3

1,4

0,2 0,4

1,4

2,4

0,1

1,1

2,1

0,3

0,4

2,3

2,4

0,1

1,1

2,1

2,2

1,2

0,1 0,2 1,1 1,2 2,1 2,2

Each found ��� that corresponds to a document is checked by the consistency function.1

It is this function that interprets the search query and leaves only those ���s that satisfy

the query (or at least may satisfy it and have to be rechecked by the table).

In this particular case, the consistency function leaves all the ���s:

consistency
��� “everywher” “oink” function

(�,�) 3 – 3

(�,�) 3 – 3

(�,�) – 3 3

(�,�) 3 3 3

Instead of a regular lexeme, search queries can contain a prefix. It is useful if an appli-

cation user can enter the first letters of a word into the search field, expecting to get the

1 backend/utils/adt/tsginidx.c, gin_tsquery_triconsistent function

498

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/tsginidx.c;hb=REL_14_STABLE

28.2 Index for Full-Text Search

results right away. For example, the “pig:*” query will match all the documents that con-

tain lexemes starting with “pig”: here we get “pigs,” and we would also get “pigeons” if

old MacDonald had bred them on his farm.

Such partial search matches indexed lexemes against the search key using a special sup-

port function;1 in addition to prefix matching, this function can also implement other

logic for partial search.

Frequent and Rare Lexemes

If searched lexemes occur in a document multiple times, the created list of ���s will turn

out long, which is of course inefficient. Fortunately, it can often be avoided if the query

also contains some rare lexemes.

Let’s consider the “farm & cluck” query. The “cluck” lexeme occurs two times, while the

“farm” lexeme appears six times. Instead of treating both lexemes equally and building

the full list of ���s by them, the rare “cluck” lexeme is considered mandatory, while the

more frequent “farm” lexeme is treated as optional, as it is clear that (taking the query

semantics into account) a document with the “farm” lexeme can satisfy the query only if

it contains the “cluck” lexeme too.

Thus, an index scan determines the first document that contains “cluck”; its ��� is (�,�).

Then we have to find out whether this document also contains the “farm” lexeme, but all

the documents whose ���s are smaller than (�,�) can be skipped. Since frequent lexemes

are likely to correspond to many ���s, chances are high that they are stored in a separate

tree, so some pages can be skipped as well. In this particular case, the search in the tree

of “farm” lexemes starts with (�,�).

This procedure is repeated for the subsequent values of the mandatory lexeme.

Clearly, this optimization can also be applied to more complex search scenarios that in-

volve more than two lexemes. The algorithm sorts the lexemes in the order of their

frequency, adds them one by one to the list of mandatory lexemes, and stops when the

remaining lexemes are no longer able to guarantee that the document satisfies the query.2

For example, let’s consider the query “farm & (cluck | chick)”. The least frequent lexeme

is “chick”; it is added to the list of mandatory lexemes right away. To check whether other

lexemes can be considered optional, the consistency function takes false for the manda-

tory lexeme and true for all the other lexemes. It returns true AND (true OR false) = true,

1 backend/utils/adt/tsginidx.c, gin_cmp_prefix function
2 backend/access/gin/ginget.c, startScanKey function

499

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/tsginidx.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gin/ginget.c;hb=REL_14_STABLE

Chapter 28 GIN

which means that the remaining lexemes are “self-sufficient,” and at least one of them

must become mandatory.

The next least frequent lexeme (“cluck”) is added into the list, and now the consistency

function returns true AND (false OR false) = false. Thus, “chick” and “cluck” lexemes be-

come mandatory, while “farm” remains optional.

everywher oinkeverywher oink

chick cluck cow everywher farm macdonald moo oink old pig

1,2 1,3

1,4

0,2 0,4

1,4

2,4

0,1

1,1

2,1

0,3

0,4

2,3

2,4

0,1

1,1

2,1

2,2

1,2

0,1 0,2 1,1 1,2 2,1 2,2

The length of the posting list is three, as the mandatory lexemes have occurred three

times:

consistency
��� “chick” “cluck” “farm” function

(�,�) 3 – 3 3

(�,�) – 3 – –

(�,�) – 3 – –

Thus, if lexeme frequencies are knownp. ��� , it is possible to merge trees of lexemes in the

most efficient way, starting from rare lexemes and skipping those page ranges of frequent

lexemes that are sure to be redundant. It reduces the number of times the consistency

function has to be called.

To make sure that this optimization really works, let’s queryp. ��� the pgsql-hackers archive.

We will need to specify two lexemes, a common and a rare one:

500

28.2 Index for Full-Text Search

=> SELECT word, ndoc

FROM ts_stat('SELECT tsv FROM mail_messages')

WHERE word IN ('wrote', 'tattoo');

word | ndoc

−−−−−−−−+−−−−−−−−

wrote | 231173

tattoo | 2

(2 rows)

It turns out that a document that contains them both does exist:

=> \timing on

=> SELECT count(*) FROM mail_messages

WHERE tsv @@ to_tsquery('wrote & tattoo');

count

−−−−−−−

1

(1 row)

Time: 0,631 ms

This query is performed almost just as fast as the search for a single word “tattoo”:

=> SELECT count(*) FROM mail_messages

WHERE tsv @@ to_tsquery('tattoo');

count

−−−−−−−

2

(1 row)

Time: 2,227 ms

But if we were looking for a single word “wrote,” the search would take much longer:

=> SELECT count(*) FROM mail_messages

WHERE tsv @@ to_tsquery('wrote');

count

−−−−−−−−

231173

(1 row)

Time: 343,556 ms

=> \timing off

Insertions

A ��� index cannot contain duplicates;1 if an element to be added is already present in

the index, its ��� is simply added to the posting list or tree of an already existing element.

1 backend/access/gin/gininsert.c, ginEntryInsert function

501

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gin/gininsert.c;hb=REL_14_STABLE

Chapter 28 GIN

A posting list is a part of an index entry that cannot take too much space in a page, so if

the allotted space is exceeded, the list is transformed into a tree.1

When a new element (or a new ���) is being added into a tree, a page overflow can occur;

in this case, the page is split into two, and the elements are redistributed between them.2

But each document typically containsmany lexemes that have to be indexed. So even if we

create or modify just one document, the index tree still undergoes a lot of modifications.

That is why ��� updates are rather slow.

The illustration below shows the state of the tree after the row “Everywhere clucks,moos,

and oinks” with ��� (�,�) was inserted into the table. The posting lists of lexemes “cluck,”

“moo,” and “oink” were extended; the list of the “everywher” lexeme exceeded the maxi-

mal size and was split off as a separate tree.

everywher oinkeverywher oink

chick cluck cow everywher farm macdonald moo oink old pig

1,2 1,3

1,4

4,1

0,2 0,1

1,1

2,1

0,3

0,4

4,1

2,3

2,4

4,1

0,1

1,1

2,1

2,2

1,2

0,1 0,2 1,1 1,2 2,1 2,2

2,4

0,4 1,4 2,4 4,1

However, if an index gets updated to incorporate changes related to several documents at

once, the total amount of work is likely to be reduced as compared to consecutive changes,

as these documents may contain some common lexemes.

1 backend/access/gin/gininsert.c, addItemPointersToLeafTuple function
2 backend/access/gin/ginbtree.c, ginInsertValue function

502

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gin/gininsert.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gin/ginbtree.c;hb=REL_14_STABLE

28.2 Index for Full-Text Search

This optimization is controlled by the onfastupdate storage parameter. Deferred index up-

dates are accumulated in an unordered pending list, p. ���which is physically stored in separate

list pages outside the element tree. When this list becomes big enough, all its contents is

transferred into the index in one go, and the list is cleared.1 Themaximal size of the list is

defined either by the 4MBgin_pending_list_limit parameter or by the same-name index storage

parameter.

By default, such deferred updates are enabled, but you should keep in mind that they slow

down search: apart from the tree itself, the whole unordered list of lexemes has to be

scanned. Besides, insertion time becomes less predictable, as any change can lead to an

overflow that incurs an expensive merge procedure. The latter is partially smoothed by

the fact that the merge can be also performed asynchronously during index vacuuming.

When a new index is created,2 the elements also get added in batches rather than one by

one,which would be too slow. Instead of being saved into an unordered list on disk, all the

changes are accumulated in a 64MBmaintenance_work_memmemory chunk and get transferred

into an index once this chunk has no more free space. The more memory is allocated for

this operation, the faster the index is built.

The examples provided in this chapter prove ��� superiority over �i�� signature trees p. ���

when it comes to search precision. For this reason, it is ��� that is typically used for full-

text search. However, the problem of slow ��� updates may tip the scale in favor of �i��

if the data is being actively updated.

Limiting Result Set Size

The ��� access method always returns the result as a bitmap; it is impossible to get ���s

one by one. In other words, the B����� S��� p. ���property is supported, but the I���� S���

property is not.

The reason for this limitation is the unordered list of deferred updates. In the case of

an index access, this list is scanned to build a bitmap, and then this bitmap is updated

with the data of the tree. If the unordered list gets merged with the tree (as the result of

an index update or during vacuuming) while search is in progress, the same value can be

returned twice, which is unacceptable. But in the case of a bitmap it does not pose any

problems: the same bit will simply be set twice.

1 backend/access/gin/ginfast.c, ginInsertCleanup function
2 backend/access/gin/gininsert.c, ginbuild function

503

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gin/ginfast.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gin/gininsert.c;hb=REL_14_STABLE

Chapter 28 GIN

Consequently, using the ����� clause with a ��� index is not quite efficient, as the bitmap

still has to be built in full, which contributes a fair share to the total cost:

=> EXPLAIN SELECT * FROM mail_messages

WHERE tsv @@ to_tsquery('hacker')

LIMIT 1000;

QUERY PLAN

−−−

Limit (cost=481.41..1964.22 rows=1000 width=1258)

−> Bitmap Heap Scan on mail_messages

(cost=481.41..74939.28 rows=50214 width=1258)

Recheck Cond: (tsv @@ to_tsquery('hacker'::text))

−> Bitmap Index Scan on mail_gin_idx

(cost=0.00..468.85 rows=50214 width=0)

Index Cond: (tsv @@ to_tsquery('hacker'::text))

(7 rows)

Therefore, the ��� method offers a special feature that limits the number of results re-

turned by an index scan. This limit is imposed by the0 gin_fuzzy_search_limit parameter,

which is turned off by default. If this parameter is enabled, the index access method will

randomly skip some values to get roughly the specified number of rows (hence the name

“fuzzy”):1

=> SET gin_fuzzy_search_limit = 1000;

=> SELECT count(*)

FROM mail_messages

WHERE tsv @@ to_tsquery('hacker');

count

−−−−−−−

727

(1 row)

=> SELECT count(*)

FROM mail_messages

WHERE tsv @@ to_tsquery('hacker');

count

−−−−−−−

791

(1 row)

=> RESET gin_fuzzy_search_limit;

Note that there are no ����� clauses in these queries. It is the only legitimate way to get

different data when using an index scan and a heap scan. The planner knows nothing

about such behavior of ��� indexes and does not take this parameter value into account

when estimating the cost.

1 backend/access/gin/ginget.c, dropItem macro

504

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gin/ginget.c;hb=REL_14_STABLE

28.2 Index for Full-Text Search

Properties

All the properties of the gin access method are the same at all levels; they do not depend

on a particular operator class.

Access Method Properties

=> SELECT a.amname, p.name, pg_indexam_has_property(a.oid, p.name)

FROM pg_am a, unnest(array[

'can_order', 'can_unique', 'can_multi_col',

'can_exclude', 'can_include'

]) p(name)

WHERE a.amname = 'gin';

amname | name | pg_indexam_has_property

−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−

gin | can_order | f

gin | can_unique | f

gin | can_multi_col | t

gin | can_exclude | f

gin | can_include | f

(5 rows)

G�� supports neither sorting nor unique constraints.

Multicolumn indexes are supported, but it is worth mentioning that the order of their

columns is irrelevant. Unlike a regular �-tree, a multicolumn ��� index does not store

composite keys; instead, it extends separate elements with the corresponding column

number.

Exclusion constraints cannot be supported because the I���� S��� property is unavailable.

G�� does not support additional ������� columns. Such columns simply donotmakemuch

sense here, as it is hardly possible to use a ��� index as covering: it contains only separate

elements of an index value, while the value itself is stored in the table.

Index-Level Properties

=> SELECT p.name, pg_index_has_property('mail_gin_idx', p.name)

FROM unnest(array[

'clusterable', 'index_scan', 'bitmap_scan', 'backward_scan'

]) p(name);

name | pg_index_has_property

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−

clusterable | f

index_scan | f

bitmap_scan | t

backward_scan | f

(4 rows)

505

Chapter 28 GIN

Fetching results one by one is not supported: the index access always returns a bitmap.

For the same reason, it makes no sense to reorder tables by a ��� index: the bitmap always

corresponds to the physical layout of data in a table, whichever it is.

Backward scanning is not supported: this feature is useful for regular index scans, not for

bitmap scans.

Column-Level Properties

=> SELECT p.name,

pg_index_column_has_property('mail_gin_idx', 1, p.name)

FROM unnest(array[

'orderable', 'search_array', 'search_nulls',

'returnable', 'distance_orderable'

]) p(name);

name | pg_index_column_has_property

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

orderable | f

search_array | f

search_nulls | f

returnable | f

distance_orderable | f

(5 rows)

None of the column-level properties are available: neither sorting (for obvious reasons)

nor using the index as covering (since the document itself is not stored in the index). N���

support is not available either (it does not make sense for elements of non-atomic types).

GIN Limitations and RUM Index

Potent as it is, ��� still cannot address all the challenges of full-text search. Although the

tsvector type does indicate positions of lexemes, this information does not make it into an

index. Therefore, ��� cannot be used to speed up phrase search, which takes lexeme prox-

imity into account. Moreover, search engines usually return results by relevance (whatever

this term might mean), and since ��� does not support ordering operators, the only so-

lution here would be computing the ranking function for each resulting row, which is of

course very slow.

These drawbacks have been addressed by the ��� access method (whose name makes us

doubt developers’ sincerity when it comes to the truemeaning of ���). This accessmethod

is provided as an extension; you can either download the corresponding package from the

���� repository1 or get the source code itself.2

1 postgresql.org/download
2 github.com/postgrespro/rum

506

https://postgresql.org/download
https://github.com/postgrespro/rum

28.3 Trigrams

R�� is based on ���, but they have two major differences. First, ��� does not provide

deferred updates, so it supports regular index scans in addition to bitmap scans and im-

plements ordering operators. Second, ��� index keys can be extended with additional

information. This feature resembles ������� columns to some extent, but here additional

information is bound to a particular key. In the context of full-text search, ��� opera-

tor class maps lexeme occurrences to their positions in the document, which speeds up

phrase search and result ranking.

The downsides of this approach are slow updates and larger index sizes. Besides, since the

rum access method is provided as an extension, it relies on the generic ��� mechanism,1

which is slower than the built-in logging and generates bigger volumes of ���.

28.3 Trigrams

The pg_trgm2 extension can assess word similarity by comparing the number of coinciding

three-letter sequences (trigrams). Word similarity can be used alongside full-text search

to return some results even if the words to search for have been entered with typos.

The gin_trgm_ops operator class implements text string indexing. To single out elements

of text values, it extracts various three-letter substrings rather than words or lexemes

(only letters and digits are taken into account; other characters are ignored). Within an

index, trigrams are represented as integers. Note that for non-Latin characters, which

take from two to four bytes in the ���-� encoding, such representation does not allow

decoding the original symbols.

=> CREATE EXTENSION pg_trgm;

=> SELECT unnest(show_trgm('macdonald')),

unnest(show_trgm('McDonald'));

unnest | unnest

−−−−−−−−+−−−−−−−−

m | m

ma | mc

acd | ald

ald | cdo

cdo | don

don | ld

ld | mcd

mac | nal

nal | ona

ona |

(10 rows)

1 postgresql.org/docs/14/generic-wal.html
2 postgresql.org/docs/14/pgtrgm.html

507

https://postgresql.org/docs/14/generic-wal.html
https://postgresql.org/docs/14/pgtrgm.html

Chapter 28 GIN

This class supports operators for both precise and fuzzy comparison of strings and words.

=> SELECT amopopr::regoperator, oprcode::regproc

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amop amop ON amopfamily = opcfamily

JOIN pg_operator opr ON opr.oid = amopopr

WHERE amname = 'gin'

AND opcname = 'gin_trgm_ops'

ORDER BY amopstrategy;

amopopr | oprcode

−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%(text,text) | similarity_op

~~(text,text) | textlike

~~*(text,text) | texticlike

~(text,text) | textregexeq

~*(text,text) | texticregexeq

%>(text,text) | word_similarity_commutator_op

%>>(text,text) | strict_word_similarity_commutator_op

=(text,text) | texteq

(8 rows)

regular expressions

LIKE and ILIKE

To perform fuzzy comparison, we can define the distance between strings as a ratio of

common trigrams to the total number of trigrams in the query string. But as I have al-

ready shown, ��� does not support ordering operators, so all operators in the class must

be Boolean. Therefore, for %, %>, and %>> operators that implement strategies of fuzzy

comparison, the consistency function returns true if the computed distance does not ex-

ceed the defined threshold.

For = and ���� operators, the consistency function demands that the value contains all the

trigrams of the query string. Matching a document against a regular expression requires

a much more complex check.

In any case, trigram search is always fuzzy, and the results have to be rechecked.

28.4 Indexing Arrays

The array data type is also supported by ���. Built over array elements, a ��� index can

be used to quickly determine whether an array overlaps with or is contained in another

array:

508

28.4 Indexing Arrays

=> SELECT amopopr::regoperator, oprcode::regproc, amopstrategy

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amop amop ON amopfamily = opcfamily

JOIN pg_operator opr ON opr.oid = amopopr

WHERE amname = 'gin'

AND opcname = 'array_ops'

ORDER BY amopstrategy;

amopopr | oprcode | amopstrategy

−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−

&&(anyarray,anyarray) | arrayoverlap | 1

@>(anyarray,anyarray) | arraycontains | 2

<@(anyarray,anyarray) | arraycontained | 3

=(anyarray,anyarray) | array_eq | 4

(4 rows)

As an example, let’s take the routes view of the demo database that shows the information

on flights. The days_of_week column is an array of days of the week on which flights are

performed. To build an index, we first have to materialize the view:

=> CREATE TABLE routes_tbl AS

SELECT * FROM routes;

SELECT 710

=> CREATE INDEX ON routes_tbl USING gin(days_of_week);

Let’s use the created index to select the flights that depart on Tuesdays, Thursdays, and

Sundays. I turn off sequential scanning; otherwise, the planner would not use the index

for such a small table:

=> SET enable_seqscan = off;

=> EXPLAIN (costs off)

SELECT *

FROM routes_tbl

WHERE days_of_week = ARRAY[2,4,7];

QUERY PLAN

−−−

Bitmap Heap Scan on routes_tbl

Recheck Cond: (days_of_week = '{2,4,7}'::integer[])

−> Bitmap Index Scan on routes_tbl_days_of_week_idx

Index Cond: (days_of_week = '{2,4,7}'::integer[])

(4 rows)

It turns out that there are eleven such flights:

=> SELECT flight_no, departure_airport, arrival_airport, days_of_week

FROM routes_tbl

WHERE days_of_week = ARRAY[2,4,7];

509

Chapter 28 GIN

flight_no | departure_airport | arrival_airport | days_of_week

−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−

PG0023 | OSW | KRO | {2,4,7}

PG0123 | NBC | ROV | {2,4,7}

PG0155 | ARH | TJM | {2,4,7}

PG0260 | STW | CEK | {2,4,7}

PG0261 | SVO | GDZ | {2,4,7}

PG0310 | UUD | NYM | {2,4,7}

PG0370 | DME | KRO | {2,4,7}

PG0371 | KRO | DME | {2,4,7}

PG0448 | VKO | STW | {2,4,7}

PG0482 | DME | KEJ | {2,4,7}

PG0651 | UIK | KHV | {2,4,7}

(11 rows)

The built index contains only seven elements: integer numbers from � to � that represent

days of the week.

The query execution is quite similar to what I have shown before for the full-text search.

In this particular case, the search query is represented by a regular array rather than by

a special data type; it is assumed that the indexed array must contain all the specified

elements. An important distinction here is that the equality condition also requires the

indexed array to contain no other elements. The consistency function1 knows about this

requirement thanks to the strategy number, but it cannot verify that there are no un-

wanted elements, so it requests the indexing engine to recheck the results by the table:

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT * FROM routes_tbl

WHERE days_of_week = ARRAY[2,4,7];

QUERY PLAN

−−−

Bitmap Heap Scan on routes_tbl (actual rows=11 loops=1)

Recheck Cond: (days_of_week = '{2,4,7}'::integer[])

Rows Removed by Index Recheck: 482

Heap Blocks: exact=16

−> Bitmap Index Scan on routes_tbl_days_of_week_idx (actual ro...

Index Cond: (days_of_week = '{2,4,7}'::integer[])

(6 rows)

It may be useful to extend the ��� index with additional columns. For example, to enable

search for the flights that depart on Tuesdays, Thursdays, and Sundays from Moscow, the

index lacks the departure_city column. But there are no operator classes implemented for

regular scalar data types:

1 backend/access/gin/ginarrayproc.c, ginarrayconsistent function

510

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/gin/ginarrayproc.c;hb=REL_14_STABLE

28.5 Indexing JSON

=> CREATE INDEX ON routes_tbl USING gin(days_of_week, departure_city);

ERROR: data type text has no default operator class for access

method "gin"

HINT: You must specify an operator class for the index or define a

default operator class for the data type.

Such situations can be addressed by the btree_gin p. ���extension. It adds ��� operator classes

that simulate regular �-tree processing by representing a scalar value as a composite value

with a single element.

=> CREATE EXTENSION btree_gin;

=> CREATE INDEX ON routes_tbl USING gin(days_of_week,departure_city);

=> EXPLAIN (costs off)

SELECT * FROM routes_tbl

WHERE days_of_week = ARRAY[2,4,7]

AND departure_city = 'Moscow';

QUERY PLAN

−−−

Bitmap Heap Scan on routes_tbl

Recheck Cond: ((days_of_week = '{2,4,7}'::integer[]) AND

(departure_city = 'Moscow'::text))

−> Bitmap Index Scan on routes_tbl_days_of_week_departure_city...

Index Cond: ((days_of_week = '{2,4,7}'::integer[]) AND

(departure_city = 'Moscow'::text))

(6 rows)

=> RESET enable_seqscan;

The remark made about btree_gist holds true for btree_gin as well: a �-tree is much more

efficient when it comes to comparison operations, so it makes sense to use the btree_gin

extension only when a ��� index is really needed. For instance, a search by less than or

less than or equal to conditions can be performed by a backward scan in a �-tree, but not

in ���.

28.5 Indexing JSON

Onemore non-atomic data type with built-in ��� support is jsonb.1 It offers a whole range

of operators for ����, and some of them can perform faster using ���.

There are two operator classes that extract different sets of elements from a ���� docu-

ment:

1 postgresql.org/docs/14/datatype-json.html

511

https://postgresql.org/docs/14/datatype-json.html

Chapter 28 GIN

=> SELECT opcname

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

WHERE amname = 'gin'

AND opcintype = 'jsonb'::regtype;

opcname

−−−−−−−−−−−−−−−−

jsonb_ops

jsonb_path_ops

(2 rows)

jsonb_ops Operator Class

The jsonb_ops operator class is the default one. All the keys, values, and array elements

of the original ���� document are converted into index entries.1 It speeds up queries that

check for inclusion of ���� values (@>), existence of keys (?, ?|, and ?&), or ���� path

matches (@? and@@):

=> SELECT amopopr::regoperator, oprcode::regproc, amopstrategy

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amop amop ON amopfamily = opcfamily

JOIN pg_operator opr ON opr.oid = amopopr

WHERE amname = 'gin'

AND opcname = 'jsonb_ops'

ORDER BY amopstrategy;

amopopr | oprcode | amopstrategy

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−

@>(jsonb,jsonb) | jsonb_contains | 7

?(jsonb,text) | jsonb_exists | 9

?|(jsonb,text[]) | jsonb_exists_any | 10

?&(jsonb,text[]) | jsonb_exists_all | 11

@?(jsonb,jsonpath) | jsonb_path_exists_opr | 15

@@(jsonb,jsonpath) | jsonb_path_match_opr | 16

(6 rows)

Let’s convert several rows of the routes view into the ���� format:

=> CREATE TABLE routes_jsonb AS

SELECT to_jsonb(t) route

FROM (

SELECT departure_airport_name, arrival_airport_name, days_of_week

FROM routes

ORDER BY flight_no

LIMIT 4

) t;

1 backend/utils/adt/jsonb_gin.c, gin_extract_jsonb function

512

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/jsonb_gin.c;hb=REL_14_STABLE

28.5 Indexing JSON

=> SELECT ctid, jsonb_pretty(route) FROM routes_jsonb;

ctid | jsonb_pretty

−−−−−−−+−−−

(0,1) | { +

| "days_of_week": [+

| 6 +

|], +

| "arrival_airport_name": "Surgut Airport", +

| "departure_airport_name": "Ust−Ilimsk Airport" +

| }

(0,2) | { +

| "days_of_week": [+

| 7 +

|], +

| "arrival_airport_name": "Ust−Ilimsk Airport", +

| "departure_airport_name": "Surgut Airport" +

| }

(0,3) | { +

| "days_of_week": [+

| 2, +

| 6 +

|], +

| "arrival_airport_name": "Sochi International Airport", +

| "departure_airport_name": "Ivanovo South Airport" +

| }

(0,4) | { +

| "days_of_week": [+

| 3, +

| 7 +

|], +

| "arrival_airport_name": "Ivanovo South Airport", +

| "departure_airport_name": "Sochi International Airport"+

| }

(4 rows)

=> CREATE INDEX ON routes_jsonb USING gin(route);

Let’s consider a query with condition route @> '{"days_of_week": [6]}', which selects ����

documents containing the specified path (that is, the flights performed on Saturdays).

The support function1 extracts the search keys from the ���� value of the search query:

“days_of_week” and “6”. These keys are searched in the element tree, and the documents

that contain at least one of them are checked by the consistency function.2 For the con-

tains strategy, this function demands that all the search keys are available, but the results

still have to be rechecked by the table: from the point of view of an index, the specified

path can also correspond to documents like {"days_of_week": [2], "foo": [6]}.

1 backend/utils/adt/jsonb_gin.c, gin_extract_jsonb_query function
2 backend/utils/adt/jsonb_gin.c, gin_consistent_jsonb function

513

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/jsonb_gin.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/jsonb_gin.c;hb=REL_14_STABLE

Chapter 28 GIN

The created index can be illustrated as follows:

arrival_airport_name Ivanovo-Yuzhnyarrival_airport_name Ivanovo-Yuzhny

2 3 6 7 ar
ri
va
l_
ai
rp
or
t_
na

m
e

da
ys
_o
f_
w
ee
k

de
pa

rt
ur
e_
ai
rp
or
t_
na

m
e

Iv
an

ov
o-
Yu

zh
ny

So
ch
i

Su
rg
ut

U
st
-I
lim

sk

0,3 0,4 0,1

0,3

0,2

0,4

0,1

0,2

0,3

0,4

0,1

0,2

0,3

0,4

0,1

0,2

0,3

0,4

0,3

0,4

0,3

0,4

0,1

0,2

0,1

0,2

jsonb_path_ops Operator Class

The second class called jsonb_path_ops contains fewer operators:

=> SELECT amopopr::regoperator, oprcode::regproc, amopstrategy

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amop amop ON amopfamily = opcfamily

JOIN pg_operator opr ON opr.oid = amopopr

WHERE amname = 'gin'

AND opcname = 'jsonb_path_ops'

ORDER BY amopstrategy;

amopopr | oprcode | amopstrategy

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−

@>(jsonb,jsonb) | jsonb_contains | 7

@?(jsonb,jsonpath) | jsonb_path_exists_opr | 15

@@(jsonb,jsonpath) | jsonb_path_match_opr | 16

(3 rows)

If this class is used, the index will contain paths from the root of the document to all

the values and all the array elements rather than isolated ���� fragments.1 It makes the

search much more precise and efficient, but there is no speedup for operations with argu-

ments represented by separate keys instead of paths.

1 backend/utils/adt/jsonb_gin.c, gin_extract_jsonb_path function

514

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/jsonb_gin.c;hb=REL_14_STABLE

28.5 Indexing JSON

As a path can be quite lengthy, it is not paths themselves but their hashes that actually

get indexed.

Let’s create an index for the same table using this operator class:

=> CREATE INDEX ON routes_jsonb USING gin(route jsonb_path_ops);

The created index can be represented by the following tree:

HASH(...) HASH(...)HASH(...) HASH(...)

H
A
SH

(d
ep

ar
tu
re
_a
ir
po

rt
_n
am

e,
Iv
an

ov
o-
Yu

zh
ny

)

H
A
SH

(d
ep

ar
tu
re
_a
ir
po

rt
_n
am

e,
So

ch
i)

H
A
SH

(d
ep

ar
tu
re
_a
ir
po

rt
_n
am

e,
U
st
-I
lim

sk
)

H
A
SH

(d
ep

ar
tu
re
_a
ir
po

rt
_n
am

e,
Su

rg
ut

)

H
A
SH

(d
ay
s_
of
_w

ee
k,
3
)

H
A
SH

(a
rr
iv
al
_a
ir
po

rt
_n
am

e,
Su

rg
ut

)

H
A
SH

(a
rr
iv
al
_a
ir
po

rt
_n
am

e,
So

ch
i)

H
A
SH

(a
rr
iv
al
_a
ir
po

rt
_n
am

e,
U
st
-I
lim

sk
)

H
A
SH

(d
ay
s_
of
_w

ee
k,
7
)

H
A
SH

(a
rr
iv
al
_a
ir
po

rt
_n
am

e,
Iv
an

ov
o-
Yu

zh
ny

)

H
A
SH

(d
ay
s_
of
_w

ee
k,
6
)

H
A
SH

(d
ay
s_
of
_w

ee
k,
2
)

0,3 0,4 0,1 0,2 0,4 0,1 0,3 0,2 0,2

0,4

0,4 0,1

0,3

0,3

When executing a query with the same condition route @> '{"days_of_week": [6]}', the

support function1 extracts the whole path “days_of_week, �” rather than its separate com-

ponents. The ���s of the two matching documents will be found in the element tree right

away.

Clearly, these entries will be checked by the consistency function2 and then rechecked by

the indexing engine (to rule out hash collisions, for example). But the search through the

tree is much more efficient, so it makes sense to always choose the jsonb_path_ops class if

the index support provided by its operators is sufficient for queries.

1 backend/utils/adt/jsonb_gin.c, gin_extract_jsonb_query_path function
2 backend/utils/adt/jsonb_gin.c, gin_consistent_jsonb_path function

515

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/jsonb_gin.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/jsonb_gin.c;hb=REL_14_STABLE

Chapter 28 GIN

28.6 Indexing Other Data Types

G�� support via extensions is also provided for the following data types:

Arrays of integers. The intarray extension adds the gin__int_ops operator class for integer

arrays. It is very similar to the standard array_ops operator class, but it supports the

match operator@@, which matches a document against a search query.

Key–value storage. The hstore extension implements a storage for key–value pairs and

provides the gin_hstore_ops operator class. Both keys and values get indexed.

JSON query language. An external jsquery extension provides its own query language and

��� index support for ����.

After the ���:���� standard was adopted and the ���/���� query language was

implemented in Postgre���,v. �� the standard built-in capabilities seem to be a better

choice.

516

29
BRIN

29.1 Overview

Unlike other indexes that are optimized to quickly find the required rows, ����1 is de-

signed to filter out unnecessary rows. This access method was created primarily for large

tables of several terabytes and up, so a smaller index size takes priority over search accu-

racy.

To speed up search, the whole table is split into ranges, hence the name: Block Range

Index. Each range comprises several pages. The index does not store ���s, keeping only

a summary on the data of each range. For ordinal data types, it is the minimal and the

maximal values in the simplest case, but different operator classes may collect different

information on values in a range.

The number of pages in a range is defined at the time of the index creation based on the

value of the 128pages_per_range storage parameter.

If a query condition references an indexed column, all the ranges that are guaranteed to

have no matches can be skipped. The pages of all the other ranges are returned by the

index as a lossy p. ���bitmap; all the rows of these pages have to be rechecked.

Thus, ���� works well for columns with localized values (that is, for columns in which val-

ues stored close to each other have similar summary information properties). For ordinal

data types, it means that values must be stored in ascending or descending order, that is,

have high correlation p. ���between their physical location and the logical order defined by the

greater than and less than operations. For other types of summary information, “similar

properties” may vary.

It will not be wrong to think of ���� as an accelerator of sequential heap scans rather than

an index in the conventional sense of the word. It can be regarded as an alternative to

partitioning, with each range representing a virtual partition.

1 postgresql.org/docs/14/brin.html

backend/access/brin/README

517

https://postgresql.org/docs/14/brin.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/brin/README;hb=REL_14_STABLE

Chapter 29 BRIN

29.2 Example

Our demo database contains no tables that are large enough for ����, but we can imagine

that analytical reports demand that we have a denormalized table containing summary

information on all the departed and arrived flights of a particular airport, down to the

occupied seats. The data for each airport is updated daily, as soon as it is midnight in the

corresponding timezone. The added data is neither updated nor deleted.

The table looks as follows:

CREATE TABLE flights_bi(

airport_code char(3),

airport_coord point, -- airport coordinates

airport_utc_offset interval, -- timezone

flight_no char(6),

flight_type text, -- departure or arrival

scheduled_time timestamptz,

actual_time timestamptz,

aircraft_code char(3),

seat_no varchar(4),

fare_conditions varchar(10), -- travel class

passenger_id varchar(20),

passenger_name text

);

Data loading can be emulated using nested loops:1 the outer loop will correspond to days

(the demo database stores annual data), while the inner loop will be based on timezones.

As a result, the loaded data will be more or less ordered at least by time and airports, even

though it is not explicitly sorted within the loop.

I will load an existing copy of the database that takes roughly � �� and contains about ��

million rows:2

postgres$ pg_restore -d demo -c flights_bi.dump

=> ANALYZE flights_bi;

=> SELECT count(*) FROM flights_bi;

count

−−−−−−−−−−

30517076

(1 row)

=> SELECT pg_size_pretty(pg_total_relation_size('flights_bi'));

pg_size_pretty

−−−−−−−−−−−−−−−−

4129 MB

(1 row)

1 edu.postgrespro.ru/internals-14/flights_bi.sql
2 edu.postgrespro.ru/internals-14/flights_bi.dump

518

https://edu.postgrespro.ru/internals-14/flights_bi.sql
https://edu.postgrespro.ru/internals-14/flights_bi.dump

29.3 Page Layout

We can hardly call it a large table, but this data volume will be enough to demonstrate

how ���� works. I will create an index in advance:

=> CREATE INDEX ON flights_bi USING brin(scheduled_time);

=> SELECT pg_size_pretty(pg_total_relation_size(

'flights_bi_scheduled_time_idx'

));

pg_size_pretty

−−−−−−−−−−−−−−−−

184 kB

(1 row)

It takes very little space with the default settings.

A �-tree index is a thousand times bigger, even if data deduplication v. ��is enabled. True, its

efficiency is also much higher, but an additional volume can turn out to be unaffordable

luxury for really large tables.

=> CREATE INDEX flights_bi_btree_idx ON flights_bi(scheduled_time);

=> SELECT pg_size_pretty(pg_total_relation_size(

'flights_bi_btree_idx'

));

pg_size_pretty

−−−−−−−−−−−−−−−−

210 MB

(1 row)

=> DROP INDEX flights_bi_btree_idx;

29.3 Page Layout

The zero page of a ���� index is called the metapage; it keeps information on the index

structure.

At a certain offset from the metadata, there are pages with summary information. Each

index entry in such a page contains a summary of a particular block range.

The space between themetapage and the summary information is taken by the range map,

which is sometimes also referred to as a reverse map (hence the common revmap abbre-

viation). It is effectively an array of pointers to the corresponding index rows; the index

number in this array corresponds to the range number.

519

Chapter 29 BRIN

metapage

revmap

1 .. 10 11 .. 20 21 .. 301 .. 10 11 .. 20 21 .. 30 71 .. 80 31 .. 40 41 .. 5071 .. 80 31 .. 40 41 .. 50 51 .. 60 61 .. 7051 .. 60 61 .. 70

As the table is expanding, the size of the range map also grows. If the map does not fit the

allotted pages, it overtakes the next page, and all the index entries previously located in

this page are transferred to other pages. Since a page can accommodate many pointers,

such transfers are quite rare.

B��� index pages can be displayed by the pageinspect extension, as usual. The metadata

includes the size of the range and the number of pages reserved for the range map:

=> SELECT pagesperrange, lastrevmappage

FROM brin_metapage_info(get_raw_page(

'flights_bi_scheduled_time_idx', 0

));

pagesperrange | lastrevmappage

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−

128 | 4

(1 row)

Here the range map takes four pages, from the first to the fourth one. We can take a look

at the pointers to index entries containing summarized data:

=> SELECT *

FROM brin_revmap_data(get_raw_page(

'flights_bi_scheduled_time_idx', 1

));

pages

−−−−−−−−−−

(6,197)

(6,198)

(6,199)

...

(6,195)

(6,196)

(1360 rows)

520

29.4 Search

If the range is not summarized yet, the pointer in the range map is ����.

And here are the summaries for several ranges:

=> SELECT itemoffset, blknum, value

FROM brin_page_items(

get_raw_page('flights_bi_scheduled_time_idx', 6),

'flights_bi_scheduled_time_idx'

)

ORDER BY blknum

LIMIT 3 \gx

−[RECORD 1]−−

itemoffset | 197

blknum | 0

value | {2016−08−15 02:45:00+03 .. 2016−08−15 16:20:00+03}

−[RECORD 2]−−

itemoffset | 198

blknum | 128

value | {2016−08−15 05:50:00+03 .. 2016−08−15 18:55:00+03}

−[RECORD 3]−−

itemoffset | 199

blknum | 256

value | {2016−08−15 07:15:00+03 .. 2016−08−15 18:50:00+03}

−[RECORD 4]−−

itemoffset | 200

blknum | 384

value | 2016−08−15 07:55:00+03 .. 2016−08−15 20:20:00+03

29.4 Search

If a query condition is supported by the ���� index,1 the executor scans the range map

and the summary information for each range. If the data in a range may match the search

key, all the pages that belong to this range are added to the bitmap. Since ���� does not

keep ��s of separate tuples, the bitmap is always lossy.

Matching the data against the search key is performed by the consistency function, which

interprets range summary information. Non-summarized ranges are always added to the

bitmap.

The received bitmap is used to scan the table in the usual manner p. ���. It is important to men-

tion that heappage reads happen sequentially, block range by block range, andprefetching

is employed.

1 backend/access/brin/brin.c, bringetbitmap function

521

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/brin/brin.c;hb=REL_14_STABLE

Chapter 29 BRIN

29.5 Summary Information Updates

Value Insertion

As a new tuple is added into a heap page, the summary information in the corresponding

index range gets updated.1 The range number is calculated based on the page number

using simple arithmetic operations, and the summary information is then located by the

range map.

To determine whether the current summary information has to be expanded, the addition

function is employed. If an expansion is required and the page has enough free space, it is

done in-place (without adding a new index entry).

Suppose we have added a tuple with value �� to page ��. The range number is calculated

by integer division of page number by the size of the range. Assuming that the range size

equals four pages, we get range number �; since range numbering is zero-based, we take

the fourth pointer in the range map. The minimal value in this range is ��, the maximal

one is ��. The added value falls outside these limits, so the maximal value is increased:

metapage

revmap

1 .. 10 11 .. 20 21 .. 301 .. 10 11 .. 20 21 .. 30 71 .. 80 31 .. 42 41 .. 5071 .. 80 31 .. 42 41 .. 50 51 .. 60 61 .. 7051 .. 60 61 .. 70

If an in-place update is impossible, a new entry is added, and the range map is modified.

Range Summarization

Everything said above applies to scenarios when a new tuple appears in an already sum-

marized range. When an index is being built, all the existing ranges are summarized, but

as the table grows, new pages may fall outside these ranges.

1 backend/access/brin/brin.c, brininsert function

522

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/brin/brin.c;hb=REL_14_STABLE

29.6 Minmax Classes

If an index is created with the offautosummarize storage parameter enabled, the new range

will be summarized at once. But in data warehouses,where rows are usually added in large

batches rather than one by one, this mode can seriously slow down insertion.

By default, new ranges are not summarized right away. It does not affect index correct-

ness because ranges with no summary information are always scanned. Summarization

is performed asynchronously, either during table vacuuming p. ���or when initiated manually

by calling the brin_summarize_new_values function (or the brin_summarize_range function

that processes a single range).

Range summarization1 does not lock the table for updates. At the beginning of this pro-

cess, a placeholder entry is inserted into the index for this range. If the data in the range

is changed while this range is being scanned, the placeholder will be updated with the

summary information on these changes. Then the union function will unite this data with

the summary information on the corresponding range.

In theory, summary information could sometimes shrink after some rows are deleted. But

while �i�� indexes can redistribute data p. ���after a page split, summary information of ����

indexes never shrinks and can only get wider. Shrinking is usually not required here be-

cause a data storage is typically used only for appending new data. You can manually

delete summary information by calling the brin_desummarize_range function for this range

to be summarized again, but there is no clue as to which ranges might benefit from it.

Thus, ���� is primarily targeted at tables of very large size, which either have minimal

updates that add new rows mostly to the end of the file, or are not updated at all. It is

mainly used in data warehouses for building analytical reports.

29.6 Minmax Classes

For data types that allow comparing values, summary information includes at least the

maximal and minimal values. The corresponding operator classes contain the word min-

max in their names:2

=> SELECT opcname

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

WHERE amname = 'brin'

AND opcname LIKE '%minmax_ops'

ORDER BY opcname;

1 backend/access/brin/brin.c, summarize_range function
2 backend/access/brin/brin_minmax.c

523

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/brin/brin.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/brin/brin_minmax.c;hb=REL_14_STABLE

Chapter 29 BRIN

opcname

−−−−−−−−−−−−−−−−−−−−−−−−

bit_minmax_ops

bpchar_minmax_ops

bytea_minmax_ops

...

timetz_minmax_ops

uuid_minmax_ops

varbit_minmax_ops

(26 rows)

Here are the support functions of these operator classes:

=> SELECT amprocnum, amproc::regproc

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amproc amop ON amprocfamily = opcfamily

WHERE amname = 'brin'

AND opcname = 'numeric_minmax_ops'

ORDER BY amprocnum;

amprocnum | amproc

−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−

1 | brin_minmax_opcinfo

2 | brin_minmax_add_value

3 | brin_minmax_consistent

4 | brin_minmax_union

(4 rows)

The first function returns the operator class metadata, and all the other functions have

already been described: they insert new values, check consistency, and perform union

operations.

Theminmax class includes the same comparison operators that we have seen for �-treesp. ��� :

=> SELECT amopopr::regoperator, oprcode::regproc, amopstrategy

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amop amop ON amopfamily = opcfamily

JOIN pg_operator opr ON opr.oid = amopopr

WHERE amname = 'brin'

AND opcname = 'numeric_minmax_ops'

ORDER BY amopstrategy;

amopopr | oprcode | amopstrategy

−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−−

<(numeric,numeric) | numeric_lt | 1

<=(numeric,numeric) | numeric_le | 2

=(numeric,numeric) | numeric_eq | 3

>=(numeric,numeric) | numeric_ge | 4

>(numeric,numeric) | numeric_gt | 5

(5 rows)

524

29.6 Minmax Classes

Choosing Columns to be Indexed

Which columns does it make sense to index using this operator class? As mentioned ear-

lier, such indexesworkwell if the physical location of rows correlateswith the logical order

of values.

Let’s check it for the above example.

=> SELECT attname, correlation, n_distinct

FROM pg_stats

WHERE tablename = 'flights_bi'

ORDER BY correlation DESC NULLS LAST;

attname | correlation | n_distinct

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−

scheduled_time | 0.9999949 | 25926

actual_time | 0.9999948 | 34469

fare_conditions | 0.7976897 | 3

flight_type | 0.4981733 | 2

airport_utc_offset | 0.4440067 | 11

aircraft_code | 0.19249801 | 8

airport_code | 0.061483838 | 104

seat_no | 0.0024594965 | 461

flight_no | 0.0020146023 | 710

passenger_id | −0.00046121294 | 2.610987e+06

passenger_name | −0.012388787 | 8618

airport_coord | | 0

(12 rows)

The data is ordered by time (both scheduled and actual time; there is little difference, if

any): new entries are added in chronological order, and as the data is neither updated nor

deleted, all the rows get into the main fork p. ��of the table sequentially, one after another.

Columns fare_conditions, flight_type, and airport_utc_offset have relatively high correla-

tion, but they store too few distinct values.

The correlation in other columns is too low for their indexing with the minmax operator

class to be of any interest.

Range Size and Search Efficiency

An appropriate range size can be determined based on the number of pages used to store

particular values.

Let’s take a look at the scheduled_time column and get the information on all the flights

performed in �� hours. We first have to find out how many table pages are taken by the

data related to this time interval.

525

Chapter 29 BRIN

To get this number, we can use the fact that a ��� consists of a page number and an offset.

Unfortunately, there is no built-in function to break down a ��� into these two compo-

nents, so we will have to write our own clumsy function to perform type casting via a text

representation:

=> CREATE FUNCTION tid2page(t tid) RETURNS integer

LANGUAGE sql

RETURN (t::text::point)[0]::integer;

Now we can see how days are distributed through the table:

=> SELECT min(numblk), round(avg(numblk)) avg, max(numblk)

FROM (

SELECT count(distinct tid2page(ctid)) numblk

FROM flights_bi

GROUP BY scheduled_time::date

) t;

min | avg | max

−−−−−−+−−−−−−+−−−−−−

1192 | 1447 | 1512

(1 row)

As we can notice, the data distribution is not quite uniform. With a standard range size of

��� pages, each day will take from � to �� ranges. While fetching the data for a particular

day, the index scan will return both the rows that are really needed and some rows related

to other days that got into the same ranges. The bigger the range size, the more extra

boundary values will be read; we can change their number by reducing or increasing the

range size.

Let’s try out a query for some particular day (I have already created an index with the

default settings). For simplicity, I will forbid parallel execution:

=> SET max_parallel_workers_per_gather = 0;

=> \set d '2016-08-15 02:45:00+03'

=> EXPLAIN (analyze, buffers, costs off, timing off, summary off)

SELECT * FROM flights_bi

WHERE scheduled_time >= :'d'::timestamptz

AND scheduled_time < :'d'::timestamptz + interval '1 day';

QUERY PLAN

−−−

Bitmap Heap Scan on flights_bi (actual rows=81964 loops=1)

Recheck Cond: ((scheduled_time >= '2016−08−15 02:45:00+03'::ti...

Rows Removed by Index Recheck: 11606

Heap Blocks: lossy=1536

Buffers: shared hit=1561

−> Bitmap Index Scan on flights_bi_scheduled_time_idx

(actual rows=15360 loops=1)

Index Cond: ((scheduled_time >= '2016−08−15 02:45:00+03'::...

Buffers: shared hit=25

526

29.6 Minmax Classes

Planning:

Buffers: shared hit=1

(11 rows)

We can define an efficiency factor of a ���� index for a particular query as a ratio between

the number of pages skipped in an index scan and the total number of pages in the table.

If the efficiency factor is zero, the index access degrades to sequential scanning (without

taking overhead costs into account p. ���). The higher the efficiency factor, the fewer pages have

to be read. But as some pages contain the data to be returned and cannot be skipped, the

efficiency factor is always smaller than one.

In this particular case, the efficiency factor is 528417−1561
528417

≈ �.���, where ���,��� is the

number of pages in the table.

However, we cannot draw any meaningful conclusions based on a single value. Even if we

had uniform data and ideal correlation, the efficiency would still vary because, at the very

least, range boundaries will not match page boundaries. We can get the full picture only

if we treat the efficiency factor as a random value and analyze its distribution.

For our example, we can select all the different days of the year, check the execution plan

for each value, and calculate statistics based on this selection. We can easily automate this

process because the ������� command can return the results in the ���� format, which is

convenient to parse. I will not provide all the code here, but the following snippet contains

all the important details:

=> DO $$

DECLARE

plan jsonb;

BEGIN

EXECUTE

'EXPLAIN (analyze, buffers, timing off, costs off, format json)

SELECT * FROM flights_bi

WHERE scheduled_time >= $1

AND scheduled_time < $1 + interval ''1 day'''

USING '2016-08-15 02:45:00+03'::timestamptz

INTO plan;

RAISE NOTICE 'shared hit=%, read=%',

plan -> 0 -> 'Plan' ->> 'Shared Hit Blocks',

plan -> 0 -> 'Plan' ->> 'Shared Read Blocks';

END;

$$;

NOTICE: shared hit=1561, read=0

DO

The results can be visually displayed as a box plot, also known as a “box-and-whiskers.”

The whiskers here denote the first and fourth quartiles (that is, the right whisker gets

��% of the largest values, while the left one gets ��% of the smallest values). The box

527

Chapter 29 BRIN

itself holds the remaining ��% of values and has the median value marked. What is more

important, this compact representation enables us to visually compare different results.

The following illustration shows the efficiency factor distribution for the default range

size and for two other sizes that are four times larger and smaller.

As we could have expected, the search accuracy and efficiency are high even for rather

large ranges.

The dashed line here marks the average value of themaximal efficiency factor possible for

this query, assuming that one day takes roughly 1

365
of the table.

0,990 0,992 0,994 0,996 0,998 1,000

efficiency
factor

32 pages/range,
529 kB

128 pages/range,
184 kB

512 pages/range,
72 kB

Note that the rise in efficiency comes at the expense of the index size increase. B��� is

quite flexible in letting you find the balance between the two.

Properties

B��� properties are hardwired and do not depend on operator classes.

Access Method Properties

=> SELECT a.amname, p.name, pg_indexam_has_property(a.oid, p.name)

FROM pg_am a, unnest(array[

'can_order', 'can_unique', 'can_multi_col',

'can_exclude', 'can_include'

]) p(name)

WHERE a.amname = 'brin';

amname | name | pg_indexam_has_property

−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−

brin | can_order | f

brin | can_unique | f

brin | can_multi_col | t

brin | can_exclude | f

brin | can_include | f

(5 rows)

528

29.6 Minmax Classes

Obviously, neither sorting nor uniqueness properties are supported. Since a ���� index

always returns a bitmap, exclusion constraints are not supported either. Neither do ad-

ditional ������� columns make any sense, as even indexing keys are not stored in ����

indexes.

However, we can create a multicolumn ���� index. In this case, summary information

for each column is collected and stored in a separate index entry, but they still have a

common range mapping. Such an index is useful if the same range size is applicable to all

the indexed columns.

Alternatively,we can create separate ���� indexes for several columns and take advantage

of the fact that bitmaps p. ���can be merged together. For example:

=> CREATE INDEX ON flights_bi USING brin(airport_utc_offset);

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT *

FROM flights_bi

WHERE scheduled_time >= :'d'::timestamptz

AND scheduled_time < :'d'::timestamptz + interval '1 day'

AND airport_utc_offset = '08:00:00';

QUERY PLAN

−−−

Bitmap Heap Scan on flights_bi (actual rows=1658 loops=1)

Recheck Cond: ((scheduled_time >= '2016−08−15 02:45:00+03'::ti...

Rows Removed by Index Recheck: 14077

Heap Blocks: lossy=256

−> BitmapAnd (actual rows=0 loops=1)

−> Bitmap Index Scan on flights_bi_scheduled_time_idx (act...

Index Cond: ((scheduled_time >= '2016−08−15 02:45:00+0...

−> Bitmap Index Scan on flights_bi_airport_utc_offset_idx ...

Index Cond: (airport_utc_offset = '08:00:00'::interval)

(9 rows)

Index-Level Properties

=> SELECT p.name, pg_index_has_property(

'flights_bi_scheduled_time_idx', p.name

)

FROM unnest(array[

'clusterable', 'index_scan', 'bitmap_scan', 'backward_scan'

]) p(name);

name | pg_index_has_property

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−

clusterable | f

index_scan | f

bitmap_scan | t

backward_scan | f

(4 rows)

529

Chapter 29 BRIN

Obviously, bitmap scanning is the only supported access type.

Lack of clusterization may seem puzzling. Since ���� is sensitive to the physical order of

rows, it is quite logical to assume that it should support reordering,whichwouldmaximize

its efficiency. But clusterization of large tables is anyway a luxury, taking into account all

the processing and extra disk space required to rebuild a table. Besides, as the example of

the flights_bi table shows, some ordering in data storages can occur naturally.

Column-Level Properties

=> SELECT p.name, pg_index_column_has_property(

'flights_bi_scheduled_time_idx', 1, p.name

)

FROM unnest(array[

'orderable', 'distance_orderable', 'returnable',

'search_array', 'search_nulls'

]) p(name);

name | pg_index_column_has_property

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

orderable | f

distance_orderable | f

returnable | f

search_array | f

search_nulls | t

(5 rows)

The only available column-level property is ���� support. To track ���� values in a range,

summary information provides a separate attribute:

=> SELECT hasnulls, allnulls, value

FROM brin_page_items(

get_raw_page('flights_bi_airport_utc_offset_idx', 6),

'flights_bi_airport_utc_offset_idx'

)

WHERE itemoffset= 1;

hasnulls | allnulls | value

−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−

f | f | {03:00:00 .. 03:00:00}

(1 row)

29.7 Minmax-Multi Classesv. ��

The established correlation can be easily disrupted by data updates. The reason is not

an actual modification of a particular value but rather the ���� design itselfp. �� : an old ver-

sion of a row may be deleted in one page, while its new version may be inserted into any

location that is currently free, so the original row order cannot be preserved.

530

29.7 Minmax-Multi Classes

To minimize this effect to some extent, we can reduce the value of the fillfactor storage

parameter to leave more space in the page for future updates. But is it really worth in-

creasing the size of an already huge table? Besides, deletions will anyway free some space

in existing pages, thus preparing traps for new tuples that would otherwise get to the end

of the file.

Such a situation can be easily emulated. Let’s delete �.�% of randomly chosen rows and

vacuum the table to clean up some space for new tuples:

=> WITH t AS (

SELECT ctid

FROM flights_bi TABLESAMPLE BERNOULLI(0.1) REPEATABLE(0)

)

DELETE FROM flights_bi

WHERE ctid IN (SELECT ctid FROM t);

DELETE 30180

=> VACUUM flights_bi;

Now let’s add some data for a new day in one of the timezones. I will simply copy the data

of the previous day:

=> INSERT INTO flights_bi

SELECT airport_code, airport_coord, airport_utc_offset,

flight_no, flight_type, scheduled_time + interval '1 day',

actual_time + interval '1 day', aircraft_code, seat_no,

fare_conditions, passenger_id, passenger_name

FROM flights_bi

WHERE date_trunc('day', scheduled_time) = '2017-08-15'

AND airport_utc_offset = '03:00:00';

INSERT 0 40532

The performed deletion was enough to free some space in all or almost all the ranges.

Getting into pages located somewhere in the middle of the file, new tuples have automat-

ically expanded the ranges. For example, the summary information related to the first

range used to cover less than a day, but now it comprises the whole year:

=> SELECT value

FROM brin_page_items(

get_raw_page('flights_bi_scheduled_time_idx', 6),

'flights_bi_scheduled_time_idx'

)

WHERE blknum = 0;

value

−−

{2016−08−15 02:45:00+03 .. 2017−08−16 09:35:00+03}

(1 row)

531

Chapter 29 BRIN

The smaller the date specified in the query, the more ranges have to be scanned. The

graph shows the magnitude of the disaster:

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

efficiency
factor

128 pages/range,
248 kB

To address this issue, we have to make the summary information a bit more sophisticated:

instead of a single continuous range, we have to store several smaller ones that cover all

the values when taken together. Then one of the ranges can cover the main set of data,

while the rest will handle occasional outliers.

Such functionality is provided byminmax-multi operator classes:1

=> SELECT opcname

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

WHERE amname = 'brin'

AND opcname LIKE '%minmax_multi_ops'

ORDER BY opcname;

opcname

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

date_minmax_multi_ops

float4_minmax_multi_ops

float8_minmax_multi_ops

inet_minmax_multi_ops

...

time_minmax_multi_ops

timestamp_minmax_multi_ops

timestamptz_minmax_multi_ops

timetz_minmax_multi_ops

uuid_minmax_multi_ops

(19 rows)

As compared to minmax operator classes, minmax-multi classes have one more support

function that computes the distance between values; it is used to determine the range

length, which the operator class strives to reduce:

=> SELECT amprocnum, amproc::regproc

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amproc amop ON amprocfamily = opcfamily

WHERE amname = 'brin'

AND opcname = 'numeric_minmax_multi_ops'

ORDER BY amprocnum;

1 backend/access/brin/brin_minmax_multi.c

532

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/brin/brin_minmax_multi.c;hb=REL_14_STABLE

29.8 Inclusion Classes

amprocnum | amproc

−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 | brin_minmax_multi_opcinfo

2 | brin_minmax_multi_add_value

3 | brin_minmax_multi_consistent

4 | brin_minmax_multi_union

5 | brin_minmax_multi_options

11 | brin_minmax_multi_distance_numeric

(6 rows)

The operators of such classes are absolutely the same as those of theminmax classes.

Minmax-multi classes can take the 32values_per_range parameter, which defines themaximal

allowed number of summarized values per range. A summarized value is represented by

twonumbers (an interval),while a separate point requires just one. If there are not enough

values, some of the intervals are reduced.1

Let’s build a minmax-multi index instead of the existing one. We will limit the number of

allowed values per range to ��:

=> DROP INDEX flights_bi_scheduled_time_idx;

=> CREATE INDEX ON flights_bi USING brin(

scheduled_time timestamptz_minmax_multi_ops(

values_per_range = 16

)

);

The graph shows that the new index brings the efficiency back to the original level. Quite

expectedly, it leads to an increase in the index size:

0,990 0,992 0,994 0,996 0,998 1,000

efficiency
factor

minmax-multi
656 kB

minmax
184 kB

29.8 Inclusion Classes

The difference between minmax and inclusion operator classes is roughly the same as the

difference between �-trees and �i�� indexes: the latter are designed for data types that

do not support comparison operations, although mutual alignment of values still makes

1 backend/access/brin/brin_minmax_multi.c, reduce_expanded_ranges function

533

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/brin/brin_minmax_multi.c;hb=REL_14_STABLE

Chapter 29 BRIN

sense for them. Summary information for a particular range provided by inclusion operator

classes is represented by the bounding box of the values in this range.

Here are these operator classes; they are not numerous:

=> SELECT opcname

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

WHERE amname = 'brin'

AND opcname LIKE '%inclusion_ops'

ORDER BY opcname;

opcname

−−−−−−−−−−−−−−−−−−−−−

box_inclusion_ops

inet_inclusion_ops

range_inclusion_ops

(3 rows)

The list of support functions is extended by one more mandatory function that merges

two values, and by a bunch of optional ones:

=> SELECT amprocnum, amproc::regproc

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amproc amop ON amprocfamily = opcfamily

WHERE amname = 'brin'

AND opcname = 'box_inclusion_ops'

ORDER BY amprocnum;

amprocnum | amproc

−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 | brin_inclusion_opcinfo

2 | brin_inclusion_add_value

3 | brin_inclusion_consistent

4 | brin_inclusion_union

11 | bound_box

13 | box_contain

(6 rows)

When dealing with values that can be compared, we relied on their correlation; but for

other data types, no such statistic is collected,1 so it is hard to predict the efficiency of an

inclusion-based ���� index.

What is worse, correlation greatly affects cost estimation of an index scan. If such statistic

is unavailable, it is taken as zero.2 Thus, the planner has no way to tell between exact and

fuzzy inclusion indexes, so it typically avoids using them altogether.

Post��� collectsv. �.�.� statistics on correlation of spatial data.

1 backend/commands/analyze.c, compute_scalar_stats function
2 backend/utils/adt/selfuncs.c, brincostestimate function

534

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/commands/analyze.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/adt/selfuncs.c;hb=REL_14_STABLE

29.8 Inclusion Classes

In this particular case, we can presume that it makes sense to build an index over airport

coordinates, as longitude must correlate with the timezone.

Unlike �i�� predicates, ���� summary information has the same type as the indexed data;

therefore, it is not so easy to build an index for points. But we can create an expression

index by converting points into dummy rectangles:

=> CREATE INDEX ON flights_bi USING brin(box(airport_coord))

WITH (pages_per_range = 8);

=> SELECT pg_size_pretty(pg_total_relation_size(

'flights_bi_box_idx'

));

pg_size_pretty

−−−−−−−−−−−−−−−−

3816 kB

(1 row)

An index built over timezones with the same range size takes approximately the same

volume (���� k�).

The operators included into this class are similar to �i�� operators. For example, a ����

index can be used to speed up search for points in a certain area:

=> SELECT airport_code, airport_name

FROM airports

WHERE box(coordinates) <@ box '135,45,140,50';

airport_code | airport_name

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−

KHV | Khabarovsk−Novy Airport

(1 row)

But as mentioned earlier, the planner refuses to use an index scan unless we turn off se-

quential scanning:

=> EXPLAIN (costs off)

SELECT *

FROM flights_bi

WHERE box(airport_coord) <@ box '135,45,140,50';

QUERY PLAN

−−

Seq Scan on flights_bi

Filter: (box(airport_coord) <@ '(140,50),(135,45)'::box)

(2 rows)

=> SET enable_seqscan = off;

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT *

FROM flights_bi

WHERE box(airport_coord) <@ box '135,45,140,50';

535

Chapter 29 BRIN

QUERY PLAN

−−−

Bitmap Heap Scan on flights_bi (actual rows=511414 loops=1)

Recheck Cond: (box(airport_coord) <@ '(140,50),(135,45)'::box)

Rows Removed by Index Recheck: 630756

Heap Blocks: lossy=19656

−> Bitmap Index Scan on flights_bi_box_idx (actual rows=196560...

Index Cond: (box(airport_coord) <@ '(140,50),(135,45)'::box)

(6 rows)

=> RESET enable_seqscan;

29.9 Bloom Classesv. ��

Operator classes based on the Bloom filter enable ���� usage for any data types that sup-

port the equal to operation and have a hash function defined. They can also be applied to

regular ordinal types if values are localized in separate ranges but their physical location

has no correlation with the logical order.

The names of such operator classes contain the word bloom:1

=> SELECT opcname

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

WHERE amname = 'brin'

AND opcname LIKE '%bloom_ops'

ORDER BY opcname;

opcname

−−−−−−−−−−−−−−−−−−−−−−−

bpchar_bloom_ops

bytea_bloom_ops

char_bloom_ops

...

timestamptz_bloom_ops

timetz_bloom_ops

uuid_bloom_ops

(24 rows)

The classic Bloom filter is a data structure that enables you to quickly check whether an

element belongs to a set. This filter is very compact, but it allows false positives: a setmay

be assumed to contain more elements than it actually does. But what is more important,

false negatives are ruled out: the filter cannot decide that an element is not present in the

set if it is actually there.

1 backend/access/brin/brin_bloom.c

536

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/brin/brin_bloom.c;hb=REL_14_STABLE

29.9 Bloom Classes

The filter is an array ofm bits (also called a signature), which is originally filled with zeros.

We select k different hash functions to map any element of the set to k bits of the signa-

ture. When an element is added to the set, each of the bits in the signature is set to one.

Consequently, if all the bits that correspond to an element are set to one, the element

may be present in the set; if there is at least one zero bit, the element is guaranteed to be

absent.

In the case of ���� indexes, the filter processes a set of values of an indexed column that

belong to a particular range; the summary information for this range is represented by

the built Bloom filter.

The bloom extension1 provides its own index access method based on the Bloom filter. It builds a

filter for each table row and deals with a set of column values of each row. Such an index is designed

for indexing several columns at a time and can be used in adhoc queries, when the columns to be

referenced in filter conditions are not known in advance. A ���� index can also be built on several

columns, but its summary information will contain several independent Bloom filters for each of

these columns.

The accuracy of the Bloomfilter depends on the signature length. In theoretical terms, the

optimal number of signature bits can be estimated atm = −n log2 p
ln 2

, where n is the number

of elements in the set and p is the probability of false positives.

These two settings can be adjusted using the corresponding operator class parameters:

• −0.1n_distinct_per_range defines the number of elements in a set; in this case, it is the

number of distinct values in one range of an indexed column. This parameter value is

interpreted just like statistics on distinct values: p. ���negative values indicate the fraction

of rows in the range, not their absolute number.

• 0.01false_positive_rate defines the probability of false positives.

A near-zero value means that an index scan will almost certainly skip the ranges

that have no searched values. But it does not guarantee exact search, as the scanned

ranges will also contain extra rows that do not match the query. Such behavior is due

to range width and physical data location rather than to the actual filter properties.

The list of support functions is extended by a hash function:

=> SELECT amprocnum, amproc::regproc

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amproc amop ON amprocfamily = opcfamily

WHERE amname = 'brin'

AND opcname = 'numeric_bloom_ops'

ORDER BY amprocnum;

1 postgresql.org/docs/14/bloom.html

537

https://postgresql.org/docs/14/bloom.html

Chapter 29 BRIN

amprocnum | amproc

−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−

1 | brin_bloom_opcinfo

2 | brin_bloom_add_value

3 | brin_bloom_consistent

4 | brin_bloom_union

5 | brin_bloom_options

11 | hash_numeric

(6 rows)

Since the Bloom filter is based on hashing, only the equality operator is supported:

=> SELECT amopopr::regoperator, oprcode::regproc, amopstrategy

FROM pg_am am

JOIN pg_opclass opc ON opcmethod = am.oid

JOIN pg_amop amop ON amopfamily = opcfamily

JOIN pg_operator opr ON opr.oid = amopopr

WHERE amname = 'brin'

AND opcname = 'numeric_bloom_ops'

ORDER BY amopstrategy;

amopopr | oprcode | amopstrategy

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−−

=(numeric,numeric) | numeric_eq | 1

(1 row)

Let’s take the flight_no column that stores flight numbers; it has near-zero correlation,

so it is useless for a regular range operator class. We will keep the default false-positive

setting; as for the number of distinct values in a range, it can be easily calculated. For

example, for an eight-page range we will get the following value:

=> SELECT max(nd)

FROM (

SELECT count(distinct flight_no) nd

FROM flights_bi

GROUP BY tid2page(ctid) / 8

) t;

max

−−−−−

22

(1 row)

For smaller ranges, this number will be even lower (but in any case, the operator class does

not allow values smaller than ��).

We just have to create an index and check the execution plan:

=> CREATE INDEX ON flights_bi USING brin(

flight_no bpchar_bloom_ops(n_distinct_per_range = 22)

)

WITH (pages_per_range = 8);

538

29.9 Bloom Classes

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT *

FROM flights_bi

WHERE flight_no = 'PG0001';

QUERY PLAN

−−−

Bitmap Heap Scan on flights_bi (actual rows=5192 loops=1)

Recheck Cond: (flight_no = 'PG0001'::bpchar)

Rows Removed by Index Recheck: 122894

Heap Blocks: lossy=2168

−> Bitmap Index Scan on flights_bi_flight_no_idx (actual rows=...

Index Cond: (flight_no = 'PG0001'::bpchar)

(6 rows)

=> RESET max_parallel_workers_per_gather;

The graph shows that for some flight numbers (represented by separate points that do not

belong to anywhiskers) the index does not work very well, but its overall efficiency is quite

high:

0,70 0,75 0,80 0,85 0,90 0,95 1,00

efficiency
factor

2 pages/range,
14,8 MB

4 pages/range,
7,4 Mb

8 pages/range,
3,7 MB

539

Conclusion

Well, now our journey is coming to an end. I hope that you have found the book useful—

or at least interesting—and have learned something new from it (I myself did learn a lot

while I was writing it).

Most of the covered information is likely to remain up-to-date for quite a long time, but

some details will inevitably change very fast. I believe that the biggest value of this book

is not a set of particular facts but rather the approach to exploring the system that I show.

Neither this book nor the documentation should be taken for granted. Contemplate, ex-

periment, verify all the facts yourself: Postgre��� provides all the tools that you need for

it, and I tried to show how to use them. It is usually almost as easy as asking a question

on a forum or googling the answer, but is definitely much more reliable and useful.

For the same reason, I wanted to encourage you to look into the code. Do not get intimi-

dated by its complexity: simply try it out. Open source is a great advantage, so take this

opportunity.

I will be happy to get your feedback; you can send your comments and suggestions to

edu@postgrespro.ru. I am going to update the book regularly, so it can really help me

improve its future editions. The latest online version of the book is available for free at

postgrespro.com/community/books/internals.

Good luck!

540

mailto:edu@postgrespro.ru
https://postgrespro.com/community/books/internals

Index

A

Aborting transactions 72, 76, 78, 219,

236

Access method

index 313, 365

properties 322

table 294

Aggregate 298–299

Aggregation 298, 303

hashing 384, 402

sorting 402

Alignment 65

Analysis 109, 271, 341, 412

Anomaly

dirty read 40, 42, 45

lost update 41, 50–51

non-repeatable read 42, 46, 52

phantom read 42, 52, 235

read skew 48, 50, 53

read-only transaction 56, 59, 235

write skew 55, 58, 235

Append 385

Array 471, 508, 516

“Asterisk,” the reasons not to use it 32,

369, 399

Atomicity 40, 78

autoprewarm leader 161–163

autoprewarm worker 163

autosummarize 523

autovacuum 110

autovacuum launcher 110–111

autovacuum worker 110

autovacuum_analyze_scale_factor 113

autovacuum_analyze_threshold 113

autovacuum_enabled 103, 111

autovacuum_freeze_max_age 127,

131–132

autovacuum_freeze_min_age 132

autovacuum_freeze_table_age 132

autovacuum_max_workers 110, 118, 122

autovacuum_multixact_freeze_max_age

215

autovacuum_naptime 110–111

autovacuum_vacuum_cost_delay 118,

122, 132

autovacuum_vacuum_cost_limit 118, 122

autovacuum_vacuum_insert_scale_factor

112

autovacuum_vacuum_insert_threshold

112

autovacuum_vacuum_scale_factor

111–112

autovacuum_vacuum_threshold 111–112

autovacuum_work_mem 111

autovacuum_freeze_max_age 131

B

Backend 34

Background worker 108, 110, 305

Background writing 176

setup 179

Batch processing 142, 224

bgwriter 176, 179–181, 194

bgwriter_delay 179

bgwriter_lru_maxpages 179, 181

bgwriter_lru_multiplier 179

Binding 267

Bison 254

Bitmap 341

NULL values 64

Bitmap Heap Scan 289, 341, 344, 346

541

Index

Bitmap Index Scan 289, 341, 344, 346,

348

BitmapAnd 343

Bloating 89, 101, 141, 297, 417, 425,

430, 445

Block see page

bloom 537

Bloom filter 466, 536

Box plot 527

BRIN 517

efficiency factor 527

operator class 521, 523, 532,

534–535, 537

pages 519

properties 528

B-tree 421, 459, 492, 494, 511

operator class 432, 496, 524

pages 426

properties 441

btree_gin 511

btree_gist 459, 471

Buffer cache 34, 147, 165, 170, 241, 296,

314, 335

configuration 158

eviction 154

local 163, 311

Buffer pin 148, 151, 242

Buffer ring 156, 296

C

Cardinality 262, 271, 335

join 356

Cartesian product 350, 352

Checkpoint 170, 186

monitoring 179

setup 177

checkpoint_completion_target 177–178

checkpointer 170–171, 176, 178–181,

186

checkpoint_timeout 177–178, 180

checkpoint_warning 179

client_encoding 507

CLOG 70, 132, 165, 167, 170

Cluster 20

Cmin and cmax 86

Collation 317, 433, 487

Combo-identifier 86

Commit 70, 167, 219

asynchronous 183

synchronous 182

commit_delay 183

commit_siblings 183

Consistency 39–40

Correlated predicates 263, 289

Correlation 284, 331, 340, 517, 525, 534

Cost 258, 262, 264

cpu_index_tuple_cost 333

cpu_operator_cost 299, 333, 370, 389,

394, 402

cpu_tuple_cost 298–299, 333, 360,

370–371, 389, 394

CTE Scan 309–310

CTID 64, 96

cube 470

Cursor 86, 151, 262, 270, 308

cursor_tuple_fraction 262, 270

D

Database 20

data_checksums 188

Deadlocks 202, 225, 233

deadlock_timeout 226, 233, 243

debug_print_parse 255

debug_print_plan 257

debug_print_rewritten 256

deduplicate_items 430

Deduplication 429, 492

default_statistics_target 272, 279, 283,

292

default_table_access_method 294

default_text_search_config 464

default_transaction_isolation 60

542

Index

Demo database 251, 446, 518

Dirty read 42, 45

Durability 40

E

effective_cache_size 335–336

effective_io_concurrency 341

enable_bitmapscan 334

enable_hashjoin 390–391

enable_memoize 361

enable_mergejoin 362

enable_parallel_hash 378, 380

enable_seqscan 229, 334, 509, 535

Equi-join 350, 382, 388, 411

Eviction 154, 167, 176

Execution 264, 267

F

false_positive_rate 537

fastupdate 233, 503

fdatasync 186

fillfactor 92–93, 98–99, 125, 127, 135,

236, 413, 446, 474, 531

Finalize Aggregate 304

Finalize GroupAggregate 404

Flex 254

force_parallel_mode 309

Foreign keys 211, 213, 356

Fork 24

free space map 26, 92, 102

initialization 26

main 25, 64, 525

visibility map 27, 92, 126, 128, 139,

337

Freezing 124, 139, 152, 215

manual 132

from_collapse_limit 259–260

fsync 186–187

Full page image 174

full_page_writes 189, 191

Full-text search 462

indexing 463, 493

partial 498

phrase 506

ranking 506

fuzzystrmatch 490

G

Gather 300–304, 309, 401

Gather Merge 401–402

geqo 261

geqo_threshold 261

Getting the result 270

gevel 448, 478

GIN 492

deferred update 233

fast update 503

operator class 493, 496, 508, 511

pages 494

properties 505

gin_fuzzy_search_limit 504

gin_pending_list_limit 503

GiST 444, 533

operator class 445, 448, 535

pages 447

properties 459, 469

GroupAggregate 403

Grouping 384, 403

H

Hash 367, 370, 374, 411

operator class 417

page 412

properties 418

Hash Join 367, 369–370, 374

Hash table 149, 241–242, 360, 367, 411

HashAggregate 384–385

hash_mem_multiplier 360, 368, 379, 385

Header

page 62, 104

row version 64

tuple 210

543

Index

High key 426, 428, 494

Hint bits see information bits

Histogram 279

Horizon 87–88, 92, 104, 141, 338

HOT updates 96, 430

hstore 471, 516

I

idle_in_transaction_session_timeout 141

ignore_checksum_failure 188

Incremental Sort 400

Index 313, 318

covering 325, 337, 339, 442, 482

include 460

integrity constraint 323, 325, 419,

442, 457, 460, 482

multicolumn 324, 437, 441–442,

460, 505, 529

on expression 287, 319, 535

ordering 323, 327, 421, 433, 437,

441–442

partial 329

pruning 101, 425, 430

statistics 287

unique 211, 323, 325, 423, 430, 442

vacuuming 416, 503

versioning 74

Index Only Scan 337

Index Scan 330–331, 334, 355, 358

Indexing engine 313, 322

Information bits 64, 68, 71, 81, 189, 210

InitPlan 276, 311

Instance 20

intarray 471, 516

Integrity constraints 39

Isolation 40

snapshot 44, 58, 80, 210

J

Join

anti- and semi- 350, 363

cost estimation 353, 358, 360, 370,

376, 389, 393, 395, 398,

400–401

different methods 405

hashing 367, 372

inner 350

merging 387, 437

nested loop 351

order 257, 259, 368, 389

outer 350, 362, 388

parallel hash 378, 380

parameterized 355

join_collapse_limit 259–260

JSON 511, 516

jsquery 516

K

k-D tree 483

L

Locks 43, 199, 314

advisory 234

escalation 210, 238

heavyweight 201, 210

lightweight 240

memory 148

no waits 142, 224

non-relation 231

page 233

predicate 235

queue 206, 215, 221

relation 109, 135, 140, 194, 204

relation extension 232

row 142, 210

spinlocks 240

tranche 242

transaction ID 202

tuple 215

lock_timeout 224–225

log_autovacuum_min_duration 122

log_checkpoints 179

544

Index

logical 191, 196

log_lock_waits 243

log_temp_files 374, 398

Lost update 41, 50–51

ltree 471

M

maintenance_io_concurrency 341

maintenance_work_mem 107, 119, 121,

503

Map

bitmap 412, 517, 521, 529

free space 26, 92, 102

freeze 27, 126, 129, 139

visibility 27, 92, 126, 128, 139, 337

Materialization 309, 352, 359

Materialize 352, 354–355, 359–360, 362

max_connections 201, 238

max_locks_per_transaction 201

max_parallel_processes 161

max_parallel_workers 305

max_parallel_workers_per_gather

305–306

max_pred_locks_per_page 238

max_pred_locks_per_relation 239

max_pred_locks_per_transaction

238–239

max_wal_senders 192

max_wal_size 177–178, 180

max_worker_processes 110, 305

Memoize 359–361, 406

Merge Join 387

Merging 387, 396, 401

minimal 186, 191–192, 194–195

min_parallel_index_scan_size 108

min_parallel_table_scan_size 305

min_wal_size 178

MixedAggregate 404

Multitransactions 213

wraparound 215

Multiversion concurrency control 44,

63, 101, 430

N

n_distinct_per_range 537

Nearest neighbor search 327, 452, 461,

483

Nested Loop 258, 351–352, 355, 360

Nested Loop Anti Join 363

Nested Loop Left Join 351, 362

Nested Loop Semi Join 364

Non-repeatable read 42, 46, 52

Non-uniform distribution 277, 374, 413

NULL 64, 274, 328, 441, 443, 461, 483,

530

O

OID 21

old_snapshot_threshold 141

Operator class 315, 365, 493

parameters 468, 533, 537

support functions 320

Operator family 320

Optimization see planning

P

Page 28, 412

dirty 148

fragmentation 64, 94

full image 174

header 134, 139

prefetching 341

split 101, 423, 425, 457, 481, 502

pageinspect 62, 65, 68, 74, 125, 167,

211, 412, 447, 478, 494, 520

pages_per_range 517

Parallel Bitmap Heap Scan 348

Parallel execution 300, 305, 347, 366,

377, 390, 401, 404

limitations 308

Parallel Hash 379

545

Index

Parallel Hash Join 379

Parallel Index Only Scan 378

Parallel Seq Scan 301–302

parallel_leader_participation 300, 302

parallel_setup_cost 303, 401

parallel_tuple_cost 303, 402

parallel_workers 305

Parsing 254

Partial Aggregate 303

Partial GroupAggregate 404

pgbench 184, 189, 245

pg_buffercache 148, 159

pg_checksums 187

pg_controldata 173

PGDATA 20

pg_dump 90

pg_prewarm 161

pg_prewarm.autoprewarm 161

pg_prewarm.autoprewarm_interval 161

pg_rewind 165

pgrowlocks 214, 229

pgstattuple 136

pg_test_fsync 186

pg_trgm 471, 490, 507

pg_visibility 104, 126

pg_wait_sampling 245

pg_wait_sampling.profile_period 246

pg_waldump 169, 176, 193

Phantom read 42, 52, 235

Plan 257

generic and custom 268

plan_cache_mode 269

Planning 257, 267

Pointers to tuples 63

Portal 264

postgres 33

postmaster 33–34, 110, 173, 175, 300

Preparing a statement 266

ProcArray 70, 82

Process 33

Protocol 35

extended query 266

simple query 252

Pruning 92, 98, 101, 425, 430

psql 15, 18, 21, 79, 244, 251

Q

Quadtree 473

R

random_page_cost 297, 334, 345

RD-tree 464

Read Committed 42–46, 49–50, 52–53,

61, 80, 87–88, 91, 104, 219

Read skew 48, 50, 53

Read Uncommitted 42–45

Read-only transaction anomaly 56, 59,

235

Recheck 314, 330, 342, 463, 469, 483,

510

Recovery 173

Relation 24

Repeatable Read 43–45, 52–56, 58,

60–61, 80, 88, 91, 133, 219, 236

replica 191–192, 194, 196

Rewriting see transformation

Row version see tuple

RTE 254

R-Tree 445

Rule system 256

RUM 506

S

Savepoint 76

Scan

bitmap 326, 340, 420, 442, 460,

482, 503, 530

cost estimation 296, 301, 331, 338,

343, 534

index 237, 326, 330, 442, 460, 482

index-only 273, 328, 337, 420, 461,

466, 483, 490

546

Index

method comparison 348

parallel index 347

parallel sequential 301

sequential 236, 296

skip 439

Schema 22

search_path 22

seg 471

Segment 24, 168

Selectivity 262, 296

join 356

Seq Scan 258, 296, 298–299, 310

seq_page_cost 297, 334, 345, 377

Serializable 43–44, 58, 60–61, 80, 88,

91, 219, 235–236, 239, 308

Server 20

shared_buffers 158

shared_preload_libraries 161, 245

Signature 466, 537

slowfs 246

Snapshot 80, 83, 194

export 90

system catalog 89

Sort 391–394, 402, 404

Sorting 327, 387, 392, 421, 437, 441

external 396

heapsort 394

incremental 399

parallel 401

quicksort 393

Special space 63

SP-GiST 472

operator class 472, 475, 486

pages 477

properties 482, 490

Split

bucket 411, 414

page 423, 425, 457, 481, 502

startup 173–175

Starvation 216, 221

statement_timeout 225

Statistics 109, 262

basic 271, 337

correlation 284, 332, 525, 534

distinct values 276, 290, 525

expression 285, 293

extended 286

field width 284

histogram 279, 389

most common values 277, 291,

357, 374

multivariate 288

non-scalar data types 283

NULL fraction 275

SubPlan 310–311

Subtransaction 76, 170

Support functions 320

Synchronization 182, 186

synchronous_commit 182–184

System catalog 21, 193, 255

T

Tablespace 22

temp_buffers 163

temp_file_limit 163, 372

Tid Scan 330

Timeline 169

TOAST 22, 28, 74, 157

track_commit_timestamp 82

track_counts 110

track_io_timing 154

Transaction 40, 67, 80

abort 72, 76, 78, 219, 236

age 123

commit 70, 167, 182–183, 219

status 82, 167

subtransaction 76, 170

virtual 75, 203

Transaction ID

lock 202

wraparound 123, 131

547

Index

Transformation 255

Tree

balanced 422, 425, 444, 492

non-balanced 472

parse 254

plan 257

radix 485

signature 466

Trigrams 507

Truncation

heap 108

suffix 431

Tuple 63

insert only 108, 112

Tuple ID 64, 313, 493

Tuple pointer 94

U

Unique 403

V

Vacuum 88, 152, 272, 314, 338, 416, 523

aggressive 129

autovacuum 109, 226

full 135

monitoring 119, 138

phases 107

routine 102

vacuum_cost_delay 117, 132

vacuum_cost_limit 117–118

vacuum_cost_page_dirty 118

vacuum_cost_page_hit 117

vacuum_cost_page_miss 118

vacuum_failsafe_age 127, 132

vacuum_freeze_min_age 127–129, 133

vacuum_freeze_table_age 127, 129

vacuum_index_cleanup 133

vacuum_multixact_failsafe_age 215

vacuum_multixact_freeze_min_age 215

vacuum_multixact_freeze_table_age 215

vacuum_truncate 109

vacuum_freeze_min_age 127

values_per_range 533

Virtual transaction 75

Visibility 81, 86, 296, 314, 330, 337

Volatility 49, 320, 329

W

Wait-for graph 225

Waits 243

sampling 245

unaccounted-for time 244, 246

WAL see write-ahead log

wal_buffers 166

wal_compression 189

wal_keep_size 179

wal_level 191

wal_log_hints 189

wal_recycle 178

wal_segment_size 168

walsender 182, 192

wal_skip_threshold 192

wal_sync_method 187

walwriter 183–184

wal_writer_delay 183–184

wal_writer_flush_after 184

WindowAgg 393

work_mem 17, 265, 342–343, 345, 352,

360, 368, 374, 378–379, 385,

393, 404

Write skew 55, 58, 235

Write-ahead log 34, 164, 242, 295, 314

levels 191

X

Xmin and xmax 64, 66, 69, 72, 81, 123,

210, 215

548

	About This Book
	Introduction
	Data Organization
	Databases
	System Catalog
	Schemas
	Tablespaces
	Relations
	Files and Forks
	Pages
	TOAST

	Processes and Memory
	Clients and the Client-Server Protocol

	Part I Isolation and MVCC
	Isolation
	Consistency
	Isolation Levels and Anomalies in SQL Standard
	Lost Update
	Dirty Reads and Read Uncommitted
	Non-Repeatable Reads and Read Committed
	Phantom Reads and Repeatable Read
	No Anomalies and Serializable
	Why These Anomalies?

	Isolation Levels in PostgreSQL
	Read Committed
	Repeatable Read
	Serializable

	Which Isolation Level to Use?

	Pages and Tuples
	Page Structure
	Page Header
	Special Space
	Tuples
	Item Pointers
	Free Space

	Row Version Layout
	Operations on Tuples
	Insert
	Commit
	Delete
	Abort
	Update

	Indexes
	TOAST
	Virtual Transactions
	Subtransactions
	Savepoints
	Errors and Atomicity

	Snapshots
	What is a Snapshot?
	Row Version Visibility
	Snapshot Structure
	Visibility of Transactions' Own Changes
	Transaction Horizon
	System Catalog Snapshots
	Exporting Snapshots

	Page Pruning and HOT Updates
	Page Pruning
	HOT Updates
	Page Pruning for HOT Updates
	HOT Chain Splits
	Page Pruning for Indexes

	Vacuum and Autovacuum
	Vacuum
	Database Horizon Revisited
	Vacuum Phases
	Heap Scan
	Index Vacuuming
	Heap Vacuuming
	Heap Truncation

	Analysis
	Automatic Vacuum and Analysis
	About the Autovacuum Mechanism
	Which Tables Need to be Vacuumed?
	Which Tables Need to Be Analyzed?
	Autovacuum in Action

	Managing the Load
	Vacuum Throttling
	Autovacuum Throttling

	Monitoring
	Monitoring Vacuum
	Monitoring Autovacuum

	Freezing
	Transaction ID Wraparound
	Tuple Freezing and Visibility Rules
	Managing Freezing
	Minimal Freezing Age
	Age for Aggressive Freezing
	Age for Forced Autovacuum
	Age for Failsafe Freezing

	Manual Freezing
	Freezing by Vacuum
	Freezing Data at the Initial Loading

	Rebuilding Tables and Indexes
	Full Vacuuming
	Why is Routine Vacuuming not Enough?
	Estimating Data Density
	Freezing

	Other Rebuilding Methods
	Alternatives to Full Vacuuming
	Reducing Downtime During Rebuilding

	Precautions
	Read-Only Queries
	Data Updates

	Part II Buffer Cache and WAL
	Buffer Cache
	Caching
	Buffer Cache Design
	Cache Hits
	Cache Misses
	Buffer Search and Eviction

	Bulk Eviction
	Choosing the Buffer Cache Size
	Cache Warming
	Local Cache

	Write-Ahead Log
	Logging
	WAL Structure
	Logical Structure
	Physical Structure

	Checkpoint
	Recovery
	Background Writing
	WAL Setup
	Configuring Checkpoints
	Configuring Background Writing
	Monitoring

	WAL Modes
	Performance
	Fault Tolerance
	Caching
	Data Corruption
	Non-Atomic Writes

	WAL Levels
	Minimal
	Replica
	Logical

	Part III Locks
	Relation-Level Locks
	About Locks
	Heavyweight Locks
	Locks on Transaction IDs
	Relation-Level Locks
	Wait Queue

	Row-Level Locks
	Lock Design
	Row-Level Locking Modes
	Exclusive Modes
	Shared Modes

	Multitransactions
	Wait Queue
	Exclusive Modes
	Shared Modes

	No-Wait Locks
	Deadlocks
	Deadlocks by Row Updates
	Deadlocks Between Two UPDATE Statements

	Miscellaneous Locks
	Non-Object Locks
	Relation Extension Locks
	Page Locks
	Advisory Locks
	Predicate Locks

	Locks on Memory Structures
	Spinlocks
	Lightweight Locks
	Examples
	Buffer Cache
	WAL Buffers

	Monitoring Waits
	Sampling

	Part IV Query Execution
	Query Execution Stages
	Demo Database
	Simple Query Protocol
	Parsing
	Transformation
	Planning
	Execution

	Extended Query Protocol
	Preparation
	Parameter Binding
	Planning and Execution
	Getting the Results

	Statistics
	Basic Statistics
	NULL Values
	Distinct Values
	Most Common Values
	Histogram
	Statistics for Non-Scalar Data Types
	Average Field Width
	Correlation
	Expression Statistics
	Extended Expression Statistics
	Statistics for Expression Indexes

	Multivariate Statistics
	Functional Dependencies Between Columns
	Multivariate Number of Distinct Values
	Multivariate MCV Lists

	Table Access Methods
	Pluggable Storage Engines
	Sequential Scans
	Cost Estimation

	Parallel Plans
	Parallel Sequential Scans
	Cost Estimation

	Parallel Execution Limitations
	Number of Background Workers
	Non-Parallelizable Queries
	Parallel Restricted Queries

	Index Access Methods
	Indexes and Extensibility
	Operator Classes and Families
	Operator Classes
	Operator Families

	Indexing Engine Interface
	Access Method Properties
	Index-Level Properties
	Column-Level Properties

	Index Scans
	Regular Index Scans
	Cost Estimation
	Good Scenario: High Correlation
	Bad Scenario: Low Correlation

	Index-Only Scans
	Indexes with the Include Clause

	Bitmap Scans
	Bitmap Accuracy
	Operations on Bitmaps
	Cost Estimation

	Parallel Index Scans
	Comparison of Various Access Methods

	Nested Loop
	Join Types and Methods
	Nested Loop Joins
	Cartesian Product
	Parameterized Joins
	Caching Rows (Memoization)
	Outer Joins
	Anti- and Semi-joins
	Non-Equi-joins
	Parallel Mode

	Hashing
	Hash Joins
	One-Pass Hash Joins
	Two-Pass Hash Joins
	Dynamic Adjustments
	Hash Joins in Parallel Plans
	Parallel One-Pass Hash Joins
	Parallel Two-Pass Hash Joins
	Modifications

	Distinct Values and Grouping

	Sorting and Merging
	Merge Joins
	Merging Sorted Sets
	Parallel Mode
	Modifications

	Sorting
	Quicksort
	Top-N Heapsort
	External Sorting
	Incremental Sorting
	Parallel Mode

	Distinct Values and Grouping
	Comparison of Join Methods

	Part V Types of Indexes
	Hash
	Overview
	Page Layout
	Operator Class
	Properties
	Access Method Properties
	Index-Level Properties
	Column-Level Properties

	B-tree
	Overview
	Search and Insertions
	Search by Equality
	Search by Inequality
	Search by Range
	Insertions

	Page Layout
	Deduplication
	Compact Storage of Inner Index Entries

	Operator Class
	Comparison Semantics
	Multicolumn Indexes and Sorting

	Properties
	Access Method Properties
	Index-Level Properties
	Column-Level Properties

	GiST
	Overview
	R-Trees for Points
	Page Layout
	Operator Class
	Search for Contained Elements
	Nearest Neighbor Search
	Insertion
	Exclusion Constraints
	Properties

	RD-Trees for Full-Text Search
	About Full-Text Search
	Indexing tsvector Data
	Properties

	Other Data Types

	SP-GiST
	Overview
	Quadtrees for Points
	Operator Class
	Page Layout
	Search
	Insertion
	Properties

	K-Dimensional Trees for Points
	Radix Trees for Strings
	Operator Class
	Search
	Insertion
	Properties

	Other Data Types

	GIN
	Overview
	Index for Full-Text Search
	Page Layout
	Operator Class
	Search
	Frequent and Rare Lexemes
	Insertions
	Limiting Result Set Size
	Properties
	GIN Limitations and RUM Index

	Trigrams
	Indexing Arrays
	Indexing JSON
	jsonb_ops Operator Class
	jsonb_path_ops Operator Class

	Indexing Other Data Types

	BRIN
	Overview
	Example
	Page Layout
	Search
	Summary Information Updates
	Value Insertion
	Range Summarization

	Minmax Classes
	Choosing Columns to be Indexed
	Range Size and Search Efficiency
	Properties

	Minmax-Multi Classes
	Inclusion Classes
	Bloom Classes

	Conclusion
	Index

