Online Cryptography Course Dan Boneh

Intro. Number Theory

Notation




Background

We will use a bit of number theory to construct:
 Key exchange protocols

e Digital signatures

* Public-key encryption

This module: crash course on relevant concepts

More info: read parts of Shoup’s book referenced
at end of module



Notation

From here on:
N denotes a positive integer.

 pdenote a prime.

Notation: &=, = Za,llzl,..,:\/—/j

Can do addition and multiplication modulo N



Modular arithmetic

Examples: let N=12

9+8 = 5 in Zlg

5x7

11 in ZlQ

5-7

10 in ZlQ

Arithmetic in Z, works as you expect, e.g X (y+z)=x'y+x-z iy
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Greatest common divisor

Def: Forints. x,y: gecd(x,y) isthe greatest common divisor of x,y

Example: gcd(12,18) = 6 2p12|-1p<1g= &

Fact: forallints. x,y there existints. a,b such that
a'x+b-y=gcd(x,y)
a,b can be found efficiently using the extended Euclid alg.

If gcd(x,y)=1 we say that x and y are relatively prime




Modular inversion

Over the rationals, inverse of 2is 2. What about Zx ?
Def: Theinverse of xinZy isan elementyinZy s.t. X—)/'S/ MZ\/

y is denoted x?'.

+£
Example: let N be an odd integer. Theinverse of 2inZy is N2_

2_('9'5::1‘) = N+ =1 w =Z,



Modular inversion

Which elements have an inverse in Zy ?

Lemma: xin Zy hasaninverse ifandonlyif gcd(x,N)=1

Proof:
gcd(x,N)=1 = 3 ab: ax+b N=+— ax=1 w2,

gcd(x,N)>1 = Va:gcd(a'x,N)>1 = a-x¢}inZN
even odf

ged(4n) <2 =D Yar g.X is evew = 73vt TN+L



More notation
Def: Z?\f = (set of invertible elementsin Zy ) =
= { X€Zy @ ged(x,N)=1}
Examples:
1. forprimep, Z,=7,\{0} ={1,2,...,p—1}
2. 73, ={1,5,7,11}

For xin Z%;, can find x! using extended Euclid algorithm.



Solving modular linear equations

Solve: a'x+b=0 in Zy
Solution: x=-b-al! in Zy
Find atin Zy using extended Euclid. ~Run time: O(log? N)

What about modular quadratic equations?

next segments
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Review

N denotes an n-bit positive integer. p denotes a prime.

-7z, = {0,1,.., N1}

* (Z)" = (setofinvertible elementsin Z,)

{ x€z, : gcd(x,N)=1}

Can find inverses efficiently using Euclid alg.:

time = O(n?)



Fermat’s theorem (1640

Thm: Letp beaprime

VxE(Z): xP1 =1 in Z,
Example: p=5. 3*=81=1 in Z

So: x€(Z) = xx?2=1 = xl=x? inZ

another way to compute inverses, but less efficient than Euclid
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Application: generating random primes

Suppose we want to generate a large random prime

say, prime p of length 1024 bits (i.e. p = 21024)

/Step 1: choose arandom integer p € [ 21024, 21025.1] A
Step 2: testif 2Pt=1 in Z,
. If so, output p and stop. If not, gotostep 1. )

Simple algorithm (not the best).  Pr[ p not prime ] < 20



The structure of (z)’

Thm (Euler):  (Z))" is a cyclic group, that is

3 g€(Z,)" suchthat {1,g g%g% .., 8%} =(Z)

g is called a generator of (Z))"

Example: p=7. {1,3,3% 33,34 3%={(1,3,2,6,4,5}=(Z,)

Not every elem. is a generator: {1, 2, 22, 23, 24, 2°} ={1, 2, 4}



Order

For g&(Z,)" theset {1,g,g%g? ..} iscalled

the group generated by g, denoted <g>

Def: theorderof g&(Z))" is the size of <g>
ord (8) = |<g>| = (smallesta>0s.t. g2=1inZ))

Examples: ord,(3)=6 ; ord,(2)=3 ; ord,(1)=1

Thm (Lagrange): Vg&(Z)" : ord(g) divides p-1



Euler’s generalization of Fermat s

Def: For aninteger N define ¢ (N) = | (Zy) (Euler’s ¢ func.)

Examples: ¢ (12)= |[{1,5,7,11}| =4 ; ¢ (p) = p-1
ForN=p-q: @ (N)=N-p-g+1 = (p-1)(g-1)

Thm (Euler): V x € (Z,)": xcp(N) =

1 inZ,
, (12) _ g4 pre —q
Example: 5% 7=5%=625=1 in Z,

Generalization of Fermat. Basis of the RSA cryptosystem
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Modular e’th roots

We know how to solve modular linear equations:

a'x+b=0 in Z Solution: x=-b-a? inZ,

What about higher degree polynomials?
Example: let p beaprimeand c€Z,. Can we solve:

x?-c=0 , vy3-c=0 , z3’=c=0 in Z,



Modular e’th roots

Let p beaprimeand cEZ,.

Def: x€Z, st. x*=cinZ;, iscalledan e’throot ofc.

3
6 =208=2 wm 2
Examples:  71/3 - 64 21 ”

312 = 5 in Zu 21/2 does not exist in Zi,

11/3 =1 in ZH



The easy case

When does c'/¢ in Z, exist? Can we compute it efficiently?

The easy case: suppose gcd(e,p-1)=1

Thenforall c in(Z)): c'/¢ existsin Z andis easy to find.

ve 4 j
Proof: let d=e*inZ,,. Then | & =¢ ch 210

d-e=1inZ_, =>1K€2 de-= ‘4(,0’1)+1’='> p
S A e 2



The case e=2: square roots

If p is an odd prime then gcd( 2, p-1)#1 X -X
Fact: in Z; , X—x? isa 2-to-1 function S
(Example: inZ,: 1 10 2 9 3 8 4 7 h
1 4 9 5 )

o

Def: xin 7Z, is a quadratic residue (Q.R.) if it has a square root in 7,

p odd prime = the#of QR.inZ,is (p-1)/2+1



Fuler’s theorem

Thm: xin (Zp)* iIsaQ.R. & X(p_l)/2 =1 in Zp (p odd prime)

Example:  'in 7,, : 15 25 35 45, 55 65 75 85, 95 10°

= 1 -1 1 11 -1,-1,-1,1, -1

Note: xz0 = x(PU/2= (xp'1)1/2= 12 € {1,-1} in Z,

Def: x[P-1)/2 js called the Legendre Symbol of x over p  (179s)




Computing square roots mod p

Suppose p =3 (mod 4)

Lemma: if c€(Z)" is QR. then Ve = clPt)/4 jn Z,

e ol f-
%‘} . 2 E '
Proof: [C =L L e T 2/’

G

=1
When p=1(mod4), can also be done efficiently, but a bit harder

run time = O(log3 p)



Solving quadratic equations mod p

Solve: a'xX2+b'x+c=0 in Zp

Solution: x= (-b-l_-\,bz—4-a-c' )/ 2a in Z

p

* Find (2a)*inZ, usingextended Euclid.

* Findsquarerootof b?’-4-a-c inZ (if one exists)

using a square root algorithm



Computing e’th roots mod N ??

Let N be a composite number and e>1

When does c'/¢ in Z, exist? Can we compute it efficiently?

Answering these questions requires the factorization of N
(as far as we know)
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Representing bignums

Representing an n-bit integer (e.g. n=2048) on a 64-bit machine

1 J

it
n/32 blocks

Note: some processors have 128-bit registers (or more)
and support multiplication on them



Arithmetic

Given: two n-bit integers

log

* Addition and subtraction: lineartime O(n) l

* Multiplication: naively O(n?).

Karatsuba (1960): O(n1->%>)

Basicidea: (2°x,+x,) x (2°y,+y,) with 3 mults.

Best (asymptotic) algorithm:

* Division with remainder: O(n?).

about O(n-log n).



Exponentiation

Finite cyclic group G (for example G=Z; )
Goal: given ginG and x compute g*

Example: suppose x=53=(110101),=32+16+4+1

Then: g53 = g32+16+4+1 _ ;32 ;16 4 1

., A . =
g—g2 gt g8 glb 327 N 53

=



The repeated squaring alg.

Input: ginG and x>0
write X = (X, X, 4

ye—g , z<1

fori=0tondo:
if (x[i] ==1):

y <y’

output z

; Output: g*

e X5 X1 Xg)-

227"y

example: g5 3
Y <Z
g° 8
g* g
g g
g16 g5
g32 g21
g64 g53




Running times

Given n-bitint. N:
* Addition and subtraction in Z,: lineartime T_=0O(n)
* Modular multiplication in Z,: naively T, =0(n?)

* Modular exponentiation in Z,, ( g*):

O( (Iogx)-Tx) < O( (Iogx)-nz) < 0O(n3)
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Easy problems

* Given composite Nand xinZ, find x! inZ,

* Given prime p and polynomial f(x) in Z[x]

find xinZ, s.t. f(x)=0 inZ, (if one exists)

Running time is linear in deg(f) .

.. but many problems are difficult



Intractable problems with primes

Fix a prime p>2 and gin (Zp)* of order q.
Consider the function: x +— g* in Z,

Now, consider the inverse function:

Dlog, (g") = x  where xin {0, ..., g-2}

Example: in Zq : 1, 2, 3, 4 5, 6, 7, 8, 9,

Dlog,( ) : O, 1, 8 2, 4 9, 7, 3, 6,

10

5




DLOG: more generally
Let G be a finite cyclic group and g a generator of G
G={1,g,¢2,8g, ..,6 g%} (qis called the order of G )
Def: We say that DLOG is hard in G if for all efficient alg. A:
Preec,x —z, [ A(G,q, g 8)=x] < negligible

Example candidates:
(1) (Z,)" forlargep, (2) Elliptic curve groups mod p



COmpUﬁng DlOg in (Zp)>I< (n-bit prime p)

Best known algorithm (GNFS): runtime exp( O(v/n) )

Elliptic Curve
cipher key size modulus size group size
80 bits 1024 bits 160 bits
128 bits 3072 bits 256 bits
256 bits (AES) 15360 bits 512 bits

As a result: slow transition away from (mod p) to elliptic curves



An application: collision resistance

Choose a group G where Dlog is hard (e.g. (Zp)* for large p)

Let g = |G| be aprime. Choose generators g, h of G

For x,y € {1,...,q} define | H(x,y)=g* - hY | inG

Lemma: finding collision for H(.,.) is as hard as computing Dlog,(h)

Proof: Suppose we are given a collision H(x,,Y,) = H(x,,Y;)

then gxo .hYo = gX1 hY1 = gxo-X1 —hY1Yo = h= g Xo-X1/V1-Yo
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Intractable problems with composites

Consider the set of integers: (e.g. for n=1024)
Z(Q) (n) = { N=p-gq where p,gq are n-bit primes }

Problem 1: Factor arandom N in Z(Q)(n) (e.g. for n=1024)

Problem 2: Given a polynomial f(x) where degree(f) > 1

and a random N in Z(2>(n)

find xinZy s.t. f(x)=0 in Zy

nnnnnnn



The factoring problem

Gauss (1805): “The problem of distinguishing prime numbers from
composite numbers and of resolving the latter into
their prime factors is known to be one of the most
important and useful in arithmetic.”

Best known alg. (NFS): runtime exp( O(/n) ) for n-bitinteger

Current world record: RSA-768 (232 digits)
 Work: two years on hundreds of machines
* Factoring a 1024-bit integer: about 1000 times harder

= likely possible this decade



Further reading

A Computational Introduction to Number Theory and Algebra,
V. Shoup, 2008 (V2), Chapter1-4,11, 12

Available at  /Ishoup.net/ntb/ntb-v2.pdf
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